python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0 /* * Simple file system for zoned block devices exposing zones as files. * * Copyright (C) 2019 Western Digital Corporation or its affiliates. */ #include <linux/module.h> #include <linux/pagemap.h> #include <linux/magic.h> #include <linux/iomap.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/statfs.h> #include <linux/writeback.h> #include <linux/quotaops.h> #include <linux/seq_file.h> #include <linux/parser.h> #include <linux/uio.h> #include <linux/mman.h> #include <linux/sched/mm.h> #include <linux/crc32.h> #include <linux/task_io_accounting_ops.h> #include "zonefs.h" #define CREATE_TRACE_POINTS #include "trace.h" /* * Get the name of a zone group directory. */ static const char *zonefs_zgroup_name(enum zonefs_ztype ztype) { switch (ztype) { case ZONEFS_ZTYPE_CNV: return "cnv"; case ZONEFS_ZTYPE_SEQ: return "seq"; default: WARN_ON_ONCE(1); return "???"; } } /* * Manage the active zone count. */ static void zonefs_account_active(struct super_block *sb, struct zonefs_zone *z) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); if (zonefs_zone_is_cnv(z)) return; /* * For zones that transitioned to the offline or readonly condition, * we only need to clear the active state. */ if (z->z_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY)) goto out; /* * If the zone is active, that is, if it is explicitly open or * partially written, check if it was already accounted as active. */ if ((z->z_flags & ZONEFS_ZONE_OPEN) || (z->z_wpoffset > 0 && z->z_wpoffset < z->z_capacity)) { if (!(z->z_flags & ZONEFS_ZONE_ACTIVE)) { z->z_flags |= ZONEFS_ZONE_ACTIVE; atomic_inc(&sbi->s_active_seq_files); } return; } out: /* The zone is not active. If it was, update the active count */ if (z->z_flags & ZONEFS_ZONE_ACTIVE) { z->z_flags &= ~ZONEFS_ZONE_ACTIVE; atomic_dec(&sbi->s_active_seq_files); } } /* * Manage the active zone count. Called with zi->i_truncate_mutex held. */ void zonefs_inode_account_active(struct inode *inode) { lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex); return zonefs_account_active(inode->i_sb, zonefs_inode_zone(inode)); } /* * Execute a zone management operation. */ static int zonefs_zone_mgmt(struct super_block *sb, struct zonefs_zone *z, enum req_op op) { int ret; /* * With ZNS drives, closing an explicitly open zone that has not been * written will change the zone state to "closed", that is, the zone * will remain active. Since this can then cause failure of explicit * open operation on other zones if the drive active zone resources * are exceeded, make sure that the zone does not remain active by * resetting it. */ if (op == REQ_OP_ZONE_CLOSE && !z->z_wpoffset) op = REQ_OP_ZONE_RESET; trace_zonefs_zone_mgmt(sb, z, op); ret = blkdev_zone_mgmt(sb->s_bdev, op, z->z_sector, z->z_size >> SECTOR_SHIFT, GFP_NOFS); if (ret) { zonefs_err(sb, "Zone management operation %s at %llu failed %d\n", blk_op_str(op), z->z_sector, ret); return ret; } return 0; } int zonefs_inode_zone_mgmt(struct inode *inode, enum req_op op) { lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex); return zonefs_zone_mgmt(inode->i_sb, zonefs_inode_zone(inode), op); } void zonefs_i_size_write(struct inode *inode, loff_t isize) { struct zonefs_zone *z = zonefs_inode_zone(inode); i_size_write(inode, isize); /* * A full zone is no longer open/active and does not need * explicit closing. */ if (isize >= z->z_capacity) { struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); if (z->z_flags & ZONEFS_ZONE_ACTIVE) atomic_dec(&sbi->s_active_seq_files); z->z_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE); } } void zonefs_update_stats(struct inode *inode, loff_t new_isize) { struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); loff_t old_isize = i_size_read(inode); loff_t nr_blocks; if (new_isize == old_isize) return; spin_lock(&sbi->s_lock); /* * This may be called for an update after an IO error. * So beware of the values seen. */ if (new_isize < old_isize) { nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; if (sbi->s_used_blocks > nr_blocks) sbi->s_used_blocks -= nr_blocks; else sbi->s_used_blocks = 0; } else { sbi->s_used_blocks += (new_isize - old_isize) >> sb->s_blocksize_bits; if (sbi->s_used_blocks > sbi->s_blocks) sbi->s_used_blocks = sbi->s_blocks; } spin_unlock(&sbi->s_lock); } /* * Check a zone condition. Return the amount of written (and still readable) * data in the zone. */ static loff_t zonefs_check_zone_condition(struct super_block *sb, struct zonefs_zone *z, struct blk_zone *zone) { switch (zone->cond) { case BLK_ZONE_COND_OFFLINE: zonefs_warn(sb, "Zone %llu: offline zone\n", z->z_sector); z->z_flags |= ZONEFS_ZONE_OFFLINE; return 0; case BLK_ZONE_COND_READONLY: /* * The write pointer of read-only zones is invalid, so we cannot * determine the zone wpoffset (inode size). We thus keep the * zone wpoffset as is, which leads to an empty file * (wpoffset == 0) on mount. For a runtime error, this keeps * the inode size as it was when last updated so that the user * can recover data. */ zonefs_warn(sb, "Zone %llu: read-only zone\n", z->z_sector); z->z_flags |= ZONEFS_ZONE_READONLY; if (zonefs_zone_is_cnv(z)) return z->z_capacity; return z->z_wpoffset; case BLK_ZONE_COND_FULL: /* The write pointer of full zones is invalid. */ return z->z_capacity; default: if (zonefs_zone_is_cnv(z)) return z->z_capacity; return (zone->wp - zone->start) << SECTOR_SHIFT; } } /* * Check a zone condition and adjust its inode access permissions for * offline and readonly zones. */ static void zonefs_inode_update_mode(struct inode *inode) { struct zonefs_zone *z = zonefs_inode_zone(inode); if (z->z_flags & ZONEFS_ZONE_OFFLINE) { /* Offline zones cannot be read nor written */ inode->i_flags |= S_IMMUTABLE; inode->i_mode &= ~0777; } else if (z->z_flags & ZONEFS_ZONE_READONLY) { /* Readonly zones cannot be written */ inode->i_flags |= S_IMMUTABLE; if (z->z_flags & ZONEFS_ZONE_INIT_MODE) inode->i_mode &= ~0777; else inode->i_mode &= ~0222; } z->z_flags &= ~ZONEFS_ZONE_INIT_MODE; z->z_mode = inode->i_mode; } struct zonefs_ioerr_data { struct inode *inode; bool write; }; static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct zonefs_ioerr_data *err = data; struct inode *inode = err->inode; struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); loff_t isize, data_size; /* * Check the zone condition: if the zone is not "bad" (offline or * read-only), read errors are simply signaled to the IO issuer as long * as there is no inconsistency between the inode size and the amount of * data writen in the zone (data_size). */ data_size = zonefs_check_zone_condition(sb, z, zone); isize = i_size_read(inode); if (!(z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)) && !err->write && isize == data_size) return 0; /* * At this point, we detected either a bad zone or an inconsistency * between the inode size and the amount of data written in the zone. * For the latter case, the cause may be a write IO error or an external * action on the device. Two error patterns exist: * 1) The inode size is lower than the amount of data in the zone: * a write operation partially failed and data was writen at the end * of the file. This can happen in the case of a large direct IO * needing several BIOs and/or write requests to be processed. * 2) The inode size is larger than the amount of data in the zone: * this can happen with a deferred write error with the use of the * device side write cache after getting successful write IO * completions. Other possibilities are (a) an external corruption, * e.g. an application reset the zone directly, or (b) the device * has a serious problem (e.g. firmware bug). * * In all cases, warn about inode size inconsistency and handle the * IO error according to the zone condition and to the mount options. */ if (zonefs_zone_is_seq(z) && isize != data_size) zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", inode->i_ino, isize, data_size); /* * First handle bad zones signaled by hardware. The mount options * errors=zone-ro and errors=zone-offline result in changing the * zone condition to read-only and offline respectively, as if the * condition was signaled by the hardware. */ if ((z->z_flags & ZONEFS_ZONE_OFFLINE) || (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)) { zonefs_warn(sb, "inode %lu: read/write access disabled\n", inode->i_ino); if (!(z->z_flags & ZONEFS_ZONE_OFFLINE)) z->z_flags |= ZONEFS_ZONE_OFFLINE; zonefs_inode_update_mode(inode); data_size = 0; } else if ((z->z_flags & ZONEFS_ZONE_READONLY) || (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)) { zonefs_warn(sb, "inode %lu: write access disabled\n", inode->i_ino); if (!(z->z_flags & ZONEFS_ZONE_READONLY)) z->z_flags |= ZONEFS_ZONE_READONLY; zonefs_inode_update_mode(inode); data_size = isize; } else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO && data_size > isize) { /* Do not expose garbage data */ data_size = isize; } /* * If the filesystem is mounted with the explicit-open mount option, we * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to * the read-only or offline condition, to avoid attempting an explicit * close of the zone when the inode file is closed. */ if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && (z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE))) z->z_flags &= ~ZONEFS_ZONE_OPEN; /* * If error=remount-ro was specified, any error result in remounting * the volume as read-only. */ if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { zonefs_warn(sb, "remounting filesystem read-only\n"); sb->s_flags |= SB_RDONLY; } /* * Update block usage stats and the inode size to prevent access to * invalid data. */ zonefs_update_stats(inode, data_size); zonefs_i_size_write(inode, data_size); z->z_wpoffset = data_size; zonefs_inode_account_active(inode); return 0; } /* * When an file IO error occurs, check the file zone to see if there is a change * in the zone condition (e.g. offline or read-only). For a failed write to a * sequential zone, the zone write pointer position must also be checked to * eventually correct the file size and zonefs inode write pointer offset * (which can be out of sync with the drive due to partial write failures). */ void __zonefs_io_error(struct inode *inode, bool write) { struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); unsigned int noio_flag; unsigned int nr_zones = 1; struct zonefs_ioerr_data err = { .inode = inode, .write = write, }; int ret; /* * The only files that have more than one zone are conventional zone * files with aggregated conventional zones, for which the inode zone * size is always larger than the device zone size. */ if (z->z_size > bdev_zone_sectors(sb->s_bdev)) nr_zones = z->z_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); /* * Memory allocations in blkdev_report_zones() can trigger a memory * reclaim which may in turn cause a recursion into zonefs as well as * struct request allocations for the same device. The former case may * end up in a deadlock on the inode truncate mutex, while the latter * may prevent IO forward progress. Executing the report zones under * the GFP_NOIO context avoids both problems. */ noio_flag = memalloc_noio_save(); ret = blkdev_report_zones(sb->s_bdev, z->z_sector, nr_zones, zonefs_io_error_cb, &err); if (ret != nr_zones) zonefs_err(sb, "Get inode %lu zone information failed %d\n", inode->i_ino, ret); memalloc_noio_restore(noio_flag); } static struct kmem_cache *zonefs_inode_cachep; static struct inode *zonefs_alloc_inode(struct super_block *sb) { struct zonefs_inode_info *zi; zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); if (!zi) return NULL; inode_init_once(&zi->i_vnode); mutex_init(&zi->i_truncate_mutex); zi->i_wr_refcnt = 0; return &zi->i_vnode; } static void zonefs_free_inode(struct inode *inode) { kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); } /* * File system stat. */ static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); enum zonefs_ztype t; buf->f_type = ZONEFS_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_namelen = ZONEFS_NAME_MAX; spin_lock(&sbi->s_lock); buf->f_blocks = sbi->s_blocks; if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) buf->f_bfree = 0; else buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; buf->f_bavail = buf->f_bfree; for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { if (sbi->s_zgroup[t].g_nr_zones) buf->f_files += sbi->s_zgroup[t].g_nr_zones + 1; } buf->f_ffree = 0; spin_unlock(&sbi->s_lock); buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); return 0; } enum { Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, Opt_explicit_open, Opt_err, }; static const match_table_t tokens = { { Opt_errors_ro, "errors=remount-ro"}, { Opt_errors_zro, "errors=zone-ro"}, { Opt_errors_zol, "errors=zone-offline"}, { Opt_errors_repair, "errors=repair"}, { Opt_explicit_open, "explicit-open" }, { Opt_err, NULL} }; static int zonefs_parse_options(struct super_block *sb, char *options) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); substring_t args[MAX_OPT_ARGS]; char *p; if (!options) return 0; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_errors_ro: sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; break; case Opt_errors_zro: sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; break; case Opt_errors_zol: sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; break; case Opt_errors_repair: sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; break; case Opt_explicit_open: sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; break; default: return -EINVAL; } } return 0; } static int zonefs_show_options(struct seq_file *seq, struct dentry *root) { struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) seq_puts(seq, ",errors=remount-ro"); if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) seq_puts(seq, ",errors=zone-ro"); if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) seq_puts(seq, ",errors=zone-offline"); if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) seq_puts(seq, ",errors=repair"); return 0; } static int zonefs_remount(struct super_block *sb, int *flags, char *data) { sync_filesystem(sb); return zonefs_parse_options(sb, data); } static int zonefs_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *iattr) { struct inode *inode = d_inode(dentry); int ret; if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; ret = setattr_prepare(&nop_mnt_idmap, dentry, iattr); if (ret) return ret; /* * Since files and directories cannot be created nor deleted, do not * allow setting any write attributes on the sub-directories grouping * files by zone type. */ if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && (iattr->ia_mode & 0222)) return -EPERM; if (((iattr->ia_valid & ATTR_UID) && !uid_eq(iattr->ia_uid, inode->i_uid)) || ((iattr->ia_valid & ATTR_GID) && !gid_eq(iattr->ia_gid, inode->i_gid))) { ret = dquot_transfer(&nop_mnt_idmap, inode, iattr); if (ret) return ret; } if (iattr->ia_valid & ATTR_SIZE) { ret = zonefs_file_truncate(inode, iattr->ia_size); if (ret) return ret; } setattr_copy(&nop_mnt_idmap, inode, iattr); if (S_ISREG(inode->i_mode)) { struct zonefs_zone *z = zonefs_inode_zone(inode); z->z_mode = inode->i_mode; z->z_uid = inode->i_uid; z->z_gid = inode->i_gid; } return 0; } static const struct inode_operations zonefs_file_inode_operations = { .setattr = zonefs_inode_setattr, }; static long zonefs_fname_to_fno(const struct qstr *fname) { const char *name = fname->name; unsigned int len = fname->len; long fno = 0, shift = 1; const char *rname; char c = *name; unsigned int i; /* * File names are always a base-10 number string without any * leading 0s. */ if (!isdigit(c)) return -ENOENT; if (len > 1 && c == '0') return -ENOENT; if (len == 1) return c - '0'; for (i = 0, rname = name + len - 1; i < len; i++, rname--) { c = *rname; if (!isdigit(c)) return -ENOENT; fno += (c - '0') * shift; shift *= 10; } return fno; } static struct inode *zonefs_get_file_inode(struct inode *dir, struct dentry *dentry) { struct zonefs_zone_group *zgroup = dir->i_private; struct super_block *sb = dir->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); struct zonefs_zone *z; struct inode *inode; ino_t ino; long fno; /* Get the file number from the file name */ fno = zonefs_fname_to_fno(&dentry->d_name); if (fno < 0) return ERR_PTR(fno); if (!zgroup->g_nr_zones || fno >= zgroup->g_nr_zones) return ERR_PTR(-ENOENT); z = &zgroup->g_zones[fno]; ino = z->z_sector >> sbi->s_zone_sectors_shift; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) { WARN_ON_ONCE(inode->i_private != z); return inode; } inode->i_ino = ino; inode->i_mode = z->z_mode; inode->i_mtime = inode->i_atime = inode_set_ctime_to_ts(inode, inode_get_ctime(dir)); inode->i_uid = z->z_uid; inode->i_gid = z->z_gid; inode->i_size = z->z_wpoffset; inode->i_blocks = z->z_capacity >> SECTOR_SHIFT; inode->i_private = z; inode->i_op = &zonefs_file_inode_operations; inode->i_fop = &zonefs_file_operations; inode->i_mapping->a_ops = &zonefs_file_aops; /* Update the inode access rights depending on the zone condition */ zonefs_inode_update_mode(inode); unlock_new_inode(inode); return inode; } static struct inode *zonefs_get_zgroup_inode(struct super_block *sb, enum zonefs_ztype ztype) { struct inode *root = d_inode(sb->s_root); struct zonefs_sb_info *sbi = ZONEFS_SB(sb); struct inode *inode; ino_t ino = bdev_nr_zones(sb->s_bdev) + ztype + 1; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; inode->i_ino = ino; inode_init_owner(&nop_mnt_idmap, inode, root, S_IFDIR | 0555); inode->i_size = sbi->s_zgroup[ztype].g_nr_zones; inode->i_mtime = inode->i_atime = inode_set_ctime_to_ts(inode, inode_get_ctime(root)); inode->i_private = &sbi->s_zgroup[ztype]; set_nlink(inode, 2); inode->i_op = &zonefs_dir_inode_operations; inode->i_fop = &zonefs_dir_operations; unlock_new_inode(inode); return inode; } static struct inode *zonefs_get_dir_inode(struct inode *dir, struct dentry *dentry) { struct super_block *sb = dir->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); const char *name = dentry->d_name.name; enum zonefs_ztype ztype; /* * We only need to check for the "seq" directory and * the "cnv" directory if we have conventional zones. */ if (dentry->d_name.len != 3) return ERR_PTR(-ENOENT); for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { if (sbi->s_zgroup[ztype].g_nr_zones && memcmp(name, zonefs_zgroup_name(ztype), 3) == 0) break; } if (ztype == ZONEFS_ZTYPE_MAX) return ERR_PTR(-ENOENT); return zonefs_get_zgroup_inode(sb, ztype); } static struct dentry *zonefs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode; if (dentry->d_name.len > ZONEFS_NAME_MAX) return ERR_PTR(-ENAMETOOLONG); if (dir == d_inode(dir->i_sb->s_root)) inode = zonefs_get_dir_inode(dir, dentry); else inode = zonefs_get_file_inode(dir, dentry); if (IS_ERR(inode)) return ERR_CAST(inode); return d_splice_alias(inode, dentry); } static int zonefs_readdir_root(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); enum zonefs_ztype ztype = ZONEFS_ZTYPE_CNV; ino_t base_ino = bdev_nr_zones(sb->s_bdev) + 1; if (ctx->pos >= inode->i_size) return 0; if (!dir_emit_dots(file, ctx)) return 0; if (ctx->pos == 2) { if (!sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) ztype = ZONEFS_ZTYPE_SEQ; if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3, base_ino + ztype, DT_DIR)) return 0; ctx->pos++; } if (ctx->pos == 3 && ztype != ZONEFS_ZTYPE_SEQ) { ztype = ZONEFS_ZTYPE_SEQ; if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3, base_ino + ztype, DT_DIR)) return 0; ctx->pos++; } return 0; } static int zonefs_readdir_zgroup(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); struct zonefs_zone_group *zgroup = inode->i_private; struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); struct zonefs_zone *z; int fname_len; char *fname; ino_t ino; int f; /* * The size of zone group directories is equal to the number * of zone files in the group and does note include the "." and * ".." entries. Hence the "+ 2" here. */ if (ctx->pos >= inode->i_size + 2) return 0; if (!dir_emit_dots(file, ctx)) return 0; fname = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); if (!fname) return -ENOMEM; for (f = ctx->pos - 2; f < zgroup->g_nr_zones; f++) { z = &zgroup->g_zones[f]; ino = z->z_sector >> sbi->s_zone_sectors_shift; fname_len = snprintf(fname, ZONEFS_NAME_MAX - 1, "%u", f); if (!dir_emit(ctx, fname, fname_len, ino, DT_REG)) break; ctx->pos++; } kfree(fname); return 0; } static int zonefs_readdir(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); if (inode == d_inode(inode->i_sb->s_root)) return zonefs_readdir_root(file, ctx); return zonefs_readdir_zgroup(file, ctx); } const struct inode_operations zonefs_dir_inode_operations = { .lookup = zonefs_lookup, .setattr = zonefs_inode_setattr, }; const struct file_operations zonefs_dir_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = zonefs_readdir, }; struct zonefs_zone_data { struct super_block *sb; unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; sector_t cnv_zone_start; struct blk_zone *zones; }; static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct zonefs_zone_data *zd = data; struct super_block *sb = zd->sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); /* * We do not care about the first zone: it contains the super block * and not exposed as a file. */ if (!idx) return 0; /* * Count the number of zones that will be exposed as files. * For sequential zones, we always have as many files as zones. * FOr conventional zones, the number of files depends on if we have * conventional zones aggregation enabled. */ switch (zone->type) { case BLK_ZONE_TYPE_CONVENTIONAL: if (sbi->s_features & ZONEFS_F_AGGRCNV) { /* One file per set of contiguous conventional zones */ if (!(sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) || zone->start != zd->cnv_zone_start) sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++; zd->cnv_zone_start = zone->start + zone->len; } else { /* One file per zone */ sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++; } break; case BLK_ZONE_TYPE_SEQWRITE_REQ: case BLK_ZONE_TYPE_SEQWRITE_PREF: sbi->s_zgroup[ZONEFS_ZTYPE_SEQ].g_nr_zones++; break; default: zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", zone->type); return -EIO; } memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); return 0; } static int zonefs_get_zone_info(struct zonefs_zone_data *zd) { struct block_device *bdev = zd->sb->s_bdev; int ret; zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone), GFP_KERNEL); if (!zd->zones) return -ENOMEM; /* Get zones information from the device */ ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, zonefs_get_zone_info_cb, zd); if (ret < 0) { zonefs_err(zd->sb, "Zone report failed %d\n", ret); return ret; } if (ret != bdev_nr_zones(bdev)) { zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", ret, bdev_nr_zones(bdev)); return -EIO; } return 0; } static inline void zonefs_free_zone_info(struct zonefs_zone_data *zd) { kvfree(zd->zones); } /* * Create a zone group and populate it with zone files. */ static int zonefs_init_zgroup(struct super_block *sb, struct zonefs_zone_data *zd, enum zonefs_ztype ztype) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); struct zonefs_zone_group *zgroup = &sbi->s_zgroup[ztype]; struct blk_zone *zone, *next, *end; struct zonefs_zone *z; unsigned int n = 0; int ret; /* Allocate the zone group. If it is empty, we have nothing to do. */ if (!zgroup->g_nr_zones) return 0; zgroup->g_zones = kvcalloc(zgroup->g_nr_zones, sizeof(struct zonefs_zone), GFP_KERNEL); if (!zgroup->g_zones) return -ENOMEM; /* * Initialize the zone groups using the device zone information. * We always skip the first zone as it contains the super block * and is not use to back a file. */ end = zd->zones + bdev_nr_zones(sb->s_bdev); for (zone = &zd->zones[1]; zone < end; zone = next) { next = zone + 1; if (zonefs_zone_type(zone) != ztype) continue; if (WARN_ON_ONCE(n >= zgroup->g_nr_zones)) return -EINVAL; /* * For conventional zones, contiguous zones can be aggregated * together to form larger files. Note that this overwrites the * length of the first zone of the set of contiguous zones * aggregated together. If one offline or read-only zone is * found, assume that all zones aggregated have the same * condition. */ if (ztype == ZONEFS_ZTYPE_CNV && (sbi->s_features & ZONEFS_F_AGGRCNV)) { for (; next < end; next++) { if (zonefs_zone_type(next) != ztype) break; zone->len += next->len; zone->capacity += next->capacity; if (next->cond == BLK_ZONE_COND_READONLY && zone->cond != BLK_ZONE_COND_OFFLINE) zone->cond = BLK_ZONE_COND_READONLY; else if (next->cond == BLK_ZONE_COND_OFFLINE) zone->cond = BLK_ZONE_COND_OFFLINE; } } z = &zgroup->g_zones[n]; if (ztype == ZONEFS_ZTYPE_CNV) z->z_flags |= ZONEFS_ZONE_CNV; z->z_sector = zone->start; z->z_size = zone->len << SECTOR_SHIFT; if (z->z_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT && !(sbi->s_features & ZONEFS_F_AGGRCNV)) { zonefs_err(sb, "Invalid zone size %llu (device zone sectors %llu)\n", z->z_size, bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT); return -EINVAL; } z->z_capacity = min_t(loff_t, MAX_LFS_FILESIZE, zone->capacity << SECTOR_SHIFT); z->z_wpoffset = zonefs_check_zone_condition(sb, z, zone); z->z_mode = S_IFREG | sbi->s_perm; z->z_uid = sbi->s_uid; z->z_gid = sbi->s_gid; /* * Let zonefs_inode_update_mode() know that we will need * special initialization of the inode mode the first time * it is accessed. */ z->z_flags |= ZONEFS_ZONE_INIT_MODE; sb->s_maxbytes = max(z->z_capacity, sb->s_maxbytes); sbi->s_blocks += z->z_capacity >> sb->s_blocksize_bits; sbi->s_used_blocks += z->z_wpoffset >> sb->s_blocksize_bits; /* * For sequential zones, make sure that any open zone is closed * first to ensure that the initial number of open zones is 0, * in sync with the open zone accounting done when the mount * option ZONEFS_MNTOPT_EXPLICIT_OPEN is used. */ if (ztype == ZONEFS_ZTYPE_SEQ && (zone->cond == BLK_ZONE_COND_IMP_OPEN || zone->cond == BLK_ZONE_COND_EXP_OPEN)) { ret = zonefs_zone_mgmt(sb, z, REQ_OP_ZONE_CLOSE); if (ret) return ret; } zonefs_account_active(sb, z); n++; } if (WARN_ON_ONCE(n != zgroup->g_nr_zones)) return -EINVAL; zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", zonefs_zgroup_name(ztype), zgroup->g_nr_zones, zgroup->g_nr_zones > 1 ? "s" : ""); return 0; } static void zonefs_free_zgroups(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); enum zonefs_ztype ztype; if (!sbi) return; for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { kvfree(sbi->s_zgroup[ztype].g_zones); sbi->s_zgroup[ztype].g_zones = NULL; } } /* * Create a zone group and populate it with zone files. */ static int zonefs_init_zgroups(struct super_block *sb) { struct zonefs_zone_data zd; enum zonefs_ztype ztype; int ret; /* First get the device zone information */ memset(&zd, 0, sizeof(struct zonefs_zone_data)); zd.sb = sb; ret = zonefs_get_zone_info(&zd); if (ret) goto cleanup; /* Allocate and initialize the zone groups */ for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { ret = zonefs_init_zgroup(sb, &zd, ztype); if (ret) { zonefs_info(sb, "Zone group \"%s\" initialization failed\n", zonefs_zgroup_name(ztype)); break; } } cleanup: zonefs_free_zone_info(&zd); if (ret) zonefs_free_zgroups(sb); return ret; } /* * Read super block information from the device. */ static int zonefs_read_super(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); struct zonefs_super *super; u32 crc, stored_crc; struct page *page; struct bio_vec bio_vec; struct bio bio; int ret; page = alloc_page(GFP_KERNEL); if (!page) return -ENOMEM; bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); bio.bi_iter.bi_sector = 0; __bio_add_page(&bio, page, PAGE_SIZE, 0); ret = submit_bio_wait(&bio); if (ret) goto free_page; super = page_address(page); ret = -EINVAL; if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) goto free_page; stored_crc = le32_to_cpu(super->s_crc); super->s_crc = 0; crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); if (crc != stored_crc) { zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", crc, stored_crc); goto free_page; } sbi->s_features = le64_to_cpu(super->s_features); if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { zonefs_err(sb, "Unknown features set 0x%llx\n", sbi->s_features); goto free_page; } if (sbi->s_features & ZONEFS_F_UID) { sbi->s_uid = make_kuid(current_user_ns(), le32_to_cpu(super->s_uid)); if (!uid_valid(sbi->s_uid)) { zonefs_err(sb, "Invalid UID feature\n"); goto free_page; } } if (sbi->s_features & ZONEFS_F_GID) { sbi->s_gid = make_kgid(current_user_ns(), le32_to_cpu(super->s_gid)); if (!gid_valid(sbi->s_gid)) { zonefs_err(sb, "Invalid GID feature\n"); goto free_page; } } if (sbi->s_features & ZONEFS_F_PERM) sbi->s_perm = le32_to_cpu(super->s_perm); if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { zonefs_err(sb, "Reserved area is being used\n"); goto free_page; } import_uuid(&sbi->s_uuid, super->s_uuid); ret = 0; free_page: __free_page(page); return ret; } static const struct super_operations zonefs_sops = { .alloc_inode = zonefs_alloc_inode, .free_inode = zonefs_free_inode, .statfs = zonefs_statfs, .remount_fs = zonefs_remount, .show_options = zonefs_show_options, }; static int zonefs_get_zgroup_inodes(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); struct inode *dir_inode; enum zonefs_ztype ztype; for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { if (!sbi->s_zgroup[ztype].g_nr_zones) continue; dir_inode = zonefs_get_zgroup_inode(sb, ztype); if (IS_ERR(dir_inode)) return PTR_ERR(dir_inode); sbi->s_zgroup[ztype].g_inode = dir_inode; } return 0; } static void zonefs_release_zgroup_inodes(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); enum zonefs_ztype ztype; if (!sbi) return; for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { if (sbi->s_zgroup[ztype].g_inode) { iput(sbi->s_zgroup[ztype].g_inode); sbi->s_zgroup[ztype].g_inode = NULL; } } } /* * Check that the device is zoned. If it is, get the list of zones and create * sub-directories and files according to the device zone configuration and * format options. */ static int zonefs_fill_super(struct super_block *sb, void *data, int silent) { struct zonefs_sb_info *sbi; struct inode *inode; enum zonefs_ztype ztype; int ret; if (!bdev_is_zoned(sb->s_bdev)) { zonefs_err(sb, "Not a zoned block device\n"); return -EINVAL; } /* * Initialize super block information: the maximum file size is updated * when the zone files are created so that the format option * ZONEFS_F_AGGRCNV which increases the maximum file size of a file * beyond the zone size is taken into account. */ sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; spin_lock_init(&sbi->s_lock); sb->s_fs_info = sbi; sb->s_magic = ZONEFS_MAGIC; sb->s_maxbytes = 0; sb->s_op = &zonefs_sops; sb->s_time_gran = 1; /* * The block size is set to the device zone write granularity to ensure * that write operations are always aligned according to the device * interface constraints. */ sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); sbi->s_uid = GLOBAL_ROOT_UID; sbi->s_gid = GLOBAL_ROOT_GID; sbi->s_perm = 0640; sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; atomic_set(&sbi->s_wro_seq_files, 0); sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev); atomic_set(&sbi->s_active_seq_files, 0); sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev); ret = zonefs_read_super(sb); if (ret) return ret; ret = zonefs_parse_options(sb, data); if (ret) return ret; zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev)); if (!sbi->s_max_wro_seq_files && !sbi->s_max_active_seq_files && sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { zonefs_info(sb, "No open and active zone limits. Ignoring explicit_open mount option\n"); sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; } /* Initialize the zone groups */ ret = zonefs_init_zgroups(sb); if (ret) goto cleanup; /* Create the root directory inode */ ret = -ENOMEM; inode = new_inode(sb); if (!inode) goto cleanup; inode->i_ino = bdev_nr_zones(sb->s_bdev); inode->i_mode = S_IFDIR | 0555; inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode); inode->i_op = &zonefs_dir_inode_operations; inode->i_fop = &zonefs_dir_operations; inode->i_size = 2; set_nlink(inode, 2); for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { if (sbi->s_zgroup[ztype].g_nr_zones) { inc_nlink(inode); inode->i_size++; } } sb->s_root = d_make_root(inode); if (!sb->s_root) goto cleanup; /* * Take a reference on the zone groups directory inodes * to keep them in the inode cache. */ ret = zonefs_get_zgroup_inodes(sb); if (ret) goto cleanup; ret = zonefs_sysfs_register(sb); if (ret) goto cleanup; return 0; cleanup: zonefs_release_zgroup_inodes(sb); zonefs_free_zgroups(sb); return ret; } static struct dentry *zonefs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); } static void zonefs_kill_super(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); /* Release the reference on the zone group directory inodes */ zonefs_release_zgroup_inodes(sb); kill_block_super(sb); zonefs_sysfs_unregister(sb); zonefs_free_zgroups(sb); kfree(sbi); } /* * File system definition and registration. */ static struct file_system_type zonefs_type = { .owner = THIS_MODULE, .name = "zonefs", .mount = zonefs_mount, .kill_sb = zonefs_kill_super, .fs_flags = FS_REQUIRES_DEV, }; static int __init zonefs_init_inodecache(void) { zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", sizeof(struct zonefs_inode_info), 0, (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), NULL); if (zonefs_inode_cachep == NULL) return -ENOMEM; return 0; } static void zonefs_destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy the inode cache. */ rcu_barrier(); kmem_cache_destroy(zonefs_inode_cachep); } static int __init zonefs_init(void) { int ret; BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); ret = zonefs_init_inodecache(); if (ret) return ret; ret = zonefs_sysfs_init(); if (ret) goto destroy_inodecache; ret = register_filesystem(&zonefs_type); if (ret) goto sysfs_exit; return 0; sysfs_exit: zonefs_sysfs_exit(); destroy_inodecache: zonefs_destroy_inodecache(); return ret; } static void __exit zonefs_exit(void) { unregister_filesystem(&zonefs_type); zonefs_sysfs_exit(); zonefs_destroy_inodecache(); } MODULE_AUTHOR("Damien Le Moal"); MODULE_DESCRIPTION("Zone file system for zoned block devices"); MODULE_LICENSE("GPL"); MODULE_ALIAS_FS("zonefs"); module_init(zonefs_init); module_exit(zonefs_exit);
linux-master
fs/zonefs/super.c
// SPDX-License-Identifier: GPL-2.0 /* * Simple file system for zoned block devices exposing zones as files. * * Copyright (C) 2022 Western Digital Corporation or its affiliates. */ #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/blkdev.h> #include "zonefs.h" struct zonefs_sysfs_attr { struct attribute attr; ssize_t (*show)(struct zonefs_sb_info *sbi, char *buf); }; #define ZONEFS_SYSFS_ATTR_RO(name) \ static struct zonefs_sysfs_attr zonefs_sysfs_attr_##name = __ATTR_RO(name) #define ATTR_LIST(name) &zonefs_sysfs_attr_##name.attr static ssize_t zonefs_sysfs_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct zonefs_sb_info *sbi = container_of(kobj, struct zonefs_sb_info, s_kobj); struct zonefs_sysfs_attr *zonefs_attr = container_of(attr, struct zonefs_sysfs_attr, attr); if (!zonefs_attr->show) return 0; return zonefs_attr->show(sbi, buf); } static ssize_t max_wro_seq_files_show(struct zonefs_sb_info *sbi, char *buf) { return sysfs_emit(buf, "%u\n", sbi->s_max_wro_seq_files); } ZONEFS_SYSFS_ATTR_RO(max_wro_seq_files); static ssize_t nr_wro_seq_files_show(struct zonefs_sb_info *sbi, char *buf) { return sysfs_emit(buf, "%d\n", atomic_read(&sbi->s_wro_seq_files)); } ZONEFS_SYSFS_ATTR_RO(nr_wro_seq_files); static ssize_t max_active_seq_files_show(struct zonefs_sb_info *sbi, char *buf) { return sysfs_emit(buf, "%u\n", sbi->s_max_active_seq_files); } ZONEFS_SYSFS_ATTR_RO(max_active_seq_files); static ssize_t nr_active_seq_files_show(struct zonefs_sb_info *sbi, char *buf) { return sysfs_emit(buf, "%d\n", atomic_read(&sbi->s_active_seq_files)); } ZONEFS_SYSFS_ATTR_RO(nr_active_seq_files); static struct attribute *zonefs_sysfs_attrs[] = { ATTR_LIST(max_wro_seq_files), ATTR_LIST(nr_wro_seq_files), ATTR_LIST(max_active_seq_files), ATTR_LIST(nr_active_seq_files), NULL, }; ATTRIBUTE_GROUPS(zonefs_sysfs); static void zonefs_sysfs_sb_release(struct kobject *kobj) { struct zonefs_sb_info *sbi = container_of(kobj, struct zonefs_sb_info, s_kobj); complete(&sbi->s_kobj_unregister); } static const struct sysfs_ops zonefs_sysfs_attr_ops = { .show = zonefs_sysfs_attr_show, }; static const struct kobj_type zonefs_sb_ktype = { .default_groups = zonefs_sysfs_groups, .sysfs_ops = &zonefs_sysfs_attr_ops, .release = zonefs_sysfs_sb_release, }; static struct kobject *zonefs_sysfs_root; int zonefs_sysfs_register(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); int ret; init_completion(&sbi->s_kobj_unregister); ret = kobject_init_and_add(&sbi->s_kobj, &zonefs_sb_ktype, zonefs_sysfs_root, "%s", sb->s_id); if (ret) { kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); return ret; } sbi->s_sysfs_registered = true; return 0; } void zonefs_sysfs_unregister(struct super_block *sb) { struct zonefs_sb_info *sbi = ZONEFS_SB(sb); if (!sbi || !sbi->s_sysfs_registered) return; kobject_del(&sbi->s_kobj); kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); } int __init zonefs_sysfs_init(void) { zonefs_sysfs_root = kobject_create_and_add("zonefs", fs_kobj); if (!zonefs_sysfs_root) return -ENOMEM; return 0; } void zonefs_sysfs_exit(void) { kobject_put(zonefs_sysfs_root); zonefs_sysfs_root = NULL; }
linux-master
fs/zonefs/sysfs.c
// SPDX-License-Identifier: GPL-2.0 /* * Simple file system for zoned block devices exposing zones as files. * * Copyright (C) 2022 Western Digital Corporation or its affiliates. */ #include <linux/module.h> #include <linux/pagemap.h> #include <linux/iomap.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/statfs.h> #include <linux/writeback.h> #include <linux/quotaops.h> #include <linux/seq_file.h> #include <linux/parser.h> #include <linux/uio.h> #include <linux/mman.h> #include <linux/sched/mm.h> #include <linux/task_io_accounting_ops.h> #include "zonefs.h" #include "trace.h" static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, loff_t length, unsigned int flags, struct iomap *iomap, struct iomap *srcmap) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; loff_t isize; /* * All blocks are always mapped below EOF. If reading past EOF, * act as if there is a hole up to the file maximum size. */ mutex_lock(&zi->i_truncate_mutex); iomap->bdev = inode->i_sb->s_bdev; iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); isize = i_size_read(inode); if (iomap->offset >= isize) { iomap->type = IOMAP_HOLE; iomap->addr = IOMAP_NULL_ADDR; iomap->length = length; } else { iomap->type = IOMAP_MAPPED; iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; iomap->length = isize - iomap->offset; } mutex_unlock(&zi->i_truncate_mutex); trace_zonefs_iomap_begin(inode, iomap); return 0; } static const struct iomap_ops zonefs_read_iomap_ops = { .iomap_begin = zonefs_read_iomap_begin, }; static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, loff_t length, unsigned int flags, struct iomap *iomap, struct iomap *srcmap) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; loff_t isize; /* All write I/Os should always be within the file maximum size */ if (WARN_ON_ONCE(offset + length > z->z_capacity)) return -EIO; /* * Sequential zones can only accept direct writes. This is already * checked when writes are issued, so warn if we see a page writeback * operation. */ if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT))) return -EIO; /* * For conventional zones, all blocks are always mapped. For sequential * zones, all blocks after always mapped below the inode size (zone * write pointer) and unwriten beyond. */ mutex_lock(&zi->i_truncate_mutex); iomap->bdev = inode->i_sb->s_bdev; iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; isize = i_size_read(inode); if (iomap->offset >= isize) { iomap->type = IOMAP_UNWRITTEN; iomap->length = z->z_capacity - iomap->offset; } else { iomap->type = IOMAP_MAPPED; iomap->length = isize - iomap->offset; } mutex_unlock(&zi->i_truncate_mutex); trace_zonefs_iomap_begin(inode, iomap); return 0; } static const struct iomap_ops zonefs_write_iomap_ops = { .iomap_begin = zonefs_write_iomap_begin, }; static int zonefs_read_folio(struct file *unused, struct folio *folio) { return iomap_read_folio(folio, &zonefs_read_iomap_ops); } static void zonefs_readahead(struct readahead_control *rac) { iomap_readahead(rac, &zonefs_read_iomap_ops); } /* * Map blocks for page writeback. This is used only on conventional zone files, * which implies that the page range can only be within the fixed inode size. */ static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, loff_t offset) { struct zonefs_zone *z = zonefs_inode_zone(inode); if (WARN_ON_ONCE(zonefs_zone_is_seq(z))) return -EIO; if (WARN_ON_ONCE(offset >= i_size_read(inode))) return -EIO; /* If the mapping is already OK, nothing needs to be done */ if (offset >= wpc->iomap.offset && offset < wpc->iomap.offset + wpc->iomap.length) return 0; return zonefs_write_iomap_begin(inode, offset, z->z_capacity - offset, IOMAP_WRITE, &wpc->iomap, NULL); } static const struct iomap_writeback_ops zonefs_writeback_ops = { .map_blocks = zonefs_write_map_blocks, }; static int zonefs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct iomap_writepage_ctx wpc = { }; return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); } static int zonefs_swap_activate(struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { struct inode *inode = file_inode(swap_file); if (zonefs_inode_is_seq(inode)) { zonefs_err(inode->i_sb, "swap file: not a conventional zone file\n"); return -EINVAL; } return iomap_swapfile_activate(sis, swap_file, span, &zonefs_read_iomap_ops); } const struct address_space_operations zonefs_file_aops = { .read_folio = zonefs_read_folio, .readahead = zonefs_readahead, .writepages = zonefs_writepages, .dirty_folio = iomap_dirty_folio, .release_folio = iomap_release_folio, .invalidate_folio = iomap_invalidate_folio, .migrate_folio = filemap_migrate_folio, .is_partially_uptodate = iomap_is_partially_uptodate, .error_remove_page = generic_error_remove_page, .swap_activate = zonefs_swap_activate, }; int zonefs_file_truncate(struct inode *inode, loff_t isize) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t old_isize; enum req_op op; int ret = 0; /* * Only sequential zone files can be truncated and truncation is allowed * only down to a 0 size, which is equivalent to a zone reset, and to * the maximum file size, which is equivalent to a zone finish. */ if (!zonefs_zone_is_seq(z)) return -EPERM; if (!isize) op = REQ_OP_ZONE_RESET; else if (isize == z->z_capacity) op = REQ_OP_ZONE_FINISH; else return -EPERM; inode_dio_wait(inode); /* Serialize against page faults */ filemap_invalidate_lock(inode->i_mapping); /* Serialize against zonefs_iomap_begin() */ mutex_lock(&zi->i_truncate_mutex); old_isize = i_size_read(inode); if (isize == old_isize) goto unlock; ret = zonefs_inode_zone_mgmt(inode, op); if (ret) goto unlock; /* * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, * take care of open zones. */ if (z->z_flags & ZONEFS_ZONE_OPEN) { /* * Truncating a zone to EMPTY or FULL is the equivalent of * closing the zone. For a truncation to 0, we need to * re-open the zone to ensure new writes can be processed. * For a truncation to the maximum file size, the zone is * closed and writes cannot be accepted anymore, so clear * the open flag. */ if (!isize) ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); else z->z_flags &= ~ZONEFS_ZONE_OPEN; } zonefs_update_stats(inode, isize); truncate_setsize(inode, isize); z->z_wpoffset = isize; zonefs_inode_account_active(inode); unlock: mutex_unlock(&zi->i_truncate_mutex); filemap_invalidate_unlock(inode->i_mapping); return ret; } static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file_inode(file); int ret = 0; if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; /* * Since only direct writes are allowed in sequential files, page cache * flush is needed only for conventional zone files. */ if (zonefs_inode_is_cnv(inode)) ret = file_write_and_wait_range(file, start, end); if (!ret) ret = blkdev_issue_flush(inode->i_sb->s_bdev); if (ret) zonefs_io_error(inode, true); return ret; } static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) { struct inode *inode = file_inode(vmf->vma->vm_file); vm_fault_t ret; if (unlikely(IS_IMMUTABLE(inode))) return VM_FAULT_SIGBUS; /* * Sanity check: only conventional zone files can have shared * writeable mappings. */ if (zonefs_inode_is_seq(inode)) return VM_FAULT_NOPAGE; sb_start_pagefault(inode->i_sb); file_update_time(vmf->vma->vm_file); /* Serialize against truncates */ filemap_invalidate_lock_shared(inode->i_mapping); ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); filemap_invalidate_unlock_shared(inode->i_mapping); sb_end_pagefault(inode->i_sb); return ret; } static const struct vm_operations_struct zonefs_file_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = zonefs_filemap_page_mkwrite, }; static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) { /* * Conventional zones accept random writes, so their files can support * shared writable mappings. For sequential zone files, only read * mappings are possible since there are no guarantees for write * ordering between msync() and page cache writeback. */ if (zonefs_inode_is_seq(file_inode(file)) && (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) return -EINVAL; file_accessed(file); vma->vm_ops = &zonefs_file_vm_ops; return 0; } static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) { loff_t isize = i_size_read(file_inode(file)); /* * Seeks are limited to below the zone size for conventional zones * and below the zone write pointer for sequential zones. In both * cases, this limit is the inode size. */ return generic_file_llseek_size(file, offset, whence, isize, isize); } static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_inode_info *zi = ZONEFS_I(inode); if (error) { zonefs_io_error(inode, true); return error; } if (size && zonefs_inode_is_seq(inode)) { /* * Note that we may be seeing completions out of order, * but that is not a problem since a write completed * successfully necessarily means that all preceding writes * were also successful. So we can safely increase the inode * size to the write end location. */ mutex_lock(&zi->i_truncate_mutex); if (i_size_read(inode) < iocb->ki_pos + size) { zonefs_update_stats(inode, iocb->ki_pos + size); zonefs_i_size_write(inode, iocb->ki_pos + size); } mutex_unlock(&zi->i_truncate_mutex); } return 0; } static const struct iomap_dio_ops zonefs_write_dio_ops = { .end_io = zonefs_file_write_dio_end_io, }; /* * Do not exceed the LFS limits nor the file zone size. If pos is under the * limit it becomes a short access. If it exceeds the limit, return -EFBIG. */ static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, loff_t count) { struct inode *inode = file_inode(file); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t limit = rlimit(RLIMIT_FSIZE); loff_t max_size = z->z_capacity; if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); return -EFBIG; } count = min(count, limit - pos); } if (!(file->f_flags & O_LARGEFILE)) max_size = min_t(loff_t, MAX_NON_LFS, max_size); if (unlikely(pos >= max_size)) return -EFBIG; return min(count, max_size - pos); } static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t count; if (IS_SWAPFILE(inode)) return -ETXTBSY; if (!iov_iter_count(from)) return 0; if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) return -EINVAL; if (iocb->ki_flags & IOCB_APPEND) { if (zonefs_zone_is_cnv(z)) return -EINVAL; mutex_lock(&zi->i_truncate_mutex); iocb->ki_pos = z->z_wpoffset; mutex_unlock(&zi->i_truncate_mutex); } count = zonefs_write_check_limits(file, iocb->ki_pos, iov_iter_count(from)); if (count < 0) return count; iov_iter_truncate(from, count); return iov_iter_count(from); } /* * Handle direct writes. For sequential zone files, this is the only possible * write path. For these files, check that the user is issuing writes * sequentially from the end of the file. This code assumes that the block layer * delivers write requests to the device in sequential order. This is always the * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE * elevator feature is being used (e.g. mq-deadline). The block layer always * automatically select such an elevator for zoned block devices during the * device initialization. */ static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; ssize_t ret, count; /* * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT * as this can cause write reordering (e.g. the first aio gets EAGAIN * on the inode lock but the second goes through but is now unaligned). */ if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) && (iocb->ki_flags & IOCB_NOWAIT)) return -EOPNOTSUPP; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) return -EAGAIN; } else { inode_lock(inode); } count = zonefs_write_checks(iocb, from); if (count <= 0) { ret = count; goto inode_unlock; } if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { ret = -EINVAL; goto inode_unlock; } /* Enforce sequential writes (append only) in sequential zones */ if (zonefs_zone_is_seq(z)) { mutex_lock(&zi->i_truncate_mutex); if (iocb->ki_pos != z->z_wpoffset) { mutex_unlock(&zi->i_truncate_mutex); ret = -EINVAL; goto inode_unlock; } mutex_unlock(&zi->i_truncate_mutex); } /* * iomap_dio_rw() may return ENOTBLK if there was an issue with * page invalidation. Overwrite that error code with EBUSY so that * the user can make sense of the error. */ ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, &zonefs_write_dio_ops, 0, NULL, 0); if (ret == -ENOTBLK) ret = -EBUSY; if (zonefs_zone_is_seq(z) && (ret > 0 || ret == -EIOCBQUEUED)) { if (ret > 0) count = ret; /* * Update the zone write pointer offset assuming the write * operation succeeded. If it did not, the error recovery path * will correct it. Also do active seq file accounting. */ mutex_lock(&zi->i_truncate_mutex); z->z_wpoffset += count; zonefs_inode_account_active(inode); mutex_unlock(&zi->i_truncate_mutex); } inode_unlock: inode_unlock(inode); return ret; } static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); ssize_t ret; /* * Direct IO writes are mandatory for sequential zone files so that the * write IO issuing order is preserved. */ if (zonefs_inode_is_seq(inode)) return -EIO; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) return -EAGAIN; } else { inode_lock(inode); } ret = zonefs_write_checks(iocb, from); if (ret <= 0) goto inode_unlock; ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); if (ret == -EIO) zonefs_io_error(inode, true); inode_unlock: inode_unlock(inode); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_zone *z = zonefs_inode_zone(inode); if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; if (sb_rdonly(inode->i_sb)) return -EROFS; /* Write operations beyond the zone capacity are not allowed */ if (iocb->ki_pos >= z->z_capacity) return -EFBIG; if (iocb->ki_flags & IOCB_DIRECT) { ssize_t ret = zonefs_file_dio_write(iocb, from); if (ret != -ENOTBLK) return ret; } return zonefs_file_buffered_write(iocb, from); } static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { if (error) { zonefs_io_error(file_inode(iocb->ki_filp), false); return error; } return 0; } static const struct iomap_dio_ops zonefs_read_dio_ops = { .end_io = zonefs_file_read_dio_end_io, }; static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct inode *inode = file_inode(iocb->ki_filp); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; loff_t isize; ssize_t ret; /* Offline zones cannot be read */ if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) return -EPERM; if (iocb->ki_pos >= z->z_capacity) return 0; if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock_shared(inode)) return -EAGAIN; } else { inode_lock_shared(inode); } /* Limit read operations to written data */ mutex_lock(&zi->i_truncate_mutex); isize = i_size_read(inode); if (iocb->ki_pos >= isize) { mutex_unlock(&zi->i_truncate_mutex); ret = 0; goto inode_unlock; } iov_iter_truncate(to, isize - iocb->ki_pos); mutex_unlock(&zi->i_truncate_mutex); if (iocb->ki_flags & IOCB_DIRECT) { size_t count = iov_iter_count(to); if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { ret = -EINVAL; goto inode_unlock; } file_accessed(iocb->ki_filp); ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, &zonefs_read_dio_ops, 0, NULL, 0); } else { ret = generic_file_read_iter(iocb, to); if (ret == -EIO) zonefs_io_error(inode, false); } inode_unlock: inode_unlock_shared(inode); return ret; } static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct inode *inode = file_inode(in); struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); loff_t isize; ssize_t ret = 0; /* Offline zones cannot be read */ if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) return -EPERM; if (*ppos >= z->z_capacity) return 0; inode_lock_shared(inode); /* Limit read operations to written data */ mutex_lock(&zi->i_truncate_mutex); isize = i_size_read(inode); if (*ppos >= isize) len = 0; else len = min_t(loff_t, len, isize - *ppos); mutex_unlock(&zi->i_truncate_mutex); if (len > 0) { ret = filemap_splice_read(in, ppos, pipe, len, flags); if (ret == -EIO) zonefs_io_error(inode, false); } inode_unlock_shared(inode); return ret; } /* * Write open accounting is done only for sequential files. */ static inline bool zonefs_seq_file_need_wro(struct inode *inode, struct file *file) { if (zonefs_inode_is_cnv(inode)) return false; if (!(file->f_mode & FMODE_WRITE)) return false; return true; } static int zonefs_seq_file_write_open(struct inode *inode) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); int ret = 0; mutex_lock(&zi->i_truncate_mutex); if (!zi->i_wr_refcnt) { struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { if (sbi->s_max_wro_seq_files && wro > sbi->s_max_wro_seq_files) { atomic_dec(&sbi->s_wro_seq_files); ret = -EBUSY; goto unlock; } if (i_size_read(inode) < z->z_capacity) { ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); if (ret) { atomic_dec(&sbi->s_wro_seq_files); goto unlock; } z->z_flags |= ZONEFS_ZONE_OPEN; zonefs_inode_account_active(inode); } } } zi->i_wr_refcnt++; unlock: mutex_unlock(&zi->i_truncate_mutex); return ret; } static int zonefs_file_open(struct inode *inode, struct file *file) { int ret; file->f_mode |= FMODE_CAN_ODIRECT; ret = generic_file_open(inode, file); if (ret) return ret; if (zonefs_seq_file_need_wro(inode, file)) return zonefs_seq_file_write_open(inode); return 0; } static void zonefs_seq_file_write_close(struct inode *inode) { struct zonefs_inode_info *zi = ZONEFS_I(inode); struct zonefs_zone *z = zonefs_inode_zone(inode); struct super_block *sb = inode->i_sb; struct zonefs_sb_info *sbi = ZONEFS_SB(sb); int ret = 0; mutex_lock(&zi->i_truncate_mutex); zi->i_wr_refcnt--; if (zi->i_wr_refcnt) goto unlock; /* * The file zone may not be open anymore (e.g. the file was truncated to * its maximum size or it was fully written). For this case, we only * need to decrement the write open count. */ if (z->z_flags & ZONEFS_ZONE_OPEN) { ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); if (ret) { __zonefs_io_error(inode, false); /* * Leaving zones explicitly open may lead to a state * where most zones cannot be written (zone resources * exhausted). So take preventive action by remounting * read-only. */ if (z->z_flags & ZONEFS_ZONE_OPEN && !(sb->s_flags & SB_RDONLY)) { zonefs_warn(sb, "closing zone at %llu failed %d\n", z->z_sector, ret); zonefs_warn(sb, "remounting filesystem read-only\n"); sb->s_flags |= SB_RDONLY; } goto unlock; } z->z_flags &= ~ZONEFS_ZONE_OPEN; zonefs_inode_account_active(inode); } atomic_dec(&sbi->s_wro_seq_files); unlock: mutex_unlock(&zi->i_truncate_mutex); } static int zonefs_file_release(struct inode *inode, struct file *file) { /* * If we explicitly open a zone we must close it again as well, but the * zone management operation can fail (either due to an IO error or as * the zone has gone offline or read-only). Make sure we don't fail the * close(2) for user-space. */ if (zonefs_seq_file_need_wro(inode, file)) zonefs_seq_file_write_close(inode); return 0; } const struct file_operations zonefs_file_operations = { .open = zonefs_file_open, .release = zonefs_file_release, .fsync = zonefs_file_fsync, .mmap = zonefs_file_mmap, .llseek = zonefs_file_llseek, .read_iter = zonefs_file_read_iter, .write_iter = zonefs_file_write_iter, .splice_read = zonefs_file_splice_read, .splice_write = iter_file_splice_write, .iopoll = iocb_bio_iopoll, };
linux-master
fs/zonefs/file.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * super.c * * load/unload driver, mount/dismount volumes * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/random.h> #include <linux/statfs.h> #include <linux/moduleparam.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/parser.h> #include <linux/crc32.h> #include <linux/debugfs.h> #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/quotaops.h> #include <linux/signal.h> #define CREATE_TRACE_POINTS #include "ocfs2_trace.h" #include <cluster/masklog.h> #include "ocfs2.h" /* this should be the only file to include a version 1 header */ #include "ocfs1_fs_compat.h" #include "alloc.h" #include "aops.h" #include "blockcheck.h" #include "dlmglue.h" #include "export.h" #include "extent_map.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "namei.h" #include "slot_map.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "xattr.h" #include "quota.h" #include "refcounttree.h" #include "suballoc.h" #include "buffer_head_io.h" #include "filecheck.h" static struct kmem_cache *ocfs2_inode_cachep; struct kmem_cache *ocfs2_dquot_cachep; struct kmem_cache *ocfs2_qf_chunk_cachep; static struct dentry *ocfs2_debugfs_root; MODULE_AUTHOR("Oracle"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("OCFS2 cluster file system"); struct mount_options { unsigned long commit_interval; unsigned long mount_opt; unsigned int atime_quantum; unsigned short slot; int localalloc_opt; unsigned int resv_level; int dir_resv_level; char cluster_stack[OCFS2_STACK_LABEL_LEN + 1]; }; static int ocfs2_parse_options(struct super_block *sb, char *options, struct mount_options *mopt, int is_remount); static int ocfs2_check_set_options(struct super_block *sb, struct mount_options *options); static int ocfs2_show_options(struct seq_file *s, struct dentry *root); static void ocfs2_put_super(struct super_block *sb); static int ocfs2_mount_volume(struct super_block *sb); static int ocfs2_remount(struct super_block *sb, int *flags, char *data); static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err); static int ocfs2_initialize_mem_caches(void); static void ocfs2_free_mem_caches(void); static void ocfs2_delete_osb(struct ocfs2_super *osb); static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf); static int ocfs2_sync_fs(struct super_block *sb, int wait); static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb); static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb); static void ocfs2_release_system_inodes(struct ocfs2_super *osb); static int ocfs2_check_volume(struct ocfs2_super *osb); static int ocfs2_verify_volume(struct ocfs2_dinode *di, struct buffer_head *bh, u32 sectsize, struct ocfs2_blockcheck_stats *stats); static int ocfs2_initialize_super(struct super_block *sb, struct buffer_head *bh, int sector_size, struct ocfs2_blockcheck_stats *stats); static int ocfs2_get_sector(struct super_block *sb, struct buffer_head **bh, int block, int sect_size); static struct inode *ocfs2_alloc_inode(struct super_block *sb); static void ocfs2_free_inode(struct inode *inode); static int ocfs2_susp_quotas(struct ocfs2_super *osb, int unsuspend); static int ocfs2_enable_quotas(struct ocfs2_super *osb); static void ocfs2_disable_quotas(struct ocfs2_super *osb); static struct dquot **ocfs2_get_dquots(struct inode *inode) { return OCFS2_I(inode)->i_dquot; } static const struct super_operations ocfs2_sops = { .statfs = ocfs2_statfs, .alloc_inode = ocfs2_alloc_inode, .free_inode = ocfs2_free_inode, .drop_inode = ocfs2_drop_inode, .evict_inode = ocfs2_evict_inode, .sync_fs = ocfs2_sync_fs, .put_super = ocfs2_put_super, .remount_fs = ocfs2_remount, .show_options = ocfs2_show_options, .quota_read = ocfs2_quota_read, .quota_write = ocfs2_quota_write, .get_dquots = ocfs2_get_dquots, }; enum { Opt_barrier, Opt_err_panic, Opt_err_ro, Opt_intr, Opt_nointr, Opt_hb_none, Opt_hb_local, Opt_hb_global, Opt_data_ordered, Opt_data_writeback, Opt_atime_quantum, Opt_slot, Opt_commit, Opt_localalloc, Opt_localflocks, Opt_stack, Opt_user_xattr, Opt_nouser_xattr, Opt_inode64, Opt_acl, Opt_noacl, Opt_usrquota, Opt_grpquota, Opt_coherency_buffered, Opt_coherency_full, Opt_resv_level, Opt_dir_resv_level, Opt_journal_async_commit, Opt_err_cont, Opt_err, }; static const match_table_t tokens = { {Opt_barrier, "barrier=%u"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_intr, "intr"}, {Opt_nointr, "nointr"}, {Opt_hb_none, OCFS2_HB_NONE}, {Opt_hb_local, OCFS2_HB_LOCAL}, {Opt_hb_global, OCFS2_HB_GLOBAL}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_atime_quantum, "atime_quantum=%u"}, {Opt_slot, "preferred_slot=%u"}, {Opt_commit, "commit=%u"}, {Opt_localalloc, "localalloc=%d"}, {Opt_localflocks, "localflocks"}, {Opt_stack, "cluster_stack=%s"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_inode64, "inode64"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_usrquota, "usrquota"}, {Opt_grpquota, "grpquota"}, {Opt_coherency_buffered, "coherency=buffered"}, {Opt_coherency_full, "coherency=full"}, {Opt_resv_level, "resv_level=%u"}, {Opt_dir_resv_level, "dir_resv_level=%u"}, {Opt_journal_async_commit, "journal_async_commit"}, {Opt_err_cont, "errors=continue"}, {Opt_err, NULL} }; #ifdef CONFIG_DEBUG_FS static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len) { struct ocfs2_cluster_connection *cconn = osb->cconn; struct ocfs2_recovery_map *rm = osb->recovery_map; struct ocfs2_orphan_scan *os = &osb->osb_orphan_scan; int i, out = 0; unsigned long flags; out += scnprintf(buf + out, len - out, "%10s => Id: %-s Uuid: %-s Gen: 0x%X Label: %-s\n", "Device", osb->dev_str, osb->uuid_str, osb->fs_generation, osb->vol_label); out += scnprintf(buf + out, len - out, "%10s => State: %d Flags: 0x%lX\n", "Volume", atomic_read(&osb->vol_state), osb->osb_flags); out += scnprintf(buf + out, len - out, "%10s => Block: %lu Cluster: %d\n", "Sizes", osb->sb->s_blocksize, osb->s_clustersize); out += scnprintf(buf + out, len - out, "%10s => Compat: 0x%X Incompat: 0x%X " "ROcompat: 0x%X\n", "Features", osb->s_feature_compat, osb->s_feature_incompat, osb->s_feature_ro_compat); out += scnprintf(buf + out, len - out, "%10s => Opts: 0x%lX AtimeQuanta: %u\n", "Mount", osb->s_mount_opt, osb->s_atime_quantum); if (cconn) { out += scnprintf(buf + out, len - out, "%10s => Stack: %s Name: %*s " "Version: %d.%d\n", "Cluster", (*osb->osb_cluster_stack == '\0' ? "o2cb" : osb->osb_cluster_stack), cconn->cc_namelen, cconn->cc_name, cconn->cc_version.pv_major, cconn->cc_version.pv_minor); } spin_lock_irqsave(&osb->dc_task_lock, flags); out += scnprintf(buf + out, len - out, "%10s => Pid: %d Count: %lu WakeSeq: %lu " "WorkSeq: %lu\n", "DownCnvt", (osb->dc_task ? task_pid_nr(osb->dc_task) : -1), osb->blocked_lock_count, osb->dc_wake_sequence, osb->dc_work_sequence); spin_unlock_irqrestore(&osb->dc_task_lock, flags); spin_lock(&osb->osb_lock); out += scnprintf(buf + out, len - out, "%10s => Pid: %d Nodes:", "Recovery", (osb->recovery_thread_task ? task_pid_nr(osb->recovery_thread_task) : -1)); if (rm->rm_used == 0) out += scnprintf(buf + out, len - out, " None\n"); else { for (i = 0; i < rm->rm_used; i++) out += scnprintf(buf + out, len - out, " %d", rm->rm_entries[i]); out += scnprintf(buf + out, len - out, "\n"); } spin_unlock(&osb->osb_lock); out += scnprintf(buf + out, len - out, "%10s => Pid: %d Interval: %lu\n", "Commit", (osb->commit_task ? task_pid_nr(osb->commit_task) : -1), osb->osb_commit_interval); out += scnprintf(buf + out, len - out, "%10s => State: %d TxnId: %lu NumTxns: %d\n", "Journal", osb->journal->j_state, osb->journal->j_trans_id, atomic_read(&osb->journal->j_num_trans)); out += scnprintf(buf + out, len - out, "%10s => GlobalAllocs: %d LocalAllocs: %d " "SubAllocs: %d LAWinMoves: %d SAExtends: %d\n", "Stats", atomic_read(&osb->alloc_stats.bitmap_data), atomic_read(&osb->alloc_stats.local_data), atomic_read(&osb->alloc_stats.bg_allocs), atomic_read(&osb->alloc_stats.moves), atomic_read(&osb->alloc_stats.bg_extends)); out += scnprintf(buf + out, len - out, "%10s => State: %u Descriptor: %llu Size: %u bits " "Default: %u bits\n", "LocalAlloc", osb->local_alloc_state, (unsigned long long)osb->la_last_gd, osb->local_alloc_bits, osb->local_alloc_default_bits); spin_lock(&osb->osb_lock); out += scnprintf(buf + out, len - out, "%10s => InodeSlot: %d StolenInodes: %d, " "MetaSlot: %d StolenMeta: %d\n", "Steal", osb->s_inode_steal_slot, atomic_read(&osb->s_num_inodes_stolen), osb->s_meta_steal_slot, atomic_read(&osb->s_num_meta_stolen)); spin_unlock(&osb->osb_lock); out += scnprintf(buf + out, len - out, "OrphanScan => "); out += scnprintf(buf + out, len - out, "Local: %u Global: %u ", os->os_count, os->os_seqno); out += scnprintf(buf + out, len - out, " Last Scan: "); if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) out += scnprintf(buf + out, len - out, "Disabled\n"); else out += scnprintf(buf + out, len - out, "%lu seconds ago\n", (unsigned long)(ktime_get_seconds() - os->os_scantime)); out += scnprintf(buf + out, len - out, "%10s => %3s %10s\n", "Slots", "Num", "RecoGen"); for (i = 0; i < osb->max_slots; ++i) { out += scnprintf(buf + out, len - out, "%10s %c %3d %10d\n", " ", (i == osb->slot_num ? '*' : ' '), i, osb->slot_recovery_generations[i]); } return out; } static int ocfs2_osb_debug_open(struct inode *inode, struct file *file) { struct ocfs2_super *osb = inode->i_private; char *buf = NULL; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) goto bail; i_size_write(inode, ocfs2_osb_dump(osb, buf, PAGE_SIZE)); file->private_data = buf; return 0; bail: return -ENOMEM; } static int ocfs2_debug_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static ssize_t ocfs2_debug_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { return simple_read_from_buffer(buf, nbytes, ppos, file->private_data, i_size_read(file->f_mapping->host)); } #else static int ocfs2_osb_debug_open(struct inode *inode, struct file *file) { return 0; } static int ocfs2_debug_release(struct inode *inode, struct file *file) { return 0; } static ssize_t ocfs2_debug_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { return 0; } #endif /* CONFIG_DEBUG_FS */ static const struct file_operations ocfs2_osb_debug_fops = { .open = ocfs2_osb_debug_open, .release = ocfs2_debug_release, .read = ocfs2_debug_read, .llseek = generic_file_llseek, }; static int ocfs2_sync_fs(struct super_block *sb, int wait) { int status; tid_t target; struct ocfs2_super *osb = OCFS2_SB(sb); if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (wait) { status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); } else { ocfs2_schedule_truncate_log_flush(osb, 0); } if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { if (wait) jbd2_log_wait_commit(osb->journal->j_journal, target); } return 0; } static int ocfs2_need_system_inode(struct ocfs2_super *osb, int ino) { if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA) && (ino == USER_QUOTA_SYSTEM_INODE || ino == LOCAL_USER_QUOTA_SYSTEM_INODE)) return 0; if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA) && (ino == GROUP_QUOTA_SYSTEM_INODE || ino == LOCAL_GROUP_QUOTA_SYSTEM_INODE)) return 0; return 1; } static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb) { struct inode *new = NULL; int status = 0; int i; new = ocfs2_iget(osb, osb->root_blkno, OCFS2_FI_FLAG_SYSFILE, 0); if (IS_ERR(new)) { status = PTR_ERR(new); mlog_errno(status); goto bail; } osb->root_inode = new; new = ocfs2_iget(osb, osb->system_dir_blkno, OCFS2_FI_FLAG_SYSFILE, 0); if (IS_ERR(new)) { status = PTR_ERR(new); mlog_errno(status); goto bail; } osb->sys_root_inode = new; for (i = OCFS2_FIRST_ONLINE_SYSTEM_INODE; i <= OCFS2_LAST_GLOBAL_SYSTEM_INODE; i++) { if (!ocfs2_need_system_inode(osb, i)) continue; new = ocfs2_get_system_file_inode(osb, i, osb->slot_num); if (!new) { ocfs2_release_system_inodes(osb); status = ocfs2_is_soft_readonly(osb) ? -EROFS : -EINVAL; mlog_errno(status); mlog(ML_ERROR, "Unable to load system inode %d, " "possibly corrupt fs?", i); goto bail; } // the array now has one ref, so drop this one iput(new); } bail: if (status) mlog_errno(status); return status; } static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb) { struct inode *new = NULL; int status = 0; int i; for (i = OCFS2_LAST_GLOBAL_SYSTEM_INODE + 1; i < NUM_SYSTEM_INODES; i++) { if (!ocfs2_need_system_inode(osb, i)) continue; new = ocfs2_get_system_file_inode(osb, i, osb->slot_num); if (!new) { ocfs2_release_system_inodes(osb); status = ocfs2_is_soft_readonly(osb) ? -EROFS : -EINVAL; mlog(ML_ERROR, "status=%d, sysfile=%d, slot=%d\n", status, i, osb->slot_num); goto bail; } /* the array now has one ref, so drop this one */ iput(new); } bail: if (status) mlog_errno(status); return status; } static void ocfs2_release_system_inodes(struct ocfs2_super *osb) { int i; struct inode *inode; for (i = 0; i < NUM_GLOBAL_SYSTEM_INODES; i++) { inode = osb->global_system_inodes[i]; if (inode) { iput(inode); osb->global_system_inodes[i] = NULL; } } inode = osb->sys_root_inode; if (inode) { iput(inode); osb->sys_root_inode = NULL; } inode = osb->root_inode; if (inode) { iput(inode); osb->root_inode = NULL; } if (!osb->local_system_inodes) return; for (i = 0; i < NUM_LOCAL_SYSTEM_INODES * osb->max_slots; i++) { if (osb->local_system_inodes[i]) { iput(osb->local_system_inodes[i]); osb->local_system_inodes[i] = NULL; } } kfree(osb->local_system_inodes); osb->local_system_inodes = NULL; } /* We're allocating fs objects, use GFP_NOFS */ static struct inode *ocfs2_alloc_inode(struct super_block *sb) { struct ocfs2_inode_info *oi; oi = alloc_inode_sb(sb, ocfs2_inode_cachep, GFP_NOFS); if (!oi) return NULL; oi->i_sync_tid = 0; oi->i_datasync_tid = 0; memset(&oi->i_dquot, 0, sizeof(oi->i_dquot)); jbd2_journal_init_jbd_inode(&oi->ip_jinode, &oi->vfs_inode); return &oi->vfs_inode; } static void ocfs2_free_inode(struct inode *inode) { kmem_cache_free(ocfs2_inode_cachep, OCFS2_I(inode)); } static unsigned long long ocfs2_max_file_offset(unsigned int bbits, unsigned int cbits) { unsigned int bytes = 1 << cbits; unsigned int trim = bytes; unsigned int bitshift = 32; /* * i_size and all block offsets in ocfs2 are always 64 bits * wide. i_clusters is 32 bits, in cluster-sized units. So on * 64 bit platforms, cluster size will be the limiting factor. */ #if BITS_PER_LONG == 32 BUILD_BUG_ON(sizeof(sector_t) != 8); /* * We might be limited by page cache size. */ if (bytes > PAGE_SIZE) { bytes = PAGE_SIZE; trim = 1; /* * Shift by 31 here so that we don't get larger than * MAX_LFS_FILESIZE */ bitshift = 31; } #endif /* * Trim by a whole cluster when we can actually approach the * on-disk limits. Otherwise we can overflow i_clusters when * an extent start is at the max offset. */ return (((unsigned long long)bytes) << bitshift) - trim; } static int ocfs2_remount(struct super_block *sb, int *flags, char *data) { int incompat_features; int ret = 0; struct mount_options parsed_options; struct ocfs2_super *osb = OCFS2_SB(sb); u32 tmp; sync_filesystem(sb); if (!ocfs2_parse_options(sb, data, &parsed_options, 1) || !ocfs2_check_set_options(sb, &parsed_options)) { ret = -EINVAL; goto out; } tmp = OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL | OCFS2_MOUNT_HB_NONE; if ((osb->s_mount_opt & tmp) != (parsed_options.mount_opt & tmp)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot change heartbeat mode on remount\n"); goto out; } if ((osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK) != (parsed_options.mount_opt & OCFS2_MOUNT_DATA_WRITEBACK)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot change data mode on remount\n"); goto out; } /* Probably don't want this on remount; it might * mess with other nodes */ if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64) && (parsed_options.mount_opt & OCFS2_MOUNT_INODE64)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot enable inode64 on remount\n"); goto out; } /* We're going to/from readonly mode. */ if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { /* Disable quota accounting before remounting RO */ if (*flags & SB_RDONLY) { ret = ocfs2_susp_quotas(osb, 0); if (ret < 0) goto out; } /* Lock here so the check of HARD_RO and the potential * setting of SOFT_RO is atomic. */ spin_lock(&osb->osb_lock); if (osb->osb_flags & OCFS2_OSB_HARD_RO) { mlog(ML_ERROR, "Remount on readonly device is forbidden.\n"); ret = -EROFS; goto unlock_osb; } if (*flags & SB_RDONLY) { sb->s_flags |= SB_RDONLY; osb->osb_flags |= OCFS2_OSB_SOFT_RO; } else { if (osb->osb_flags & OCFS2_OSB_ERROR_FS) { mlog(ML_ERROR, "Cannot remount RDWR " "filesystem due to previous errors.\n"); ret = -EROFS; goto unlock_osb; } incompat_features = OCFS2_HAS_RO_COMPAT_FEATURE(sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP); if (incompat_features) { mlog(ML_ERROR, "Cannot remount RDWR because " "of unsupported optional features " "(%x).\n", incompat_features); ret = -EINVAL; goto unlock_osb; } sb->s_flags &= ~SB_RDONLY; osb->osb_flags &= ~OCFS2_OSB_SOFT_RO; } trace_ocfs2_remount(sb->s_flags, osb->osb_flags, *flags); unlock_osb: spin_unlock(&osb->osb_lock); /* Enable quota accounting after remounting RW */ if (!ret && !(*flags & SB_RDONLY)) { if (sb_any_quota_suspended(sb)) ret = ocfs2_susp_quotas(osb, 1); else ret = ocfs2_enable_quotas(osb); if (ret < 0) { /* Return back changes... */ spin_lock(&osb->osb_lock); sb->s_flags |= SB_RDONLY; osb->osb_flags |= OCFS2_OSB_SOFT_RO; spin_unlock(&osb->osb_lock); goto out; } } } if (!ret) { /* Only save off the new mount options in case of a successful * remount. */ osb->s_mount_opt = parsed_options.mount_opt; osb->s_atime_quantum = parsed_options.atime_quantum; osb->preferred_slot = parsed_options.slot; if (parsed_options.commit_interval) osb->osb_commit_interval = parsed_options.commit_interval; if (!ocfs2_is_hard_readonly(osb)) ocfs2_set_journal_params(osb); sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | ((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ? SB_POSIXACL : 0); } out: return ret; } static int ocfs2_sb_probe(struct super_block *sb, struct buffer_head **bh, int *sector_size, struct ocfs2_blockcheck_stats *stats) { int status, tmpstat; struct ocfs1_vol_disk_hdr *hdr; struct ocfs2_dinode *di; int blksize; *bh = NULL; /* may be > 512 */ *sector_size = bdev_logical_block_size(sb->s_bdev); if (*sector_size > OCFS2_MAX_BLOCKSIZE) { mlog(ML_ERROR, "Hardware sector size too large: %d (max=%d)\n", *sector_size, OCFS2_MAX_BLOCKSIZE); status = -EINVAL; goto bail; } /* Can this really happen? */ if (*sector_size < OCFS2_MIN_BLOCKSIZE) *sector_size = OCFS2_MIN_BLOCKSIZE; /* check block zero for old format */ status = ocfs2_get_sector(sb, bh, 0, *sector_size); if (status < 0) { mlog_errno(status); goto bail; } hdr = (struct ocfs1_vol_disk_hdr *) (*bh)->b_data; if (hdr->major_version == OCFS1_MAJOR_VERSION) { mlog(ML_ERROR, "incompatible version: %u.%u\n", hdr->major_version, hdr->minor_version); status = -EINVAL; } if (memcmp(hdr->signature, OCFS1_VOLUME_SIGNATURE, strlen(OCFS1_VOLUME_SIGNATURE)) == 0) { mlog(ML_ERROR, "incompatible volume signature: %8s\n", hdr->signature); status = -EINVAL; } brelse(*bh); *bh = NULL; if (status < 0) { mlog(ML_ERROR, "This is an ocfs v1 filesystem which must be " "upgraded before mounting with ocfs v2\n"); goto bail; } /* * Now check at magic offset for 512, 1024, 2048, 4096 * blocksizes. 4096 is the maximum blocksize because it is * the minimum clustersize. */ status = -EINVAL; for (blksize = *sector_size; blksize <= OCFS2_MAX_BLOCKSIZE; blksize <<= 1) { tmpstat = ocfs2_get_sector(sb, bh, OCFS2_SUPER_BLOCK_BLKNO, blksize); if (tmpstat < 0) { status = tmpstat; mlog_errno(status); break; } di = (struct ocfs2_dinode *) (*bh)->b_data; memset(stats, 0, sizeof(struct ocfs2_blockcheck_stats)); spin_lock_init(&stats->b_lock); tmpstat = ocfs2_verify_volume(di, *bh, blksize, stats); if (tmpstat < 0) { brelse(*bh); *bh = NULL; } if (tmpstat != -EAGAIN) { status = tmpstat; break; } } bail: return status; } static int ocfs2_verify_heartbeat(struct ocfs2_super *osb) { u32 hb_enabled = OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL; if (osb->s_mount_opt & hb_enabled) { if (ocfs2_mount_local(osb)) { mlog(ML_ERROR, "Cannot heartbeat on a locally " "mounted device.\n"); return -EINVAL; } if (ocfs2_userspace_stack(osb)) { mlog(ML_ERROR, "Userspace stack expected, but " "o2cb heartbeat arguments passed to mount\n"); return -EINVAL; } if (((osb->s_mount_opt & OCFS2_MOUNT_HB_GLOBAL) && !ocfs2_cluster_o2cb_global_heartbeat(osb)) || ((osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) && ocfs2_cluster_o2cb_global_heartbeat(osb))) { mlog(ML_ERROR, "Mismatching o2cb heartbeat modes\n"); return -EINVAL; } } if (!(osb->s_mount_opt & hb_enabled)) { if (!ocfs2_mount_local(osb) && !ocfs2_is_hard_readonly(osb) && !ocfs2_userspace_stack(osb)) { mlog(ML_ERROR, "Heartbeat has to be started to mount " "a read-write clustered device.\n"); return -EINVAL; } } return 0; } /* * If we're using a userspace stack, mount should have passed * a name that matches the disk. If not, mount should not * have passed a stack. */ static int ocfs2_verify_userspace_stack(struct ocfs2_super *osb, struct mount_options *mopt) { if (!ocfs2_userspace_stack(osb) && mopt->cluster_stack[0]) { mlog(ML_ERROR, "cluster stack passed to mount, but this filesystem " "does not support it\n"); return -EINVAL; } if (ocfs2_userspace_stack(osb) && strncmp(osb->osb_cluster_stack, mopt->cluster_stack, OCFS2_STACK_LABEL_LEN)) { mlog(ML_ERROR, "cluster stack passed to mount (\"%s\") does not " "match the filesystem (\"%s\")\n", mopt->cluster_stack, osb->osb_cluster_stack); return -EINVAL; } return 0; } static int ocfs2_susp_quotas(struct ocfs2_super *osb, int unsuspend) { int type; struct super_block *sb = osb->sb; unsigned int feature[OCFS2_MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA}; int status = 0; for (type = 0; type < OCFS2_MAXQUOTAS; type++) { if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type])) continue; if (unsuspend) status = dquot_resume(sb, type); else { struct ocfs2_mem_dqinfo *oinfo; /* Cancel periodic syncing before suspending */ oinfo = sb_dqinfo(sb, type)->dqi_priv; cancel_delayed_work_sync(&oinfo->dqi_sync_work); status = dquot_suspend(sb, type); } if (status < 0) break; } if (status < 0) mlog(ML_ERROR, "Failed to suspend/unsuspend quotas on " "remount (error = %d).\n", status); return status; } static int ocfs2_enable_quotas(struct ocfs2_super *osb) { struct inode *inode[OCFS2_MAXQUOTAS] = { NULL, NULL }; struct super_block *sb = osb->sb; unsigned int feature[OCFS2_MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA}; unsigned int ino[OCFS2_MAXQUOTAS] = { LOCAL_USER_QUOTA_SYSTEM_INODE, LOCAL_GROUP_QUOTA_SYSTEM_INODE }; int status; int type; sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NEGATIVE_USAGE; for (type = 0; type < OCFS2_MAXQUOTAS; type++) { if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type])) continue; inode[type] = ocfs2_get_system_file_inode(osb, ino[type], osb->slot_num); if (!inode[type]) { status = -ENOENT; goto out_quota_off; } status = dquot_load_quota_inode(inode[type], type, QFMT_OCFS2, DQUOT_USAGE_ENABLED); if (status < 0) goto out_quota_off; } for (type = 0; type < OCFS2_MAXQUOTAS; type++) iput(inode[type]); return 0; out_quota_off: ocfs2_disable_quotas(osb); for (type = 0; type < OCFS2_MAXQUOTAS; type++) iput(inode[type]); mlog_errno(status); return status; } static void ocfs2_disable_quotas(struct ocfs2_super *osb) { int type; struct inode *inode; struct super_block *sb = osb->sb; struct ocfs2_mem_dqinfo *oinfo; /* We mostly ignore errors in this function because there's not much * we can do when we see them */ for (type = 0; type < OCFS2_MAXQUOTAS; type++) { if (!sb_has_quota_loaded(sb, type)) continue; if (!sb_has_quota_suspended(sb, type)) { oinfo = sb_dqinfo(sb, type)->dqi_priv; cancel_delayed_work_sync(&oinfo->dqi_sync_work); } inode = igrab(sb->s_dquot.files[type]); /* Turn off quotas. This will remove all dquot structures from * memory and so they will be automatically synced to global * quota files */ dquot_disable(sb, type, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); iput(inode); } } static int ocfs2_fill_super(struct super_block *sb, void *data, int silent) { struct dentry *root; int status, sector_size; struct mount_options parsed_options; struct inode *inode = NULL; struct ocfs2_super *osb = NULL; struct buffer_head *bh = NULL; char nodestr[12]; struct ocfs2_blockcheck_stats stats; trace_ocfs2_fill_super(sb, data, silent); if (!ocfs2_parse_options(sb, data, &parsed_options, 0)) { status = -EINVAL; goto out; } /* probe for superblock */ status = ocfs2_sb_probe(sb, &bh, &sector_size, &stats); if (status < 0) { mlog(ML_ERROR, "superblock probe failed!\n"); goto out; } status = ocfs2_initialize_super(sb, bh, sector_size, &stats); brelse(bh); bh = NULL; if (status < 0) goto out; osb = OCFS2_SB(sb); if (!ocfs2_check_set_options(sb, &parsed_options)) { status = -EINVAL; goto out_super; } osb->s_mount_opt = parsed_options.mount_opt; osb->s_atime_quantum = parsed_options.atime_quantum; osb->preferred_slot = parsed_options.slot; osb->osb_commit_interval = parsed_options.commit_interval; ocfs2_la_set_sizes(osb, parsed_options.localalloc_opt); osb->osb_resv_level = parsed_options.resv_level; osb->osb_dir_resv_level = parsed_options.resv_level; if (parsed_options.dir_resv_level == -1) osb->osb_dir_resv_level = parsed_options.resv_level; else osb->osb_dir_resv_level = parsed_options.dir_resv_level; status = ocfs2_verify_userspace_stack(osb, &parsed_options); if (status) goto out_super; sb->s_magic = OCFS2_SUPER_MAGIC; sb->s_flags = (sb->s_flags & ~(SB_POSIXACL | SB_NOSEC)) | ((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ? SB_POSIXACL : 0); /* Hard readonly mode only if: bdev_read_only, SB_RDONLY, * heartbeat=none */ if (bdev_read_only(sb->s_bdev)) { if (!sb_rdonly(sb)) { status = -EACCES; mlog(ML_ERROR, "Readonly device detected but readonly " "mount was not specified.\n"); goto out_super; } /* You should not be able to start a local heartbeat * on a readonly device. */ if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) { status = -EROFS; mlog(ML_ERROR, "Local heartbeat specified on readonly " "device.\n"); goto out_super; } status = ocfs2_check_journals_nolocks(osb); if (status < 0) { if (status == -EROFS) mlog(ML_ERROR, "Recovery required on readonly " "file system, but write access is " "unavailable.\n"); goto out_super; } ocfs2_set_ro_flag(osb, 1); printk(KERN_NOTICE "ocfs2: Readonly device (%s) detected. " "Cluster services will not be used for this mount. " "Recovery will be skipped.\n", osb->dev_str); } if (!ocfs2_is_hard_readonly(osb)) { if (sb_rdonly(sb)) ocfs2_set_ro_flag(osb, 0); } status = ocfs2_verify_heartbeat(osb); if (status < 0) goto out_super; osb->osb_debug_root = debugfs_create_dir(osb->uuid_str, ocfs2_debugfs_root); debugfs_create_file("fs_state", S_IFREG|S_IRUSR, osb->osb_debug_root, osb, &ocfs2_osb_debug_fops); if (ocfs2_meta_ecc(osb)) ocfs2_blockcheck_stats_debugfs_install( &osb->osb_ecc_stats, osb->osb_debug_root); status = ocfs2_mount_volume(sb); if (status < 0) goto out_debugfs; if (osb->root_inode) inode = igrab(osb->root_inode); if (!inode) { status = -EIO; goto out_dismount; } osb->osb_dev_kset = kset_create_and_add(sb->s_id, NULL, &ocfs2_kset->kobj); if (!osb->osb_dev_kset) { status = -ENOMEM; mlog(ML_ERROR, "Unable to create device kset %s.\n", sb->s_id); goto out_dismount; } /* Create filecheck sysfs related directories/files at * /sys/fs/ocfs2/<devname>/filecheck */ if (ocfs2_filecheck_create_sysfs(osb)) { status = -ENOMEM; mlog(ML_ERROR, "Unable to create filecheck sysfs directory at " "/sys/fs/ocfs2/%s/filecheck.\n", sb->s_id); goto out_dismount; } root = d_make_root(inode); if (!root) { status = -ENOMEM; goto out_dismount; } sb->s_root = root; ocfs2_complete_mount_recovery(osb); if (ocfs2_mount_local(osb)) snprintf(nodestr, sizeof(nodestr), "local"); else snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num); printk(KERN_INFO "ocfs2: Mounting device (%s) on (node %s, slot %d) " "with %s data mode.\n", osb->dev_str, nodestr, osb->slot_num, osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK ? "writeback" : "ordered"); atomic_set(&osb->vol_state, VOLUME_MOUNTED); wake_up(&osb->osb_mount_event); /* Now we can initialize quotas because we can afford to wait * for cluster locks recovery now. That also means that truncation * log recovery can happen but that waits for proper quota setup */ if (!sb_rdonly(sb)) { status = ocfs2_enable_quotas(osb); if (status < 0) { /* We have to err-out specially here because * s_root is already set */ mlog_errno(status); atomic_set(&osb->vol_state, VOLUME_DISABLED); wake_up(&osb->osb_mount_event); return status; } } ocfs2_complete_quota_recovery(osb); /* Now we wake up again for processes waiting for quotas */ atomic_set(&osb->vol_state, VOLUME_MOUNTED_QUOTAS); wake_up(&osb->osb_mount_event); /* Start this when the mount is almost sure of being successful */ ocfs2_orphan_scan_start(osb); return status; out_dismount: atomic_set(&osb->vol_state, VOLUME_DISABLED); wake_up(&osb->osb_mount_event); ocfs2_free_replay_slots(osb); ocfs2_dismount_volume(sb, 1); goto out; out_debugfs: debugfs_remove_recursive(osb->osb_debug_root); out_super: ocfs2_release_system_inodes(osb); kfree(osb->recovery_map); ocfs2_delete_osb(osb); kfree(osb); out: mlog_errno(status); return status; } static struct dentry *ocfs2_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, ocfs2_fill_super); } static struct file_system_type ocfs2_fs_type = { .owner = THIS_MODULE, .name = "ocfs2", .mount = ocfs2_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV|FS_RENAME_DOES_D_MOVE, .next = NULL }; MODULE_ALIAS_FS("ocfs2"); static int ocfs2_check_set_options(struct super_block *sb, struct mount_options *options) { if (options->mount_opt & OCFS2_MOUNT_USRQUOTA && !OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { mlog(ML_ERROR, "User quotas were requested, but this " "filesystem does not have the feature enabled.\n"); return 0; } if (options->mount_opt & OCFS2_MOUNT_GRPQUOTA && !OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { mlog(ML_ERROR, "Group quotas were requested, but this " "filesystem does not have the feature enabled.\n"); return 0; } if (options->mount_opt & OCFS2_MOUNT_POSIX_ACL && !OCFS2_HAS_INCOMPAT_FEATURE(sb, OCFS2_FEATURE_INCOMPAT_XATTR)) { mlog(ML_ERROR, "ACL support requested but extended attributes " "feature is not enabled\n"); return 0; } /* No ACL setting specified? Use XATTR feature... */ if (!(options->mount_opt & (OCFS2_MOUNT_POSIX_ACL | OCFS2_MOUNT_NO_POSIX_ACL))) { if (OCFS2_HAS_INCOMPAT_FEATURE(sb, OCFS2_FEATURE_INCOMPAT_XATTR)) options->mount_opt |= OCFS2_MOUNT_POSIX_ACL; else options->mount_opt |= OCFS2_MOUNT_NO_POSIX_ACL; } return 1; } static int ocfs2_parse_options(struct super_block *sb, char *options, struct mount_options *mopt, int is_remount) { int status, user_stack = 0; char *p; u32 tmp; int token, option; substring_t args[MAX_OPT_ARGS]; trace_ocfs2_parse_options(is_remount, options ? options : "(none)"); mopt->commit_interval = 0; mopt->mount_opt = OCFS2_MOUNT_NOINTR; mopt->atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM; mopt->slot = OCFS2_INVALID_SLOT; mopt->localalloc_opt = -1; mopt->cluster_stack[0] = '\0'; mopt->resv_level = OCFS2_DEFAULT_RESV_LEVEL; mopt->dir_resv_level = -1; if (!options) { status = 1; goto bail; } while ((p = strsep(&options, ",")) != NULL) { if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_hb_local: mopt->mount_opt |= OCFS2_MOUNT_HB_LOCAL; break; case Opt_hb_none: mopt->mount_opt |= OCFS2_MOUNT_HB_NONE; break; case Opt_hb_global: mopt->mount_opt |= OCFS2_MOUNT_HB_GLOBAL; break; case Opt_barrier: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option) mopt->mount_opt |= OCFS2_MOUNT_BARRIER; else mopt->mount_opt &= ~OCFS2_MOUNT_BARRIER; break; case Opt_intr: mopt->mount_opt &= ~OCFS2_MOUNT_NOINTR; break; case Opt_nointr: mopt->mount_opt |= OCFS2_MOUNT_NOINTR; break; case Opt_err_panic: mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_CONT; mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_ROFS; mopt->mount_opt |= OCFS2_MOUNT_ERRORS_PANIC; break; case Opt_err_ro: mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_CONT; mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_PANIC; mopt->mount_opt |= OCFS2_MOUNT_ERRORS_ROFS; break; case Opt_err_cont: mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_ROFS; mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_PANIC; mopt->mount_opt |= OCFS2_MOUNT_ERRORS_CONT; break; case Opt_data_ordered: mopt->mount_opt &= ~OCFS2_MOUNT_DATA_WRITEBACK; break; case Opt_data_writeback: mopt->mount_opt |= OCFS2_MOUNT_DATA_WRITEBACK; break; case Opt_user_xattr: mopt->mount_opt &= ~OCFS2_MOUNT_NOUSERXATTR; break; case Opt_nouser_xattr: mopt->mount_opt |= OCFS2_MOUNT_NOUSERXATTR; break; case Opt_atime_quantum: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option >= 0) mopt->atime_quantum = option; break; case Opt_slot: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option) mopt->slot = (u16)option; break; case Opt_commit: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option < 0) return 0; if (option == 0) option = JBD2_DEFAULT_MAX_COMMIT_AGE; mopt->commit_interval = HZ * option; break; case Opt_localalloc: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option >= 0) mopt->localalloc_opt = option; break; case Opt_localflocks: /* * Changing this during remount could race * flock() requests, or "unbalance" existing * ones (e.g., a lock is taken in one mode but * dropped in the other). If users care enough * to flip locking modes during remount, we * could add a "local" flag to individual * flock structures for proper tracking of * state. */ if (!is_remount) mopt->mount_opt |= OCFS2_MOUNT_LOCALFLOCKS; break; case Opt_stack: /* Check both that the option we were passed * is of the right length and that it is a proper * string of the right length. */ if (((args[0].to - args[0].from) != OCFS2_STACK_LABEL_LEN) || (strnlen(args[0].from, OCFS2_STACK_LABEL_LEN) != OCFS2_STACK_LABEL_LEN)) { mlog(ML_ERROR, "Invalid cluster_stack option\n"); status = 0; goto bail; } memcpy(mopt->cluster_stack, args[0].from, OCFS2_STACK_LABEL_LEN); mopt->cluster_stack[OCFS2_STACK_LABEL_LEN] = '\0'; /* * Open code the memcmp here as we don't have * an osb to pass to * ocfs2_userspace_stack(). */ if (memcmp(mopt->cluster_stack, OCFS2_CLASSIC_CLUSTER_STACK, OCFS2_STACK_LABEL_LEN)) user_stack = 1; break; case Opt_inode64: mopt->mount_opt |= OCFS2_MOUNT_INODE64; break; case Opt_usrquota: mopt->mount_opt |= OCFS2_MOUNT_USRQUOTA; break; case Opt_grpquota: mopt->mount_opt |= OCFS2_MOUNT_GRPQUOTA; break; case Opt_coherency_buffered: mopt->mount_opt |= OCFS2_MOUNT_COHERENCY_BUFFERED; break; case Opt_coherency_full: mopt->mount_opt &= ~OCFS2_MOUNT_COHERENCY_BUFFERED; break; case Opt_acl: mopt->mount_opt |= OCFS2_MOUNT_POSIX_ACL; mopt->mount_opt &= ~OCFS2_MOUNT_NO_POSIX_ACL; break; case Opt_noacl: mopt->mount_opt |= OCFS2_MOUNT_NO_POSIX_ACL; mopt->mount_opt &= ~OCFS2_MOUNT_POSIX_ACL; break; case Opt_resv_level: if (is_remount) break; if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option >= OCFS2_MIN_RESV_LEVEL && option < OCFS2_MAX_RESV_LEVEL) mopt->resv_level = option; break; case Opt_dir_resv_level: if (is_remount) break; if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option >= OCFS2_MIN_RESV_LEVEL && option < OCFS2_MAX_RESV_LEVEL) mopt->dir_resv_level = option; break; case Opt_journal_async_commit: mopt->mount_opt |= OCFS2_MOUNT_JOURNAL_ASYNC_COMMIT; break; default: mlog(ML_ERROR, "Unrecognized mount option \"%s\" " "or missing value\n", p); status = 0; goto bail; } } if (user_stack == 0) { /* Ensure only one heartbeat mode */ tmp = mopt->mount_opt & (OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL | OCFS2_MOUNT_HB_NONE); if (hweight32(tmp) != 1) { mlog(ML_ERROR, "Invalid heartbeat mount options\n"); status = 0; goto bail; } } status = 1; bail: return status; } static int ocfs2_show_options(struct seq_file *s, struct dentry *root) { struct ocfs2_super *osb = OCFS2_SB(root->d_sb); unsigned long opts = osb->s_mount_opt; unsigned int local_alloc_megs; if (opts & (OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL)) { seq_printf(s, ",_netdev"); if (opts & OCFS2_MOUNT_HB_LOCAL) seq_printf(s, ",%s", OCFS2_HB_LOCAL); else seq_printf(s, ",%s", OCFS2_HB_GLOBAL); } else seq_printf(s, ",%s", OCFS2_HB_NONE); if (opts & OCFS2_MOUNT_NOINTR) seq_printf(s, ",nointr"); if (opts & OCFS2_MOUNT_DATA_WRITEBACK) seq_printf(s, ",data=writeback"); else seq_printf(s, ",data=ordered"); if (opts & OCFS2_MOUNT_BARRIER) seq_printf(s, ",barrier=1"); if (opts & OCFS2_MOUNT_ERRORS_PANIC) seq_printf(s, ",errors=panic"); else if (opts & OCFS2_MOUNT_ERRORS_CONT) seq_printf(s, ",errors=continue"); else seq_printf(s, ",errors=remount-ro"); if (osb->preferred_slot != OCFS2_INVALID_SLOT) seq_printf(s, ",preferred_slot=%d", osb->preferred_slot); seq_printf(s, ",atime_quantum=%u", osb->s_atime_quantum); if (osb->osb_commit_interval) seq_printf(s, ",commit=%u", (unsigned) (osb->osb_commit_interval / HZ)); local_alloc_megs = osb->local_alloc_bits >> (20 - osb->s_clustersize_bits); if (local_alloc_megs != ocfs2_la_default_mb(osb)) seq_printf(s, ",localalloc=%d", local_alloc_megs); if (opts & OCFS2_MOUNT_LOCALFLOCKS) seq_printf(s, ",localflocks,"); if (osb->osb_cluster_stack[0]) seq_show_option(s, "cluster_stack", osb->osb_cluster_stack); if (opts & OCFS2_MOUNT_USRQUOTA) seq_printf(s, ",usrquota"); if (opts & OCFS2_MOUNT_GRPQUOTA) seq_printf(s, ",grpquota"); if (opts & OCFS2_MOUNT_COHERENCY_BUFFERED) seq_printf(s, ",coherency=buffered"); else seq_printf(s, ",coherency=full"); if (opts & OCFS2_MOUNT_NOUSERXATTR) seq_printf(s, ",nouser_xattr"); else seq_printf(s, ",user_xattr"); if (opts & OCFS2_MOUNT_INODE64) seq_printf(s, ",inode64"); if (opts & OCFS2_MOUNT_POSIX_ACL) seq_printf(s, ",acl"); else seq_printf(s, ",noacl"); if (osb->osb_resv_level != OCFS2_DEFAULT_RESV_LEVEL) seq_printf(s, ",resv_level=%d", osb->osb_resv_level); if (osb->osb_dir_resv_level != osb->osb_resv_level) seq_printf(s, ",dir_resv_level=%d", osb->osb_resv_level); if (opts & OCFS2_MOUNT_JOURNAL_ASYNC_COMMIT) seq_printf(s, ",journal_async_commit"); return 0; } static int __init ocfs2_init(void) { int status; status = init_ocfs2_uptodate_cache(); if (status < 0) goto out1; status = ocfs2_initialize_mem_caches(); if (status < 0) goto out2; ocfs2_debugfs_root = debugfs_create_dir("ocfs2", NULL); ocfs2_set_locking_protocol(); status = register_quota_format(&ocfs2_quota_format); if (status < 0) goto out3; status = register_filesystem(&ocfs2_fs_type); if (!status) return 0; unregister_quota_format(&ocfs2_quota_format); out3: debugfs_remove(ocfs2_debugfs_root); ocfs2_free_mem_caches(); out2: exit_ocfs2_uptodate_cache(); out1: mlog_errno(status); return status; } static void __exit ocfs2_exit(void) { unregister_quota_format(&ocfs2_quota_format); debugfs_remove(ocfs2_debugfs_root); ocfs2_free_mem_caches(); unregister_filesystem(&ocfs2_fs_type); exit_ocfs2_uptodate_cache(); } static void ocfs2_put_super(struct super_block *sb) { trace_ocfs2_put_super(sb); ocfs2_sync_blockdev(sb); ocfs2_dismount_volume(sb, 0); } static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf) { struct ocfs2_super *osb; u32 numbits, freebits; int status; struct ocfs2_dinode *bm_lock; struct buffer_head *bh = NULL; struct inode *inode = NULL; trace_ocfs2_statfs(dentry->d_sb, buf); osb = OCFS2_SB(dentry->d_sb); inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { mlog(ML_ERROR, "failed to get bitmap inode\n"); status = -EIO; goto bail; } status = ocfs2_inode_lock(inode, &bh, 0); if (status < 0) { mlog_errno(status); goto bail; } bm_lock = (struct ocfs2_dinode *) bh->b_data; numbits = le32_to_cpu(bm_lock->id1.bitmap1.i_total); freebits = numbits - le32_to_cpu(bm_lock->id1.bitmap1.i_used); buf->f_type = OCFS2_SUPER_MAGIC; buf->f_bsize = dentry->d_sb->s_blocksize; buf->f_namelen = OCFS2_MAX_FILENAME_LEN; buf->f_blocks = ((sector_t) numbits) * (osb->s_clustersize >> osb->sb->s_blocksize_bits); buf->f_bfree = ((sector_t) freebits) * (osb->s_clustersize >> osb->sb->s_blocksize_bits); buf->f_bavail = buf->f_bfree; buf->f_files = numbits; buf->f_ffree = freebits; buf->f_fsid.val[0] = crc32_le(0, osb->uuid_str, OCFS2_VOL_UUID_LEN) & 0xFFFFFFFFUL; buf->f_fsid.val[1] = crc32_le(0, osb->uuid_str + OCFS2_VOL_UUID_LEN, OCFS2_VOL_UUID_LEN) & 0xFFFFFFFFUL; brelse(bh); ocfs2_inode_unlock(inode, 0); status = 0; bail: iput(inode); if (status) mlog_errno(status); return status; } static void ocfs2_inode_init_once(void *data) { struct ocfs2_inode_info *oi = data; oi->ip_flags = 0; oi->ip_open_count = 0; spin_lock_init(&oi->ip_lock); ocfs2_extent_map_init(&oi->vfs_inode); INIT_LIST_HEAD(&oi->ip_io_markers); INIT_LIST_HEAD(&oi->ip_unwritten_list); oi->ip_dir_start_lookup = 0; init_rwsem(&oi->ip_alloc_sem); init_rwsem(&oi->ip_xattr_sem); mutex_init(&oi->ip_io_mutex); oi->ip_blkno = 0ULL; oi->ip_clusters = 0; oi->ip_next_orphan = NULL; ocfs2_resv_init_once(&oi->ip_la_data_resv); ocfs2_lock_res_init_once(&oi->ip_rw_lockres); ocfs2_lock_res_init_once(&oi->ip_inode_lockres); ocfs2_lock_res_init_once(&oi->ip_open_lockres); ocfs2_metadata_cache_init(INODE_CACHE(&oi->vfs_inode), &ocfs2_inode_caching_ops); inode_init_once(&oi->vfs_inode); } static int ocfs2_initialize_mem_caches(void) { ocfs2_inode_cachep = kmem_cache_create("ocfs2_inode_cache", sizeof(struct ocfs2_inode_info), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_ACCOUNT), ocfs2_inode_init_once); ocfs2_dquot_cachep = kmem_cache_create("ocfs2_dquot_cache", sizeof(struct ocfs2_dquot), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), NULL); ocfs2_qf_chunk_cachep = kmem_cache_create("ocfs2_qf_chunk_cache", sizeof(struct ocfs2_quota_chunk), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD), NULL); if (!ocfs2_inode_cachep || !ocfs2_dquot_cachep || !ocfs2_qf_chunk_cachep) { kmem_cache_destroy(ocfs2_inode_cachep); kmem_cache_destroy(ocfs2_dquot_cachep); kmem_cache_destroy(ocfs2_qf_chunk_cachep); return -ENOMEM; } return 0; } static void ocfs2_free_mem_caches(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(ocfs2_inode_cachep); ocfs2_inode_cachep = NULL; kmem_cache_destroy(ocfs2_dquot_cachep); ocfs2_dquot_cachep = NULL; kmem_cache_destroy(ocfs2_qf_chunk_cachep); ocfs2_qf_chunk_cachep = NULL; } static int ocfs2_get_sector(struct super_block *sb, struct buffer_head **bh, int block, int sect_size) { if (!sb_set_blocksize(sb, sect_size)) { mlog(ML_ERROR, "unable to set blocksize\n"); return -EIO; } *bh = sb_getblk(sb, block); if (!*bh) { mlog_errno(-ENOMEM); return -ENOMEM; } lock_buffer(*bh); if (!buffer_dirty(*bh)) clear_buffer_uptodate(*bh); unlock_buffer(*bh); if (bh_read(*bh, 0) < 0) { mlog_errno(-EIO); brelse(*bh); *bh = NULL; return -EIO; } return 0; } static int ocfs2_mount_volume(struct super_block *sb) { int status = 0; struct ocfs2_super *osb = OCFS2_SB(sb); if (ocfs2_is_hard_readonly(osb)) goto out; mutex_init(&osb->obs_trim_fs_mutex); status = ocfs2_dlm_init(osb); if (status < 0) { mlog_errno(status); if (status == -EBADR && ocfs2_userspace_stack(osb)) mlog(ML_ERROR, "couldn't mount because cluster name on" " disk does not match the running cluster name.\n"); goto out; } status = ocfs2_super_lock(osb, 1); if (status < 0) { mlog_errno(status); goto out_dlm; } /* This will load up the node map and add ourselves to it. */ status = ocfs2_find_slot(osb); if (status < 0) { mlog_errno(status); goto out_super_lock; } /* load all node-local system inodes */ status = ocfs2_init_local_system_inodes(osb); if (status < 0) { mlog_errno(status); goto out_super_lock; } status = ocfs2_check_volume(osb); if (status < 0) { mlog_errno(status); goto out_system_inodes; } status = ocfs2_truncate_log_init(osb); if (status < 0) { mlog_errno(status); goto out_check_volume; } ocfs2_super_unlock(osb, 1); return 0; out_check_volume: ocfs2_free_replay_slots(osb); out_system_inodes: if (osb->local_alloc_state == OCFS2_LA_ENABLED) ocfs2_shutdown_local_alloc(osb); ocfs2_release_system_inodes(osb); /* before journal shutdown, we should release slot_info */ ocfs2_free_slot_info(osb); ocfs2_journal_shutdown(osb); out_super_lock: ocfs2_super_unlock(osb, 1); out_dlm: ocfs2_dlm_shutdown(osb, 0); out: return status; } static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err) { int tmp, hangup_needed = 0; struct ocfs2_super *osb = NULL; char nodestr[12]; trace_ocfs2_dismount_volume(sb); BUG_ON(!sb); osb = OCFS2_SB(sb); BUG_ON(!osb); /* Remove file check sysfs related directores/files, * and wait for the pending file check operations */ ocfs2_filecheck_remove_sysfs(osb); kset_unregister(osb->osb_dev_kset); /* Orphan scan should be stopped as early as possible */ ocfs2_orphan_scan_stop(osb); ocfs2_disable_quotas(osb); /* All dquots should be freed by now */ WARN_ON(!llist_empty(&osb->dquot_drop_list)); /* Wait for worker to be done with the work structure in osb */ cancel_work_sync(&osb->dquot_drop_work); ocfs2_shutdown_local_alloc(osb); ocfs2_truncate_log_shutdown(osb); /* This will disable recovery and flush any recovery work. */ ocfs2_recovery_exit(osb); ocfs2_sync_blockdev(sb); ocfs2_purge_refcount_trees(osb); /* No cluster connection means we've failed during mount, so skip * all the steps which depended on that to complete. */ if (osb->cconn) { tmp = ocfs2_super_lock(osb, 1); if (tmp < 0) { mlog_errno(tmp); return; } } if (osb->slot_num != OCFS2_INVALID_SLOT) ocfs2_put_slot(osb); if (osb->cconn) ocfs2_super_unlock(osb, 1); ocfs2_release_system_inodes(osb); ocfs2_journal_shutdown(osb); /* * If we're dismounting due to mount error, mount.ocfs2 will clean * up heartbeat. If we're a local mount, there is no heartbeat. * If we failed before we got a uuid_str yet, we can't stop * heartbeat. Otherwise, do it. */ if (!mnt_err && !ocfs2_mount_local(osb) && osb->uuid_str && !ocfs2_is_hard_readonly(osb)) hangup_needed = 1; ocfs2_dlm_shutdown(osb, hangup_needed); ocfs2_blockcheck_stats_debugfs_remove(&osb->osb_ecc_stats); debugfs_remove_recursive(osb->osb_debug_root); if (hangup_needed) ocfs2_cluster_hangup(osb->uuid_str, strlen(osb->uuid_str)); atomic_set(&osb->vol_state, VOLUME_DISMOUNTED); if (ocfs2_mount_local(osb)) snprintf(nodestr, sizeof(nodestr), "local"); else snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num); printk(KERN_INFO "ocfs2: Unmounting device (%s) on (node %s)\n", osb->dev_str, nodestr); ocfs2_delete_osb(osb); kfree(osb); sb->s_dev = 0; sb->s_fs_info = NULL; } static int ocfs2_setup_osb_uuid(struct ocfs2_super *osb, const unsigned char *uuid, unsigned uuid_bytes) { int i, ret; char *ptr; BUG_ON(uuid_bytes != OCFS2_VOL_UUID_LEN); osb->uuid_str = kzalloc(OCFS2_VOL_UUID_LEN * 2 + 1, GFP_KERNEL); if (osb->uuid_str == NULL) return -ENOMEM; for (i = 0, ptr = osb->uuid_str; i < OCFS2_VOL_UUID_LEN; i++) { /* print with null */ ret = snprintf(ptr, 3, "%02X", uuid[i]); if (ret != 2) /* drop super cleans up */ return -EINVAL; /* then only advance past the last char */ ptr += 2; } return 0; } /* Make sure entire volume is addressable by our journal. Requires osb_clusters_at_boot to be valid and for the journal to have been initialized by ocfs2_journal_init(). */ static int ocfs2_journal_addressable(struct ocfs2_super *osb) { int status = 0; u64 max_block = ocfs2_clusters_to_blocks(osb->sb, osb->osb_clusters_at_boot) - 1; /* 32-bit block number is always OK. */ if (max_block <= (u32)~0ULL) goto out; /* Volume is "huge", so see if our journal is new enough to support it. */ if (!(OCFS2_HAS_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_COMPAT_JBD2_SB) && jbd2_journal_check_used_features(osb->journal->j_journal, 0, 0, JBD2_FEATURE_INCOMPAT_64BIT))) { mlog(ML_ERROR, "The journal cannot address the entire volume. " "Enable the 'block64' journal option with tunefs.ocfs2"); status = -EFBIG; goto out; } out: return status; } static int ocfs2_initialize_super(struct super_block *sb, struct buffer_head *bh, int sector_size, struct ocfs2_blockcheck_stats *stats) { int status; int i, cbits, bbits; struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; struct inode *inode = NULL; struct ocfs2_super *osb; u64 total_blocks; osb = kzalloc(sizeof(struct ocfs2_super), GFP_KERNEL); if (!osb) { status = -ENOMEM; mlog_errno(status); goto out; } sb->s_fs_info = osb; sb->s_op = &ocfs2_sops; sb->s_d_op = &ocfs2_dentry_ops; sb->s_export_op = &ocfs2_export_ops; sb->s_qcop = &dquot_quotactl_sysfile_ops; sb->dq_op = &ocfs2_quota_operations; sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; sb->s_xattr = ocfs2_xattr_handlers; sb->s_time_gran = 1; sb->s_flags |= SB_NOATIME; /* this is needed to support O_LARGEFILE */ cbits = le32_to_cpu(di->id2.i_super.s_clustersize_bits); bbits = le32_to_cpu(di->id2.i_super.s_blocksize_bits); sb->s_maxbytes = ocfs2_max_file_offset(bbits, cbits); memcpy(&sb->s_uuid, di->id2.i_super.s_uuid, sizeof(di->id2.i_super.s_uuid)); osb->osb_dx_mask = (1 << (cbits - bbits)) - 1; for (i = 0; i < 3; i++) osb->osb_dx_seed[i] = le32_to_cpu(di->id2.i_super.s_dx_seed[i]); osb->osb_dx_seed[3] = le32_to_cpu(di->id2.i_super.s_uuid_hash); osb->sb = sb; osb->s_sectsize_bits = blksize_bits(sector_size); BUG_ON(!osb->s_sectsize_bits); spin_lock_init(&osb->dc_task_lock); init_waitqueue_head(&osb->dc_event); osb->dc_work_sequence = 0; osb->dc_wake_sequence = 0; INIT_LIST_HEAD(&osb->blocked_lock_list); osb->blocked_lock_count = 0; spin_lock_init(&osb->osb_lock); spin_lock_init(&osb->osb_xattr_lock); ocfs2_init_steal_slots(osb); mutex_init(&osb->system_file_mutex); atomic_set(&osb->alloc_stats.moves, 0); atomic_set(&osb->alloc_stats.local_data, 0); atomic_set(&osb->alloc_stats.bitmap_data, 0); atomic_set(&osb->alloc_stats.bg_allocs, 0); atomic_set(&osb->alloc_stats.bg_extends, 0); /* Copy the blockcheck stats from the superblock probe */ osb->osb_ecc_stats = *stats; ocfs2_init_node_maps(osb); snprintf(osb->dev_str, sizeof(osb->dev_str), "%u,%u", MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); osb->max_slots = le16_to_cpu(di->id2.i_super.s_max_slots); if (osb->max_slots > OCFS2_MAX_SLOTS || osb->max_slots == 0) { mlog(ML_ERROR, "Invalid number of node slots (%u)\n", osb->max_slots); status = -EINVAL; goto out; } ocfs2_orphan_scan_init(osb); status = ocfs2_recovery_init(osb); if (status) { mlog(ML_ERROR, "Unable to initialize recovery state\n"); mlog_errno(status); goto out; } init_waitqueue_head(&osb->checkpoint_event); osb->s_atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM; osb->slot_num = OCFS2_INVALID_SLOT; osb->s_xattr_inline_size = le16_to_cpu( di->id2.i_super.s_xattr_inline_size); osb->local_alloc_state = OCFS2_LA_UNUSED; osb->local_alloc_bh = NULL; INIT_DELAYED_WORK(&osb->la_enable_wq, ocfs2_la_enable_worker); init_waitqueue_head(&osb->osb_mount_event); ocfs2_resmap_init(osb, &osb->osb_la_resmap); osb->vol_label = kmalloc(OCFS2_MAX_VOL_LABEL_LEN, GFP_KERNEL); if (!osb->vol_label) { mlog(ML_ERROR, "unable to alloc vol label\n"); status = -ENOMEM; goto out_recovery_map; } osb->slot_recovery_generations = kcalloc(osb->max_slots, sizeof(*osb->slot_recovery_generations), GFP_KERNEL); if (!osb->slot_recovery_generations) { status = -ENOMEM; mlog_errno(status); goto out_vol_label; } init_waitqueue_head(&osb->osb_wipe_event); osb->osb_orphan_wipes = kcalloc(osb->max_slots, sizeof(*osb->osb_orphan_wipes), GFP_KERNEL); if (!osb->osb_orphan_wipes) { status = -ENOMEM; mlog_errno(status); goto out_slot_recovery_gen; } osb->osb_rf_lock_tree = RB_ROOT; osb->s_feature_compat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_compat); osb->s_feature_ro_compat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_ro_compat); osb->s_feature_incompat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_incompat); if ((i = OCFS2_HAS_INCOMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_INCOMPAT_SUPP))) { mlog(ML_ERROR, "couldn't mount because of unsupported " "optional features (%x).\n", i); status = -EINVAL; goto out_orphan_wipes; } if (!sb_rdonly(osb->sb) && (i = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP))) { mlog(ML_ERROR, "couldn't mount RDWR because of " "unsupported optional features (%x).\n", i); status = -EINVAL; goto out_orphan_wipes; } if (ocfs2_clusterinfo_valid(osb)) { /* * ci_stack and ci_cluster in ocfs2_cluster_info may not be null * terminated, so make sure no overflow happens here by using * memcpy. Destination strings will always be null terminated * because osb is allocated using kzalloc. */ osb->osb_stackflags = OCFS2_RAW_SB(di)->s_cluster_info.ci_stackflags; memcpy(osb->osb_cluster_stack, OCFS2_RAW_SB(di)->s_cluster_info.ci_stack, OCFS2_STACK_LABEL_LEN); if (strlen(osb->osb_cluster_stack) != OCFS2_STACK_LABEL_LEN) { mlog(ML_ERROR, "couldn't mount because of an invalid " "cluster stack label (%s) \n", osb->osb_cluster_stack); status = -EINVAL; goto out_orphan_wipes; } memcpy(osb->osb_cluster_name, OCFS2_RAW_SB(di)->s_cluster_info.ci_cluster, OCFS2_CLUSTER_NAME_LEN); } else { /* The empty string is identical with classic tools that * don't know about s_cluster_info. */ osb->osb_cluster_stack[0] = '\0'; } get_random_bytes(&osb->s_next_generation, sizeof(u32)); /* * FIXME * This should be done in ocfs2_journal_init(), but any inode * writes back operation will cause the filesystem to crash. */ status = ocfs2_journal_alloc(osb); if (status < 0) goto out_orphan_wipes; INIT_WORK(&osb->dquot_drop_work, ocfs2_drop_dquot_refs); init_llist_head(&osb->dquot_drop_list); /* get some pseudo constants for clustersize bits */ osb->s_clustersize_bits = le32_to_cpu(di->id2.i_super.s_clustersize_bits); osb->s_clustersize = 1 << osb->s_clustersize_bits; if (osb->s_clustersize < OCFS2_MIN_CLUSTERSIZE || osb->s_clustersize > OCFS2_MAX_CLUSTERSIZE) { mlog(ML_ERROR, "Volume has invalid cluster size (%d)\n", osb->s_clustersize); status = -EINVAL; goto out_journal; } total_blocks = ocfs2_clusters_to_blocks(osb->sb, le32_to_cpu(di->i_clusters)); status = generic_check_addressable(osb->sb->s_blocksize_bits, total_blocks); if (status) { mlog(ML_ERROR, "Volume too large " "to mount safely on this system"); status = -EFBIG; goto out_journal; } if (ocfs2_setup_osb_uuid(osb, di->id2.i_super.s_uuid, sizeof(di->id2.i_super.s_uuid))) { mlog(ML_ERROR, "Out of memory trying to setup our uuid.\n"); status = -ENOMEM; goto out_journal; } strscpy(osb->vol_label, di->id2.i_super.s_label, OCFS2_MAX_VOL_LABEL_LEN); osb->root_blkno = le64_to_cpu(di->id2.i_super.s_root_blkno); osb->system_dir_blkno = le64_to_cpu(di->id2.i_super.s_system_dir_blkno); osb->first_cluster_group_blkno = le64_to_cpu(di->id2.i_super.s_first_cluster_group); osb->fs_generation = le32_to_cpu(di->i_fs_generation); osb->uuid_hash = le32_to_cpu(di->id2.i_super.s_uuid_hash); trace_ocfs2_initialize_super(osb->vol_label, osb->uuid_str, (unsigned long long)osb->root_blkno, (unsigned long long)osb->system_dir_blkno, osb->s_clustersize_bits); osb->osb_dlm_debug = ocfs2_new_dlm_debug(); if (!osb->osb_dlm_debug) { status = -ENOMEM; mlog_errno(status); goto out_uuid_str; } atomic_set(&osb->vol_state, VOLUME_INIT); /* load root, system_dir, and all global system inodes */ status = ocfs2_init_global_system_inodes(osb); if (status < 0) { mlog_errno(status); goto out_dlm_out; } /* * global bitmap */ inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { status = -EINVAL; mlog_errno(status); goto out_system_inodes; } osb->bitmap_blkno = OCFS2_I(inode)->ip_blkno; osb->osb_clusters_at_boot = OCFS2_I(inode)->ip_clusters; iput(inode); osb->bitmap_cpg = ocfs2_group_bitmap_size(sb, 0, osb->s_feature_incompat) * 8; status = ocfs2_init_slot_info(osb); if (status < 0) { mlog_errno(status); goto out_system_inodes; } osb->ocfs2_wq = alloc_ordered_workqueue("ocfs2_wq", WQ_MEM_RECLAIM); if (!osb->ocfs2_wq) { status = -ENOMEM; mlog_errno(status); goto out_slot_info; } return status; out_slot_info: ocfs2_free_slot_info(osb); out_system_inodes: ocfs2_release_system_inodes(osb); out_dlm_out: ocfs2_put_dlm_debug(osb->osb_dlm_debug); out_uuid_str: kfree(osb->uuid_str); out_journal: kfree(osb->journal); out_orphan_wipes: kfree(osb->osb_orphan_wipes); out_slot_recovery_gen: kfree(osb->slot_recovery_generations); out_vol_label: kfree(osb->vol_label); out_recovery_map: kfree(osb->recovery_map); out: kfree(osb); sb->s_fs_info = NULL; return status; } /* * will return: -EAGAIN if it is ok to keep searching for superblocks * -EINVAL if there is a bad superblock * 0 on success */ static int ocfs2_verify_volume(struct ocfs2_dinode *di, struct buffer_head *bh, u32 blksz, struct ocfs2_blockcheck_stats *stats) { int status = -EAGAIN; if (memcmp(di->i_signature, OCFS2_SUPER_BLOCK_SIGNATURE, strlen(OCFS2_SUPER_BLOCK_SIGNATURE)) == 0) { /* We have to do a raw check of the feature here */ if (le32_to_cpu(di->id2.i_super.s_feature_incompat) & OCFS2_FEATURE_INCOMPAT_META_ECC) { status = ocfs2_block_check_validate(bh->b_data, bh->b_size, &di->i_check, stats); if (status) goto out; } status = -EINVAL; if ((1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits)) != blksz) { mlog(ML_ERROR, "found superblock with incorrect block " "size: found %u, should be %u\n", 1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits), blksz); } else if (le16_to_cpu(di->id2.i_super.s_major_rev_level) != OCFS2_MAJOR_REV_LEVEL || le16_to_cpu(di->id2.i_super.s_minor_rev_level) != OCFS2_MINOR_REV_LEVEL) { mlog(ML_ERROR, "found superblock with bad version: " "found %u.%u, should be %u.%u\n", le16_to_cpu(di->id2.i_super.s_major_rev_level), le16_to_cpu(di->id2.i_super.s_minor_rev_level), OCFS2_MAJOR_REV_LEVEL, OCFS2_MINOR_REV_LEVEL); } else if (bh->b_blocknr != le64_to_cpu(di->i_blkno)) { mlog(ML_ERROR, "bad block number on superblock: " "found %llu, should be %llu\n", (unsigned long long)le64_to_cpu(di->i_blkno), (unsigned long long)bh->b_blocknr); } else if (le32_to_cpu(di->id2.i_super.s_clustersize_bits) < 12 || le32_to_cpu(di->id2.i_super.s_clustersize_bits) > 20) { mlog(ML_ERROR, "bad cluster size found: %u\n", 1 << le32_to_cpu(di->id2.i_super.s_clustersize_bits)); } else if (!le64_to_cpu(di->id2.i_super.s_root_blkno)) { mlog(ML_ERROR, "bad root_blkno: 0\n"); } else if (!le64_to_cpu(di->id2.i_super.s_system_dir_blkno)) { mlog(ML_ERROR, "bad system_dir_blkno: 0\n"); } else if (le16_to_cpu(di->id2.i_super.s_max_slots) > OCFS2_MAX_SLOTS) { mlog(ML_ERROR, "Superblock slots found greater than file system " "maximum: found %u, max %u\n", le16_to_cpu(di->id2.i_super.s_max_slots), OCFS2_MAX_SLOTS); } else { /* found it! */ status = 0; } } out: if (status && status != -EAGAIN) mlog_errno(status); return status; } static int ocfs2_check_volume(struct ocfs2_super *osb) { int status; int dirty; int local; struct ocfs2_dinode *local_alloc = NULL; /* only used if we * recover * ourselves. */ /* Init our journal object. */ status = ocfs2_journal_init(osb, &dirty); if (status < 0) { mlog(ML_ERROR, "Could not initialize journal!\n"); goto finally; } /* Now that journal has been initialized, check to make sure entire volume is addressable. */ status = ocfs2_journal_addressable(osb); if (status) goto finally; /* If the journal was unmounted cleanly then we don't want to * recover anything. Otherwise, journal_load will do that * dirty work for us :) */ if (!dirty) { status = ocfs2_journal_wipe(osb->journal, 0); if (status < 0) { mlog_errno(status); goto finally; } } else { printk(KERN_NOTICE "ocfs2: File system on device (%s) was not " "unmounted cleanly, recovering it.\n", osb->dev_str); } local = ocfs2_mount_local(osb); /* will play back anything left in the journal. */ status = ocfs2_journal_load(osb->journal, local, dirty); if (status < 0) { mlog(ML_ERROR, "ocfs2 journal load failed! %d\n", status); goto finally; } if (osb->s_mount_opt & OCFS2_MOUNT_JOURNAL_ASYNC_COMMIT) jbd2_journal_set_features(osb->journal->j_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); else jbd2_journal_clear_features(osb->journal->j_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); if (dirty) { /* recover my local alloc if we didn't unmount cleanly. */ status = ocfs2_begin_local_alloc_recovery(osb, osb->slot_num, &local_alloc); if (status < 0) { mlog_errno(status); goto finally; } /* we complete the recovery process after we've marked * ourselves as mounted. */ } status = ocfs2_load_local_alloc(osb); if (status < 0) { mlog_errno(status); goto finally; } if (dirty) { /* Recovery will be completed after we've mounted the * rest of the volume. */ osb->local_alloc_copy = local_alloc; local_alloc = NULL; } /* go through each journal, trylock it and if you get the * lock, and it's marked as dirty, set the bit in the recover * map and launch a recovery thread for it. */ status = ocfs2_mark_dead_nodes(osb); if (status < 0) { mlog_errno(status); goto finally; } status = ocfs2_compute_replay_slots(osb); if (status < 0) mlog_errno(status); finally: kfree(local_alloc); if (status) mlog_errno(status); return status; } /* * The routine gets called from dismount or close whenever a dismount on * volume is requested and the osb open count becomes 1. * It will remove the osb from the global list and also free up all the * initialized resources and fileobject. */ static void ocfs2_delete_osb(struct ocfs2_super *osb) { /* This function assumes that the caller has the main osb resource */ /* ocfs2_initializer_super have already created this workqueue */ if (osb->ocfs2_wq) destroy_workqueue(osb->ocfs2_wq); ocfs2_free_slot_info(osb); kfree(osb->osb_orphan_wipes); kfree(osb->slot_recovery_generations); /* FIXME * This belongs in journal shutdown, but because we have to * allocate osb->journal at the middle of ocfs2_initialize_super(), * we free it here. */ kfree(osb->journal); kfree(osb->local_alloc_copy); kfree(osb->uuid_str); kfree(osb->vol_label); ocfs2_put_dlm_debug(osb->osb_dlm_debug); memset(osb, 0, sizeof(struct ocfs2_super)); } /* Depending on the mount option passed, perform one of the following: * Put OCFS2 into a readonly state (default) * Return EIO so that only the process errs * Fix the error as if fsck.ocfs2 -y * panic */ static int ocfs2_handle_error(struct super_block *sb) { struct ocfs2_super *osb = OCFS2_SB(sb); int rv = 0; ocfs2_set_osb_flag(osb, OCFS2_OSB_ERROR_FS); pr_crit("On-disk corruption discovered. " "Please run fsck.ocfs2 once the filesystem is unmounted.\n"); if (osb->s_mount_opt & OCFS2_MOUNT_ERRORS_PANIC) { panic("OCFS2: (device %s): panic forced after error\n", sb->s_id); } else if (osb->s_mount_opt & OCFS2_MOUNT_ERRORS_CONT) { pr_crit("OCFS2: Returning error to the calling process.\n"); rv = -EIO; } else { /* default option */ rv = -EROFS; if (sb_rdonly(sb) && (ocfs2_is_soft_readonly(osb) || ocfs2_is_hard_readonly(osb))) return rv; pr_crit("OCFS2: File system is now read-only.\n"); sb->s_flags |= SB_RDONLY; ocfs2_set_ro_flag(osb, 0); } return rv; } int __ocfs2_error(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; /* Not using mlog here because we want to show the actual * function the error came from. */ printk(KERN_CRIT "OCFS2: ERROR (device %s): %s: %pV", sb->s_id, function, &vaf); va_end(args); return ocfs2_handle_error(sb); } /* Handle critical errors. This is intentionally more drastic than * ocfs2_handle_error, so we only use for things like journal errors, * etc. */ void __ocfs2_abort(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "OCFS2: abort (device %s): %s: %pV", sb->s_id, function, &vaf); va_end(args); /* We don't have the cluster support yet to go straight to * hard readonly in here. Until then, we want to keep * ocfs2_abort() so that we can at least mark critical * errors. * * TODO: This should abort the journal and alert other nodes * that our slot needs recovery. */ /* Force a panic(). This stinks, but it's better than letting * things continue without having a proper hard readonly * here. */ if (!ocfs2_mount_local(OCFS2_SB(sb))) OCFS2_SB(sb)->s_mount_opt |= OCFS2_MOUNT_ERRORS_PANIC; ocfs2_handle_error(sb); } /* * Void signal blockers, because in-kernel sigprocmask() only fails * when SIG_* is wrong. */ void ocfs2_block_signals(sigset_t *oldset) { int rc; sigset_t blocked; sigfillset(&blocked); rc = sigprocmask(SIG_BLOCK, &blocked, oldset); BUG_ON(rc); } void ocfs2_unblock_signals(sigset_t *oldset) { int rc = sigprocmask(SIG_SETMASK, oldset, NULL); BUG_ON(rc); } module_init(ocfs2_init); module_exit(ocfs2_exit);
linux-master
fs/ocfs2/super.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * suballoc.c * * metadata alloc and free * Inspired by ext3 block groups. * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "dlmglue.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "suballoc.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" #define NOT_ALLOC_NEW_GROUP 0 #define ALLOC_NEW_GROUP 0x1 #define ALLOC_GROUPS_FROM_GLOBAL 0x2 #define OCFS2_MAX_TO_STEAL 1024 struct ocfs2_suballoc_result { u64 sr_bg_blkno; /* The bg we allocated from. Set to 0 when a block group is contiguous. */ u64 sr_bg_stable_blkno; /* * Doesn't change, always * set to target block * group descriptor * block. */ u64 sr_blkno; /* The first allocated block */ unsigned int sr_bit_offset; /* The bit in the bg */ unsigned int sr_bits; /* How many bits we claimed */ }; static u64 ocfs2_group_from_res(struct ocfs2_suballoc_result *res) { if (res->sr_blkno == 0) return 0; if (res->sr_bg_blkno) return res->sr_bg_blkno; return ocfs2_which_suballoc_group(res->sr_blkno, res->sr_bit_offset); } static inline u16 ocfs2_find_victim_chain(struct ocfs2_chain_list *cl); static int ocfs2_block_group_fill(handle_t *handle, struct inode *alloc_inode, struct buffer_head *bg_bh, u64 group_blkno, unsigned int group_clusters, u16 my_chain, struct ocfs2_chain_list *cl); static int ocfs2_block_group_alloc(struct ocfs2_super *osb, struct inode *alloc_inode, struct buffer_head *bh, u64 max_block, u64 *last_alloc_group, int flags); static int ocfs2_cluster_group_search(struct inode *inode, struct buffer_head *group_bh, u32 bits_wanted, u32 min_bits, u64 max_block, struct ocfs2_suballoc_result *res); static int ocfs2_block_group_search(struct inode *inode, struct buffer_head *group_bh, u32 bits_wanted, u32 min_bits, u64 max_block, struct ocfs2_suballoc_result *res); static int ocfs2_claim_suballoc_bits(struct ocfs2_alloc_context *ac, handle_t *handle, u32 bits_wanted, u32 min_bits, struct ocfs2_suballoc_result *res); static int ocfs2_test_bg_bit_allocatable(struct buffer_head *bg_bh, int nr); static int ocfs2_relink_block_group(handle_t *handle, struct inode *alloc_inode, struct buffer_head *fe_bh, struct buffer_head *bg_bh, struct buffer_head *prev_bg_bh, u16 chain); static inline int ocfs2_block_group_reasonably_empty(struct ocfs2_group_desc *bg, u32 wanted); static inline u32 ocfs2_desc_bitmap_to_cluster_off(struct inode *inode, u64 bg_blkno, u16 bg_bit_off); static inline void ocfs2_block_to_cluster_group(struct inode *inode, u64 data_blkno, u64 *bg_blkno, u16 *bg_bit_off); static int ocfs2_reserve_clusters_with_limit(struct ocfs2_super *osb, u32 bits_wanted, u64 max_block, int flags, struct ocfs2_alloc_context **ac); void ocfs2_free_ac_resource(struct ocfs2_alloc_context *ac) { struct inode *inode = ac->ac_inode; if (inode) { if (ac->ac_which != OCFS2_AC_USE_LOCAL) ocfs2_inode_unlock(inode, 1); inode_unlock(inode); iput(inode); ac->ac_inode = NULL; } brelse(ac->ac_bh); ac->ac_bh = NULL; ac->ac_resv = NULL; kfree(ac->ac_find_loc_priv); ac->ac_find_loc_priv = NULL; } void ocfs2_free_alloc_context(struct ocfs2_alloc_context *ac) { ocfs2_free_ac_resource(ac); kfree(ac); } static u32 ocfs2_bits_per_group(struct ocfs2_chain_list *cl) { return (u32)le16_to_cpu(cl->cl_cpg) * (u32)le16_to_cpu(cl->cl_bpc); } #define do_error(fmt, ...) \ do { \ if (resize) \ mlog(ML_ERROR, fmt, ##__VA_ARGS__); \ else \ return ocfs2_error(sb, fmt, ##__VA_ARGS__); \ } while (0) static int ocfs2_validate_gd_self(struct super_block *sb, struct buffer_head *bh, int resize) { struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data; if (!OCFS2_IS_VALID_GROUP_DESC(gd)) { do_error("Group descriptor #%llu has bad signature %.*s\n", (unsigned long long)bh->b_blocknr, 7, gd->bg_signature); } if (le64_to_cpu(gd->bg_blkno) != bh->b_blocknr) { do_error("Group descriptor #%llu has an invalid bg_blkno of %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(gd->bg_blkno)); } if (le32_to_cpu(gd->bg_generation) != OCFS2_SB(sb)->fs_generation) { do_error("Group descriptor #%llu has an invalid fs_generation of #%u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(gd->bg_generation)); } if (le16_to_cpu(gd->bg_free_bits_count) > le16_to_cpu(gd->bg_bits)) { do_error("Group descriptor #%llu has bit count %u but claims that %u are free\n", (unsigned long long)bh->b_blocknr, le16_to_cpu(gd->bg_bits), le16_to_cpu(gd->bg_free_bits_count)); } if (le16_to_cpu(gd->bg_bits) > (8 * le16_to_cpu(gd->bg_size))) { do_error("Group descriptor #%llu has bit count %u but max bitmap bits of %u\n", (unsigned long long)bh->b_blocknr, le16_to_cpu(gd->bg_bits), 8 * le16_to_cpu(gd->bg_size)); } return 0; } static int ocfs2_validate_gd_parent(struct super_block *sb, struct ocfs2_dinode *di, struct buffer_head *bh, int resize) { unsigned int max_bits; struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data; if (di->i_blkno != gd->bg_parent_dinode) { do_error("Group descriptor #%llu has bad parent pointer (%llu, expected %llu)\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(gd->bg_parent_dinode), (unsigned long long)le64_to_cpu(di->i_blkno)); } max_bits = le16_to_cpu(di->id2.i_chain.cl_cpg) * le16_to_cpu(di->id2.i_chain.cl_bpc); if (le16_to_cpu(gd->bg_bits) > max_bits) { do_error("Group descriptor #%llu has bit count of %u\n", (unsigned long long)bh->b_blocknr, le16_to_cpu(gd->bg_bits)); } /* In resize, we may meet the case bg_chain == cl_next_free_rec. */ if ((le16_to_cpu(gd->bg_chain) > le16_to_cpu(di->id2.i_chain.cl_next_free_rec)) || ((le16_to_cpu(gd->bg_chain) == le16_to_cpu(di->id2.i_chain.cl_next_free_rec)) && !resize)) { do_error("Group descriptor #%llu has bad chain %u\n", (unsigned long long)bh->b_blocknr, le16_to_cpu(gd->bg_chain)); } return 0; } #undef do_error /* * This version only prints errors. It does not fail the filesystem, and * exists only for resize. */ int ocfs2_check_group_descriptor(struct super_block *sb, struct ocfs2_dinode *di, struct buffer_head *bh) { int rc; struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data; BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &gd->bg_check); if (rc) { mlog(ML_ERROR, "Checksum failed for group descriptor %llu\n", (unsigned long long)bh->b_blocknr); } else rc = ocfs2_validate_gd_self(sb, bh, 1); if (!rc) rc = ocfs2_validate_gd_parent(sb, di, bh, 1); return rc; } static int ocfs2_validate_group_descriptor(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data; trace_ocfs2_validate_group_descriptor( (unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &gd->bg_check); if (rc) return rc; /* * Errors after here are fatal. */ return ocfs2_validate_gd_self(sb, bh, 0); } int ocfs2_read_group_descriptor(struct inode *inode, struct ocfs2_dinode *di, u64 gd_blkno, struct buffer_head **bh) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_block(INODE_CACHE(inode), gd_blkno, &tmp, ocfs2_validate_group_descriptor); if (rc) goto out; rc = ocfs2_validate_gd_parent(inode->i_sb, di, tmp, 0); if (rc) { brelse(tmp); goto out; } /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!*bh) *bh = tmp; out: return rc; } static void ocfs2_bg_discontig_add_extent(struct ocfs2_super *osb, struct ocfs2_group_desc *bg, struct ocfs2_chain_list *cl, u64 p_blkno, unsigned int clusters) { struct ocfs2_extent_list *el = &bg->bg_list; struct ocfs2_extent_rec *rec; BUG_ON(!ocfs2_supports_discontig_bg(osb)); if (!el->l_next_free_rec) el->l_count = cpu_to_le16(ocfs2_extent_recs_per_gd(osb->sb)); rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec)]; rec->e_blkno = cpu_to_le64(p_blkno); rec->e_cpos = cpu_to_le32(le16_to_cpu(bg->bg_bits) / le16_to_cpu(cl->cl_bpc)); rec->e_leaf_clusters = cpu_to_le16(clusters); le16_add_cpu(&bg->bg_bits, clusters * le16_to_cpu(cl->cl_bpc)); le16_add_cpu(&bg->bg_free_bits_count, clusters * le16_to_cpu(cl->cl_bpc)); le16_add_cpu(&el->l_next_free_rec, 1); } static int ocfs2_block_group_fill(handle_t *handle, struct inode *alloc_inode, struct buffer_head *bg_bh, u64 group_blkno, unsigned int group_clusters, u16 my_chain, struct ocfs2_chain_list *cl) { int status = 0; struct ocfs2_super *osb = OCFS2_SB(alloc_inode->i_sb); struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data; struct super_block * sb = alloc_inode->i_sb; if (((unsigned long long) bg_bh->b_blocknr) != group_blkno) { status = ocfs2_error(alloc_inode->i_sb, "group block (%llu) != b_blocknr (%llu)\n", (unsigned long long)group_blkno, (unsigned long long) bg_bh->b_blocknr); goto bail; } status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode), bg_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(bg, 0, sb->s_blocksize); strcpy(bg->bg_signature, OCFS2_GROUP_DESC_SIGNATURE); bg->bg_generation = cpu_to_le32(osb->fs_generation); bg->bg_size = cpu_to_le16(ocfs2_group_bitmap_size(sb, 1, osb->s_feature_incompat)); bg->bg_chain = cpu_to_le16(my_chain); bg->bg_next_group = cl->cl_recs[my_chain].c_blkno; bg->bg_parent_dinode = cpu_to_le64(OCFS2_I(alloc_inode)->ip_blkno); bg->bg_blkno = cpu_to_le64(group_blkno); if (group_clusters == le16_to_cpu(cl->cl_cpg)) bg->bg_bits = cpu_to_le16(ocfs2_bits_per_group(cl)); else ocfs2_bg_discontig_add_extent(osb, bg, cl, group_blkno, group_clusters); /* set the 1st bit in the bitmap to account for the descriptor block */ ocfs2_set_bit(0, (unsigned long *)bg->bg_bitmap); bg->bg_free_bits_count = cpu_to_le16(le16_to_cpu(bg->bg_bits) - 1); ocfs2_journal_dirty(handle, bg_bh); /* There is no need to zero out or otherwise initialize the * other blocks in a group - All valid FS metadata in a block * group stores the superblock fs_generation value at * allocation time. */ bail: if (status) mlog_errno(status); return status; } static inline u16 ocfs2_find_smallest_chain(struct ocfs2_chain_list *cl) { u16 curr, best; best = curr = 0; while (curr < le16_to_cpu(cl->cl_count)) { if (le32_to_cpu(cl->cl_recs[best].c_total) > le32_to_cpu(cl->cl_recs[curr].c_total)) best = curr; curr++; } return best; } static struct buffer_head * ocfs2_block_group_alloc_contig(struct ocfs2_super *osb, handle_t *handle, struct inode *alloc_inode, struct ocfs2_alloc_context *ac, struct ocfs2_chain_list *cl) { int status; u32 bit_off, num_bits; u64 bg_blkno; struct buffer_head *bg_bh; unsigned int alloc_rec = ocfs2_find_smallest_chain(cl); status = ocfs2_claim_clusters(handle, ac, le16_to_cpu(cl->cl_cpg), &bit_off, &num_bits); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } /* setup the group */ bg_blkno = ocfs2_clusters_to_blocks(osb->sb, bit_off); trace_ocfs2_block_group_alloc_contig( (unsigned long long)bg_blkno, alloc_rec); bg_bh = sb_getblk(osb->sb, bg_blkno); if (!bg_bh) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(alloc_inode), bg_bh); status = ocfs2_block_group_fill(handle, alloc_inode, bg_bh, bg_blkno, num_bits, alloc_rec, cl); if (status < 0) { brelse(bg_bh); mlog_errno(status); } bail: return status ? ERR_PTR(status) : bg_bh; } static int ocfs2_block_group_claim_bits(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_alloc_context *ac, unsigned int min_bits, u32 *bit_off, u32 *num_bits) { int status = 0; while (min_bits) { status = ocfs2_claim_clusters(handle, ac, min_bits, bit_off, num_bits); if (status != -ENOSPC) break; min_bits >>= 1; } return status; } static int ocfs2_block_group_grow_discontig(handle_t *handle, struct inode *alloc_inode, struct buffer_head *bg_bh, struct ocfs2_alloc_context *ac, struct ocfs2_chain_list *cl, unsigned int min_bits) { int status; struct ocfs2_super *osb = OCFS2_SB(alloc_inode->i_sb); struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *)bg_bh->b_data; unsigned int needed = le16_to_cpu(cl->cl_cpg) - le16_to_cpu(bg->bg_bits) / le16_to_cpu(cl->cl_bpc); u32 p_cpos, clusters; u64 p_blkno; struct ocfs2_extent_list *el = &bg->bg_list; status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode), bg_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } while ((needed > 0) && (le16_to_cpu(el->l_next_free_rec) < le16_to_cpu(el->l_count))) { if (min_bits > needed) min_bits = needed; status = ocfs2_block_group_claim_bits(osb, handle, ac, min_bits, &p_cpos, &clusters); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } p_blkno = ocfs2_clusters_to_blocks(osb->sb, p_cpos); ocfs2_bg_discontig_add_extent(osb, bg, cl, p_blkno, clusters); min_bits = clusters; needed = le16_to_cpu(cl->cl_cpg) - le16_to_cpu(bg->bg_bits) / le16_to_cpu(cl->cl_bpc); } if (needed > 0) { /* * We have used up all the extent rec but can't fill up * the cpg. So bail out. */ status = -ENOSPC; goto bail; } ocfs2_journal_dirty(handle, bg_bh); bail: return status; } static void ocfs2_bg_alloc_cleanup(handle_t *handle, struct ocfs2_alloc_context *cluster_ac, struct inode *alloc_inode, struct buffer_head *bg_bh) { int i, ret; struct ocfs2_group_desc *bg; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; if (!bg_bh) return; bg = (struct ocfs2_group_desc *)bg_bh->b_data; el = &bg->bg_list; for (i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { rec = &el->l_recs[i]; ret = ocfs2_free_clusters(handle, cluster_ac->ac_inode, cluster_ac->ac_bh, le64_to_cpu(rec->e_blkno), le16_to_cpu(rec->e_leaf_clusters)); if (ret) mlog_errno(ret); /* Try all the clusters to free */ } ocfs2_remove_from_cache(INODE_CACHE(alloc_inode), bg_bh); brelse(bg_bh); } static struct buffer_head * ocfs2_block_group_alloc_discontig(handle_t *handle, struct inode *alloc_inode, struct ocfs2_alloc_context *ac, struct ocfs2_chain_list *cl) { int status; u32 bit_off, num_bits; u64 bg_blkno; unsigned int min_bits = le16_to_cpu(cl->cl_cpg) >> 1; struct buffer_head *bg_bh = NULL; unsigned int alloc_rec = ocfs2_find_smallest_chain(cl); struct ocfs2_super *osb = OCFS2_SB(alloc_inode->i_sb); if (!ocfs2_supports_discontig_bg(osb)) { status = -ENOSPC; goto bail; } status = ocfs2_extend_trans(handle, ocfs2_calc_bg_discontig_credits(osb->sb)); if (status) { mlog_errno(status); goto bail; } /* * We're going to be grabbing from multiple cluster groups. * We don't have enough credits to relink them all, and the * cluster groups will be staying in cache for the duration of * this operation. */ ac->ac_disable_chain_relink = 1; /* Claim the first region */ status = ocfs2_block_group_claim_bits(osb, handle, ac, min_bits, &bit_off, &num_bits); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } min_bits = num_bits; /* setup the group */ bg_blkno = ocfs2_clusters_to_blocks(osb->sb, bit_off); trace_ocfs2_block_group_alloc_discontig( (unsigned long long)bg_blkno, alloc_rec); bg_bh = sb_getblk(osb->sb, bg_blkno); if (!bg_bh) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(alloc_inode), bg_bh); status = ocfs2_block_group_fill(handle, alloc_inode, bg_bh, bg_blkno, num_bits, alloc_rec, cl); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_block_group_grow_discontig(handle, alloc_inode, bg_bh, ac, cl, min_bits); if (status) mlog_errno(status); bail: if (status) ocfs2_bg_alloc_cleanup(handle, ac, alloc_inode, bg_bh); return status ? ERR_PTR(status) : bg_bh; } /* * We expect the block group allocator to already be locked. */ static int ocfs2_block_group_alloc(struct ocfs2_super *osb, struct inode *alloc_inode, struct buffer_head *bh, u64 max_block, u64 *last_alloc_group, int flags) { int status, credits; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) bh->b_data; struct ocfs2_chain_list *cl; struct ocfs2_alloc_context *ac = NULL; handle_t *handle = NULL; u16 alloc_rec; struct buffer_head *bg_bh = NULL; struct ocfs2_group_desc *bg; BUG_ON(ocfs2_is_cluster_bitmap(alloc_inode)); cl = &fe->id2.i_chain; status = ocfs2_reserve_clusters_with_limit(osb, le16_to_cpu(cl->cl_cpg), max_block, flags, &ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } credits = ocfs2_calc_group_alloc_credits(osb->sb, le16_to_cpu(cl->cl_cpg)); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } if (last_alloc_group && *last_alloc_group != 0) { trace_ocfs2_block_group_alloc( (unsigned long long)*last_alloc_group); ac->ac_last_group = *last_alloc_group; } bg_bh = ocfs2_block_group_alloc_contig(osb, handle, alloc_inode, ac, cl); if (PTR_ERR(bg_bh) == -ENOSPC) bg_bh = ocfs2_block_group_alloc_discontig(handle, alloc_inode, ac, cl); if (IS_ERR(bg_bh)) { status = PTR_ERR(bg_bh); bg_bh = NULL; if (status != -ENOSPC) mlog_errno(status); goto bail; } bg = (struct ocfs2_group_desc *) bg_bh->b_data; status = ocfs2_journal_access_di(handle, INODE_CACHE(alloc_inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } alloc_rec = le16_to_cpu(bg->bg_chain); le32_add_cpu(&cl->cl_recs[alloc_rec].c_free, le16_to_cpu(bg->bg_free_bits_count)); le32_add_cpu(&cl->cl_recs[alloc_rec].c_total, le16_to_cpu(bg->bg_bits)); cl->cl_recs[alloc_rec].c_blkno = bg->bg_blkno; if (le16_to_cpu(cl->cl_next_free_rec) < le16_to_cpu(cl->cl_count)) le16_add_cpu(&cl->cl_next_free_rec, 1); le32_add_cpu(&fe->id1.bitmap1.i_used, le16_to_cpu(bg->bg_bits) - le16_to_cpu(bg->bg_free_bits_count)); le32_add_cpu(&fe->id1.bitmap1.i_total, le16_to_cpu(bg->bg_bits)); le32_add_cpu(&fe->i_clusters, le16_to_cpu(cl->cl_cpg)); ocfs2_journal_dirty(handle, bh); spin_lock(&OCFS2_I(alloc_inode)->ip_lock); OCFS2_I(alloc_inode)->ip_clusters = le32_to_cpu(fe->i_clusters); fe->i_size = cpu_to_le64(ocfs2_clusters_to_bytes(alloc_inode->i_sb, le32_to_cpu(fe->i_clusters))); spin_unlock(&OCFS2_I(alloc_inode)->ip_lock); i_size_write(alloc_inode, le64_to_cpu(fe->i_size)); alloc_inode->i_blocks = ocfs2_inode_sector_count(alloc_inode); ocfs2_update_inode_fsync_trans(handle, alloc_inode, 0); status = 0; /* save the new last alloc group so that the caller can cache it. */ if (last_alloc_group) *last_alloc_group = ac->ac_last_group; bail: if (handle) ocfs2_commit_trans(osb, handle); if (ac) ocfs2_free_alloc_context(ac); brelse(bg_bh); if (status) mlog_errno(status); return status; } static int ocfs2_reserve_suballoc_bits(struct ocfs2_super *osb, struct ocfs2_alloc_context *ac, int type, u32 slot, u64 *last_alloc_group, int flags) { int status; u32 bits_wanted = ac->ac_bits_wanted; struct inode *alloc_inode; struct buffer_head *bh = NULL; struct ocfs2_dinode *fe; u32 free_bits; alloc_inode = ocfs2_get_system_file_inode(osb, type, slot); if (!alloc_inode) { mlog_errno(-EINVAL); return -EINVAL; } inode_lock(alloc_inode); status = ocfs2_inode_lock(alloc_inode, &bh, 1); if (status < 0) { inode_unlock(alloc_inode); iput(alloc_inode); mlog_errno(status); return status; } ac->ac_inode = alloc_inode; ac->ac_alloc_slot = slot; fe = (struct ocfs2_dinode *) bh->b_data; /* The bh was validated by the inode read inside * ocfs2_inode_lock(). Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); if (!(fe->i_flags & cpu_to_le32(OCFS2_CHAIN_FL))) { status = ocfs2_error(alloc_inode->i_sb, "Invalid chain allocator %llu\n", (unsigned long long)le64_to_cpu(fe->i_blkno)); goto bail; } free_bits = le32_to_cpu(fe->id1.bitmap1.i_total) - le32_to_cpu(fe->id1.bitmap1.i_used); if (bits_wanted > free_bits) { /* cluster bitmap never grows */ if (ocfs2_is_cluster_bitmap(alloc_inode)) { trace_ocfs2_reserve_suballoc_bits_nospc(bits_wanted, free_bits); status = -ENOSPC; goto bail; } if (!(flags & ALLOC_NEW_GROUP)) { trace_ocfs2_reserve_suballoc_bits_no_new_group( slot, bits_wanted, free_bits); status = -ENOSPC; goto bail; } status = ocfs2_block_group_alloc(osb, alloc_inode, bh, ac->ac_max_block, last_alloc_group, flags); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } atomic_inc(&osb->alloc_stats.bg_extends); /* You should never ask for this much metadata */ BUG_ON(bits_wanted > (le32_to_cpu(fe->id1.bitmap1.i_total) - le32_to_cpu(fe->id1.bitmap1.i_used))); } get_bh(bh); ac->ac_bh = bh; bail: brelse(bh); if (status) mlog_errno(status); return status; } static void ocfs2_init_inode_steal_slot(struct ocfs2_super *osb) { spin_lock(&osb->osb_lock); osb->s_inode_steal_slot = OCFS2_INVALID_SLOT; spin_unlock(&osb->osb_lock); atomic_set(&osb->s_num_inodes_stolen, 0); } static void ocfs2_init_meta_steal_slot(struct ocfs2_super *osb) { spin_lock(&osb->osb_lock); osb->s_meta_steal_slot = OCFS2_INVALID_SLOT; spin_unlock(&osb->osb_lock); atomic_set(&osb->s_num_meta_stolen, 0); } void ocfs2_init_steal_slots(struct ocfs2_super *osb) { ocfs2_init_inode_steal_slot(osb); ocfs2_init_meta_steal_slot(osb); } static void __ocfs2_set_steal_slot(struct ocfs2_super *osb, int slot, int type) { spin_lock(&osb->osb_lock); if (type == INODE_ALLOC_SYSTEM_INODE) osb->s_inode_steal_slot = (u16)slot; else if (type == EXTENT_ALLOC_SYSTEM_INODE) osb->s_meta_steal_slot = (u16)slot; spin_unlock(&osb->osb_lock); } static int __ocfs2_get_steal_slot(struct ocfs2_super *osb, int type) { int slot = OCFS2_INVALID_SLOT; spin_lock(&osb->osb_lock); if (type == INODE_ALLOC_SYSTEM_INODE) slot = osb->s_inode_steal_slot; else if (type == EXTENT_ALLOC_SYSTEM_INODE) slot = osb->s_meta_steal_slot; spin_unlock(&osb->osb_lock); return slot; } static int ocfs2_get_inode_steal_slot(struct ocfs2_super *osb) { return __ocfs2_get_steal_slot(osb, INODE_ALLOC_SYSTEM_INODE); } static int ocfs2_get_meta_steal_slot(struct ocfs2_super *osb) { return __ocfs2_get_steal_slot(osb, EXTENT_ALLOC_SYSTEM_INODE); } static int ocfs2_steal_resource(struct ocfs2_super *osb, struct ocfs2_alloc_context *ac, int type) { int i, status = -ENOSPC; int slot = __ocfs2_get_steal_slot(osb, type); /* Start to steal resource from the first slot after ours. */ if (slot == OCFS2_INVALID_SLOT) slot = osb->slot_num + 1; for (i = 0; i < osb->max_slots; i++, slot++) { if (slot == osb->max_slots) slot = 0; if (slot == osb->slot_num) continue; status = ocfs2_reserve_suballoc_bits(osb, ac, type, (u32)slot, NULL, NOT_ALLOC_NEW_GROUP); if (status >= 0) { __ocfs2_set_steal_slot(osb, slot, type); break; } ocfs2_free_ac_resource(ac); } return status; } static int ocfs2_steal_inode(struct ocfs2_super *osb, struct ocfs2_alloc_context *ac) { return ocfs2_steal_resource(osb, ac, INODE_ALLOC_SYSTEM_INODE); } static int ocfs2_steal_meta(struct ocfs2_super *osb, struct ocfs2_alloc_context *ac) { return ocfs2_steal_resource(osb, ac, EXTENT_ALLOC_SYSTEM_INODE); } int ocfs2_reserve_new_metadata_blocks(struct ocfs2_super *osb, int blocks, struct ocfs2_alloc_context **ac) { int status; int slot = ocfs2_get_meta_steal_slot(osb); *ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL); if (!(*ac)) { status = -ENOMEM; mlog_errno(status); goto bail; } (*ac)->ac_bits_wanted = blocks; (*ac)->ac_which = OCFS2_AC_USE_META; (*ac)->ac_group_search = ocfs2_block_group_search; if (slot != OCFS2_INVALID_SLOT && atomic_read(&osb->s_num_meta_stolen) < OCFS2_MAX_TO_STEAL) goto extent_steal; atomic_set(&osb->s_num_meta_stolen, 0); status = ocfs2_reserve_suballoc_bits(osb, (*ac), EXTENT_ALLOC_SYSTEM_INODE, (u32)osb->slot_num, NULL, ALLOC_GROUPS_FROM_GLOBAL|ALLOC_NEW_GROUP); if (status >= 0) { status = 0; if (slot != OCFS2_INVALID_SLOT) ocfs2_init_meta_steal_slot(osb); goto bail; } else if (status < 0 && status != -ENOSPC) { mlog_errno(status); goto bail; } ocfs2_free_ac_resource(*ac); extent_steal: status = ocfs2_steal_meta(osb, *ac); atomic_inc(&osb->s_num_meta_stolen); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } status = 0; bail: if ((status < 0) && *ac) { ocfs2_free_alloc_context(*ac); *ac = NULL; } if (status) mlog_errno(status); return status; } int ocfs2_reserve_new_metadata(struct ocfs2_super *osb, struct ocfs2_extent_list *root_el, struct ocfs2_alloc_context **ac) { return ocfs2_reserve_new_metadata_blocks(osb, ocfs2_extend_meta_needed(root_el), ac); } int ocfs2_reserve_new_inode(struct ocfs2_super *osb, struct ocfs2_alloc_context **ac) { int status; int slot = ocfs2_get_inode_steal_slot(osb); u64 alloc_group; *ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL); if (!(*ac)) { status = -ENOMEM; mlog_errno(status); goto bail; } (*ac)->ac_bits_wanted = 1; (*ac)->ac_which = OCFS2_AC_USE_INODE; (*ac)->ac_group_search = ocfs2_block_group_search; /* * stat(2) can't handle i_ino > 32bits, so we tell the * lower levels not to allocate us a block group past that * limit. The 'inode64' mount option avoids this behavior. */ if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64)) (*ac)->ac_max_block = (u32)~0U; /* * slot is set when we successfully steal inode from other nodes. * It is reset in 3 places: * 1. when we flush the truncate log * 2. when we complete local alloc recovery. * 3. when we successfully allocate from our own slot. * After it is set, we will go on stealing inodes until we find the * need to check our slots to see whether there is some space for us. */ if (slot != OCFS2_INVALID_SLOT && atomic_read(&osb->s_num_inodes_stolen) < OCFS2_MAX_TO_STEAL) goto inode_steal; atomic_set(&osb->s_num_inodes_stolen, 0); alloc_group = osb->osb_inode_alloc_group; status = ocfs2_reserve_suballoc_bits(osb, *ac, INODE_ALLOC_SYSTEM_INODE, (u32)osb->slot_num, &alloc_group, ALLOC_NEW_GROUP | ALLOC_GROUPS_FROM_GLOBAL); if (status >= 0) { status = 0; spin_lock(&osb->osb_lock); osb->osb_inode_alloc_group = alloc_group; spin_unlock(&osb->osb_lock); trace_ocfs2_reserve_new_inode_new_group( (unsigned long long)alloc_group); /* * Some inodes must be freed by us, so try to allocate * from our own next time. */ if (slot != OCFS2_INVALID_SLOT) ocfs2_init_inode_steal_slot(osb); goto bail; } else if (status < 0 && status != -ENOSPC) { mlog_errno(status); goto bail; } ocfs2_free_ac_resource(*ac); inode_steal: status = ocfs2_steal_inode(osb, *ac); atomic_inc(&osb->s_num_inodes_stolen); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } status = 0; bail: if ((status < 0) && *ac) { ocfs2_free_alloc_context(*ac); *ac = NULL; } if (status) mlog_errno(status); return status; } /* local alloc code has to do the same thing, so rather than do this * twice.. */ int ocfs2_reserve_cluster_bitmap_bits(struct ocfs2_super *osb, struct ocfs2_alloc_context *ac) { int status; ac->ac_which = OCFS2_AC_USE_MAIN; ac->ac_group_search = ocfs2_cluster_group_search; status = ocfs2_reserve_suballoc_bits(osb, ac, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT, NULL, ALLOC_NEW_GROUP); if (status < 0 && status != -ENOSPC) mlog_errno(status); return status; } /* Callers don't need to care which bitmap (local alloc or main) to * use so we figure it out for them, but unfortunately this clutters * things a bit. */ static int ocfs2_reserve_clusters_with_limit(struct ocfs2_super *osb, u32 bits_wanted, u64 max_block, int flags, struct ocfs2_alloc_context **ac) { int status, ret = 0; int retried = 0; *ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL); if (!(*ac)) { status = -ENOMEM; mlog_errno(status); goto bail; } (*ac)->ac_bits_wanted = bits_wanted; (*ac)->ac_max_block = max_block; status = -ENOSPC; if (!(flags & ALLOC_GROUPS_FROM_GLOBAL) && ocfs2_alloc_should_use_local(osb, bits_wanted)) { status = ocfs2_reserve_local_alloc_bits(osb, bits_wanted, *ac); if ((status < 0) && (status != -ENOSPC)) { mlog_errno(status); goto bail; } } if (status == -ENOSPC) { retry: status = ocfs2_reserve_cluster_bitmap_bits(osb, *ac); /* Retry if there is sufficient space cached in truncate log */ if (status == -ENOSPC && !retried) { retried = 1; ocfs2_inode_unlock((*ac)->ac_inode, 1); inode_unlock((*ac)->ac_inode); ret = ocfs2_try_to_free_truncate_log(osb, bits_wanted); if (ret == 1) { iput((*ac)->ac_inode); (*ac)->ac_inode = NULL; goto retry; } if (ret < 0) mlog_errno(ret); inode_lock((*ac)->ac_inode); ret = ocfs2_inode_lock((*ac)->ac_inode, NULL, 1); if (ret < 0) { mlog_errno(ret); inode_unlock((*ac)->ac_inode); iput((*ac)->ac_inode); (*ac)->ac_inode = NULL; goto bail; } } if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } } status = 0; bail: if ((status < 0) && *ac) { ocfs2_free_alloc_context(*ac); *ac = NULL; } if (status) mlog_errno(status); return status; } int ocfs2_reserve_clusters(struct ocfs2_super *osb, u32 bits_wanted, struct ocfs2_alloc_context **ac) { return ocfs2_reserve_clusters_with_limit(osb, bits_wanted, 0, ALLOC_NEW_GROUP, ac); } /* * More or less lifted from ext3. I'll leave their description below: * * "For ext3 allocations, we must not reuse any blocks which are * allocated in the bitmap buffer's "last committed data" copy. This * prevents deletes from freeing up the page for reuse until we have * committed the delete transaction. * * If we didn't do this, then deleting something and reallocating it as * data would allow the old block to be overwritten before the * transaction committed (because we force data to disk before commit). * This would lead to corruption if we crashed between overwriting the * data and committing the delete. * * @@@ We may want to make this allocation behaviour conditional on * data-writes at some point, and disable it for metadata allocations or * sync-data inodes." * * Note: OCFS2 already does this differently for metadata vs data * allocations, as those bitmaps are separate and undo access is never * called on a metadata group descriptor. */ static int ocfs2_test_bg_bit_allocatable(struct buffer_head *bg_bh, int nr) { struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data; struct journal_head *jh; int ret; if (ocfs2_test_bit(nr, (unsigned long *)bg->bg_bitmap)) return 0; jh = jbd2_journal_grab_journal_head(bg_bh); if (!jh) return 1; spin_lock(&jh->b_state_lock); bg = (struct ocfs2_group_desc *) jh->b_committed_data; if (bg) ret = !ocfs2_test_bit(nr, (unsigned long *)bg->bg_bitmap); else ret = 1; spin_unlock(&jh->b_state_lock); jbd2_journal_put_journal_head(jh); return ret; } static int ocfs2_block_group_find_clear_bits(struct ocfs2_super *osb, struct buffer_head *bg_bh, unsigned int bits_wanted, unsigned int total_bits, struct ocfs2_suballoc_result *res) { void *bitmap; u16 best_offset, best_size; int offset, start, found, status = 0; struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data; /* Callers got this descriptor from * ocfs2_read_group_descriptor(). Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg)); found = start = best_offset = best_size = 0; bitmap = bg->bg_bitmap; while((offset = ocfs2_find_next_zero_bit(bitmap, total_bits, start)) != -1) { if (offset == total_bits) break; if (!ocfs2_test_bg_bit_allocatable(bg_bh, offset)) { /* We found a zero, but we can't use it as it * hasn't been put to disk yet! */ found = 0; start = offset + 1; } else if (offset == start) { /* we found a zero */ found++; /* move start to the next bit to test */ start++; } else { /* got a zero after some ones */ found = 1; start = offset + 1; } if (found > best_size) { best_size = found; best_offset = start - found; } /* we got everything we needed */ if (found == bits_wanted) { /* mlog(0, "Found it all!\n"); */ break; } } if (best_size) { res->sr_bit_offset = best_offset; res->sr_bits = best_size; } else { status = -ENOSPC; /* No error log here -- see the comment above * ocfs2_test_bg_bit_allocatable */ } return status; } int ocfs2_block_group_set_bits(handle_t *handle, struct inode *alloc_inode, struct ocfs2_group_desc *bg, struct buffer_head *group_bh, unsigned int bit_off, unsigned int num_bits) { int status; void *bitmap = bg->bg_bitmap; int journal_type = OCFS2_JOURNAL_ACCESS_WRITE; /* All callers get the descriptor via * ocfs2_read_group_descriptor(). Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg)); BUG_ON(le16_to_cpu(bg->bg_free_bits_count) < num_bits); trace_ocfs2_block_group_set_bits(bit_off, num_bits); if (ocfs2_is_cluster_bitmap(alloc_inode)) journal_type = OCFS2_JOURNAL_ACCESS_UNDO; status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode), group_bh, journal_type); if (status < 0) { mlog_errno(status); goto bail; } le16_add_cpu(&bg->bg_free_bits_count, -num_bits); if (le16_to_cpu(bg->bg_free_bits_count) > le16_to_cpu(bg->bg_bits)) { return ocfs2_error(alloc_inode->i_sb, "Group descriptor # %llu has bit count %u but claims %u are freed. num_bits %d\n", (unsigned long long)le64_to_cpu(bg->bg_blkno), le16_to_cpu(bg->bg_bits), le16_to_cpu(bg->bg_free_bits_count), num_bits); } while(num_bits--) ocfs2_set_bit(bit_off++, bitmap); ocfs2_journal_dirty(handle, group_bh); bail: return status; } /* find the one with the most empty bits */ static inline u16 ocfs2_find_victim_chain(struct ocfs2_chain_list *cl) { u16 curr, best; BUG_ON(!cl->cl_next_free_rec); best = curr = 0; while (curr < le16_to_cpu(cl->cl_next_free_rec)) { if (le32_to_cpu(cl->cl_recs[curr].c_free) > le32_to_cpu(cl->cl_recs[best].c_free)) best = curr; curr++; } BUG_ON(best >= le16_to_cpu(cl->cl_next_free_rec)); return best; } static int ocfs2_relink_block_group(handle_t *handle, struct inode *alloc_inode, struct buffer_head *fe_bh, struct buffer_head *bg_bh, struct buffer_head *prev_bg_bh, u16 chain) { int status; /* there is a really tiny chance the journal calls could fail, * but we wouldn't want inconsistent blocks in *any* case. */ u64 bg_ptr, prev_bg_ptr; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data; struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data; struct ocfs2_group_desc *prev_bg = (struct ocfs2_group_desc *) prev_bg_bh->b_data; /* The caller got these descriptors from * ocfs2_read_group_descriptor(). Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg)); BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(prev_bg)); trace_ocfs2_relink_block_group( (unsigned long long)le64_to_cpu(fe->i_blkno), chain, (unsigned long long)le64_to_cpu(bg->bg_blkno), (unsigned long long)le64_to_cpu(prev_bg->bg_blkno)); bg_ptr = le64_to_cpu(bg->bg_next_group); prev_bg_ptr = le64_to_cpu(prev_bg->bg_next_group); status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode), prev_bg_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) goto out; prev_bg->bg_next_group = bg->bg_next_group; ocfs2_journal_dirty(handle, prev_bg_bh); status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode), bg_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) goto out_rollback_prev_bg; bg->bg_next_group = fe->id2.i_chain.cl_recs[chain].c_blkno; ocfs2_journal_dirty(handle, bg_bh); status = ocfs2_journal_access_di(handle, INODE_CACHE(alloc_inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) goto out_rollback_bg; fe->id2.i_chain.cl_recs[chain].c_blkno = bg->bg_blkno; ocfs2_journal_dirty(handle, fe_bh); out: if (status < 0) mlog_errno(status); return status; out_rollback_bg: bg->bg_next_group = cpu_to_le64(bg_ptr); out_rollback_prev_bg: prev_bg->bg_next_group = cpu_to_le64(prev_bg_ptr); goto out; } static inline int ocfs2_block_group_reasonably_empty(struct ocfs2_group_desc *bg, u32 wanted) { return le16_to_cpu(bg->bg_free_bits_count) > wanted; } /* return 0 on success, -ENOSPC to keep searching and any other < 0 * value on error. */ static int ocfs2_cluster_group_search(struct inode *inode, struct buffer_head *group_bh, u32 bits_wanted, u32 min_bits, u64 max_block, struct ocfs2_suballoc_result *res) { int search = -ENOSPC; int ret; u64 blkoff; struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *) group_bh->b_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int max_bits, gd_cluster_off; BUG_ON(!ocfs2_is_cluster_bitmap(inode)); if (gd->bg_free_bits_count) { max_bits = le16_to_cpu(gd->bg_bits); /* Tail groups in cluster bitmaps which aren't cpg * aligned are prone to partial extension by a failed * fs resize. If the file system resize never got to * update the dinode cluster count, then we don't want * to trust any clusters past it, regardless of what * the group descriptor says. */ gd_cluster_off = ocfs2_blocks_to_clusters(inode->i_sb, le64_to_cpu(gd->bg_blkno)); if ((gd_cluster_off + max_bits) > OCFS2_I(inode)->ip_clusters) { max_bits = OCFS2_I(inode)->ip_clusters - gd_cluster_off; trace_ocfs2_cluster_group_search_wrong_max_bits( (unsigned long long)le64_to_cpu(gd->bg_blkno), le16_to_cpu(gd->bg_bits), OCFS2_I(inode)->ip_clusters, max_bits); } ret = ocfs2_block_group_find_clear_bits(osb, group_bh, bits_wanted, max_bits, res); if (ret) return ret; if (max_block) { blkoff = ocfs2_clusters_to_blocks(inode->i_sb, gd_cluster_off + res->sr_bit_offset + res->sr_bits); trace_ocfs2_cluster_group_search_max_block( (unsigned long long)blkoff, (unsigned long long)max_block); if (blkoff > max_block) return -ENOSPC; } /* ocfs2_block_group_find_clear_bits() might * return success, but we still want to return * -ENOSPC unless it found the minimum number * of bits. */ if (min_bits <= res->sr_bits) search = 0; /* success */ else if (res->sr_bits) { /* * Don't show bits which we'll be returning * for allocation to the local alloc bitmap. */ ocfs2_local_alloc_seen_free_bits(osb, res->sr_bits); } } return search; } static int ocfs2_block_group_search(struct inode *inode, struct buffer_head *group_bh, u32 bits_wanted, u32 min_bits, u64 max_block, struct ocfs2_suballoc_result *res) { int ret = -ENOSPC; u64 blkoff; struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) group_bh->b_data; BUG_ON(min_bits != 1); BUG_ON(ocfs2_is_cluster_bitmap(inode)); if (bg->bg_free_bits_count) { ret = ocfs2_block_group_find_clear_bits(OCFS2_SB(inode->i_sb), group_bh, bits_wanted, le16_to_cpu(bg->bg_bits), res); if (!ret && max_block) { blkoff = le64_to_cpu(bg->bg_blkno) + res->sr_bit_offset + res->sr_bits; trace_ocfs2_block_group_search_max_block( (unsigned long long)blkoff, (unsigned long long)max_block); if (blkoff > max_block) ret = -ENOSPC; } } return ret; } int ocfs2_alloc_dinode_update_counts(struct inode *inode, handle_t *handle, struct buffer_head *di_bh, u32 num_bits, u16 chain) { int ret; u32 tmp_used; struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data; struct ocfs2_chain_list *cl = (struct ocfs2_chain_list *) &di->id2.i_chain; ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } tmp_used = le32_to_cpu(di->id1.bitmap1.i_used); di->id1.bitmap1.i_used = cpu_to_le32(num_bits + tmp_used); le32_add_cpu(&cl->cl_recs[chain].c_free, -num_bits); ocfs2_journal_dirty(handle, di_bh); out: return ret; } void ocfs2_rollback_alloc_dinode_counts(struct inode *inode, struct buffer_head *di_bh, u32 num_bits, u16 chain) { u32 tmp_used; struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data; struct ocfs2_chain_list *cl; cl = (struct ocfs2_chain_list *)&di->id2.i_chain; tmp_used = le32_to_cpu(di->id1.bitmap1.i_used); di->id1.bitmap1.i_used = cpu_to_le32(tmp_used - num_bits); le32_add_cpu(&cl->cl_recs[chain].c_free, num_bits); } static int ocfs2_bg_discontig_fix_by_rec(struct ocfs2_suballoc_result *res, struct ocfs2_extent_rec *rec, struct ocfs2_chain_list *cl) { unsigned int bpc = le16_to_cpu(cl->cl_bpc); unsigned int bitoff = le32_to_cpu(rec->e_cpos) * bpc; unsigned int bitcount = le16_to_cpu(rec->e_leaf_clusters) * bpc; if (res->sr_bit_offset < bitoff) return 0; if (res->sr_bit_offset >= (bitoff + bitcount)) return 0; res->sr_blkno = le64_to_cpu(rec->e_blkno) + (res->sr_bit_offset - bitoff); if ((res->sr_bit_offset + res->sr_bits) > (bitoff + bitcount)) res->sr_bits = (bitoff + bitcount) - res->sr_bit_offset; return 1; } static void ocfs2_bg_discontig_fix_result(struct ocfs2_alloc_context *ac, struct ocfs2_group_desc *bg, struct ocfs2_suballoc_result *res) { int i; u64 bg_blkno = res->sr_bg_blkno; /* Save off */ struct ocfs2_extent_rec *rec; struct ocfs2_dinode *di = (struct ocfs2_dinode *)ac->ac_bh->b_data; struct ocfs2_chain_list *cl = &di->id2.i_chain; if (ocfs2_is_cluster_bitmap(ac->ac_inode)) { res->sr_blkno = 0; return; } res->sr_blkno = res->sr_bg_blkno + res->sr_bit_offset; res->sr_bg_blkno = 0; /* Clear it for contig block groups */ if (!ocfs2_supports_discontig_bg(OCFS2_SB(ac->ac_inode->i_sb)) || !bg->bg_list.l_next_free_rec) return; for (i = 0; i < le16_to_cpu(bg->bg_list.l_next_free_rec); i++) { rec = &bg->bg_list.l_recs[i]; if (ocfs2_bg_discontig_fix_by_rec(res, rec, cl)) { res->sr_bg_blkno = bg_blkno; /* Restore */ break; } } } static int ocfs2_search_one_group(struct ocfs2_alloc_context *ac, handle_t *handle, u32 bits_wanted, u32 min_bits, struct ocfs2_suballoc_result *res, u16 *bits_left) { int ret; struct buffer_head *group_bh = NULL; struct ocfs2_group_desc *gd; struct ocfs2_dinode *di = (struct ocfs2_dinode *)ac->ac_bh->b_data; struct inode *alloc_inode = ac->ac_inode; ret = ocfs2_read_group_descriptor(alloc_inode, di, res->sr_bg_blkno, &group_bh); if (ret < 0) { mlog_errno(ret); return ret; } gd = (struct ocfs2_group_desc *) group_bh->b_data; ret = ac->ac_group_search(alloc_inode, group_bh, bits_wanted, min_bits, ac->ac_max_block, res); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } if (!ret) ocfs2_bg_discontig_fix_result(ac, gd, res); /* * sr_bg_blkno might have been changed by * ocfs2_bg_discontig_fix_result */ res->sr_bg_stable_blkno = group_bh->b_blocknr; if (ac->ac_find_loc_only) goto out_loc_only; ret = ocfs2_alloc_dinode_update_counts(alloc_inode, handle, ac->ac_bh, res->sr_bits, le16_to_cpu(gd->bg_chain)); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_block_group_set_bits(handle, alloc_inode, gd, group_bh, res->sr_bit_offset, res->sr_bits); if (ret < 0) { ocfs2_rollback_alloc_dinode_counts(alloc_inode, ac->ac_bh, res->sr_bits, le16_to_cpu(gd->bg_chain)); mlog_errno(ret); } out_loc_only: *bits_left = le16_to_cpu(gd->bg_free_bits_count); out: brelse(group_bh); return ret; } static int ocfs2_search_chain(struct ocfs2_alloc_context *ac, handle_t *handle, u32 bits_wanted, u32 min_bits, struct ocfs2_suballoc_result *res, u16 *bits_left) { int status; u16 chain; u64 next_group; struct inode *alloc_inode = ac->ac_inode; struct buffer_head *group_bh = NULL; struct buffer_head *prev_group_bh = NULL; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) ac->ac_bh->b_data; struct ocfs2_chain_list *cl = (struct ocfs2_chain_list *) &fe->id2.i_chain; struct ocfs2_group_desc *bg; chain = ac->ac_chain; trace_ocfs2_search_chain_begin( (unsigned long long)OCFS2_I(alloc_inode)->ip_blkno, bits_wanted, chain); status = ocfs2_read_group_descriptor(alloc_inode, fe, le64_to_cpu(cl->cl_recs[chain].c_blkno), &group_bh); if (status < 0) { mlog_errno(status); goto bail; } bg = (struct ocfs2_group_desc *) group_bh->b_data; status = -ENOSPC; /* for now, the chain search is a bit simplistic. We just use * the 1st group with any empty bits. */ while ((status = ac->ac_group_search(alloc_inode, group_bh, bits_wanted, min_bits, ac->ac_max_block, res)) == -ENOSPC) { if (!bg->bg_next_group) break; brelse(prev_group_bh); prev_group_bh = NULL; next_group = le64_to_cpu(bg->bg_next_group); prev_group_bh = group_bh; group_bh = NULL; status = ocfs2_read_group_descriptor(alloc_inode, fe, next_group, &group_bh); if (status < 0) { mlog_errno(status); goto bail; } bg = (struct ocfs2_group_desc *) group_bh->b_data; } if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } trace_ocfs2_search_chain_succ( (unsigned long long)le64_to_cpu(bg->bg_blkno), res->sr_bits); res->sr_bg_blkno = le64_to_cpu(bg->bg_blkno); BUG_ON(res->sr_bits == 0); if (!status) ocfs2_bg_discontig_fix_result(ac, bg, res); /* * sr_bg_blkno might have been changed by * ocfs2_bg_discontig_fix_result */ res->sr_bg_stable_blkno = group_bh->b_blocknr; /* * Keep track of previous block descriptor read. When * we find a target, if we have read more than X * number of descriptors, and the target is reasonably * empty, relink him to top of his chain. * * We've read 0 extra blocks and only send one more to * the transaction, yet the next guy to search has a * much easier time. * * Do this *after* figuring out how many bits we're taking out * of our target group. */ if (!ac->ac_disable_chain_relink && (prev_group_bh) && (ocfs2_block_group_reasonably_empty(bg, res->sr_bits))) { status = ocfs2_relink_block_group(handle, alloc_inode, ac->ac_bh, group_bh, prev_group_bh, chain); if (status < 0) { mlog_errno(status); goto bail; } } if (ac->ac_find_loc_only) goto out_loc_only; status = ocfs2_alloc_dinode_update_counts(alloc_inode, handle, ac->ac_bh, res->sr_bits, chain); if (status) { mlog_errno(status); goto bail; } status = ocfs2_block_group_set_bits(handle, alloc_inode, bg, group_bh, res->sr_bit_offset, res->sr_bits); if (status < 0) { ocfs2_rollback_alloc_dinode_counts(alloc_inode, ac->ac_bh, res->sr_bits, chain); mlog_errno(status); goto bail; } trace_ocfs2_search_chain_end( (unsigned long long)le64_to_cpu(fe->i_blkno), res->sr_bits); out_loc_only: *bits_left = le16_to_cpu(bg->bg_free_bits_count); bail: brelse(group_bh); brelse(prev_group_bh); if (status) mlog_errno(status); return status; } /* will give out up to bits_wanted contiguous bits. */ static int ocfs2_claim_suballoc_bits(struct ocfs2_alloc_context *ac, handle_t *handle, u32 bits_wanted, u32 min_bits, struct ocfs2_suballoc_result *res) { int status; u16 victim, i; u16 bits_left = 0; u64 hint = ac->ac_last_group; struct ocfs2_chain_list *cl; struct ocfs2_dinode *fe; BUG_ON(ac->ac_bits_given >= ac->ac_bits_wanted); BUG_ON(bits_wanted > (ac->ac_bits_wanted - ac->ac_bits_given)); BUG_ON(!ac->ac_bh); fe = (struct ocfs2_dinode *) ac->ac_bh->b_data; /* The bh was validated by the inode read during * ocfs2_reserve_suballoc_bits(). Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); if (le32_to_cpu(fe->id1.bitmap1.i_used) >= le32_to_cpu(fe->id1.bitmap1.i_total)) { status = ocfs2_error(ac->ac_inode->i_sb, "Chain allocator dinode %llu has %u used bits but only %u total\n", (unsigned long long)le64_to_cpu(fe->i_blkno), le32_to_cpu(fe->id1.bitmap1.i_used), le32_to_cpu(fe->id1.bitmap1.i_total)); goto bail; } res->sr_bg_blkno = hint; if (res->sr_bg_blkno) { /* Attempt to short-circuit the usual search mechanism * by jumping straight to the most recently used * allocation group. This helps us maintain some * contiguousness across allocations. */ status = ocfs2_search_one_group(ac, handle, bits_wanted, min_bits, res, &bits_left); if (!status) goto set_hint; if (status < 0 && status != -ENOSPC) { mlog_errno(status); goto bail; } } cl = (struct ocfs2_chain_list *) &fe->id2.i_chain; victim = ocfs2_find_victim_chain(cl); ac->ac_chain = victim; status = ocfs2_search_chain(ac, handle, bits_wanted, min_bits, res, &bits_left); if (!status) { if (ocfs2_is_cluster_bitmap(ac->ac_inode)) hint = res->sr_bg_blkno; else hint = ocfs2_group_from_res(res); goto set_hint; } if (status < 0 && status != -ENOSPC) { mlog_errno(status); goto bail; } trace_ocfs2_claim_suballoc_bits(victim); /* If we didn't pick a good victim, then just default to * searching each chain in order. Don't allow chain relinking * because we only calculate enough journal credits for one * relink per alloc. */ ac->ac_disable_chain_relink = 1; for (i = 0; i < le16_to_cpu(cl->cl_next_free_rec); i ++) { if (i == victim) continue; if (!cl->cl_recs[i].c_free) continue; ac->ac_chain = i; status = ocfs2_search_chain(ac, handle, bits_wanted, min_bits, res, &bits_left); if (!status) { hint = ocfs2_group_from_res(res); break; } if (status < 0 && status != -ENOSPC) { mlog_errno(status); goto bail; } } set_hint: if (status != -ENOSPC) { /* If the next search of this group is not likely to * yield a suitable extent, then we reset the last * group hint so as to not waste a disk read */ if (bits_left < min_bits) ac->ac_last_group = 0; else ac->ac_last_group = hint; } bail: if (status) mlog_errno(status); return status; } int ocfs2_claim_metadata(handle_t *handle, struct ocfs2_alloc_context *ac, u32 bits_wanted, u64 *suballoc_loc, u16 *suballoc_bit_start, unsigned int *num_bits, u64 *blkno_start) { int status; struct ocfs2_suballoc_result res = { .sr_blkno = 0, }; BUG_ON(!ac); BUG_ON(ac->ac_bits_wanted < (ac->ac_bits_given + bits_wanted)); BUG_ON(ac->ac_which != OCFS2_AC_USE_META); status = ocfs2_claim_suballoc_bits(ac, handle, bits_wanted, 1, &res); if (status < 0) { mlog_errno(status); goto bail; } atomic_inc(&OCFS2_SB(ac->ac_inode->i_sb)->alloc_stats.bg_allocs); *suballoc_loc = res.sr_bg_blkno; *suballoc_bit_start = res.sr_bit_offset; *blkno_start = res.sr_blkno; ac->ac_bits_given += res.sr_bits; *num_bits = res.sr_bits; status = 0; bail: if (status) mlog_errno(status); return status; } static void ocfs2_init_inode_ac_group(struct inode *dir, struct buffer_head *parent_di_bh, struct ocfs2_alloc_context *ac) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)parent_di_bh->b_data; /* * Try to allocate inodes from some specific group. * * If the parent dir has recorded the last group used in allocation, * cool, use it. Otherwise if we try to allocate new inode from the * same slot the parent dir belongs to, use the same chunk. * * We are very careful here to avoid the mistake of setting * ac_last_group to a group descriptor from a different (unlocked) slot. */ if (OCFS2_I(dir)->ip_last_used_group && OCFS2_I(dir)->ip_last_used_slot == ac->ac_alloc_slot) ac->ac_last_group = OCFS2_I(dir)->ip_last_used_group; else if (le16_to_cpu(di->i_suballoc_slot) == ac->ac_alloc_slot) { if (di->i_suballoc_loc) ac->ac_last_group = le64_to_cpu(di->i_suballoc_loc); else ac->ac_last_group = ocfs2_which_suballoc_group( le64_to_cpu(di->i_blkno), le16_to_cpu(di->i_suballoc_bit)); } } static inline void ocfs2_save_inode_ac_group(struct inode *dir, struct ocfs2_alloc_context *ac) { OCFS2_I(dir)->ip_last_used_group = ac->ac_last_group; OCFS2_I(dir)->ip_last_used_slot = ac->ac_alloc_slot; } int ocfs2_find_new_inode_loc(struct inode *dir, struct buffer_head *parent_fe_bh, struct ocfs2_alloc_context *ac, u64 *fe_blkno) { int ret; handle_t *handle = NULL; struct ocfs2_suballoc_result *res; BUG_ON(!ac); BUG_ON(ac->ac_bits_given != 0); BUG_ON(ac->ac_bits_wanted != 1); BUG_ON(ac->ac_which != OCFS2_AC_USE_INODE); res = kzalloc(sizeof(*res), GFP_NOFS); if (res == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ocfs2_init_inode_ac_group(dir, parent_fe_bh, ac); /* * The handle started here is for chain relink. Alternatively, * we could just disable relink for these calls. */ handle = ocfs2_start_trans(OCFS2_SB(dir->i_sb), OCFS2_SUBALLOC_ALLOC); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; mlog_errno(ret); goto out; } /* * This will instruct ocfs2_claim_suballoc_bits and * ocfs2_search_one_group to search but save actual allocation * for later. */ ac->ac_find_loc_only = 1; ret = ocfs2_claim_suballoc_bits(ac, handle, 1, 1, res); if (ret < 0) { mlog_errno(ret); goto out; } ac->ac_find_loc_priv = res; *fe_blkno = res->sr_blkno; ocfs2_update_inode_fsync_trans(handle, dir, 0); out: if (handle) ocfs2_commit_trans(OCFS2_SB(dir->i_sb), handle); if (ret) kfree(res); return ret; } int ocfs2_claim_new_inode_at_loc(handle_t *handle, struct inode *dir, struct ocfs2_alloc_context *ac, u64 *suballoc_loc, u16 *suballoc_bit, u64 di_blkno) { int ret; u16 chain; struct ocfs2_suballoc_result *res = ac->ac_find_loc_priv; struct buffer_head *bg_bh = NULL; struct ocfs2_group_desc *bg; struct ocfs2_dinode *di = (struct ocfs2_dinode *) ac->ac_bh->b_data; /* * Since di_blkno is being passed back in, we check for any * inconsistencies which may have happened between * calls. These are code bugs as di_blkno is not expected to * change once returned from ocfs2_find_new_inode_loc() */ BUG_ON(res->sr_blkno != di_blkno); ret = ocfs2_read_group_descriptor(ac->ac_inode, di, res->sr_bg_stable_blkno, &bg_bh); if (ret) { mlog_errno(ret); goto out; } bg = (struct ocfs2_group_desc *) bg_bh->b_data; chain = le16_to_cpu(bg->bg_chain); ret = ocfs2_alloc_dinode_update_counts(ac->ac_inode, handle, ac->ac_bh, res->sr_bits, chain); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_block_group_set_bits(handle, ac->ac_inode, bg, bg_bh, res->sr_bit_offset, res->sr_bits); if (ret < 0) { ocfs2_rollback_alloc_dinode_counts(ac->ac_inode, ac->ac_bh, res->sr_bits, chain); mlog_errno(ret); goto out; } trace_ocfs2_claim_new_inode_at_loc((unsigned long long)di_blkno, res->sr_bits); atomic_inc(&OCFS2_SB(ac->ac_inode->i_sb)->alloc_stats.bg_allocs); BUG_ON(res->sr_bits != 1); *suballoc_loc = res->sr_bg_blkno; *suballoc_bit = res->sr_bit_offset; ac->ac_bits_given++; ocfs2_save_inode_ac_group(dir, ac); out: brelse(bg_bh); return ret; } int ocfs2_claim_new_inode(handle_t *handle, struct inode *dir, struct buffer_head *parent_fe_bh, struct ocfs2_alloc_context *ac, u64 *suballoc_loc, u16 *suballoc_bit, u64 *fe_blkno) { int status; struct ocfs2_suballoc_result res; BUG_ON(!ac); BUG_ON(ac->ac_bits_given != 0); BUG_ON(ac->ac_bits_wanted != 1); BUG_ON(ac->ac_which != OCFS2_AC_USE_INODE); ocfs2_init_inode_ac_group(dir, parent_fe_bh, ac); status = ocfs2_claim_suballoc_bits(ac, handle, 1, 1, &res); if (status < 0) { mlog_errno(status); goto bail; } atomic_inc(&OCFS2_SB(ac->ac_inode->i_sb)->alloc_stats.bg_allocs); BUG_ON(res.sr_bits != 1); *suballoc_loc = res.sr_bg_blkno; *suballoc_bit = res.sr_bit_offset; *fe_blkno = res.sr_blkno; ac->ac_bits_given++; ocfs2_save_inode_ac_group(dir, ac); status = 0; bail: if (status) mlog_errno(status); return status; } /* translate a group desc. blkno and it's bitmap offset into * disk cluster offset. */ static inline u32 ocfs2_desc_bitmap_to_cluster_off(struct inode *inode, u64 bg_blkno, u16 bg_bit_off) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u32 cluster = 0; BUG_ON(!ocfs2_is_cluster_bitmap(inode)); if (bg_blkno != osb->first_cluster_group_blkno) cluster = ocfs2_blocks_to_clusters(inode->i_sb, bg_blkno); cluster += (u32) bg_bit_off; return cluster; } /* given a cluster offset, calculate which block group it belongs to * and return that block offset. */ u64 ocfs2_which_cluster_group(struct inode *inode, u32 cluster) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u32 group_no; BUG_ON(!ocfs2_is_cluster_bitmap(inode)); group_no = cluster / osb->bitmap_cpg; if (!group_no) return osb->first_cluster_group_blkno; return ocfs2_clusters_to_blocks(inode->i_sb, group_no * osb->bitmap_cpg); } /* given the block number of a cluster start, calculate which cluster * group and descriptor bitmap offset that corresponds to. */ static inline void ocfs2_block_to_cluster_group(struct inode *inode, u64 data_blkno, u64 *bg_blkno, u16 *bg_bit_off) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u32 data_cluster = ocfs2_blocks_to_clusters(osb->sb, data_blkno); BUG_ON(!ocfs2_is_cluster_bitmap(inode)); *bg_blkno = ocfs2_which_cluster_group(inode, data_cluster); if (*bg_blkno == osb->first_cluster_group_blkno) *bg_bit_off = (u16) data_cluster; else *bg_bit_off = (u16) ocfs2_blocks_to_clusters(osb->sb, data_blkno - *bg_blkno); } /* * min_bits - minimum contiguous chunk from this total allocation we * can handle. set to what we asked for originally for a full * contig. allocation, set to '1' to indicate we can deal with extents * of any size. */ int __ocfs2_claim_clusters(handle_t *handle, struct ocfs2_alloc_context *ac, u32 min_clusters, u32 max_clusters, u32 *cluster_start, u32 *num_clusters) { int status; unsigned int bits_wanted = max_clusters; struct ocfs2_suballoc_result res = { .sr_blkno = 0, }; struct ocfs2_super *osb = OCFS2_SB(ac->ac_inode->i_sb); BUG_ON(ac->ac_bits_given >= ac->ac_bits_wanted); BUG_ON(ac->ac_which != OCFS2_AC_USE_LOCAL && ac->ac_which != OCFS2_AC_USE_MAIN); if (ac->ac_which == OCFS2_AC_USE_LOCAL) { WARN_ON(min_clusters > 1); status = ocfs2_claim_local_alloc_bits(osb, handle, ac, bits_wanted, cluster_start, num_clusters); if (!status) atomic_inc(&osb->alloc_stats.local_data); } else { if (min_clusters > (osb->bitmap_cpg - 1)) { /* The only paths asking for contiguousness * should know about this already. */ mlog(ML_ERROR, "minimum allocation requested %u exceeds " "group bitmap size %u!\n", min_clusters, osb->bitmap_cpg); status = -ENOSPC; goto bail; } /* clamp the current request down to a realistic size. */ if (bits_wanted > (osb->bitmap_cpg - 1)) bits_wanted = osb->bitmap_cpg - 1; status = ocfs2_claim_suballoc_bits(ac, handle, bits_wanted, min_clusters, &res); if (!status) { BUG_ON(res.sr_blkno); /* cluster alloc can't set */ *cluster_start = ocfs2_desc_bitmap_to_cluster_off(ac->ac_inode, res.sr_bg_blkno, res.sr_bit_offset); atomic_inc(&osb->alloc_stats.bitmap_data); *num_clusters = res.sr_bits; } } if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } ac->ac_bits_given += *num_clusters; bail: if (status) mlog_errno(status); return status; } int ocfs2_claim_clusters(handle_t *handle, struct ocfs2_alloc_context *ac, u32 min_clusters, u32 *cluster_start, u32 *num_clusters) { unsigned int bits_wanted = ac->ac_bits_wanted - ac->ac_bits_given; return __ocfs2_claim_clusters(handle, ac, min_clusters, bits_wanted, cluster_start, num_clusters); } static int ocfs2_block_group_clear_bits(handle_t *handle, struct inode *alloc_inode, struct ocfs2_group_desc *bg, struct buffer_head *group_bh, unsigned int bit_off, unsigned int num_bits, void (*undo_fn)(unsigned int bit, unsigned long *bmap)) { int status; unsigned int tmp; struct ocfs2_group_desc *undo_bg = NULL; struct journal_head *jh; /* The caller got this descriptor from * ocfs2_read_group_descriptor(). Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg)); trace_ocfs2_block_group_clear_bits(bit_off, num_bits); BUG_ON(undo_fn && !ocfs2_is_cluster_bitmap(alloc_inode)); status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode), group_bh, undo_fn ? OCFS2_JOURNAL_ACCESS_UNDO : OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } jh = bh2jh(group_bh); if (undo_fn) { spin_lock(&jh->b_state_lock); undo_bg = (struct ocfs2_group_desc *) jh->b_committed_data; BUG_ON(!undo_bg); } tmp = num_bits; while(tmp--) { ocfs2_clear_bit((bit_off + tmp), (unsigned long *) bg->bg_bitmap); if (undo_fn) undo_fn(bit_off + tmp, (unsigned long *) undo_bg->bg_bitmap); } le16_add_cpu(&bg->bg_free_bits_count, num_bits); if (le16_to_cpu(bg->bg_free_bits_count) > le16_to_cpu(bg->bg_bits)) { if (undo_fn) spin_unlock(&jh->b_state_lock); return ocfs2_error(alloc_inode->i_sb, "Group descriptor # %llu has bit count %u but claims %u are freed. num_bits %d\n", (unsigned long long)le64_to_cpu(bg->bg_blkno), le16_to_cpu(bg->bg_bits), le16_to_cpu(bg->bg_free_bits_count), num_bits); } if (undo_fn) spin_unlock(&jh->b_state_lock); ocfs2_journal_dirty(handle, group_bh); bail: return status; } /* * expects the suballoc inode to already be locked. */ static int _ocfs2_free_suballoc_bits(handle_t *handle, struct inode *alloc_inode, struct buffer_head *alloc_bh, unsigned int start_bit, u64 bg_blkno, unsigned int count, void (*undo_fn)(unsigned int bit, unsigned long *bitmap)) { int status = 0; u32 tmp_used; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) alloc_bh->b_data; struct ocfs2_chain_list *cl = &fe->id2.i_chain; struct buffer_head *group_bh = NULL; struct ocfs2_group_desc *group; /* The alloc_bh comes from ocfs2_free_dinode() or * ocfs2_free_clusters(). The callers have all locked the * allocator and gotten alloc_bh from the lock call. This * validates the dinode buffer. Any corruption that has happened * is a code bug. */ BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); BUG_ON((count + start_bit) > ocfs2_bits_per_group(cl)); trace_ocfs2_free_suballoc_bits( (unsigned long long)OCFS2_I(alloc_inode)->ip_blkno, (unsigned long long)bg_blkno, start_bit, count); status = ocfs2_read_group_descriptor(alloc_inode, fe, bg_blkno, &group_bh); if (status < 0) { mlog_errno(status); goto bail; } group = (struct ocfs2_group_desc *) group_bh->b_data; BUG_ON((count + start_bit) > le16_to_cpu(group->bg_bits)); status = ocfs2_block_group_clear_bits(handle, alloc_inode, group, group_bh, start_bit, count, undo_fn); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_journal_access_di(handle, INODE_CACHE(alloc_inode), alloc_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); ocfs2_block_group_set_bits(handle, alloc_inode, group, group_bh, start_bit, count); goto bail; } le32_add_cpu(&cl->cl_recs[le16_to_cpu(group->bg_chain)].c_free, count); tmp_used = le32_to_cpu(fe->id1.bitmap1.i_used); fe->id1.bitmap1.i_used = cpu_to_le32(tmp_used - count); ocfs2_journal_dirty(handle, alloc_bh); bail: brelse(group_bh); return status; } int ocfs2_free_suballoc_bits(handle_t *handle, struct inode *alloc_inode, struct buffer_head *alloc_bh, unsigned int start_bit, u64 bg_blkno, unsigned int count) { return _ocfs2_free_suballoc_bits(handle, alloc_inode, alloc_bh, start_bit, bg_blkno, count, NULL); } int ocfs2_free_dinode(handle_t *handle, struct inode *inode_alloc_inode, struct buffer_head *inode_alloc_bh, struct ocfs2_dinode *di) { u64 blk = le64_to_cpu(di->i_blkno); u16 bit = le16_to_cpu(di->i_suballoc_bit); u64 bg_blkno = ocfs2_which_suballoc_group(blk, bit); if (di->i_suballoc_loc) bg_blkno = le64_to_cpu(di->i_suballoc_loc); return ocfs2_free_suballoc_bits(handle, inode_alloc_inode, inode_alloc_bh, bit, bg_blkno, 1); } static int _ocfs2_free_clusters(handle_t *handle, struct inode *bitmap_inode, struct buffer_head *bitmap_bh, u64 start_blk, unsigned int num_clusters, void (*undo_fn)(unsigned int bit, unsigned long *bitmap)) { int status; u16 bg_start_bit; u64 bg_blkno; /* You can't ever have a contiguous set of clusters * bigger than a block group bitmap so we never have to worry * about looping on them. * This is expensive. We can safely remove once this stuff has * gotten tested really well. */ BUG_ON(start_blk != ocfs2_clusters_to_blocks(bitmap_inode->i_sb, ocfs2_blocks_to_clusters(bitmap_inode->i_sb, start_blk))); ocfs2_block_to_cluster_group(bitmap_inode, start_blk, &bg_blkno, &bg_start_bit); trace_ocfs2_free_clusters((unsigned long long)bg_blkno, (unsigned long long)start_blk, bg_start_bit, num_clusters); status = _ocfs2_free_suballoc_bits(handle, bitmap_inode, bitmap_bh, bg_start_bit, bg_blkno, num_clusters, undo_fn); if (status < 0) { mlog_errno(status); goto out; } ocfs2_local_alloc_seen_free_bits(OCFS2_SB(bitmap_inode->i_sb), num_clusters); out: return status; } int ocfs2_free_clusters(handle_t *handle, struct inode *bitmap_inode, struct buffer_head *bitmap_bh, u64 start_blk, unsigned int num_clusters) { return _ocfs2_free_clusters(handle, bitmap_inode, bitmap_bh, start_blk, num_clusters, _ocfs2_set_bit); } /* * Give never-used clusters back to the global bitmap. We don't need * to protect these bits in the undo buffer. */ int ocfs2_release_clusters(handle_t *handle, struct inode *bitmap_inode, struct buffer_head *bitmap_bh, u64 start_blk, unsigned int num_clusters) { return _ocfs2_free_clusters(handle, bitmap_inode, bitmap_bh, start_blk, num_clusters, _ocfs2_clear_bit); } /* * For a given allocation, determine which allocators will need to be * accessed, and lock them, reserving the appropriate number of bits. * * Sparse file systems call this from ocfs2_write_begin_nolock() * and ocfs2_allocate_unwritten_extents(). * * File systems which don't support holes call this from * ocfs2_extend_allocation(). */ int ocfs2_lock_allocators(struct inode *inode, struct ocfs2_extent_tree *et, u32 clusters_to_add, u32 extents_to_split, struct ocfs2_alloc_context **data_ac, struct ocfs2_alloc_context **meta_ac) { int ret = 0, num_free_extents; unsigned int max_recs_needed = clusters_to_add + 2 * extents_to_split; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); *meta_ac = NULL; if (data_ac) *data_ac = NULL; BUG_ON(clusters_to_add != 0 && data_ac == NULL); num_free_extents = ocfs2_num_free_extents(et); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } /* * Sparse allocation file systems need to be more conservative * with reserving room for expansion - the actual allocation * happens while we've got a journal handle open so re-taking * a cluster lock (because we ran out of room for another * extent) will violate ordering rules. * * Most of the time we'll only be seeing this 1 cluster at a time * anyway. * * Always lock for any unwritten extents - we might want to * add blocks during a split. */ if (!num_free_extents || (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) { ret = ocfs2_reserve_new_metadata(osb, et->et_root_el, meta_ac); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } } if (clusters_to_add == 0) goto out; ret = ocfs2_reserve_clusters(osb, clusters_to_add, data_ac); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } out: if (ret) { if (*meta_ac) { ocfs2_free_alloc_context(*meta_ac); *meta_ac = NULL; } /* * We cannot have an error and a non null *data_ac. */ } return ret; } /* * Read the inode specified by blkno to get suballoc_slot and * suballoc_bit. */ static int ocfs2_get_suballoc_slot_bit(struct ocfs2_super *osb, u64 blkno, u16 *suballoc_slot, u64 *group_blkno, u16 *suballoc_bit) { int status; struct buffer_head *inode_bh = NULL; struct ocfs2_dinode *inode_fe; trace_ocfs2_get_suballoc_slot_bit((unsigned long long)blkno); /* dirty read disk */ status = ocfs2_read_blocks_sync(osb, blkno, 1, &inode_bh); if (status < 0) { mlog(ML_ERROR, "read block %llu failed %d\n", (unsigned long long)blkno, status); goto bail; } inode_fe = (struct ocfs2_dinode *) inode_bh->b_data; if (!OCFS2_IS_VALID_DINODE(inode_fe)) { mlog(ML_ERROR, "invalid inode %llu requested\n", (unsigned long long)blkno); status = -EINVAL; goto bail; } if (le16_to_cpu(inode_fe->i_suballoc_slot) != (u16)OCFS2_INVALID_SLOT && (u32)le16_to_cpu(inode_fe->i_suballoc_slot) > osb->max_slots - 1) { mlog(ML_ERROR, "inode %llu has invalid suballoc slot %u\n", (unsigned long long)blkno, (u32)le16_to_cpu(inode_fe->i_suballoc_slot)); status = -EINVAL; goto bail; } if (suballoc_slot) *suballoc_slot = le16_to_cpu(inode_fe->i_suballoc_slot); if (suballoc_bit) *suballoc_bit = le16_to_cpu(inode_fe->i_suballoc_bit); if (group_blkno) *group_blkno = le64_to_cpu(inode_fe->i_suballoc_loc); bail: brelse(inode_bh); if (status) mlog_errno(status); return status; } /* * test whether bit is SET in allocator bitmap or not. on success, 0 * is returned and *res is 1 for SET; 0 otherwise. when fails, errno * is returned and *res is meaningless. Call this after you have * cluster locked against suballoc, or you may get a result based on * non-up2date contents */ static int ocfs2_test_suballoc_bit(struct ocfs2_super *osb, struct inode *suballoc, struct buffer_head *alloc_bh, u64 group_blkno, u64 blkno, u16 bit, int *res) { struct ocfs2_dinode *alloc_di; struct ocfs2_group_desc *group; struct buffer_head *group_bh = NULL; u64 bg_blkno; int status; trace_ocfs2_test_suballoc_bit((unsigned long long)blkno, (unsigned int)bit); alloc_di = (struct ocfs2_dinode *)alloc_bh->b_data; if ((bit + 1) > ocfs2_bits_per_group(&alloc_di->id2.i_chain)) { mlog(ML_ERROR, "suballoc bit %u out of range of %u\n", (unsigned int)bit, ocfs2_bits_per_group(&alloc_di->id2.i_chain)); status = -EINVAL; goto bail; } bg_blkno = group_blkno ? group_blkno : ocfs2_which_suballoc_group(blkno, bit); status = ocfs2_read_group_descriptor(suballoc, alloc_di, bg_blkno, &group_bh); if (status < 0) { mlog(ML_ERROR, "read group %llu failed %d\n", (unsigned long long)bg_blkno, status); goto bail; } group = (struct ocfs2_group_desc *) group_bh->b_data; *res = ocfs2_test_bit(bit, (unsigned long *)group->bg_bitmap); bail: brelse(group_bh); if (status) mlog_errno(status); return status; } /* * Test if the bit representing this inode (blkno) is set in the * suballocator. * * On success, 0 is returned and *res is 1 for SET; 0 otherwise. * * In the event of failure, a negative value is returned and *res is * meaningless. * * Callers must make sure to hold nfs_sync_lock to prevent * ocfs2_delete_inode() on another node from accessing the same * suballocator concurrently. */ int ocfs2_test_inode_bit(struct ocfs2_super *osb, u64 blkno, int *res) { int status; u64 group_blkno = 0; u16 suballoc_bit = 0, suballoc_slot = 0; struct inode *inode_alloc_inode; struct buffer_head *alloc_bh = NULL; trace_ocfs2_test_inode_bit((unsigned long long)blkno); status = ocfs2_get_suballoc_slot_bit(osb, blkno, &suballoc_slot, &group_blkno, &suballoc_bit); if (status < 0) { mlog(ML_ERROR, "get alloc slot and bit failed %d\n", status); goto bail; } if (suballoc_slot == (u16)OCFS2_INVALID_SLOT) inode_alloc_inode = ocfs2_get_system_file_inode(osb, GLOBAL_INODE_ALLOC_SYSTEM_INODE, suballoc_slot); else inode_alloc_inode = ocfs2_get_system_file_inode(osb, INODE_ALLOC_SYSTEM_INODE, suballoc_slot); if (!inode_alloc_inode) { /* the error code could be inaccurate, but we are not able to * get the correct one. */ status = -EINVAL; mlog(ML_ERROR, "unable to get alloc inode in slot %u\n", (u32)suballoc_slot); goto bail; } inode_lock(inode_alloc_inode); status = ocfs2_inode_lock(inode_alloc_inode, &alloc_bh, 0); if (status < 0) { inode_unlock(inode_alloc_inode); iput(inode_alloc_inode); mlog(ML_ERROR, "lock on alloc inode on slot %u failed %d\n", (u32)suballoc_slot, status); goto bail; } status = ocfs2_test_suballoc_bit(osb, inode_alloc_inode, alloc_bh, group_blkno, blkno, suballoc_bit, res); if (status < 0) mlog(ML_ERROR, "test suballoc bit failed %d\n", status); ocfs2_inode_unlock(inode_alloc_inode, 0); inode_unlock(inode_alloc_inode); iput(inode_alloc_inode); brelse(alloc_bh); bail: if (status) mlog_errno(status); return status; }
linux-master
fs/ocfs2/suballoc.c
// SPDX-License-Identifier: GPL-2.0-only /* * blockcheck.c * * Checksum and ECC codes for the OCFS2 userspace library. * * Copyright (C) 2006, 2008 Oracle. All rights reserved. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/crc32.h> #include <linux/buffer_head.h> #include <linux/bitops.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/fs.h> #include <asm/byteorder.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "blockcheck.h" /* * We use the following conventions: * * d = # data bits * p = # parity bits * c = # total code bits (d + p) */ /* * Calculate the bit offset in the hamming code buffer based on the bit's * offset in the data buffer. Since the hamming code reserves all * power-of-two bits for parity, the data bit number and the code bit * number are offset by all the parity bits beforehand. * * Recall that bit numbers in hamming code are 1-based. This function * takes the 0-based data bit from the caller. * * An example. Take bit 1 of the data buffer. 1 is a power of two (2^0), * so it's a parity bit. 2 is a power of two (2^1), so it's a parity bit. * 3 is not a power of two. So bit 1 of the data buffer ends up as bit 3 * in the code buffer. * * The caller can pass in *p if it wants to keep track of the most recent * number of parity bits added. This allows the function to start the * calculation at the last place. */ static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache) { unsigned int b, p = 0; /* * Data bits are 0-based, but we're talking code bits, which * are 1-based. */ b = i + 1; /* Use the cache if it is there */ if (p_cache) p = *p_cache; b += p; /* * For every power of two below our bit number, bump our bit. * * We compare with (b + 1) because we have to compare with what b * would be _if_ it were bumped up by the parity bit. Capice? * * p is set above. */ for (; (1 << p) < (b + 1); p++) b++; if (p_cache) *p_cache = p; return b; } /* * This is the low level encoder function. It can be called across * multiple hunks just like the crc32 code. 'd' is the number of bits * _in_this_hunk_. nr is the bit offset of this hunk. So, if you had * two 512B buffers, you would do it like so: * * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0); * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8); * * If you just have one buffer, use ocfs2_hamming_encode_block(). */ u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr) { unsigned int i, b, p = 0; BUG_ON(!d); /* * b is the hamming code bit number. Hamming code specifies a * 1-based array, but C uses 0-based. So 'i' is for C, and 'b' is * for the algorithm. * * The i++ in the for loop is so that the start offset passed * to ocfs2_find_next_bit_set() is one greater than the previously * found bit. */ for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++) { /* * i is the offset in this hunk, nr + i is the total bit * offset. */ b = calc_code_bit(nr + i, &p); /* * Data bits in the resultant code are checked by * parity bits that are part of the bit number * representation. Huh? * * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code"> * In other words, the parity bit at position 2^k * checks bits in positions having bit k set in * their binary representation. Conversely, for * instance, bit 13, i.e. 1101(2), is checked by * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1. * </wikipedia> * * Note that 'k' is the _code_ bit number. 'b' in * our loop. */ parity ^= b; } /* While the data buffer was treated as little endian, the * return value is in host endian. */ return parity; } u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize) { return ocfs2_hamming_encode(0, data, blocksize * 8, 0); } /* * Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit * offset of the current hunk. If bit to be fixed is not part of the * current hunk, this does nothing. * * If you only have one hunk, use ocfs2_hamming_fix_block(). */ void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr, unsigned int fix) { unsigned int i, b; BUG_ON(!d); /* * If the bit to fix has an hweight of 1, it's a parity bit. One * busted parity bit is its own error. Nothing to do here. */ if (hweight32(fix) == 1) return; /* * nr + d is the bit right past the data hunk we're looking at. * If fix after that, nothing to do */ if (fix >= calc_code_bit(nr + d, NULL)) return; /* * nr is the offset in the data hunk we're starting at. Let's * start b at the offset in the code buffer. See hamming_encode() * for a more detailed description of 'b'. */ b = calc_code_bit(nr, NULL); /* If the fix is before this hunk, nothing to do */ if (fix < b) return; for (i = 0; i < d; i++, b++) { /* Skip past parity bits */ while (hweight32(b) == 1) b++; /* * i is the offset in this data hunk. * nr + i is the offset in the total data buffer. * b is the offset in the total code buffer. * * Thus, when b == fix, bit i in the current hunk needs * fixing. */ if (b == fix) { if (ocfs2_test_bit(i, data)) ocfs2_clear_bit(i, data); else ocfs2_set_bit(i, data); break; } } } void ocfs2_hamming_fix_block(void *data, unsigned int blocksize, unsigned int fix) { ocfs2_hamming_fix(data, blocksize * 8, 0, fix); } /* * Debugfs handling. */ #ifdef CONFIG_DEBUG_FS static int blockcheck_u64_get(void *data, u64 *val) { *val = *(u64 *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n"); static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats) { if (stats) { debugfs_remove_recursive(stats->b_debug_dir); stats->b_debug_dir = NULL; } } static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats, struct dentry *parent) { struct dentry *dir; dir = debugfs_create_dir("blockcheck", parent); stats->b_debug_dir = dir; debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir, &stats->b_check_count, &blockcheck_fops); debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir, &stats->b_failure_count, &blockcheck_fops); debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir, &stats->b_recover_count, &blockcheck_fops); } #else static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats, struct dentry *parent) { } static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats) { } #endif /* CONFIG_DEBUG_FS */ /* Always-called wrappers for starting and stopping the debugfs files */ void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats, struct dentry *parent) { ocfs2_blockcheck_debug_install(stats, parent); } void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats) { ocfs2_blockcheck_debug_remove(stats); } static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats) { u64 new_count; if (!stats) return; spin_lock(&stats->b_lock); stats->b_check_count++; new_count = stats->b_check_count; spin_unlock(&stats->b_lock); if (!new_count) mlog(ML_NOTICE, "Block check count has wrapped\n"); } static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats) { u64 new_count; if (!stats) return; spin_lock(&stats->b_lock); stats->b_failure_count++; new_count = stats->b_failure_count; spin_unlock(&stats->b_lock); if (!new_count) mlog(ML_NOTICE, "Checksum failure count has wrapped\n"); } static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats) { u64 new_count; if (!stats) return; spin_lock(&stats->b_lock); stats->b_recover_count++; new_count = stats->b_recover_count; spin_unlock(&stats->b_lock); if (!new_count) mlog(ML_NOTICE, "ECC recovery count has wrapped\n"); } /* * These are the low-level APIs for using the ocfs2_block_check structure. */ /* * This function generates check information for a block. * data is the block to be checked. bc is a pointer to the * ocfs2_block_check structure describing the crc32 and the ecc. * * bc should be a pointer inside data, as the function will * take care of zeroing it before calculating the check information. If * bc does not point inside data, the caller must make sure any inline * ocfs2_block_check structures are zeroed. * * The data buffer must be in on-disk endian (little endian for ocfs2). * bc will be filled with little-endian values and will be ready to go to * disk. */ void ocfs2_block_check_compute(void *data, size_t blocksize, struct ocfs2_block_check *bc) { u32 crc; u32 ecc; memset(bc, 0, sizeof(struct ocfs2_block_check)); crc = crc32_le(~0, data, blocksize); ecc = ocfs2_hamming_encode_block(data, blocksize); /* * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no * larger than 16 bits. */ BUG_ON(ecc > USHRT_MAX); bc->bc_crc32e = cpu_to_le32(crc); bc->bc_ecc = cpu_to_le16((u16)ecc); } /* * This function validates existing check information. Like _compute, * the function will take care of zeroing bc before calculating check codes. * If bc is not a pointer inside data, the caller must have zeroed any * inline ocfs2_block_check structures. * * Again, the data passed in should be the on-disk endian. */ int ocfs2_block_check_validate(void *data, size_t blocksize, struct ocfs2_block_check *bc, struct ocfs2_blockcheck_stats *stats) { int rc = 0; u32 bc_crc32e; u16 bc_ecc; u32 crc, ecc; ocfs2_blockcheck_inc_check(stats); bc_crc32e = le32_to_cpu(bc->bc_crc32e); bc_ecc = le16_to_cpu(bc->bc_ecc); memset(bc, 0, sizeof(struct ocfs2_block_check)); /* Fast path - if the crc32 validates, we're good to go */ crc = crc32_le(~0, data, blocksize); if (crc == bc_crc32e) goto out; ocfs2_blockcheck_inc_failure(stats); mlog(ML_ERROR, "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n", (unsigned int)bc_crc32e, (unsigned int)crc); /* Ok, try ECC fixups */ ecc = ocfs2_hamming_encode_block(data, blocksize); ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc); /* And check the crc32 again */ crc = crc32_le(~0, data, blocksize); if (crc == bc_crc32e) { ocfs2_blockcheck_inc_recover(stats); goto out; } mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n", (unsigned int)bc_crc32e, (unsigned int)crc); rc = -EIO; out: bc->bc_crc32e = cpu_to_le32(bc_crc32e); bc->bc_ecc = cpu_to_le16(bc_ecc); return rc; } /* * This function generates check information for a list of buffer_heads. * bhs is the blocks to be checked. bc is a pointer to the * ocfs2_block_check structure describing the crc32 and the ecc. * * bc should be a pointer inside data, as the function will * take care of zeroing it before calculating the check information. If * bc does not point inside data, the caller must make sure any inline * ocfs2_block_check structures are zeroed. * * The data buffer must be in on-disk endian (little endian for ocfs2). * bc will be filled with little-endian values and will be ready to go to * disk. */ void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc) { int i; u32 crc, ecc; BUG_ON(nr < 0); if (!nr) return; memset(bc, 0, sizeof(struct ocfs2_block_check)); for (i = 0, crc = ~0, ecc = 0; i < nr; i++) { crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size); /* * The number of bits in a buffer is obviously b_size*8. * The offset of this buffer is b_size*i, so the bit offset * of this buffer is b_size*8*i. */ ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data, bhs[i]->b_size * 8, bhs[i]->b_size * 8 * i); } /* * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no * larger than 16 bits. */ BUG_ON(ecc > USHRT_MAX); bc->bc_crc32e = cpu_to_le32(crc); bc->bc_ecc = cpu_to_le16((u16)ecc); } /* * This function validates existing check information on a list of * buffer_heads. Like _compute_bhs, the function will take care of * zeroing bc before calculating check codes. If bc is not a pointer * inside data, the caller must have zeroed any inline * ocfs2_block_check structures. * * Again, the data passed in should be the on-disk endian. */ int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc, struct ocfs2_blockcheck_stats *stats) { int i, rc = 0; u32 bc_crc32e; u16 bc_ecc; u32 crc, ecc, fix; BUG_ON(nr < 0); if (!nr) return 0; ocfs2_blockcheck_inc_check(stats); bc_crc32e = le32_to_cpu(bc->bc_crc32e); bc_ecc = le16_to_cpu(bc->bc_ecc); memset(bc, 0, sizeof(struct ocfs2_block_check)); /* Fast path - if the crc32 validates, we're good to go */ for (i = 0, crc = ~0; i < nr; i++) crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size); if (crc == bc_crc32e) goto out; ocfs2_blockcheck_inc_failure(stats); mlog(ML_ERROR, "CRC32 failed: stored: %u, computed %u. Applying ECC.\n", (unsigned int)bc_crc32e, (unsigned int)crc); /* Ok, try ECC fixups */ for (i = 0, ecc = 0; i < nr; i++) { /* * The number of bits in a buffer is obviously b_size*8. * The offset of this buffer is b_size*i, so the bit offset * of this buffer is b_size*8*i. */ ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data, bhs[i]->b_size * 8, bhs[i]->b_size * 8 * i); } fix = ecc ^ bc_ecc; for (i = 0; i < nr; i++) { /* * Try the fix against each buffer. It will only affect * one of them. */ ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8, bhs[i]->b_size * 8 * i, fix); } /* And check the crc32 again */ for (i = 0, crc = ~0; i < nr; i++) crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size); if (crc == bc_crc32e) { ocfs2_blockcheck_inc_recover(stats); goto out; } mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n", (unsigned int)bc_crc32e, (unsigned int)crc); rc = -EIO; out: bc->bc_crc32e = cpu_to_le32(bc_crc32e); bc->bc_ecc = cpu_to_le16(bc_ecc); return rc; } /* * These are the main API. They check the superblock flag before * calling the underlying operations. * * They expect the buffer(s) to be in disk format. */ void ocfs2_compute_meta_ecc(struct super_block *sb, void *data, struct ocfs2_block_check *bc) { if (ocfs2_meta_ecc(OCFS2_SB(sb))) ocfs2_block_check_compute(data, sb->s_blocksize, bc); } int ocfs2_validate_meta_ecc(struct super_block *sb, void *data, struct ocfs2_block_check *bc) { int rc = 0; struct ocfs2_super *osb = OCFS2_SB(sb); if (ocfs2_meta_ecc(osb)) rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc, &osb->osb_ecc_stats); return rc; } void ocfs2_compute_meta_ecc_bhs(struct super_block *sb, struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc) { if (ocfs2_meta_ecc(OCFS2_SB(sb))) ocfs2_block_check_compute_bhs(bhs, nr, bc); } int ocfs2_validate_meta_ecc_bhs(struct super_block *sb, struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc) { int rc = 0; struct ocfs2_super *osb = OCFS2_SB(sb); if (ocfs2_meta_ecc(osb)) rc = ocfs2_block_check_validate_bhs(bhs, nr, bc, &osb->osb_ecc_stats); return rc; }
linux-master
fs/ocfs2/blockcheck.c
// SPDX-License-Identifier: GPL-2.0-only /* * filecheck.c * * Code which implements online file check. * * Copyright (C) 2016 SuSE. All rights reserved. */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/fs.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <linux/sysctl.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "ocfs2_fs.h" #include "stackglue.h" #include "inode.h" #include "filecheck.h" /* File check error strings, * must correspond with error number in header file. */ static const char * const ocfs2_filecheck_errs[] = { "SUCCESS", "FAILED", "INPROGRESS", "READONLY", "INJBD", "INVALIDINO", "BLOCKECC", "BLOCKNO", "VALIDFLAG", "GENERATION", "UNSUPPORTED" }; struct ocfs2_filecheck_entry { struct list_head fe_list; unsigned long fe_ino; unsigned int fe_type; unsigned int fe_done:1; unsigned int fe_status:31; }; struct ocfs2_filecheck_args { unsigned int fa_type; union { unsigned long fa_ino; unsigned int fa_len; }; }; static const char * ocfs2_filecheck_error(int errno) { if (!errno) return ocfs2_filecheck_errs[errno]; BUG_ON(errno < OCFS2_FILECHECK_ERR_START || errno > OCFS2_FILECHECK_ERR_END); return ocfs2_filecheck_errs[errno - OCFS2_FILECHECK_ERR_START + 1]; } static ssize_t ocfs2_filecheck_attr_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf); static ssize_t ocfs2_filecheck_attr_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count); static struct kobj_attribute ocfs2_filecheck_attr_chk = __ATTR(check, S_IRUSR | S_IWUSR, ocfs2_filecheck_attr_show, ocfs2_filecheck_attr_store); static struct kobj_attribute ocfs2_filecheck_attr_fix = __ATTR(fix, S_IRUSR | S_IWUSR, ocfs2_filecheck_attr_show, ocfs2_filecheck_attr_store); static struct kobj_attribute ocfs2_filecheck_attr_set = __ATTR(set, S_IRUSR | S_IWUSR, ocfs2_filecheck_attr_show, ocfs2_filecheck_attr_store); static struct attribute *ocfs2_filecheck_attrs[] = { &ocfs2_filecheck_attr_chk.attr, &ocfs2_filecheck_attr_fix.attr, &ocfs2_filecheck_attr_set.attr, NULL }; ATTRIBUTE_GROUPS(ocfs2_filecheck); static void ocfs2_filecheck_release(struct kobject *kobj) { struct ocfs2_filecheck_sysfs_entry *entry = container_of(kobj, struct ocfs2_filecheck_sysfs_entry, fs_kobj); complete(&entry->fs_kobj_unregister); } static ssize_t ocfs2_filecheck_show(struct kobject *kobj, struct attribute *attr, char *buf) { ssize_t ret = -EIO; struct kobj_attribute *kattr = container_of(attr, struct kobj_attribute, attr); kobject_get(kobj); if (kattr->show) ret = kattr->show(kobj, kattr, buf); kobject_put(kobj); return ret; } static ssize_t ocfs2_filecheck_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { ssize_t ret = -EIO; struct kobj_attribute *kattr = container_of(attr, struct kobj_attribute, attr); kobject_get(kobj); if (kattr->store) ret = kattr->store(kobj, kattr, buf, count); kobject_put(kobj); return ret; } static const struct sysfs_ops ocfs2_filecheck_ops = { .show = ocfs2_filecheck_show, .store = ocfs2_filecheck_store, }; static struct kobj_type ocfs2_ktype_filecheck = { .default_groups = ocfs2_filecheck_groups, .sysfs_ops = &ocfs2_filecheck_ops, .release = ocfs2_filecheck_release, }; static void ocfs2_filecheck_sysfs_free(struct ocfs2_filecheck_sysfs_entry *entry) { struct ocfs2_filecheck_entry *p; spin_lock(&entry->fs_fcheck->fc_lock); while (!list_empty(&entry->fs_fcheck->fc_head)) { p = list_first_entry(&entry->fs_fcheck->fc_head, struct ocfs2_filecheck_entry, fe_list); list_del(&p->fe_list); BUG_ON(!p->fe_done); /* To free a undone file check entry */ kfree(p); } spin_unlock(&entry->fs_fcheck->fc_lock); kfree(entry->fs_fcheck); entry->fs_fcheck = NULL; } int ocfs2_filecheck_create_sysfs(struct ocfs2_super *osb) { int ret; struct ocfs2_filecheck *fcheck; struct ocfs2_filecheck_sysfs_entry *entry = &osb->osb_fc_ent; fcheck = kmalloc(sizeof(struct ocfs2_filecheck), GFP_NOFS); if (!fcheck) return -ENOMEM; INIT_LIST_HEAD(&fcheck->fc_head); spin_lock_init(&fcheck->fc_lock); fcheck->fc_max = OCFS2_FILECHECK_MINSIZE; fcheck->fc_size = 0; fcheck->fc_done = 0; entry->fs_kobj.kset = osb->osb_dev_kset; init_completion(&entry->fs_kobj_unregister); ret = kobject_init_and_add(&entry->fs_kobj, &ocfs2_ktype_filecheck, NULL, "filecheck"); if (ret) { kobject_put(&entry->fs_kobj); kfree(fcheck); return ret; } entry->fs_fcheck = fcheck; return 0; } void ocfs2_filecheck_remove_sysfs(struct ocfs2_super *osb) { if (!osb->osb_fc_ent.fs_fcheck) return; kobject_del(&osb->osb_fc_ent.fs_kobj); kobject_put(&osb->osb_fc_ent.fs_kobj); wait_for_completion(&osb->osb_fc_ent.fs_kobj_unregister); ocfs2_filecheck_sysfs_free(&osb->osb_fc_ent); } static int ocfs2_filecheck_erase_entries(struct ocfs2_filecheck_sysfs_entry *ent, unsigned int count); static int ocfs2_filecheck_adjust_max(struct ocfs2_filecheck_sysfs_entry *ent, unsigned int len) { int ret; if ((len < OCFS2_FILECHECK_MINSIZE) || (len > OCFS2_FILECHECK_MAXSIZE)) return -EINVAL; spin_lock(&ent->fs_fcheck->fc_lock); if (len < (ent->fs_fcheck->fc_size - ent->fs_fcheck->fc_done)) { mlog(ML_NOTICE, "Cannot set online file check maximum entry number " "to %u due to too many pending entries(%u)\n", len, ent->fs_fcheck->fc_size - ent->fs_fcheck->fc_done); ret = -EBUSY; } else { if (len < ent->fs_fcheck->fc_size) BUG_ON(!ocfs2_filecheck_erase_entries(ent, ent->fs_fcheck->fc_size - len)); ent->fs_fcheck->fc_max = len; ret = 0; } spin_unlock(&ent->fs_fcheck->fc_lock); return ret; } #define OCFS2_FILECHECK_ARGS_LEN 24 static int ocfs2_filecheck_args_get_long(const char *buf, size_t count, unsigned long *val) { char buffer[OCFS2_FILECHECK_ARGS_LEN]; memcpy(buffer, buf, count); buffer[count] = '\0'; if (kstrtoul(buffer, 0, val)) return 1; return 0; } static int ocfs2_filecheck_type_parse(const char *name, unsigned int *type) { if (!strncmp(name, "fix", 4)) *type = OCFS2_FILECHECK_TYPE_FIX; else if (!strncmp(name, "check", 6)) *type = OCFS2_FILECHECK_TYPE_CHK; else if (!strncmp(name, "set", 4)) *type = OCFS2_FILECHECK_TYPE_SET; else return 1; return 0; } static int ocfs2_filecheck_args_parse(const char *name, const char *buf, size_t count, struct ocfs2_filecheck_args *args) { unsigned long val = 0; unsigned int type; /* too short/long args length */ if ((count < 1) || (count >= OCFS2_FILECHECK_ARGS_LEN)) return 1; if (ocfs2_filecheck_type_parse(name, &type)) return 1; if (ocfs2_filecheck_args_get_long(buf, count, &val)) return 1; if (val <= 0) return 1; args->fa_type = type; if (type == OCFS2_FILECHECK_TYPE_SET) args->fa_len = (unsigned int)val; else args->fa_ino = val; return 0; } static ssize_t ocfs2_filecheck_attr_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret = 0, total = 0, remain = PAGE_SIZE; unsigned int type; struct ocfs2_filecheck_entry *p; struct ocfs2_filecheck_sysfs_entry *ent = container_of(kobj, struct ocfs2_filecheck_sysfs_entry, fs_kobj); if (ocfs2_filecheck_type_parse(attr->attr.name, &type)) return -EINVAL; if (type == OCFS2_FILECHECK_TYPE_SET) { spin_lock(&ent->fs_fcheck->fc_lock); total = snprintf(buf, remain, "%u\n", ent->fs_fcheck->fc_max); spin_unlock(&ent->fs_fcheck->fc_lock); goto exit; } ret = snprintf(buf, remain, "INO\t\tDONE\tERROR\n"); total += ret; remain -= ret; spin_lock(&ent->fs_fcheck->fc_lock); list_for_each_entry(p, &ent->fs_fcheck->fc_head, fe_list) { if (p->fe_type != type) continue; ret = snprintf(buf + total, remain, "%lu\t\t%u\t%s\n", p->fe_ino, p->fe_done, ocfs2_filecheck_error(p->fe_status)); if (ret >= remain) { /* snprintf() didn't fit */ total = -E2BIG; break; } total += ret; remain -= ret; } spin_unlock(&ent->fs_fcheck->fc_lock); exit: return total; } static inline int ocfs2_filecheck_is_dup_entry(struct ocfs2_filecheck_sysfs_entry *ent, unsigned long ino) { struct ocfs2_filecheck_entry *p; list_for_each_entry(p, &ent->fs_fcheck->fc_head, fe_list) { if (!p->fe_done) { if (p->fe_ino == ino) return 1; } } return 0; } static inline int ocfs2_filecheck_erase_entry(struct ocfs2_filecheck_sysfs_entry *ent) { struct ocfs2_filecheck_entry *p; list_for_each_entry(p, &ent->fs_fcheck->fc_head, fe_list) { if (p->fe_done) { list_del(&p->fe_list); kfree(p); ent->fs_fcheck->fc_size--; ent->fs_fcheck->fc_done--; return 1; } } return 0; } static int ocfs2_filecheck_erase_entries(struct ocfs2_filecheck_sysfs_entry *ent, unsigned int count) { unsigned int i = 0; unsigned int ret = 0; while (i++ < count) { if (ocfs2_filecheck_erase_entry(ent)) ret++; else break; } return (ret == count ? 1 : 0); } static void ocfs2_filecheck_done_entry(struct ocfs2_filecheck_sysfs_entry *ent, struct ocfs2_filecheck_entry *entry) { spin_lock(&ent->fs_fcheck->fc_lock); entry->fe_done = 1; ent->fs_fcheck->fc_done++; spin_unlock(&ent->fs_fcheck->fc_lock); } static unsigned int ocfs2_filecheck_handle(struct ocfs2_super *osb, unsigned long ino, unsigned int flags) { unsigned int ret = OCFS2_FILECHECK_ERR_SUCCESS; struct inode *inode = NULL; int rc; inode = ocfs2_iget(osb, ino, flags, 0); if (IS_ERR(inode)) { rc = (int)(-(long)inode); if (rc >= OCFS2_FILECHECK_ERR_START && rc < OCFS2_FILECHECK_ERR_END) ret = rc; else ret = OCFS2_FILECHECK_ERR_FAILED; } else iput(inode); return ret; } static void ocfs2_filecheck_handle_entry(struct ocfs2_filecheck_sysfs_entry *ent, struct ocfs2_filecheck_entry *entry) { struct ocfs2_super *osb = container_of(ent, struct ocfs2_super, osb_fc_ent); if (entry->fe_type == OCFS2_FILECHECK_TYPE_CHK) entry->fe_status = ocfs2_filecheck_handle(osb, entry->fe_ino, OCFS2_FI_FLAG_FILECHECK_CHK); else if (entry->fe_type == OCFS2_FILECHECK_TYPE_FIX) entry->fe_status = ocfs2_filecheck_handle(osb, entry->fe_ino, OCFS2_FI_FLAG_FILECHECK_FIX); else entry->fe_status = OCFS2_FILECHECK_ERR_UNSUPPORTED; ocfs2_filecheck_done_entry(ent, entry); } static ssize_t ocfs2_filecheck_attr_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { ssize_t ret = 0; struct ocfs2_filecheck_args args; struct ocfs2_filecheck_entry *entry; struct ocfs2_filecheck_sysfs_entry *ent = container_of(kobj, struct ocfs2_filecheck_sysfs_entry, fs_kobj); if (count == 0) return count; if (ocfs2_filecheck_args_parse(attr->attr.name, buf, count, &args)) return -EINVAL; if (args.fa_type == OCFS2_FILECHECK_TYPE_SET) { ret = ocfs2_filecheck_adjust_max(ent, args.fa_len); goto exit; } entry = kmalloc(sizeof(struct ocfs2_filecheck_entry), GFP_NOFS); if (!entry) { ret = -ENOMEM; goto exit; } spin_lock(&ent->fs_fcheck->fc_lock); if (ocfs2_filecheck_is_dup_entry(ent, args.fa_ino)) { ret = -EEXIST; kfree(entry); } else if ((ent->fs_fcheck->fc_size >= ent->fs_fcheck->fc_max) && (ent->fs_fcheck->fc_done == 0)) { mlog(ML_NOTICE, "Cannot do more file check " "since file check queue(%u) is full now\n", ent->fs_fcheck->fc_max); ret = -EAGAIN; kfree(entry); } else { if ((ent->fs_fcheck->fc_size >= ent->fs_fcheck->fc_max) && (ent->fs_fcheck->fc_done > 0)) { /* Delete the oldest entry which was done, * make sure the entry size in list does * not exceed maximum value */ BUG_ON(!ocfs2_filecheck_erase_entry(ent)); } entry->fe_ino = args.fa_ino; entry->fe_type = args.fa_type; entry->fe_done = 0; entry->fe_status = OCFS2_FILECHECK_ERR_INPROGRESS; list_add_tail(&entry->fe_list, &ent->fs_fcheck->fc_head); ent->fs_fcheck->fc_size++; } spin_unlock(&ent->fs_fcheck->fc_lock); if (!ret) ocfs2_filecheck_handle_entry(ent, entry); exit: return (!ret ? count : ret); }
linux-master
fs/ocfs2/filecheck.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * resize.c * * volume resize. * Inspired by ext3/resize.c. * * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dlmglue.h" #include "inode.h" #include "journal.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" #include "suballoc.h" #include "resize.h" /* * Check whether there are new backup superblocks exist * in the last group. If there are some, mark them or clear * them in the bitmap. * * Return how many backups we find in the last group. */ static u16 ocfs2_calc_new_backup_super(struct inode *inode, struct ocfs2_group_desc *gd, u16 cl_cpg, u16 old_bg_clusters, int set) { int i; u16 backups = 0; u32 cluster, lgd_cluster; u64 blkno, gd_blkno, lgd_blkno = le64_to_cpu(gd->bg_blkno); for (i = 0; i < OCFS2_MAX_BACKUP_SUPERBLOCKS; i++) { blkno = ocfs2_backup_super_blkno(inode->i_sb, i); cluster = ocfs2_blocks_to_clusters(inode->i_sb, blkno); gd_blkno = ocfs2_which_cluster_group(inode, cluster); if (gd_blkno < lgd_blkno) continue; else if (gd_blkno > lgd_blkno) break; /* check if already done backup super */ lgd_cluster = ocfs2_blocks_to_clusters(inode->i_sb, lgd_blkno); lgd_cluster += old_bg_clusters; if (lgd_cluster >= cluster) continue; if (set) ocfs2_set_bit(cluster % cl_cpg, (unsigned long *)gd->bg_bitmap); else ocfs2_clear_bit(cluster % cl_cpg, (unsigned long *)gd->bg_bitmap); backups++; } return backups; } static int ocfs2_update_last_group_and_inode(handle_t *handle, struct inode *bm_inode, struct buffer_head *bm_bh, struct buffer_head *group_bh, u32 first_new_cluster, int new_clusters) { int ret = 0; struct ocfs2_super *osb = OCFS2_SB(bm_inode->i_sb); struct ocfs2_dinode *fe = (struct ocfs2_dinode *) bm_bh->b_data; struct ocfs2_chain_list *cl = &fe->id2.i_chain; struct ocfs2_chain_rec *cr; struct ocfs2_group_desc *group; u16 chain, num_bits, backups = 0; u16 cl_bpc = le16_to_cpu(cl->cl_bpc); u16 cl_cpg = le16_to_cpu(cl->cl_cpg); u16 old_bg_clusters; trace_ocfs2_update_last_group_and_inode(new_clusters, first_new_cluster); ret = ocfs2_journal_access_gd(handle, INODE_CACHE(bm_inode), group_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } group = (struct ocfs2_group_desc *)group_bh->b_data; old_bg_clusters = le16_to_cpu(group->bg_bits) / cl_bpc; /* update the group first. */ num_bits = new_clusters * cl_bpc; le16_add_cpu(&group->bg_bits, num_bits); le16_add_cpu(&group->bg_free_bits_count, num_bits); /* * check whether there are some new backup superblocks exist in * this group and update the group bitmap accordingly. */ if (OCFS2_HAS_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_COMPAT_BACKUP_SB)) { backups = ocfs2_calc_new_backup_super(bm_inode, group, cl_cpg, old_bg_clusters, 1); le16_add_cpu(&group->bg_free_bits_count, -1 * backups); } ocfs2_journal_dirty(handle, group_bh); /* update the inode accordingly. */ ret = ocfs2_journal_access_di(handle, INODE_CACHE(bm_inode), bm_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out_rollback; } chain = le16_to_cpu(group->bg_chain); cr = (&cl->cl_recs[chain]); le32_add_cpu(&cr->c_total, num_bits); le32_add_cpu(&cr->c_free, num_bits); le32_add_cpu(&fe->id1.bitmap1.i_total, num_bits); le32_add_cpu(&fe->i_clusters, new_clusters); if (backups) { le32_add_cpu(&cr->c_free, -1 * backups); le32_add_cpu(&fe->id1.bitmap1.i_used, backups); } spin_lock(&OCFS2_I(bm_inode)->ip_lock); OCFS2_I(bm_inode)->ip_clusters = le32_to_cpu(fe->i_clusters); le64_add_cpu(&fe->i_size, (u64)new_clusters << osb->s_clustersize_bits); spin_unlock(&OCFS2_I(bm_inode)->ip_lock); i_size_write(bm_inode, le64_to_cpu(fe->i_size)); ocfs2_journal_dirty(handle, bm_bh); out_rollback: if (ret < 0) { ocfs2_calc_new_backup_super(bm_inode, group, cl_cpg, old_bg_clusters, 0); le16_add_cpu(&group->bg_free_bits_count, backups); le16_add_cpu(&group->bg_bits, -1 * num_bits); le16_add_cpu(&group->bg_free_bits_count, -1 * num_bits); } out: if (ret) mlog_errno(ret); return ret; } static int update_backups(struct inode * inode, u32 clusters, char *data) { int i, ret = 0; u32 cluster; u64 blkno; struct buffer_head *backup = NULL; struct ocfs2_dinode *backup_di = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); /* calculate the real backups we need to update. */ for (i = 0; i < OCFS2_MAX_BACKUP_SUPERBLOCKS; i++) { blkno = ocfs2_backup_super_blkno(inode->i_sb, i); cluster = ocfs2_blocks_to_clusters(inode->i_sb, blkno); if (cluster >= clusters) break; ret = ocfs2_read_blocks_sync(osb, blkno, 1, &backup); if (ret < 0) { mlog_errno(ret); break; } memcpy(backup->b_data, data, inode->i_sb->s_blocksize); backup_di = (struct ocfs2_dinode *)backup->b_data; backup_di->i_blkno = cpu_to_le64(blkno); ret = ocfs2_write_super_or_backup(osb, backup); brelse(backup); backup = NULL; if (ret < 0) { mlog_errno(ret); break; } } return ret; } static void ocfs2_update_super_and_backups(struct inode *inode, int new_clusters) { int ret; u32 clusters = 0; struct buffer_head *super_bh = NULL; struct ocfs2_dinode *super_di = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); /* * update the superblock last. * It doesn't matter if the write failed. */ ret = ocfs2_read_blocks_sync(osb, OCFS2_SUPER_BLOCK_BLKNO, 1, &super_bh); if (ret < 0) { mlog_errno(ret); goto out; } super_di = (struct ocfs2_dinode *)super_bh->b_data; le32_add_cpu(&super_di->i_clusters, new_clusters); clusters = le32_to_cpu(super_di->i_clusters); ret = ocfs2_write_super_or_backup(osb, super_bh); if (ret < 0) { mlog_errno(ret); goto out; } if (OCFS2_HAS_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_COMPAT_BACKUP_SB)) ret = update_backups(inode, clusters, super_bh->b_data); out: brelse(super_bh); if (ret) printk(KERN_WARNING "ocfs2: Failed to update super blocks on %s" " during fs resize. This condition is not fatal," " but fsck.ocfs2 should be run to fix it\n", osb->dev_str); return; } /* * Extend the filesystem to the new number of clusters specified. This entry * point is only used to extend the current filesystem to the end of the last * existing group. */ int ocfs2_group_extend(struct inode * inode, int new_clusters) { int ret; handle_t *handle; struct buffer_head *main_bm_bh = NULL; struct buffer_head *group_bh = NULL; struct inode *main_bm_inode = NULL; struct ocfs2_dinode *fe = NULL; struct ocfs2_group_desc *group = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u16 cl_bpc; u32 first_new_cluster; u64 lgd_blkno; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; if (new_clusters < 0) return -EINVAL; else if (new_clusters == 0) return 0; main_bm_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!main_bm_inode) { ret = -EINVAL; mlog_errno(ret); goto out; } inode_lock(main_bm_inode); ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 1); if (ret < 0) { mlog_errno(ret); goto out_mutex; } fe = (struct ocfs2_dinode *)main_bm_bh->b_data; /* main_bm_bh is validated by inode read inside ocfs2_inode_lock(), * so any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); if (le16_to_cpu(fe->id2.i_chain.cl_cpg) != ocfs2_group_bitmap_size(osb->sb, 0, osb->s_feature_incompat) * 8) { mlog(ML_ERROR, "The disk is too old and small. " "Force to do offline resize."); ret = -EINVAL; goto out_unlock; } first_new_cluster = le32_to_cpu(fe->i_clusters); lgd_blkno = ocfs2_which_cluster_group(main_bm_inode, first_new_cluster - 1); ret = ocfs2_read_group_descriptor(main_bm_inode, fe, lgd_blkno, &group_bh); if (ret < 0) { mlog_errno(ret); goto out_unlock; } group = (struct ocfs2_group_desc *)group_bh->b_data; cl_bpc = le16_to_cpu(fe->id2.i_chain.cl_bpc); if (le16_to_cpu(group->bg_bits) / cl_bpc + new_clusters > le16_to_cpu(fe->id2.i_chain.cl_cpg)) { ret = -EINVAL; goto out_unlock; } trace_ocfs2_group_extend( (unsigned long long)le64_to_cpu(group->bg_blkno), new_clusters); handle = ocfs2_start_trans(osb, OCFS2_GROUP_EXTEND_CREDITS); if (IS_ERR(handle)) { mlog_errno(PTR_ERR(handle)); ret = -EINVAL; goto out_unlock; } /* update the last group descriptor and inode. */ ret = ocfs2_update_last_group_and_inode(handle, main_bm_inode, main_bm_bh, group_bh, first_new_cluster, new_clusters); if (ret) { mlog_errno(ret); goto out_commit; } ocfs2_update_super_and_backups(main_bm_inode, new_clusters); out_commit: ocfs2_commit_trans(osb, handle); out_unlock: brelse(group_bh); brelse(main_bm_bh); ocfs2_inode_unlock(main_bm_inode, 1); out_mutex: inode_unlock(main_bm_inode); iput(main_bm_inode); out: return ret; } static int ocfs2_check_new_group(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_new_group_input *input, struct buffer_head *group_bh) { int ret; struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)group_bh->b_data; u16 cl_bpc = le16_to_cpu(di->id2.i_chain.cl_bpc); ret = ocfs2_check_group_descriptor(inode->i_sb, di, group_bh); if (ret) goto out; ret = -EINVAL; if (le16_to_cpu(gd->bg_chain) != input->chain) mlog(ML_ERROR, "Group descriptor # %llu has bad chain %u " "while input has %u set.\n", (unsigned long long)le64_to_cpu(gd->bg_blkno), le16_to_cpu(gd->bg_chain), input->chain); else if (le16_to_cpu(gd->bg_bits) != input->clusters * cl_bpc) mlog(ML_ERROR, "Group descriptor # %llu has bit count %u but " "input has %u clusters set\n", (unsigned long long)le64_to_cpu(gd->bg_blkno), le16_to_cpu(gd->bg_bits), input->clusters); else if (le16_to_cpu(gd->bg_free_bits_count) != input->frees * cl_bpc) mlog(ML_ERROR, "Group descriptor # %llu has free bit count %u " "but it should have %u set\n", (unsigned long long)le64_to_cpu(gd->bg_blkno), le16_to_cpu(gd->bg_bits), input->frees * cl_bpc); else ret = 0; out: return ret; } static int ocfs2_verify_group_and_input(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_new_group_input *input, struct buffer_head *group_bh) { u16 cl_count = le16_to_cpu(di->id2.i_chain.cl_count); u16 cl_cpg = le16_to_cpu(di->id2.i_chain.cl_cpg); u16 next_free = le16_to_cpu(di->id2.i_chain.cl_next_free_rec); u32 cluster = ocfs2_blocks_to_clusters(inode->i_sb, input->group); u32 total_clusters = le32_to_cpu(di->i_clusters); int ret = -EINVAL; if (cluster < total_clusters) mlog(ML_ERROR, "add a group which is in the current volume.\n"); else if (input->chain >= cl_count) mlog(ML_ERROR, "input chain exceeds the limit.\n"); else if (next_free != cl_count && next_free != input->chain) mlog(ML_ERROR, "the add group should be in chain %u\n", next_free); else if (total_clusters + input->clusters < total_clusters) mlog(ML_ERROR, "add group's clusters overflow.\n"); else if (input->clusters > cl_cpg) mlog(ML_ERROR, "the cluster exceeds the maximum of a group\n"); else if (input->frees > input->clusters) mlog(ML_ERROR, "the free cluster exceeds the total clusters\n"); else if (total_clusters % cl_cpg != 0) mlog(ML_ERROR, "the last group isn't full. Use group extend first.\n"); else if (input->group != ocfs2_which_cluster_group(inode, cluster)) mlog(ML_ERROR, "group blkno is invalid\n"); else if ((ret = ocfs2_check_new_group(inode, di, input, group_bh))) mlog(ML_ERROR, "group descriptor check failed.\n"); else ret = 0; return ret; } /* Add a new group descriptor to global_bitmap. */ int ocfs2_group_add(struct inode *inode, struct ocfs2_new_group_input *input) { int ret; handle_t *handle; struct buffer_head *main_bm_bh = NULL; struct inode *main_bm_inode = NULL; struct ocfs2_dinode *fe = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *group_bh = NULL; struct ocfs2_group_desc *group = NULL; struct ocfs2_chain_list *cl; struct ocfs2_chain_rec *cr; u16 cl_bpc; u64 bg_ptr; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; main_bm_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!main_bm_inode) { ret = -EINVAL; mlog_errno(ret); goto out; } inode_lock(main_bm_inode); ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 1); if (ret < 0) { mlog_errno(ret); goto out_mutex; } fe = (struct ocfs2_dinode *)main_bm_bh->b_data; if (le16_to_cpu(fe->id2.i_chain.cl_cpg) != ocfs2_group_bitmap_size(osb->sb, 0, osb->s_feature_incompat) * 8) { mlog(ML_ERROR, "The disk is too old and small." " Force to do offline resize."); ret = -EINVAL; goto out_unlock; } ret = ocfs2_read_blocks_sync(osb, input->group, 1, &group_bh); if (ret < 0) { mlog(ML_ERROR, "Can't read the group descriptor # %llu " "from the device.", (unsigned long long)input->group); goto out_unlock; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), group_bh); ret = ocfs2_verify_group_and_input(main_bm_inode, fe, input, group_bh); if (ret) { mlog_errno(ret); goto out_free_group_bh; } trace_ocfs2_group_add((unsigned long long)input->group, input->chain, input->clusters, input->frees); handle = ocfs2_start_trans(osb, OCFS2_GROUP_ADD_CREDITS); if (IS_ERR(handle)) { mlog_errno(PTR_ERR(handle)); ret = -EINVAL; goto out_free_group_bh; } cl_bpc = le16_to_cpu(fe->id2.i_chain.cl_bpc); cl = &fe->id2.i_chain; cr = &cl->cl_recs[input->chain]; ret = ocfs2_journal_access_gd(handle, INODE_CACHE(main_bm_inode), group_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out_commit; } group = (struct ocfs2_group_desc *)group_bh->b_data; bg_ptr = le64_to_cpu(group->bg_next_group); group->bg_next_group = cr->c_blkno; ocfs2_journal_dirty(handle, group_bh); ret = ocfs2_journal_access_di(handle, INODE_CACHE(main_bm_inode), main_bm_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { group->bg_next_group = cpu_to_le64(bg_ptr); mlog_errno(ret); goto out_commit; } if (input->chain == le16_to_cpu(cl->cl_next_free_rec)) { le16_add_cpu(&cl->cl_next_free_rec, 1); memset(cr, 0, sizeof(struct ocfs2_chain_rec)); } cr->c_blkno = cpu_to_le64(input->group); le32_add_cpu(&cr->c_total, input->clusters * cl_bpc); le32_add_cpu(&cr->c_free, input->frees * cl_bpc); le32_add_cpu(&fe->id1.bitmap1.i_total, input->clusters *cl_bpc); le32_add_cpu(&fe->id1.bitmap1.i_used, (input->clusters - input->frees) * cl_bpc); le32_add_cpu(&fe->i_clusters, input->clusters); ocfs2_journal_dirty(handle, main_bm_bh); spin_lock(&OCFS2_I(main_bm_inode)->ip_lock); OCFS2_I(main_bm_inode)->ip_clusters = le32_to_cpu(fe->i_clusters); le64_add_cpu(&fe->i_size, (u64)input->clusters << osb->s_clustersize_bits); spin_unlock(&OCFS2_I(main_bm_inode)->ip_lock); i_size_write(main_bm_inode, le64_to_cpu(fe->i_size)); ocfs2_update_super_and_backups(main_bm_inode, input->clusters); out_commit: ocfs2_commit_trans(osb, handle); out_free_group_bh: brelse(group_bh); out_unlock: brelse(main_bm_bh); ocfs2_inode_unlock(main_bm_inode, 1); out_mutex: inode_unlock(main_bm_inode); iput(main_bm_inode); out: return ret; }
linux-master
fs/ocfs2/resize.c
// SPDX-License-Identifier: GPL-2.0-only /* * extent_map.c * * Block/Cluster mapping functions * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/fiemap.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dlmglue.h" #include "extent_map.h" #include "inode.h" #include "super.h" #include "symlink.h" #include "aops.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" /* * The extent caching implementation is intentionally trivial. * * We only cache a small number of extents stored directly on the * inode, so linear order operations are acceptable. If we ever want * to increase the size of the extent map, then these algorithms must * get smarter. */ void ocfs2_extent_map_init(struct inode *inode) { struct ocfs2_inode_info *oi = OCFS2_I(inode); oi->ip_extent_map.em_num_items = 0; INIT_LIST_HEAD(&oi->ip_extent_map.em_list); } static void __ocfs2_extent_map_lookup(struct ocfs2_extent_map *em, unsigned int cpos, struct ocfs2_extent_map_item **ret_emi) { unsigned int range; struct ocfs2_extent_map_item *emi; *ret_emi = NULL; list_for_each_entry(emi, &em->em_list, ei_list) { range = emi->ei_cpos + emi->ei_clusters; if (cpos >= emi->ei_cpos && cpos < range) { list_move(&emi->ei_list, &em->em_list); *ret_emi = emi; break; } } } static int ocfs2_extent_map_lookup(struct inode *inode, unsigned int cpos, unsigned int *phys, unsigned int *len, unsigned int *flags) { unsigned int coff; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_extent_map_item *emi; spin_lock(&oi->ip_lock); __ocfs2_extent_map_lookup(&oi->ip_extent_map, cpos, &emi); if (emi) { coff = cpos - emi->ei_cpos; *phys = emi->ei_phys + coff; if (len) *len = emi->ei_clusters - coff; if (flags) *flags = emi->ei_flags; } spin_unlock(&oi->ip_lock); if (emi == NULL) return -ENOENT; return 0; } /* * Forget about all clusters equal to or greater than cpos. */ void ocfs2_extent_map_trunc(struct inode *inode, unsigned int cpos) { struct ocfs2_extent_map_item *emi, *n; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_extent_map *em = &oi->ip_extent_map; LIST_HEAD(tmp_list); unsigned int range; spin_lock(&oi->ip_lock); list_for_each_entry_safe(emi, n, &em->em_list, ei_list) { if (emi->ei_cpos >= cpos) { /* Full truncate of this record. */ list_move(&emi->ei_list, &tmp_list); BUG_ON(em->em_num_items == 0); em->em_num_items--; continue; } range = emi->ei_cpos + emi->ei_clusters; if (range > cpos) { /* Partial truncate */ emi->ei_clusters = cpos - emi->ei_cpos; } } spin_unlock(&oi->ip_lock); list_for_each_entry_safe(emi, n, &tmp_list, ei_list) { list_del(&emi->ei_list); kfree(emi); } } /* * Is any part of emi2 contained within emi1 */ static int ocfs2_ei_is_contained(struct ocfs2_extent_map_item *emi1, struct ocfs2_extent_map_item *emi2) { unsigned int range1, range2; /* * Check if logical start of emi2 is inside emi1 */ range1 = emi1->ei_cpos + emi1->ei_clusters; if (emi2->ei_cpos >= emi1->ei_cpos && emi2->ei_cpos < range1) return 1; /* * Check if logical end of emi2 is inside emi1 */ range2 = emi2->ei_cpos + emi2->ei_clusters; if (range2 > emi1->ei_cpos && range2 <= range1) return 1; return 0; } static void ocfs2_copy_emi_fields(struct ocfs2_extent_map_item *dest, struct ocfs2_extent_map_item *src) { dest->ei_cpos = src->ei_cpos; dest->ei_phys = src->ei_phys; dest->ei_clusters = src->ei_clusters; dest->ei_flags = src->ei_flags; } /* * Try to merge emi with ins. Returns 1 if merge succeeds, zero * otherwise. */ static int ocfs2_try_to_merge_extent_map(struct ocfs2_extent_map_item *emi, struct ocfs2_extent_map_item *ins) { /* * Handle contiguousness */ if (ins->ei_phys == (emi->ei_phys + emi->ei_clusters) && ins->ei_cpos == (emi->ei_cpos + emi->ei_clusters) && ins->ei_flags == emi->ei_flags) { emi->ei_clusters += ins->ei_clusters; return 1; } else if ((ins->ei_phys + ins->ei_clusters) == emi->ei_phys && (ins->ei_cpos + ins->ei_clusters) == emi->ei_cpos && ins->ei_flags == emi->ei_flags) { emi->ei_phys = ins->ei_phys; emi->ei_cpos = ins->ei_cpos; emi->ei_clusters += ins->ei_clusters; return 1; } /* * Overlapping extents - this shouldn't happen unless we've * split an extent to change it's flags. That is exceedingly * rare, so there's no sense in trying to optimize it yet. */ if (ocfs2_ei_is_contained(emi, ins) || ocfs2_ei_is_contained(ins, emi)) { ocfs2_copy_emi_fields(emi, ins); return 1; } /* No merge was possible. */ return 0; } /* * In order to reduce complexity on the caller, this insert function * is intentionally liberal in what it will accept. * * The only rule is that the truncate call *must* be used whenever * records have been deleted. This avoids inserting overlapping * records with different physical mappings. */ void ocfs2_extent_map_insert_rec(struct inode *inode, struct ocfs2_extent_rec *rec) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_extent_map *em = &oi->ip_extent_map; struct ocfs2_extent_map_item *emi, *new_emi = NULL; struct ocfs2_extent_map_item ins; ins.ei_cpos = le32_to_cpu(rec->e_cpos); ins.ei_phys = ocfs2_blocks_to_clusters(inode->i_sb, le64_to_cpu(rec->e_blkno)); ins.ei_clusters = le16_to_cpu(rec->e_leaf_clusters); ins.ei_flags = rec->e_flags; search: spin_lock(&oi->ip_lock); list_for_each_entry(emi, &em->em_list, ei_list) { if (ocfs2_try_to_merge_extent_map(emi, &ins)) { list_move(&emi->ei_list, &em->em_list); spin_unlock(&oi->ip_lock); goto out; } } /* * No item could be merged. * * Either allocate and add a new item, or overwrite the last recently * inserted. */ if (em->em_num_items < OCFS2_MAX_EXTENT_MAP_ITEMS) { if (new_emi == NULL) { spin_unlock(&oi->ip_lock); new_emi = kmalloc(sizeof(*new_emi), GFP_NOFS); if (new_emi == NULL) goto out; goto search; } ocfs2_copy_emi_fields(new_emi, &ins); list_add(&new_emi->ei_list, &em->em_list); em->em_num_items++; new_emi = NULL; } else { BUG_ON(list_empty(&em->em_list) || em->em_num_items == 0); emi = list_entry(em->em_list.prev, struct ocfs2_extent_map_item, ei_list); list_move(&emi->ei_list, &em->em_list); ocfs2_copy_emi_fields(emi, &ins); } spin_unlock(&oi->ip_lock); out: kfree(new_emi); } static int ocfs2_last_eb_is_empty(struct inode *inode, struct ocfs2_dinode *di) { int ret, next_free; u64 last_eb_blk = le64_to_cpu(di->i_last_eb_blk); struct buffer_head *eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; ret = ocfs2_read_extent_block(INODE_CACHE(inode), last_eb_blk, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in leaf block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); ret = -EROFS; goto out; } next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0 || (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) ret = 1; out: brelse(eb_bh); return ret; } /* * Return the 1st index within el which contains an extent start * larger than v_cluster. */ static int ocfs2_search_for_hole_index(struct ocfs2_extent_list *el, u32 v_cluster) { int i; struct ocfs2_extent_rec *rec; for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { rec = &el->l_recs[i]; if (v_cluster < le32_to_cpu(rec->e_cpos)) break; } return i; } /* * Figure out the size of a hole which starts at v_cluster within the given * extent list. * * If there is no more allocation past v_cluster, we return the maximum * cluster size minus v_cluster. * * If we have in-inode extents, then el points to the dinode list and * eb_bh is NULL. Otherwise, eb_bh should point to the extent block * containing el. */ int ocfs2_figure_hole_clusters(struct ocfs2_caching_info *ci, struct ocfs2_extent_list *el, struct buffer_head *eb_bh, u32 v_cluster, u32 *num_clusters) { int ret, i; struct buffer_head *next_eb_bh = NULL; struct ocfs2_extent_block *eb, *next_eb; i = ocfs2_search_for_hole_index(el, v_cluster); if (i == le16_to_cpu(el->l_next_free_rec) && eb_bh) { eb = (struct ocfs2_extent_block *)eb_bh->b_data; /* * Check the next leaf for any extents. */ if (le64_to_cpu(eb->h_next_leaf_blk) == 0ULL) goto no_more_extents; ret = ocfs2_read_extent_block(ci, le64_to_cpu(eb->h_next_leaf_blk), &next_eb_bh); if (ret) { mlog_errno(ret); goto out; } next_eb = (struct ocfs2_extent_block *)next_eb_bh->b_data; el = &next_eb->h_list; i = ocfs2_search_for_hole_index(el, v_cluster); } no_more_extents: if (i == le16_to_cpu(el->l_next_free_rec)) { /* * We're at the end of our existing allocation. Just * return the maximum number of clusters we could * possibly allocate. */ *num_clusters = UINT_MAX - v_cluster; } else { *num_clusters = le32_to_cpu(el->l_recs[i].e_cpos) - v_cluster; } ret = 0; out: brelse(next_eb_bh); return ret; } static int ocfs2_get_clusters_nocache(struct inode *inode, struct buffer_head *di_bh, u32 v_cluster, unsigned int *hole_len, struct ocfs2_extent_rec *ret_rec, unsigned int *is_last) { int i, ret, tree_height, len; struct ocfs2_dinode *di; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; struct buffer_head *eb_bh = NULL; memset(ret_rec, 0, sizeof(*ret_rec)); if (is_last) *is_last = 0; di = (struct ocfs2_dinode *) di_bh->b_data; el = &di->id2.i_list; tree_height = le16_to_cpu(el->l_tree_depth); if (tree_height > 0) { ret = ocfs2_find_leaf(INODE_CACHE(inode), el, v_cluster, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in leaf block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); ret = -EROFS; goto out; } } i = ocfs2_search_extent_list(el, v_cluster); if (i == -1) { /* * Holes can be larger than the maximum size of an * extent, so we return their lengths in a separate * field. */ if (hole_len) { ret = ocfs2_figure_hole_clusters(INODE_CACHE(inode), el, eb_bh, v_cluster, &len); if (ret) { mlog_errno(ret); goto out; } *hole_len = len; } goto out_hole; } rec = &el->l_recs[i]; BUG_ON(v_cluster < le32_to_cpu(rec->e_cpos)); if (!rec->e_blkno) { ocfs2_error(inode->i_sb, "Inode %lu has bad extent record (%u, %u, 0)\n", inode->i_ino, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); ret = -EROFS; goto out; } *ret_rec = *rec; /* * Checking for last extent is potentially expensive - we * might have to look at the next leaf over to see if it's * empty. * * The first two checks are to see whether the caller even * cares for this information, and if the extent is at least * the last in it's list. * * If those hold true, then the extent is last if any of the * additional conditions hold true: * - Extent list is in-inode * - Extent list is right-most * - Extent list is 2nd to rightmost, with empty right-most */ if (is_last) { if (i == (le16_to_cpu(el->l_next_free_rec) - 1)) { if (tree_height == 0) *is_last = 1; else if (eb->h_blkno == di->i_last_eb_blk) *is_last = 1; else if (eb->h_next_leaf_blk == di->i_last_eb_blk) { ret = ocfs2_last_eb_is_empty(inode, di); if (ret < 0) { mlog_errno(ret); goto out; } if (ret == 1) *is_last = 1; } } } out_hole: ret = 0; out: brelse(eb_bh); return ret; } static void ocfs2_relative_extent_offsets(struct super_block *sb, u32 v_cluster, struct ocfs2_extent_rec *rec, u32 *p_cluster, u32 *num_clusters) { u32 coff = v_cluster - le32_to_cpu(rec->e_cpos); *p_cluster = ocfs2_blocks_to_clusters(sb, le64_to_cpu(rec->e_blkno)); *p_cluster = *p_cluster + coff; if (num_clusters) *num_clusters = le16_to_cpu(rec->e_leaf_clusters) - coff; } int ocfs2_xattr_get_clusters(struct inode *inode, u32 v_cluster, u32 *p_cluster, u32 *num_clusters, struct ocfs2_extent_list *el, unsigned int *extent_flags) { int ret = 0, i; struct buffer_head *eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_rec *rec; u32 coff; if (el->l_tree_depth) { ret = ocfs2_find_leaf(INODE_CACHE(inode), el, v_cluster, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in xattr leaf block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); ret = -EROFS; goto out; } } i = ocfs2_search_extent_list(el, v_cluster); if (i == -1) { ret = -EROFS; mlog_errno(ret); goto out; } else { rec = &el->l_recs[i]; BUG_ON(v_cluster < le32_to_cpu(rec->e_cpos)); if (!rec->e_blkno) { ocfs2_error(inode->i_sb, "Inode %lu has bad extent record (%u, %u, 0) in xattr\n", inode->i_ino, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); ret = -EROFS; goto out; } coff = v_cluster - le32_to_cpu(rec->e_cpos); *p_cluster = ocfs2_blocks_to_clusters(inode->i_sb, le64_to_cpu(rec->e_blkno)); *p_cluster = *p_cluster + coff; if (num_clusters) *num_clusters = ocfs2_rec_clusters(el, rec) - coff; if (extent_flags) *extent_flags = rec->e_flags; } out: brelse(eb_bh); return ret; } int ocfs2_get_clusters(struct inode *inode, u32 v_cluster, u32 *p_cluster, u32 *num_clusters, unsigned int *extent_flags) { int ret; unsigned int hole_len, flags = 0; struct buffer_head *di_bh = NULL; struct ocfs2_extent_rec rec; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = -ERANGE; mlog_errno(ret); goto out; } ret = ocfs2_extent_map_lookup(inode, v_cluster, p_cluster, num_clusters, extent_flags); if (ret == 0) goto out; ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_get_clusters_nocache(inode, di_bh, v_cluster, &hole_len, &rec, NULL); if (ret) { mlog_errno(ret); goto out; } if (rec.e_blkno == 0ULL) { /* * A hole was found. Return some canned values that * callers can key on. If asked for, num_clusters will * be populated with the size of the hole. */ *p_cluster = 0; if (num_clusters) { *num_clusters = hole_len; } } else { ocfs2_relative_extent_offsets(inode->i_sb, v_cluster, &rec, p_cluster, num_clusters); flags = rec.e_flags; ocfs2_extent_map_insert_rec(inode, &rec); } if (extent_flags) *extent_flags = flags; out: brelse(di_bh); return ret; } /* * This expects alloc_sem to be held. The allocation cannot change at * all while the map is in the process of being updated. */ int ocfs2_extent_map_get_blocks(struct inode *inode, u64 v_blkno, u64 *p_blkno, u64 *ret_count, unsigned int *extent_flags) { int ret; int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); u32 cpos, num_clusters, p_cluster; u64 boff = 0; cpos = ocfs2_blocks_to_clusters(inode->i_sb, v_blkno); ret = ocfs2_get_clusters(inode, cpos, &p_cluster, &num_clusters, extent_flags); if (ret) { mlog_errno(ret); goto out; } /* * p_cluster == 0 indicates a hole. */ if (p_cluster) { boff = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); boff += (v_blkno & (u64)(bpc - 1)); } *p_blkno = boff; if (ret_count) { *ret_count = ocfs2_clusters_to_blocks(inode->i_sb, num_clusters); *ret_count -= v_blkno & (u64)(bpc - 1); } out: return ret; } /* * The ocfs2_fiemap_inline() may be a little bit misleading, since * it not only handles the fiemap for inlined files, but also deals * with the fast symlink, cause they have no difference for extent * mapping per se. */ static int ocfs2_fiemap_inline(struct inode *inode, struct buffer_head *di_bh, struct fiemap_extent_info *fieinfo, u64 map_start) { int ret; unsigned int id_count; struct ocfs2_dinode *di; u64 phys; u32 flags = FIEMAP_EXTENT_DATA_INLINE|FIEMAP_EXTENT_LAST; struct ocfs2_inode_info *oi = OCFS2_I(inode); di = (struct ocfs2_dinode *)di_bh->b_data; if (ocfs2_inode_is_fast_symlink(inode)) id_count = ocfs2_fast_symlink_chars(inode->i_sb); else id_count = le16_to_cpu(di->id2.i_data.id_count); if (map_start < id_count) { phys = oi->ip_blkno << inode->i_sb->s_blocksize_bits; if (ocfs2_inode_is_fast_symlink(inode)) phys += offsetof(struct ocfs2_dinode, id2.i_symlink); else phys += offsetof(struct ocfs2_dinode, id2.i_data.id_data); ret = fiemap_fill_next_extent(fieinfo, 0, phys, id_count, flags); if (ret < 0) return ret; } return 0; } int ocfs2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 map_start, u64 map_len) { int ret, is_last; u32 mapping_end, cpos; unsigned int hole_size; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u64 len_bytes, phys_bytes, virt_bytes; struct buffer_head *di_bh = NULL; struct ocfs2_extent_rec rec; ret = fiemap_prep(inode, fieinfo, map_start, &map_len, 0); if (ret) return ret; ret = ocfs2_inode_lock(inode, &di_bh, 0); if (ret) { mlog_errno(ret); goto out; } down_read(&OCFS2_I(inode)->ip_alloc_sem); /* * Handle inline-data and fast symlink separately. */ if ((OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || ocfs2_inode_is_fast_symlink(inode)) { ret = ocfs2_fiemap_inline(inode, di_bh, fieinfo, map_start); goto out_unlock; } cpos = map_start >> osb->s_clustersize_bits; mapping_end = ocfs2_clusters_for_bytes(inode->i_sb, map_start + map_len); is_last = 0; while (cpos < mapping_end && !is_last) { u32 fe_flags; ret = ocfs2_get_clusters_nocache(inode, di_bh, cpos, &hole_size, &rec, &is_last); if (ret) { mlog_errno(ret); goto out_unlock; } if (rec.e_blkno == 0ULL) { cpos += hole_size; continue; } fe_flags = 0; if (rec.e_flags & OCFS2_EXT_UNWRITTEN) fe_flags |= FIEMAP_EXTENT_UNWRITTEN; if (rec.e_flags & OCFS2_EXT_REFCOUNTED) fe_flags |= FIEMAP_EXTENT_SHARED; if (is_last) fe_flags |= FIEMAP_EXTENT_LAST; len_bytes = (u64)le16_to_cpu(rec.e_leaf_clusters) << osb->s_clustersize_bits; phys_bytes = le64_to_cpu(rec.e_blkno) << osb->sb->s_blocksize_bits; virt_bytes = (u64)le32_to_cpu(rec.e_cpos) << osb->s_clustersize_bits; ret = fiemap_fill_next_extent(fieinfo, virt_bytes, phys_bytes, len_bytes, fe_flags); if (ret) break; cpos = le32_to_cpu(rec.e_cpos)+ le16_to_cpu(rec.e_leaf_clusters); } if (ret > 0) ret = 0; out_unlock: brelse(di_bh); up_read(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_inode_unlock(inode, 0); out: return ret; } /* Is IO overwriting allocated blocks? */ int ocfs2_overwrite_io(struct inode *inode, struct buffer_head *di_bh, u64 map_start, u64 map_len) { int ret = 0, is_last; u32 mapping_end, cpos; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_rec rec; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { if (ocfs2_size_fits_inline_data(di_bh, map_start + map_len)) return ret; else return -EAGAIN; } cpos = map_start >> osb->s_clustersize_bits; mapping_end = ocfs2_clusters_for_bytes(inode->i_sb, map_start + map_len); is_last = 0; while (cpos < mapping_end && !is_last) { ret = ocfs2_get_clusters_nocache(inode, di_bh, cpos, NULL, &rec, &is_last); if (ret) { mlog_errno(ret); goto out; } if (rec.e_blkno == 0ULL) break; if (rec.e_flags & OCFS2_EXT_REFCOUNTED) break; cpos = le32_to_cpu(rec.e_cpos) + le16_to_cpu(rec.e_leaf_clusters); } if (cpos < mapping_end) ret = -EAGAIN; out: return ret; } int ocfs2_seek_data_hole_offset(struct file *file, loff_t *offset, int whence) { struct inode *inode = file->f_mapping->host; int ret; unsigned int is_last = 0, is_data = 0; u16 cs_bits = OCFS2_SB(inode->i_sb)->s_clustersize_bits; u32 cpos, cend, clen, hole_size; u64 extoff, extlen; struct buffer_head *di_bh = NULL; struct ocfs2_extent_rec rec; BUG_ON(whence != SEEK_DATA && whence != SEEK_HOLE); ret = ocfs2_inode_lock(inode, &di_bh, 0); if (ret) { mlog_errno(ret); goto out; } down_read(&OCFS2_I(inode)->ip_alloc_sem); if (*offset >= i_size_read(inode)) { ret = -ENXIO; goto out_unlock; } if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { if (whence == SEEK_HOLE) *offset = i_size_read(inode); goto out_unlock; } clen = 0; cpos = *offset >> cs_bits; cend = ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); while (cpos < cend && !is_last) { ret = ocfs2_get_clusters_nocache(inode, di_bh, cpos, &hole_size, &rec, &is_last); if (ret) { mlog_errno(ret); goto out_unlock; } extoff = cpos; extoff <<= cs_bits; if (rec.e_blkno == 0ULL) { clen = hole_size; is_data = 0; } else { clen = le16_to_cpu(rec.e_leaf_clusters) - (cpos - le32_to_cpu(rec.e_cpos)); is_data = (rec.e_flags & OCFS2_EXT_UNWRITTEN) ? 0 : 1; } if ((!is_data && whence == SEEK_HOLE) || (is_data && whence == SEEK_DATA)) { if (extoff > *offset) *offset = extoff; goto out_unlock; } if (!is_last) cpos += clen; } if (whence == SEEK_HOLE) { extoff = cpos; extoff <<= cs_bits; extlen = clen; extlen <<= cs_bits; if ((extoff + extlen) > i_size_read(inode)) extlen = i_size_read(inode) - extoff; extoff += extlen; if (extoff > *offset) *offset = extoff; goto out_unlock; } ret = -ENXIO; out_unlock: brelse(di_bh); up_read(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_inode_unlock(inode, 0); out: return ret; } int ocfs2_read_virt_blocks(struct inode *inode, u64 v_block, int nr, struct buffer_head *bhs[], int flags, int (*validate)(struct super_block *sb, struct buffer_head *bh)) { int rc = 0; u64 p_block, p_count; int i, count, done = 0; trace_ocfs2_read_virt_blocks( inode, (unsigned long long)v_block, nr, bhs, flags, validate); if (((v_block + nr - 1) << inode->i_sb->s_blocksize_bits) >= i_size_read(inode)) { BUG_ON(!(flags & OCFS2_BH_READAHEAD)); goto out; } while (done < nr) { down_read(&OCFS2_I(inode)->ip_alloc_sem); rc = ocfs2_extent_map_get_blocks(inode, v_block + done, &p_block, &p_count, NULL); up_read(&OCFS2_I(inode)->ip_alloc_sem); if (rc) { mlog_errno(rc); break; } if (!p_block) { rc = -EIO; mlog(ML_ERROR, "Inode #%llu contains a hole at offset %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)(v_block + done) << inode->i_sb->s_blocksize_bits); break; } count = nr - done; if (p_count < count) count = p_count; /* * If the caller passed us bhs, they should have come * from a previous readahead call to this function. Thus, * they should have the right b_blocknr. */ for (i = 0; i < count; i++) { if (!bhs[done + i]) continue; BUG_ON(bhs[done + i]->b_blocknr != (p_block + i)); } rc = ocfs2_read_blocks(INODE_CACHE(inode), p_block, count, bhs + done, flags, validate); if (rc) { mlog_errno(rc); break; } done += count; } out: return rc; }
linux-master
fs/ocfs2/extent_map.c
// SPDX-License-Identifier: GPL-2.0-only /* * xattr.c * * Copyright (C) 2004, 2008 Oracle. All rights reserved. * * CREDITS: * Lots of code in this file is copy from linux/fs/ext3/xattr.c. * Copyright (C) 2001-2003 Andreas Gruenbacher, <[email protected]> */ #include <linux/capability.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/uio.h> #include <linux/sched.h> #include <linux/splice.h> #include <linux/mount.h> #include <linux/writeback.h> #include <linux/falloc.h> #include <linux/sort.h> #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/security.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "dlmglue.h" #include "file.h" #include "symlink.h" #include "sysfile.h" #include "inode.h" #include "journal.h" #include "ocfs2_fs.h" #include "suballoc.h" #include "uptodate.h" #include "buffer_head_io.h" #include "super.h" #include "xattr.h" #include "refcounttree.h" #include "acl.h" #include "ocfs2_trace.h" struct ocfs2_xattr_def_value_root { struct ocfs2_xattr_value_root xv; struct ocfs2_extent_rec er; }; struct ocfs2_xattr_bucket { /* The inode these xattrs are associated with */ struct inode *bu_inode; /* The actual buffers that make up the bucket */ struct buffer_head *bu_bhs[OCFS2_XATTR_MAX_BLOCKS_PER_BUCKET]; /* How many blocks make up one bucket for this filesystem */ int bu_blocks; }; struct ocfs2_xattr_set_ctxt { handle_t *handle; struct ocfs2_alloc_context *meta_ac; struct ocfs2_alloc_context *data_ac; struct ocfs2_cached_dealloc_ctxt dealloc; int set_abort; }; #define OCFS2_XATTR_ROOT_SIZE (sizeof(struct ocfs2_xattr_def_value_root)) #define OCFS2_XATTR_INLINE_SIZE 80 #define OCFS2_XATTR_HEADER_GAP 4 #define OCFS2_XATTR_FREE_IN_IBODY (OCFS2_MIN_XATTR_INLINE_SIZE \ - sizeof(struct ocfs2_xattr_header) \ - OCFS2_XATTR_HEADER_GAP) #define OCFS2_XATTR_FREE_IN_BLOCK(ptr) ((ptr)->i_sb->s_blocksize \ - sizeof(struct ocfs2_xattr_block) \ - sizeof(struct ocfs2_xattr_header) \ - OCFS2_XATTR_HEADER_GAP) static struct ocfs2_xattr_def_value_root def_xv = { .xv.xr_list.l_count = cpu_to_le16(1), }; const struct xattr_handler *ocfs2_xattr_handlers[] = { &ocfs2_xattr_user_handler, &ocfs2_xattr_trusted_handler, &ocfs2_xattr_security_handler, NULL }; static const struct xattr_handler *ocfs2_xattr_handler_map[OCFS2_XATTR_MAX] = { [OCFS2_XATTR_INDEX_USER] = &ocfs2_xattr_user_handler, [OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS] = &nop_posix_acl_access, [OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT] = &nop_posix_acl_default, [OCFS2_XATTR_INDEX_TRUSTED] = &ocfs2_xattr_trusted_handler, [OCFS2_XATTR_INDEX_SECURITY] = &ocfs2_xattr_security_handler, }; struct ocfs2_xattr_info { int xi_name_index; const char *xi_name; int xi_name_len; const void *xi_value; size_t xi_value_len; }; struct ocfs2_xattr_search { struct buffer_head *inode_bh; /* * xattr_bh point to the block buffer head which has extended attribute * when extended attribute in inode, xattr_bh is equal to inode_bh. */ struct buffer_head *xattr_bh; struct ocfs2_xattr_header *header; struct ocfs2_xattr_bucket *bucket; void *base; void *end; struct ocfs2_xattr_entry *here; int not_found; }; /* Operations on struct ocfs2_xa_entry */ struct ocfs2_xa_loc; struct ocfs2_xa_loc_operations { /* * Journal functions */ int (*xlo_journal_access)(handle_t *handle, struct ocfs2_xa_loc *loc, int type); void (*xlo_journal_dirty)(handle_t *handle, struct ocfs2_xa_loc *loc); /* * Return a pointer to the appropriate buffer in loc->xl_storage * at the given offset from loc->xl_header. */ void *(*xlo_offset_pointer)(struct ocfs2_xa_loc *loc, int offset); /* Can we reuse the existing entry for the new value? */ int (*xlo_can_reuse)(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi); /* How much space is needed for the new value? */ int (*xlo_check_space)(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi); /* * Return the offset of the first name+value pair. This is * the start of our downward-filling free space. */ int (*xlo_get_free_start)(struct ocfs2_xa_loc *loc); /* * Remove the name+value at this location. Do whatever is * appropriate with the remaining name+value pairs. */ void (*xlo_wipe_namevalue)(struct ocfs2_xa_loc *loc); /* Fill xl_entry with a new entry */ void (*xlo_add_entry)(struct ocfs2_xa_loc *loc, u32 name_hash); /* Add name+value storage to an entry */ void (*xlo_add_namevalue)(struct ocfs2_xa_loc *loc, int size); /* * Initialize the value buf's access and bh fields for this entry. * ocfs2_xa_fill_value_buf() will handle the xv pointer. */ void (*xlo_fill_value_buf)(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb); }; /* * Describes an xattr entry location. This is a memory structure * tracking the on-disk structure. */ struct ocfs2_xa_loc { /* This xattr belongs to this inode */ struct inode *xl_inode; /* The ocfs2_xattr_header inside the on-disk storage. Not NULL. */ struct ocfs2_xattr_header *xl_header; /* Bytes from xl_header to the end of the storage */ int xl_size; /* * The ocfs2_xattr_entry this location describes. If this is * NULL, this location describes the on-disk structure where it * would have been. */ struct ocfs2_xattr_entry *xl_entry; /* * Internal housekeeping */ /* Buffer(s) containing this entry */ void *xl_storage; /* Operations on the storage backing this location */ const struct ocfs2_xa_loc_operations *xl_ops; }; /* * Convenience functions to calculate how much space is needed for a * given name+value pair */ static int namevalue_size(int name_len, uint64_t value_len) { if (value_len > OCFS2_XATTR_INLINE_SIZE) return OCFS2_XATTR_SIZE(name_len) + OCFS2_XATTR_ROOT_SIZE; else return OCFS2_XATTR_SIZE(name_len) + OCFS2_XATTR_SIZE(value_len); } static int namevalue_size_xi(struct ocfs2_xattr_info *xi) { return namevalue_size(xi->xi_name_len, xi->xi_value_len); } static int namevalue_size_xe(struct ocfs2_xattr_entry *xe) { u64 value_len = le64_to_cpu(xe->xe_value_size); BUG_ON((value_len > OCFS2_XATTR_INLINE_SIZE) && ocfs2_xattr_is_local(xe)); return namevalue_size(xe->xe_name_len, value_len); } static int ocfs2_xattr_bucket_get_name_value(struct super_block *sb, struct ocfs2_xattr_header *xh, int index, int *block_off, int *new_offset); static int ocfs2_xattr_block_find(struct inode *inode, int name_index, const char *name, struct ocfs2_xattr_search *xs); static int ocfs2_xattr_index_block_find(struct inode *inode, struct buffer_head *root_bh, int name_index, const char *name, struct ocfs2_xattr_search *xs); static int ocfs2_xattr_tree_list_index_block(struct inode *inode, struct buffer_head *blk_bh, char *buffer, size_t buffer_size); static int ocfs2_xattr_create_index_block(struct inode *inode, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt); static int ocfs2_xattr_set_entry_index_block(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt); typedef int (xattr_tree_rec_func)(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para); static int ocfs2_iterate_xattr_index_block(struct inode *inode, struct buffer_head *root_bh, xattr_tree_rec_func *rec_func, void *para); static int ocfs2_delete_xattr_in_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para); static int ocfs2_rm_xattr_cluster(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para); static int ocfs2_mv_xattr_buckets(struct inode *inode, handle_t *handle, u64 src_blk, u64 last_blk, u64 to_blk, unsigned int start_bucket, u32 *first_hash); static int ocfs2_prepare_refcount_xattr(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_refcount_tree **ref_tree, int *meta_need, int *credits); static int ocfs2_get_xattr_tree_value_root(struct super_block *sb, struct ocfs2_xattr_bucket *bucket, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **bh); static inline u16 ocfs2_xattr_buckets_per_cluster(struct ocfs2_super *osb) { return (1 << osb->s_clustersize_bits) / OCFS2_XATTR_BUCKET_SIZE; } static inline u16 ocfs2_blocks_per_xattr_bucket(struct super_block *sb) { return OCFS2_XATTR_BUCKET_SIZE / (1 << sb->s_blocksize_bits); } #define bucket_blkno(_b) ((_b)->bu_bhs[0]->b_blocknr) #define bucket_block(_b, _n) ((_b)->bu_bhs[(_n)]->b_data) #define bucket_xh(_b) ((struct ocfs2_xattr_header *)bucket_block((_b), 0)) static struct ocfs2_xattr_bucket *ocfs2_xattr_bucket_new(struct inode *inode) { struct ocfs2_xattr_bucket *bucket; int blks = ocfs2_blocks_per_xattr_bucket(inode->i_sb); BUG_ON(blks > OCFS2_XATTR_MAX_BLOCKS_PER_BUCKET); bucket = kzalloc(sizeof(struct ocfs2_xattr_bucket), GFP_NOFS); if (bucket) { bucket->bu_inode = inode; bucket->bu_blocks = blks; } return bucket; } static void ocfs2_xattr_bucket_relse(struct ocfs2_xattr_bucket *bucket) { int i; for (i = 0; i < bucket->bu_blocks; i++) { brelse(bucket->bu_bhs[i]); bucket->bu_bhs[i] = NULL; } } static void ocfs2_xattr_bucket_free(struct ocfs2_xattr_bucket *bucket) { if (bucket) { ocfs2_xattr_bucket_relse(bucket); bucket->bu_inode = NULL; kfree(bucket); } } /* * A bucket that has never been written to disk doesn't need to be * read. We just need the buffer_heads. Don't call this for * buckets that are already on disk. ocfs2_read_xattr_bucket() initializes * them fully. */ static int ocfs2_init_xattr_bucket(struct ocfs2_xattr_bucket *bucket, u64 xb_blkno, int new) { int i, rc = 0; for (i = 0; i < bucket->bu_blocks; i++) { bucket->bu_bhs[i] = sb_getblk(bucket->bu_inode->i_sb, xb_blkno + i); if (!bucket->bu_bhs[i]) { rc = -ENOMEM; mlog_errno(rc); break; } if (!ocfs2_buffer_uptodate(INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i])) { if (new) ocfs2_set_new_buffer_uptodate(INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i]); else { set_buffer_uptodate(bucket->bu_bhs[i]); ocfs2_set_buffer_uptodate(INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i]); } } } if (rc) ocfs2_xattr_bucket_relse(bucket); return rc; } /* Read the xattr bucket at xb_blkno */ static int ocfs2_read_xattr_bucket(struct ocfs2_xattr_bucket *bucket, u64 xb_blkno) { int rc; rc = ocfs2_read_blocks(INODE_CACHE(bucket->bu_inode), xb_blkno, bucket->bu_blocks, bucket->bu_bhs, 0, NULL); if (!rc) { spin_lock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); rc = ocfs2_validate_meta_ecc_bhs(bucket->bu_inode->i_sb, bucket->bu_bhs, bucket->bu_blocks, &bucket_xh(bucket)->xh_check); spin_unlock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); if (rc) mlog_errno(rc); } if (rc) ocfs2_xattr_bucket_relse(bucket); return rc; } static int ocfs2_xattr_bucket_journal_access(handle_t *handle, struct ocfs2_xattr_bucket *bucket, int type) { int i, rc = 0; for (i = 0; i < bucket->bu_blocks; i++) { rc = ocfs2_journal_access(handle, INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i], type); if (rc) { mlog_errno(rc); break; } } return rc; } static void ocfs2_xattr_bucket_journal_dirty(handle_t *handle, struct ocfs2_xattr_bucket *bucket) { int i; spin_lock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); ocfs2_compute_meta_ecc_bhs(bucket->bu_inode->i_sb, bucket->bu_bhs, bucket->bu_blocks, &bucket_xh(bucket)->xh_check); spin_unlock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); for (i = 0; i < bucket->bu_blocks; i++) ocfs2_journal_dirty(handle, bucket->bu_bhs[i]); } static void ocfs2_xattr_bucket_copy_data(struct ocfs2_xattr_bucket *dest, struct ocfs2_xattr_bucket *src) { int i; int blocksize = src->bu_inode->i_sb->s_blocksize; BUG_ON(dest->bu_blocks != src->bu_blocks); BUG_ON(dest->bu_inode != src->bu_inode); for (i = 0; i < src->bu_blocks; i++) { memcpy(bucket_block(dest, i), bucket_block(src, i), blocksize); } } static int ocfs2_validate_xattr_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)bh->b_data; trace_ocfs2_validate_xattr_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &xb->xb_check); if (rc) return rc; /* * Errors after here are fatal */ if (!OCFS2_IS_VALID_XATTR_BLOCK(xb)) { return ocfs2_error(sb, "Extended attribute block #%llu has bad signature %.*s\n", (unsigned long long)bh->b_blocknr, 7, xb->xb_signature); } if (le64_to_cpu(xb->xb_blkno) != bh->b_blocknr) { return ocfs2_error(sb, "Extended attribute block #%llu has an invalid xb_blkno of %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(xb->xb_blkno)); } if (le32_to_cpu(xb->xb_fs_generation) != OCFS2_SB(sb)->fs_generation) { return ocfs2_error(sb, "Extended attribute block #%llu has an invalid xb_fs_generation of #%u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(xb->xb_fs_generation)); } return 0; } static int ocfs2_read_xattr_block(struct inode *inode, u64 xb_blkno, struct buffer_head **bh) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_block(INODE_CACHE(inode), xb_blkno, &tmp, ocfs2_validate_xattr_block); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } static inline const char *ocfs2_xattr_prefix(int name_index) { const struct xattr_handler *handler = NULL; if (name_index > 0 && name_index < OCFS2_XATTR_MAX) handler = ocfs2_xattr_handler_map[name_index]; return handler ? xattr_prefix(handler) : NULL; } static u32 ocfs2_xattr_name_hash(struct inode *inode, const char *name, int name_len) { /* Get hash value of uuid from super block */ u32 hash = OCFS2_SB(inode->i_sb)->uuid_hash; int i; /* hash extended attribute name */ for (i = 0; i < name_len; i++) { hash = (hash << OCFS2_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - OCFS2_HASH_SHIFT)) ^ *name++; } return hash; } static int ocfs2_xattr_entry_real_size(int name_len, size_t value_len) { return namevalue_size(name_len, value_len) + sizeof(struct ocfs2_xattr_entry); } static int ocfs2_xi_entry_usage(struct ocfs2_xattr_info *xi) { return namevalue_size_xi(xi) + sizeof(struct ocfs2_xattr_entry); } static int ocfs2_xe_entry_usage(struct ocfs2_xattr_entry *xe) { return namevalue_size_xe(xe) + sizeof(struct ocfs2_xattr_entry); } int ocfs2_calc_security_init(struct inode *dir, struct ocfs2_security_xattr_info *si, int *want_clusters, int *xattr_credits, struct ocfs2_alloc_context **xattr_ac) { int ret = 0; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); int s_size = ocfs2_xattr_entry_real_size(strlen(si->name), si->value_len); /* * The max space of security xattr taken inline is * 256(name) + 80(value) + 16(entry) = 352 bytes, * So reserve one metadata block for it is ok. */ if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE || s_size > OCFS2_XATTR_FREE_IN_IBODY) { ret = ocfs2_reserve_new_metadata_blocks(osb, 1, xattr_ac); if (ret) { mlog_errno(ret); return ret; } *xattr_credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS; } /* reserve clusters for xattr value which will be set in B tree*/ if (si->value_len > OCFS2_XATTR_INLINE_SIZE) { int new_clusters = ocfs2_clusters_for_bytes(dir->i_sb, si->value_len); *xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb, new_clusters); *want_clusters += new_clusters; } return ret; } int ocfs2_calc_xattr_init(struct inode *dir, struct buffer_head *dir_bh, umode_t mode, struct ocfs2_security_xattr_info *si, int *want_clusters, int *xattr_credits, int *want_meta) { int ret = 0; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); int s_size = 0, a_size = 0, acl_len = 0, new_clusters; if (si->enable) s_size = ocfs2_xattr_entry_real_size(strlen(si->name), si->value_len); if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) { down_read(&OCFS2_I(dir)->ip_xattr_sem); acl_len = ocfs2_xattr_get_nolock(dir, dir_bh, OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT, "", NULL, 0); up_read(&OCFS2_I(dir)->ip_xattr_sem); if (acl_len > 0) { a_size = ocfs2_xattr_entry_real_size(0, acl_len); if (S_ISDIR(mode)) a_size <<= 1; } else if (acl_len != 0 && acl_len != -ENODATA) { ret = acl_len; mlog_errno(ret); return ret; } } if (!(s_size + a_size)) return ret; /* * The max space of security xattr taken inline is * 256(name) + 80(value) + 16(entry) = 352 bytes, * The max space of acl xattr taken inline is * 80(value) + 16(entry) * 2(if directory) = 192 bytes, * when blocksize = 512, may reserve one more cluser for * xattr bucket, otherwise reserve one metadata block * for them is ok. * If this is a new directory with inline data, * we choose to reserve the entire inline area for * directory contents and force an external xattr block. */ if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE || (S_ISDIR(mode) && ocfs2_supports_inline_data(osb)) || (s_size + a_size) > OCFS2_XATTR_FREE_IN_IBODY) { *want_meta = *want_meta + 1; *xattr_credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS; } if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE && (s_size + a_size) > OCFS2_XATTR_FREE_IN_BLOCK(dir)) { *want_clusters += 1; *xattr_credits += ocfs2_blocks_per_xattr_bucket(dir->i_sb); } /* * reserve credits and clusters for xattrs which has large value * and have to be set outside */ if (si->enable && si->value_len > OCFS2_XATTR_INLINE_SIZE) { new_clusters = ocfs2_clusters_for_bytes(dir->i_sb, si->value_len); *xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb, new_clusters); *want_clusters += new_clusters; } if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL && acl_len > OCFS2_XATTR_INLINE_SIZE) { /* for directory, it has DEFAULT and ACCESS two types of acls */ new_clusters = (S_ISDIR(mode) ? 2 : 1) * ocfs2_clusters_for_bytes(dir->i_sb, acl_len); *xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb, new_clusters); *want_clusters += new_clusters; } return ret; } static int ocfs2_xattr_extend_allocation(struct inode *inode, u32 clusters_to_add, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_set_ctxt *ctxt) { int status = 0, credits; handle_t *handle = ctxt->handle; enum ocfs2_alloc_restarted why; u32 prev_clusters, logical_start = le32_to_cpu(vb->vb_xv->xr_clusters); struct ocfs2_extent_tree et; ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb); while (clusters_to_add) { trace_ocfs2_xattr_extend_allocation(clusters_to_add); status = vb->vb_access(handle, INODE_CACHE(inode), vb->vb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); break; } prev_clusters = le32_to_cpu(vb->vb_xv->xr_clusters); status = ocfs2_add_clusters_in_btree(handle, &et, &logical_start, clusters_to_add, 0, ctxt->data_ac, ctxt->meta_ac, &why); if ((status < 0) && (status != -EAGAIN)) { if (status != -ENOSPC) mlog_errno(status); break; } ocfs2_journal_dirty(handle, vb->vb_bh); clusters_to_add -= le32_to_cpu(vb->vb_xv->xr_clusters) - prev_clusters; if (why != RESTART_NONE && clusters_to_add) { /* * We can only fail in case the alloc file doesn't give * up enough clusters. */ BUG_ON(why == RESTART_META); credits = ocfs2_calc_extend_credits(inode->i_sb, &vb->vb_xv->xr_list); status = ocfs2_extend_trans(handle, credits); if (status < 0) { status = -ENOMEM; mlog_errno(status); break; } } } return status; } static int __ocfs2_remove_xattr_range(struct inode *inode, struct ocfs2_xattr_value_buf *vb, u32 cpos, u32 phys_cpos, u32 len, unsigned int ext_flags, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); handle_t *handle = ctxt->handle; struct ocfs2_extent_tree et; ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb); ret = vb->vb_access(handle, INODE_CACHE(inode), vb->vb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_remove_extent(handle, &et, cpos, len, ctxt->meta_ac, &ctxt->dealloc); if (ret) { mlog_errno(ret); goto out; } le32_add_cpu(&vb->vb_xv->xr_clusters, -len); ocfs2_journal_dirty(handle, vb->vb_bh); if (ext_flags & OCFS2_EXT_REFCOUNTED) ret = ocfs2_decrease_refcount(inode, handle, ocfs2_blocks_to_clusters(inode->i_sb, phys_blkno), len, ctxt->meta_ac, &ctxt->dealloc, 1); else ret = ocfs2_cache_cluster_dealloc(&ctxt->dealloc, phys_blkno, len); if (ret) mlog_errno(ret); out: return ret; } static int ocfs2_xattr_shrink_size(struct inode *inode, u32 old_clusters, u32 new_clusters, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_set_ctxt *ctxt) { int ret = 0; unsigned int ext_flags; u32 trunc_len, cpos, phys_cpos, alloc_size; u64 block; if (old_clusters <= new_clusters) return 0; cpos = new_clusters; trunc_len = old_clusters - new_clusters; while (trunc_len) { ret = ocfs2_xattr_get_clusters(inode, cpos, &phys_cpos, &alloc_size, &vb->vb_xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } if (alloc_size > trunc_len) alloc_size = trunc_len; ret = __ocfs2_remove_xattr_range(inode, vb, cpos, phys_cpos, alloc_size, ext_flags, ctxt); if (ret) { mlog_errno(ret); goto out; } block = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); ocfs2_remove_xattr_clusters_from_cache(INODE_CACHE(inode), block, alloc_size); cpos += alloc_size; trunc_len -= alloc_size; } out: return ret; } static int ocfs2_xattr_value_truncate(struct inode *inode, struct ocfs2_xattr_value_buf *vb, int len, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u32 new_clusters = ocfs2_clusters_for_bytes(inode->i_sb, len); u32 old_clusters = le32_to_cpu(vb->vb_xv->xr_clusters); if (new_clusters == old_clusters) return 0; if (new_clusters > old_clusters) ret = ocfs2_xattr_extend_allocation(inode, new_clusters - old_clusters, vb, ctxt); else ret = ocfs2_xattr_shrink_size(inode, old_clusters, new_clusters, vb, ctxt); return ret; } static int ocfs2_xattr_list_entry(struct super_block *sb, char *buffer, size_t size, size_t *result, int type, const char *name, int name_len) { char *p = buffer + *result; const char *prefix; int prefix_len; int total_len; switch(type) { case OCFS2_XATTR_INDEX_USER: if (OCFS2_SB(sb)->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR) return 0; break; case OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS: case OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT: if (!(sb->s_flags & SB_POSIXACL)) return 0; break; case OCFS2_XATTR_INDEX_TRUSTED: if (!capable(CAP_SYS_ADMIN)) return 0; break; } prefix = ocfs2_xattr_prefix(type); if (!prefix) return 0; prefix_len = strlen(prefix); total_len = prefix_len + name_len + 1; *result += total_len; /* we are just looking for how big our buffer needs to be */ if (!size) return 0; if (*result > size) return -ERANGE; memcpy(p, prefix, prefix_len); memcpy(p + prefix_len, name, name_len); p[prefix_len + name_len] = '\0'; return 0; } static int ocfs2_xattr_list_entries(struct inode *inode, struct ocfs2_xattr_header *header, char *buffer, size_t buffer_size) { size_t result = 0; int i, type, ret; const char *name; for (i = 0 ; i < le16_to_cpu(header->xh_count); i++) { struct ocfs2_xattr_entry *entry = &header->xh_entries[i]; type = ocfs2_xattr_get_type(entry); name = (const char *)header + le16_to_cpu(entry->xe_name_offset); ret = ocfs2_xattr_list_entry(inode->i_sb, buffer, buffer_size, &result, type, name, entry->xe_name_len); if (ret) return ret; } return result; } int ocfs2_has_inline_xattr_value_outside(struct inode *inode, struct ocfs2_dinode *di) { struct ocfs2_xattr_header *xh; int i; xh = (struct ocfs2_xattr_header *) ((void *)di + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) if (!ocfs2_xattr_is_local(&xh->xh_entries[i])) return 1; return 0; } static int ocfs2_xattr_ibody_list(struct inode *inode, struct ocfs2_dinode *di, char *buffer, size_t buffer_size) { struct ocfs2_xattr_header *header = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); int ret = 0; if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) return ret; header = (struct ocfs2_xattr_header *) ((void *)di + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); ret = ocfs2_xattr_list_entries(inode, header, buffer, buffer_size); return ret; } static int ocfs2_xattr_block_list(struct inode *inode, struct ocfs2_dinode *di, char *buffer, size_t buffer_size) { struct buffer_head *blk_bh = NULL; struct ocfs2_xattr_block *xb; int ret = 0; if (!di->i_xattr_loc) return ret; ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); return ret; } xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { struct ocfs2_xattr_header *header = &xb->xb_attrs.xb_header; ret = ocfs2_xattr_list_entries(inode, header, buffer, buffer_size); } else ret = ocfs2_xattr_tree_list_index_block(inode, blk_bh, buffer, buffer_size); brelse(blk_bh); return ret; } ssize_t ocfs2_listxattr(struct dentry *dentry, char *buffer, size_t size) { int ret = 0, i_ret = 0, b_ret = 0; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di = NULL; struct ocfs2_inode_info *oi = OCFS2_I(d_inode(dentry)); if (!ocfs2_supports_xattr(OCFS2_SB(dentry->d_sb))) return -EOPNOTSUPP; if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) return ret; ret = ocfs2_inode_lock(d_inode(dentry), &di_bh, 0); if (ret < 0) { mlog_errno(ret); return ret; } di = (struct ocfs2_dinode *)di_bh->b_data; down_read(&oi->ip_xattr_sem); i_ret = ocfs2_xattr_ibody_list(d_inode(dentry), di, buffer, size); if (i_ret < 0) b_ret = 0; else { if (buffer) { buffer += i_ret; size -= i_ret; } b_ret = ocfs2_xattr_block_list(d_inode(dentry), di, buffer, size); if (b_ret < 0) i_ret = 0; } up_read(&oi->ip_xattr_sem); ocfs2_inode_unlock(d_inode(dentry), 0); brelse(di_bh); return i_ret + b_ret; } static int ocfs2_xattr_find_entry(int name_index, const char *name, struct ocfs2_xattr_search *xs) { struct ocfs2_xattr_entry *entry; size_t name_len; int i, cmp = 1; if (name == NULL) return -EINVAL; name_len = strlen(name); entry = xs->here; for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) { cmp = name_index - ocfs2_xattr_get_type(entry); if (!cmp) cmp = name_len - entry->xe_name_len; if (!cmp) cmp = memcmp(name, (xs->base + le16_to_cpu(entry->xe_name_offset)), name_len); if (cmp == 0) break; entry += 1; } xs->here = entry; return cmp ? -ENODATA : 0; } static int ocfs2_xattr_get_value_outside(struct inode *inode, struct ocfs2_xattr_value_root *xv, void *buffer, size_t len) { u32 cpos, p_cluster, num_clusters, bpc, clusters; u64 blkno; int i, ret = 0; size_t cplen, blocksize; struct buffer_head *bh = NULL; struct ocfs2_extent_list *el; el = &xv->xr_list; clusters = le32_to_cpu(xv->xr_clusters); bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); blocksize = inode->i_sb->s_blocksize; cpos = 0; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, el, NULL); if (ret) { mlog_errno(ret); goto out; } blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); /* Copy ocfs2_xattr_value */ for (i = 0; i < num_clusters * bpc; i++, blkno++) { ret = ocfs2_read_block(INODE_CACHE(inode), blkno, &bh, NULL); if (ret) { mlog_errno(ret); goto out; } cplen = len >= blocksize ? blocksize : len; memcpy(buffer, bh->b_data, cplen); len -= cplen; buffer += cplen; brelse(bh); bh = NULL; if (len == 0) break; } cpos += num_clusters; } out: return ret; } static int ocfs2_xattr_ibody_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size, struct ocfs2_xattr_search *xs) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; struct ocfs2_xattr_value_root *xv; size_t size; int ret = 0; if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) return -ENODATA; xs->end = (void *)di + inode->i_sb->s_blocksize; xs->header = (struct ocfs2_xattr_header *) (xs->end - le16_to_cpu(di->i_xattr_inline_size)); xs->base = (void *)xs->header; xs->here = xs->header->xh_entries; ret = ocfs2_xattr_find_entry(name_index, name, xs); if (ret) return ret; size = le64_to_cpu(xs->here->xe_value_size); if (buffer) { if (size > buffer_size) return -ERANGE; if (ocfs2_xattr_is_local(xs->here)) { memcpy(buffer, (void *)xs->base + le16_to_cpu(xs->here->xe_name_offset) + OCFS2_XATTR_SIZE(xs->here->xe_name_len), size); } else { xv = (struct ocfs2_xattr_value_root *) (xs->base + le16_to_cpu( xs->here->xe_name_offset) + OCFS2_XATTR_SIZE(xs->here->xe_name_len)); ret = ocfs2_xattr_get_value_outside(inode, xv, buffer, size); if (ret < 0) { mlog_errno(ret); return ret; } } } return size; } static int ocfs2_xattr_block_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size, struct ocfs2_xattr_search *xs) { struct ocfs2_xattr_block *xb; struct ocfs2_xattr_value_root *xv; size_t size; int ret = -ENODATA, name_offset, name_len, i; int block_off; xs->bucket = ocfs2_xattr_bucket_new(inode); if (!xs->bucket) { ret = -ENOMEM; mlog_errno(ret); goto cleanup; } ret = ocfs2_xattr_block_find(inode, name_index, name, xs); if (ret) { mlog_errno(ret); goto cleanup; } if (xs->not_found) { ret = -ENODATA; goto cleanup; } xb = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data; size = le64_to_cpu(xs->here->xe_value_size); if (buffer) { ret = -ERANGE; if (size > buffer_size) goto cleanup; name_offset = le16_to_cpu(xs->here->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xs->here->xe_name_len); i = xs->here - xs->header->xh_entries; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(xs->bucket), i, &block_off, &name_offset); if (ret) { mlog_errno(ret); goto cleanup; } xs->base = bucket_block(xs->bucket, block_off); } if (ocfs2_xattr_is_local(xs->here)) { memcpy(buffer, (void *)xs->base + name_offset + name_len, size); } else { xv = (struct ocfs2_xattr_value_root *) (xs->base + name_offset + name_len); ret = ocfs2_xattr_get_value_outside(inode, xv, buffer, size); if (ret < 0) { mlog_errno(ret); goto cleanup; } } } ret = size; cleanup: ocfs2_xattr_bucket_free(xs->bucket); brelse(xs->xattr_bh); xs->xattr_bh = NULL; return ret; } int ocfs2_xattr_get_nolock(struct inode *inode, struct buffer_head *di_bh, int name_index, const char *name, void *buffer, size_t buffer_size) { int ret; struct ocfs2_dinode *di = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_xattr_search xis = { .not_found = -ENODATA, }; struct ocfs2_xattr_search xbs = { .not_found = -ENODATA, }; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) return -ENODATA; xis.inode_bh = xbs.inode_bh = di_bh; di = (struct ocfs2_dinode *)di_bh->b_data; ret = ocfs2_xattr_ibody_get(inode, name_index, name, buffer, buffer_size, &xis); if (ret == -ENODATA && di->i_xattr_loc) ret = ocfs2_xattr_block_get(inode, name_index, name, buffer, buffer_size, &xbs); return ret; } /* ocfs2_xattr_get() * * Copy an extended attribute into the buffer provided. * Buffer is NULL to compute the size of buffer required. */ static int ocfs2_xattr_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { int ret, had_lock; struct buffer_head *di_bh = NULL; struct ocfs2_lock_holder oh; had_lock = ocfs2_inode_lock_tracker(inode, &di_bh, 0, &oh); if (had_lock < 0) { mlog_errno(had_lock); return had_lock; } down_read(&OCFS2_I(inode)->ip_xattr_sem); ret = ocfs2_xattr_get_nolock(inode, di_bh, name_index, name, buffer, buffer_size); up_read(&OCFS2_I(inode)->ip_xattr_sem); ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); brelse(di_bh); return ret; } static int __ocfs2_xattr_set_value_outside(struct inode *inode, handle_t *handle, struct ocfs2_xattr_value_buf *vb, const void *value, int value_len) { int ret = 0, i, cp_len; u16 blocksize = inode->i_sb->s_blocksize; u32 p_cluster, num_clusters; u32 cpos = 0, bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); u32 clusters = ocfs2_clusters_for_bytes(inode->i_sb, value_len); u64 blkno; struct buffer_head *bh = NULL; unsigned int ext_flags; struct ocfs2_xattr_value_root *xv = vb->vb_xv; BUG_ON(clusters > le32_to_cpu(xv->xr_clusters)); while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, &xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); for (i = 0; i < num_clusters * bpc; i++, blkno++) { ret = ocfs2_read_block(INODE_CACHE(inode), blkno, &bh, NULL); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } cp_len = value_len > blocksize ? blocksize : value_len; memcpy(bh->b_data, value, cp_len); value_len -= cp_len; value += cp_len; if (cp_len < blocksize) memset(bh->b_data + cp_len, 0, blocksize - cp_len); ocfs2_journal_dirty(handle, bh); brelse(bh); bh = NULL; /* * XXX: do we need to empty all the following * blocks in this cluster? */ if (!value_len) break; } cpos += num_clusters; } out: brelse(bh); return ret; } static int ocfs2_xa_check_space_helper(int needed_space, int free_start, int num_entries) { int free_space; if (!needed_space) return 0; free_space = free_start - sizeof(struct ocfs2_xattr_header) - (num_entries * sizeof(struct ocfs2_xattr_entry)) - OCFS2_XATTR_HEADER_GAP; if (free_space < 0) return -EIO; if (free_space < needed_space) return -ENOSPC; return 0; } static int ocfs2_xa_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc, int type) { return loc->xl_ops->xlo_journal_access(handle, loc, type); } static void ocfs2_xa_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc) { loc->xl_ops->xlo_journal_dirty(handle, loc); } /* Give a pointer into the storage for the given offset */ static void *ocfs2_xa_offset_pointer(struct ocfs2_xa_loc *loc, int offset) { BUG_ON(offset >= loc->xl_size); return loc->xl_ops->xlo_offset_pointer(loc, offset); } /* * Wipe the name+value pair and allow the storage to reclaim it. This * must be followed by either removal of the entry or a call to * ocfs2_xa_add_namevalue(). */ static void ocfs2_xa_wipe_namevalue(struct ocfs2_xa_loc *loc) { loc->xl_ops->xlo_wipe_namevalue(loc); } /* * Find lowest offset to a name+value pair. This is the start of our * downward-growing free space. */ static int ocfs2_xa_get_free_start(struct ocfs2_xa_loc *loc) { return loc->xl_ops->xlo_get_free_start(loc); } /* Can we reuse loc->xl_entry for xi? */ static int ocfs2_xa_can_reuse_entry(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { return loc->xl_ops->xlo_can_reuse(loc, xi); } /* How much free space is needed to set the new value */ static int ocfs2_xa_check_space(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { return loc->xl_ops->xlo_check_space(loc, xi); } static void ocfs2_xa_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash) { loc->xl_ops->xlo_add_entry(loc, name_hash); loc->xl_entry->xe_name_hash = cpu_to_le32(name_hash); /* * We can't leave the new entry's xe_name_offset at zero or * add_namevalue() will go nuts. We set it to the size of our * storage so that it can never be less than any other entry. */ loc->xl_entry->xe_name_offset = cpu_to_le16(loc->xl_size); } static void ocfs2_xa_add_namevalue(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { int size = namevalue_size_xi(xi); int nameval_offset; char *nameval_buf; loc->xl_ops->xlo_add_namevalue(loc, size); loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len); loc->xl_entry->xe_name_len = xi->xi_name_len; ocfs2_xattr_set_type(loc->xl_entry, xi->xi_name_index); ocfs2_xattr_set_local(loc->xl_entry, xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE); nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); nameval_buf = ocfs2_xa_offset_pointer(loc, nameval_offset); memset(nameval_buf, 0, size); memcpy(nameval_buf, xi->xi_name, xi->xi_name_len); } static void ocfs2_xa_fill_value_buf(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb) { int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); int name_size = OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len); /* Value bufs are for value trees */ BUG_ON(ocfs2_xattr_is_local(loc->xl_entry)); BUG_ON(namevalue_size_xe(loc->xl_entry) != (name_size + OCFS2_XATTR_ROOT_SIZE)); loc->xl_ops->xlo_fill_value_buf(loc, vb); vb->vb_xv = (struct ocfs2_xattr_value_root *)ocfs2_xa_offset_pointer(loc, nameval_offset + name_size); } static int ocfs2_xa_block_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc, int type) { struct buffer_head *bh = loc->xl_storage; ocfs2_journal_access_func access; if (loc->xl_size == (bh->b_size - offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header))) access = ocfs2_journal_access_xb; else access = ocfs2_journal_access_di; return access(handle, INODE_CACHE(loc->xl_inode), bh, type); } static void ocfs2_xa_block_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc) { struct buffer_head *bh = loc->xl_storage; ocfs2_journal_dirty(handle, bh); } static void *ocfs2_xa_block_offset_pointer(struct ocfs2_xa_loc *loc, int offset) { return (char *)loc->xl_header + offset; } static int ocfs2_xa_block_can_reuse(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { /* * Block storage is strict. If the sizes aren't exact, we will * remove the old one and reinsert the new. */ return namevalue_size_xe(loc->xl_entry) == namevalue_size_xi(xi); } static int ocfs2_xa_block_get_free_start(struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_header *xh = loc->xl_header; int i, count = le16_to_cpu(xh->xh_count); int offset, free_start = loc->xl_size; for (i = 0; i < count; i++) { offset = le16_to_cpu(xh->xh_entries[i].xe_name_offset); if (offset < free_start) free_start = offset; } return free_start; } static int ocfs2_xa_block_check_space(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { int count = le16_to_cpu(loc->xl_header->xh_count); int free_start = ocfs2_xa_get_free_start(loc); int needed_space = ocfs2_xi_entry_usage(xi); /* * Block storage will reclaim the original entry before inserting * the new value, so we only need the difference. If the new * entry is smaller than the old one, we don't need anything. */ if (loc->xl_entry) { /* Don't need space if we're reusing! */ if (ocfs2_xa_can_reuse_entry(loc, xi)) needed_space = 0; else needed_space -= ocfs2_xe_entry_usage(loc->xl_entry); } if (needed_space < 0) needed_space = 0; return ocfs2_xa_check_space_helper(needed_space, free_start, count); } /* * Block storage for xattrs keeps the name+value pairs compacted. When * we remove one, we have to shift any that preceded it towards the end. */ static void ocfs2_xa_block_wipe_namevalue(struct ocfs2_xa_loc *loc) { int i, offset; int namevalue_offset, first_namevalue_offset, namevalue_size; struct ocfs2_xattr_entry *entry = loc->xl_entry; struct ocfs2_xattr_header *xh = loc->xl_header; int count = le16_to_cpu(xh->xh_count); namevalue_offset = le16_to_cpu(entry->xe_name_offset); namevalue_size = namevalue_size_xe(entry); first_namevalue_offset = ocfs2_xa_get_free_start(loc); /* Shift the name+value pairs */ memmove((char *)xh + first_namevalue_offset + namevalue_size, (char *)xh + first_namevalue_offset, namevalue_offset - first_namevalue_offset); memset((char *)xh + first_namevalue_offset, 0, namevalue_size); /* Now tell xh->xh_entries about it */ for (i = 0; i < count; i++) { offset = le16_to_cpu(xh->xh_entries[i].xe_name_offset); if (offset <= namevalue_offset) le16_add_cpu(&xh->xh_entries[i].xe_name_offset, namevalue_size); } /* * Note that we don't update xh_free_start or xh_name_value_len * because they're not used in block-stored xattrs. */ } static void ocfs2_xa_block_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash) { int count = le16_to_cpu(loc->xl_header->xh_count); loc->xl_entry = &(loc->xl_header->xh_entries[count]); le16_add_cpu(&loc->xl_header->xh_count, 1); memset(loc->xl_entry, 0, sizeof(struct ocfs2_xattr_entry)); } static void ocfs2_xa_block_add_namevalue(struct ocfs2_xa_loc *loc, int size) { int free_start = ocfs2_xa_get_free_start(loc); loc->xl_entry->xe_name_offset = cpu_to_le16(free_start - size); } static void ocfs2_xa_block_fill_value_buf(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb) { struct buffer_head *bh = loc->xl_storage; if (loc->xl_size == (bh->b_size - offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header))) vb->vb_access = ocfs2_journal_access_xb; else vb->vb_access = ocfs2_journal_access_di; vb->vb_bh = bh; } /* * Operations for xattrs stored in blocks. This includes inline inode * storage and unindexed ocfs2_xattr_blocks. */ static const struct ocfs2_xa_loc_operations ocfs2_xa_block_loc_ops = { .xlo_journal_access = ocfs2_xa_block_journal_access, .xlo_journal_dirty = ocfs2_xa_block_journal_dirty, .xlo_offset_pointer = ocfs2_xa_block_offset_pointer, .xlo_check_space = ocfs2_xa_block_check_space, .xlo_can_reuse = ocfs2_xa_block_can_reuse, .xlo_get_free_start = ocfs2_xa_block_get_free_start, .xlo_wipe_namevalue = ocfs2_xa_block_wipe_namevalue, .xlo_add_entry = ocfs2_xa_block_add_entry, .xlo_add_namevalue = ocfs2_xa_block_add_namevalue, .xlo_fill_value_buf = ocfs2_xa_block_fill_value_buf, }; static int ocfs2_xa_bucket_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc, int type) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; return ocfs2_xattr_bucket_journal_access(handle, bucket, type); } static void ocfs2_xa_bucket_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; ocfs2_xattr_bucket_journal_dirty(handle, bucket); } static void *ocfs2_xa_bucket_offset_pointer(struct ocfs2_xa_loc *loc, int offset) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; int block, block_offset; /* The header is at the front of the bucket */ block = offset >> loc->xl_inode->i_sb->s_blocksize_bits; block_offset = offset % loc->xl_inode->i_sb->s_blocksize; return bucket_block(bucket, block) + block_offset; } static int ocfs2_xa_bucket_can_reuse(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { return namevalue_size_xe(loc->xl_entry) >= namevalue_size_xi(xi); } static int ocfs2_xa_bucket_get_free_start(struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; return le16_to_cpu(bucket_xh(bucket)->xh_free_start); } static int ocfs2_bucket_align_free_start(struct super_block *sb, int free_start, int size) { /* * We need to make sure that the name+value pair fits within * one block. */ if (((free_start - size) >> sb->s_blocksize_bits) != ((free_start - 1) >> sb->s_blocksize_bits)) free_start -= free_start % sb->s_blocksize; return free_start; } static int ocfs2_xa_bucket_check_space(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { int rc; int count = le16_to_cpu(loc->xl_header->xh_count); int free_start = ocfs2_xa_get_free_start(loc); int needed_space = ocfs2_xi_entry_usage(xi); int size = namevalue_size_xi(xi); struct super_block *sb = loc->xl_inode->i_sb; /* * Bucket storage does not reclaim name+value pairs it cannot * reuse. They live as holes until the bucket fills, and then * the bucket is defragmented. However, the bucket can reclaim * the ocfs2_xattr_entry. */ if (loc->xl_entry) { /* Don't need space if we're reusing! */ if (ocfs2_xa_can_reuse_entry(loc, xi)) needed_space = 0; else needed_space -= sizeof(struct ocfs2_xattr_entry); } BUG_ON(needed_space < 0); if (free_start < size) { if (needed_space) return -ENOSPC; } else { /* * First we check if it would fit in the first place. * Below, we align the free start to a block. This may * slide us below the minimum gap. By checking unaligned * first, we avoid that error. */ rc = ocfs2_xa_check_space_helper(needed_space, free_start, count); if (rc) return rc; free_start = ocfs2_bucket_align_free_start(sb, free_start, size); } return ocfs2_xa_check_space_helper(needed_space, free_start, count); } static void ocfs2_xa_bucket_wipe_namevalue(struct ocfs2_xa_loc *loc) { le16_add_cpu(&loc->xl_header->xh_name_value_len, -namevalue_size_xe(loc->xl_entry)); } static void ocfs2_xa_bucket_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash) { struct ocfs2_xattr_header *xh = loc->xl_header; int count = le16_to_cpu(xh->xh_count); int low = 0, high = count - 1, tmp; struct ocfs2_xattr_entry *tmp_xe; /* * We keep buckets sorted by name_hash, so we need to find * our insert place. */ while (low <= high && count) { tmp = (low + high) / 2; tmp_xe = &xh->xh_entries[tmp]; if (name_hash > le32_to_cpu(tmp_xe->xe_name_hash)) low = tmp + 1; else if (name_hash < le32_to_cpu(tmp_xe->xe_name_hash)) high = tmp - 1; else { low = tmp; break; } } if (low != count) memmove(&xh->xh_entries[low + 1], &xh->xh_entries[low], ((count - low) * sizeof(struct ocfs2_xattr_entry))); le16_add_cpu(&xh->xh_count, 1); loc->xl_entry = &xh->xh_entries[low]; memset(loc->xl_entry, 0, sizeof(struct ocfs2_xattr_entry)); } static void ocfs2_xa_bucket_add_namevalue(struct ocfs2_xa_loc *loc, int size) { int free_start = ocfs2_xa_get_free_start(loc); struct ocfs2_xattr_header *xh = loc->xl_header; struct super_block *sb = loc->xl_inode->i_sb; int nameval_offset; free_start = ocfs2_bucket_align_free_start(sb, free_start, size); nameval_offset = free_start - size; loc->xl_entry->xe_name_offset = cpu_to_le16(nameval_offset); xh->xh_free_start = cpu_to_le16(nameval_offset); le16_add_cpu(&xh->xh_name_value_len, size); } static void ocfs2_xa_bucket_fill_value_buf(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; struct super_block *sb = loc->xl_inode->i_sb; int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); int size = namevalue_size_xe(loc->xl_entry); int block_offset = nameval_offset >> sb->s_blocksize_bits; /* Values are not allowed to straddle block boundaries */ BUG_ON(block_offset != ((nameval_offset + size - 1) >> sb->s_blocksize_bits)); /* We expect the bucket to be filled in */ BUG_ON(!bucket->bu_bhs[block_offset]); vb->vb_access = ocfs2_journal_access; vb->vb_bh = bucket->bu_bhs[block_offset]; } /* Operations for xattrs stored in buckets. */ static const struct ocfs2_xa_loc_operations ocfs2_xa_bucket_loc_ops = { .xlo_journal_access = ocfs2_xa_bucket_journal_access, .xlo_journal_dirty = ocfs2_xa_bucket_journal_dirty, .xlo_offset_pointer = ocfs2_xa_bucket_offset_pointer, .xlo_check_space = ocfs2_xa_bucket_check_space, .xlo_can_reuse = ocfs2_xa_bucket_can_reuse, .xlo_get_free_start = ocfs2_xa_bucket_get_free_start, .xlo_wipe_namevalue = ocfs2_xa_bucket_wipe_namevalue, .xlo_add_entry = ocfs2_xa_bucket_add_entry, .xlo_add_namevalue = ocfs2_xa_bucket_add_namevalue, .xlo_fill_value_buf = ocfs2_xa_bucket_fill_value_buf, }; static unsigned int ocfs2_xa_value_clusters(struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_value_buf vb; if (ocfs2_xattr_is_local(loc->xl_entry)) return 0; ocfs2_xa_fill_value_buf(loc, &vb); return le32_to_cpu(vb.vb_xv->xr_clusters); } static int ocfs2_xa_value_truncate(struct ocfs2_xa_loc *loc, u64 bytes, struct ocfs2_xattr_set_ctxt *ctxt) { int trunc_rc, access_rc; struct ocfs2_xattr_value_buf vb; ocfs2_xa_fill_value_buf(loc, &vb); trunc_rc = ocfs2_xattr_value_truncate(loc->xl_inode, &vb, bytes, ctxt); /* * The caller of ocfs2_xa_value_truncate() has already called * ocfs2_xa_journal_access on the loc. However, The truncate code * calls ocfs2_extend_trans(). This may commit the previous * transaction and open a new one. If this is a bucket, truncate * could leave only vb->vb_bh set up for journaling. Meanwhile, * the caller is expecting to dirty the entire bucket. So we must * reset the journal work. We do this even if truncate has failed, * as it could have failed after committing the extend. */ access_rc = ocfs2_xa_journal_access(ctxt->handle, loc, OCFS2_JOURNAL_ACCESS_WRITE); /* Errors in truncate take precedence */ return trunc_rc ? trunc_rc : access_rc; } static void ocfs2_xa_remove_entry(struct ocfs2_xa_loc *loc) { int index, count; struct ocfs2_xattr_header *xh = loc->xl_header; struct ocfs2_xattr_entry *entry = loc->xl_entry; ocfs2_xa_wipe_namevalue(loc); loc->xl_entry = NULL; le16_add_cpu(&xh->xh_count, -1); count = le16_to_cpu(xh->xh_count); /* * Only zero out the entry if there are more remaining. This is * important for an empty bucket, as it keeps track of the * bucket's hash value. It doesn't hurt empty block storage. */ if (count) { index = ((char *)entry - (char *)&xh->xh_entries) / sizeof(struct ocfs2_xattr_entry); memmove(&xh->xh_entries[index], &xh->xh_entries[index + 1], (count - index) * sizeof(struct ocfs2_xattr_entry)); memset(&xh->xh_entries[count], 0, sizeof(struct ocfs2_xattr_entry)); } } /* * If we have a problem adjusting the size of an external value during * ocfs2_xa_prepare_entry() or ocfs2_xa_remove(), we may have an xattr * in an intermediate state. For example, the value may be partially * truncated. * * If the value tree hasn't changed, the extend/truncate went nowhere. * We have nothing to do. The caller can treat it as a straight error. * * If the value tree got partially truncated, we now have a corrupted * extended attribute. We're going to wipe its entry and leak the * clusters. Better to leak some storage than leave a corrupt entry. * * If the value tree grew, it obviously didn't grow enough for the * new entry. We're not going to try and reclaim those clusters either. * If there was already an external value there (orig_clusters != 0), * the new clusters are attached safely and we can just leave the old * value in place. If there was no external value there, we remove * the entry. * * This way, the xattr block we store in the journal will be consistent. * If the size change broke because of the journal, no changes will hit * disk anyway. */ static void ocfs2_xa_cleanup_value_truncate(struct ocfs2_xa_loc *loc, const char *what, unsigned int orig_clusters) { unsigned int new_clusters = ocfs2_xa_value_clusters(loc); char *nameval_buf = ocfs2_xa_offset_pointer(loc, le16_to_cpu(loc->xl_entry->xe_name_offset)); if (new_clusters < orig_clusters) { mlog(ML_ERROR, "Partial truncate while %s xattr %.*s. Leaking " "%u clusters and removing the entry\n", what, loc->xl_entry->xe_name_len, nameval_buf, orig_clusters - new_clusters); ocfs2_xa_remove_entry(loc); } else if (!orig_clusters) { mlog(ML_ERROR, "Unable to allocate an external value for xattr " "%.*s safely. Leaking %u clusters and removing the " "entry\n", loc->xl_entry->xe_name_len, nameval_buf, new_clusters - orig_clusters); ocfs2_xa_remove_entry(loc); } else if (new_clusters > orig_clusters) mlog(ML_ERROR, "Unable to grow xattr %.*s safely. %u new clusters " "have been added, but the value will not be " "modified\n", loc->xl_entry->xe_name_len, nameval_buf, new_clusters - orig_clusters); } static int ocfs2_xa_remove(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; unsigned int orig_clusters; if (!ocfs2_xattr_is_local(loc->xl_entry)) { orig_clusters = ocfs2_xa_value_clusters(loc); rc = ocfs2_xa_value_truncate(loc, 0, ctxt); if (rc) { mlog_errno(rc); /* * Since this is remove, we can return 0 if * ocfs2_xa_cleanup_value_truncate() is going to * wipe the entry anyway. So we check the * cluster count as well. */ if (orig_clusters != ocfs2_xa_value_clusters(loc)) rc = 0; ocfs2_xa_cleanup_value_truncate(loc, "removing", orig_clusters); if (rc) goto out; } } ocfs2_xa_remove_entry(loc); out: return rc; } static void ocfs2_xa_install_value_root(struct ocfs2_xa_loc *loc) { int name_size = OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len); char *nameval_buf; nameval_buf = ocfs2_xa_offset_pointer(loc, le16_to_cpu(loc->xl_entry->xe_name_offset)); memcpy(nameval_buf + name_size, &def_xv, OCFS2_XATTR_ROOT_SIZE); } /* * Take an existing entry and make it ready for the new value. This * won't allocate space, but it may free space. It should be ready for * ocfs2_xa_prepare_entry() to finish the work. */ static int ocfs2_xa_reuse_entry(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; int name_size = OCFS2_XATTR_SIZE(xi->xi_name_len); unsigned int orig_clusters; char *nameval_buf; int xe_local = ocfs2_xattr_is_local(loc->xl_entry); int xi_local = xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE; BUG_ON(OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len) != name_size); nameval_buf = ocfs2_xa_offset_pointer(loc, le16_to_cpu(loc->xl_entry->xe_name_offset)); if (xe_local) { memset(nameval_buf + name_size, 0, namevalue_size_xe(loc->xl_entry) - name_size); if (!xi_local) ocfs2_xa_install_value_root(loc); } else { orig_clusters = ocfs2_xa_value_clusters(loc); if (xi_local) { rc = ocfs2_xa_value_truncate(loc, 0, ctxt); if (rc < 0) mlog_errno(rc); else memset(nameval_buf + name_size, 0, namevalue_size_xe(loc->xl_entry) - name_size); } else if (le64_to_cpu(loc->xl_entry->xe_value_size) > xi->xi_value_len) { rc = ocfs2_xa_value_truncate(loc, xi->xi_value_len, ctxt); if (rc < 0) mlog_errno(rc); } if (rc) { ocfs2_xa_cleanup_value_truncate(loc, "reusing", orig_clusters); goto out; } } loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len); ocfs2_xattr_set_local(loc->xl_entry, xi_local); out: return rc; } /* * Prepares loc->xl_entry to receive the new xattr. This includes * properly setting up the name+value pair region. If loc->xl_entry * already exists, it will take care of modifying it appropriately. * * Note that this modifies the data. You did journal_access already, * right? */ static int ocfs2_xa_prepare_entry(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, u32 name_hash, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; unsigned int orig_clusters; __le64 orig_value_size = 0; rc = ocfs2_xa_check_space(loc, xi); if (rc) goto out; if (loc->xl_entry) { if (ocfs2_xa_can_reuse_entry(loc, xi)) { orig_value_size = loc->xl_entry->xe_value_size; rc = ocfs2_xa_reuse_entry(loc, xi, ctxt); if (rc) goto out; goto alloc_value; } if (!ocfs2_xattr_is_local(loc->xl_entry)) { orig_clusters = ocfs2_xa_value_clusters(loc); rc = ocfs2_xa_value_truncate(loc, 0, ctxt); if (rc) { mlog_errno(rc); ocfs2_xa_cleanup_value_truncate(loc, "overwriting", orig_clusters); goto out; } } ocfs2_xa_wipe_namevalue(loc); } else ocfs2_xa_add_entry(loc, name_hash); /* * If we get here, we have a blank entry. Fill it. We grow our * name+value pair back from the end. */ ocfs2_xa_add_namevalue(loc, xi); if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) ocfs2_xa_install_value_root(loc); alloc_value: if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { orig_clusters = ocfs2_xa_value_clusters(loc); rc = ocfs2_xa_value_truncate(loc, xi->xi_value_len, ctxt); if (rc < 0) { ctxt->set_abort = 1; ocfs2_xa_cleanup_value_truncate(loc, "growing", orig_clusters); /* * If we were growing an existing value, * ocfs2_xa_cleanup_value_truncate() won't remove * the entry. We need to restore the original value * size. */ if (loc->xl_entry) { BUG_ON(!orig_value_size); loc->xl_entry->xe_value_size = orig_value_size; } mlog_errno(rc); } } out: return rc; } /* * Store the value portion of the name+value pair. This will skip * values that are stored externally. Their tree roots were set up * by ocfs2_xa_prepare_entry(). */ static int ocfs2_xa_store_value(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); int name_size = OCFS2_XATTR_SIZE(xi->xi_name_len); char *nameval_buf; struct ocfs2_xattr_value_buf vb; nameval_buf = ocfs2_xa_offset_pointer(loc, nameval_offset); if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { ocfs2_xa_fill_value_buf(loc, &vb); rc = __ocfs2_xattr_set_value_outside(loc->xl_inode, ctxt->handle, &vb, xi->xi_value, xi->xi_value_len); } else memcpy(nameval_buf + name_size, xi->xi_value, xi->xi_value_len); return rc; } static int ocfs2_xa_set(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u32 name_hash = ocfs2_xattr_name_hash(loc->xl_inode, xi->xi_name, xi->xi_name_len); ret = ocfs2_xa_journal_access(ctxt->handle, loc, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * From here on out, everything is going to modify the buffer a * little. Errors are going to leave the xattr header in a * sane state. Thus, even with errors we dirty the sucker. */ /* Don't worry, we are never called with !xi_value and !xl_entry */ if (!xi->xi_value) { ret = ocfs2_xa_remove(loc, ctxt); goto out_dirty; } ret = ocfs2_xa_prepare_entry(loc, xi, name_hash, ctxt); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out_dirty; } ret = ocfs2_xa_store_value(loc, xi, ctxt); if (ret) mlog_errno(ret); out_dirty: ocfs2_xa_journal_dirty(ctxt->handle, loc); out: return ret; } static void ocfs2_init_dinode_xa_loc(struct ocfs2_xa_loc *loc, struct inode *inode, struct buffer_head *bh, struct ocfs2_xattr_entry *entry) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_XATTR_FL)); loc->xl_inode = inode; loc->xl_ops = &ocfs2_xa_block_loc_ops; loc->xl_storage = bh; loc->xl_entry = entry; loc->xl_size = le16_to_cpu(di->i_xattr_inline_size); loc->xl_header = (struct ocfs2_xattr_header *)(bh->b_data + bh->b_size - loc->xl_size); } static void ocfs2_init_xattr_block_xa_loc(struct ocfs2_xa_loc *loc, struct inode *inode, struct buffer_head *bh, struct ocfs2_xattr_entry *entry) { struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)bh->b_data; BUG_ON(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED); loc->xl_inode = inode; loc->xl_ops = &ocfs2_xa_block_loc_ops; loc->xl_storage = bh; loc->xl_header = &(xb->xb_attrs.xb_header); loc->xl_entry = entry; loc->xl_size = bh->b_size - offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); } static void ocfs2_init_xattr_bucket_xa_loc(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_bucket *bucket, struct ocfs2_xattr_entry *entry) { loc->xl_inode = bucket->bu_inode; loc->xl_ops = &ocfs2_xa_bucket_loc_ops; loc->xl_storage = bucket; loc->xl_header = bucket_xh(bucket); loc->xl_entry = entry; loc->xl_size = OCFS2_XATTR_BUCKET_SIZE; } /* * In xattr remove, if it is stored outside and refcounted, we may have * the chance to split the refcount tree. So need the allocators. */ static int ocfs2_lock_xattr_remove_allocators(struct inode *inode, struct ocfs2_xattr_value_root *xv, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_alloc_context **meta_ac, int *ref_credits) { int ret, meta_add = 0; u32 p_cluster, num_clusters; unsigned int ext_flags; *ref_credits = 0; ret = ocfs2_xattr_get_clusters(inode, 0, &p_cluster, &num_clusters, &xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; ret = ocfs2_refcounted_xattr_delete_need(inode, ref_ci, ref_root_bh, xv, &meta_add, ref_credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_reserve_new_metadata_blocks(OCFS2_SB(inode->i_sb), meta_add, meta_ac); if (ret) mlog_errno(ret); out: return ret; } static int ocfs2_remove_value_outside(struct inode*inode, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_header *header, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { int ret = 0, i, ref_credits; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_xattr_set_ctxt ctxt = { NULL, NULL, }; void *val; ocfs2_init_dealloc_ctxt(&ctxt.dealloc); for (i = 0; i < le16_to_cpu(header->xh_count); i++) { struct ocfs2_xattr_entry *entry = &header->xh_entries[i]; if (ocfs2_xattr_is_local(entry)) continue; val = (void *)header + le16_to_cpu(entry->xe_name_offset); vb->vb_xv = (struct ocfs2_xattr_value_root *) (val + OCFS2_XATTR_SIZE(entry->xe_name_len)); ret = ocfs2_lock_xattr_remove_allocators(inode, vb->vb_xv, ref_ci, ref_root_bh, &ctxt.meta_ac, &ref_credits); ctxt.handle = ocfs2_start_trans(osb, ref_credits + ocfs2_remove_extent_credits(osb->sb)); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); break; } ret = ocfs2_xattr_value_truncate(inode, vb, 0, &ctxt); ocfs2_commit_trans(osb, ctxt.handle); if (ctxt.meta_ac) { ocfs2_free_alloc_context(ctxt.meta_ac); ctxt.meta_ac = NULL; } if (ret < 0) { mlog_errno(ret); break; } } if (ctxt.meta_ac) ocfs2_free_alloc_context(ctxt.meta_ac); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &ctxt.dealloc); return ret; } static int ocfs2_xattr_ibody_remove(struct inode *inode, struct buffer_head *di_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_xattr_header *header; int ret; struct ocfs2_xattr_value_buf vb = { .vb_bh = di_bh, .vb_access = ocfs2_journal_access_di, }; header = (struct ocfs2_xattr_header *) ((void *)di + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); ret = ocfs2_remove_value_outside(inode, &vb, header, ref_ci, ref_root_bh); return ret; } struct ocfs2_rm_xattr_bucket_para { struct ocfs2_caching_info *ref_ci; struct buffer_head *ref_root_bh; }; static int ocfs2_xattr_block_remove(struct inode *inode, struct buffer_head *blk_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { struct ocfs2_xattr_block *xb; int ret = 0; struct ocfs2_xattr_value_buf vb = { .vb_bh = blk_bh, .vb_access = ocfs2_journal_access_xb, }; struct ocfs2_rm_xattr_bucket_para args = { .ref_ci = ref_ci, .ref_root_bh = ref_root_bh, }; xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { struct ocfs2_xattr_header *header = &(xb->xb_attrs.xb_header); ret = ocfs2_remove_value_outside(inode, &vb, header, ref_ci, ref_root_bh); } else ret = ocfs2_iterate_xattr_index_block(inode, blk_bh, ocfs2_rm_xattr_cluster, &args); return ret; } static int ocfs2_xattr_free_block(struct inode *inode, u64 block, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { struct inode *xb_alloc_inode; struct buffer_head *xb_alloc_bh = NULL; struct buffer_head *blk_bh = NULL; struct ocfs2_xattr_block *xb; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle; int ret = 0; u64 blk, bg_blkno; u16 bit; ret = ocfs2_read_xattr_block(inode, block, &blk_bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_block_remove(inode, blk_bh, ref_ci, ref_root_bh); if (ret < 0) { mlog_errno(ret); goto out; } xb = (struct ocfs2_xattr_block *)blk_bh->b_data; blk = le64_to_cpu(xb->xb_blkno); bit = le16_to_cpu(xb->xb_suballoc_bit); if (xb->xb_suballoc_loc) bg_blkno = le64_to_cpu(xb->xb_suballoc_loc); else bg_blkno = ocfs2_which_suballoc_group(blk, bit); xb_alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(xb->xb_suballoc_slot)); if (!xb_alloc_inode) { ret = -ENOMEM; mlog_errno(ret); goto out; } inode_lock(xb_alloc_inode); ret = ocfs2_inode_lock(xb_alloc_inode, &xb_alloc_bh, 1); if (ret < 0) { mlog_errno(ret); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } ret = ocfs2_free_suballoc_bits(handle, xb_alloc_inode, xb_alloc_bh, bit, bg_blkno, 1); if (ret < 0) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out_unlock: ocfs2_inode_unlock(xb_alloc_inode, 1); brelse(xb_alloc_bh); out_mutex: inode_unlock(xb_alloc_inode); iput(xb_alloc_inode); out: brelse(blk_bh); return ret; } /* * ocfs2_xattr_remove() * * Free extended attribute resources associated with this inode. */ int ocfs2_xattr_remove(struct inode *inode, struct buffer_head *di_bh) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_refcount_tree *ref_tree = NULL; struct buffer_head *ref_root_bh = NULL; struct ocfs2_caching_info *ref_ci = NULL; handle_t *handle; int ret; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return 0; if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) return 0; if (ocfs2_is_refcount_inode(inode)) { ret = ocfs2_lock_refcount_tree(OCFS2_SB(inode->i_sb), le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ref_ci = &ref_tree->rf_ci; } if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_xattr_ibody_remove(inode, di_bh, ref_ci, ref_root_bh); if (ret < 0) { mlog_errno(ret); goto out; } } if (di->i_xattr_loc) { ret = ocfs2_xattr_free_block(inode, le64_to_cpu(di->i_xattr_loc), ref_ci, ref_root_bh); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans((OCFS2_SB(inode->i_sb)), OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } di->i_xattr_loc = 0; spin_lock(&oi->ip_lock); oi->ip_dyn_features &= ~(OCFS2_INLINE_XATTR_FL | OCFS2_HAS_XATTR_FL); di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: if (ref_tree) ocfs2_unlock_refcount_tree(OCFS2_SB(inode->i_sb), ref_tree, 1); brelse(ref_root_bh); return ret; } static int ocfs2_xattr_has_space_inline(struct inode *inode, struct ocfs2_dinode *di) { struct ocfs2_inode_info *oi = OCFS2_I(inode); unsigned int xattrsize = OCFS2_SB(inode->i_sb)->s_xattr_inline_size; int free; if (xattrsize < OCFS2_MIN_XATTR_INLINE_SIZE) return 0; if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { struct ocfs2_inline_data *idata = &di->id2.i_data; free = le16_to_cpu(idata->id_count) - le64_to_cpu(di->i_size); } else if (ocfs2_inode_is_fast_symlink(inode)) { free = ocfs2_fast_symlink_chars(inode->i_sb) - le64_to_cpu(di->i_size); } else { struct ocfs2_extent_list *el = &di->id2.i_list; free = (le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec)) * sizeof(struct ocfs2_extent_rec); } if (free >= xattrsize) return 1; return 0; } /* * ocfs2_xattr_ibody_find() * * Find extended attribute in inode block and * fill search info into struct ocfs2_xattr_search. */ static int ocfs2_xattr_ibody_find(struct inode *inode, int name_index, const char *name, struct ocfs2_xattr_search *xs) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; int ret; int has_space = 0; if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) return 0; if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) { down_read(&oi->ip_alloc_sem); has_space = ocfs2_xattr_has_space_inline(inode, di); up_read(&oi->ip_alloc_sem); if (!has_space) return 0; } xs->xattr_bh = xs->inode_bh; xs->end = (void *)di + inode->i_sb->s_blocksize; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) xs->header = (struct ocfs2_xattr_header *) (xs->end - le16_to_cpu(di->i_xattr_inline_size)); else xs->header = (struct ocfs2_xattr_header *) (xs->end - OCFS2_SB(inode->i_sb)->s_xattr_inline_size); xs->base = (void *)xs->header; xs->here = xs->header->xh_entries; /* Find the named attribute. */ if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_xattr_find_entry(name_index, name, xs); if (ret && ret != -ENODATA) return ret; xs->not_found = ret; } return 0; } static int ocfs2_xattr_ibody_init(struct inode *inode, struct buffer_head *di_bh, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int xattrsize = osb->s_xattr_inline_size; if (!ocfs2_xattr_has_space_inline(inode, di)) { ret = -ENOSPC; goto out; } ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * Adjust extent record count or inline data size * to reserve space for extended attribute. */ if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { struct ocfs2_inline_data *idata = &di->id2.i_data; le16_add_cpu(&idata->id_count, -xattrsize); } else if (!(ocfs2_inode_is_fast_symlink(inode))) { struct ocfs2_extent_list *el = &di->id2.i_list; le16_add_cpu(&el->l_count, -(xattrsize / sizeof(struct ocfs2_extent_rec))); } di->i_xattr_inline_size = cpu_to_le16(xattrsize); spin_lock(&oi->ip_lock); oi->ip_dyn_features |= OCFS2_INLINE_XATTR_FL|OCFS2_HAS_XATTR_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_journal_dirty(ctxt->handle, di_bh); out: return ret; } /* * ocfs2_xattr_ibody_set() * * Set, replace or remove an extended attribute into inode block. * */ static int ocfs2_xattr_ibody_set(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_xa_loc loc; if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) return -ENOSPC; down_write(&oi->ip_alloc_sem); if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) { ret = ocfs2_xattr_ibody_init(inode, xs->inode_bh, ctxt); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } } ocfs2_init_dinode_xa_loc(&loc, inode, xs->inode_bh, xs->not_found ? NULL : xs->here); ret = ocfs2_xa_set(&loc, xi, ctxt); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } xs->here = loc.xl_entry; out: up_write(&oi->ip_alloc_sem); return ret; } /* * ocfs2_xattr_block_find() * * Find extended attribute in external block and * fill search info into struct ocfs2_xattr_search. */ static int ocfs2_xattr_block_find(struct inode *inode, int name_index, const char *name, struct ocfs2_xattr_search *xs) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; struct buffer_head *blk_bh = NULL; struct ocfs2_xattr_block *xb; int ret = 0; if (!di->i_xattr_loc) return ret; ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); return ret; } xs->xattr_bh = blk_bh; xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { xs->header = &xb->xb_attrs.xb_header; xs->base = (void *)xs->header; xs->end = (void *)(blk_bh->b_data) + blk_bh->b_size; xs->here = xs->header->xh_entries; ret = ocfs2_xattr_find_entry(name_index, name, xs); } else ret = ocfs2_xattr_index_block_find(inode, blk_bh, name_index, name, xs); if (ret && ret != -ENODATA) { xs->xattr_bh = NULL; goto cleanup; } xs->not_found = ret; return 0; cleanup: brelse(blk_bh); return ret; } static int ocfs2_create_xattr_block(struct inode *inode, struct buffer_head *inode_bh, struct ocfs2_xattr_set_ctxt *ctxt, int indexed, struct buffer_head **ret_bh) { int ret; u16 suballoc_bit_start; u32 num_got; u64 suballoc_loc, first_blkno; struct ocfs2_dinode *di = (struct ocfs2_dinode *)inode_bh->b_data; struct buffer_head *new_bh = NULL; struct ocfs2_xattr_block *xblk; ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), inode_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret < 0) { mlog_errno(ret); goto end; } ret = ocfs2_claim_metadata(ctxt->handle, ctxt->meta_ac, 1, &suballoc_loc, &suballoc_bit_start, &num_got, &first_blkno); if (ret < 0) { mlog_errno(ret); goto end; } new_bh = sb_getblk(inode->i_sb, first_blkno); if (!new_bh) { ret = -ENOMEM; mlog_errno(ret); goto end; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), new_bh); ret = ocfs2_journal_access_xb(ctxt->handle, INODE_CACHE(inode), new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret < 0) { mlog_errno(ret); goto end; } /* Initialize ocfs2_xattr_block */ xblk = (struct ocfs2_xattr_block *)new_bh->b_data; memset(xblk, 0, inode->i_sb->s_blocksize); strcpy((void *)xblk, OCFS2_XATTR_BLOCK_SIGNATURE); xblk->xb_suballoc_slot = cpu_to_le16(ctxt->meta_ac->ac_alloc_slot); xblk->xb_suballoc_loc = cpu_to_le64(suballoc_loc); xblk->xb_suballoc_bit = cpu_to_le16(suballoc_bit_start); xblk->xb_fs_generation = cpu_to_le32(OCFS2_SB(inode->i_sb)->fs_generation); xblk->xb_blkno = cpu_to_le64(first_blkno); if (indexed) { struct ocfs2_xattr_tree_root *xr = &xblk->xb_attrs.xb_root; xr->xt_clusters = cpu_to_le32(1); xr->xt_last_eb_blk = 0; xr->xt_list.l_tree_depth = 0; xr->xt_list.l_count = cpu_to_le16( ocfs2_xattr_recs_per_xb(inode->i_sb)); xr->xt_list.l_next_free_rec = cpu_to_le16(1); xblk->xb_flags = cpu_to_le16(OCFS2_XATTR_INDEXED); } ocfs2_journal_dirty(ctxt->handle, new_bh); /* Add it to the inode */ di->i_xattr_loc = cpu_to_le64(first_blkno); spin_lock(&OCFS2_I(inode)->ip_lock); OCFS2_I(inode)->ip_dyn_features |= OCFS2_HAS_XATTR_FL; di->i_dyn_features = cpu_to_le16(OCFS2_I(inode)->ip_dyn_features); spin_unlock(&OCFS2_I(inode)->ip_lock); ocfs2_journal_dirty(ctxt->handle, inode_bh); *ret_bh = new_bh; new_bh = NULL; end: brelse(new_bh); return ret; } /* * ocfs2_xattr_block_set() * * Set, replace or remove an extended attribute into external block. * */ static int ocfs2_xattr_block_set(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { struct buffer_head *new_bh = NULL; struct ocfs2_xattr_block *xblk = NULL; int ret; struct ocfs2_xa_loc loc; if (!xs->xattr_bh) { ret = ocfs2_create_xattr_block(inode, xs->inode_bh, ctxt, 0, &new_bh); if (ret) { mlog_errno(ret); goto end; } xs->xattr_bh = new_bh; xblk = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data; xs->header = &xblk->xb_attrs.xb_header; xs->base = (void *)xs->header; xs->end = (void *)xblk + inode->i_sb->s_blocksize; xs->here = xs->header->xh_entries; } else xblk = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data; if (!(le16_to_cpu(xblk->xb_flags) & OCFS2_XATTR_INDEXED)) { ocfs2_init_xattr_block_xa_loc(&loc, inode, xs->xattr_bh, xs->not_found ? NULL : xs->here); ret = ocfs2_xa_set(&loc, xi, ctxt); if (!ret) xs->here = loc.xl_entry; else if ((ret != -ENOSPC) || ctxt->set_abort) goto end; else { ret = ocfs2_xattr_create_index_block(inode, xs, ctxt); if (ret) goto end; } } if (le16_to_cpu(xblk->xb_flags) & OCFS2_XATTR_INDEXED) ret = ocfs2_xattr_set_entry_index_block(inode, xi, xs, ctxt); end: return ret; } /* Check whether the new xattr can be inserted into the inode. */ static int ocfs2_xattr_can_be_in_inode(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs) { struct ocfs2_xattr_entry *last; int free, i; size_t min_offs = xs->end - xs->base; if (!xs->header) return 0; last = xs->header->xh_entries; for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) { size_t offs = le16_to_cpu(last->xe_name_offset); if (offs < min_offs) min_offs = offs; last += 1; } free = min_offs - ((void *)last - xs->base) - OCFS2_XATTR_HEADER_GAP; if (free < 0) return 0; BUG_ON(!xs->not_found); if (free >= (sizeof(struct ocfs2_xattr_entry) + namevalue_size_xi(xi))) return 1; return 0; } static int ocfs2_calc_xattr_set_need(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, int *clusters_need, int *meta_need, int *credits_need) { int ret = 0, old_in_xb = 0; int clusters_add = 0, meta_add = 0, credits = 0; struct buffer_head *bh = NULL; struct ocfs2_xattr_block *xb = NULL; struct ocfs2_xattr_entry *xe = NULL; struct ocfs2_xattr_value_root *xv = NULL; char *base = NULL; int name_offset, name_len = 0; u32 new_clusters = ocfs2_clusters_for_bytes(inode->i_sb, xi->xi_value_len); u64 value_size; /* * Calculate the clusters we need to write. * No matter whether we replace an old one or add a new one, * we need this for writing. */ if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) credits += new_clusters * ocfs2_clusters_to_blocks(inode->i_sb, 1); if (xis->not_found && xbs->not_found) { credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { clusters_add += new_clusters; credits += ocfs2_calc_extend_credits(inode->i_sb, &def_xv.xv.xr_list); } goto meta_guess; } if (!xis->not_found) { xe = xis->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); base = xis->base; credits += OCFS2_INODE_UPDATE_CREDITS; } else { int i, block_off = 0; xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data; xe = xbs->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); i = xbs->here - xbs->header->xh_entries; old_in_xb = 1; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(xbs->bucket), i, &block_off, &name_offset); base = bucket_block(xbs->bucket, block_off); credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); } else { base = xbs->base; credits += OCFS2_XATTR_BLOCK_UPDATE_CREDITS; } } /* * delete a xattr doesn't need metadata and cluster allocation. * so just calculate the credits and return. * * The credits for removing the value tree will be extended * by ocfs2_remove_extent itself. */ if (!xi->xi_value) { if (!ocfs2_xattr_is_local(xe)) credits += ocfs2_remove_extent_credits(inode->i_sb); goto out; } /* do cluster allocation guess first. */ value_size = le64_to_cpu(xe->xe_value_size); if (old_in_xb) { /* * In xattr set, we always try to set the xe in inode first, * so if it can be inserted into inode successfully, the old * one will be removed from the xattr block, and this xattr * will be inserted into inode as a new xattr in inode. */ if (ocfs2_xattr_can_be_in_inode(inode, xi, xis)) { clusters_add += new_clusters; credits += ocfs2_remove_extent_credits(inode->i_sb) + OCFS2_INODE_UPDATE_CREDITS; if (!ocfs2_xattr_is_local(xe)) credits += ocfs2_calc_extend_credits( inode->i_sb, &def_xv.xv.xr_list); goto out; } } if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { /* the new values will be stored outside. */ u32 old_clusters = 0; if (!ocfs2_xattr_is_local(xe)) { old_clusters = ocfs2_clusters_for_bytes(inode->i_sb, value_size); xv = (struct ocfs2_xattr_value_root *) (base + name_offset + name_len); value_size = OCFS2_XATTR_ROOT_SIZE; } else xv = &def_xv.xv; if (old_clusters >= new_clusters) { credits += ocfs2_remove_extent_credits(inode->i_sb); goto out; } else { meta_add += ocfs2_extend_meta_needed(&xv->xr_list); clusters_add += new_clusters - old_clusters; credits += ocfs2_calc_extend_credits(inode->i_sb, &xv->xr_list); if (value_size >= OCFS2_XATTR_ROOT_SIZE) goto out; } } else { /* * Now the new value will be stored inside. So if the new * value is smaller than the size of value root or the old * value, we don't need any allocation, otherwise we have * to guess metadata allocation. */ if ((ocfs2_xattr_is_local(xe) && (value_size >= xi->xi_value_len)) || (!ocfs2_xattr_is_local(xe) && OCFS2_XATTR_ROOT_SIZE >= xi->xi_value_len)) goto out; } meta_guess: /* calculate metadata allocation. */ if (di->i_xattr_loc) { if (!xbs->xattr_bh) { ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &bh); if (ret) { mlog_errno(ret); goto out; } xb = (struct ocfs2_xattr_block *)bh->b_data; } else xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data; /* * If there is already an xattr tree, good, we can calculate * like other b-trees. Otherwise we may have the chance of * create a tree, the credit calculation is borrowed from * ocfs2_calc_extend_credits with root_el = NULL. And the * new tree will be cluster based, so no meta is needed. */ if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { struct ocfs2_extent_list *el = &xb->xb_attrs.xb_root.xt_list; meta_add += ocfs2_extend_meta_needed(el); credits += ocfs2_calc_extend_credits(inode->i_sb, el); } else credits += OCFS2_SUBALLOC_ALLOC + 1; /* * This cluster will be used either for new bucket or for * new xattr block. * If the cluster size is the same as the bucket size, one * more is needed since we may need to extend the bucket * also. */ clusters_add += 1; credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); if (OCFS2_XATTR_BUCKET_SIZE == OCFS2_SB(inode->i_sb)->s_clustersize) { credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); clusters_add += 1; } } else { credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS; if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { struct ocfs2_extent_list *el = &def_xv.xv.xr_list; meta_add += ocfs2_extend_meta_needed(el); credits += ocfs2_calc_extend_credits(inode->i_sb, el); } else { meta_add += 1; } } out: if (clusters_need) *clusters_need = clusters_add; if (meta_need) *meta_need = meta_add; if (credits_need) *credits_need = credits; brelse(bh); return ret; } static int ocfs2_init_xattr_set_ctxt(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_xattr_set_ctxt *ctxt, int extra_meta, int *credits) { int clusters_add, meta_add, ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); memset(ctxt, 0, sizeof(struct ocfs2_xattr_set_ctxt)); ocfs2_init_dealloc_ctxt(&ctxt->dealloc); ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, &clusters_add, &meta_add, credits); if (ret) { mlog_errno(ret); return ret; } meta_add += extra_meta; trace_ocfs2_init_xattr_set_ctxt(xi->xi_name, meta_add, clusters_add, *credits); if (meta_add) { ret = ocfs2_reserve_new_metadata_blocks(osb, meta_add, &ctxt->meta_ac); if (ret) { mlog_errno(ret); goto out; } } if (clusters_add) { ret = ocfs2_reserve_clusters(osb, clusters_add, &ctxt->data_ac); if (ret) mlog_errno(ret); } out: if (ret) { if (ctxt->meta_ac) { ocfs2_free_alloc_context(ctxt->meta_ac); ctxt->meta_ac = NULL; } /* * We cannot have an error and a non null ctxt->data_ac. */ } return ret; } static int __ocfs2_xattr_set_handle(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret = 0, credits, old_found; if (!xi->xi_value) { /* Remove existing extended attribute */ if (!xis->not_found) ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt); else if (!xbs->not_found) ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt); } else { /* We always try to set extended attribute into inode first*/ ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt); if (!ret && !xbs->not_found) { /* * If succeed and that extended attribute existing in * external block, then we will remove it. */ xi->xi_value = NULL; xi->xi_value_len = 0; old_found = xis->not_found; xis->not_found = -ENODATA; ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, NULL, NULL, &credits); xis->not_found = old_found; if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_extend_trans(ctxt->handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt); } else if ((ret == -ENOSPC) && !ctxt->set_abort) { if (di->i_xattr_loc && !xbs->xattr_bh) { ret = ocfs2_xattr_block_find(inode, xi->xi_name_index, xi->xi_name, xbs); if (ret) goto out; old_found = xis->not_found; xis->not_found = -ENODATA; ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, NULL, NULL, &credits); xis->not_found = old_found; if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_extend_trans(ctxt->handle, credits); if (ret) { mlog_errno(ret); goto out; } } /* * If no space in inode, we will set extended attribute * into external block. */ ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt); if (ret) goto out; if (!xis->not_found) { /* * If succeed and that extended attribute * existing in inode, we will remove it. */ xi->xi_value = NULL; xi->xi_value_len = 0; xbs->not_found = -ENODATA; ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, NULL, NULL, &credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_extend_trans(ctxt->handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt); } } } if (!ret) { /* Update inode ctime. */ ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), xis->inode_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } inode_set_ctime_current(inode); di->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec); di->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_journal_dirty(ctxt->handle, xis->inode_bh); } out: return ret; } /* * This function only called duing creating inode * for init security/acl xattrs of the new inode. * All transanction credits have been reserved in mknod. */ int ocfs2_xattr_set_handle(handle_t *handle, struct inode *inode, struct buffer_head *di_bh, int name_index, const char *name, const void *value, size_t value_len, int flags, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac) { struct ocfs2_dinode *di; int ret; struct ocfs2_xattr_info xi = { .xi_name_index = name_index, .xi_name = name, .xi_name_len = strlen(name), .xi_value = value, .xi_value_len = value_len, }; struct ocfs2_xattr_search xis = { .not_found = -ENODATA, }; struct ocfs2_xattr_search xbs = { .not_found = -ENODATA, }; struct ocfs2_xattr_set_ctxt ctxt = { .handle = handle, .meta_ac = meta_ac, .data_ac = data_ac, }; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; /* * In extreme situation, may need xattr bucket when * block size is too small. And we have already reserved * the credits for bucket in mknod. */ if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) { xbs.bucket = ocfs2_xattr_bucket_new(inode); if (!xbs.bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } } xis.inode_bh = xbs.inode_bh = di_bh; di = (struct ocfs2_dinode *)di_bh->b_data; down_write(&OCFS2_I(inode)->ip_xattr_sem); ret = ocfs2_xattr_ibody_find(inode, name_index, name, &xis); if (ret) goto cleanup; if (xis.not_found) { ret = ocfs2_xattr_block_find(inode, name_index, name, &xbs); if (ret) goto cleanup; } ret = __ocfs2_xattr_set_handle(inode, di, &xi, &xis, &xbs, &ctxt); cleanup: up_write(&OCFS2_I(inode)->ip_xattr_sem); brelse(xbs.xattr_bh); ocfs2_xattr_bucket_free(xbs.bucket); return ret; } /* * ocfs2_xattr_set() * * Set, replace or remove an extended attribute for this inode. * value is NULL to remove an existing extended attribute, else either * create or replace an extended attribute. */ int ocfs2_xattr_set(struct inode *inode, int name_index, const char *name, const void *value, size_t value_len, int flags) { struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; int ret, credits, had_lock, ref_meta = 0, ref_credits = 0; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_xattr_set_ctxt ctxt = { NULL, NULL, NULL, }; struct ocfs2_refcount_tree *ref_tree = NULL; struct ocfs2_lock_holder oh; struct ocfs2_xattr_info xi = { .xi_name_index = name_index, .xi_name = name, .xi_name_len = strlen(name), .xi_value = value, .xi_value_len = value_len, }; struct ocfs2_xattr_search xis = { .not_found = -ENODATA, }; struct ocfs2_xattr_search xbs = { .not_found = -ENODATA, }; if (!ocfs2_supports_xattr(osb)) return -EOPNOTSUPP; /* * Only xbs will be used on indexed trees. xis doesn't need a * bucket. */ xbs.bucket = ocfs2_xattr_bucket_new(inode); if (!xbs.bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } had_lock = ocfs2_inode_lock_tracker(inode, &di_bh, 1, &oh); if (had_lock < 0) { ret = had_lock; mlog_errno(ret); goto cleanup_nolock; } xis.inode_bh = xbs.inode_bh = di_bh; di = (struct ocfs2_dinode *)di_bh->b_data; down_write(&OCFS2_I(inode)->ip_xattr_sem); /* * Scan inode and external block to find the same name * extended attribute and collect search information. */ ret = ocfs2_xattr_ibody_find(inode, name_index, name, &xis); if (ret) goto cleanup; if (xis.not_found) { ret = ocfs2_xattr_block_find(inode, name_index, name, &xbs); if (ret) goto cleanup; } if (xis.not_found && xbs.not_found) { ret = -ENODATA; if (flags & XATTR_REPLACE) goto cleanup; ret = 0; if (!value) goto cleanup; } else { ret = -EEXIST; if (flags & XATTR_CREATE) goto cleanup; } /* Check whether the value is refcounted and do some preparation. */ if (ocfs2_is_refcount_inode(inode) && (!xis.not_found || !xbs.not_found)) { ret = ocfs2_prepare_refcount_xattr(inode, di, &xi, &xis, &xbs, &ref_tree, &ref_meta, &ref_credits); if (ret) { mlog_errno(ret); goto cleanup; } } inode_lock(tl_inode); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { inode_unlock(tl_inode); mlog_errno(ret); goto cleanup; } } inode_unlock(tl_inode); ret = ocfs2_init_xattr_set_ctxt(inode, di, &xi, &xis, &xbs, &ctxt, ref_meta, &credits); if (ret) { mlog_errno(ret); goto cleanup; } /* we need to update inode's ctime field, so add credit for it. */ credits += OCFS2_INODE_UPDATE_CREDITS; ctxt.handle = ocfs2_start_trans(osb, credits + ref_credits); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); goto out_free_ac; } ret = __ocfs2_xattr_set_handle(inode, di, &xi, &xis, &xbs, &ctxt); ocfs2_update_inode_fsync_trans(ctxt.handle, inode, 0); ocfs2_commit_trans(osb, ctxt.handle); out_free_ac: if (ctxt.data_ac) ocfs2_free_alloc_context(ctxt.data_ac); if (ctxt.meta_ac) ocfs2_free_alloc_context(ctxt.meta_ac); if (ocfs2_dealloc_has_cluster(&ctxt.dealloc)) ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &ctxt.dealloc); cleanup: if (ref_tree) ocfs2_unlock_refcount_tree(osb, ref_tree, 1); up_write(&OCFS2_I(inode)->ip_xattr_sem); if (!value && !ret) { ret = ocfs2_try_remove_refcount_tree(inode, di_bh); if (ret) mlog_errno(ret); } ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); cleanup_nolock: brelse(di_bh); brelse(xbs.xattr_bh); ocfs2_xattr_bucket_free(xbs.bucket); return ret; } /* * Find the xattr extent rec which may contains name_hash. * e_cpos will be the first name hash of the xattr rec. * el must be the ocfs2_xattr_header.xb_attrs.xb_root.xt_list. */ static int ocfs2_xattr_get_rec(struct inode *inode, u32 name_hash, u64 *p_blkno, u32 *e_cpos, u32 *num_clusters, struct ocfs2_extent_list *el) { int ret = 0, i; struct buffer_head *eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_rec *rec = NULL; u64 e_blkno = 0; if (el->l_tree_depth) { ret = ocfs2_find_leaf(INODE_CACHE(inode), el, name_hash, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ret = ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in xattr tree block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); goto out; } } for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) <= name_hash) { e_blkno = le64_to_cpu(rec->e_blkno); break; } } if (!e_blkno) { ret = ocfs2_error(inode->i_sb, "Inode %lu has bad extent record (%u, %u, 0) in xattr\n", inode->i_ino, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); goto out; } *p_blkno = le64_to_cpu(rec->e_blkno); *num_clusters = le16_to_cpu(rec->e_leaf_clusters); if (e_cpos) *e_cpos = le32_to_cpu(rec->e_cpos); out: brelse(eb_bh); return ret; } typedef int (xattr_bucket_func)(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para); static int ocfs2_find_xe_in_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, int name_index, const char *name, u32 name_hash, u16 *xe_index, int *found) { int i, ret = 0, cmp = 1, block_off, new_offset; struct ocfs2_xattr_header *xh = bucket_xh(bucket); size_t name_len = strlen(name); struct ocfs2_xattr_entry *xe = NULL; char *xe_name; /* * We don't use binary search in the bucket because there * may be multiple entries with the same name hash. */ for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (name_hash > le32_to_cpu(xe->xe_name_hash)) continue; else if (name_hash < le32_to_cpu(xe->xe_name_hash)) break; cmp = name_index - ocfs2_xattr_get_type(xe); if (!cmp) cmp = name_len - xe->xe_name_len; if (cmp) continue; ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, xh, i, &block_off, &new_offset); if (ret) { mlog_errno(ret); break; } xe_name = bucket_block(bucket, block_off) + new_offset; if (!memcmp(name, xe_name, name_len)) { *xe_index = i; *found = 1; ret = 0; break; } } return ret; } /* * Find the specified xattr entry in a series of buckets. * This series start from p_blkno and last for num_clusters. * The ocfs2_xattr_header.xh_num_buckets of the first bucket contains * the num of the valid buckets. * * Return the buffer_head this xattr should reside in. And if the xattr's * hash is in the gap of 2 buckets, return the lower bucket. */ static int ocfs2_xattr_bucket_find(struct inode *inode, int name_index, const char *name, u32 name_hash, u64 p_blkno, u32 first_hash, u32 num_clusters, struct ocfs2_xattr_search *xs) { int ret, found = 0; struct ocfs2_xattr_header *xh = NULL; struct ocfs2_xattr_entry *xe = NULL; u16 index = 0; u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); int low_bucket = 0, bucket, high_bucket; struct ocfs2_xattr_bucket *search; u64 blkno, lower_blkno = 0; search = ocfs2_xattr_bucket_new(inode); if (!search) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(search, p_blkno); if (ret) { mlog_errno(ret); goto out; } xh = bucket_xh(search); high_bucket = le16_to_cpu(xh->xh_num_buckets) - 1; while (low_bucket <= high_bucket) { ocfs2_xattr_bucket_relse(search); bucket = (low_bucket + high_bucket) / 2; blkno = p_blkno + bucket * blk_per_bucket; ret = ocfs2_read_xattr_bucket(search, blkno); if (ret) { mlog_errno(ret); goto out; } xh = bucket_xh(search); xe = &xh->xh_entries[0]; if (name_hash < le32_to_cpu(xe->xe_name_hash)) { high_bucket = bucket - 1; continue; } /* * Check whether the hash of the last entry in our * bucket is larger than the search one. for an empty * bucket, the last one is also the first one. */ if (xh->xh_count) xe = &xh->xh_entries[le16_to_cpu(xh->xh_count) - 1]; /* record lower_blkno which may be the insert place. */ lower_blkno = blkno; if (name_hash > le32_to_cpu(xe->xe_name_hash)) { low_bucket = bucket + 1; continue; } /* the searched xattr should reside in this bucket if exists. */ ret = ocfs2_find_xe_in_bucket(inode, search, name_index, name, name_hash, &index, &found); if (ret) { mlog_errno(ret); goto out; } break; } /* * Record the bucket we have found. * When the xattr's hash value is in the gap of 2 buckets, we will * always set it to the previous bucket. */ if (!lower_blkno) lower_blkno = p_blkno; /* This should be in cache - we just read it during the search */ ret = ocfs2_read_xattr_bucket(xs->bucket, lower_blkno); if (ret) { mlog_errno(ret); goto out; } xs->header = bucket_xh(xs->bucket); xs->base = bucket_block(xs->bucket, 0); xs->end = xs->base + inode->i_sb->s_blocksize; if (found) { xs->here = &xs->header->xh_entries[index]; trace_ocfs2_xattr_bucket_find(OCFS2_I(inode)->ip_blkno, name, name_index, name_hash, (unsigned long long)bucket_blkno(xs->bucket), index); } else ret = -ENODATA; out: ocfs2_xattr_bucket_free(search); return ret; } static int ocfs2_xattr_index_block_find(struct inode *inode, struct buffer_head *root_bh, int name_index, const char *name, struct ocfs2_xattr_search *xs) { int ret; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)root_bh->b_data; struct ocfs2_xattr_tree_root *xb_root = &xb->xb_attrs.xb_root; struct ocfs2_extent_list *el = &xb_root->xt_list; u64 p_blkno = 0; u32 first_hash, num_clusters = 0; u32 name_hash = ocfs2_xattr_name_hash(inode, name, strlen(name)); if (le16_to_cpu(el->l_next_free_rec) == 0) return -ENODATA; trace_ocfs2_xattr_index_block_find(OCFS2_I(inode)->ip_blkno, name, name_index, name_hash, (unsigned long long)root_bh->b_blocknr, -1); ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &first_hash, &num_clusters, el); if (ret) { mlog_errno(ret); goto out; } BUG_ON(p_blkno == 0 || num_clusters == 0 || first_hash > name_hash); trace_ocfs2_xattr_index_block_find_rec(OCFS2_I(inode)->ip_blkno, name, name_index, first_hash, (unsigned long long)p_blkno, num_clusters); ret = ocfs2_xattr_bucket_find(inode, name_index, name, name_hash, p_blkno, first_hash, num_clusters, xs); out: return ret; } static int ocfs2_iterate_xattr_buckets(struct inode *inode, u64 blkno, u32 clusters, xattr_bucket_func *func, void *para) { int i, ret = 0; u32 bpc = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)); u32 num_buckets = clusters * bpc; struct ocfs2_xattr_bucket *bucket; bucket = ocfs2_xattr_bucket_new(inode); if (!bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } trace_ocfs2_iterate_xattr_buckets( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)blkno, clusters); for (i = 0; i < num_buckets; i++, blkno += bucket->bu_blocks) { ret = ocfs2_read_xattr_bucket(bucket, blkno); if (ret) { mlog_errno(ret); break; } /* * The real bucket num in this series of blocks is stored * in the 1st bucket. */ if (i == 0) num_buckets = le16_to_cpu(bucket_xh(bucket)->xh_num_buckets); trace_ocfs2_iterate_xattr_bucket((unsigned long long)blkno, le32_to_cpu(bucket_xh(bucket)->xh_entries[0].xe_name_hash)); if (func) { ret = func(inode, bucket, para); if (ret && ret != -ERANGE) mlog_errno(ret); /* Fall through to bucket_relse() */ } ocfs2_xattr_bucket_relse(bucket); if (ret) break; } ocfs2_xattr_bucket_free(bucket); return ret; } struct ocfs2_xattr_tree_list { char *buffer; size_t buffer_size; size_t result; }; static int ocfs2_xattr_bucket_get_name_value(struct super_block *sb, struct ocfs2_xattr_header *xh, int index, int *block_off, int *new_offset) { u16 name_offset; if (index < 0 || index >= le16_to_cpu(xh->xh_count)) return -EINVAL; name_offset = le16_to_cpu(xh->xh_entries[index].xe_name_offset); *block_off = name_offset >> sb->s_blocksize_bits; *new_offset = name_offset % sb->s_blocksize; return 0; } static int ocfs2_list_xattr_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { int ret = 0, type; struct ocfs2_xattr_tree_list *xl = (struct ocfs2_xattr_tree_list *)para; int i, block_off, new_offset; const char *name; for (i = 0 ; i < le16_to_cpu(bucket_xh(bucket)->xh_count); i++) { struct ocfs2_xattr_entry *entry = &bucket_xh(bucket)->xh_entries[i]; type = ocfs2_xattr_get_type(entry); ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(bucket), i, &block_off, &new_offset); if (ret) break; name = (const char *)bucket_block(bucket, block_off) + new_offset; ret = ocfs2_xattr_list_entry(inode->i_sb, xl->buffer, xl->buffer_size, &xl->result, type, name, entry->xe_name_len); if (ret) break; } return ret; } static int ocfs2_iterate_xattr_index_block(struct inode *inode, struct buffer_head *blk_bh, xattr_tree_rec_func *rec_func, void *para) { struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; struct ocfs2_extent_list *el = &xb->xb_attrs.xb_root.xt_list; int ret = 0; u32 name_hash = UINT_MAX, e_cpos = 0, num_clusters = 0; u64 p_blkno = 0; if (!el->l_next_free_rec || !rec_func) return 0; while (name_hash > 0) { ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &e_cpos, &num_clusters, el); if (ret) { mlog_errno(ret); break; } ret = rec_func(inode, blk_bh, p_blkno, e_cpos, num_clusters, para); if (ret) { if (ret != -ERANGE) mlog_errno(ret); break; } if (e_cpos == 0) break; name_hash = e_cpos - 1; } return ret; } static int ocfs2_list_xattr_tree_rec(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { return ocfs2_iterate_xattr_buckets(inode, blkno, len, ocfs2_list_xattr_bucket, para); } static int ocfs2_xattr_tree_list_index_block(struct inode *inode, struct buffer_head *blk_bh, char *buffer, size_t buffer_size) { int ret; struct ocfs2_xattr_tree_list xl = { .buffer = buffer, .buffer_size = buffer_size, .result = 0, }; ret = ocfs2_iterate_xattr_index_block(inode, blk_bh, ocfs2_list_xattr_tree_rec, &xl); if (ret) { mlog_errno(ret); goto out; } ret = xl.result; out: return ret; } static int cmp_xe(const void *a, const void *b) { const struct ocfs2_xattr_entry *l = a, *r = b; u32 l_hash = le32_to_cpu(l->xe_name_hash); u32 r_hash = le32_to_cpu(r->xe_name_hash); if (l_hash > r_hash) return 1; if (l_hash < r_hash) return -1; return 0; } static void swap_xe(void *a, void *b, int size) { struct ocfs2_xattr_entry *l = a, *r = b, tmp; tmp = *l; memcpy(l, r, sizeof(struct ocfs2_xattr_entry)); memcpy(r, &tmp, sizeof(struct ocfs2_xattr_entry)); } /* * When the ocfs2_xattr_block is filled up, new bucket will be created * and all the xattr entries will be moved to the new bucket. * The header goes at the start of the bucket, and the names+values are * filled from the end. This is why *target starts as the last buffer. * Note: we need to sort the entries since they are not saved in order * in the ocfs2_xattr_block. */ static void ocfs2_cp_xattr_block_to_bucket(struct inode *inode, struct buffer_head *xb_bh, struct ocfs2_xattr_bucket *bucket) { int i, blocksize = inode->i_sb->s_blocksize; int blks = ocfs2_blocks_per_xattr_bucket(inode->i_sb); u16 offset, size, off_change; struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)xb_bh->b_data; struct ocfs2_xattr_header *xb_xh = &xb->xb_attrs.xb_header; struct ocfs2_xattr_header *xh = bucket_xh(bucket); u16 count = le16_to_cpu(xb_xh->xh_count); char *src = xb_bh->b_data; char *target = bucket_block(bucket, blks - 1); trace_ocfs2_cp_xattr_block_to_bucket_begin( (unsigned long long)xb_bh->b_blocknr, (unsigned long long)bucket_blkno(bucket)); for (i = 0; i < blks; i++) memset(bucket_block(bucket, i), 0, blocksize); /* * Since the xe_name_offset is based on ocfs2_xattr_header, * there is a offset change corresponding to the change of * ocfs2_xattr_header's position. */ off_change = offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); xe = &xb_xh->xh_entries[count - 1]; offset = le16_to_cpu(xe->xe_name_offset) + off_change; size = blocksize - offset; /* copy all the names and values. */ memcpy(target + offset, src + offset, size); /* Init new header now. */ xh->xh_count = xb_xh->xh_count; xh->xh_num_buckets = cpu_to_le16(1); xh->xh_name_value_len = cpu_to_le16(size); xh->xh_free_start = cpu_to_le16(OCFS2_XATTR_BUCKET_SIZE - size); /* copy all the entries. */ target = bucket_block(bucket, 0); offset = offsetof(struct ocfs2_xattr_header, xh_entries); size = count * sizeof(struct ocfs2_xattr_entry); memcpy(target + offset, (char *)xb_xh + offset, size); /* Change the xe offset for all the xe because of the move. */ off_change = OCFS2_XATTR_BUCKET_SIZE - blocksize + offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); for (i = 0; i < count; i++) le16_add_cpu(&xh->xh_entries[i].xe_name_offset, off_change); trace_ocfs2_cp_xattr_block_to_bucket_end(offset, size, off_change); sort(target + offset, count, sizeof(struct ocfs2_xattr_entry), cmp_xe, swap_xe); } /* * After we move xattr from block to index btree, we have to * update ocfs2_xattr_search to the new xe and base. * * When the entry is in xattr block, xattr_bh indicates the storage place. * While if the entry is in index b-tree, "bucket" indicates the * real place of the xattr. */ static void ocfs2_xattr_update_xattr_search(struct inode *inode, struct ocfs2_xattr_search *xs, struct buffer_head *old_bh) { char *buf = old_bh->b_data; struct ocfs2_xattr_block *old_xb = (struct ocfs2_xattr_block *)buf; struct ocfs2_xattr_header *old_xh = &old_xb->xb_attrs.xb_header; int i; xs->header = bucket_xh(xs->bucket); xs->base = bucket_block(xs->bucket, 0); xs->end = xs->base + inode->i_sb->s_blocksize; if (xs->not_found) return; i = xs->here - old_xh->xh_entries; xs->here = &xs->header->xh_entries[i]; } static int ocfs2_xattr_create_index_block(struct inode *inode, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u32 bit_off, len; u64 blkno; handle_t *handle = ctxt->handle; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct buffer_head *xb_bh = xs->xattr_bh; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)xb_bh->b_data; struct ocfs2_xattr_tree_root *xr; u16 xb_flags = le16_to_cpu(xb->xb_flags); trace_ocfs2_xattr_create_index_block_begin( (unsigned long long)xb_bh->b_blocknr); BUG_ON(xb_flags & OCFS2_XATTR_INDEXED); BUG_ON(!xs->bucket); /* * XXX: * We can use this lock for now, and maybe move to a dedicated mutex * if performance becomes a problem later. */ down_write(&oi->ip_alloc_sem); ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), xb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = __ocfs2_claim_clusters(handle, ctxt->data_ac, 1, 1, &bit_off, &len); if (ret) { mlog_errno(ret); goto out; } /* * The bucket may spread in many blocks, and * we will only touch the 1st block and the last block * in the whole bucket(one for entry and one for data). */ blkno = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); trace_ocfs2_xattr_create_index_block((unsigned long long)blkno); ret = ocfs2_init_xattr_bucket(xs->bucket, blkno, 1); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, xs->bucket, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out; } ocfs2_cp_xattr_block_to_bucket(inode, xb_bh, xs->bucket); ocfs2_xattr_bucket_journal_dirty(handle, xs->bucket); ocfs2_xattr_update_xattr_search(inode, xs, xb_bh); /* Change from ocfs2_xattr_header to ocfs2_xattr_tree_root */ memset(&xb->xb_attrs, 0, inode->i_sb->s_blocksize - offsetof(struct ocfs2_xattr_block, xb_attrs)); xr = &xb->xb_attrs.xb_root; xr->xt_clusters = cpu_to_le32(1); xr->xt_last_eb_blk = 0; xr->xt_list.l_tree_depth = 0; xr->xt_list.l_count = cpu_to_le16(ocfs2_xattr_recs_per_xb(inode->i_sb)); xr->xt_list.l_next_free_rec = cpu_to_le16(1); xr->xt_list.l_recs[0].e_cpos = 0; xr->xt_list.l_recs[0].e_blkno = cpu_to_le64(blkno); xr->xt_list.l_recs[0].e_leaf_clusters = cpu_to_le16(1); xb->xb_flags = cpu_to_le16(xb_flags | OCFS2_XATTR_INDEXED); ocfs2_journal_dirty(handle, xb_bh); out: up_write(&oi->ip_alloc_sem); return ret; } static int cmp_xe_offset(const void *a, const void *b) { const struct ocfs2_xattr_entry *l = a, *r = b; u32 l_name_offset = le16_to_cpu(l->xe_name_offset); u32 r_name_offset = le16_to_cpu(r->xe_name_offset); if (l_name_offset < r_name_offset) return 1; if (l_name_offset > r_name_offset) return -1; return 0; } /* * defrag a xattr bucket if we find that the bucket has some * holes beteen name/value pairs. * We will move all the name/value pairs to the end of the bucket * so that we can spare some space for insertion. */ static int ocfs2_defrag_xattr_bucket(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *bucket) { int ret, i; size_t end, offset, len; struct ocfs2_xattr_header *xh; char *entries, *buf, *bucket_buf = NULL; u64 blkno = bucket_blkno(bucket); u16 xh_free_start; size_t blocksize = inode->i_sb->s_blocksize; struct ocfs2_xattr_entry *xe; /* * In order to make the operation more efficient and generic, * we copy all the blocks into a contiguous memory and do the * defragment there, so if anything is error, we will not touch * the real block. */ bucket_buf = kmalloc(OCFS2_XATTR_BUCKET_SIZE, GFP_NOFS); if (!bucket_buf) { ret = -EIO; goto out; } buf = bucket_buf; for (i = 0; i < bucket->bu_blocks; i++, buf += blocksize) memcpy(buf, bucket_block(bucket, i), blocksize); ret = ocfs2_xattr_bucket_journal_access(handle, bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } xh = (struct ocfs2_xattr_header *)bucket_buf; entries = (char *)xh->xh_entries; xh_free_start = le16_to_cpu(xh->xh_free_start); trace_ocfs2_defrag_xattr_bucket( (unsigned long long)blkno, le16_to_cpu(xh->xh_count), xh_free_start, le16_to_cpu(xh->xh_name_value_len)); /* * sort all the entries by their offset. * the largest will be the first, so that we can * move them to the end one by one. */ sort(entries, le16_to_cpu(xh->xh_count), sizeof(struct ocfs2_xattr_entry), cmp_xe_offset, swap_xe); /* Move all name/values to the end of the bucket. */ xe = xh->xh_entries; end = OCFS2_XATTR_BUCKET_SIZE; for (i = 0; i < le16_to_cpu(xh->xh_count); i++, xe++) { offset = le16_to_cpu(xe->xe_name_offset); len = namevalue_size_xe(xe); /* * We must make sure that the name/value pair * exist in the same block. So adjust end to * the previous block end if needed. */ if (((end - len) / blocksize != (end - 1) / blocksize)) end = end - end % blocksize; if (end > offset + len) { memmove(bucket_buf + end - len, bucket_buf + offset, len); xe->xe_name_offset = cpu_to_le16(end - len); } mlog_bug_on_msg(end < offset + len, "Defrag check failed for " "bucket %llu\n", (unsigned long long)blkno); end -= len; } mlog_bug_on_msg(xh_free_start > end, "Defrag check failed for " "bucket %llu\n", (unsigned long long)blkno); if (xh_free_start == end) goto out; memset(bucket_buf + xh_free_start, 0, end - xh_free_start); xh->xh_free_start = cpu_to_le16(end); /* sort the entries by their name_hash. */ sort(entries, le16_to_cpu(xh->xh_count), sizeof(struct ocfs2_xattr_entry), cmp_xe, swap_xe); buf = bucket_buf; for (i = 0; i < bucket->bu_blocks; i++, buf += blocksize) memcpy(bucket_block(bucket, i), buf, blocksize); ocfs2_xattr_bucket_journal_dirty(handle, bucket); out: kfree(bucket_buf); return ret; } /* * prev_blkno points to the start of an existing extent. new_blkno * points to a newly allocated extent. Because we know each of our * clusters contains more than bucket, we can easily split one cluster * at a bucket boundary. So we take the last cluster of the existing * extent and split it down the middle. We move the last half of the * buckets in the last cluster of the existing extent over to the new * extent. * * first_bh is the buffer at prev_blkno so we can update the existing * extent's bucket count. header_bh is the bucket were we were hoping * to insert our xattr. If the bucket move places the target in the new * extent, we'll update first_bh and header_bh after modifying the old * extent. * * first_hash will be set as the 1st xe's name_hash in the new extent. */ static int ocfs2_mv_xattr_bucket_cross_cluster(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *first, struct ocfs2_xattr_bucket *target, u64 new_blkno, u32 num_clusters, u32 *first_hash) { int ret; struct super_block *sb = inode->i_sb; int blks_per_bucket = ocfs2_blocks_per_xattr_bucket(sb); int num_buckets = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(sb)); int to_move = num_buckets / 2; u64 src_blkno; u64 last_cluster_blkno = bucket_blkno(first) + ((num_clusters - 1) * ocfs2_clusters_to_blocks(sb, 1)); BUG_ON(le16_to_cpu(bucket_xh(first)->xh_num_buckets) < num_buckets); BUG_ON(OCFS2_XATTR_BUCKET_SIZE == OCFS2_SB(sb)->s_clustersize); trace_ocfs2_mv_xattr_bucket_cross_cluster( (unsigned long long)last_cluster_blkno, (unsigned long long)new_blkno); ret = ocfs2_mv_xattr_buckets(inode, handle, bucket_blkno(first), last_cluster_blkno, new_blkno, to_move, first_hash); if (ret) { mlog_errno(ret); goto out; } /* This is the first bucket that got moved */ src_blkno = last_cluster_blkno + (to_move * blks_per_bucket); /* * If the target bucket was part of the moved buckets, we need to * update first and target. */ if (bucket_blkno(target) >= src_blkno) { /* Find the block for the new target bucket */ src_blkno = new_blkno + (bucket_blkno(target) - src_blkno); ocfs2_xattr_bucket_relse(first); ocfs2_xattr_bucket_relse(target); /* * These shouldn't fail - the buffers are in the * journal from ocfs2_cp_xattr_bucket(). */ ret = ocfs2_read_xattr_bucket(first, new_blkno); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(target, src_blkno); if (ret) mlog_errno(ret); } out: return ret; } /* * Find the suitable pos when we divide a bucket into 2. * We have to make sure the xattrs with the same hash value exist * in the same bucket. * * If this ocfs2_xattr_header covers more than one hash value, find a * place where the hash value changes. Try to find the most even split. * The most common case is that all entries have different hash values, * and the first check we make will find a place to split. */ static int ocfs2_xattr_find_divide_pos(struct ocfs2_xattr_header *xh) { struct ocfs2_xattr_entry *entries = xh->xh_entries; int count = le16_to_cpu(xh->xh_count); int delta, middle = count / 2; /* * We start at the middle. Each step gets farther away in both * directions. We therefore hit the change in hash value * nearest to the middle. Note that this loop does not execute for * count < 2. */ for (delta = 0; delta < middle; delta++) { /* Let's check delta earlier than middle */ if (cmp_xe(&entries[middle - delta - 1], &entries[middle - delta])) return middle - delta; /* For even counts, don't walk off the end */ if ((middle + delta + 1) == count) continue; /* Now try delta past middle */ if (cmp_xe(&entries[middle + delta], &entries[middle + delta + 1])) return middle + delta + 1; } /* Every entry had the same hash */ return count; } /* * Move some xattrs in old bucket(blk) to new bucket(new_blk). * first_hash will record the 1st hash of the new bucket. * * Normally half of the xattrs will be moved. But we have to make * sure that the xattrs with the same hash value are stored in the * same bucket. If all the xattrs in this bucket have the same hash * value, the new bucket will be initialized as an empty one and the * first_hash will be initialized as (hash_value+1). */ static int ocfs2_divide_xattr_bucket(struct inode *inode, handle_t *handle, u64 blk, u64 new_blk, u32 *first_hash, int new_bucket_head) { int ret, i; int count, start, len, name_value_len = 0, name_offset = 0; struct ocfs2_xattr_bucket *s_bucket = NULL, *t_bucket = NULL; struct ocfs2_xattr_header *xh; struct ocfs2_xattr_entry *xe; int blocksize = inode->i_sb->s_blocksize; trace_ocfs2_divide_xattr_bucket_begin((unsigned long long)blk, (unsigned long long)new_blk); s_bucket = ocfs2_xattr_bucket_new(inode); t_bucket = ocfs2_xattr_bucket_new(inode); if (!s_bucket || !t_bucket) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(s_bucket, blk); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, s_bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * Even if !new_bucket_head, we're overwriting t_bucket. Thus, * there's no need to read it. */ ret = ocfs2_init_xattr_bucket(t_bucket, new_blk, new_bucket_head); if (ret) { mlog_errno(ret); goto out; } /* * Hey, if we're overwriting t_bucket, what difference does * ACCESS_CREATE vs ACCESS_WRITE make? See the comment in the * same part of ocfs2_cp_xattr_bucket(). */ ret = ocfs2_xattr_bucket_journal_access(handle, t_bucket, new_bucket_head ? OCFS2_JOURNAL_ACCESS_CREATE : OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } xh = bucket_xh(s_bucket); count = le16_to_cpu(xh->xh_count); start = ocfs2_xattr_find_divide_pos(xh); if (start == count) { xe = &xh->xh_entries[start-1]; /* * initialized a new empty bucket here. * The hash value is set as one larger than * that of the last entry in the previous bucket. */ for (i = 0; i < t_bucket->bu_blocks; i++) memset(bucket_block(t_bucket, i), 0, blocksize); xh = bucket_xh(t_bucket); xh->xh_free_start = cpu_to_le16(blocksize); xh->xh_entries[0].xe_name_hash = xe->xe_name_hash; le32_add_cpu(&xh->xh_entries[0].xe_name_hash, 1); goto set_num_buckets; } /* copy the whole bucket to the new first. */ ocfs2_xattr_bucket_copy_data(t_bucket, s_bucket); /* update the new bucket. */ xh = bucket_xh(t_bucket); /* * Calculate the total name/value len and xh_free_start for * the old bucket first. */ name_offset = OCFS2_XATTR_BUCKET_SIZE; name_value_len = 0; for (i = 0; i < start; i++) { xe = &xh->xh_entries[i]; name_value_len += namevalue_size_xe(xe); if (le16_to_cpu(xe->xe_name_offset) < name_offset) name_offset = le16_to_cpu(xe->xe_name_offset); } /* * Now begin the modification to the new bucket. * * In the new bucket, We just move the xattr entry to the beginning * and don't touch the name/value. So there will be some holes in the * bucket, and they will be removed when ocfs2_defrag_xattr_bucket is * called. */ xe = &xh->xh_entries[start]; len = sizeof(struct ocfs2_xattr_entry) * (count - start); trace_ocfs2_divide_xattr_bucket_move(len, (int)((char *)xe - (char *)xh), (int)((char *)xh->xh_entries - (char *)xh)); memmove((char *)xh->xh_entries, (char *)xe, len); xe = &xh->xh_entries[count - start]; len = sizeof(struct ocfs2_xattr_entry) * start; memset((char *)xe, 0, len); le16_add_cpu(&xh->xh_count, -start); le16_add_cpu(&xh->xh_name_value_len, -name_value_len); /* Calculate xh_free_start for the new bucket. */ xh->xh_free_start = cpu_to_le16(OCFS2_XATTR_BUCKET_SIZE); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (le16_to_cpu(xe->xe_name_offset) < le16_to_cpu(xh->xh_free_start)) xh->xh_free_start = xe->xe_name_offset; } set_num_buckets: /* set xh->xh_num_buckets for the new xh. */ if (new_bucket_head) xh->xh_num_buckets = cpu_to_le16(1); else xh->xh_num_buckets = 0; ocfs2_xattr_bucket_journal_dirty(handle, t_bucket); /* store the first_hash of the new bucket. */ if (first_hash) *first_hash = le32_to_cpu(xh->xh_entries[0].xe_name_hash); /* * Now only update the 1st block of the old bucket. If we * just added a new empty bucket, there is no need to modify * it. */ if (start == count) goto out; xh = bucket_xh(s_bucket); memset(&xh->xh_entries[start], 0, sizeof(struct ocfs2_xattr_entry) * (count - start)); xh->xh_count = cpu_to_le16(start); xh->xh_free_start = cpu_to_le16(name_offset); xh->xh_name_value_len = cpu_to_le16(name_value_len); ocfs2_xattr_bucket_journal_dirty(handle, s_bucket); out: ocfs2_xattr_bucket_free(s_bucket); ocfs2_xattr_bucket_free(t_bucket); return ret; } /* * Copy xattr from one bucket to another bucket. * * The caller must make sure that the journal transaction * has enough space for journaling. */ static int ocfs2_cp_xattr_bucket(struct inode *inode, handle_t *handle, u64 s_blkno, u64 t_blkno, int t_is_new) { int ret; struct ocfs2_xattr_bucket *s_bucket = NULL, *t_bucket = NULL; BUG_ON(s_blkno == t_blkno); trace_ocfs2_cp_xattr_bucket((unsigned long long)s_blkno, (unsigned long long)t_blkno, t_is_new); s_bucket = ocfs2_xattr_bucket_new(inode); t_bucket = ocfs2_xattr_bucket_new(inode); if (!s_bucket || !t_bucket) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(s_bucket, s_blkno); if (ret) goto out; /* * Even if !t_is_new, we're overwriting t_bucket. Thus, * there's no need to read it. */ ret = ocfs2_init_xattr_bucket(t_bucket, t_blkno, t_is_new); if (ret) goto out; /* * Hey, if we're overwriting t_bucket, what difference does * ACCESS_CREATE vs ACCESS_WRITE make? Well, if we allocated a new * cluster to fill, we came here from * ocfs2_mv_xattr_buckets(), and it is really new - * ACCESS_CREATE is required. But we also might have moved data * out of t_bucket before extending back into it. * ocfs2_add_new_xattr_bucket() can do this - its call to * ocfs2_add_new_xattr_cluster() may have created a new extent * and copied out the end of the old extent. Then it re-extends * the old extent back to create space for new xattrs. That's * how we get here, and the bucket isn't really new. */ ret = ocfs2_xattr_bucket_journal_access(handle, t_bucket, t_is_new ? OCFS2_JOURNAL_ACCESS_CREATE : OCFS2_JOURNAL_ACCESS_WRITE); if (ret) goto out; ocfs2_xattr_bucket_copy_data(t_bucket, s_bucket); ocfs2_xattr_bucket_journal_dirty(handle, t_bucket); out: ocfs2_xattr_bucket_free(t_bucket); ocfs2_xattr_bucket_free(s_bucket); return ret; } /* * src_blk points to the start of an existing extent. last_blk points to * last cluster in that extent. to_blk points to a newly allocated * extent. We copy the buckets from the cluster at last_blk to the new * extent. If start_bucket is non-zero, we skip that many buckets before * we start copying. The new extent's xh_num_buckets gets set to the * number of buckets we copied. The old extent's xh_num_buckets shrinks * by the same amount. */ static int ocfs2_mv_xattr_buckets(struct inode *inode, handle_t *handle, u64 src_blk, u64 last_blk, u64 to_blk, unsigned int start_bucket, u32 *first_hash) { int i, ret, credits; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int blks_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); int num_buckets = ocfs2_xattr_buckets_per_cluster(osb); struct ocfs2_xattr_bucket *old_first, *new_first; trace_ocfs2_mv_xattr_buckets((unsigned long long)last_blk, (unsigned long long)to_blk); BUG_ON(start_bucket >= num_buckets); if (start_bucket) { num_buckets -= start_bucket; last_blk += (start_bucket * blks_per_bucket); } /* The first bucket of the original extent */ old_first = ocfs2_xattr_bucket_new(inode); /* The first bucket of the new extent */ new_first = ocfs2_xattr_bucket_new(inode); if (!old_first || !new_first) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(old_first, src_blk); if (ret) { mlog_errno(ret); goto out; } /* * We need to update the first bucket of the old extent and all * the buckets going to the new extent. */ credits = ((num_buckets + 1) * blks_per_bucket); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, old_first, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } for (i = 0; i < num_buckets; i++) { ret = ocfs2_cp_xattr_bucket(inode, handle, last_blk + (i * blks_per_bucket), to_blk + (i * blks_per_bucket), 1); if (ret) { mlog_errno(ret); goto out; } } /* * Get the new bucket ready before we dirty anything * (This actually shouldn't fail, because we already dirtied * it once in ocfs2_cp_xattr_bucket()). */ ret = ocfs2_read_xattr_bucket(new_first, to_blk); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, new_first, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* Now update the headers */ le16_add_cpu(&bucket_xh(old_first)->xh_num_buckets, -num_buckets); ocfs2_xattr_bucket_journal_dirty(handle, old_first); bucket_xh(new_first)->xh_num_buckets = cpu_to_le16(num_buckets); ocfs2_xattr_bucket_journal_dirty(handle, new_first); if (first_hash) *first_hash = le32_to_cpu(bucket_xh(new_first)->xh_entries[0].xe_name_hash); out: ocfs2_xattr_bucket_free(new_first); ocfs2_xattr_bucket_free(old_first); return ret; } /* * Move some xattrs in this cluster to the new cluster. * This function should only be called when bucket size == cluster size. * Otherwise ocfs2_mv_xattr_bucket_cross_cluster should be used instead. */ static int ocfs2_divide_xattr_cluster(struct inode *inode, handle_t *handle, u64 prev_blk, u64 new_blk, u32 *first_hash) { u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); int ret, credits = 2 * blk_per_bucket; BUG_ON(OCFS2_XATTR_BUCKET_SIZE < OCFS2_SB(inode->i_sb)->s_clustersize); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); return ret; } /* Move half of the xattr in start_blk to the next bucket. */ return ocfs2_divide_xattr_bucket(inode, handle, prev_blk, new_blk, first_hash, 1); } /* * Move some xattrs from the old cluster to the new one since they are not * contiguous in ocfs2 xattr tree. * * new_blk starts a new separate cluster, and we will move some xattrs from * prev_blk to it. v_start will be set as the first name hash value in this * new cluster so that it can be used as e_cpos during tree insertion and * don't collide with our original b-tree operations. first_bh and header_bh * will also be updated since they will be used in ocfs2_extend_xattr_bucket * to extend the insert bucket. * * The problem is how much xattr should we move to the new one and when should * we update first_bh and header_bh? * 1. If cluster size > bucket size, that means the previous cluster has more * than 1 bucket, so just move half nums of bucket into the new cluster and * update the first_bh and header_bh if the insert bucket has been moved * to the new cluster. * 2. If cluster_size == bucket_size: * a) If the previous extent rec has more than one cluster and the insert * place isn't in the last cluster, copy the entire last cluster to the * new one. This time, we don't need to upate the first_bh and header_bh * since they will not be moved into the new cluster. * b) Otherwise, move the bottom half of the xattrs in the last cluster into * the new one. And we set the extend flag to zero if the insert place is * moved into the new allocated cluster since no extend is needed. */ static int ocfs2_adjust_xattr_cross_cluster(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *first, struct ocfs2_xattr_bucket *target, u64 new_blk, u32 prev_clusters, u32 *v_start, int *extend) { int ret; trace_ocfs2_adjust_xattr_cross_cluster( (unsigned long long)bucket_blkno(first), (unsigned long long)new_blk, prev_clusters); if (ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)) > 1) { ret = ocfs2_mv_xattr_bucket_cross_cluster(inode, handle, first, target, new_blk, prev_clusters, v_start); if (ret) mlog_errno(ret); } else { /* The start of the last cluster in the first extent */ u64 last_blk = bucket_blkno(first) + ((prev_clusters - 1) * ocfs2_clusters_to_blocks(inode->i_sb, 1)); if (prev_clusters > 1 && bucket_blkno(target) != last_blk) { ret = ocfs2_mv_xattr_buckets(inode, handle, bucket_blkno(first), last_blk, new_blk, 0, v_start); if (ret) mlog_errno(ret); } else { ret = ocfs2_divide_xattr_cluster(inode, handle, last_blk, new_blk, v_start); if (ret) mlog_errno(ret); if ((bucket_blkno(target) == last_blk) && extend) *extend = 0; } } return ret; } /* * Add a new cluster for xattr storage. * * If the new cluster is contiguous with the previous one, it will be * appended to the same extent record, and num_clusters will be updated. * If not, we will insert a new extent for it and move some xattrs in * the last cluster into the new allocated one. * We also need to limit the maximum size of a btree leaf, otherwise we'll * lose the benefits of hashing because we'll have to search large leaves. * So now the maximum size is OCFS2_MAX_XATTR_TREE_LEAF_SIZE(or clustersize, * if it's bigger). * * first_bh is the first block of the previous extent rec and header_bh * indicates the bucket we will insert the new xattrs. They will be updated * when the header_bh is moved into the new cluster. */ static int ocfs2_add_new_xattr_cluster(struct inode *inode, struct buffer_head *root_bh, struct ocfs2_xattr_bucket *first, struct ocfs2_xattr_bucket *target, u32 *num_clusters, u32 prev_cpos, int *extend, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u16 bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); u32 prev_clusters = *num_clusters; u32 clusters_to_add = 1, bit_off, num_bits, v_start = 0; u64 block; handle_t *handle = ctxt->handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_tree et; trace_ocfs2_add_new_xattr_cluster_begin( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)bucket_blkno(first), prev_cpos, prev_clusters); ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(inode), root_bh); ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto leave; } ret = __ocfs2_claim_clusters(handle, ctxt->data_ac, 1, clusters_to_add, &bit_off, &num_bits); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto leave; } BUG_ON(num_bits > clusters_to_add); block = ocfs2_clusters_to_blocks(osb->sb, bit_off); trace_ocfs2_add_new_xattr_cluster((unsigned long long)block, num_bits); if (bucket_blkno(first) + (prev_clusters * bpc) == block && (prev_clusters + num_bits) << osb->s_clustersize_bits <= OCFS2_MAX_XATTR_TREE_LEAF_SIZE) { /* * If this cluster is contiguous with the old one and * adding this new cluster, we don't surpass the limit of * OCFS2_MAX_XATTR_TREE_LEAF_SIZE, cool. We will let it be * initialized and used like other buckets in the previous * cluster. * So add it as a contiguous one. The caller will handle * its init process. */ v_start = prev_cpos + prev_clusters; *num_clusters = prev_clusters + num_bits; } else { ret = ocfs2_adjust_xattr_cross_cluster(inode, handle, first, target, block, prev_clusters, &v_start, extend); if (ret) { mlog_errno(ret); goto leave; } } trace_ocfs2_add_new_xattr_cluster_insert((unsigned long long)block, v_start, num_bits); ret = ocfs2_insert_extent(handle, &et, v_start, block, num_bits, 0, ctxt->meta_ac); if (ret < 0) { mlog_errno(ret); goto leave; } ocfs2_journal_dirty(handle, root_bh); leave: return ret; } /* * We are given an extent. 'first' is the bucket at the very front of * the extent. The extent has space for an additional bucket past * bucket_xh(first)->xh_num_buckets. 'target_blkno' is the block number * of the target bucket. We wish to shift every bucket past the target * down one, filling in that additional space. When we get back to the * target, we split the target between itself and the now-empty bucket * at target+1 (aka, target_blkno + blks_per_bucket). */ static int ocfs2_extend_xattr_bucket(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *first, u64 target_blk, u32 num_clusters) { int ret, credits; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); u64 end_blk; u16 new_bucket = le16_to_cpu(bucket_xh(first)->xh_num_buckets); trace_ocfs2_extend_xattr_bucket((unsigned long long)target_blk, (unsigned long long)bucket_blkno(first), num_clusters, new_bucket); /* The extent must have room for an additional bucket */ BUG_ON(new_bucket >= (num_clusters * ocfs2_xattr_buckets_per_cluster(osb))); /* end_blk points to the last existing bucket */ end_blk = bucket_blkno(first) + ((new_bucket - 1) * blk_per_bucket); /* * end_blk is the start of the last existing bucket. * Thus, (end_blk - target_blk) covers the target bucket and * every bucket after it up to, but not including, the last * existing bucket. Then we add the last existing bucket, the * new bucket, and the first bucket (3 * blk_per_bucket). */ credits = (end_blk - target_blk) + (3 * blk_per_bucket); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, first, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } while (end_blk != target_blk) { ret = ocfs2_cp_xattr_bucket(inode, handle, end_blk, end_blk + blk_per_bucket, 0); if (ret) goto out; end_blk -= blk_per_bucket; } /* Move half of the xattr in target_blkno to the next bucket. */ ret = ocfs2_divide_xattr_bucket(inode, handle, target_blk, target_blk + blk_per_bucket, NULL, 0); le16_add_cpu(&bucket_xh(first)->xh_num_buckets, 1); ocfs2_xattr_bucket_journal_dirty(handle, first); out: return ret; } /* * Add new xattr bucket in an extent record and adjust the buckets * accordingly. xb_bh is the ocfs2_xattr_block, and target is the * bucket we want to insert into. * * In the easy case, we will move all the buckets after target down by * one. Half of target's xattrs will be moved to the next bucket. * * If current cluster is full, we'll allocate a new one. This may not * be contiguous. The underlying calls will make sure that there is * space for the insert, shifting buckets around if necessary. * 'target' may be moved by those calls. */ static int ocfs2_add_new_xattr_bucket(struct inode *inode, struct buffer_head *xb_bh, struct ocfs2_xattr_bucket *target, struct ocfs2_xattr_set_ctxt *ctxt) { struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)xb_bh->b_data; struct ocfs2_xattr_tree_root *xb_root = &xb->xb_attrs.xb_root; struct ocfs2_extent_list *el = &xb_root->xt_list; u32 name_hash = le32_to_cpu(bucket_xh(target)->xh_entries[0].xe_name_hash); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int ret, num_buckets, extend = 1; u64 p_blkno; u32 e_cpos, num_clusters; /* The bucket at the front of the extent */ struct ocfs2_xattr_bucket *first; trace_ocfs2_add_new_xattr_bucket( (unsigned long long)bucket_blkno(target)); /* The first bucket of the original extent */ first = ocfs2_xattr_bucket_new(inode); if (!first) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &e_cpos, &num_clusters, el); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(first, p_blkno); if (ret) { mlog_errno(ret); goto out; } num_buckets = ocfs2_xattr_buckets_per_cluster(osb) * num_clusters; if (num_buckets == le16_to_cpu(bucket_xh(first)->xh_num_buckets)) { /* * This can move first+target if the target bucket moves * to the new extent. */ ret = ocfs2_add_new_xattr_cluster(inode, xb_bh, first, target, &num_clusters, e_cpos, &extend, ctxt); if (ret) { mlog_errno(ret); goto out; } } if (extend) { ret = ocfs2_extend_xattr_bucket(inode, ctxt->handle, first, bucket_blkno(target), num_clusters); if (ret) mlog_errno(ret); } out: ocfs2_xattr_bucket_free(first); return ret; } /* * Truncate the specified xe_off entry in xattr bucket. * bucket is indicated by header_bh and len is the new length. * Both the ocfs2_xattr_value_root and the entry will be updated here. * * Copy the new updated xe and xe_value_root to new_xe and new_xv if needed. */ static int ocfs2_xattr_bucket_value_truncate(struct inode *inode, struct ocfs2_xattr_bucket *bucket, int xe_off, int len, struct ocfs2_xattr_set_ctxt *ctxt) { int ret, offset; u64 value_blk; struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_header *xh = bucket_xh(bucket); size_t blocksize = inode->i_sb->s_blocksize; struct ocfs2_xattr_value_buf vb = { .vb_access = ocfs2_journal_access, }; xe = &xh->xh_entries[xe_off]; BUG_ON(!xe || ocfs2_xattr_is_local(xe)); offset = le16_to_cpu(xe->xe_name_offset) + OCFS2_XATTR_SIZE(xe->xe_name_len); value_blk = offset / blocksize; /* We don't allow ocfs2_xattr_value to be stored in different block. */ BUG_ON(value_blk != (offset + OCFS2_XATTR_ROOT_SIZE - 1) / blocksize); vb.vb_bh = bucket->bu_bhs[value_blk]; BUG_ON(!vb.vb_bh); vb.vb_xv = (struct ocfs2_xattr_value_root *) (vb.vb_bh->b_data + offset % blocksize); /* * From here on out we have to dirty the bucket. The generic * value calls only modify one of the bucket's bhs, but we need * to send the bucket at once. So if they error, they *could* have * modified something. We have to assume they did, and dirty * the whole bucket. This leaves us in a consistent state. */ trace_ocfs2_xattr_bucket_value_truncate( (unsigned long long)bucket_blkno(bucket), xe_off, len); ret = ocfs2_xattr_value_truncate(inode, &vb, len, ctxt); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(ctxt->handle, bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } xe->xe_value_size = cpu_to_le64(len); ocfs2_xattr_bucket_journal_dirty(ctxt->handle, bucket); out: return ret; } static int ocfs2_rm_xattr_cluster(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)root_bh->b_data; struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_extent_tree et; ret = ocfs2_iterate_xattr_buckets(inode, blkno, len, ocfs2_delete_xattr_in_bucket, para); if (ret) { mlog_errno(ret); return ret; } ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(inode), root_bh); ocfs2_init_dealloc_ctxt(&dealloc); trace_ocfs2_rm_xattr_cluster( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)blkno, cpos, len); ocfs2_remove_xattr_clusters_from_cache(INODE_CACHE(inode), blkno, len); ret = ocfs2_lock_allocators(inode, &et, 0, 1, NULL, &meta_ac); if (ret) { mlog_errno(ret); return ret; } inode_lock(tl_inode); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); if (IS_ERR(handle)) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_remove_extent(handle, &et, cpos, len, meta_ac, &dealloc); if (ret) { mlog_errno(ret); goto out_commit; } le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, -len); ocfs2_journal_dirty(handle, root_bh); ret = ocfs2_truncate_log_append(osb, handle, blkno, len); if (ret) mlog_errno(ret); ocfs2_update_inode_fsync_trans(handle, inode, 0); out_commit: ocfs2_commit_trans(osb, handle); out: ocfs2_schedule_truncate_log_flush(osb, 1); inode_unlock(tl_inode); if (meta_ac) ocfs2_free_alloc_context(meta_ac); ocfs2_run_deallocs(osb, &dealloc); return ret; } /* * check whether the xattr bucket is filled up with the same hash value. * If we want to insert the xattr with the same hash, return -ENOSPC. * If we want to insert a xattr with different hash value, go ahead * and ocfs2_divide_xattr_bucket will handle this. */ static int ocfs2_check_xattr_bucket_collision(struct inode *inode, struct ocfs2_xattr_bucket *bucket, const char *name) { struct ocfs2_xattr_header *xh = bucket_xh(bucket); u32 name_hash = ocfs2_xattr_name_hash(inode, name, strlen(name)); if (name_hash != le32_to_cpu(xh->xh_entries[0].xe_name_hash)) return 0; if (xh->xh_entries[le16_to_cpu(xh->xh_count) - 1].xe_name_hash == xh->xh_entries[0].xe_name_hash) { mlog(ML_ERROR, "Too much hash collision in xattr bucket %llu, " "hash = %u\n", (unsigned long long)bucket_blkno(bucket), le32_to_cpu(xh->xh_entries[0].xe_name_hash)); return -ENOSPC; } return 0; } /* * Try to set the entry in the current bucket. If we fail, the caller * will handle getting us another bucket. */ static int ocfs2_xattr_set_entry_bucket(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; struct ocfs2_xa_loc loc; trace_ocfs2_xattr_set_entry_bucket(xi->xi_name); ocfs2_init_xattr_bucket_xa_loc(&loc, xs->bucket, xs->not_found ? NULL : xs->here); ret = ocfs2_xa_set(&loc, xi, ctxt); if (!ret) { xs->here = loc.xl_entry; goto out; } if (ret != -ENOSPC) { mlog_errno(ret); goto out; } /* Ok, we need space. Let's try defragmenting the bucket. */ ret = ocfs2_defrag_xattr_bucket(inode, ctxt->handle, xs->bucket); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xa_set(&loc, xi, ctxt); if (!ret) { xs->here = loc.xl_entry; goto out; } if (ret != -ENOSPC) mlog_errno(ret); out: return ret; } static int ocfs2_xattr_set_entry_index_block(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; trace_ocfs2_xattr_set_entry_index_block(xi->xi_name); ret = ocfs2_xattr_set_entry_bucket(inode, xi, xs, ctxt); if (!ret) goto out; if (ret != -ENOSPC) { mlog_errno(ret); goto out; } /* Ack, need more space. Let's try to get another bucket! */ /* * We do not allow for overlapping ranges between buckets. And * the maximum number of collisions we will allow for then is * one bucket's worth, so check it here whether we need to * add a new bucket for the insert. */ ret = ocfs2_check_xattr_bucket_collision(inode, xs->bucket, xi->xi_name); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_add_new_xattr_bucket(inode, xs->xattr_bh, xs->bucket, ctxt); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_add_new_xattr_bucket() will have updated * xs->bucket if it moved, but it will not have updated * any of the other search fields. Thus, we drop it and * re-search. Everything should be cached, so it'll be * quick. */ ocfs2_xattr_bucket_relse(xs->bucket); ret = ocfs2_xattr_index_block_find(inode, xs->xattr_bh, xi->xi_name_index, xi->xi_name, xs); if (ret && ret != -ENODATA) goto out; xs->not_found = ret; /* Ok, we have a new bucket, let's try again */ ret = ocfs2_xattr_set_entry_bucket(inode, xi, xs, ctxt); if (ret && (ret != -ENOSPC)) mlog_errno(ret); out: return ret; } static int ocfs2_delete_xattr_in_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { int ret = 0, ref_credits; struct ocfs2_xattr_header *xh = bucket_xh(bucket); u16 i; struct ocfs2_xattr_entry *xe; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_xattr_set_ctxt ctxt = {NULL, NULL,}; int credits = ocfs2_remove_extent_credits(osb->sb) + ocfs2_blocks_per_xattr_bucket(inode->i_sb); struct ocfs2_xattr_value_root *xv; struct ocfs2_rm_xattr_bucket_para *args = (struct ocfs2_rm_xattr_bucket_para *)para; ocfs2_init_dealloc_ctxt(&ctxt.dealloc); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; ret = ocfs2_get_xattr_tree_value_root(inode->i_sb, bucket, i, &xv, NULL); if (ret) { mlog_errno(ret); break; } ret = ocfs2_lock_xattr_remove_allocators(inode, xv, args->ref_ci, args->ref_root_bh, &ctxt.meta_ac, &ref_credits); ctxt.handle = ocfs2_start_trans(osb, credits + ref_credits); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); break; } ret = ocfs2_xattr_bucket_value_truncate(inode, bucket, i, 0, &ctxt); ocfs2_commit_trans(osb, ctxt.handle); if (ctxt.meta_ac) { ocfs2_free_alloc_context(ctxt.meta_ac); ctxt.meta_ac = NULL; } if (ret) { mlog_errno(ret); break; } } if (ctxt.meta_ac) ocfs2_free_alloc_context(ctxt.meta_ac); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &ctxt.dealloc); return ret; } /* * Whenever we modify a xattr value root in the bucket(e.g, CoW * or change the extent record flag), we need to recalculate * the metaecc for the whole bucket. So it is done here. * * Note: * We have to give the extra credits for the caller. */ static int ocfs2_xattr_bucket_post_refcount(struct inode *inode, handle_t *handle, void *para) { int ret; struct ocfs2_xattr_bucket *bucket = (struct ocfs2_xattr_bucket *)para; ret = ocfs2_xattr_bucket_journal_access(handle, bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); return ret; } ocfs2_xattr_bucket_journal_dirty(handle, bucket); return 0; } /* * Special action we need if the xattr value is refcounted. * * 1. If the xattr is refcounted, lock the tree. * 2. CoW the xattr if we are setting the new value and the value * will be stored outside. * 3. In other case, decrease_refcount will work for us, so just * lock the refcount tree, calculate the meta and credits is OK. * * We have to do CoW before ocfs2_init_xattr_set_ctxt since * currently CoW is a completed transaction, while this function * will also lock the allocators and let us deadlock. So we will * CoW the whole xattr value. */ static int ocfs2_prepare_refcount_xattr(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_refcount_tree **ref_tree, int *meta_add, int *credits) { int ret = 0; struct ocfs2_xattr_block *xb; struct ocfs2_xattr_entry *xe; char *base; u32 p_cluster, num_clusters; unsigned int ext_flags; int name_offset, name_len; struct ocfs2_xattr_value_buf vb; struct ocfs2_xattr_bucket *bucket = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_post_refcount refcount; struct ocfs2_post_refcount *p = NULL; struct buffer_head *ref_root_bh = NULL; if (!xis->not_found) { xe = xis->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); base = xis->base; vb.vb_bh = xis->inode_bh; vb.vb_access = ocfs2_journal_access_di; } else { int i, block_off = 0; xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data; xe = xbs->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); i = xbs->here - xbs->header->xh_entries; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(xbs->bucket), i, &block_off, &name_offset); if (ret) { mlog_errno(ret); goto out; } base = bucket_block(xbs->bucket, block_off); vb.vb_bh = xbs->bucket->bu_bhs[block_off]; vb.vb_access = ocfs2_journal_access; if (ocfs2_meta_ecc(osb)) { /*create parameters for ocfs2_post_refcount. */ bucket = xbs->bucket; refcount.credits = bucket->bu_blocks; refcount.para = bucket; refcount.func = ocfs2_xattr_bucket_post_refcount; p = &refcount; } } else { base = xbs->base; vb.vb_bh = xbs->xattr_bh; vb.vb_access = ocfs2_journal_access_xb; } } if (ocfs2_xattr_is_local(xe)) goto out; vb.vb_xv = (struct ocfs2_xattr_value_root *) (base + name_offset + name_len); ret = ocfs2_xattr_get_clusters(inode, 0, &p_cluster, &num_clusters, &vb.vb_xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } /* * We just need to check the 1st extent record, since we always * CoW the whole xattr. So there shouldn't be a xattr with * some REFCOUNT extent recs after the 1st one. */ if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(di->i_refcount_loc), 1, ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } /* * If we are deleting the xattr or the new size will be stored inside, * cool, leave it there, the xattr truncate process will remove them * for us(it still needs the refcount tree lock and the meta, credits). * And the worse case is that every cluster truncate will split the * refcount tree, and make the original extent become 3. So we will need * 2 * cluster more extent recs at most. */ if (!xi->xi_value || xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE) { ret = ocfs2_refcounted_xattr_delete_need(inode, &(*ref_tree)->rf_ci, ref_root_bh, vb.vb_xv, meta_add, credits); if (ret) mlog_errno(ret); goto out; } ret = ocfs2_refcount_cow_xattr(inode, di, &vb, *ref_tree, ref_root_bh, 0, le32_to_cpu(vb.vb_xv->xr_clusters), p); if (ret) mlog_errno(ret); out: brelse(ref_root_bh); return ret; } /* * Add the REFCOUNTED flags for all the extent rec in ocfs2_xattr_value_root. * The physical clusters will be added to refcount tree. */ static int ocfs2_xattr_value_attach_refcount(struct inode *inode, struct ocfs2_xattr_value_root *xv, struct ocfs2_extent_tree *value_et, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_post_refcount *refcount) { int ret = 0; u32 clusters = le32_to_cpu(xv->xr_clusters); u32 cpos, p_cluster, num_clusters; struct ocfs2_extent_list *el = &xv->xr_list; unsigned int ext_flags; cpos = 0; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, el, &ext_flags); if (ret) { mlog_errno(ret); break; } cpos += num_clusters; if ((ext_flags & OCFS2_EXT_REFCOUNTED)) continue; BUG_ON(!p_cluster); ret = ocfs2_add_refcount_flag(inode, value_et, ref_ci, ref_root_bh, cpos - num_clusters, p_cluster, num_clusters, dealloc, refcount); if (ret) { mlog_errno(ret); break; } } return ret; } /* * Given a normal ocfs2_xattr_header, refcount all the entries which * have value stored outside. * Used for xattrs stored in inode and ocfs2_xattr_block. */ static int ocfs2_xattr_attach_refcount_normal(struct inode *inode, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_header *header, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_value_root *xv; struct ocfs2_extent_tree et; int i, ret = 0; for (i = 0; i < le16_to_cpu(header->xh_count); i++) { xe = &header->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; xv = (struct ocfs2_xattr_value_root *)((void *)header + le16_to_cpu(xe->xe_name_offset) + OCFS2_XATTR_SIZE(xe->xe_name_len)); vb->vb_xv = xv; ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb); ret = ocfs2_xattr_value_attach_refcount(inode, xv, &et, ref_ci, ref_root_bh, dealloc, NULL); if (ret) { mlog_errno(ret); break; } } return ret; } static int ocfs2_xattr_inline_attach_refcount(struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; struct ocfs2_xattr_header *header = (struct ocfs2_xattr_header *) (fe_bh->b_data + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); struct ocfs2_xattr_value_buf vb = { .vb_bh = fe_bh, .vb_access = ocfs2_journal_access_di, }; return ocfs2_xattr_attach_refcount_normal(inode, &vb, header, ref_ci, ref_root_bh, dealloc); } struct ocfs2_xattr_tree_value_refcount_para { struct ocfs2_caching_info *ref_ci; struct buffer_head *ref_root_bh; struct ocfs2_cached_dealloc_ctxt *dealloc; }; static int ocfs2_get_xattr_tree_value_root(struct super_block *sb, struct ocfs2_xattr_bucket *bucket, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **bh) { int ret, block_off, name_offset; struct ocfs2_xattr_header *xh = bucket_xh(bucket); struct ocfs2_xattr_entry *xe = &xh->xh_entries[offset]; void *base; ret = ocfs2_xattr_bucket_get_name_value(sb, bucket_xh(bucket), offset, &block_off, &name_offset); if (ret) { mlog_errno(ret); goto out; } base = bucket_block(bucket, block_off); *xv = (struct ocfs2_xattr_value_root *)(base + name_offset + OCFS2_XATTR_SIZE(xe->xe_name_len)); if (bh) *bh = bucket->bu_bhs[block_off]; out: return ret; } /* * For a given xattr bucket, refcount all the entries which * have value stored outside. */ static int ocfs2_xattr_bucket_value_refcount(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { int i, ret = 0; struct ocfs2_extent_tree et; struct ocfs2_xattr_tree_value_refcount_para *ref = (struct ocfs2_xattr_tree_value_refcount_para *)para; struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *)bucket->bu_bhs[0]->b_data; struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_value_buf vb = { .vb_access = ocfs2_journal_access, }; struct ocfs2_post_refcount refcount = { .credits = bucket->bu_blocks, .para = bucket, .func = ocfs2_xattr_bucket_post_refcount, }; struct ocfs2_post_refcount *p = NULL; /* We only need post_refcount if we support metaecc. */ if (ocfs2_meta_ecc(OCFS2_SB(inode->i_sb))) p = &refcount; trace_ocfs2_xattr_bucket_value_refcount( (unsigned long long)bucket_blkno(bucket), le16_to_cpu(xh->xh_count)); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; ret = ocfs2_get_xattr_tree_value_root(inode->i_sb, bucket, i, &vb.vb_xv, &vb.vb_bh); if (ret) { mlog_errno(ret); break; } ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), &vb); ret = ocfs2_xattr_value_attach_refcount(inode, vb.vb_xv, &et, ref->ref_ci, ref->ref_root_bh, ref->dealloc, p); if (ret) { mlog_errno(ret); break; } } return ret; } static int ocfs2_refcount_xattr_tree_rec(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { return ocfs2_iterate_xattr_buckets(inode, blkno, len, ocfs2_xattr_bucket_value_refcount, para); } static int ocfs2_xattr_block_attach_refcount(struct inode *inode, struct buffer_head *blk_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { struct ocfs2_xattr_header *header = &xb->xb_attrs.xb_header; struct ocfs2_xattr_value_buf vb = { .vb_bh = blk_bh, .vb_access = ocfs2_journal_access_xb, }; ret = ocfs2_xattr_attach_refcount_normal(inode, &vb, header, ref_ci, ref_root_bh, dealloc); } else { struct ocfs2_xattr_tree_value_refcount_para para = { .ref_ci = ref_ci, .ref_root_bh = ref_root_bh, .dealloc = dealloc, }; ret = ocfs2_iterate_xattr_index_block(inode, blk_bh, ocfs2_refcount_xattr_tree_rec, &para); } return ret; } int ocfs2_xattr_attach_refcount_tree(struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; struct buffer_head *blk_bh = NULL; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_xattr_inline_attach_refcount(inode, fe_bh, ref_ci, ref_root_bh, dealloc); if (ret) { mlog_errno(ret); goto out; } } if (!di->i_xattr_loc) goto out; ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_block_attach_refcount(inode, blk_bh, ref_ci, ref_root_bh, dealloc); if (ret) mlog_errno(ret); brelse(blk_bh); out: return ret; } typedef int (should_xattr_reflinked)(struct ocfs2_xattr_entry *xe); /* * Store the information we need in xattr reflink. * old_bh and new_bh are inode bh for the old and new inode. */ struct ocfs2_xattr_reflink { struct inode *old_inode; struct inode *new_inode; struct buffer_head *old_bh; struct buffer_head *new_bh; struct ocfs2_caching_info *ref_ci; struct buffer_head *ref_root_bh; struct ocfs2_cached_dealloc_ctxt *dealloc; should_xattr_reflinked *xattr_reflinked; }; /* * Given a xattr header and xe offset, * return the proper xv and the corresponding bh. * xattr in inode, block and xattr tree have different implementaions. */ typedef int (get_xattr_value_root)(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para); /* * Calculate all the xattr value root metadata stored in this xattr header and * credits we need if we create them from the scratch. * We use get_xattr_value_root so that all types of xattr container can use it. */ static int ocfs2_value_metas_in_xattr_header(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int *metas, int *credits, int *num_recs, get_xattr_value_root *func, void *para) { int i, ret = 0; struct ocfs2_xattr_value_root *xv; struct ocfs2_xattr_entry *xe; for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; ret = func(sb, bh, xh, i, &xv, NULL, para); if (ret) { mlog_errno(ret); break; } *metas += le16_to_cpu(xv->xr_list.l_tree_depth) * le16_to_cpu(xv->xr_list.l_next_free_rec); *credits += ocfs2_calc_extend_credits(sb, &def_xv.xv.xr_list); /* * If the value is a tree with depth > 1, We don't go deep * to the extent block, so just calculate a maximum record num. */ if (!xv->xr_list.l_tree_depth) *num_recs += le16_to_cpu(xv->xr_list.l_next_free_rec); else *num_recs += ocfs2_clusters_for_bytes(sb, XATTR_SIZE_MAX); } return ret; } /* Used by xattr inode and block to return the right xv and buffer_head. */ static int ocfs2_get_xattr_value_root(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para) { struct ocfs2_xattr_entry *xe = &xh->xh_entries[offset]; *xv = (struct ocfs2_xattr_value_root *)((void *)xh + le16_to_cpu(xe->xe_name_offset) + OCFS2_XATTR_SIZE(xe->xe_name_len)); if (ret_bh) *ret_bh = bh; return 0; } /* * Lock the meta_ac and caculate how much credits we need for reflink xattrs. * It is only used for inline xattr and xattr block. */ static int ocfs2_reflink_lock_xattr_allocators(struct ocfs2_super *osb, struct ocfs2_xattr_header *xh, struct buffer_head *ref_root_bh, int *credits, struct ocfs2_alloc_context **meta_ac) { int ret, meta_add = 0, num_recs = 0; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; *credits = 0; ret = ocfs2_value_metas_in_xattr_header(osb->sb, NULL, xh, &meta_add, credits, &num_recs, ocfs2_get_xattr_value_root, NULL); if (ret) { mlog_errno(ret); goto out; } /* * We need to add/modify num_recs in refcount tree, so just calculate * an approximate number we need for refcount tree change. * Sometimes we need to split the tree, and after split, half recs * will be moved to the new block, and a new block can only provide * half number of recs. So we multiple new blocks by 2. */ num_recs = num_recs / ocfs2_refcount_recs_per_rb(osb->sb) * 2; meta_add += num_recs; *credits += num_recs + num_recs * OCFS2_EXPAND_REFCOUNT_TREE_CREDITS; if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL) *credits += le16_to_cpu(rb->rf_list.l_tree_depth) * le16_to_cpu(rb->rf_list.l_next_free_rec) + 1; else *credits += 1; ret = ocfs2_reserve_new_metadata_blocks(osb, meta_add, meta_ac); if (ret) mlog_errno(ret); out: return ret; } /* * Given a xattr header, reflink all the xattrs in this container. * It can be used for inode, block and bucket. * * NOTE: * Before we call this function, the caller has memcpy the xattr in * old_xh to the new_xh. * * If args.xattr_reflinked is set, call it to decide whether the xe should * be reflinked or not. If not, remove it from the new xattr header. */ static int ocfs2_reflink_xattr_header(handle_t *handle, struct ocfs2_xattr_reflink *args, struct buffer_head *old_bh, struct ocfs2_xattr_header *xh, struct buffer_head *new_bh, struct ocfs2_xattr_header *new_xh, struct ocfs2_xattr_value_buf *vb, struct ocfs2_alloc_context *meta_ac, get_xattr_value_root *func, void *para) { int ret = 0, i, j; struct super_block *sb = args->old_inode->i_sb; struct buffer_head *value_bh; struct ocfs2_xattr_entry *xe, *last; struct ocfs2_xattr_value_root *xv, *new_xv; struct ocfs2_extent_tree data_et; u32 clusters, cpos, p_cluster, num_clusters; unsigned int ext_flags = 0; trace_ocfs2_reflink_xattr_header((unsigned long long)old_bh->b_blocknr, le16_to_cpu(xh->xh_count)); last = &new_xh->xh_entries[le16_to_cpu(new_xh->xh_count)]; for (i = 0, j = 0; i < le16_to_cpu(xh->xh_count); i++, j++) { xe = &xh->xh_entries[i]; if (args->xattr_reflinked && !args->xattr_reflinked(xe)) { xe = &new_xh->xh_entries[j]; le16_add_cpu(&new_xh->xh_count, -1); if (new_xh->xh_count) { memmove(xe, xe + 1, (void *)last - (void *)xe); memset(last, 0, sizeof(struct ocfs2_xattr_entry)); } /* * We don't want j to increase in the next round since * it is already moved ahead. */ j--; continue; } if (ocfs2_xattr_is_local(xe)) continue; ret = func(sb, old_bh, xh, i, &xv, NULL, para); if (ret) { mlog_errno(ret); break; } ret = func(sb, new_bh, new_xh, j, &new_xv, &value_bh, para); if (ret) { mlog_errno(ret); break; } /* * For the xattr which has l_tree_depth = 0, all the extent * recs have already be copied to the new xh with the * propriate OCFS2_EXT_REFCOUNTED flag we just need to * increase the refount count int the refcount tree. * * For the xattr which has l_tree_depth > 0, we need * to initialize it to the empty default value root, * and then insert the extents one by one. */ if (xv->xr_list.l_tree_depth) { memcpy(new_xv, &def_xv, OCFS2_XATTR_ROOT_SIZE); vb->vb_xv = new_xv; vb->vb_bh = value_bh; ocfs2_init_xattr_value_extent_tree(&data_et, INODE_CACHE(args->new_inode), vb); } clusters = le32_to_cpu(xv->xr_clusters); cpos = 0; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(args->old_inode, cpos, &p_cluster, &num_clusters, &xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } BUG_ON(!p_cluster); if (xv->xr_list.l_tree_depth) { ret = ocfs2_insert_extent(handle, &data_et, cpos, ocfs2_clusters_to_blocks( args->old_inode->i_sb, p_cluster), num_clusters, ext_flags, meta_ac); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_increase_refcount(handle, args->ref_ci, args->ref_root_bh, p_cluster, num_clusters, meta_ac, args->dealloc); if (ret) { mlog_errno(ret); goto out; } cpos += num_clusters; } } out: return ret; } static int ocfs2_reflink_xattr_inline(struct ocfs2_xattr_reflink *args) { int ret = 0, credits = 0; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(args->old_inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)args->old_bh->b_data; int inline_size = le16_to_cpu(di->i_xattr_inline_size); int header_off = osb->sb->s_blocksize - inline_size; struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *) (args->old_bh->b_data + header_off); struct ocfs2_xattr_header *new_xh = (struct ocfs2_xattr_header *) (args->new_bh->b_data + header_off); struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_inode_info *new_oi; struct ocfs2_dinode *new_di; struct ocfs2_xattr_value_buf vb = { .vb_bh = args->new_bh, .vb_access = ocfs2_journal_access_di, }; ret = ocfs2_reflink_lock_xattr_allocators(osb, xh, args->ref_root_bh, &credits, &meta_ac); if (ret) { mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(args->new_inode), args->new_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } memcpy(args->new_bh->b_data + header_off, args->old_bh->b_data + header_off, inline_size); new_di = (struct ocfs2_dinode *)args->new_bh->b_data; new_di->i_xattr_inline_size = cpu_to_le16(inline_size); ret = ocfs2_reflink_xattr_header(handle, args, args->old_bh, xh, args->new_bh, new_xh, &vb, meta_ac, ocfs2_get_xattr_value_root, NULL); if (ret) { mlog_errno(ret); goto out_commit; } new_oi = OCFS2_I(args->new_inode); /* * Adjust extent record count to reserve space for extended attribute. * Inline data count had been adjusted in ocfs2_duplicate_inline_data(). */ if (!(new_oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) && !(ocfs2_inode_is_fast_symlink(args->new_inode))) { struct ocfs2_extent_list *el = &new_di->id2.i_list; le16_add_cpu(&el->l_count, -(inline_size / sizeof(struct ocfs2_extent_rec))); } spin_lock(&new_oi->ip_lock); new_oi->ip_dyn_features |= OCFS2_HAS_XATTR_FL | OCFS2_INLINE_XATTR_FL; new_di->i_dyn_features = cpu_to_le16(new_oi->ip_dyn_features); spin_unlock(&new_oi->ip_lock); ocfs2_journal_dirty(handle, args->new_bh); out_commit: ocfs2_commit_trans(osb, handle); out: if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } static int ocfs2_create_empty_xattr_block(struct inode *inode, struct buffer_head *fe_bh, struct buffer_head **ret_bh, int indexed) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_xattr_set_ctxt ctxt; memset(&ctxt, 0, sizeof(ctxt)); ret = ocfs2_reserve_new_metadata_blocks(osb, 1, &ctxt.meta_ac); if (ret < 0) { mlog_errno(ret); return ret; } ctxt.handle = ocfs2_start_trans(osb, OCFS2_XATTR_BLOCK_CREATE_CREDITS); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); goto out; } trace_ocfs2_create_empty_xattr_block( (unsigned long long)fe_bh->b_blocknr, indexed); ret = ocfs2_create_xattr_block(inode, fe_bh, &ctxt, indexed, ret_bh); if (ret) mlog_errno(ret); ocfs2_commit_trans(osb, ctxt.handle); out: ocfs2_free_alloc_context(ctxt.meta_ac); return ret; } static int ocfs2_reflink_xattr_block(struct ocfs2_xattr_reflink *args, struct buffer_head *blk_bh, struct buffer_head *new_blk_bh) { int ret = 0, credits = 0; handle_t *handle; struct ocfs2_inode_info *new_oi = OCFS2_I(args->new_inode); struct ocfs2_dinode *new_di; struct ocfs2_super *osb = OCFS2_SB(args->new_inode->i_sb); int header_off = offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; struct ocfs2_xattr_header *xh = &xb->xb_attrs.xb_header; struct ocfs2_xattr_block *new_xb = (struct ocfs2_xattr_block *)new_blk_bh->b_data; struct ocfs2_xattr_header *new_xh = &new_xb->xb_attrs.xb_header; struct ocfs2_alloc_context *meta_ac; struct ocfs2_xattr_value_buf vb = { .vb_bh = new_blk_bh, .vb_access = ocfs2_journal_access_xb, }; ret = ocfs2_reflink_lock_xattr_allocators(osb, xh, args->ref_root_bh, &credits, &meta_ac); if (ret) { mlog_errno(ret); return ret; } /* One more credits in case we need to add xattr flags in new inode. */ handle = ocfs2_start_trans(osb, credits + 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } if (!(new_oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) { ret = ocfs2_journal_access_di(handle, INODE_CACHE(args->new_inode), args->new_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } } ret = ocfs2_journal_access_xb(handle, INODE_CACHE(args->new_inode), new_blk_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } memcpy(new_blk_bh->b_data + header_off, blk_bh->b_data + header_off, osb->sb->s_blocksize - header_off); ret = ocfs2_reflink_xattr_header(handle, args, blk_bh, xh, new_blk_bh, new_xh, &vb, meta_ac, ocfs2_get_xattr_value_root, NULL); if (ret) { mlog_errno(ret); goto out_commit; } ocfs2_journal_dirty(handle, new_blk_bh); if (!(new_oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) { new_di = (struct ocfs2_dinode *)args->new_bh->b_data; spin_lock(&new_oi->ip_lock); new_oi->ip_dyn_features |= OCFS2_HAS_XATTR_FL; new_di->i_dyn_features = cpu_to_le16(new_oi->ip_dyn_features); spin_unlock(&new_oi->ip_lock); ocfs2_journal_dirty(handle, args->new_bh); } out_commit: ocfs2_commit_trans(osb, handle); out: ocfs2_free_alloc_context(meta_ac); return ret; } struct ocfs2_reflink_xattr_tree_args { struct ocfs2_xattr_reflink *reflink; struct buffer_head *old_blk_bh; struct buffer_head *new_blk_bh; struct ocfs2_xattr_bucket *old_bucket; struct ocfs2_xattr_bucket *new_bucket; }; /* * NOTE: * We have to handle the case that both old bucket and new bucket * will call this function to get the right ret_bh. * So The caller must give us the right bh. */ static int ocfs2_get_reflink_xattr_value_root(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para) { struct ocfs2_reflink_xattr_tree_args *args = (struct ocfs2_reflink_xattr_tree_args *)para; struct ocfs2_xattr_bucket *bucket; if (bh == args->old_bucket->bu_bhs[0]) bucket = args->old_bucket; else bucket = args->new_bucket; return ocfs2_get_xattr_tree_value_root(sb, bucket, offset, xv, ret_bh); } struct ocfs2_value_tree_metas { int num_metas; int credits; int num_recs; }; static int ocfs2_value_tree_metas_in_bucket(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para) { struct ocfs2_xattr_bucket *bucket = (struct ocfs2_xattr_bucket *)para; return ocfs2_get_xattr_tree_value_root(sb, bucket, offset, xv, ret_bh); } static int ocfs2_calc_value_tree_metas(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { struct ocfs2_value_tree_metas *metas = (struct ocfs2_value_tree_metas *)para; struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *)bucket->bu_bhs[0]->b_data; /* Add the credits for this bucket first. */ metas->credits += bucket->bu_blocks; return ocfs2_value_metas_in_xattr_header(inode->i_sb, bucket->bu_bhs[0], xh, &metas->num_metas, &metas->credits, &metas->num_recs, ocfs2_value_tree_metas_in_bucket, bucket); } /* * Given a xattr extent rec starting from blkno and having len clusters, * iterate all the buckets calculate how much metadata we need for reflinking * all the ocfs2_xattr_value_root and lock the allocators accordingly. */ static int ocfs2_lock_reflink_xattr_rec_allocators( struct ocfs2_reflink_xattr_tree_args *args, struct ocfs2_extent_tree *xt_et, u64 blkno, u32 len, int *credits, struct ocfs2_alloc_context **meta_ac, struct ocfs2_alloc_context **data_ac) { int ret, num_free_extents; struct ocfs2_value_tree_metas metas; struct ocfs2_super *osb = OCFS2_SB(args->reflink->old_inode->i_sb); struct ocfs2_refcount_block *rb; memset(&metas, 0, sizeof(metas)); ret = ocfs2_iterate_xattr_buckets(args->reflink->old_inode, blkno, len, ocfs2_calc_value_tree_metas, &metas); if (ret) { mlog_errno(ret); goto out; } *credits = metas.credits; /* * Calculate we need for refcount tree change. * * We need to add/modify num_recs in refcount tree, so just calculate * an approximate number we need for refcount tree change. * Sometimes we need to split the tree, and after split, half recs * will be moved to the new block, and a new block can only provide * half number of recs. So we multiple new blocks by 2. * In the end, we have to add credits for modifying the already * existed refcount block. */ rb = (struct ocfs2_refcount_block *)args->reflink->ref_root_bh->b_data; metas.num_recs = (metas.num_recs + ocfs2_refcount_recs_per_rb(osb->sb) - 1) / ocfs2_refcount_recs_per_rb(osb->sb) * 2; metas.num_metas += metas.num_recs; *credits += metas.num_recs + metas.num_recs * OCFS2_EXPAND_REFCOUNT_TREE_CREDITS; if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL) *credits += le16_to_cpu(rb->rf_list.l_tree_depth) * le16_to_cpu(rb->rf_list.l_next_free_rec) + 1; else *credits += 1; /* count in the xattr tree change. */ num_free_extents = ocfs2_num_free_extents(xt_et); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } if (num_free_extents < len) metas.num_metas += ocfs2_extend_meta_needed(xt_et->et_root_el); *credits += ocfs2_calc_extend_credits(osb->sb, xt_et->et_root_el); if (metas.num_metas) { ret = ocfs2_reserve_new_metadata_blocks(osb, metas.num_metas, meta_ac); if (ret) { mlog_errno(ret); goto out; } } if (len) { ret = ocfs2_reserve_clusters(osb, len, data_ac); if (ret) mlog_errno(ret); } out: if (ret) { if (*meta_ac) { ocfs2_free_alloc_context(*meta_ac); *meta_ac = NULL; } } return ret; } static int ocfs2_reflink_xattr_bucket(handle_t *handle, u64 blkno, u64 new_blkno, u32 clusters, u32 *cpos, int num_buckets, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac, struct ocfs2_reflink_xattr_tree_args *args) { int i, j, ret = 0; struct super_block *sb = args->reflink->old_inode->i_sb; int bpb = args->old_bucket->bu_blocks; struct ocfs2_xattr_value_buf vb = { .vb_access = ocfs2_journal_access, }; for (i = 0; i < num_buckets; i++, blkno += bpb, new_blkno += bpb) { ret = ocfs2_read_xattr_bucket(args->old_bucket, blkno); if (ret) { mlog_errno(ret); break; } ret = ocfs2_init_xattr_bucket(args->new_bucket, new_blkno, 1); if (ret) { mlog_errno(ret); break; } ret = ocfs2_xattr_bucket_journal_access(handle, args->new_bucket, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); break; } for (j = 0; j < bpb; j++) memcpy(bucket_block(args->new_bucket, j), bucket_block(args->old_bucket, j), sb->s_blocksize); /* * Record the start cpos so that we can use it to initialize * our xattr tree we also set the xh_num_bucket for the new * bucket. */ if (i == 0) { *cpos = le32_to_cpu(bucket_xh(args->new_bucket)-> xh_entries[0].xe_name_hash); bucket_xh(args->new_bucket)->xh_num_buckets = cpu_to_le16(num_buckets); } ocfs2_xattr_bucket_journal_dirty(handle, args->new_bucket); ret = ocfs2_reflink_xattr_header(handle, args->reflink, args->old_bucket->bu_bhs[0], bucket_xh(args->old_bucket), args->new_bucket->bu_bhs[0], bucket_xh(args->new_bucket), &vb, meta_ac, ocfs2_get_reflink_xattr_value_root, args); if (ret) { mlog_errno(ret); break; } /* * Re-access and dirty the bucket to calculate metaecc. * Because we may extend the transaction in reflink_xattr_header * which will let the already accessed block gone. */ ret = ocfs2_xattr_bucket_journal_access(handle, args->new_bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); break; } ocfs2_xattr_bucket_journal_dirty(handle, args->new_bucket); ocfs2_xattr_bucket_relse(args->old_bucket); ocfs2_xattr_bucket_relse(args->new_bucket); } ocfs2_xattr_bucket_relse(args->old_bucket); ocfs2_xattr_bucket_relse(args->new_bucket); return ret; } static int ocfs2_reflink_xattr_buckets(handle_t *handle, struct inode *inode, struct ocfs2_reflink_xattr_tree_args *args, struct ocfs2_extent_tree *et, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac, u64 blkno, u32 cpos, u32 len) { int ret, first_inserted = 0; u32 p_cluster, num_clusters, reflink_cpos = 0; u64 new_blkno; unsigned int num_buckets, reflink_buckets; unsigned int bpc = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)); ret = ocfs2_read_xattr_bucket(args->old_bucket, blkno); if (ret) { mlog_errno(ret); goto out; } num_buckets = le16_to_cpu(bucket_xh(args->old_bucket)->xh_num_buckets); ocfs2_xattr_bucket_relse(args->old_bucket); while (len && num_buckets) { ret = ocfs2_claim_clusters(handle, data_ac, 1, &p_cluster, &num_clusters); if (ret) { mlog_errno(ret); goto out; } new_blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); reflink_buckets = min(num_buckets, bpc * num_clusters); ret = ocfs2_reflink_xattr_bucket(handle, blkno, new_blkno, num_clusters, &reflink_cpos, reflink_buckets, meta_ac, data_ac, args); if (ret) { mlog_errno(ret); goto out; } /* * For the 1st allocated cluster, we make it use the same cpos * so that the xattr tree looks the same as the original one * in the most case. */ if (!first_inserted) { reflink_cpos = cpos; first_inserted = 1; } ret = ocfs2_insert_extent(handle, et, reflink_cpos, new_blkno, num_clusters, 0, meta_ac); if (ret) mlog_errno(ret); trace_ocfs2_reflink_xattr_buckets((unsigned long long)new_blkno, num_clusters, reflink_cpos); len -= num_clusters; blkno += ocfs2_clusters_to_blocks(inode->i_sb, num_clusters); num_buckets -= reflink_buckets; } out: return ret; } /* * Create the same xattr extent record in the new inode's xattr tree. */ static int ocfs2_reflink_xattr_rec(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { int ret, credits = 0; handle_t *handle; struct ocfs2_reflink_xattr_tree_args *args = (struct ocfs2_reflink_xattr_tree_args *)para; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_extent_tree et; trace_ocfs2_reflink_xattr_rec((unsigned long long)blkno, len); ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(args->reflink->new_inode), args->new_blk_bh); ret = ocfs2_lock_reflink_xattr_rec_allocators(args, &et, blkno, len, &credits, &meta_ac, &data_ac); if (ret) { mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_reflink_xattr_buckets(handle, inode, args, &et, meta_ac, data_ac, blkno, cpos, len); if (ret) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out: if (meta_ac) ocfs2_free_alloc_context(meta_ac); if (data_ac) ocfs2_free_alloc_context(data_ac); return ret; } /* * Create reflinked xattr buckets. * We will add bucket one by one, and refcount all the xattrs in the bucket * if they are stored outside. */ static int ocfs2_reflink_xattr_tree(struct ocfs2_xattr_reflink *args, struct buffer_head *blk_bh, struct buffer_head *new_blk_bh) { int ret; struct ocfs2_reflink_xattr_tree_args para; memset(&para, 0, sizeof(para)); para.reflink = args; para.old_blk_bh = blk_bh; para.new_blk_bh = new_blk_bh; para.old_bucket = ocfs2_xattr_bucket_new(args->old_inode); if (!para.old_bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } para.new_bucket = ocfs2_xattr_bucket_new(args->new_inode); if (!para.new_bucket) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_iterate_xattr_index_block(args->old_inode, blk_bh, ocfs2_reflink_xattr_rec, &para); if (ret) mlog_errno(ret); out: ocfs2_xattr_bucket_free(para.old_bucket); ocfs2_xattr_bucket_free(para.new_bucket); return ret; } static int ocfs2_reflink_xattr_in_block(struct ocfs2_xattr_reflink *args, struct buffer_head *blk_bh) { int ret, indexed = 0; struct buffer_head *new_blk_bh = NULL; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) indexed = 1; ret = ocfs2_create_empty_xattr_block(args->new_inode, args->new_bh, &new_blk_bh, indexed); if (ret) { mlog_errno(ret); goto out; } if (!indexed) ret = ocfs2_reflink_xattr_block(args, blk_bh, new_blk_bh); else ret = ocfs2_reflink_xattr_tree(args, blk_bh, new_blk_bh); if (ret) mlog_errno(ret); out: brelse(new_blk_bh); return ret; } static int ocfs2_reflink_xattr_no_security(struct ocfs2_xattr_entry *xe) { int type = ocfs2_xattr_get_type(xe); return type != OCFS2_XATTR_INDEX_SECURITY && type != OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS && type != OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT; } int ocfs2_reflink_xattrs(struct inode *old_inode, struct buffer_head *old_bh, struct inode *new_inode, struct buffer_head *new_bh, bool preserve_security) { int ret; struct ocfs2_xattr_reflink args; struct ocfs2_inode_info *oi = OCFS2_I(old_inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)old_bh->b_data; struct buffer_head *blk_bh = NULL; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_refcount_tree *ref_tree; struct buffer_head *ref_root_bh = NULL; ret = ocfs2_lock_refcount_tree(OCFS2_SB(old_inode->i_sb), le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ocfs2_init_dealloc_ctxt(&dealloc); args.old_inode = old_inode; args.new_inode = new_inode; args.old_bh = old_bh; args.new_bh = new_bh; args.ref_ci = &ref_tree->rf_ci; args.ref_root_bh = ref_root_bh; args.dealloc = &dealloc; if (preserve_security) args.xattr_reflinked = NULL; else args.xattr_reflinked = ocfs2_reflink_xattr_no_security; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_reflink_xattr_inline(&args); if (ret) { mlog_errno(ret); goto out_unlock; } } if (!di->i_xattr_loc) goto out_unlock; ret = ocfs2_read_xattr_block(old_inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); goto out_unlock; } ret = ocfs2_reflink_xattr_in_block(&args, blk_bh); if (ret) mlog_errno(ret); brelse(blk_bh); out_unlock: ocfs2_unlock_refcount_tree(OCFS2_SB(old_inode->i_sb), ref_tree, 1); brelse(ref_root_bh); if (ocfs2_dealloc_has_cluster(&dealloc)) { ocfs2_schedule_truncate_log_flush(OCFS2_SB(old_inode->i_sb), 1); ocfs2_run_deallocs(OCFS2_SB(old_inode->i_sb), &dealloc); } out: return ret; } /* * Initialize security and acl for a already created inode. * Used for reflink a non-preserve-security file. * * It uses common api like ocfs2_xattr_set, so the caller * must not hold any lock expect i_rwsem. */ int ocfs2_init_security_and_acl(struct inode *dir, struct inode *inode, const struct qstr *qstr) { int ret = 0; struct buffer_head *dir_bh = NULL; ret = ocfs2_init_security_get(inode, dir, qstr, NULL); if (ret) { mlog_errno(ret); goto leave; } ret = ocfs2_inode_lock(dir, &dir_bh, 0); if (ret) { mlog_errno(ret); goto leave; } ret = ocfs2_init_acl(NULL, inode, dir, NULL, dir_bh, NULL, NULL); if (ret) mlog_errno(ret); ocfs2_inode_unlock(dir, 0); brelse(dir_bh); leave: return ret; } /* * 'security' attributes support */ static int ocfs2_xattr_security_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { return ocfs2_xattr_get(inode, OCFS2_XATTR_INDEX_SECURITY, name, buffer, size); } static int ocfs2_xattr_security_set(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { return ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_SECURITY, name, value, size, flags); } static int ocfs2_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *fs_info) { struct ocfs2_security_xattr_info *si = fs_info; const struct xattr *xattr; int err = 0; if (si) { si->value = kmemdup(xattr_array->value, xattr_array->value_len, GFP_KERNEL); if (!si->value) return -ENOMEM; si->name = xattr_array->name; si->value_len = xattr_array->value_len; return 0; } for (xattr = xattr_array; xattr->name != NULL; xattr++) { err = ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_SECURITY, xattr->name, xattr->value, xattr->value_len, XATTR_CREATE); if (err) break; } return err; } int ocfs2_init_security_get(struct inode *inode, struct inode *dir, const struct qstr *qstr, struct ocfs2_security_xattr_info *si) { int ret; /* check whether ocfs2 support feature xattr */ if (!ocfs2_supports_xattr(OCFS2_SB(dir->i_sb))) return -EOPNOTSUPP; if (si) { ret = security_inode_init_security(inode, dir, qstr, &ocfs2_initxattrs, si); /* * security_inode_init_security() does not return -EOPNOTSUPP, * we have to check the xattr ourselves. */ if (!ret && !si->name) si->enable = 0; return ret; } return security_inode_init_security(inode, dir, qstr, &ocfs2_initxattrs, NULL); } int ocfs2_init_security_set(handle_t *handle, struct inode *inode, struct buffer_head *di_bh, struct ocfs2_security_xattr_info *si, struct ocfs2_alloc_context *xattr_ac, struct ocfs2_alloc_context *data_ac) { return ocfs2_xattr_set_handle(handle, inode, di_bh, OCFS2_XATTR_INDEX_SECURITY, si->name, si->value, si->value_len, 0, xattr_ac, data_ac); } const struct xattr_handler ocfs2_xattr_security_handler = { .prefix = XATTR_SECURITY_PREFIX, .get = ocfs2_xattr_security_get, .set = ocfs2_xattr_security_set, }; /* * 'trusted' attributes support */ static int ocfs2_xattr_trusted_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { return ocfs2_xattr_get(inode, OCFS2_XATTR_INDEX_TRUSTED, name, buffer, size); } static int ocfs2_xattr_trusted_set(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { return ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_TRUSTED, name, value, size, flags); } const struct xattr_handler ocfs2_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .get = ocfs2_xattr_trusted_get, .set = ocfs2_xattr_trusted_set, }; /* * 'user' attributes support */ static int ocfs2_xattr_user_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR) return -EOPNOTSUPP; return ocfs2_xattr_get(inode, OCFS2_XATTR_INDEX_USER, name, buffer, size); } static int ocfs2_xattr_user_set(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR) return -EOPNOTSUPP; return ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_USER, name, value, size, flags); } const struct xattr_handler ocfs2_xattr_user_handler = { .prefix = XATTR_USER_PREFIX, .get = ocfs2_xattr_user_get, .set = ocfs2_xattr_user_set, };
linux-master
fs/ocfs2/xattr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * mmap.c * * Code to deal with the mess that is clustered mmap. * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/uio.h> #include <linux/signal.h> #include <linux/rbtree.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "aops.h" #include "dlmglue.h" #include "file.h" #include "inode.h" #include "mmap.h" #include "super.h" #include "ocfs2_trace.h" static vm_fault_t ocfs2_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; sigset_t oldset; vm_fault_t ret; ocfs2_block_signals(&oldset); ret = filemap_fault(vmf); ocfs2_unblock_signals(&oldset); trace_ocfs2_fault(OCFS2_I(vma->vm_file->f_mapping->host)->ip_blkno, vma, vmf->page, vmf->pgoff); return ret; } static vm_fault_t __ocfs2_page_mkwrite(struct file *file, struct buffer_head *di_bh, struct page *page) { int err; vm_fault_t ret = VM_FAULT_NOPAGE; struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; loff_t pos = page_offset(page); unsigned int len = PAGE_SIZE; pgoff_t last_index; struct page *locked_page = NULL; void *fsdata; loff_t size = i_size_read(inode); last_index = (size - 1) >> PAGE_SHIFT; /* * There are cases that lead to the page no longer belonging to the * mapping. * 1) pagecache truncates locally due to memory pressure. * 2) pagecache truncates when another is taking EX lock against * inode lock. see ocfs2_data_convert_worker. * * The i_size check doesn't catch the case where nodes truncated and * then re-extended the file. We'll re-check the page mapping after * taking the page lock inside of ocfs2_write_begin_nolock(). * * Let VM retry with these cases. */ if ((page->mapping != inode->i_mapping) || (!PageUptodate(page)) || (page_offset(page) >= size)) goto out; /* * Call ocfs2_write_begin() and ocfs2_write_end() to take * advantage of the allocation code there. We pass a write * length of the whole page (chopped to i_size) to make sure * the whole thing is allocated. * * Since we know the page is up to date, we don't have to * worry about ocfs2_write_begin() skipping some buffer reads * because the "write" would invalidate their data. */ if (page->index == last_index) len = ((size - 1) & ~PAGE_MASK) + 1; err = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_MMAP, &locked_page, &fsdata, di_bh, page); if (err) { if (err != -ENOSPC) mlog_errno(err); ret = vmf_error(err); goto out; } if (!locked_page) { ret = VM_FAULT_NOPAGE; goto out; } err = ocfs2_write_end_nolock(mapping, pos, len, len, fsdata); BUG_ON(err != len); ret = VM_FAULT_LOCKED; out: return ret; } static vm_fault_t ocfs2_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vmf->vma->vm_file); struct buffer_head *di_bh = NULL; sigset_t oldset; int err; vm_fault_t ret; sb_start_pagefault(inode->i_sb); ocfs2_block_signals(&oldset); /* * The cluster locks taken will block a truncate from another * node. Taking the data lock will also ensure that we don't * attempt page truncation as part of a downconvert. */ err = ocfs2_inode_lock(inode, &di_bh, 1); if (err < 0) { mlog_errno(err); ret = vmf_error(err); goto out; } /* * The alloc sem should be enough to serialize with * ocfs2_truncate_file() changing i_size as well as any thread * modifying the inode btree. */ down_write(&OCFS2_I(inode)->ip_alloc_sem); ret = __ocfs2_page_mkwrite(vmf->vma->vm_file, di_bh, page); up_write(&OCFS2_I(inode)->ip_alloc_sem); brelse(di_bh); ocfs2_inode_unlock(inode, 1); out: ocfs2_unblock_signals(&oldset); sb_end_pagefault(inode->i_sb); return ret; } static const struct vm_operations_struct ocfs2_file_vm_ops = { .fault = ocfs2_fault, .page_mkwrite = ocfs2_page_mkwrite, }; int ocfs2_mmap(struct file *file, struct vm_area_struct *vma) { int ret = 0, lock_level = 0; ret = ocfs2_inode_lock_atime(file_inode(file), file->f_path.mnt, &lock_level, 1); if (ret < 0) { mlog_errno(ret); goto out; } ocfs2_inode_unlock(file_inode(file), lock_level); out: vma->vm_ops = &ocfs2_file_vm_ops; return 0; }
linux-master
fs/ocfs2/mmap.c
// SPDX-License-Identifier: GPL-2.0-only /* * stack_user.c * * Code which interfaces ocfs2 with fs/dlm and a userspace stack. * * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/filelock.h> #include <linux/miscdevice.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/reboot.h> #include <linux/sched.h> #include <linux/uaccess.h> #include "stackglue.h" #include <linux/dlm_plock.h> /* * The control protocol starts with a handshake. Until the handshake * is complete, the control device will fail all write(2)s. * * The handshake is simple. First, the client reads until EOF. Each line * of output is a supported protocol tag. All protocol tags are a single * character followed by a two hex digit version number. Currently the * only things supported is T01, for "Text-base version 0x01". Next, the * client writes the version they would like to use, including the newline. * Thus, the protocol tag is 'T01\n'. If the version tag written is * unknown, -EINVAL is returned. Once the negotiation is complete, the * client can start sending messages. * * The T01 protocol has three messages. First is the "SETN" message. * It has the following syntax: * * SETN<space><8-char-hex-nodenum><newline> * * This is 14 characters. * * The "SETN" message must be the first message following the protocol. * It tells ocfs2_control the local node number. * * Next comes the "SETV" message. It has the following syntax: * * SETV<space><2-char-hex-major><space><2-char-hex-minor><newline> * * This is 11 characters. * * The "SETV" message sets the filesystem locking protocol version as * negotiated by the client. The client negotiates based on the maximum * version advertised in /sys/fs/ocfs2/max_locking_protocol. The major * number from the "SETV" message must match * ocfs2_user_plugin.sp_max_proto.pv_major, and the minor number * must be less than or equal to ...sp_max_version.pv_minor. * * Once this information has been set, mounts will be allowed. From this * point on, the "DOWN" message can be sent for node down notification. * It has the following syntax: * * DOWN<space><32-char-cap-hex-uuid><space><8-char-hex-nodenum><newline> * * eg: * * DOWN 632A924FDD844190BDA93C0DF6B94899 00000001\n * * This is 47 characters. */ /* * Whether or not the client has done the handshake. * For now, we have just one protocol version. */ #define OCFS2_CONTROL_PROTO "T01\n" #define OCFS2_CONTROL_PROTO_LEN 4 /* Handshake states */ #define OCFS2_CONTROL_HANDSHAKE_INVALID (0) #define OCFS2_CONTROL_HANDSHAKE_READ (1) #define OCFS2_CONTROL_HANDSHAKE_PROTOCOL (2) #define OCFS2_CONTROL_HANDSHAKE_VALID (3) /* Messages */ #define OCFS2_CONTROL_MESSAGE_OP_LEN 4 #define OCFS2_CONTROL_MESSAGE_SETNODE_OP "SETN" #define OCFS2_CONTROL_MESSAGE_SETNODE_TOTAL_LEN 14 #define OCFS2_CONTROL_MESSAGE_SETVERSION_OP "SETV" #define OCFS2_CONTROL_MESSAGE_SETVERSION_TOTAL_LEN 11 #define OCFS2_CONTROL_MESSAGE_DOWN_OP "DOWN" #define OCFS2_CONTROL_MESSAGE_DOWN_TOTAL_LEN 47 #define OCFS2_TEXT_UUID_LEN 32 #define OCFS2_CONTROL_MESSAGE_VERNUM_LEN 2 #define OCFS2_CONTROL_MESSAGE_NODENUM_LEN 8 #define VERSION_LOCK "version_lock" enum ocfs2_connection_type { WITH_CONTROLD, NO_CONTROLD }; /* * ocfs2_live_connection is refcounted because the filesystem and * miscdevice sides can detach in different order. Let's just be safe. */ struct ocfs2_live_connection { struct list_head oc_list; struct ocfs2_cluster_connection *oc_conn; enum ocfs2_connection_type oc_type; atomic_t oc_this_node; int oc_our_slot; struct dlm_lksb oc_version_lksb; char oc_lvb[DLM_LVB_LEN]; struct completion oc_sync_wait; wait_queue_head_t oc_wait; }; struct ocfs2_control_private { struct list_head op_list; int op_state; int op_this_node; struct ocfs2_protocol_version op_proto; }; /* SETN<space><8-char-hex-nodenum><newline> */ struct ocfs2_control_message_setn { char tag[OCFS2_CONTROL_MESSAGE_OP_LEN]; char space; char nodestr[OCFS2_CONTROL_MESSAGE_NODENUM_LEN]; char newline; }; /* SETV<space><2-char-hex-major><space><2-char-hex-minor><newline> */ struct ocfs2_control_message_setv { char tag[OCFS2_CONTROL_MESSAGE_OP_LEN]; char space1; char major[OCFS2_CONTROL_MESSAGE_VERNUM_LEN]; char space2; char minor[OCFS2_CONTROL_MESSAGE_VERNUM_LEN]; char newline; }; /* DOWN<space><32-char-cap-hex-uuid><space><8-char-hex-nodenum><newline> */ struct ocfs2_control_message_down { char tag[OCFS2_CONTROL_MESSAGE_OP_LEN]; char space1; char uuid[OCFS2_TEXT_UUID_LEN]; char space2; char nodestr[OCFS2_CONTROL_MESSAGE_NODENUM_LEN]; char newline; }; union ocfs2_control_message { char tag[OCFS2_CONTROL_MESSAGE_OP_LEN]; struct ocfs2_control_message_setn u_setn; struct ocfs2_control_message_setv u_setv; struct ocfs2_control_message_down u_down; }; static struct ocfs2_stack_plugin ocfs2_user_plugin; static atomic_t ocfs2_control_opened; static int ocfs2_control_this_node = -1; static struct ocfs2_protocol_version running_proto; static LIST_HEAD(ocfs2_live_connection_list); static LIST_HEAD(ocfs2_control_private_list); static DEFINE_MUTEX(ocfs2_control_lock); static inline void ocfs2_control_set_handshake_state(struct file *file, int state) { struct ocfs2_control_private *p = file->private_data; p->op_state = state; } static inline int ocfs2_control_get_handshake_state(struct file *file) { struct ocfs2_control_private *p = file->private_data; return p->op_state; } static struct ocfs2_live_connection *ocfs2_connection_find(const char *name) { size_t len = strlen(name); struct ocfs2_live_connection *c; BUG_ON(!mutex_is_locked(&ocfs2_control_lock)); list_for_each_entry(c, &ocfs2_live_connection_list, oc_list) { if ((c->oc_conn->cc_namelen == len) && !strncmp(c->oc_conn->cc_name, name, len)) return c; } return NULL; } /* * ocfs2_live_connection structures are created underneath the ocfs2 * mount path. Since the VFS prevents multiple calls to * fill_super(), we can't get dupes here. */ static int ocfs2_live_connection_attach(struct ocfs2_cluster_connection *conn, struct ocfs2_live_connection *c) { int rc = 0; mutex_lock(&ocfs2_control_lock); c->oc_conn = conn; if ((c->oc_type == NO_CONTROLD) || atomic_read(&ocfs2_control_opened)) list_add(&c->oc_list, &ocfs2_live_connection_list); else { printk(KERN_ERR "ocfs2: Userspace control daemon is not present\n"); rc = -ESRCH; } mutex_unlock(&ocfs2_control_lock); return rc; } /* * This function disconnects the cluster connection from ocfs2_control. * Afterwards, userspace can't affect the cluster connection. */ static void ocfs2_live_connection_drop(struct ocfs2_live_connection *c) { mutex_lock(&ocfs2_control_lock); list_del_init(&c->oc_list); c->oc_conn = NULL; mutex_unlock(&ocfs2_control_lock); kfree(c); } static int ocfs2_control_cfu(void *target, size_t target_len, const char __user *buf, size_t count) { /* The T01 expects write(2) calls to have exactly one command */ if ((count != target_len) || (count > sizeof(union ocfs2_control_message))) return -EINVAL; if (copy_from_user(target, buf, target_len)) return -EFAULT; return 0; } static ssize_t ocfs2_control_validate_protocol(struct file *file, const char __user *buf, size_t count) { ssize_t ret; char kbuf[OCFS2_CONTROL_PROTO_LEN]; ret = ocfs2_control_cfu(kbuf, OCFS2_CONTROL_PROTO_LEN, buf, count); if (ret) return ret; if (strncmp(kbuf, OCFS2_CONTROL_PROTO, OCFS2_CONTROL_PROTO_LEN)) return -EINVAL; ocfs2_control_set_handshake_state(file, OCFS2_CONTROL_HANDSHAKE_PROTOCOL); return count; } static void ocfs2_control_send_down(const char *uuid, int nodenum) { struct ocfs2_live_connection *c; mutex_lock(&ocfs2_control_lock); c = ocfs2_connection_find(uuid); if (c) { BUG_ON(c->oc_conn == NULL); c->oc_conn->cc_recovery_handler(nodenum, c->oc_conn->cc_recovery_data); } mutex_unlock(&ocfs2_control_lock); } /* * Called whenever configuration elements are sent to /dev/ocfs2_control. * If all configuration elements are present, try to set the global * values. If there is a problem, return an error. Skip any missing * elements, and only bump ocfs2_control_opened when we have all elements * and are successful. */ static int ocfs2_control_install_private(struct file *file) { int rc = 0; int set_p = 1; struct ocfs2_control_private *p = file->private_data; BUG_ON(p->op_state != OCFS2_CONTROL_HANDSHAKE_PROTOCOL); mutex_lock(&ocfs2_control_lock); if (p->op_this_node < 0) { set_p = 0; } else if ((ocfs2_control_this_node >= 0) && (ocfs2_control_this_node != p->op_this_node)) { rc = -EINVAL; goto out_unlock; } if (!p->op_proto.pv_major) { set_p = 0; } else if (!list_empty(&ocfs2_live_connection_list) && ((running_proto.pv_major != p->op_proto.pv_major) || (running_proto.pv_minor != p->op_proto.pv_minor))) { rc = -EINVAL; goto out_unlock; } if (set_p) { ocfs2_control_this_node = p->op_this_node; running_proto.pv_major = p->op_proto.pv_major; running_proto.pv_minor = p->op_proto.pv_minor; } out_unlock: mutex_unlock(&ocfs2_control_lock); if (!rc && set_p) { /* We set the global values successfully */ atomic_inc(&ocfs2_control_opened); ocfs2_control_set_handshake_state(file, OCFS2_CONTROL_HANDSHAKE_VALID); } return rc; } static int ocfs2_control_get_this_node(void) { int rc; mutex_lock(&ocfs2_control_lock); if (ocfs2_control_this_node < 0) rc = -EINVAL; else rc = ocfs2_control_this_node; mutex_unlock(&ocfs2_control_lock); return rc; } static int ocfs2_control_do_setnode_msg(struct file *file, struct ocfs2_control_message_setn *msg) { long nodenum; char *ptr = NULL; struct ocfs2_control_private *p = file->private_data; if (ocfs2_control_get_handshake_state(file) != OCFS2_CONTROL_HANDSHAKE_PROTOCOL) return -EINVAL; if (strncmp(msg->tag, OCFS2_CONTROL_MESSAGE_SETNODE_OP, OCFS2_CONTROL_MESSAGE_OP_LEN)) return -EINVAL; if ((msg->space != ' ') || (msg->newline != '\n')) return -EINVAL; msg->space = msg->newline = '\0'; nodenum = simple_strtol(msg->nodestr, &ptr, 16); if (!ptr || *ptr) return -EINVAL; if ((nodenum == LONG_MIN) || (nodenum == LONG_MAX) || (nodenum > INT_MAX) || (nodenum < 0)) return -ERANGE; p->op_this_node = nodenum; return ocfs2_control_install_private(file); } static int ocfs2_control_do_setversion_msg(struct file *file, struct ocfs2_control_message_setv *msg) { long major, minor; char *ptr = NULL; struct ocfs2_control_private *p = file->private_data; struct ocfs2_protocol_version *max = &ocfs2_user_plugin.sp_max_proto; if (ocfs2_control_get_handshake_state(file) != OCFS2_CONTROL_HANDSHAKE_PROTOCOL) return -EINVAL; if (strncmp(msg->tag, OCFS2_CONTROL_MESSAGE_SETVERSION_OP, OCFS2_CONTROL_MESSAGE_OP_LEN)) return -EINVAL; if ((msg->space1 != ' ') || (msg->space2 != ' ') || (msg->newline != '\n')) return -EINVAL; msg->space1 = msg->space2 = msg->newline = '\0'; major = simple_strtol(msg->major, &ptr, 16); if (!ptr || *ptr) return -EINVAL; minor = simple_strtol(msg->minor, &ptr, 16); if (!ptr || *ptr) return -EINVAL; /* * The major must be between 1 and 255, inclusive. The minor * must be between 0 and 255, inclusive. The version passed in * must be within the maximum version supported by the filesystem. */ if ((major == LONG_MIN) || (major == LONG_MAX) || (major > (u8)-1) || (major < 1)) return -ERANGE; if ((minor == LONG_MIN) || (minor == LONG_MAX) || (minor > (u8)-1) || (minor < 0)) return -ERANGE; if ((major != max->pv_major) || (minor > max->pv_minor)) return -EINVAL; p->op_proto.pv_major = major; p->op_proto.pv_minor = minor; return ocfs2_control_install_private(file); } static int ocfs2_control_do_down_msg(struct file *file, struct ocfs2_control_message_down *msg) { long nodenum; char *p = NULL; if (ocfs2_control_get_handshake_state(file) != OCFS2_CONTROL_HANDSHAKE_VALID) return -EINVAL; if (strncmp(msg->tag, OCFS2_CONTROL_MESSAGE_DOWN_OP, OCFS2_CONTROL_MESSAGE_OP_LEN)) return -EINVAL; if ((msg->space1 != ' ') || (msg->space2 != ' ') || (msg->newline != '\n')) return -EINVAL; msg->space1 = msg->space2 = msg->newline = '\0'; nodenum = simple_strtol(msg->nodestr, &p, 16); if (!p || *p) return -EINVAL; if ((nodenum == LONG_MIN) || (nodenum == LONG_MAX) || (nodenum > INT_MAX) || (nodenum < 0)) return -ERANGE; ocfs2_control_send_down(msg->uuid, nodenum); return 0; } static ssize_t ocfs2_control_message(struct file *file, const char __user *buf, size_t count) { ssize_t ret; union ocfs2_control_message msg; /* Try to catch padding issues */ WARN_ON(offsetof(struct ocfs2_control_message_down, uuid) != (sizeof(msg.u_down.tag) + sizeof(msg.u_down.space1))); memset(&msg, 0, sizeof(union ocfs2_control_message)); ret = ocfs2_control_cfu(&msg, count, buf, count); if (ret) goto out; if ((count == OCFS2_CONTROL_MESSAGE_SETNODE_TOTAL_LEN) && !strncmp(msg.tag, OCFS2_CONTROL_MESSAGE_SETNODE_OP, OCFS2_CONTROL_MESSAGE_OP_LEN)) ret = ocfs2_control_do_setnode_msg(file, &msg.u_setn); else if ((count == OCFS2_CONTROL_MESSAGE_SETVERSION_TOTAL_LEN) && !strncmp(msg.tag, OCFS2_CONTROL_MESSAGE_SETVERSION_OP, OCFS2_CONTROL_MESSAGE_OP_LEN)) ret = ocfs2_control_do_setversion_msg(file, &msg.u_setv); else if ((count == OCFS2_CONTROL_MESSAGE_DOWN_TOTAL_LEN) && !strncmp(msg.tag, OCFS2_CONTROL_MESSAGE_DOWN_OP, OCFS2_CONTROL_MESSAGE_OP_LEN)) ret = ocfs2_control_do_down_msg(file, &msg.u_down); else ret = -EINVAL; out: return ret ? ret : count; } static ssize_t ocfs2_control_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { ssize_t ret; switch (ocfs2_control_get_handshake_state(file)) { case OCFS2_CONTROL_HANDSHAKE_INVALID: ret = -EINVAL; break; case OCFS2_CONTROL_HANDSHAKE_READ: ret = ocfs2_control_validate_protocol(file, buf, count); break; case OCFS2_CONTROL_HANDSHAKE_PROTOCOL: case OCFS2_CONTROL_HANDSHAKE_VALID: ret = ocfs2_control_message(file, buf, count); break; default: BUG(); ret = -EIO; break; } return ret; } /* * This is a naive version. If we ever have a new protocol, we'll expand * it. Probably using seq_file. */ static ssize_t ocfs2_control_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { ssize_t ret; ret = simple_read_from_buffer(buf, count, ppos, OCFS2_CONTROL_PROTO, OCFS2_CONTROL_PROTO_LEN); /* Have we read the whole protocol list? */ if (ret > 0 && *ppos >= OCFS2_CONTROL_PROTO_LEN) ocfs2_control_set_handshake_state(file, OCFS2_CONTROL_HANDSHAKE_READ); return ret; } static int ocfs2_control_release(struct inode *inode, struct file *file) { struct ocfs2_control_private *p = file->private_data; mutex_lock(&ocfs2_control_lock); if (ocfs2_control_get_handshake_state(file) != OCFS2_CONTROL_HANDSHAKE_VALID) goto out; if (atomic_dec_and_test(&ocfs2_control_opened)) { if (!list_empty(&ocfs2_live_connection_list)) { /* XXX: Do bad things! */ printk(KERN_ERR "ocfs2: Unexpected release of ocfs2_control!\n" " Loss of cluster connection requires " "an emergency restart!\n"); emergency_restart(); } /* * Last valid close clears the node number and resets * the locking protocol version */ ocfs2_control_this_node = -1; running_proto.pv_major = 0; running_proto.pv_minor = 0; } out: list_del_init(&p->op_list); file->private_data = NULL; mutex_unlock(&ocfs2_control_lock); kfree(p); return 0; } static int ocfs2_control_open(struct inode *inode, struct file *file) { struct ocfs2_control_private *p; p = kzalloc(sizeof(struct ocfs2_control_private), GFP_KERNEL); if (!p) return -ENOMEM; p->op_this_node = -1; mutex_lock(&ocfs2_control_lock); file->private_data = p; list_add(&p->op_list, &ocfs2_control_private_list); mutex_unlock(&ocfs2_control_lock); return 0; } static const struct file_operations ocfs2_control_fops = { .open = ocfs2_control_open, .release = ocfs2_control_release, .read = ocfs2_control_read, .write = ocfs2_control_write, .owner = THIS_MODULE, .llseek = default_llseek, }; static struct miscdevice ocfs2_control_device = { .minor = MISC_DYNAMIC_MINOR, .name = "ocfs2_control", .fops = &ocfs2_control_fops, }; static int ocfs2_control_init(void) { int rc; atomic_set(&ocfs2_control_opened, 0); rc = misc_register(&ocfs2_control_device); if (rc) printk(KERN_ERR "ocfs2: Unable to register ocfs2_control device " "(errno %d)\n", -rc); return rc; } static void ocfs2_control_exit(void) { misc_deregister(&ocfs2_control_device); } static void fsdlm_lock_ast_wrapper(void *astarg) { struct ocfs2_dlm_lksb *lksb = astarg; int status = lksb->lksb_fsdlm.sb_status; /* * For now we're punting on the issue of other non-standard errors * where we can't tell if the unlock_ast or lock_ast should be called. * The main "other error" that's possible is EINVAL which means the * function was called with invalid args, which shouldn't be possible * since the caller here is under our control. Other non-standard * errors probably fall into the same category, or otherwise are fatal * which means we can't carry on anyway. */ if (status == -DLM_EUNLOCK || status == -DLM_ECANCEL) lksb->lksb_conn->cc_proto->lp_unlock_ast(lksb, 0); else lksb->lksb_conn->cc_proto->lp_lock_ast(lksb); } static void fsdlm_blocking_ast_wrapper(void *astarg, int level) { struct ocfs2_dlm_lksb *lksb = astarg; lksb->lksb_conn->cc_proto->lp_blocking_ast(lksb, level); } static int user_dlm_lock(struct ocfs2_cluster_connection *conn, int mode, struct ocfs2_dlm_lksb *lksb, u32 flags, void *name, unsigned int namelen) { if (!lksb->lksb_fsdlm.sb_lvbptr) lksb->lksb_fsdlm.sb_lvbptr = (char *)lksb + sizeof(struct dlm_lksb); return dlm_lock(conn->cc_lockspace, mode, &lksb->lksb_fsdlm, flags|DLM_LKF_NODLCKWT, name, namelen, 0, fsdlm_lock_ast_wrapper, lksb, fsdlm_blocking_ast_wrapper); } static int user_dlm_unlock(struct ocfs2_cluster_connection *conn, struct ocfs2_dlm_lksb *lksb, u32 flags) { return dlm_unlock(conn->cc_lockspace, lksb->lksb_fsdlm.sb_lkid, flags, &lksb->lksb_fsdlm, lksb); } static int user_dlm_lock_status(struct ocfs2_dlm_lksb *lksb) { return lksb->lksb_fsdlm.sb_status; } static int user_dlm_lvb_valid(struct ocfs2_dlm_lksb *lksb) { int invalid = lksb->lksb_fsdlm.sb_flags & DLM_SBF_VALNOTVALID; return !invalid; } static void *user_dlm_lvb(struct ocfs2_dlm_lksb *lksb) { if (!lksb->lksb_fsdlm.sb_lvbptr) lksb->lksb_fsdlm.sb_lvbptr = (char *)lksb + sizeof(struct dlm_lksb); return (void *)(lksb->lksb_fsdlm.sb_lvbptr); } static void user_dlm_dump_lksb(struct ocfs2_dlm_lksb *lksb) { } static int user_plock(struct ocfs2_cluster_connection *conn, u64 ino, struct file *file, int cmd, struct file_lock *fl) { /* * This more or less just demuxes the plock request into any * one of three dlm calls. * * Internally, fs/dlm will pass these to a misc device, which * a userspace daemon will read and write to. */ if (cmd == F_CANCELLK) return dlm_posix_cancel(conn->cc_lockspace, ino, file, fl); else if (IS_GETLK(cmd)) return dlm_posix_get(conn->cc_lockspace, ino, file, fl); else if (fl->fl_type == F_UNLCK) return dlm_posix_unlock(conn->cc_lockspace, ino, file, fl); else return dlm_posix_lock(conn->cc_lockspace, ino, file, cmd, fl); } /* * Compare a requested locking protocol version against the current one. * * If the major numbers are different, they are incompatible. * If the current minor is greater than the request, they are incompatible. * If the current minor is less than or equal to the request, they are * compatible, and the requester should run at the current minor version. */ static int fs_protocol_compare(struct ocfs2_protocol_version *existing, struct ocfs2_protocol_version *request) { if (existing->pv_major != request->pv_major) return 1; if (existing->pv_minor > request->pv_minor) return 1; if (existing->pv_minor < request->pv_minor) request->pv_minor = existing->pv_minor; return 0; } static void lvb_to_version(char *lvb, struct ocfs2_protocol_version *ver) { struct ocfs2_protocol_version *pv = (struct ocfs2_protocol_version *)lvb; /* * ocfs2_protocol_version has two u8 variables, so we don't * need any endian conversion. */ ver->pv_major = pv->pv_major; ver->pv_minor = pv->pv_minor; } static void version_to_lvb(struct ocfs2_protocol_version *ver, char *lvb) { struct ocfs2_protocol_version *pv = (struct ocfs2_protocol_version *)lvb; /* * ocfs2_protocol_version has two u8 variables, so we don't * need any endian conversion. */ pv->pv_major = ver->pv_major; pv->pv_minor = ver->pv_minor; } static void sync_wait_cb(void *arg) { struct ocfs2_cluster_connection *conn = arg; struct ocfs2_live_connection *lc = conn->cc_private; complete(&lc->oc_sync_wait); } static int sync_unlock(struct ocfs2_cluster_connection *conn, struct dlm_lksb *lksb, char *name) { int error; struct ocfs2_live_connection *lc = conn->cc_private; error = dlm_unlock(conn->cc_lockspace, lksb->sb_lkid, 0, lksb, conn); if (error) { printk(KERN_ERR "%s lkid %x error %d\n", name, lksb->sb_lkid, error); return error; } wait_for_completion(&lc->oc_sync_wait); if (lksb->sb_status != -DLM_EUNLOCK) { printk(KERN_ERR "%s lkid %x status %d\n", name, lksb->sb_lkid, lksb->sb_status); return -1; } return 0; } static int sync_lock(struct ocfs2_cluster_connection *conn, int mode, uint32_t flags, struct dlm_lksb *lksb, char *name) { int error, status; struct ocfs2_live_connection *lc = conn->cc_private; error = dlm_lock(conn->cc_lockspace, mode, lksb, flags, name, strlen(name), 0, sync_wait_cb, conn, NULL); if (error) { printk(KERN_ERR "%s lkid %x flags %x mode %d error %d\n", name, lksb->sb_lkid, flags, mode, error); return error; } wait_for_completion(&lc->oc_sync_wait); status = lksb->sb_status; if (status && status != -EAGAIN) { printk(KERN_ERR "%s lkid %x flags %x mode %d status %d\n", name, lksb->sb_lkid, flags, mode, status); } return status; } static int version_lock(struct ocfs2_cluster_connection *conn, int mode, int flags) { struct ocfs2_live_connection *lc = conn->cc_private; return sync_lock(conn, mode, flags, &lc->oc_version_lksb, VERSION_LOCK); } static int version_unlock(struct ocfs2_cluster_connection *conn) { struct ocfs2_live_connection *lc = conn->cc_private; return sync_unlock(conn, &lc->oc_version_lksb, VERSION_LOCK); } /* get_protocol_version() * * To exchange ocfs2 versioning, we use the LVB of the version dlm lock. * The algorithm is: * 1. Attempt to take the lock in EX mode (non-blocking). * 2. If successful (which means it is the first mount), write the * version number and downconvert to PR lock. * 3. If unsuccessful (returns -EAGAIN), read the version from the LVB after * taking the PR lock. */ static int get_protocol_version(struct ocfs2_cluster_connection *conn) { int ret; struct ocfs2_live_connection *lc = conn->cc_private; struct ocfs2_protocol_version pv; running_proto.pv_major = ocfs2_user_plugin.sp_max_proto.pv_major; running_proto.pv_minor = ocfs2_user_plugin.sp_max_proto.pv_minor; lc->oc_version_lksb.sb_lvbptr = lc->oc_lvb; ret = version_lock(conn, DLM_LOCK_EX, DLM_LKF_VALBLK|DLM_LKF_NOQUEUE); if (!ret) { conn->cc_version.pv_major = running_proto.pv_major; conn->cc_version.pv_minor = running_proto.pv_minor; version_to_lvb(&running_proto, lc->oc_lvb); version_lock(conn, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_VALBLK); } else if (ret == -EAGAIN) { ret = version_lock(conn, DLM_LOCK_PR, DLM_LKF_VALBLK); if (ret) goto out; lvb_to_version(lc->oc_lvb, &pv); if ((pv.pv_major != running_proto.pv_major) || (pv.pv_minor > running_proto.pv_minor)) { ret = -EINVAL; goto out; } conn->cc_version.pv_major = pv.pv_major; conn->cc_version.pv_minor = pv.pv_minor; } out: return ret; } static void user_recover_prep(void *arg) { } static void user_recover_slot(void *arg, struct dlm_slot *slot) { struct ocfs2_cluster_connection *conn = arg; printk(KERN_INFO "ocfs2: Node %d/%d down. Initiating recovery.\n", slot->nodeid, slot->slot); conn->cc_recovery_handler(slot->nodeid, conn->cc_recovery_data); } static void user_recover_done(void *arg, struct dlm_slot *slots, int num_slots, int our_slot, uint32_t generation) { struct ocfs2_cluster_connection *conn = arg; struct ocfs2_live_connection *lc = conn->cc_private; int i; for (i = 0; i < num_slots; i++) if (slots[i].slot == our_slot) { atomic_set(&lc->oc_this_node, slots[i].nodeid); break; } lc->oc_our_slot = our_slot; wake_up(&lc->oc_wait); } static const struct dlm_lockspace_ops ocfs2_ls_ops = { .recover_prep = user_recover_prep, .recover_slot = user_recover_slot, .recover_done = user_recover_done, }; static int user_cluster_disconnect(struct ocfs2_cluster_connection *conn) { version_unlock(conn); dlm_release_lockspace(conn->cc_lockspace, 2); conn->cc_lockspace = NULL; ocfs2_live_connection_drop(conn->cc_private); conn->cc_private = NULL; return 0; } static int user_cluster_connect(struct ocfs2_cluster_connection *conn) { dlm_lockspace_t *fsdlm; struct ocfs2_live_connection *lc; int rc, ops_rv; BUG_ON(conn == NULL); lc = kzalloc(sizeof(struct ocfs2_live_connection), GFP_KERNEL); if (!lc) return -ENOMEM; init_waitqueue_head(&lc->oc_wait); init_completion(&lc->oc_sync_wait); atomic_set(&lc->oc_this_node, 0); conn->cc_private = lc; lc->oc_type = NO_CONTROLD; rc = dlm_new_lockspace(conn->cc_name, conn->cc_cluster_name, DLM_LSFL_NEWEXCL, DLM_LVB_LEN, &ocfs2_ls_ops, conn, &ops_rv, &fsdlm); if (rc) { if (rc == -EEXIST || rc == -EPROTO) printk(KERN_ERR "ocfs2: Unable to create the " "lockspace %s (%d), because a ocfs2-tools " "program is running on this file system " "with the same name lockspace\n", conn->cc_name, rc); goto out; } if (ops_rv == -EOPNOTSUPP) { lc->oc_type = WITH_CONTROLD; printk(KERN_NOTICE "ocfs2: You seem to be using an older " "version of dlm_controld and/or ocfs2-tools." " Please consider upgrading.\n"); } else if (ops_rv) { rc = ops_rv; goto out; } conn->cc_lockspace = fsdlm; rc = ocfs2_live_connection_attach(conn, lc); if (rc) goto out; if (lc->oc_type == NO_CONTROLD) { rc = get_protocol_version(conn); if (rc) { printk(KERN_ERR "ocfs2: Could not determine" " locking version\n"); user_cluster_disconnect(conn); goto out; } wait_event(lc->oc_wait, (atomic_read(&lc->oc_this_node) > 0)); } /* * running_proto must have been set before we allowed any mounts * to proceed. */ if (fs_protocol_compare(&running_proto, &conn->cc_version)) { printk(KERN_ERR "Unable to mount with fs locking protocol version " "%u.%u because negotiated protocol is %u.%u\n", conn->cc_version.pv_major, conn->cc_version.pv_minor, running_proto.pv_major, running_proto.pv_minor); rc = -EPROTO; ocfs2_live_connection_drop(lc); lc = NULL; } out: if (rc) kfree(lc); return rc; } static int user_cluster_this_node(struct ocfs2_cluster_connection *conn, unsigned int *this_node) { int rc; struct ocfs2_live_connection *lc = conn->cc_private; if (lc->oc_type == WITH_CONTROLD) rc = ocfs2_control_get_this_node(); else if (lc->oc_type == NO_CONTROLD) rc = atomic_read(&lc->oc_this_node); else rc = -EINVAL; if (rc < 0) return rc; *this_node = rc; return 0; } static struct ocfs2_stack_operations ocfs2_user_plugin_ops = { .connect = user_cluster_connect, .disconnect = user_cluster_disconnect, .this_node = user_cluster_this_node, .dlm_lock = user_dlm_lock, .dlm_unlock = user_dlm_unlock, .lock_status = user_dlm_lock_status, .lvb_valid = user_dlm_lvb_valid, .lock_lvb = user_dlm_lvb, .plock = user_plock, .dump_lksb = user_dlm_dump_lksb, }; static struct ocfs2_stack_plugin ocfs2_user_plugin = { .sp_name = "user", .sp_ops = &ocfs2_user_plugin_ops, .sp_owner = THIS_MODULE, }; static int __init ocfs2_user_plugin_init(void) { int rc; rc = ocfs2_control_init(); if (!rc) { rc = ocfs2_stack_glue_register(&ocfs2_user_plugin); if (rc) ocfs2_control_exit(); } return rc; } static void __exit ocfs2_user_plugin_exit(void) { ocfs2_stack_glue_unregister(&ocfs2_user_plugin); ocfs2_control_exit(); } MODULE_AUTHOR("Oracle"); MODULE_DESCRIPTION("ocfs2 driver for userspace cluster stacks"); MODULE_LICENSE("GPL"); module_init(ocfs2_user_plugin_init); module_exit(ocfs2_user_plugin_exit);
linux-master
fs/ocfs2/stack_user.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * uptodate.c * * Tracking the up-to-date-ness of a local buffer_head with respect to * the cluster. * * Copyright (C) 2002, 2004, 2005 Oracle. All rights reserved. * * Standard buffer head caching flags (uptodate, etc) are insufficient * in a clustered environment - a buffer may be marked up to date on * our local node but could have been modified by another cluster * member. As a result an additional (and performant) caching scheme * is required. A further requirement is that we consume as little * memory as possible - we never pin buffer_head structures in order * to cache them. * * We track the existence of up to date buffers on the inodes which * are associated with them. Because we don't want to pin * buffer_heads, this is only a (strong) hint and several other checks * are made in the I/O path to ensure that we don't use a stale or * invalid buffer without going to disk: * - buffer_jbd is used liberally - if a bh is in the journal on * this node then it *must* be up to date. * - the standard buffer_uptodate() macro is used to detect buffers * which may be invalid (even if we have an up to date tracking * item for them) * * For a full understanding of how this code works together, one * should read the callers in dlmglue.c, the I/O functions in * buffer_head_io.c and ocfs2_journal_access in journal.c */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/buffer_head.h> #include <linux/rbtree.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "inode.h" #include "uptodate.h" #include "ocfs2_trace.h" struct ocfs2_meta_cache_item { struct rb_node c_node; sector_t c_block; }; static struct kmem_cache *ocfs2_uptodate_cachep; u64 ocfs2_metadata_cache_owner(struct ocfs2_caching_info *ci) { BUG_ON(!ci || !ci->ci_ops); return ci->ci_ops->co_owner(ci); } struct super_block *ocfs2_metadata_cache_get_super(struct ocfs2_caching_info *ci) { BUG_ON(!ci || !ci->ci_ops); return ci->ci_ops->co_get_super(ci); } static void ocfs2_metadata_cache_lock(struct ocfs2_caching_info *ci) { BUG_ON(!ci || !ci->ci_ops); ci->ci_ops->co_cache_lock(ci); } static void ocfs2_metadata_cache_unlock(struct ocfs2_caching_info *ci) { BUG_ON(!ci || !ci->ci_ops); ci->ci_ops->co_cache_unlock(ci); } void ocfs2_metadata_cache_io_lock(struct ocfs2_caching_info *ci) { BUG_ON(!ci || !ci->ci_ops); ci->ci_ops->co_io_lock(ci); } void ocfs2_metadata_cache_io_unlock(struct ocfs2_caching_info *ci) { BUG_ON(!ci || !ci->ci_ops); ci->ci_ops->co_io_unlock(ci); } static void ocfs2_metadata_cache_reset(struct ocfs2_caching_info *ci, int clear) { ci->ci_flags |= OCFS2_CACHE_FL_INLINE; ci->ci_num_cached = 0; if (clear) { ci->ci_created_trans = 0; ci->ci_last_trans = 0; } } void ocfs2_metadata_cache_init(struct ocfs2_caching_info *ci, const struct ocfs2_caching_operations *ops) { BUG_ON(!ops); ci->ci_ops = ops; ocfs2_metadata_cache_reset(ci, 1); } void ocfs2_metadata_cache_exit(struct ocfs2_caching_info *ci) { ocfs2_metadata_cache_purge(ci); ocfs2_metadata_cache_reset(ci, 1); } /* No lock taken here as 'root' is not expected to be visible to other * processes. */ static unsigned int ocfs2_purge_copied_metadata_tree(struct rb_root *root) { unsigned int purged = 0; struct rb_node *node; struct ocfs2_meta_cache_item *item; while ((node = rb_last(root)) != NULL) { item = rb_entry(node, struct ocfs2_meta_cache_item, c_node); trace_ocfs2_purge_copied_metadata_tree( (unsigned long long) item->c_block); rb_erase(&item->c_node, root); kmem_cache_free(ocfs2_uptodate_cachep, item); purged++; } return purged; } /* Called from locking and called from ocfs2_clear_inode. Dump the * cache for a given inode. * * This function is a few more lines longer than necessary due to some * accounting done here, but I think it's worth tracking down those * bugs sooner -- Mark */ void ocfs2_metadata_cache_purge(struct ocfs2_caching_info *ci) { unsigned int tree, to_purge, purged; struct rb_root root = RB_ROOT; BUG_ON(!ci || !ci->ci_ops); ocfs2_metadata_cache_lock(ci); tree = !(ci->ci_flags & OCFS2_CACHE_FL_INLINE); to_purge = ci->ci_num_cached; trace_ocfs2_metadata_cache_purge( (unsigned long long)ocfs2_metadata_cache_owner(ci), to_purge, tree); /* If we're a tree, save off the root so that we can safely * initialize the cache. We do the work to free tree members * without the spinlock. */ if (tree) root = ci->ci_cache.ci_tree; ocfs2_metadata_cache_reset(ci, 0); ocfs2_metadata_cache_unlock(ci); purged = ocfs2_purge_copied_metadata_tree(&root); /* If possible, track the number wiped so that we can more * easily detect counting errors. Unfortunately, this is only * meaningful for trees. */ if (tree && purged != to_purge) mlog(ML_ERROR, "Owner %llu, count = %u, purged = %u\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), to_purge, purged); } /* Returns the index in the cache array, -1 if not found. * Requires ip_lock. */ static int ocfs2_search_cache_array(struct ocfs2_caching_info *ci, sector_t item) { int i; for (i = 0; i < ci->ci_num_cached; i++) { if (item == ci->ci_cache.ci_array[i]) return i; } return -1; } /* Returns the cache item if found, otherwise NULL. * Requires ip_lock. */ static struct ocfs2_meta_cache_item * ocfs2_search_cache_tree(struct ocfs2_caching_info *ci, sector_t block) { struct rb_node * n = ci->ci_cache.ci_tree.rb_node; struct ocfs2_meta_cache_item *item = NULL; while (n) { item = rb_entry(n, struct ocfs2_meta_cache_item, c_node); if (block < item->c_block) n = n->rb_left; else if (block > item->c_block) n = n->rb_right; else return item; } return NULL; } static int ocfs2_buffer_cached(struct ocfs2_caching_info *ci, struct buffer_head *bh) { int index = -1; struct ocfs2_meta_cache_item *item = NULL; ocfs2_metadata_cache_lock(ci); trace_ocfs2_buffer_cached_begin( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long) bh->b_blocknr, !!(ci->ci_flags & OCFS2_CACHE_FL_INLINE)); if (ci->ci_flags & OCFS2_CACHE_FL_INLINE) index = ocfs2_search_cache_array(ci, bh->b_blocknr); else item = ocfs2_search_cache_tree(ci, bh->b_blocknr); ocfs2_metadata_cache_unlock(ci); trace_ocfs2_buffer_cached_end(index, item); return (index != -1) || (item != NULL); } /* Warning: even if it returns true, this does *not* guarantee that * the block is stored in our inode metadata cache. * * This can be called under lock_buffer() */ int ocfs2_buffer_uptodate(struct ocfs2_caching_info *ci, struct buffer_head *bh) { /* Doesn't matter if the bh is in our cache or not -- if it's * not marked uptodate then we know it can't have correct * data. */ if (!buffer_uptodate(bh)) return 0; /* OCFS2 does not allow multiple nodes to be changing the same * block at the same time. */ if (buffer_jbd(bh)) return 1; /* Ok, locally the buffer is marked as up to date, now search * our cache to see if we can trust that. */ return ocfs2_buffer_cached(ci, bh); } /* * Determine whether a buffer is currently out on a read-ahead request. * ci_io_sem should be held to serialize submitters with the logic here. */ int ocfs2_buffer_read_ahead(struct ocfs2_caching_info *ci, struct buffer_head *bh) { return buffer_locked(bh) && ocfs2_buffer_cached(ci, bh); } /* Requires ip_lock */ static void ocfs2_append_cache_array(struct ocfs2_caching_info *ci, sector_t block) { BUG_ON(ci->ci_num_cached >= OCFS2_CACHE_INFO_MAX_ARRAY); trace_ocfs2_append_cache_array( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)block, ci->ci_num_cached); ci->ci_cache.ci_array[ci->ci_num_cached] = block; ci->ci_num_cached++; } /* By now the caller should have checked that the item does *not* * exist in the tree. * Requires ip_lock. */ static void __ocfs2_insert_cache_tree(struct ocfs2_caching_info *ci, struct ocfs2_meta_cache_item *new) { sector_t block = new->c_block; struct rb_node *parent = NULL; struct rb_node **p = &ci->ci_cache.ci_tree.rb_node; struct ocfs2_meta_cache_item *tmp; trace_ocfs2_insert_cache_tree( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)block, ci->ci_num_cached); while(*p) { parent = *p; tmp = rb_entry(parent, struct ocfs2_meta_cache_item, c_node); if (block < tmp->c_block) p = &(*p)->rb_left; else if (block > tmp->c_block) p = &(*p)->rb_right; else { /* This should never happen! */ mlog(ML_ERROR, "Duplicate block %llu cached!\n", (unsigned long long) block); BUG(); } } rb_link_node(&new->c_node, parent, p); rb_insert_color(&new->c_node, &ci->ci_cache.ci_tree); ci->ci_num_cached++; } /* co_cache_lock() must be held */ static inline int ocfs2_insert_can_use_array(struct ocfs2_caching_info *ci) { return (ci->ci_flags & OCFS2_CACHE_FL_INLINE) && (ci->ci_num_cached < OCFS2_CACHE_INFO_MAX_ARRAY); } /* tree should be exactly OCFS2_CACHE_INFO_MAX_ARRAY wide. NULL the * pointers in tree after we use them - this allows caller to detect * when to free in case of error. * * The co_cache_lock() must be held. */ static void ocfs2_expand_cache(struct ocfs2_caching_info *ci, struct ocfs2_meta_cache_item **tree) { int i; mlog_bug_on_msg(ci->ci_num_cached != OCFS2_CACHE_INFO_MAX_ARRAY, "Owner %llu, num cached = %u, should be %u\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), ci->ci_num_cached, OCFS2_CACHE_INFO_MAX_ARRAY); mlog_bug_on_msg(!(ci->ci_flags & OCFS2_CACHE_FL_INLINE), "Owner %llu not marked as inline anymore!\n", (unsigned long long)ocfs2_metadata_cache_owner(ci)); /* Be careful to initialize the tree members *first* because * once the ci_tree is used, the array is junk... */ for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++) tree[i]->c_block = ci->ci_cache.ci_array[i]; ci->ci_flags &= ~OCFS2_CACHE_FL_INLINE; ci->ci_cache.ci_tree = RB_ROOT; /* this will be set again by __ocfs2_insert_cache_tree */ ci->ci_num_cached = 0; for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++) { __ocfs2_insert_cache_tree(ci, tree[i]); tree[i] = NULL; } trace_ocfs2_expand_cache( (unsigned long long)ocfs2_metadata_cache_owner(ci), ci->ci_flags, ci->ci_num_cached); } /* Slow path function - memory allocation is necessary. See the * comment above ocfs2_set_buffer_uptodate for more information. */ static void __ocfs2_set_buffer_uptodate(struct ocfs2_caching_info *ci, sector_t block, int expand_tree) { int i; struct ocfs2_meta_cache_item *new = NULL; struct ocfs2_meta_cache_item *tree[OCFS2_CACHE_INFO_MAX_ARRAY] = { NULL, }; trace_ocfs2_set_buffer_uptodate( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)block, expand_tree); new = kmem_cache_alloc(ocfs2_uptodate_cachep, GFP_NOFS); if (!new) { mlog_errno(-ENOMEM); return; } new->c_block = block; if (expand_tree) { /* Do *not* allocate an array here - the removal code * has no way of tracking that. */ for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++) { tree[i] = kmem_cache_alloc(ocfs2_uptodate_cachep, GFP_NOFS); if (!tree[i]) { mlog_errno(-ENOMEM); goto out_free; } /* These are initialized in ocfs2_expand_cache! */ } } ocfs2_metadata_cache_lock(ci); if (ocfs2_insert_can_use_array(ci)) { /* Ok, items were removed from the cache in between * locks. Detect this and revert back to the fast path */ ocfs2_append_cache_array(ci, block); ocfs2_metadata_cache_unlock(ci); goto out_free; } if (expand_tree) ocfs2_expand_cache(ci, tree); __ocfs2_insert_cache_tree(ci, new); ocfs2_metadata_cache_unlock(ci); new = NULL; out_free: if (new) kmem_cache_free(ocfs2_uptodate_cachep, new); /* If these were used, then ocfs2_expand_cache re-set them to * NULL for us. */ if (tree[0]) { for (i = 0; i < OCFS2_CACHE_INFO_MAX_ARRAY; i++) if (tree[i]) kmem_cache_free(ocfs2_uptodate_cachep, tree[i]); } } /* Item insertion is guarded by co_io_lock(), so the insertion path takes * advantage of this by not rechecking for a duplicate insert during * the slow case. Additionally, if the cache needs to be bumped up to * a tree, the code will not recheck after acquiring the lock -- * multiple paths cannot be expanding to a tree at the same time. * * The slow path takes into account that items can be removed * (including the whole tree wiped and reset) when this process it out * allocating memory. In those cases, it reverts back to the fast * path. * * Note that this function may actually fail to insert the block if * memory cannot be allocated. This is not fatal however (but may * result in a performance penalty) * * Readahead buffers can be passed in here before the I/O request is * completed. */ void ocfs2_set_buffer_uptodate(struct ocfs2_caching_info *ci, struct buffer_head *bh) { int expand; /* The block may very well exist in our cache already, so avoid * doing any more work in that case. */ if (ocfs2_buffer_cached(ci, bh)) return; trace_ocfs2_set_buffer_uptodate_begin( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)bh->b_blocknr); /* No need to recheck under spinlock - insertion is guarded by * co_io_lock() */ ocfs2_metadata_cache_lock(ci); if (ocfs2_insert_can_use_array(ci)) { /* Fast case - it's an array and there's a free * spot. */ ocfs2_append_cache_array(ci, bh->b_blocknr); ocfs2_metadata_cache_unlock(ci); return; } expand = 0; if (ci->ci_flags & OCFS2_CACHE_FL_INLINE) { /* We need to bump things up to a tree. */ expand = 1; } ocfs2_metadata_cache_unlock(ci); __ocfs2_set_buffer_uptodate(ci, bh->b_blocknr, expand); } /* Called against a newly allocated buffer. Most likely nobody should * be able to read this sort of metadata while it's still being * allocated, but this is careful to take co_io_lock() anyway. */ void ocfs2_set_new_buffer_uptodate(struct ocfs2_caching_info *ci, struct buffer_head *bh) { /* This should definitely *not* exist in our cache */ BUG_ON(ocfs2_buffer_cached(ci, bh)); set_buffer_uptodate(bh); ocfs2_metadata_cache_io_lock(ci); ocfs2_set_buffer_uptodate(ci, bh); ocfs2_metadata_cache_io_unlock(ci); } /* Requires ip_lock. */ static void ocfs2_remove_metadata_array(struct ocfs2_caching_info *ci, int index) { sector_t *array = ci->ci_cache.ci_array; int bytes; BUG_ON(index < 0 || index >= OCFS2_CACHE_INFO_MAX_ARRAY); BUG_ON(index >= ci->ci_num_cached); BUG_ON(!ci->ci_num_cached); trace_ocfs2_remove_metadata_array( (unsigned long long)ocfs2_metadata_cache_owner(ci), index, ci->ci_num_cached); ci->ci_num_cached--; /* don't need to copy if the array is now empty, or if we * removed at the tail */ if (ci->ci_num_cached && index < ci->ci_num_cached) { bytes = sizeof(sector_t) * (ci->ci_num_cached - index); memmove(&array[index], &array[index + 1], bytes); } } /* Requires ip_lock. */ static void ocfs2_remove_metadata_tree(struct ocfs2_caching_info *ci, struct ocfs2_meta_cache_item *item) { trace_ocfs2_remove_metadata_tree( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)item->c_block); rb_erase(&item->c_node, &ci->ci_cache.ci_tree); ci->ci_num_cached--; } static void ocfs2_remove_block_from_cache(struct ocfs2_caching_info *ci, sector_t block) { int index; struct ocfs2_meta_cache_item *item = NULL; ocfs2_metadata_cache_lock(ci); trace_ocfs2_remove_block_from_cache( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long) block, ci->ci_num_cached, ci->ci_flags); if (ci->ci_flags & OCFS2_CACHE_FL_INLINE) { index = ocfs2_search_cache_array(ci, block); if (index != -1) ocfs2_remove_metadata_array(ci, index); } else { item = ocfs2_search_cache_tree(ci, block); if (item) ocfs2_remove_metadata_tree(ci, item); } ocfs2_metadata_cache_unlock(ci); if (item) kmem_cache_free(ocfs2_uptodate_cachep, item); } /* * Called when we remove a chunk of metadata from an inode. We don't * bother reverting things to an inlined array in the case of a remove * which moves us back under the limit. */ void ocfs2_remove_from_cache(struct ocfs2_caching_info *ci, struct buffer_head *bh) { sector_t block = bh->b_blocknr; ocfs2_remove_block_from_cache(ci, block); } /* Called when we remove xattr clusters from an inode. */ void ocfs2_remove_xattr_clusters_from_cache(struct ocfs2_caching_info *ci, sector_t block, u32 c_len) { struct super_block *sb = ocfs2_metadata_cache_get_super(ci); unsigned int i, b_len = ocfs2_clusters_to_blocks(sb, 1) * c_len; for (i = 0; i < b_len; i++, block++) ocfs2_remove_block_from_cache(ci, block); } int __init init_ocfs2_uptodate_cache(void) { ocfs2_uptodate_cachep = kmem_cache_create("ocfs2_uptodate", sizeof(struct ocfs2_meta_cache_item), 0, SLAB_HWCACHE_ALIGN, NULL); if (!ocfs2_uptodate_cachep) return -ENOMEM; return 0; } void exit_ocfs2_uptodate_cache(void) { kmem_cache_destroy(ocfs2_uptodate_cachep); }
linux-master
fs/ocfs2/uptodate.c
// SPDX-License-Identifier: GPL-2.0-only /* * refcounttree.c * * Copyright (C) 2009 Oracle. All rights reserved. */ #include <linux/sort.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "inode.h" #include "alloc.h" #include "suballoc.h" #include "journal.h" #include "uptodate.h" #include "super.h" #include "buffer_head_io.h" #include "blockcheck.h" #include "refcounttree.h" #include "sysfile.h" #include "dlmglue.h" #include "extent_map.h" #include "aops.h" #include "xattr.h" #include "namei.h" #include "ocfs2_trace.h" #include "file.h" #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/writeback.h> #include <linux/pagevec.h> #include <linux/swap.h> #include <linux/security.h> #include <linux/fsnotify.h> #include <linux/quotaops.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/posix_acl.h> struct ocfs2_cow_context { struct inode *inode; u32 cow_start; u32 cow_len; struct ocfs2_extent_tree data_et; struct ocfs2_refcount_tree *ref_tree; struct buffer_head *ref_root_bh; struct ocfs2_alloc_context *meta_ac; struct ocfs2_alloc_context *data_ac; struct ocfs2_cached_dealloc_ctxt dealloc; void *cow_object; struct ocfs2_post_refcount *post_refcount; int extra_credits; int (*get_clusters)(struct ocfs2_cow_context *context, u32 v_cluster, u32 *p_cluster, u32 *num_clusters, unsigned int *extent_flags); int (*cow_duplicate_clusters)(handle_t *handle, struct inode *inode, u32 cpos, u32 old_cluster, u32 new_cluster, u32 new_len); }; static inline struct ocfs2_refcount_tree * cache_info_to_refcount(struct ocfs2_caching_info *ci) { return container_of(ci, struct ocfs2_refcount_tree, rf_ci); } static int ocfs2_validate_refcount_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)bh->b_data; trace_ocfs2_validate_refcount_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &rb->rf_check); if (rc) { mlog(ML_ERROR, "Checksum failed for refcount block %llu\n", (unsigned long long)bh->b_blocknr); return rc; } if (!OCFS2_IS_VALID_REFCOUNT_BLOCK(rb)) { rc = ocfs2_error(sb, "Refcount block #%llu has bad signature %.*s\n", (unsigned long long)bh->b_blocknr, 7, rb->rf_signature); goto out; } if (le64_to_cpu(rb->rf_blkno) != bh->b_blocknr) { rc = ocfs2_error(sb, "Refcount block #%llu has an invalid rf_blkno of %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(rb->rf_blkno)); goto out; } if (le32_to_cpu(rb->rf_fs_generation) != OCFS2_SB(sb)->fs_generation) { rc = ocfs2_error(sb, "Refcount block #%llu has an invalid rf_fs_generation of #%u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(rb->rf_fs_generation)); goto out; } out: return rc; } static int ocfs2_read_refcount_block(struct ocfs2_caching_info *ci, u64 rb_blkno, struct buffer_head **bh) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_block(ci, rb_blkno, &tmp, ocfs2_validate_refcount_block); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } static u64 ocfs2_refcount_cache_owner(struct ocfs2_caching_info *ci) { struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci); return rf->rf_blkno; } static struct super_block * ocfs2_refcount_cache_get_super(struct ocfs2_caching_info *ci) { struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci); return rf->rf_sb; } static void ocfs2_refcount_cache_lock(struct ocfs2_caching_info *ci) __acquires(&rf->rf_lock) { struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci); spin_lock(&rf->rf_lock); } static void ocfs2_refcount_cache_unlock(struct ocfs2_caching_info *ci) __releases(&rf->rf_lock) { struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci); spin_unlock(&rf->rf_lock); } static void ocfs2_refcount_cache_io_lock(struct ocfs2_caching_info *ci) { struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci); mutex_lock(&rf->rf_io_mutex); } static void ocfs2_refcount_cache_io_unlock(struct ocfs2_caching_info *ci) { struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci); mutex_unlock(&rf->rf_io_mutex); } static const struct ocfs2_caching_operations ocfs2_refcount_caching_ops = { .co_owner = ocfs2_refcount_cache_owner, .co_get_super = ocfs2_refcount_cache_get_super, .co_cache_lock = ocfs2_refcount_cache_lock, .co_cache_unlock = ocfs2_refcount_cache_unlock, .co_io_lock = ocfs2_refcount_cache_io_lock, .co_io_unlock = ocfs2_refcount_cache_io_unlock, }; static struct ocfs2_refcount_tree * ocfs2_find_refcount_tree(struct ocfs2_super *osb, u64 blkno) { struct rb_node *n = osb->osb_rf_lock_tree.rb_node; struct ocfs2_refcount_tree *tree = NULL; while (n) { tree = rb_entry(n, struct ocfs2_refcount_tree, rf_node); if (blkno < tree->rf_blkno) n = n->rb_left; else if (blkno > tree->rf_blkno) n = n->rb_right; else return tree; } return NULL; } /* osb_lock is already locked. */ static void ocfs2_insert_refcount_tree(struct ocfs2_super *osb, struct ocfs2_refcount_tree *new) { u64 rf_blkno = new->rf_blkno; struct rb_node *parent = NULL; struct rb_node **p = &osb->osb_rf_lock_tree.rb_node; struct ocfs2_refcount_tree *tmp; while (*p) { parent = *p; tmp = rb_entry(parent, struct ocfs2_refcount_tree, rf_node); if (rf_blkno < tmp->rf_blkno) p = &(*p)->rb_left; else if (rf_blkno > tmp->rf_blkno) p = &(*p)->rb_right; else { /* This should never happen! */ mlog(ML_ERROR, "Duplicate refcount block %llu found!\n", (unsigned long long)rf_blkno); BUG(); } } rb_link_node(&new->rf_node, parent, p); rb_insert_color(&new->rf_node, &osb->osb_rf_lock_tree); } static void ocfs2_free_refcount_tree(struct ocfs2_refcount_tree *tree) { ocfs2_metadata_cache_exit(&tree->rf_ci); ocfs2_simple_drop_lockres(OCFS2_SB(tree->rf_sb), &tree->rf_lockres); ocfs2_lock_res_free(&tree->rf_lockres); kfree(tree); } static inline void ocfs2_erase_refcount_tree_from_list_no_lock(struct ocfs2_super *osb, struct ocfs2_refcount_tree *tree) { rb_erase(&tree->rf_node, &osb->osb_rf_lock_tree); if (osb->osb_ref_tree_lru && osb->osb_ref_tree_lru == tree) osb->osb_ref_tree_lru = NULL; } static void ocfs2_erase_refcount_tree_from_list(struct ocfs2_super *osb, struct ocfs2_refcount_tree *tree) { spin_lock(&osb->osb_lock); ocfs2_erase_refcount_tree_from_list_no_lock(osb, tree); spin_unlock(&osb->osb_lock); } static void ocfs2_kref_remove_refcount_tree(struct kref *kref) { struct ocfs2_refcount_tree *tree = container_of(kref, struct ocfs2_refcount_tree, rf_getcnt); ocfs2_free_refcount_tree(tree); } static inline void ocfs2_refcount_tree_get(struct ocfs2_refcount_tree *tree) { kref_get(&tree->rf_getcnt); } static inline void ocfs2_refcount_tree_put(struct ocfs2_refcount_tree *tree) { kref_put(&tree->rf_getcnt, ocfs2_kref_remove_refcount_tree); } static inline void ocfs2_init_refcount_tree_ci(struct ocfs2_refcount_tree *new, struct super_block *sb) { ocfs2_metadata_cache_init(&new->rf_ci, &ocfs2_refcount_caching_ops); mutex_init(&new->rf_io_mutex); new->rf_sb = sb; spin_lock_init(&new->rf_lock); } static inline void ocfs2_init_refcount_tree_lock(struct ocfs2_super *osb, struct ocfs2_refcount_tree *new, u64 rf_blkno, u32 generation) { init_rwsem(&new->rf_sem); ocfs2_refcount_lock_res_init(&new->rf_lockres, osb, rf_blkno, generation); } static struct ocfs2_refcount_tree* ocfs2_allocate_refcount_tree(struct ocfs2_super *osb, u64 rf_blkno) { struct ocfs2_refcount_tree *new; new = kzalloc(sizeof(struct ocfs2_refcount_tree), GFP_NOFS); if (!new) return NULL; new->rf_blkno = rf_blkno; kref_init(&new->rf_getcnt); ocfs2_init_refcount_tree_ci(new, osb->sb); return new; } static int ocfs2_get_refcount_tree(struct ocfs2_super *osb, u64 rf_blkno, struct ocfs2_refcount_tree **ret_tree) { int ret = 0; struct ocfs2_refcount_tree *tree, *new = NULL; struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_block *ref_rb; spin_lock(&osb->osb_lock); if (osb->osb_ref_tree_lru && osb->osb_ref_tree_lru->rf_blkno == rf_blkno) tree = osb->osb_ref_tree_lru; else tree = ocfs2_find_refcount_tree(osb, rf_blkno); if (tree) goto out; spin_unlock(&osb->osb_lock); new = ocfs2_allocate_refcount_tree(osb, rf_blkno); if (!new) { ret = -ENOMEM; mlog_errno(ret); return ret; } /* * We need the generation to create the refcount tree lock and since * it isn't changed during the tree modification, we are safe here to * read without protection. * We also have to purge the cache after we create the lock since the * refcount block may have the stale data. It can only be trusted when * we hold the refcount lock. */ ret = ocfs2_read_refcount_block(&new->rf_ci, rf_blkno, &ref_root_bh); if (ret) { mlog_errno(ret); ocfs2_metadata_cache_exit(&new->rf_ci); kfree(new); return ret; } ref_rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; new->rf_generation = le32_to_cpu(ref_rb->rf_generation); ocfs2_init_refcount_tree_lock(osb, new, rf_blkno, new->rf_generation); ocfs2_metadata_cache_purge(&new->rf_ci); spin_lock(&osb->osb_lock); tree = ocfs2_find_refcount_tree(osb, rf_blkno); if (tree) goto out; ocfs2_insert_refcount_tree(osb, new); tree = new; new = NULL; out: *ret_tree = tree; osb->osb_ref_tree_lru = tree; spin_unlock(&osb->osb_lock); if (new) ocfs2_free_refcount_tree(new); brelse(ref_root_bh); return ret; } static int ocfs2_get_refcount_block(struct inode *inode, u64 *ref_blkno) { int ret; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } BUG_ON(!ocfs2_is_refcount_inode(inode)); di = (struct ocfs2_dinode *)di_bh->b_data; *ref_blkno = le64_to_cpu(di->i_refcount_loc); brelse(di_bh); out: return ret; } static int __ocfs2_lock_refcount_tree(struct ocfs2_super *osb, struct ocfs2_refcount_tree *tree, int rw) { int ret; ret = ocfs2_refcount_lock(tree, rw); if (ret) { mlog_errno(ret); goto out; } if (rw) down_write(&tree->rf_sem); else down_read(&tree->rf_sem); out: return ret; } /* * Lock the refcount tree pointed by ref_blkno and return the tree. * In most case, we lock the tree and read the refcount block. * So read it here if the caller really needs it. * * If the tree has been re-created by other node, it will free the * old one and re-create it. */ int ocfs2_lock_refcount_tree(struct ocfs2_super *osb, u64 ref_blkno, int rw, struct ocfs2_refcount_tree **ret_tree, struct buffer_head **ref_bh) { int ret, delete_tree = 0; struct ocfs2_refcount_tree *tree = NULL; struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_block *rb; again: ret = ocfs2_get_refcount_tree(osb, ref_blkno, &tree); if (ret) { mlog_errno(ret); return ret; } ocfs2_refcount_tree_get(tree); ret = __ocfs2_lock_refcount_tree(osb, tree, rw); if (ret) { mlog_errno(ret); ocfs2_refcount_tree_put(tree); goto out; } ret = ocfs2_read_refcount_block(&tree->rf_ci, tree->rf_blkno, &ref_root_bh); if (ret) { mlog_errno(ret); ocfs2_unlock_refcount_tree(osb, tree, rw); goto out; } rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; /* * If the refcount block has been freed and re-created, we may need * to recreate the refcount tree also. * * Here we just remove the tree from the rb-tree, and the last * kref holder will unlock and delete this refcount_tree. * Then we goto "again" and ocfs2_get_refcount_tree will create * the new refcount tree for us. */ if (tree->rf_generation != le32_to_cpu(rb->rf_generation)) { if (!tree->rf_removed) { ocfs2_erase_refcount_tree_from_list(osb, tree); tree->rf_removed = 1; delete_tree = 1; } ocfs2_unlock_refcount_tree(osb, tree, rw); /* * We get an extra reference when we create the refcount * tree, so another put will destroy it. */ if (delete_tree) ocfs2_refcount_tree_put(tree); brelse(ref_root_bh); ref_root_bh = NULL; goto again; } *ret_tree = tree; if (ref_bh) { *ref_bh = ref_root_bh; ref_root_bh = NULL; } out: brelse(ref_root_bh); return ret; } void ocfs2_unlock_refcount_tree(struct ocfs2_super *osb, struct ocfs2_refcount_tree *tree, int rw) { if (rw) up_write(&tree->rf_sem); else up_read(&tree->rf_sem); ocfs2_refcount_unlock(tree, rw); ocfs2_refcount_tree_put(tree); } void ocfs2_purge_refcount_trees(struct ocfs2_super *osb) { struct rb_node *node; struct ocfs2_refcount_tree *tree; struct rb_root *root = &osb->osb_rf_lock_tree; while ((node = rb_last(root)) != NULL) { tree = rb_entry(node, struct ocfs2_refcount_tree, rf_node); trace_ocfs2_purge_refcount_trees( (unsigned long long) tree->rf_blkno); rb_erase(&tree->rf_node, root); ocfs2_free_refcount_tree(tree); } } /* * Create a refcount tree for an inode. * We take for granted that the inode is already locked. */ static int ocfs2_create_refcount_tree(struct inode *inode, struct buffer_head *di_bh) { int ret; handle_t *handle = NULL; struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *new_bh = NULL; struct ocfs2_refcount_block *rb; struct ocfs2_refcount_tree *new_tree = NULL, *tree = NULL; u16 suballoc_bit_start; u32 num_got; u64 suballoc_loc, first_blkno; BUG_ON(ocfs2_is_refcount_inode(inode)); trace_ocfs2_create_refcount_tree( (unsigned long long)oi->ip_blkno); ret = ocfs2_reserve_new_metadata_blocks(osb, 1, &meta_ac); if (ret) { mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, OCFS2_REFCOUNT_TREE_CREATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_claim_metadata(handle, meta_ac, 1, &suballoc_loc, &suballoc_bit_start, &num_got, &first_blkno); if (ret) { mlog_errno(ret); goto out_commit; } new_tree = ocfs2_allocate_refcount_tree(osb, first_blkno); if (!new_tree) { ret = -ENOMEM; mlog_errno(ret); goto out_commit; } new_bh = sb_getblk(inode->i_sb, first_blkno); if (!new_bh) { ret = -ENOMEM; mlog_errno(ret); goto out_commit; } ocfs2_set_new_buffer_uptodate(&new_tree->rf_ci, new_bh); ret = ocfs2_journal_access_rb(handle, &new_tree->rf_ci, new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out_commit; } /* Initialize ocfs2_refcount_block. */ rb = (struct ocfs2_refcount_block *)new_bh->b_data; memset(rb, 0, inode->i_sb->s_blocksize); strcpy((void *)rb, OCFS2_REFCOUNT_BLOCK_SIGNATURE); rb->rf_suballoc_slot = cpu_to_le16(meta_ac->ac_alloc_slot); rb->rf_suballoc_loc = cpu_to_le64(suballoc_loc); rb->rf_suballoc_bit = cpu_to_le16(suballoc_bit_start); rb->rf_fs_generation = cpu_to_le32(osb->fs_generation); rb->rf_blkno = cpu_to_le64(first_blkno); rb->rf_count = cpu_to_le32(1); rb->rf_records.rl_count = cpu_to_le16(ocfs2_refcount_recs_per_rb(osb->sb)); spin_lock(&osb->osb_lock); rb->rf_generation = osb->s_next_generation++; spin_unlock(&osb->osb_lock); ocfs2_journal_dirty(handle, new_bh); spin_lock(&oi->ip_lock); oi->ip_dyn_features |= OCFS2_HAS_REFCOUNT_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); di->i_refcount_loc = cpu_to_le64(first_blkno); spin_unlock(&oi->ip_lock); trace_ocfs2_create_refcount_tree_blkno((unsigned long long)first_blkno); ocfs2_journal_dirty(handle, di_bh); /* * We have to init the tree lock here since it will use * the generation number to create it. */ new_tree->rf_generation = le32_to_cpu(rb->rf_generation); ocfs2_init_refcount_tree_lock(osb, new_tree, first_blkno, new_tree->rf_generation); spin_lock(&osb->osb_lock); tree = ocfs2_find_refcount_tree(osb, first_blkno); /* * We've just created a new refcount tree in this block. If * we found a refcount tree on the ocfs2_super, it must be * one we just deleted. We free the old tree before * inserting the new tree. */ BUG_ON(tree && tree->rf_generation == new_tree->rf_generation); if (tree) ocfs2_erase_refcount_tree_from_list_no_lock(osb, tree); ocfs2_insert_refcount_tree(osb, new_tree); spin_unlock(&osb->osb_lock); new_tree = NULL; if (tree) ocfs2_refcount_tree_put(tree); out_commit: ocfs2_commit_trans(osb, handle); out: if (new_tree) { ocfs2_metadata_cache_exit(&new_tree->rf_ci); kfree(new_tree); } brelse(new_bh); if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } static int ocfs2_set_refcount_tree(struct inode *inode, struct buffer_head *di_bh, u64 refcount_loc) { int ret; handle_t *handle = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_block *rb; struct ocfs2_refcount_tree *ref_tree; BUG_ON(ocfs2_is_refcount_inode(inode)); ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); return ret; } handle = ocfs2_start_trans(osb, OCFS2_REFCOUNT_TREE_SET_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_journal_access_rb(handle, &ref_tree->rf_ci, ref_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; le32_add_cpu(&rb->rf_count, 1); ocfs2_journal_dirty(handle, ref_root_bh); spin_lock(&oi->ip_lock); oi->ip_dyn_features |= OCFS2_HAS_REFCOUNT_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); di->i_refcount_loc = cpu_to_le64(refcount_loc); spin_unlock(&oi->ip_lock); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(osb, handle); out: ocfs2_unlock_refcount_tree(osb, ref_tree, 1); brelse(ref_root_bh); return ret; } int ocfs2_remove_refcount_tree(struct inode *inode, struct buffer_head *di_bh) { int ret, delete_tree = 0; handle_t *handle = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_refcount_block *rb; struct inode *alloc_inode = NULL; struct buffer_head *alloc_bh = NULL; struct buffer_head *blk_bh = NULL; struct ocfs2_refcount_tree *ref_tree; int credits = OCFS2_REFCOUNT_TREE_REMOVE_CREDITS; u64 blk = 0, bg_blkno = 0, ref_blkno = le64_to_cpu(di->i_refcount_loc); u16 bit = 0; if (!ocfs2_is_refcount_inode(inode)) return 0; BUG_ON(!ref_blkno); ret = ocfs2_lock_refcount_tree(osb, ref_blkno, 1, &ref_tree, &blk_bh); if (ret) { mlog_errno(ret); return ret; } rb = (struct ocfs2_refcount_block *)blk_bh->b_data; /* * If we are the last user, we need to free the block. * So lock the allocator ahead. */ if (le32_to_cpu(rb->rf_count) == 1) { blk = le64_to_cpu(rb->rf_blkno); bit = le16_to_cpu(rb->rf_suballoc_bit); if (rb->rf_suballoc_loc) bg_blkno = le64_to_cpu(rb->rf_suballoc_loc); else bg_blkno = ocfs2_which_suballoc_group(blk, bit); alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(rb->rf_suballoc_slot)); if (!alloc_inode) { ret = -ENOMEM; mlog_errno(ret); goto out; } inode_lock(alloc_inode); ret = ocfs2_inode_lock(alloc_inode, &alloc_bh, 1); if (ret) { mlog_errno(ret); goto out_mutex; } credits += OCFS2_SUBALLOC_FREE; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_journal_access_rb(handle, &ref_tree->rf_ci, blk_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } spin_lock(&oi->ip_lock); oi->ip_dyn_features &= ~OCFS2_HAS_REFCOUNT_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); di->i_refcount_loc = 0; spin_unlock(&oi->ip_lock); ocfs2_journal_dirty(handle, di_bh); le32_add_cpu(&rb->rf_count , -1); ocfs2_journal_dirty(handle, blk_bh); if (!rb->rf_count) { delete_tree = 1; ocfs2_erase_refcount_tree_from_list(osb, ref_tree); ret = ocfs2_free_suballoc_bits(handle, alloc_inode, alloc_bh, bit, bg_blkno, 1); if (ret) mlog_errno(ret); } out_commit: ocfs2_commit_trans(osb, handle); out_unlock: if (alloc_inode) { ocfs2_inode_unlock(alloc_inode, 1); brelse(alloc_bh); } out_mutex: if (alloc_inode) { inode_unlock(alloc_inode); iput(alloc_inode); } out: ocfs2_unlock_refcount_tree(osb, ref_tree, 1); if (delete_tree) ocfs2_refcount_tree_put(ref_tree); brelse(blk_bh); return ret; } static void ocfs2_find_refcount_rec_in_rl(struct ocfs2_caching_info *ci, struct buffer_head *ref_leaf_bh, u64 cpos, unsigned int len, struct ocfs2_refcount_rec *ret_rec, int *index) { int i = 0; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_refcount_rec *rec = NULL; for (; i < le16_to_cpu(rb->rf_records.rl_used); i++) { rec = &rb->rf_records.rl_recs[i]; if (le64_to_cpu(rec->r_cpos) + le32_to_cpu(rec->r_clusters) <= cpos) continue; else if (le64_to_cpu(rec->r_cpos) > cpos) break; /* ok, cpos fail in this rec. Just return. */ if (ret_rec) *ret_rec = *rec; goto out; } if (ret_rec) { /* We meet with a hole here, so fake the rec. */ ret_rec->r_cpos = cpu_to_le64(cpos); ret_rec->r_refcount = 0; if (i < le16_to_cpu(rb->rf_records.rl_used) && le64_to_cpu(rec->r_cpos) < cpos + len) ret_rec->r_clusters = cpu_to_le32(le64_to_cpu(rec->r_cpos) - cpos); else ret_rec->r_clusters = cpu_to_le32(len); } out: *index = i; } /* * Try to remove refcount tree. The mechanism is: * 1) Check whether i_clusters == 0, if no, exit. * 2) check whether we have i_xattr_loc in dinode. if yes, exit. * 3) Check whether we have inline xattr stored outside, if yes, exit. * 4) Remove the tree. */ int ocfs2_try_remove_refcount_tree(struct inode *inode, struct buffer_head *di_bh) { int ret; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; down_write(&oi->ip_xattr_sem); down_write(&oi->ip_alloc_sem); if (oi->ip_clusters) goto out; if ((oi->ip_dyn_features & OCFS2_HAS_XATTR_FL) && di->i_xattr_loc) goto out; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL && ocfs2_has_inline_xattr_value_outside(inode, di)) goto out; ret = ocfs2_remove_refcount_tree(inode, di_bh); if (ret) mlog_errno(ret); out: up_write(&oi->ip_alloc_sem); up_write(&oi->ip_xattr_sem); return 0; } /* * Find the end range for a leaf refcount block indicated by * el->l_recs[index].e_blkno. */ static int ocfs2_get_refcount_cpos_end(struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct ocfs2_extent_block *eb, struct ocfs2_extent_list *el, int index, u32 *cpos_end) { int ret, i, subtree_root; u32 cpos; u64 blkno; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); struct ocfs2_path *left_path = NULL, *right_path = NULL; struct ocfs2_extent_tree et; struct ocfs2_extent_list *tmp_el; if (index < le16_to_cpu(el->l_next_free_rec) - 1) { /* * We have a extent rec after index, so just use the e_cpos * of the next extent rec. */ *cpos_end = le32_to_cpu(el->l_recs[index+1].e_cpos); return 0; } if (!eb || !eb->h_next_leaf_blk) { /* * We are the last extent rec, so any high cpos should * be stored in this leaf refcount block. */ *cpos_end = UINT_MAX; return 0; } /* * If the extent block isn't the last one, we have to find * the subtree root between this extent block and the next * leaf extent block and get the corresponding e_cpos from * the subroot. Otherwise we may corrupt the b-tree. */ ocfs2_init_refcount_extent_tree(&et, ci, ref_root_bh); left_path = ocfs2_new_path_from_et(&et); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } cpos = le32_to_cpu(eb->h_list.l_recs[index].e_cpos); ret = ocfs2_find_path(ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } right_path = ocfs2_new_path_from_path(left_path); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, &cpos); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_find_path(ci, right_path, cpos); if (ret) { mlog_errno(ret); goto out; } subtree_root = ocfs2_find_subtree_root(&et, left_path, right_path); tmp_el = left_path->p_node[subtree_root].el; blkno = left_path->p_node[subtree_root+1].bh->b_blocknr; for (i = 0; i < le16_to_cpu(tmp_el->l_next_free_rec); i++) { if (le64_to_cpu(tmp_el->l_recs[i].e_blkno) == blkno) { *cpos_end = le32_to_cpu(tmp_el->l_recs[i+1].e_cpos); break; } } BUG_ON(i == le16_to_cpu(tmp_el->l_next_free_rec)); out: ocfs2_free_path(left_path); ocfs2_free_path(right_path); return ret; } /* * Given a cpos and len, try to find the refcount record which contains cpos. * 1. If cpos can be found in one refcount record, return the record. * 2. If cpos can't be found, return a fake record which start from cpos * and end at a small value between cpos+len and start of the next record. * This fake record has r_refcount = 0. */ static int ocfs2_get_refcount_rec(struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, u64 cpos, unsigned int len, struct ocfs2_refcount_rec *ret_rec, int *index, struct buffer_head **ret_bh) { int ret = 0, i, found; u32 low_cpos, cpos_end; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec = NULL; struct ocfs2_extent_block *eb = NULL; struct buffer_head *eb_bh = NULL, *ref_leaf_bh = NULL; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; if (!(le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL)) { ocfs2_find_refcount_rec_in_rl(ci, ref_root_bh, cpos, len, ret_rec, index); *ret_bh = ref_root_bh; get_bh(ref_root_bh); return 0; } el = &rb->rf_list; low_cpos = cpos & OCFS2_32BIT_POS_MASK; if (el->l_tree_depth) { ret = ocfs2_find_leaf(ci, el, low_cpos, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ret = ocfs2_error(sb, "refcount tree %llu has non zero tree depth in leaf btree tree block %llu\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)eb_bh->b_blocknr); goto out; } } found = 0; for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) <= low_cpos) { found = 1; break; } } if (found) { ret = ocfs2_get_refcount_cpos_end(ci, ref_root_bh, eb, el, i, &cpos_end); if (ret) { mlog_errno(ret); goto out; } if (cpos_end < low_cpos + len) len = cpos_end - low_cpos; } ret = ocfs2_read_refcount_block(ci, le64_to_cpu(rec->e_blkno), &ref_leaf_bh); if (ret) { mlog_errno(ret); goto out; } ocfs2_find_refcount_rec_in_rl(ci, ref_leaf_bh, cpos, len, ret_rec, index); *ret_bh = ref_leaf_bh; out: brelse(eb_bh); return ret; } enum ocfs2_ref_rec_contig { REF_CONTIG_NONE = 0, REF_CONTIG_LEFT, REF_CONTIG_RIGHT, REF_CONTIG_LEFTRIGHT, }; static enum ocfs2_ref_rec_contig ocfs2_refcount_rec_adjacent(struct ocfs2_refcount_block *rb, int index) { if ((rb->rf_records.rl_recs[index].r_refcount == rb->rf_records.rl_recs[index + 1].r_refcount) && (le64_to_cpu(rb->rf_records.rl_recs[index].r_cpos) + le32_to_cpu(rb->rf_records.rl_recs[index].r_clusters) == le64_to_cpu(rb->rf_records.rl_recs[index + 1].r_cpos))) return REF_CONTIG_RIGHT; return REF_CONTIG_NONE; } static enum ocfs2_ref_rec_contig ocfs2_refcount_rec_contig(struct ocfs2_refcount_block *rb, int index) { enum ocfs2_ref_rec_contig ret = REF_CONTIG_NONE; if (index < le16_to_cpu(rb->rf_records.rl_used) - 1) ret = ocfs2_refcount_rec_adjacent(rb, index); if (index > 0) { enum ocfs2_ref_rec_contig tmp; tmp = ocfs2_refcount_rec_adjacent(rb, index - 1); if (tmp == REF_CONTIG_RIGHT) { if (ret == REF_CONTIG_RIGHT) ret = REF_CONTIG_LEFTRIGHT; else ret = REF_CONTIG_LEFT; } } return ret; } static void ocfs2_rotate_refcount_rec_left(struct ocfs2_refcount_block *rb, int index) { BUG_ON(rb->rf_records.rl_recs[index].r_refcount != rb->rf_records.rl_recs[index+1].r_refcount); le32_add_cpu(&rb->rf_records.rl_recs[index].r_clusters, le32_to_cpu(rb->rf_records.rl_recs[index+1].r_clusters)); if (index < le16_to_cpu(rb->rf_records.rl_used) - 2) memmove(&rb->rf_records.rl_recs[index + 1], &rb->rf_records.rl_recs[index + 2], sizeof(struct ocfs2_refcount_rec) * (le16_to_cpu(rb->rf_records.rl_used) - index - 2)); memset(&rb->rf_records.rl_recs[le16_to_cpu(rb->rf_records.rl_used) - 1], 0, sizeof(struct ocfs2_refcount_rec)); le16_add_cpu(&rb->rf_records.rl_used, -1); } /* * Merge the refcount rec if we are contiguous with the adjacent recs. */ static void ocfs2_refcount_rec_merge(struct ocfs2_refcount_block *rb, int index) { enum ocfs2_ref_rec_contig contig = ocfs2_refcount_rec_contig(rb, index); if (contig == REF_CONTIG_NONE) return; if (contig == REF_CONTIG_LEFT || contig == REF_CONTIG_LEFTRIGHT) { BUG_ON(index == 0); index--; } ocfs2_rotate_refcount_rec_left(rb, index); if (contig == REF_CONTIG_LEFTRIGHT) ocfs2_rotate_refcount_rec_left(rb, index); } /* * Change the refcount indexed by "index" in ref_bh. * If refcount reaches 0, remove it. */ static int ocfs2_change_refcount_rec(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_leaf_bh, int index, int merge, int change) { int ret; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_refcount_list *rl = &rb->rf_records; struct ocfs2_refcount_rec *rec = &rl->rl_recs[index]; ret = ocfs2_journal_access_rb(handle, ci, ref_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_change_refcount_rec( (unsigned long long)ocfs2_metadata_cache_owner(ci), index, le32_to_cpu(rec->r_refcount), change); le32_add_cpu(&rec->r_refcount, change); if (!rec->r_refcount) { if (index != le16_to_cpu(rl->rl_used) - 1) { memmove(rec, rec + 1, (le16_to_cpu(rl->rl_used) - index - 1) * sizeof(struct ocfs2_refcount_rec)); memset(&rl->rl_recs[le16_to_cpu(rl->rl_used) - 1], 0, sizeof(struct ocfs2_refcount_rec)); } le16_add_cpu(&rl->rl_used, -1); } else if (merge) ocfs2_refcount_rec_merge(rb, index); ocfs2_journal_dirty(handle, ref_leaf_bh); out: return ret; } static int ocfs2_expand_inline_ref_root(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head **ref_leaf_bh, struct ocfs2_alloc_context *meta_ac) { int ret; u16 suballoc_bit_start; u32 num_got; u64 suballoc_loc, blkno; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); struct buffer_head *new_bh = NULL; struct ocfs2_refcount_block *new_rb; struct ocfs2_refcount_block *root_rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; ret = ocfs2_journal_access_rb(handle, ci, ref_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_claim_metadata(handle, meta_ac, 1, &suballoc_loc, &suballoc_bit_start, &num_got, &blkno); if (ret) { mlog_errno(ret); goto out; } new_bh = sb_getblk(sb, blkno); if (new_bh == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ocfs2_set_new_buffer_uptodate(ci, new_bh); ret = ocfs2_journal_access_rb(handle, ci, new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out; } /* * Initialize ocfs2_refcount_block. * It should contain the same information as the old root. * so just memcpy it and change the corresponding field. */ memcpy(new_bh->b_data, ref_root_bh->b_data, sb->s_blocksize); new_rb = (struct ocfs2_refcount_block *)new_bh->b_data; new_rb->rf_suballoc_slot = cpu_to_le16(meta_ac->ac_alloc_slot); new_rb->rf_suballoc_loc = cpu_to_le64(suballoc_loc); new_rb->rf_suballoc_bit = cpu_to_le16(suballoc_bit_start); new_rb->rf_blkno = cpu_to_le64(blkno); new_rb->rf_cpos = cpu_to_le32(0); new_rb->rf_parent = cpu_to_le64(ref_root_bh->b_blocknr); new_rb->rf_flags = cpu_to_le32(OCFS2_REFCOUNT_LEAF_FL); ocfs2_journal_dirty(handle, new_bh); /* Now change the root. */ memset(&root_rb->rf_list, 0, sb->s_blocksize - offsetof(struct ocfs2_refcount_block, rf_list)); root_rb->rf_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_rb(sb)); root_rb->rf_clusters = cpu_to_le32(1); root_rb->rf_list.l_next_free_rec = cpu_to_le16(1); root_rb->rf_list.l_recs[0].e_blkno = cpu_to_le64(blkno); root_rb->rf_list.l_recs[0].e_leaf_clusters = cpu_to_le16(1); root_rb->rf_flags = cpu_to_le32(OCFS2_REFCOUNT_TREE_FL); ocfs2_journal_dirty(handle, ref_root_bh); trace_ocfs2_expand_inline_ref_root((unsigned long long)blkno, le16_to_cpu(new_rb->rf_records.rl_used)); *ref_leaf_bh = new_bh; new_bh = NULL; out: brelse(new_bh); return ret; } static int ocfs2_refcount_rec_no_intersect(struct ocfs2_refcount_rec *prev, struct ocfs2_refcount_rec *next) { if (ocfs2_get_ref_rec_low_cpos(prev) + le32_to_cpu(prev->r_clusters) <= ocfs2_get_ref_rec_low_cpos(next)) return 1; return 0; } static int cmp_refcount_rec_by_low_cpos(const void *a, const void *b) { const struct ocfs2_refcount_rec *l = a, *r = b; u32 l_cpos = ocfs2_get_ref_rec_low_cpos(l); u32 r_cpos = ocfs2_get_ref_rec_low_cpos(r); if (l_cpos > r_cpos) return 1; if (l_cpos < r_cpos) return -1; return 0; } static int cmp_refcount_rec_by_cpos(const void *a, const void *b) { const struct ocfs2_refcount_rec *l = a, *r = b; u64 l_cpos = le64_to_cpu(l->r_cpos); u64 r_cpos = le64_to_cpu(r->r_cpos); if (l_cpos > r_cpos) return 1; if (l_cpos < r_cpos) return -1; return 0; } static void swap_refcount_rec(void *a, void *b, int size) { struct ocfs2_refcount_rec *l = a, *r = b; swap(*l, *r); } /* * The refcount cpos are ordered by their 64bit cpos, * But we will use the low 32 bit to be the e_cpos in the b-tree. * So we need to make sure that this pos isn't intersected with others. * * Note: The refcount block is already sorted by their low 32 bit cpos, * So just try the middle pos first, and we will exit when we find * the good position. */ static int ocfs2_find_refcount_split_pos(struct ocfs2_refcount_list *rl, u32 *split_pos, int *split_index) { int num_used = le16_to_cpu(rl->rl_used); int delta, middle = num_used / 2; for (delta = 0; delta < middle; delta++) { /* Let's check delta earlier than middle */ if (ocfs2_refcount_rec_no_intersect( &rl->rl_recs[middle - delta - 1], &rl->rl_recs[middle - delta])) { *split_index = middle - delta; break; } /* For even counts, don't walk off the end */ if ((middle + delta + 1) == num_used) continue; /* Now try delta past middle */ if (ocfs2_refcount_rec_no_intersect( &rl->rl_recs[middle + delta], &rl->rl_recs[middle + delta + 1])) { *split_index = middle + delta + 1; break; } } if (delta >= middle) return -ENOSPC; *split_pos = ocfs2_get_ref_rec_low_cpos(&rl->rl_recs[*split_index]); return 0; } static int ocfs2_divide_leaf_refcount_block(struct buffer_head *ref_leaf_bh, struct buffer_head *new_bh, u32 *split_cpos) { int split_index = 0, num_moved, ret; u32 cpos = 0; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_refcount_list *rl = &rb->rf_records; struct ocfs2_refcount_block *new_rb = (struct ocfs2_refcount_block *)new_bh->b_data; struct ocfs2_refcount_list *new_rl = &new_rb->rf_records; trace_ocfs2_divide_leaf_refcount_block( (unsigned long long)ref_leaf_bh->b_blocknr, le16_to_cpu(rl->rl_count), le16_to_cpu(rl->rl_used)); /* * XXX: Improvement later. * If we know all the high 32 bit cpos is the same, no need to sort. * * In order to make the whole process safe, we do: * 1. sort the entries by their low 32 bit cpos first so that we can * find the split cpos easily. * 2. call ocfs2_insert_extent to insert the new refcount block. * 3. move the refcount rec to the new block. * 4. sort the entries by their 64 bit cpos. * 5. dirty the new_rb and rb. */ sort(&rl->rl_recs, le16_to_cpu(rl->rl_used), sizeof(struct ocfs2_refcount_rec), cmp_refcount_rec_by_low_cpos, swap_refcount_rec); ret = ocfs2_find_refcount_split_pos(rl, &cpos, &split_index); if (ret) { mlog_errno(ret); return ret; } new_rb->rf_cpos = cpu_to_le32(cpos); /* move refcount records starting from split_index to the new block. */ num_moved = le16_to_cpu(rl->rl_used) - split_index; memcpy(new_rl->rl_recs, &rl->rl_recs[split_index], num_moved * sizeof(struct ocfs2_refcount_rec)); /*ok, remove the entries we just moved over to the other block. */ memset(&rl->rl_recs[split_index], 0, num_moved * sizeof(struct ocfs2_refcount_rec)); /* change old and new rl_used accordingly. */ le16_add_cpu(&rl->rl_used, -num_moved); new_rl->rl_used = cpu_to_le16(num_moved); sort(&rl->rl_recs, le16_to_cpu(rl->rl_used), sizeof(struct ocfs2_refcount_rec), cmp_refcount_rec_by_cpos, swap_refcount_rec); sort(&new_rl->rl_recs, le16_to_cpu(new_rl->rl_used), sizeof(struct ocfs2_refcount_rec), cmp_refcount_rec_by_cpos, swap_refcount_rec); *split_cpos = cpos; return 0; } static int ocfs2_new_leaf_refcount_block(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, struct ocfs2_alloc_context *meta_ac) { int ret; u16 suballoc_bit_start; u32 num_got, new_cpos; u64 suballoc_loc, blkno; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); struct ocfs2_refcount_block *root_rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; struct buffer_head *new_bh = NULL; struct ocfs2_refcount_block *new_rb; struct ocfs2_extent_tree ref_et; BUG_ON(!(le32_to_cpu(root_rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL)); ret = ocfs2_journal_access_rb(handle, ci, ref_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_rb(handle, ci, ref_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_claim_metadata(handle, meta_ac, 1, &suballoc_loc, &suballoc_bit_start, &num_got, &blkno); if (ret) { mlog_errno(ret); goto out; } new_bh = sb_getblk(sb, blkno); if (new_bh == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ocfs2_set_new_buffer_uptodate(ci, new_bh); ret = ocfs2_journal_access_rb(handle, ci, new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out; } /* Initialize ocfs2_refcount_block. */ new_rb = (struct ocfs2_refcount_block *)new_bh->b_data; memset(new_rb, 0, sb->s_blocksize); strcpy((void *)new_rb, OCFS2_REFCOUNT_BLOCK_SIGNATURE); new_rb->rf_suballoc_slot = cpu_to_le16(meta_ac->ac_alloc_slot); new_rb->rf_suballoc_loc = cpu_to_le64(suballoc_loc); new_rb->rf_suballoc_bit = cpu_to_le16(suballoc_bit_start); new_rb->rf_fs_generation = cpu_to_le32(OCFS2_SB(sb)->fs_generation); new_rb->rf_blkno = cpu_to_le64(blkno); new_rb->rf_parent = cpu_to_le64(ref_root_bh->b_blocknr); new_rb->rf_flags = cpu_to_le32(OCFS2_REFCOUNT_LEAF_FL); new_rb->rf_records.rl_count = cpu_to_le16(ocfs2_refcount_recs_per_rb(sb)); new_rb->rf_generation = root_rb->rf_generation; ret = ocfs2_divide_leaf_refcount_block(ref_leaf_bh, new_bh, &new_cpos); if (ret) { mlog_errno(ret); goto out; } ocfs2_journal_dirty(handle, ref_leaf_bh); ocfs2_journal_dirty(handle, new_bh); ocfs2_init_refcount_extent_tree(&ref_et, ci, ref_root_bh); trace_ocfs2_new_leaf_refcount_block( (unsigned long long)new_bh->b_blocknr, new_cpos); /* Insert the new leaf block with the specific offset cpos. */ ret = ocfs2_insert_extent(handle, &ref_et, new_cpos, new_bh->b_blocknr, 1, 0, meta_ac); if (ret) mlog_errno(ret); out: brelse(new_bh); return ret; } static int ocfs2_expand_refcount_tree(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, struct ocfs2_alloc_context *meta_ac) { int ret; struct buffer_head *expand_bh = NULL; if (ref_root_bh == ref_leaf_bh) { /* * the old root bh hasn't been expanded to a b-tree, * so expand it first. */ ret = ocfs2_expand_inline_ref_root(handle, ci, ref_root_bh, &expand_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } } else { expand_bh = ref_leaf_bh; get_bh(expand_bh); } /* Now add a new refcount block into the tree.*/ ret = ocfs2_new_leaf_refcount_block(handle, ci, ref_root_bh, expand_bh, meta_ac); if (ret) mlog_errno(ret); out: brelse(expand_bh); return ret; } /* * Adjust the extent rec in b-tree representing ref_leaf_bh. * * Only called when we have inserted a new refcount rec at index 0 * which means ocfs2_extent_rec.e_cpos may need some change. */ static int ocfs2_adjust_refcount_rec(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, struct ocfs2_refcount_rec *rec) { int ret = 0, i; u32 new_cpos, old_cpos; struct ocfs2_path *path = NULL; struct ocfs2_extent_tree et; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; struct ocfs2_extent_list *el; if (!(le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL)) goto out; rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; old_cpos = le32_to_cpu(rb->rf_cpos); new_cpos = le64_to_cpu(rec->r_cpos) & OCFS2_32BIT_POS_MASK; if (old_cpos <= new_cpos) goto out; ocfs2_init_refcount_extent_tree(&et, ci, ref_root_bh); path = ocfs2_new_path_from_et(&et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(ci, path, old_cpos); if (ret) { mlog_errno(ret); goto out; } /* * 2 more credits, one for the leaf refcount block, one for * the extent block contains the extent rec. */ ret = ocfs2_extend_trans(handle, 2); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_rb(handle, ci, ref_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_eb(handle, ci, path_leaf_bh(path), OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } /* change the leaf extent block first. */ el = path_leaf_el(path); for (i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) if (le32_to_cpu(el->l_recs[i].e_cpos) == old_cpos) break; BUG_ON(i == le16_to_cpu(el->l_next_free_rec)); el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); /* change the r_cpos in the leaf block. */ rb->rf_cpos = cpu_to_le32(new_cpos); ocfs2_journal_dirty(handle, path_leaf_bh(path)); ocfs2_journal_dirty(handle, ref_leaf_bh); out: ocfs2_free_path(path); return ret; } static int ocfs2_insert_refcount_rec(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, struct ocfs2_refcount_rec *rec, int index, int merge, struct ocfs2_alloc_context *meta_ac) { int ret; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_refcount_list *rf_list = &rb->rf_records; struct buffer_head *new_bh = NULL; BUG_ON(le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL); if (rf_list->rl_used == rf_list->rl_count) { u64 cpos = le64_to_cpu(rec->r_cpos); u32 len = le32_to_cpu(rec->r_clusters); ret = ocfs2_expand_refcount_tree(handle, ci, ref_root_bh, ref_leaf_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_get_refcount_rec(ci, ref_root_bh, cpos, len, NULL, &index, &new_bh); if (ret) { mlog_errno(ret); goto out; } ref_leaf_bh = new_bh; rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; rf_list = &rb->rf_records; } ret = ocfs2_journal_access_rb(handle, ci, ref_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } if (index < le16_to_cpu(rf_list->rl_used)) memmove(&rf_list->rl_recs[index + 1], &rf_list->rl_recs[index], (le16_to_cpu(rf_list->rl_used) - index) * sizeof(struct ocfs2_refcount_rec)); trace_ocfs2_insert_refcount_rec( (unsigned long long)ref_leaf_bh->b_blocknr, index, (unsigned long long)le64_to_cpu(rec->r_cpos), le32_to_cpu(rec->r_clusters), le32_to_cpu(rec->r_refcount)); rf_list->rl_recs[index] = *rec; le16_add_cpu(&rf_list->rl_used, 1); if (merge) ocfs2_refcount_rec_merge(rb, index); ocfs2_journal_dirty(handle, ref_leaf_bh); if (index == 0) { ret = ocfs2_adjust_refcount_rec(handle, ci, ref_root_bh, ref_leaf_bh, rec); if (ret) mlog_errno(ret); } out: brelse(new_bh); return ret; } /* * Split the refcount_rec indexed by "index" in ref_leaf_bh. * This is much simple than our b-tree code. * split_rec is the new refcount rec we want to insert. * If split_rec->r_refcount > 0, we are changing the refcount(in case we * increase refcount or decrease a refcount to non-zero). * If split_rec->r_refcount == 0, we are punching a hole in current refcount * rec( in case we decrease a refcount to zero). */ static int ocfs2_split_refcount_rec(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, struct ocfs2_refcount_rec *split_rec, int index, int merge, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, recs_need; u32 len; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_refcount_list *rf_list = &rb->rf_records; struct ocfs2_refcount_rec *orig_rec = &rf_list->rl_recs[index]; struct ocfs2_refcount_rec *tail_rec = NULL; struct buffer_head *new_bh = NULL; BUG_ON(le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL); trace_ocfs2_split_refcount_rec(le64_to_cpu(orig_rec->r_cpos), le32_to_cpu(orig_rec->r_clusters), le32_to_cpu(orig_rec->r_refcount), le64_to_cpu(split_rec->r_cpos), le32_to_cpu(split_rec->r_clusters), le32_to_cpu(split_rec->r_refcount)); /* * If we just need to split the header or tail clusters, * no more recs are needed, just split is OK. * Otherwise we at least need one new recs. */ if (!split_rec->r_refcount && (split_rec->r_cpos == orig_rec->r_cpos || le64_to_cpu(split_rec->r_cpos) + le32_to_cpu(split_rec->r_clusters) == le64_to_cpu(orig_rec->r_cpos) + le32_to_cpu(orig_rec->r_clusters))) recs_need = 0; else recs_need = 1; /* * We need one more rec if we split in the middle and the new rec have * some refcount in it. */ if (split_rec->r_refcount && (split_rec->r_cpos != orig_rec->r_cpos && le64_to_cpu(split_rec->r_cpos) + le32_to_cpu(split_rec->r_clusters) != le64_to_cpu(orig_rec->r_cpos) + le32_to_cpu(orig_rec->r_clusters))) recs_need++; /* If the leaf block don't have enough record, expand it. */ if (le16_to_cpu(rf_list->rl_used) + recs_need > le16_to_cpu(rf_list->rl_count)) { struct ocfs2_refcount_rec tmp_rec; u64 cpos = le64_to_cpu(orig_rec->r_cpos); len = le32_to_cpu(orig_rec->r_clusters); ret = ocfs2_expand_refcount_tree(handle, ci, ref_root_bh, ref_leaf_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } /* * We have to re-get it since now cpos may be moved to * another leaf block. */ ret = ocfs2_get_refcount_rec(ci, ref_root_bh, cpos, len, &tmp_rec, &index, &new_bh); if (ret) { mlog_errno(ret); goto out; } ref_leaf_bh = new_bh; rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; rf_list = &rb->rf_records; orig_rec = &rf_list->rl_recs[index]; } ret = ocfs2_journal_access_rb(handle, ci, ref_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * We have calculated out how many new records we need and store * in recs_need, so spare enough space first by moving the records * after "index" to the end. */ if (index != le16_to_cpu(rf_list->rl_used) - 1) memmove(&rf_list->rl_recs[index + 1 + recs_need], &rf_list->rl_recs[index + 1], (le16_to_cpu(rf_list->rl_used) - index - 1) * sizeof(struct ocfs2_refcount_rec)); len = (le64_to_cpu(orig_rec->r_cpos) + le32_to_cpu(orig_rec->r_clusters)) - (le64_to_cpu(split_rec->r_cpos) + le32_to_cpu(split_rec->r_clusters)); /* * If we have "len", the we will split in the tail and move it * to the end of the space we have just spared. */ if (len) { tail_rec = &rf_list->rl_recs[index + recs_need]; memcpy(tail_rec, orig_rec, sizeof(struct ocfs2_refcount_rec)); le64_add_cpu(&tail_rec->r_cpos, le32_to_cpu(tail_rec->r_clusters) - len); tail_rec->r_clusters = cpu_to_le32(len); } /* * If the split pos isn't the same as the original one, we need to * split in the head. * * Note: We have the chance that split_rec.r_refcount = 0, * recs_need = 0 and len > 0, which means we just cut the head from * the orig_rec and in that case we have done some modification in * orig_rec above, so the check for r_cpos is faked. */ if (split_rec->r_cpos != orig_rec->r_cpos && tail_rec != orig_rec) { len = le64_to_cpu(split_rec->r_cpos) - le64_to_cpu(orig_rec->r_cpos); orig_rec->r_clusters = cpu_to_le32(len); index++; } le16_add_cpu(&rf_list->rl_used, recs_need); if (split_rec->r_refcount) { rf_list->rl_recs[index] = *split_rec; trace_ocfs2_split_refcount_rec_insert( (unsigned long long)ref_leaf_bh->b_blocknr, index, (unsigned long long)le64_to_cpu(split_rec->r_cpos), le32_to_cpu(split_rec->r_clusters), le32_to_cpu(split_rec->r_refcount)); if (merge) ocfs2_refcount_rec_merge(rb, index); } ocfs2_journal_dirty(handle, ref_leaf_bh); out: brelse(new_bh); return ret; } static int __ocfs2_increase_refcount(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, u64 cpos, u32 len, int merge, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0, index; struct buffer_head *ref_leaf_bh = NULL; struct ocfs2_refcount_rec rec; unsigned int set_len = 0; trace_ocfs2_increase_refcount_begin( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)cpos, len); while (len) { ret = ocfs2_get_refcount_rec(ci, ref_root_bh, cpos, len, &rec, &index, &ref_leaf_bh); if (ret) { mlog_errno(ret); goto out; } set_len = le32_to_cpu(rec.r_clusters); /* * Here we may meet with 3 situations: * * 1. If we find an already existing record, and the length * is the same, cool, we just need to increase the r_refcount * and it is OK. * 2. If we find a hole, just insert it with r_refcount = 1. * 3. If we are in the middle of one extent record, split * it. */ if (rec.r_refcount && le64_to_cpu(rec.r_cpos) == cpos && set_len <= len) { trace_ocfs2_increase_refcount_change( (unsigned long long)cpos, set_len, le32_to_cpu(rec.r_refcount)); ret = ocfs2_change_refcount_rec(handle, ci, ref_leaf_bh, index, merge, 1); if (ret) { mlog_errno(ret); goto out; } } else if (!rec.r_refcount) { rec.r_refcount = cpu_to_le32(1); trace_ocfs2_increase_refcount_insert( (unsigned long long)le64_to_cpu(rec.r_cpos), set_len); ret = ocfs2_insert_refcount_rec(handle, ci, ref_root_bh, ref_leaf_bh, &rec, index, merge, meta_ac); if (ret) { mlog_errno(ret); goto out; } } else { set_len = min((u64)(cpos + len), le64_to_cpu(rec.r_cpos) + set_len) - cpos; rec.r_cpos = cpu_to_le64(cpos); rec.r_clusters = cpu_to_le32(set_len); le32_add_cpu(&rec.r_refcount, 1); trace_ocfs2_increase_refcount_split( (unsigned long long)le64_to_cpu(rec.r_cpos), set_len, le32_to_cpu(rec.r_refcount)); ret = ocfs2_split_refcount_rec(handle, ci, ref_root_bh, ref_leaf_bh, &rec, index, merge, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out; } } cpos += set_len; len -= set_len; brelse(ref_leaf_bh); ref_leaf_bh = NULL; } out: brelse(ref_leaf_bh); return ret; } static int ocfs2_remove_refcount_extent(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_extent_tree et; BUG_ON(rb->rf_records.rl_used); trace_ocfs2_remove_refcount_extent( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)ref_leaf_bh->b_blocknr, le32_to_cpu(rb->rf_cpos)); ocfs2_init_refcount_extent_tree(&et, ci, ref_root_bh); ret = ocfs2_remove_extent(handle, &et, le32_to_cpu(rb->rf_cpos), 1, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out; } ocfs2_remove_from_cache(ci, ref_leaf_bh); /* * add the freed block to the dealloc so that it will be freed * when we run dealloc. */ ret = ocfs2_cache_block_dealloc(dealloc, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(rb->rf_suballoc_slot), le64_to_cpu(rb->rf_suballoc_loc), le64_to_cpu(rb->rf_blkno), le16_to_cpu(rb->rf_suballoc_bit)); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_rb(handle, ci, ref_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; le32_add_cpu(&rb->rf_clusters, -1); /* * check whether we need to restore the root refcount block if * there is no leaf extent block at atll. */ if (!rb->rf_list.l_next_free_rec) { BUG_ON(rb->rf_clusters); trace_ocfs2_restore_refcount_block( (unsigned long long)ref_root_bh->b_blocknr); rb->rf_flags = 0; rb->rf_parent = 0; rb->rf_cpos = 0; memset(&rb->rf_records, 0, sb->s_blocksize - offsetof(struct ocfs2_refcount_block, rf_records)); rb->rf_records.rl_count = cpu_to_le16(ocfs2_refcount_recs_per_rb(sb)); } ocfs2_journal_dirty(handle, ref_root_bh); out: return ret; } int ocfs2_increase_refcount(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, u64 cpos, u32 len, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { return __ocfs2_increase_refcount(handle, ci, ref_root_bh, cpos, len, 1, meta_ac, dealloc); } static int ocfs2_decrease_refcount_rec(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, struct buffer_head *ref_leaf_bh, int index, u64 cpos, unsigned int len, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; struct ocfs2_refcount_rec *rec = &rb->rf_records.rl_recs[index]; BUG_ON(cpos < le64_to_cpu(rec->r_cpos)); BUG_ON(cpos + len > le64_to_cpu(rec->r_cpos) + le32_to_cpu(rec->r_clusters)); trace_ocfs2_decrease_refcount_rec( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)cpos, len); if (cpos == le64_to_cpu(rec->r_cpos) && len == le32_to_cpu(rec->r_clusters)) ret = ocfs2_change_refcount_rec(handle, ci, ref_leaf_bh, index, 1, -1); else { struct ocfs2_refcount_rec split = *rec; split.r_cpos = cpu_to_le64(cpos); split.r_clusters = cpu_to_le32(len); le32_add_cpu(&split.r_refcount, -1); ret = ocfs2_split_refcount_rec(handle, ci, ref_root_bh, ref_leaf_bh, &split, index, 1, meta_ac, dealloc); } if (ret) { mlog_errno(ret); goto out; } /* Remove the leaf refcount block if it contains no refcount record. */ if (!rb->rf_records.rl_used && ref_leaf_bh != ref_root_bh) { ret = ocfs2_remove_refcount_extent(handle, ci, ref_root_bh, ref_leaf_bh, meta_ac, dealloc); if (ret) mlog_errno(ret); } out: return ret; } static int __ocfs2_decrease_refcount(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, u64 cpos, u32 len, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc, int delete) { int ret = 0, index = 0; struct ocfs2_refcount_rec rec; unsigned int r_count = 0, r_len; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); struct buffer_head *ref_leaf_bh = NULL; trace_ocfs2_decrease_refcount( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)cpos, len, delete); while (len) { ret = ocfs2_get_refcount_rec(ci, ref_root_bh, cpos, len, &rec, &index, &ref_leaf_bh); if (ret) { mlog_errno(ret); goto out; } r_count = le32_to_cpu(rec.r_refcount); BUG_ON(r_count == 0); if (!delete) BUG_ON(r_count > 1); r_len = min((u64)(cpos + len), le64_to_cpu(rec.r_cpos) + le32_to_cpu(rec.r_clusters)) - cpos; ret = ocfs2_decrease_refcount_rec(handle, ci, ref_root_bh, ref_leaf_bh, index, cpos, r_len, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out; } if (le32_to_cpu(rec.r_refcount) == 1 && delete) { ret = ocfs2_cache_cluster_dealloc(dealloc, ocfs2_clusters_to_blocks(sb, cpos), r_len); if (ret) { mlog_errno(ret); goto out; } } cpos += r_len; len -= r_len; brelse(ref_leaf_bh); ref_leaf_bh = NULL; } out: brelse(ref_leaf_bh); return ret; } /* Caller must hold refcount tree lock. */ int ocfs2_decrease_refcount(struct inode *inode, handle_t *handle, u32 cpos, u32 len, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc, int delete) { int ret; u64 ref_blkno; struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_tree *tree; BUG_ON(!ocfs2_is_refcount_inode(inode)); ret = ocfs2_get_refcount_block(inode, &ref_blkno); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_get_refcount_tree(OCFS2_SB(inode->i_sb), ref_blkno, &tree); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_refcount_block(&tree->rf_ci, tree->rf_blkno, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ret = __ocfs2_decrease_refcount(handle, &tree->rf_ci, ref_root_bh, cpos, len, meta_ac, dealloc, delete); if (ret) mlog_errno(ret); out: brelse(ref_root_bh); return ret; } /* * Mark the already-existing extent at cpos as refcounted for len clusters. * This adds the refcount extent flag. * * If the existing extent is larger than the request, initiate a * split. An attempt will be made at merging with adjacent extents. * * The caller is responsible for passing down meta_ac if we'll need it. */ static int ocfs2_mark_extent_refcounted(struct inode *inode, struct ocfs2_extent_tree *et, handle_t *handle, u32 cpos, u32 len, u32 phys, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; trace_ocfs2_mark_extent_refcounted(OCFS2_I(inode)->ip_blkno, cpos, len, phys); if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb))) { ret = ocfs2_error(inode->i_sb, "Inode %lu want to use refcount tree, but the feature bit is not set in the super block\n", inode->i_ino); goto out; } ret = ocfs2_change_extent_flag(handle, et, cpos, len, phys, meta_ac, dealloc, OCFS2_EXT_REFCOUNTED, 0); if (ret) mlog_errno(ret); out: return ret; } /* * Given some contiguous physical clusters, calculate what we need * for modifying their refcount. */ static int ocfs2_calc_refcount_meta_credits(struct super_block *sb, struct ocfs2_caching_info *ci, struct buffer_head *ref_root_bh, u64 start_cpos, u32 clusters, int *meta_add, int *credits) { int ret = 0, index, ref_blocks = 0, recs_add = 0; u64 cpos = start_cpos; struct ocfs2_refcount_block *rb; struct ocfs2_refcount_rec rec; struct buffer_head *ref_leaf_bh = NULL, *prev_bh = NULL; u32 len; while (clusters) { ret = ocfs2_get_refcount_rec(ci, ref_root_bh, cpos, clusters, &rec, &index, &ref_leaf_bh); if (ret) { mlog_errno(ret); goto out; } if (ref_leaf_bh != prev_bh) { /* * Now we encounter a new leaf block, so calculate * whether we need to extend the old leaf. */ if (prev_bh) { rb = (struct ocfs2_refcount_block *) prev_bh->b_data; if (le16_to_cpu(rb->rf_records.rl_used) + recs_add > le16_to_cpu(rb->rf_records.rl_count)) ref_blocks++; } recs_add = 0; *credits += 1; brelse(prev_bh); prev_bh = ref_leaf_bh; get_bh(prev_bh); } trace_ocfs2_calc_refcount_meta_credits_iterate( recs_add, (unsigned long long)cpos, clusters, (unsigned long long)le64_to_cpu(rec.r_cpos), le32_to_cpu(rec.r_clusters), le32_to_cpu(rec.r_refcount), index); len = min((u64)cpos + clusters, le64_to_cpu(rec.r_cpos) + le32_to_cpu(rec.r_clusters)) - cpos; /* * We record all the records which will be inserted to the * same refcount block, so that we can tell exactly whether * we need a new refcount block or not. * * If we will insert a new one, this is easy and only happens * during adding refcounted flag to the extent, so we don't * have a chance of spliting. We just need one record. * * If the refcount rec already exists, that would be a little * complicated. we may have to: * 1) split at the beginning if the start pos isn't aligned. * we need 1 more record in this case. * 2) split int the end if the end pos isn't aligned. * we need 1 more record in this case. * 3) split in the middle because of file system fragmentation. * we need 2 more records in this case(we can't detect this * beforehand, so always think of the worst case). */ if (rec.r_refcount) { recs_add += 2; /* Check whether we need a split at the beginning. */ if (cpos == start_cpos && cpos != le64_to_cpu(rec.r_cpos)) recs_add++; /* Check whether we need a split in the end. */ if (cpos + clusters < le64_to_cpu(rec.r_cpos) + le32_to_cpu(rec.r_clusters)) recs_add++; } else recs_add++; brelse(ref_leaf_bh); ref_leaf_bh = NULL; clusters -= len; cpos += len; } if (prev_bh) { rb = (struct ocfs2_refcount_block *)prev_bh->b_data; if (le16_to_cpu(rb->rf_records.rl_used) + recs_add > le16_to_cpu(rb->rf_records.rl_count)) ref_blocks++; *credits += 1; } if (!ref_blocks) goto out; *meta_add += ref_blocks; *credits += ref_blocks; /* * So we may need ref_blocks to insert into the tree. * That also means we need to change the b-tree and add that number * of records since we never merge them. * We need one more block for expansion since the new created leaf * block is also full and needs split. */ rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL) { struct ocfs2_extent_tree et; ocfs2_init_refcount_extent_tree(&et, ci, ref_root_bh); *meta_add += ocfs2_extend_meta_needed(et.et_root_el); *credits += ocfs2_calc_extend_credits(sb, et.et_root_el); } else { *credits += OCFS2_EXPAND_REFCOUNT_TREE_CREDITS; *meta_add += 1; } out: trace_ocfs2_calc_refcount_meta_credits( (unsigned long long)start_cpos, clusters, *meta_add, *credits); brelse(ref_leaf_bh); brelse(prev_bh); return ret; } /* * For refcount tree, we will decrease some contiguous clusters * refcount count, so just go through it to see how many blocks * we gonna touch and whether we need to create new blocks. * * Normally the refcount blocks store these refcount should be * contiguous also, so that we can get the number easily. * We will at most add split 2 refcount records and 2 more * refcount blocks, so just check it in a rough way. * * Caller must hold refcount tree lock. */ int ocfs2_prepare_refcount_change_for_del(struct inode *inode, u64 refcount_loc, u64 phys_blkno, u32 clusters, int *credits, int *ref_blocks) { int ret; struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_tree *tree; u64 start_cpos = ocfs2_blocks_to_clusters(inode->i_sb, phys_blkno); if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb))) { ret = ocfs2_error(inode->i_sb, "Inode %lu want to use refcount tree, but the feature bit is not set in the super block\n", inode->i_ino); goto out; } BUG_ON(!ocfs2_is_refcount_inode(inode)); ret = ocfs2_get_refcount_tree(OCFS2_SB(inode->i_sb), refcount_loc, &tree); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_refcount_block(&tree->rf_ci, refcount_loc, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_calc_refcount_meta_credits(inode->i_sb, &tree->rf_ci, ref_root_bh, start_cpos, clusters, ref_blocks, credits); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_prepare_refcount_change_for_del(*ref_blocks, *credits); out: brelse(ref_root_bh); return ret; } #define MAX_CONTIG_BYTES 1048576 static inline unsigned int ocfs2_cow_contig_clusters(struct super_block *sb) { return ocfs2_clusters_for_bytes(sb, MAX_CONTIG_BYTES); } static inline unsigned int ocfs2_cow_contig_mask(struct super_block *sb) { return ~(ocfs2_cow_contig_clusters(sb) - 1); } /* * Given an extent that starts at 'start' and an I/O that starts at 'cpos', * find an offset (start + (n * contig_clusters)) that is closest to cpos * while still being less than or equal to it. * * The goal is to break the extent at a multiple of contig_clusters. */ static inline unsigned int ocfs2_cow_align_start(struct super_block *sb, unsigned int start, unsigned int cpos) { BUG_ON(start > cpos); return start + ((cpos - start) & ocfs2_cow_contig_mask(sb)); } /* * Given a cluster count of len, pad it out so that it is a multiple * of contig_clusters. */ static inline unsigned int ocfs2_cow_align_length(struct super_block *sb, unsigned int len) { unsigned int padded = (len + (ocfs2_cow_contig_clusters(sb) - 1)) & ocfs2_cow_contig_mask(sb); /* Did we wrap? */ if (padded < len) padded = UINT_MAX; return padded; } /* * Calculate out the start and number of virtual clusters we need to CoW. * * cpos is vitual start cluster position we want to do CoW in a * file and write_len is the cluster length. * max_cpos is the place where we want to stop CoW intentionally. * * Normal we will start CoW from the beginning of extent record cotaining cpos. * We try to break up extents on boundaries of MAX_CONTIG_BYTES so that we * get good I/O from the resulting extent tree. */ static int ocfs2_refcount_cal_cow_clusters(struct inode *inode, struct ocfs2_extent_list *el, u32 cpos, u32 write_len, u32 max_cpos, u32 *cow_start, u32 *cow_len) { int ret = 0; int tree_height = le16_to_cpu(el->l_tree_depth), i; struct buffer_head *eb_bh = NULL; struct ocfs2_extent_block *eb = NULL; struct ocfs2_extent_rec *rec; unsigned int want_clusters, rec_end = 0; int contig_clusters = ocfs2_cow_contig_clusters(inode->i_sb); int leaf_clusters; BUG_ON(cpos + write_len > max_cpos); if (tree_height > 0) { ret = ocfs2_find_leaf(INODE_CACHE(inode), el, cpos, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ret = ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in leaf block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); goto out; } } *cow_len = 0; for (i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { rec = &el->l_recs[i]; if (ocfs2_is_empty_extent(rec)) { mlog_bug_on_msg(i != 0, "Inode %lu has empty record in " "index %d\n", inode->i_ino, i); continue; } if (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters) <= cpos) continue; if (*cow_len == 0) { /* * We should find a refcounted record in the * first pass. */ BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)); *cow_start = le32_to_cpu(rec->e_cpos); } /* * If we encounter a hole, a non-refcounted record or * pass the max_cpos, stop the search. */ if ((!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) || (*cow_len && rec_end != le32_to_cpu(rec->e_cpos)) || (max_cpos <= le32_to_cpu(rec->e_cpos))) break; leaf_clusters = le16_to_cpu(rec->e_leaf_clusters); rec_end = le32_to_cpu(rec->e_cpos) + leaf_clusters; if (rec_end > max_cpos) { rec_end = max_cpos; leaf_clusters = rec_end - le32_to_cpu(rec->e_cpos); } /* * How many clusters do we actually need from * this extent? First we see how many we actually * need to complete the write. If that's smaller * than contig_clusters, we try for contig_clusters. */ if (!*cow_len) want_clusters = write_len; else want_clusters = (cpos + write_len) - (*cow_start + *cow_len); if (want_clusters < contig_clusters) want_clusters = contig_clusters; /* * If the write does not cover the whole extent, we * need to calculate how we're going to split the extent. * We try to do it on contig_clusters boundaries. * * Any extent smaller than contig_clusters will be * CoWed in its entirety. */ if (leaf_clusters <= contig_clusters) *cow_len += leaf_clusters; else if (*cow_len || (*cow_start == cpos)) { /* * This extent needs to be CoW'd from its * beginning, so all we have to do is compute * how many clusters to grab. We align * want_clusters to the edge of contig_clusters * to get better I/O. */ want_clusters = ocfs2_cow_align_length(inode->i_sb, want_clusters); if (leaf_clusters < want_clusters) *cow_len += leaf_clusters; else *cow_len += want_clusters; } else if ((*cow_start + contig_clusters) >= (cpos + write_len)) { /* * Breaking off contig_clusters at the front * of the extent will cover our write. That's * easy. */ *cow_len = contig_clusters; } else if ((rec_end - cpos) <= contig_clusters) { /* * Breaking off contig_clusters at the tail of * this extent will cover cpos. */ *cow_start = rec_end - contig_clusters; *cow_len = contig_clusters; } else if ((rec_end - cpos) <= want_clusters) { /* * While we can't fit the entire write in this * extent, we know that the write goes from cpos * to the end of the extent. Break that off. * We try to break it at some multiple of * contig_clusters from the front of the extent. * Failing that (ie, cpos is within * contig_clusters of the front), we'll CoW the * entire extent. */ *cow_start = ocfs2_cow_align_start(inode->i_sb, *cow_start, cpos); *cow_len = rec_end - *cow_start; } else { /* * Ok, the entire write lives in the middle of * this extent. Let's try to slice the extent up * nicely. Optimally, our CoW region starts at * m*contig_clusters from the beginning of the * extent and goes for n*contig_clusters, * covering the entire write. */ *cow_start = ocfs2_cow_align_start(inode->i_sb, *cow_start, cpos); want_clusters = (cpos + write_len) - *cow_start; want_clusters = ocfs2_cow_align_length(inode->i_sb, want_clusters); if (*cow_start + want_clusters <= rec_end) *cow_len = want_clusters; else *cow_len = rec_end - *cow_start; } /* Have we covered our entire write yet? */ if ((*cow_start + *cow_len) >= (cpos + write_len)) break; /* * If we reach the end of the extent block and don't get enough * clusters, continue with the next extent block if possible. */ if (i + 1 == le16_to_cpu(el->l_next_free_rec) && eb && eb->h_next_leaf_blk) { brelse(eb_bh); eb_bh = NULL; ret = ocfs2_read_extent_block(INODE_CACHE(inode), le64_to_cpu(eb->h_next_leaf_blk), &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; i = -1; } } out: brelse(eb_bh); return ret; } /* * Prepare meta_ac, data_ac and calculate credits when we want to add some * num_clusters in data_tree "et" and change the refcount for the old * clusters(starting form p_cluster) in the refcount tree. * * Note: * 1. since we may split the old tree, so we at most will need num_clusters + 2 * more new leaf records. * 2. In some case, we may not need to reserve new clusters(e.g, reflink), so * just give data_ac = NULL. */ static int ocfs2_lock_refcount_allocators(struct super_block *sb, u32 p_cluster, u32 num_clusters, struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_alloc_context **meta_ac, struct ocfs2_alloc_context **data_ac, int *credits) { int ret = 0, meta_add = 0; int num_free_extents = ocfs2_num_free_extents(et); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } if (num_free_extents < num_clusters + 2) meta_add = ocfs2_extend_meta_needed(et->et_root_el); *credits += ocfs2_calc_extend_credits(sb, et->et_root_el); ret = ocfs2_calc_refcount_meta_credits(sb, ref_ci, ref_root_bh, p_cluster, num_clusters, &meta_add, credits); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_lock_refcount_allocators(meta_add, *credits); ret = ocfs2_reserve_new_metadata_blocks(OCFS2_SB(sb), meta_add, meta_ac); if (ret) { mlog_errno(ret); goto out; } if (data_ac) { ret = ocfs2_reserve_clusters(OCFS2_SB(sb), num_clusters, data_ac); if (ret) mlog_errno(ret); } out: if (ret) { if (*meta_ac) { ocfs2_free_alloc_context(*meta_ac); *meta_ac = NULL; } } return ret; } static int ocfs2_clear_cow_buffer(handle_t *handle, struct buffer_head *bh) { BUG_ON(buffer_dirty(bh)); clear_buffer_mapped(bh); return 0; } int ocfs2_duplicate_clusters_by_page(handle_t *handle, struct inode *inode, u32 cpos, u32 old_cluster, u32 new_cluster, u32 new_len) { int ret = 0, partial; struct super_block *sb = inode->i_sb; u64 new_block = ocfs2_clusters_to_blocks(sb, new_cluster); struct page *page; pgoff_t page_index; unsigned int from, to; loff_t offset, end, map_end; struct address_space *mapping = inode->i_mapping; trace_ocfs2_duplicate_clusters_by_page(cpos, old_cluster, new_cluster, new_len); offset = ((loff_t)cpos) << OCFS2_SB(sb)->s_clustersize_bits; end = offset + (new_len << OCFS2_SB(sb)->s_clustersize_bits); /* * We only duplicate pages until we reach the page contains i_size - 1. * So trim 'end' to i_size. */ if (end > i_size_read(inode)) end = i_size_read(inode); while (offset < end) { page_index = offset >> PAGE_SHIFT; map_end = ((loff_t)page_index + 1) << PAGE_SHIFT; if (map_end > end) map_end = end; /* from, to is the offset within the page. */ from = offset & (PAGE_SIZE - 1); to = PAGE_SIZE; if (map_end & (PAGE_SIZE - 1)) to = map_end & (PAGE_SIZE - 1); retry: page = find_or_create_page(mapping, page_index, GFP_NOFS); if (!page) { ret = -ENOMEM; mlog_errno(ret); break; } /* * In case PAGE_SIZE <= CLUSTER_SIZE, we do not expect a dirty * page, so write it back. */ if (PAGE_SIZE <= OCFS2_SB(sb)->s_clustersize) { if (PageDirty(page)) { unlock_page(page); put_page(page); ret = filemap_write_and_wait_range(mapping, offset, map_end - 1); goto retry; } } if (!PageUptodate(page)) { struct folio *folio = page_folio(page); ret = block_read_full_folio(folio, ocfs2_get_block); if (ret) { mlog_errno(ret); goto unlock; } folio_lock(folio); } if (page_has_buffers(page)) { ret = walk_page_buffers(handle, page_buffers(page), from, to, &partial, ocfs2_clear_cow_buffer); if (ret) { mlog_errno(ret); goto unlock; } } ocfs2_map_and_dirty_page(inode, handle, from, to, page, 0, &new_block); mark_page_accessed(page); unlock: unlock_page(page); put_page(page); page = NULL; offset = map_end; if (ret) break; } return ret; } int ocfs2_duplicate_clusters_by_jbd(handle_t *handle, struct inode *inode, u32 cpos, u32 old_cluster, u32 new_cluster, u32 new_len) { int ret = 0; struct super_block *sb = inode->i_sb; struct ocfs2_caching_info *ci = INODE_CACHE(inode); int i, blocks = ocfs2_clusters_to_blocks(sb, new_len); u64 old_block = ocfs2_clusters_to_blocks(sb, old_cluster); u64 new_block = ocfs2_clusters_to_blocks(sb, new_cluster); struct ocfs2_super *osb = OCFS2_SB(sb); struct buffer_head *old_bh = NULL; struct buffer_head *new_bh = NULL; trace_ocfs2_duplicate_clusters_by_page(cpos, old_cluster, new_cluster, new_len); for (i = 0; i < blocks; i++, old_block++, new_block++) { new_bh = sb_getblk(osb->sb, new_block); if (new_bh == NULL) { ret = -ENOMEM; mlog_errno(ret); break; } ocfs2_set_new_buffer_uptodate(ci, new_bh); ret = ocfs2_read_block(ci, old_block, &old_bh, NULL); if (ret) { mlog_errno(ret); break; } ret = ocfs2_journal_access(handle, ci, new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); break; } memcpy(new_bh->b_data, old_bh->b_data, sb->s_blocksize); ocfs2_journal_dirty(handle, new_bh); brelse(new_bh); brelse(old_bh); new_bh = NULL; old_bh = NULL; } brelse(new_bh); brelse(old_bh); return ret; } static int ocfs2_clear_ext_refcount(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u32 p_cluster, u32 len, unsigned int ext_flags, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, index; struct ocfs2_extent_rec replace_rec; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); u64 ino = ocfs2_metadata_cache_owner(et->et_ci); trace_ocfs2_clear_ext_refcount((unsigned long long)ino, cpos, len, p_cluster, ext_flags); memset(&replace_rec, 0, sizeof(replace_rec)); replace_rec.e_cpos = cpu_to_le32(cpos); replace_rec.e_leaf_clusters = cpu_to_le16(len); replace_rec.e_blkno = cpu_to_le64(ocfs2_clusters_to_blocks(sb, p_cluster)); replace_rec.e_flags = ext_flags; replace_rec.e_flags &= ~OCFS2_EXT_REFCOUNTED; path = ocfs2_new_path_from_et(et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); index = ocfs2_search_extent_list(el, cpos); if (index == -1) { ret = ocfs2_error(sb, "Inode %llu has an extent at cpos %u which can no longer be found\n", (unsigned long long)ino, cpos); goto out; } ret = ocfs2_split_extent(handle, et, path, index, &replace_rec, meta_ac, dealloc); if (ret) mlog_errno(ret); out: ocfs2_free_path(path); return ret; } static int ocfs2_replace_clusters(handle_t *handle, struct ocfs2_cow_context *context, u32 cpos, u32 old, u32 new, u32 len, unsigned int ext_flags) { int ret; struct ocfs2_caching_info *ci = context->data_et.et_ci; u64 ino = ocfs2_metadata_cache_owner(ci); trace_ocfs2_replace_clusters((unsigned long long)ino, cpos, old, new, len, ext_flags); /*If the old clusters is unwritten, no need to duplicate. */ if (!(ext_flags & OCFS2_EXT_UNWRITTEN)) { ret = context->cow_duplicate_clusters(handle, context->inode, cpos, old, new, len); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_clear_ext_refcount(handle, &context->data_et, cpos, new, len, ext_flags, context->meta_ac, &context->dealloc); if (ret) mlog_errno(ret); out: return ret; } int ocfs2_cow_sync_writeback(struct super_block *sb, struct inode *inode, u32 cpos, u32 num_clusters) { int ret; loff_t start, end; if (ocfs2_should_order_data(inode)) return 0; start = ((loff_t)cpos) << OCFS2_SB(sb)->s_clustersize_bits; end = start + (num_clusters << OCFS2_SB(sb)->s_clustersize_bits) - 1; ret = filemap_write_and_wait_range(inode->i_mapping, start, end); if (ret < 0) mlog_errno(ret); return ret; } static int ocfs2_di_get_clusters(struct ocfs2_cow_context *context, u32 v_cluster, u32 *p_cluster, u32 *num_clusters, unsigned int *extent_flags) { return ocfs2_get_clusters(context->inode, v_cluster, p_cluster, num_clusters, extent_flags); } static int ocfs2_make_clusters_writable(struct super_block *sb, struct ocfs2_cow_context *context, u32 cpos, u32 p_cluster, u32 num_clusters, unsigned int e_flags) { int ret, delete, index, credits = 0; u32 new_bit, new_len, orig_num_clusters; unsigned int set_len; struct ocfs2_super *osb = OCFS2_SB(sb); handle_t *handle; struct buffer_head *ref_leaf_bh = NULL; struct ocfs2_caching_info *ref_ci = &context->ref_tree->rf_ci; struct ocfs2_refcount_rec rec; trace_ocfs2_make_clusters_writable(cpos, p_cluster, num_clusters, e_flags); ret = ocfs2_lock_refcount_allocators(sb, p_cluster, num_clusters, &context->data_et, ref_ci, context->ref_root_bh, &context->meta_ac, &context->data_ac, &credits); if (ret) { mlog_errno(ret); return ret; } if (context->post_refcount) credits += context->post_refcount->credits; credits += context->extra_credits; handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } orig_num_clusters = num_clusters; while (num_clusters) { ret = ocfs2_get_refcount_rec(ref_ci, context->ref_root_bh, p_cluster, num_clusters, &rec, &index, &ref_leaf_bh); if (ret) { mlog_errno(ret); goto out_commit; } BUG_ON(!rec.r_refcount); set_len = min((u64)p_cluster + num_clusters, le64_to_cpu(rec.r_cpos) + le32_to_cpu(rec.r_clusters)) - p_cluster; /* * There are many different situation here. * 1. If refcount == 1, remove the flag and don't COW. * 2. If refcount > 1, allocate clusters. * Here we may not allocate r_len once at a time, so continue * until we reach num_clusters. */ if (le32_to_cpu(rec.r_refcount) == 1) { delete = 0; ret = ocfs2_clear_ext_refcount(handle, &context->data_et, cpos, p_cluster, set_len, e_flags, context->meta_ac, &context->dealloc); if (ret) { mlog_errno(ret); goto out_commit; } } else { delete = 1; ret = __ocfs2_claim_clusters(handle, context->data_ac, 1, set_len, &new_bit, &new_len); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_replace_clusters(handle, context, cpos, p_cluster, new_bit, new_len, e_flags); if (ret) { mlog_errno(ret); goto out_commit; } set_len = new_len; } ret = __ocfs2_decrease_refcount(handle, ref_ci, context->ref_root_bh, p_cluster, set_len, context->meta_ac, &context->dealloc, delete); if (ret) { mlog_errno(ret); goto out_commit; } cpos += set_len; p_cluster += set_len; num_clusters -= set_len; brelse(ref_leaf_bh); ref_leaf_bh = NULL; } /* handle any post_cow action. */ if (context->post_refcount && context->post_refcount->func) { ret = context->post_refcount->func(context->inode, handle, context->post_refcount->para); if (ret) { mlog_errno(ret); goto out_commit; } } /* * Here we should write the new page out first if we are * in write-back mode. */ if (context->get_clusters == ocfs2_di_get_clusters) { ret = ocfs2_cow_sync_writeback(sb, context->inode, cpos, orig_num_clusters); if (ret) mlog_errno(ret); } out_commit: ocfs2_commit_trans(osb, handle); out: if (context->data_ac) { ocfs2_free_alloc_context(context->data_ac); context->data_ac = NULL; } if (context->meta_ac) { ocfs2_free_alloc_context(context->meta_ac); context->meta_ac = NULL; } brelse(ref_leaf_bh); return ret; } static int ocfs2_replace_cow(struct ocfs2_cow_context *context) { int ret = 0; struct inode *inode = context->inode; u32 cow_start = context->cow_start, cow_len = context->cow_len; u32 p_cluster, num_clusters; unsigned int ext_flags; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (!ocfs2_refcount_tree(osb)) { return ocfs2_error(inode->i_sb, "Inode %lu want to use refcount tree, but the feature bit is not set in the super block\n", inode->i_ino); } ocfs2_init_dealloc_ctxt(&context->dealloc); while (cow_len) { ret = context->get_clusters(context, cow_start, &p_cluster, &num_clusters, &ext_flags); if (ret) { mlog_errno(ret); break; } BUG_ON(!(ext_flags & OCFS2_EXT_REFCOUNTED)); if (cow_len < num_clusters) num_clusters = cow_len; ret = ocfs2_make_clusters_writable(inode->i_sb, context, cow_start, p_cluster, num_clusters, ext_flags); if (ret) { mlog_errno(ret); break; } cow_len -= num_clusters; cow_start += num_clusters; } if (ocfs2_dealloc_has_cluster(&context->dealloc)) { ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &context->dealloc); } return ret; } /* * Starting at cpos, try to CoW write_len clusters. Don't CoW * past max_cpos. This will stop when it runs into a hole or an * unrefcounted extent. */ static int ocfs2_refcount_cow_hunk(struct inode *inode, struct buffer_head *di_bh, u32 cpos, u32 write_len, u32 max_cpos) { int ret; u32 cow_start = 0, cow_len = 0; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_tree *ref_tree; struct ocfs2_cow_context *context = NULL; BUG_ON(!ocfs2_is_refcount_inode(inode)); ret = ocfs2_refcount_cal_cow_clusters(inode, &di->id2.i_list, cpos, write_len, max_cpos, &cow_start, &cow_len); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_refcount_cow_hunk(OCFS2_I(inode)->ip_blkno, cpos, write_len, max_cpos, cow_start, cow_len); BUG_ON(cow_len == 0); context = kzalloc(sizeof(struct ocfs2_cow_context), GFP_NOFS); if (!context) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } context->inode = inode; context->cow_start = cow_start; context->cow_len = cow_len; context->ref_tree = ref_tree; context->ref_root_bh = ref_root_bh; context->cow_duplicate_clusters = ocfs2_duplicate_clusters_by_page; context->get_clusters = ocfs2_di_get_clusters; ocfs2_init_dinode_extent_tree(&context->data_et, INODE_CACHE(inode), di_bh); ret = ocfs2_replace_cow(context); if (ret) mlog_errno(ret); /* * truncate the extent map here since no matter whether we meet with * any error during the action, we shouldn't trust cached extent map * any more. */ ocfs2_extent_map_trunc(inode, cow_start); ocfs2_unlock_refcount_tree(osb, ref_tree, 1); brelse(ref_root_bh); out: kfree(context); return ret; } /* * CoW any and all clusters between cpos and cpos+write_len. * Don't CoW past max_cpos. If this returns successfully, all * clusters between cpos and cpos+write_len are safe to modify. */ int ocfs2_refcount_cow(struct inode *inode, struct buffer_head *di_bh, u32 cpos, u32 write_len, u32 max_cpos) { int ret = 0; u32 p_cluster, num_clusters; unsigned int ext_flags; while (write_len) { ret = ocfs2_get_clusters(inode, cpos, &p_cluster, &num_clusters, &ext_flags); if (ret) { mlog_errno(ret); break; } if (write_len < num_clusters) num_clusters = write_len; if (ext_flags & OCFS2_EXT_REFCOUNTED) { ret = ocfs2_refcount_cow_hunk(inode, di_bh, cpos, num_clusters, max_cpos); if (ret) { mlog_errno(ret); break; } } write_len -= num_clusters; cpos += num_clusters; } return ret; } static int ocfs2_xattr_value_get_clusters(struct ocfs2_cow_context *context, u32 v_cluster, u32 *p_cluster, u32 *num_clusters, unsigned int *extent_flags) { struct inode *inode = context->inode; struct ocfs2_xattr_value_root *xv = context->cow_object; return ocfs2_xattr_get_clusters(inode, v_cluster, p_cluster, num_clusters, &xv->xr_list, extent_flags); } /* * Given a xattr value root, calculate the most meta/credits we need for * refcount tree change if we truncate it to 0. */ int ocfs2_refcounted_xattr_delete_need(struct inode *inode, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_xattr_value_root *xv, int *meta_add, int *credits) { int ret = 0, index, ref_blocks = 0; u32 p_cluster, num_clusters; u32 cpos = 0, clusters = le32_to_cpu(xv->xr_clusters); struct ocfs2_refcount_block *rb; struct ocfs2_refcount_rec rec; struct buffer_head *ref_leaf_bh = NULL; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, &xv->xr_list, NULL); if (ret) { mlog_errno(ret); goto out; } cpos += num_clusters; while (num_clusters) { ret = ocfs2_get_refcount_rec(ref_ci, ref_root_bh, p_cluster, num_clusters, &rec, &index, &ref_leaf_bh); if (ret) { mlog_errno(ret); goto out; } BUG_ON(!rec.r_refcount); rb = (struct ocfs2_refcount_block *)ref_leaf_bh->b_data; /* * We really don't know whether the other clusters is in * this refcount block or not, so just take the worst * case that all the clusters are in this block and each * one will split a refcount rec, so totally we need * clusters * 2 new refcount rec. */ if (le16_to_cpu(rb->rf_records.rl_used) + clusters * 2 > le16_to_cpu(rb->rf_records.rl_count)) ref_blocks++; *credits += 1; brelse(ref_leaf_bh); ref_leaf_bh = NULL; if (num_clusters <= le32_to_cpu(rec.r_clusters)) break; else num_clusters -= le32_to_cpu(rec.r_clusters); p_cluster += num_clusters; } } *meta_add += ref_blocks; if (!ref_blocks) goto out; rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL) *credits += OCFS2_EXPAND_REFCOUNT_TREE_CREDITS; else { struct ocfs2_extent_tree et; ocfs2_init_refcount_extent_tree(&et, ref_ci, ref_root_bh); *credits += ocfs2_calc_extend_credits(inode->i_sb, et.et_root_el); } out: brelse(ref_leaf_bh); return ret; } /* * Do CoW for xattr. */ int ocfs2_refcount_cow_xattr(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_value_buf *vb, struct ocfs2_refcount_tree *ref_tree, struct buffer_head *ref_root_bh, u32 cpos, u32 write_len, struct ocfs2_post_refcount *post) { int ret; struct ocfs2_xattr_value_root *xv = vb->vb_xv; struct ocfs2_cow_context *context = NULL; u32 cow_start, cow_len; BUG_ON(!ocfs2_is_refcount_inode(inode)); ret = ocfs2_refcount_cal_cow_clusters(inode, &xv->xr_list, cpos, write_len, UINT_MAX, &cow_start, &cow_len); if (ret) { mlog_errno(ret); goto out; } BUG_ON(cow_len == 0); context = kzalloc(sizeof(struct ocfs2_cow_context), GFP_NOFS); if (!context) { ret = -ENOMEM; mlog_errno(ret); goto out; } context->inode = inode; context->cow_start = cow_start; context->cow_len = cow_len; context->ref_tree = ref_tree; context->ref_root_bh = ref_root_bh; context->cow_object = xv; context->cow_duplicate_clusters = ocfs2_duplicate_clusters_by_jbd; /* We need the extra credits for duplicate_clusters by jbd. */ context->extra_credits = ocfs2_clusters_to_blocks(inode->i_sb, 1) * cow_len; context->get_clusters = ocfs2_xattr_value_get_clusters; context->post_refcount = post; ocfs2_init_xattr_value_extent_tree(&context->data_et, INODE_CACHE(inode), vb); ret = ocfs2_replace_cow(context); if (ret) mlog_errno(ret); out: kfree(context); return ret; } /* * Insert a new extent into refcount tree and mark a extent rec * as refcounted in the dinode tree. */ int ocfs2_add_refcount_flag(struct inode *inode, struct ocfs2_extent_tree *data_et, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, u32 cpos, u32 p_cluster, u32 num_clusters, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_post_refcount *post) { int ret; handle_t *handle; int credits = 1, ref_blocks = 0; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_alloc_context *meta_ac = NULL; /* We need to be able to handle at least an extent tree split. */ ref_blocks = ocfs2_extend_meta_needed(data_et->et_root_el); ret = ocfs2_calc_refcount_meta_credits(inode->i_sb, ref_ci, ref_root_bh, p_cluster, num_clusters, &ref_blocks, &credits); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_add_refcount_flag(ref_blocks, credits); if (ref_blocks) { ret = ocfs2_reserve_new_metadata_blocks(osb, ref_blocks, &meta_ac); if (ret) { mlog_errno(ret); goto out; } } if (post) credits += post->credits; handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_mark_extent_refcounted(inode, data_et, handle, cpos, num_clusters, p_cluster, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out_commit; } ret = __ocfs2_increase_refcount(handle, ref_ci, ref_root_bh, p_cluster, num_clusters, 0, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out_commit; } if (post && post->func) { ret = post->func(inode, handle, post->para); if (ret) mlog_errno(ret); } out_commit: ocfs2_commit_trans(osb, handle); out: if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } static int ocfs2_change_ctime(struct inode *inode, struct buffer_head *di_bh) { int ret; handle_t *handle; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; handle = ocfs2_start_trans(OCFS2_SB(inode->i_sb), OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } inode_set_ctime_current(inode); di->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec); di->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: return ret; } static int ocfs2_attach_refcount_tree(struct inode *inode, struct buffer_head *di_bh) { int ret, data_changed = 0; struct buffer_head *ref_root_bh = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_refcount_tree *ref_tree; unsigned int ext_flags; loff_t size; u32 cpos, num_clusters, clusters, p_cluster; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_extent_tree di_et; ocfs2_init_dealloc_ctxt(&dealloc); if (!ocfs2_is_refcount_inode(inode)) { ret = ocfs2_create_refcount_tree(inode, di_bh); if (ret) { mlog_errno(ret); goto out; } } BUG_ON(!di->i_refcount_loc); ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) goto attach_xattr; ocfs2_init_dinode_extent_tree(&di_et, INODE_CACHE(inode), di_bh); size = i_size_read(inode); clusters = ocfs2_clusters_for_bytes(inode->i_sb, size); cpos = 0; while (cpos < clusters) { ret = ocfs2_get_clusters(inode, cpos, &p_cluster, &num_clusters, &ext_flags); if (ret) { mlog_errno(ret); goto unlock; } if (p_cluster && !(ext_flags & OCFS2_EXT_REFCOUNTED)) { ret = ocfs2_add_refcount_flag(inode, &di_et, &ref_tree->rf_ci, ref_root_bh, cpos, p_cluster, num_clusters, &dealloc, NULL); if (ret) { mlog_errno(ret); goto unlock; } data_changed = 1; } cpos += num_clusters; } attach_xattr: if (oi->ip_dyn_features & OCFS2_HAS_XATTR_FL) { ret = ocfs2_xattr_attach_refcount_tree(inode, di_bh, &ref_tree->rf_ci, ref_root_bh, &dealloc); if (ret) { mlog_errno(ret); goto unlock; } } if (data_changed) { ret = ocfs2_change_ctime(inode, di_bh); if (ret) mlog_errno(ret); } unlock: ocfs2_unlock_refcount_tree(osb, ref_tree, 1); brelse(ref_root_bh); if (!ret && ocfs2_dealloc_has_cluster(&dealloc)) { ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); } out: /* * Empty the extent map so that we may get the right extent * record from the disk. */ ocfs2_extent_map_trunc(inode, 0); return ret; } static int ocfs2_add_refcounted_extent(struct inode *inode, struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, u32 cpos, u32 p_cluster, u32 num_clusters, unsigned int ext_flags, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; handle_t *handle; int credits = 0; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_alloc_context *meta_ac = NULL; ret = ocfs2_lock_refcount_allocators(inode->i_sb, p_cluster, num_clusters, et, ref_ci, ref_root_bh, &meta_ac, NULL, &credits); if (ret) { mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_insert_extent(handle, et, cpos, ocfs2_clusters_to_blocks(inode->i_sb, p_cluster), num_clusters, ext_flags, meta_ac); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_increase_refcount(handle, ref_ci, ref_root_bh, p_cluster, num_clusters, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out_commit; } ret = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, num_clusters)); if (ret) mlog_errno(ret); out_commit: ocfs2_commit_trans(osb, handle); out: if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } static int ocfs2_duplicate_inline_data(struct inode *s_inode, struct buffer_head *s_bh, struct inode *t_inode, struct buffer_head *t_bh) { int ret; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(s_inode->i_sb); struct ocfs2_dinode *s_di = (struct ocfs2_dinode *)s_bh->b_data; struct ocfs2_dinode *t_di = (struct ocfs2_dinode *)t_bh->b_data; BUG_ON(!(OCFS2_I(s_inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(t_inode), t_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } t_di->id2.i_data.id_count = s_di->id2.i_data.id_count; memcpy(t_di->id2.i_data.id_data, s_di->id2.i_data.id_data, le16_to_cpu(s_di->id2.i_data.id_count)); spin_lock(&OCFS2_I(t_inode)->ip_lock); OCFS2_I(t_inode)->ip_dyn_features |= OCFS2_INLINE_DATA_FL; t_di->i_dyn_features = cpu_to_le16(OCFS2_I(t_inode)->ip_dyn_features); spin_unlock(&OCFS2_I(t_inode)->ip_lock); ocfs2_journal_dirty(handle, t_bh); out_commit: ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_duplicate_extent_list(struct inode *s_inode, struct inode *t_inode, struct buffer_head *t_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; u32 p_cluster, num_clusters, clusters, cpos; loff_t size; unsigned int ext_flags; struct ocfs2_extent_tree et; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(t_inode), t_bh); size = i_size_read(s_inode); clusters = ocfs2_clusters_for_bytes(s_inode->i_sb, size); cpos = 0; while (cpos < clusters) { ret = ocfs2_get_clusters(s_inode, cpos, &p_cluster, &num_clusters, &ext_flags); if (ret) { mlog_errno(ret); goto out; } if (p_cluster) { ret = ocfs2_add_refcounted_extent(t_inode, &et, ref_ci, ref_root_bh, cpos, p_cluster, num_clusters, ext_flags, dealloc); if (ret) { mlog_errno(ret); goto out; } } cpos += num_clusters; } out: return ret; } /* * change the new file's attributes to the src. * * reflink creates a snapshot of a file, that means the attributes * must be identical except for three exceptions - nlink, ino, and ctime. */ static int ocfs2_complete_reflink(struct inode *s_inode, struct buffer_head *s_bh, struct inode *t_inode, struct buffer_head *t_bh, bool preserve) { int ret; handle_t *handle; struct ocfs2_dinode *s_di = (struct ocfs2_dinode *)s_bh->b_data; struct ocfs2_dinode *di = (struct ocfs2_dinode *)t_bh->b_data; loff_t size = i_size_read(s_inode); handle = ocfs2_start_trans(OCFS2_SB(t_inode->i_sb), OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); return ret; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(t_inode), t_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } spin_lock(&OCFS2_I(t_inode)->ip_lock); OCFS2_I(t_inode)->ip_clusters = OCFS2_I(s_inode)->ip_clusters; OCFS2_I(t_inode)->ip_attr = OCFS2_I(s_inode)->ip_attr; OCFS2_I(t_inode)->ip_dyn_features = OCFS2_I(s_inode)->ip_dyn_features; spin_unlock(&OCFS2_I(t_inode)->ip_lock); i_size_write(t_inode, size); t_inode->i_blocks = s_inode->i_blocks; di->i_xattr_inline_size = s_di->i_xattr_inline_size; di->i_clusters = s_di->i_clusters; di->i_size = s_di->i_size; di->i_dyn_features = s_di->i_dyn_features; di->i_attr = s_di->i_attr; if (preserve) { t_inode->i_uid = s_inode->i_uid; t_inode->i_gid = s_inode->i_gid; t_inode->i_mode = s_inode->i_mode; di->i_uid = s_di->i_uid; di->i_gid = s_di->i_gid; di->i_mode = s_di->i_mode; /* * update time. * we want mtime to appear identical to the source and * update ctime. */ inode_set_ctime_current(t_inode); di->i_ctime = cpu_to_le64(inode_get_ctime(t_inode).tv_sec); di->i_ctime_nsec = cpu_to_le32(inode_get_ctime(t_inode).tv_nsec); t_inode->i_mtime = s_inode->i_mtime; di->i_mtime = s_di->i_mtime; di->i_mtime_nsec = s_di->i_mtime_nsec; } ocfs2_journal_dirty(handle, t_bh); out_commit: ocfs2_commit_trans(OCFS2_SB(t_inode->i_sb), handle); return ret; } static int ocfs2_create_reflink_node(struct inode *s_inode, struct buffer_head *s_bh, struct inode *t_inode, struct buffer_head *t_bh, bool preserve) { int ret; struct buffer_head *ref_root_bh = NULL; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_super *osb = OCFS2_SB(s_inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)s_bh->b_data; struct ocfs2_refcount_tree *ref_tree; ocfs2_init_dealloc_ctxt(&dealloc); ret = ocfs2_set_refcount_tree(t_inode, t_bh, le64_to_cpu(di->i_refcount_loc)); if (ret) { mlog_errno(ret); goto out; } if (OCFS2_I(s_inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_duplicate_inline_data(s_inode, s_bh, t_inode, t_bh); if (ret) mlog_errno(ret); goto out; } ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_duplicate_extent_list(s_inode, t_inode, t_bh, &ref_tree->rf_ci, ref_root_bh, &dealloc); if (ret) { mlog_errno(ret); goto out_unlock_refcount; } out_unlock_refcount: ocfs2_unlock_refcount_tree(osb, ref_tree, 1); brelse(ref_root_bh); out: if (ocfs2_dealloc_has_cluster(&dealloc)) { ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); } return ret; } static int __ocfs2_reflink(struct dentry *old_dentry, struct buffer_head *old_bh, struct inode *new_inode, bool preserve) { int ret; struct inode *inode = d_inode(old_dentry); struct buffer_head *new_bh = NULL; if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) { ret = -EINVAL; mlog_errno(ret); goto out; } ret = filemap_fdatawrite(inode->i_mapping); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_attach_refcount_tree(inode, old_bh); if (ret) { mlog_errno(ret); goto out; } inode_lock_nested(new_inode, I_MUTEX_CHILD); ret = ocfs2_inode_lock_nested(new_inode, &new_bh, 1, OI_LS_REFLINK_TARGET); if (ret) { mlog_errno(ret); goto out_unlock; } ret = ocfs2_create_reflink_node(inode, old_bh, new_inode, new_bh, preserve); if (ret) { mlog_errno(ret); goto inode_unlock; } if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_XATTR_FL) { ret = ocfs2_reflink_xattrs(inode, old_bh, new_inode, new_bh, preserve); if (ret) { mlog_errno(ret); goto inode_unlock; } } ret = ocfs2_complete_reflink(inode, old_bh, new_inode, new_bh, preserve); if (ret) mlog_errno(ret); inode_unlock: ocfs2_inode_unlock(new_inode, 1); brelse(new_bh); out_unlock: inode_unlock(new_inode); out: if (!ret) { ret = filemap_fdatawait(inode->i_mapping); if (ret) mlog_errno(ret); } return ret; } static int ocfs2_reflink(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, bool preserve) { int error, had_lock; struct inode *inode = d_inode(old_dentry); struct buffer_head *old_bh = NULL; struct inode *new_orphan_inode = NULL; struct ocfs2_lock_holder oh; if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; error = ocfs2_create_inode_in_orphan(dir, inode->i_mode, &new_orphan_inode); if (error) { mlog_errno(error); goto out; } error = ocfs2_rw_lock(inode, 1); if (error) { mlog_errno(error); goto out; } error = ocfs2_inode_lock(inode, &old_bh, 1); if (error) { mlog_errno(error); ocfs2_rw_unlock(inode, 1); goto out; } down_write(&OCFS2_I(inode)->ip_xattr_sem); down_write(&OCFS2_I(inode)->ip_alloc_sem); error = __ocfs2_reflink(old_dentry, old_bh, new_orphan_inode, preserve); up_write(&OCFS2_I(inode)->ip_alloc_sem); up_write(&OCFS2_I(inode)->ip_xattr_sem); ocfs2_inode_unlock(inode, 1); ocfs2_rw_unlock(inode, 1); brelse(old_bh); if (error) { mlog_errno(error); goto out; } had_lock = ocfs2_inode_lock_tracker(new_orphan_inode, NULL, 1, &oh); if (had_lock < 0) { error = had_lock; mlog_errno(error); goto out; } /* If the security isn't preserved, we need to re-initialize them. */ if (!preserve) { error = ocfs2_init_security_and_acl(dir, new_orphan_inode, &new_dentry->d_name); if (error) mlog_errno(error); } if (!error) { error = ocfs2_mv_orphaned_inode_to_new(dir, new_orphan_inode, new_dentry); if (error) mlog_errno(error); } ocfs2_inode_unlock_tracker(new_orphan_inode, 1, &oh, had_lock); out: if (new_orphan_inode) { /* * We need to open_unlock the inode no matter whether we * succeed or not, so that other nodes can delete it later. */ ocfs2_open_unlock(new_orphan_inode); if (error) iput(new_orphan_inode); } return error; } /* * Below here are the bits used by OCFS2_IOC_REFLINK() to fake * sys_reflink(). This will go away when vfs_reflink() exists in * fs/namei.c. */ /* copied from may_create in VFS. */ static inline int ocfs2_may_create(struct inode *dir, struct dentry *child) { if (d_really_is_positive(child)) return -EEXIST; if (IS_DEADDIR(dir)) return -ENOENT; return inode_permission(&nop_mnt_idmap, dir, MAY_WRITE | MAY_EXEC); } /** * ocfs2_vfs_reflink - Create a reference-counted link * * @old_dentry: source dentry + inode * @dir: directory to create the target * @new_dentry: target dentry * @preserve: if true, preserve all file attributes */ static int ocfs2_vfs_reflink(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, bool preserve) { struct inode *inode = d_inode(old_dentry); int error; if (!inode) return -ENOENT; error = ocfs2_may_create(dir, new_dentry); if (error) return error; if (dir->i_sb != inode->i_sb) return -EXDEV; /* * A reflink to an append-only or immutable file cannot be created. */ if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; /* Only regular files can be reflinked. */ if (!S_ISREG(inode->i_mode)) return -EPERM; /* * If the caller wants to preserve ownership, they require the * rights to do so. */ if (preserve) { if (!uid_eq(current_fsuid(), inode->i_uid) && !capable(CAP_CHOWN)) return -EPERM; if (!in_group_p(inode->i_gid) && !capable(CAP_CHOWN)) return -EPERM; } /* * If the caller is modifying any aspect of the attributes, they * are not creating a snapshot. They need read permission on the * file. */ if (!preserve) { error = inode_permission(&nop_mnt_idmap, inode, MAY_READ); if (error) return error; } inode_lock(inode); error = dquot_initialize(dir); if (!error) error = ocfs2_reflink(old_dentry, dir, new_dentry, preserve); inode_unlock(inode); if (!error) fsnotify_create(dir, new_dentry); return error; } /* * Most codes are copied from sys_linkat. */ int ocfs2_reflink_ioctl(struct inode *inode, const char __user *oldname, const char __user *newname, bool preserve) { struct dentry *new_dentry; struct path old_path, new_path; int error; if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; error = user_path_at(AT_FDCWD, oldname, 0, &old_path); if (error) { mlog_errno(error); return error; } new_dentry = user_path_create(AT_FDCWD, newname, &new_path, 0); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) { mlog_errno(error); goto out; } error = -EXDEV; if (old_path.mnt != new_path.mnt) { mlog_errno(error); goto out_dput; } error = ocfs2_vfs_reflink(old_path.dentry, d_inode(new_path.dentry), new_dentry, preserve); out_dput: done_path_create(&new_path, new_dentry); out: path_put(&old_path); return error; } /* Update destination inode size, if necessary. */ int ocfs2_reflink_update_dest(struct inode *dest, struct buffer_head *d_bh, loff_t newlen) { handle_t *handle; int ret; dest->i_blocks = ocfs2_inode_sector_count(dest); if (newlen <= i_size_read(dest)) return 0; handle = ocfs2_start_trans(OCFS2_SB(dest->i_sb), OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); return ret; } /* Extend i_size if needed. */ spin_lock(&OCFS2_I(dest)->ip_lock); if (newlen > i_size_read(dest)) i_size_write(dest, newlen); spin_unlock(&OCFS2_I(dest)->ip_lock); dest->i_mtime = inode_set_ctime_current(dest); ret = ocfs2_mark_inode_dirty(handle, dest, d_bh); if (ret) { mlog_errno(ret); goto out_commit; } out_commit: ocfs2_commit_trans(OCFS2_SB(dest->i_sb), handle); return ret; } /* Remap the range pos_in:len in s_inode to pos_out:len in t_inode. */ static loff_t ocfs2_reflink_remap_extent(struct inode *s_inode, struct buffer_head *s_bh, loff_t pos_in, struct inode *t_inode, struct buffer_head *t_bh, loff_t pos_out, loff_t len, struct ocfs2_cached_dealloc_ctxt *dealloc) { struct ocfs2_extent_tree s_et; struct ocfs2_extent_tree t_et; struct ocfs2_dinode *dis; struct buffer_head *ref_root_bh = NULL; struct ocfs2_refcount_tree *ref_tree; struct ocfs2_super *osb; loff_t remapped_bytes = 0; loff_t pstart, plen; u32 p_cluster, num_clusters, slast, spos, tpos, remapped_clus = 0; unsigned int ext_flags; int ret = 0; osb = OCFS2_SB(s_inode->i_sb); dis = (struct ocfs2_dinode *)s_bh->b_data; ocfs2_init_dinode_extent_tree(&s_et, INODE_CACHE(s_inode), s_bh); ocfs2_init_dinode_extent_tree(&t_et, INODE_CACHE(t_inode), t_bh); spos = ocfs2_bytes_to_clusters(s_inode->i_sb, pos_in); tpos = ocfs2_bytes_to_clusters(t_inode->i_sb, pos_out); slast = ocfs2_clusters_for_bytes(s_inode->i_sb, pos_in + len); while (spos < slast) { if (fatal_signal_pending(current)) { ret = -EINTR; goto out; } /* Look up the extent. */ ret = ocfs2_get_clusters(s_inode, spos, &p_cluster, &num_clusters, &ext_flags); if (ret) { mlog_errno(ret); goto out; } num_clusters = min_t(u32, num_clusters, slast - spos); /* Punch out the dest range. */ pstart = ocfs2_clusters_to_bytes(t_inode->i_sb, tpos); plen = ocfs2_clusters_to_bytes(t_inode->i_sb, num_clusters); ret = ocfs2_remove_inode_range(t_inode, t_bh, pstart, plen); if (ret) { mlog_errno(ret); goto out; } if (p_cluster == 0) goto next_loop; /* Lock the refcount btree... */ ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(dis->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } /* Mark s_inode's extent as refcounted. */ if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) { ret = ocfs2_add_refcount_flag(s_inode, &s_et, &ref_tree->rf_ci, ref_root_bh, spos, p_cluster, num_clusters, dealloc, NULL); if (ret) { mlog_errno(ret); goto out_unlock_refcount; } } /* Map in the new extent. */ ext_flags |= OCFS2_EXT_REFCOUNTED; ret = ocfs2_add_refcounted_extent(t_inode, &t_et, &ref_tree->rf_ci, ref_root_bh, tpos, p_cluster, num_clusters, ext_flags, dealloc); if (ret) { mlog_errno(ret); goto out_unlock_refcount; } ocfs2_unlock_refcount_tree(osb, ref_tree, 1); brelse(ref_root_bh); next_loop: spos += num_clusters; tpos += num_clusters; remapped_clus += num_clusters; } goto out; out_unlock_refcount: ocfs2_unlock_refcount_tree(osb, ref_tree, 1); brelse(ref_root_bh); out: remapped_bytes = ocfs2_clusters_to_bytes(t_inode->i_sb, remapped_clus); remapped_bytes = min_t(loff_t, len, remapped_bytes); return remapped_bytes > 0 ? remapped_bytes : ret; } /* Set up refcount tree and remap s_inode to t_inode. */ loff_t ocfs2_reflink_remap_blocks(struct inode *s_inode, struct buffer_head *s_bh, loff_t pos_in, struct inode *t_inode, struct buffer_head *t_bh, loff_t pos_out, loff_t len) { struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_super *osb; struct ocfs2_dinode *dis; struct ocfs2_dinode *dit; loff_t ret; osb = OCFS2_SB(s_inode->i_sb); dis = (struct ocfs2_dinode *)s_bh->b_data; dit = (struct ocfs2_dinode *)t_bh->b_data; ocfs2_init_dealloc_ctxt(&dealloc); /* * If we're reflinking the entire file and the source is inline * data, just copy the contents. */ if (pos_in == pos_out && pos_in == 0 && len == i_size_read(s_inode) && i_size_read(t_inode) <= len && (OCFS2_I(s_inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) { ret = ocfs2_duplicate_inline_data(s_inode, s_bh, t_inode, t_bh); if (ret) mlog_errno(ret); goto out; } /* * If both inodes belong to two different refcount groups then * forget it because we don't know how (or want) to go merging * refcount trees. */ ret = -EOPNOTSUPP; if (ocfs2_is_refcount_inode(s_inode) && ocfs2_is_refcount_inode(t_inode) && le64_to_cpu(dis->i_refcount_loc) != le64_to_cpu(dit->i_refcount_loc)) goto out; /* Neither inode has a refcount tree. Add one to s_inode. */ if (!ocfs2_is_refcount_inode(s_inode) && !ocfs2_is_refcount_inode(t_inode)) { ret = ocfs2_create_refcount_tree(s_inode, s_bh); if (ret) { mlog_errno(ret); goto out; } } /* Ensure that both inodes end up with the same refcount tree. */ if (!ocfs2_is_refcount_inode(s_inode)) { ret = ocfs2_set_refcount_tree(s_inode, s_bh, le64_to_cpu(dit->i_refcount_loc)); if (ret) { mlog_errno(ret); goto out; } } if (!ocfs2_is_refcount_inode(t_inode)) { ret = ocfs2_set_refcount_tree(t_inode, t_bh, le64_to_cpu(dis->i_refcount_loc)); if (ret) { mlog_errno(ret); goto out; } } /* Turn off inline data in the dest file. */ if (OCFS2_I(t_inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_convert_inline_data_to_extents(t_inode, t_bh); if (ret) { mlog_errno(ret); goto out; } } /* Actually remap extents now. */ ret = ocfs2_reflink_remap_extent(s_inode, s_bh, pos_in, t_inode, t_bh, pos_out, len, &dealloc); if (ret < 0) { mlog_errno(ret); goto out; } out: if (ocfs2_dealloc_has_cluster(&dealloc)) { ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); } return ret; } /* Lock an inode and grab a bh pointing to the inode. */ int ocfs2_reflink_inodes_lock(struct inode *s_inode, struct buffer_head **bh_s, struct inode *t_inode, struct buffer_head **bh_t) { struct inode *inode1 = s_inode; struct inode *inode2 = t_inode; struct ocfs2_inode_info *oi1; struct ocfs2_inode_info *oi2; struct buffer_head *bh1 = NULL; struct buffer_head *bh2 = NULL; bool same_inode = (s_inode == t_inode); bool need_swap = (inode1->i_ino > inode2->i_ino); int status; /* First grab the VFS and rw locks. */ lock_two_nondirectories(s_inode, t_inode); if (need_swap) swap(inode1, inode2); status = ocfs2_rw_lock(inode1, 1); if (status) { mlog_errno(status); goto out_i1; } if (!same_inode) { status = ocfs2_rw_lock(inode2, 1); if (status) { mlog_errno(status); goto out_i2; } } /* Now go for the cluster locks */ oi1 = OCFS2_I(inode1); oi2 = OCFS2_I(inode2); trace_ocfs2_double_lock((unsigned long long)oi1->ip_blkno, (unsigned long long)oi2->ip_blkno); /* We always want to lock the one with the lower lockid first. */ if (oi1->ip_blkno > oi2->ip_blkno) mlog_errno(-ENOLCK); /* lock id1 */ status = ocfs2_inode_lock_nested(inode1, &bh1, 1, OI_LS_REFLINK_TARGET); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto out_rw2; } /* lock id2 */ if (!same_inode) { status = ocfs2_inode_lock_nested(inode2, &bh2, 1, OI_LS_REFLINK_TARGET); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto out_cl1; } } else { bh2 = bh1; } /* * If we swapped inode order above, we have to swap the buffer heads * before passing them back to the caller. */ if (need_swap) swap(bh1, bh2); *bh_s = bh1; *bh_t = bh2; trace_ocfs2_double_lock_end( (unsigned long long)oi1->ip_blkno, (unsigned long long)oi2->ip_blkno); return 0; out_cl1: ocfs2_inode_unlock(inode1, 1); brelse(bh1); out_rw2: ocfs2_rw_unlock(inode2, 1); out_i2: ocfs2_rw_unlock(inode1, 1); out_i1: unlock_two_nondirectories(s_inode, t_inode); return status; } /* Unlock both inodes and release buffers. */ void ocfs2_reflink_inodes_unlock(struct inode *s_inode, struct buffer_head *s_bh, struct inode *t_inode, struct buffer_head *t_bh) { ocfs2_inode_unlock(s_inode, 1); ocfs2_rw_unlock(s_inode, 1); brelse(s_bh); if (s_inode != t_inode) { ocfs2_inode_unlock(t_inode, 1); ocfs2_rw_unlock(t_inode, 1); brelse(t_bh); } unlock_two_nondirectories(s_inode, t_inode); }
linux-master
fs/ocfs2/refcounttree.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * journal.c * * Defines functions of journalling api * * Copyright (C) 2003, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/kthread.h> #include <linux/time.h> #include <linux/random.h> #include <linux/delay.h> #include <linux/writeback.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "slot_map.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "quota.h" #include "file.h" #include "namei.h" #include "buffer_head_io.h" #include "ocfs2_trace.h" DEFINE_SPINLOCK(trans_inc_lock); #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 static int ocfs2_force_read_journal(struct inode *inode); static int ocfs2_recover_node(struct ocfs2_super *osb, int node_num, int slot_num); static int __ocfs2_recovery_thread(void *arg); static int ocfs2_commit_cache(struct ocfs2_super *osb); static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, int dirty, int replayed); static int ocfs2_trylock_journal(struct ocfs2_super *osb, int slot_num); static int ocfs2_recover_orphans(struct ocfs2_super *osb, int slot, enum ocfs2_orphan_reco_type orphan_reco_type); static int ocfs2_commit_thread(void *arg); static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, int slot_num, struct ocfs2_dinode *la_dinode, struct ocfs2_dinode *tl_dinode, struct ocfs2_quota_recovery *qrec, enum ocfs2_orphan_reco_type orphan_reco_type); static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) { return __ocfs2_wait_on_mount(osb, 0); } static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) { return __ocfs2_wait_on_mount(osb, 1); } /* * This replay_map is to track online/offline slots, so we could recover * offline slots during recovery and mount */ enum ocfs2_replay_state { REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ REPLAY_DONE /* Replay was already queued */ }; struct ocfs2_replay_map { unsigned int rm_slots; enum ocfs2_replay_state rm_state; unsigned char rm_replay_slots[]; }; static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) { if (!osb->replay_map) return; /* If we've already queued the replay, we don't have any more to do */ if (osb->replay_map->rm_state == REPLAY_DONE) return; osb->replay_map->rm_state = state; } int ocfs2_compute_replay_slots(struct ocfs2_super *osb) { struct ocfs2_replay_map *replay_map; int i, node_num; /* If replay map is already set, we don't do it again */ if (osb->replay_map) return 0; replay_map = kzalloc(struct_size(replay_map, rm_replay_slots, osb->max_slots), GFP_KERNEL); if (!replay_map) { mlog_errno(-ENOMEM); return -ENOMEM; } spin_lock(&osb->osb_lock); replay_map->rm_slots = osb->max_slots; replay_map->rm_state = REPLAY_UNNEEDED; /* set rm_replay_slots for offline slot(s) */ for (i = 0; i < replay_map->rm_slots; i++) { if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) replay_map->rm_replay_slots[i] = 1; } osb->replay_map = replay_map; spin_unlock(&osb->osb_lock); return 0; } static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, enum ocfs2_orphan_reco_type orphan_reco_type) { struct ocfs2_replay_map *replay_map = osb->replay_map; int i; if (!replay_map) return; if (replay_map->rm_state != REPLAY_NEEDED) return; for (i = 0; i < replay_map->rm_slots; i++) if (replay_map->rm_replay_slots[i]) ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, NULL, orphan_reco_type); replay_map->rm_state = REPLAY_DONE; } void ocfs2_free_replay_slots(struct ocfs2_super *osb) { struct ocfs2_replay_map *replay_map = osb->replay_map; if (!osb->replay_map) return; kfree(replay_map); osb->replay_map = NULL; } int ocfs2_recovery_init(struct ocfs2_super *osb) { struct ocfs2_recovery_map *rm; mutex_init(&osb->recovery_lock); osb->disable_recovery = 0; osb->recovery_thread_task = NULL; init_waitqueue_head(&osb->recovery_event); rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots), GFP_KERNEL); if (!rm) { mlog_errno(-ENOMEM); return -ENOMEM; } osb->recovery_map = rm; return 0; } /* we can't grab the goofy sem lock from inside wait_event, so we use * memory barriers to make sure that we'll see the null task before * being woken up */ static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) { mb(); return osb->recovery_thread_task != NULL; } void ocfs2_recovery_exit(struct ocfs2_super *osb) { struct ocfs2_recovery_map *rm; /* disable any new recovery threads and wait for any currently * running ones to exit. Do this before setting the vol_state. */ mutex_lock(&osb->recovery_lock); osb->disable_recovery = 1; mutex_unlock(&osb->recovery_lock); wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); /* At this point, we know that no more recovery threads can be * launched, so wait for any recovery completion work to * complete. */ if (osb->ocfs2_wq) flush_workqueue(osb->ocfs2_wq); /* * Now that recovery is shut down, and the osb is about to be * freed, the osb_lock is not taken here. */ rm = osb->recovery_map; /* XXX: Should we bug if there are dirty entries? */ kfree(rm); } static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, unsigned int node_num) { int i; struct ocfs2_recovery_map *rm = osb->recovery_map; assert_spin_locked(&osb->osb_lock); for (i = 0; i < rm->rm_used; i++) { if (rm->rm_entries[i] == node_num) return 1; } return 0; } /* Behaves like test-and-set. Returns the previous value */ static int ocfs2_recovery_map_set(struct ocfs2_super *osb, unsigned int node_num) { struct ocfs2_recovery_map *rm = osb->recovery_map; spin_lock(&osb->osb_lock); if (__ocfs2_recovery_map_test(osb, node_num)) { spin_unlock(&osb->osb_lock); return 1; } /* XXX: Can this be exploited? Not from o2dlm... */ BUG_ON(rm->rm_used >= osb->max_slots); rm->rm_entries[rm->rm_used] = node_num; rm->rm_used++; spin_unlock(&osb->osb_lock); return 0; } static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, unsigned int node_num) { int i; struct ocfs2_recovery_map *rm = osb->recovery_map; spin_lock(&osb->osb_lock); for (i = 0; i < rm->rm_used; i++) { if (rm->rm_entries[i] == node_num) break; } if (i < rm->rm_used) { /* XXX: be careful with the pointer math */ memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), (rm->rm_used - i - 1) * sizeof(unsigned int)); rm->rm_used--; } spin_unlock(&osb->osb_lock); } static int ocfs2_commit_cache(struct ocfs2_super *osb) { int status = 0; unsigned int flushed; struct ocfs2_journal *journal = NULL; journal = osb->journal; /* Flush all pending commits and checkpoint the journal. */ down_write(&journal->j_trans_barrier); flushed = atomic_read(&journal->j_num_trans); trace_ocfs2_commit_cache_begin(flushed); if (flushed == 0) { up_write(&journal->j_trans_barrier); goto finally; } jbd2_journal_lock_updates(journal->j_journal); status = jbd2_journal_flush(journal->j_journal, 0); jbd2_journal_unlock_updates(journal->j_journal); if (status < 0) { up_write(&journal->j_trans_barrier); mlog_errno(status); goto finally; } ocfs2_inc_trans_id(journal); flushed = atomic_read(&journal->j_num_trans); atomic_set(&journal->j_num_trans, 0); up_write(&journal->j_trans_barrier); trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); ocfs2_wake_downconvert_thread(osb); wake_up(&journal->j_checkpointed); finally: return status; } handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) { journal_t *journal = osb->journal->j_journal; handle_t *handle; BUG_ON(!osb || !osb->journal->j_journal); if (ocfs2_is_hard_readonly(osb)) return ERR_PTR(-EROFS); BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); BUG_ON(max_buffs <= 0); /* Nested transaction? Just return the handle... */ if (journal_current_handle()) return jbd2_journal_start(journal, max_buffs); sb_start_intwrite(osb->sb); down_read(&osb->journal->j_trans_barrier); handle = jbd2_journal_start(journal, max_buffs); if (IS_ERR(handle)) { up_read(&osb->journal->j_trans_barrier); sb_end_intwrite(osb->sb); mlog_errno(PTR_ERR(handle)); if (is_journal_aborted(journal)) { ocfs2_abort(osb->sb, "Detected aborted journal\n"); handle = ERR_PTR(-EROFS); } } else { if (!ocfs2_mount_local(osb)) atomic_inc(&(osb->journal->j_num_trans)); } return handle; } int ocfs2_commit_trans(struct ocfs2_super *osb, handle_t *handle) { int ret, nested; struct ocfs2_journal *journal = osb->journal; BUG_ON(!handle); nested = handle->h_ref > 1; ret = jbd2_journal_stop(handle); if (ret < 0) mlog_errno(ret); if (!nested) { up_read(&journal->j_trans_barrier); sb_end_intwrite(osb->sb); } return ret; } /* * 'nblocks' is what you want to add to the current transaction. * * This might call jbd2_journal_restart() which will commit dirty buffers * and then restart the transaction. Before calling * ocfs2_extend_trans(), any changed blocks should have been * dirtied. After calling it, all blocks which need to be changed must * go through another set of journal_access/journal_dirty calls. * * WARNING: This will not release any semaphores or disk locks taken * during the transaction, so make sure they were taken *before* * start_trans or we'll have ordering deadlocks. * * WARNING2: Note that we do *not* drop j_trans_barrier here. This is * good because transaction ids haven't yet been recorded on the * cluster locks associated with this handle. */ int ocfs2_extend_trans(handle_t *handle, int nblocks) { int status, old_nblocks; BUG_ON(!handle); BUG_ON(nblocks < 0); if (!nblocks) return 0; old_nblocks = jbd2_handle_buffer_credits(handle); trace_ocfs2_extend_trans(old_nblocks, nblocks); #ifdef CONFIG_OCFS2_DEBUG_FS status = 1; #else status = jbd2_journal_extend(handle, nblocks, 0); if (status < 0) { mlog_errno(status); goto bail; } #endif if (status > 0) { trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); status = jbd2_journal_restart(handle, old_nblocks + nblocks); if (status < 0) { mlog_errno(status); goto bail; } } status = 0; bail: return status; } /* * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. * If that fails, restart the transaction & regain write access for the * buffer head which is used for metadata modifications. * Taken from Ext4: extend_or_restart_transaction() */ int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) { int status, old_nblks; BUG_ON(!handle); old_nblks = jbd2_handle_buffer_credits(handle); trace_ocfs2_allocate_extend_trans(old_nblks, thresh); if (old_nblks < thresh) return 0; status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); if (status < 0) { mlog_errno(status); goto bail; } if (status > 0) { status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); if (status < 0) mlog_errno(status); } bail: return status; } struct ocfs2_triggers { struct jbd2_buffer_trigger_type ot_triggers; int ot_offset; }; static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) { return container_of(triggers, struct ocfs2_triggers, ot_triggers); } static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, struct buffer_head *bh, void *data, size_t size) { struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); /* * We aren't guaranteed to have the superblock here, so we * must unconditionally compute the ecc data. * __ocfs2_journal_access() will only set the triggers if * metaecc is enabled. */ ocfs2_block_check_compute(data, size, data + ot->ot_offset); } /* * Quota blocks have their own trigger because the struct ocfs2_block_check * offset depends on the blocksize. */ static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, struct buffer_head *bh, void *data, size_t size) { struct ocfs2_disk_dqtrailer *dqt = ocfs2_block_dqtrailer(size, data); /* * We aren't guaranteed to have the superblock here, so we * must unconditionally compute the ecc data. * __ocfs2_journal_access() will only set the triggers if * metaecc is enabled. */ ocfs2_block_check_compute(data, size, &dqt->dq_check); } /* * Directory blocks also have their own trigger because the * struct ocfs2_block_check offset depends on the blocksize. */ static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, struct buffer_head *bh, void *data, size_t size) { struct ocfs2_dir_block_trailer *trailer = ocfs2_dir_trailer_from_size(size, data); /* * We aren't guaranteed to have the superblock here, so we * must unconditionally compute the ecc data. * __ocfs2_journal_access() will only set the triggers if * metaecc is enabled. */ ocfs2_block_check_compute(data, size, &trailer->db_check); } static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, struct buffer_head *bh) { mlog(ML_ERROR, "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " "bh->b_blocknr = %llu\n", (unsigned long)bh, (unsigned long long)bh->b_blocknr); ocfs2_error(bh->b_assoc_map->host->i_sb, "JBD2 has aborted our journal, ocfs2 cannot continue\n"); } static struct ocfs2_triggers di_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_dinode, i_check), }; static struct ocfs2_triggers eb_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_extent_block, h_check), }; static struct ocfs2_triggers rb_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), }; static struct ocfs2_triggers gd_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), }; static struct ocfs2_triggers db_triggers = { .ot_triggers = { .t_frozen = ocfs2_db_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, }; static struct ocfs2_triggers xb_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), }; static struct ocfs2_triggers dq_triggers = { .ot_triggers = { .t_frozen = ocfs2_dq_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, }; static struct ocfs2_triggers dr_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), }; static struct ocfs2_triggers dl_triggers = { .ot_triggers = { .t_frozen = ocfs2_frozen_trigger, .t_abort = ocfs2_abort_trigger, }, .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), }; static int __ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, struct ocfs2_triggers *triggers, int type) { int status; struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); BUG_ON(!ci || !ci->ci_ops); BUG_ON(!handle); BUG_ON(!bh); trace_ocfs2_journal_access( (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)bh->b_blocknr, type, bh->b_size); /* we can safely remove this assertion after testing. */ if (!buffer_uptodate(bh)) { mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", (unsigned long long)bh->b_blocknr, bh->b_state); lock_buffer(bh); /* * A previous transaction with a couple of buffer heads fail * to checkpoint, so all the bhs are marked as BH_Write_EIO. * For current transaction, the bh is just among those error * bhs which previous transaction handle. We can't just clear * its BH_Write_EIO and reuse directly, since other bhs are * not written to disk yet and that will cause metadata * inconsistency. So we should set fs read-only to avoid * further damage. */ if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { unlock_buffer(bh); return ocfs2_error(osb->sb, "A previous attempt to " "write this buffer head failed\n"); } unlock_buffer(bh); } /* Set the current transaction information on the ci so * that the locking code knows whether it can drop it's locks * on this ci or not. We're protected from the commit * thread updating the current transaction id until * ocfs2_commit_trans() because ocfs2_start_trans() took * j_trans_barrier for us. */ ocfs2_set_ci_lock_trans(osb->journal, ci); ocfs2_metadata_cache_io_lock(ci); switch (type) { case OCFS2_JOURNAL_ACCESS_CREATE: case OCFS2_JOURNAL_ACCESS_WRITE: status = jbd2_journal_get_write_access(handle, bh); break; case OCFS2_JOURNAL_ACCESS_UNDO: status = jbd2_journal_get_undo_access(handle, bh); break; default: status = -EINVAL; mlog(ML_ERROR, "Unknown access type!\n"); } if (!status && ocfs2_meta_ecc(osb) && triggers) jbd2_journal_set_triggers(bh, &triggers->ot_triggers); ocfs2_metadata_cache_io_unlock(ci); if (status < 0) mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", status, type); return status; } int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); } int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); } int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, type); } int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); } int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); } int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); } int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); } int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); } int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); } int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, struct buffer_head *bh, int type) { return __ocfs2_journal_access(handle, ci, bh, NULL, type); } void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) { int status; trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); status = jbd2_journal_dirty_metadata(handle, bh); if (status) { mlog_errno(status); if (!is_handle_aborted(handle)) { journal_t *journal = handle->h_transaction->t_journal; mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " "Aborting transaction and journal.\n"); handle->h_err = status; jbd2_journal_abort_handle(handle); jbd2_journal_abort(journal, status); ocfs2_abort(bh->b_assoc_map->host->i_sb, "Journal already aborted.\n"); } } } #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) void ocfs2_set_journal_params(struct ocfs2_super *osb) { journal_t *journal = osb->journal->j_journal; unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; if (osb->osb_commit_interval) commit_interval = osb->osb_commit_interval; write_lock(&journal->j_state_lock); journal->j_commit_interval = commit_interval; if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) journal->j_flags |= JBD2_BARRIER; else journal->j_flags &= ~JBD2_BARRIER; write_unlock(&journal->j_state_lock); } /* * alloc & initialize skeleton for journal structure. * ocfs2_journal_init() will make fs have journal ability. */ int ocfs2_journal_alloc(struct ocfs2_super *osb) { int status = 0; struct ocfs2_journal *journal; journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); if (!journal) { mlog(ML_ERROR, "unable to alloc journal\n"); status = -ENOMEM; goto bail; } osb->journal = journal; journal->j_osb = osb; atomic_set(&journal->j_num_trans, 0); init_rwsem(&journal->j_trans_barrier); init_waitqueue_head(&journal->j_checkpointed); spin_lock_init(&journal->j_lock); journal->j_trans_id = 1UL; INIT_LIST_HEAD(&journal->j_la_cleanups); INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); journal->j_state = OCFS2_JOURNAL_FREE; bail: return status; } static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) { struct address_space *mapping = jinode->i_vfs_inode->i_mapping; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = mapping->nrpages * 2, .range_start = jinode->i_dirty_start, .range_end = jinode->i_dirty_end, }; return filemap_fdatawrite_wbc(mapping, &wbc); } int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) { int status = -1; struct inode *inode = NULL; /* the journal inode */ journal_t *j_journal = NULL; struct ocfs2_journal *journal = osb->journal; struct ocfs2_dinode *di = NULL; struct buffer_head *bh = NULL; int inode_lock = 0; BUG_ON(!journal); /* already have the inode for our journal */ inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, osb->slot_num); if (inode == NULL) { status = -EACCES; mlog_errno(status); goto done; } if (is_bad_inode(inode)) { mlog(ML_ERROR, "access error (bad inode)\n"); iput(inode); inode = NULL; status = -EACCES; goto done; } SET_INODE_JOURNAL(inode); OCFS2_I(inode)->ip_open_count++; /* Skip recovery waits here - journal inode metadata never * changes in a live cluster so it can be considered an * exception to the rule. */ status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); if (status < 0) { if (status != -ERESTARTSYS) mlog(ML_ERROR, "Could not get lock on journal!\n"); goto done; } inode_lock = 1; di = (struct ocfs2_dinode *)bh->b_data; if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", i_size_read(inode)); status = -EINVAL; goto done; } trace_ocfs2_journal_init(i_size_read(inode), (unsigned long long)inode->i_blocks, OCFS2_I(inode)->ip_clusters); /* call the kernels journal init function now */ j_journal = jbd2_journal_init_inode(inode); if (IS_ERR(j_journal)) { mlog(ML_ERROR, "Linux journal layer error\n"); status = PTR_ERR(j_journal); goto done; } trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & OCFS2_JOURNAL_DIRTY_FL); journal->j_journal = j_journal; journal->j_journal->j_submit_inode_data_buffers = ocfs2_journal_submit_inode_data_buffers; journal->j_journal->j_finish_inode_data_buffers = jbd2_journal_finish_inode_data_buffers; journal->j_inode = inode; journal->j_bh = bh; ocfs2_set_journal_params(osb); journal->j_state = OCFS2_JOURNAL_LOADED; status = 0; done: if (status < 0) { if (inode_lock) ocfs2_inode_unlock(inode, 1); brelse(bh); if (inode) { OCFS2_I(inode)->ip_open_count--; iput(inode); } } return status; } static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) { le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); } static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) { return le32_to_cpu(di->id1.journal1.ij_recovery_generation); } static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, int dirty, int replayed) { int status; unsigned int flags; struct ocfs2_journal *journal = osb->journal; struct buffer_head *bh = journal->j_bh; struct ocfs2_dinode *fe; fe = (struct ocfs2_dinode *)bh->b_data; /* The journal bh on the osb always comes from ocfs2_journal_init() * and was validated there inside ocfs2_inode_lock_full(). It's a * code bug if we mess it up. */ BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); flags = le32_to_cpu(fe->id1.journal1.ij_flags); if (dirty) flags |= OCFS2_JOURNAL_DIRTY_FL; else flags &= ~OCFS2_JOURNAL_DIRTY_FL; fe->id1.journal1.ij_flags = cpu_to_le32(flags); if (replayed) ocfs2_bump_recovery_generation(fe); ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); if (status < 0) mlog_errno(status); return status; } /* * If the journal has been kmalloc'd it needs to be freed after this * call. */ void ocfs2_journal_shutdown(struct ocfs2_super *osb) { struct ocfs2_journal *journal = NULL; int status = 0; struct inode *inode = NULL; int num_running_trans = 0; BUG_ON(!osb); journal = osb->journal; if (!journal) goto done; inode = journal->j_inode; if (journal->j_state != OCFS2_JOURNAL_LOADED) goto done; /* need to inc inode use count - jbd2_journal_destroy will iput. */ if (!igrab(inode)) BUG(); num_running_trans = atomic_read(&(osb->journal->j_num_trans)); trace_ocfs2_journal_shutdown(num_running_trans); /* Do a commit_cache here. It will flush our journal, *and* * release any locks that are still held. * set the SHUTDOWN flag and release the trans lock. * the commit thread will take the trans lock for us below. */ journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not * drop the trans_lock (which we want to hold until we * completely destroy the journal. */ if (osb->commit_task) { /* Wait for the commit thread */ trace_ocfs2_journal_shutdown_wait(osb->commit_task); kthread_stop(osb->commit_task); osb->commit_task = NULL; } BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); if (ocfs2_mount_local(osb)) { jbd2_journal_lock_updates(journal->j_journal); status = jbd2_journal_flush(journal->j_journal, 0); jbd2_journal_unlock_updates(journal->j_journal); if (status < 0) mlog_errno(status); } /* Shutdown the kernel journal system */ if (!jbd2_journal_destroy(journal->j_journal) && !status) { /* * Do not toggle if flush was unsuccessful otherwise * will leave dirty metadata in a "clean" journal */ status = ocfs2_journal_toggle_dirty(osb, 0, 0); if (status < 0) mlog_errno(status); } journal->j_journal = NULL; OCFS2_I(inode)->ip_open_count--; /* unlock our journal */ ocfs2_inode_unlock(inode, 1); brelse(journal->j_bh); journal->j_bh = NULL; journal->j_state = OCFS2_JOURNAL_FREE; done: iput(inode); kfree(journal); osb->journal = NULL; } static void ocfs2_clear_journal_error(struct super_block *sb, journal_t *journal, int slot) { int olderr; olderr = jbd2_journal_errno(journal); if (olderr) { mlog(ML_ERROR, "File system error %d recorded in " "journal %u.\n", olderr, slot); mlog(ML_ERROR, "File system on device %s needs checking.\n", sb->s_id); jbd2_journal_ack_err(journal); jbd2_journal_clear_err(journal); } } int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) { int status = 0; struct ocfs2_super *osb; BUG_ON(!journal); osb = journal->j_osb; status = jbd2_journal_load(journal->j_journal); if (status < 0) { mlog(ML_ERROR, "Failed to load journal!\n"); goto done; } ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); if (replayed) { jbd2_journal_lock_updates(journal->j_journal); status = jbd2_journal_flush(journal->j_journal, 0); jbd2_journal_unlock_updates(journal->j_journal); if (status < 0) mlog_errno(status); } status = ocfs2_journal_toggle_dirty(osb, 1, replayed); if (status < 0) { mlog_errno(status); goto done; } /* Launch the commit thread */ if (!local) { osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt-%s", osb->uuid_str); if (IS_ERR(osb->commit_task)) { status = PTR_ERR(osb->commit_task); osb->commit_task = NULL; mlog(ML_ERROR, "unable to launch ocfs2commit thread, " "error=%d", status); goto done; } } else osb->commit_task = NULL; done: return status; } /* 'full' flag tells us whether we clear out all blocks or if we just * mark the journal clean */ int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) { int status; BUG_ON(!journal); status = jbd2_journal_wipe(journal->j_journal, full); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); if (status < 0) mlog_errno(status); bail: return status; } static int ocfs2_recovery_completed(struct ocfs2_super *osb) { int empty; struct ocfs2_recovery_map *rm = osb->recovery_map; spin_lock(&osb->osb_lock); empty = (rm->rm_used == 0); spin_unlock(&osb->osb_lock); return empty; } void ocfs2_wait_for_recovery(struct ocfs2_super *osb) { wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); } /* * JBD Might read a cached version of another nodes journal file. We * don't want this as this file changes often and we get no * notification on those changes. The only way to be sure that we've * got the most up to date version of those blocks then is to force * read them off disk. Just searching through the buffer cache won't * work as there may be pages backing this file which are still marked * up to date. We know things can't change on this file underneath us * as we have the lock by now :) */ static int ocfs2_force_read_journal(struct inode *inode) { int status = 0; int i; u64 v_blkno, p_blkno, p_blocks, num_blocks; struct buffer_head *bh = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); v_blkno = 0; while (v_blkno < num_blocks) { status = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, &p_blocks, NULL); if (status < 0) { mlog_errno(status); goto bail; } for (i = 0; i < p_blocks; i++, p_blkno++) { bh = __find_get_block(osb->sb->s_bdev, p_blkno, osb->sb->s_blocksize); /* block not cached. */ if (!bh) continue; brelse(bh); bh = NULL; /* We are reading journal data which should not * be put in the uptodate cache. */ status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); if (status < 0) { mlog_errno(status); goto bail; } brelse(bh); bh = NULL; } v_blkno += p_blocks; } bail: return status; } struct ocfs2_la_recovery_item { struct list_head lri_list; int lri_slot; struct ocfs2_dinode *lri_la_dinode; struct ocfs2_dinode *lri_tl_dinode; struct ocfs2_quota_recovery *lri_qrec; enum ocfs2_orphan_reco_type lri_orphan_reco_type; }; /* Does the second half of the recovery process. By this point, the * node is marked clean and can actually be considered recovered, * hence it's no longer in the recovery map, but there's still some * cleanup we can do which shouldn't happen within the recovery thread * as locking in that context becomes very difficult if we are to take * recovering nodes into account. * * NOTE: This function can and will sleep on recovery of other nodes * during cluster locking, just like any other ocfs2 process. */ void ocfs2_complete_recovery(struct work_struct *work) { int ret = 0; struct ocfs2_journal *journal = container_of(work, struct ocfs2_journal, j_recovery_work); struct ocfs2_super *osb = journal->j_osb; struct ocfs2_dinode *la_dinode, *tl_dinode; struct ocfs2_la_recovery_item *item, *n; struct ocfs2_quota_recovery *qrec; enum ocfs2_orphan_reco_type orphan_reco_type; LIST_HEAD(tmp_la_list); trace_ocfs2_complete_recovery( (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); spin_lock(&journal->j_lock); list_splice_init(&journal->j_la_cleanups, &tmp_la_list); spin_unlock(&journal->j_lock); list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { list_del_init(&item->lri_list); ocfs2_wait_on_quotas(osb); la_dinode = item->lri_la_dinode; tl_dinode = item->lri_tl_dinode; qrec = item->lri_qrec; orphan_reco_type = item->lri_orphan_reco_type; trace_ocfs2_complete_recovery_slot(item->lri_slot, la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, qrec); if (la_dinode) { ret = ocfs2_complete_local_alloc_recovery(osb, la_dinode); if (ret < 0) mlog_errno(ret); kfree(la_dinode); } if (tl_dinode) { ret = ocfs2_complete_truncate_log_recovery(osb, tl_dinode); if (ret < 0) mlog_errno(ret); kfree(tl_dinode); } ret = ocfs2_recover_orphans(osb, item->lri_slot, orphan_reco_type); if (ret < 0) mlog_errno(ret); if (qrec) { ret = ocfs2_finish_quota_recovery(osb, qrec, item->lri_slot); if (ret < 0) mlog_errno(ret); /* Recovery info is already freed now */ } kfree(item); } trace_ocfs2_complete_recovery_end(ret); } /* NOTE: This function always eats your references to la_dinode and * tl_dinode, either manually on error, or by passing them to * ocfs2_complete_recovery */ static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, int slot_num, struct ocfs2_dinode *la_dinode, struct ocfs2_dinode *tl_dinode, struct ocfs2_quota_recovery *qrec, enum ocfs2_orphan_reco_type orphan_reco_type) { struct ocfs2_la_recovery_item *item; item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); if (!item) { /* Though we wish to avoid it, we are in fact safe in * skipping local alloc cleanup as fsck.ocfs2 is more * than capable of reclaiming unused space. */ kfree(la_dinode); kfree(tl_dinode); if (qrec) ocfs2_free_quota_recovery(qrec); mlog_errno(-ENOMEM); return; } INIT_LIST_HEAD(&item->lri_list); item->lri_la_dinode = la_dinode; item->lri_slot = slot_num; item->lri_tl_dinode = tl_dinode; item->lri_qrec = qrec; item->lri_orphan_reco_type = orphan_reco_type; spin_lock(&journal->j_lock); list_add_tail(&item->lri_list, &journal->j_la_cleanups); queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); spin_unlock(&journal->j_lock); } /* Called by the mount code to queue recovery the last part of * recovery for it's own and offline slot(s). */ void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) { struct ocfs2_journal *journal = osb->journal; if (ocfs2_is_hard_readonly(osb)) return; /* No need to queue up our truncate_log as regular cleanup will catch * that */ ocfs2_queue_recovery_completion(journal, osb->slot_num, osb->local_alloc_copy, NULL, NULL, ORPHAN_NEED_TRUNCATE); ocfs2_schedule_truncate_log_flush(osb, 0); osb->local_alloc_copy = NULL; /* queue to recover orphan slots for all offline slots */ ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); ocfs2_free_replay_slots(osb); } void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) { if (osb->quota_rec) { ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, NULL, osb->quota_rec, ORPHAN_NEED_TRUNCATE); osb->quota_rec = NULL; } } static int __ocfs2_recovery_thread(void *arg) { int status, node_num, slot_num; struct ocfs2_super *osb = arg; struct ocfs2_recovery_map *rm = osb->recovery_map; int *rm_quota = NULL; int rm_quota_used = 0, i; struct ocfs2_quota_recovery *qrec; /* Whether the quota supported. */ int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA) || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); status = ocfs2_wait_on_mount(osb); if (status < 0) { goto bail; } if (quota_enabled) { rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); if (!rm_quota) { status = -ENOMEM; goto bail; } } restart: status = ocfs2_super_lock(osb, 1); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_compute_replay_slots(osb); if (status < 0) mlog_errno(status); /* queue recovery for our own slot */ ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); spin_lock(&osb->osb_lock); while (rm->rm_used) { /* It's always safe to remove entry zero, as we won't * clear it until ocfs2_recover_node() has succeeded. */ node_num = rm->rm_entries[0]; spin_unlock(&osb->osb_lock); slot_num = ocfs2_node_num_to_slot(osb, node_num); trace_ocfs2_recovery_thread_node(node_num, slot_num); if (slot_num == -ENOENT) { status = 0; goto skip_recovery; } /* It is a bit subtle with quota recovery. We cannot do it * immediately because we have to obtain cluster locks from * quota files and we also don't want to just skip it because * then quota usage would be out of sync until some node takes * the slot. So we remember which nodes need quota recovery * and when everything else is done, we recover quotas. */ if (quota_enabled) { for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++) ; if (i == rm_quota_used) rm_quota[rm_quota_used++] = slot_num; } status = ocfs2_recover_node(osb, node_num, slot_num); skip_recovery: if (!status) { ocfs2_recovery_map_clear(osb, node_num); } else { mlog(ML_ERROR, "Error %d recovering node %d on device (%u,%u)!\n", status, node_num, MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); mlog(ML_ERROR, "Volume requires unmount.\n"); } spin_lock(&osb->osb_lock); } spin_unlock(&osb->osb_lock); trace_ocfs2_recovery_thread_end(status); /* Refresh all journal recovery generations from disk */ status = ocfs2_check_journals_nolocks(osb); status = (status == -EROFS) ? 0 : status; if (status < 0) mlog_errno(status); /* Now it is right time to recover quotas... We have to do this under * superblock lock so that no one can start using the slot (and crash) * before we recover it */ if (quota_enabled) { for (i = 0; i < rm_quota_used; i++) { qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); if (IS_ERR(qrec)) { status = PTR_ERR(qrec); mlog_errno(status); continue; } ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], NULL, NULL, qrec, ORPHAN_NEED_TRUNCATE); } } ocfs2_super_unlock(osb, 1); /* queue recovery for offline slots */ ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); bail: mutex_lock(&osb->recovery_lock); if (!status && !ocfs2_recovery_completed(osb)) { mutex_unlock(&osb->recovery_lock); goto restart; } ocfs2_free_replay_slots(osb); osb->recovery_thread_task = NULL; mb(); /* sync with ocfs2_recovery_thread_running */ wake_up(&osb->recovery_event); mutex_unlock(&osb->recovery_lock); if (quota_enabled) kfree(rm_quota); return status; } void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) { mutex_lock(&osb->recovery_lock); trace_ocfs2_recovery_thread(node_num, osb->node_num, osb->disable_recovery, osb->recovery_thread_task, osb->disable_recovery ? -1 : ocfs2_recovery_map_set(osb, node_num)); if (osb->disable_recovery) goto out; if (osb->recovery_thread_task) goto out; osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, "ocfs2rec-%s", osb->uuid_str); if (IS_ERR(osb->recovery_thread_task)) { mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); osb->recovery_thread_task = NULL; } out: mutex_unlock(&osb->recovery_lock); wake_up(&osb->recovery_event); } static int ocfs2_read_journal_inode(struct ocfs2_super *osb, int slot_num, struct buffer_head **bh, struct inode **ret_inode) { int status = -EACCES; struct inode *inode = NULL; BUG_ON(slot_num >= osb->max_slots); inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot_num); if (!inode || is_bad_inode(inode)) { mlog_errno(status); goto bail; } SET_INODE_JOURNAL(inode); status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); if (status < 0) { mlog_errno(status); goto bail; } status = 0; bail: if (inode) { if (status || !ret_inode) iput(inode); else *ret_inode = inode; } return status; } /* Does the actual journal replay and marks the journal inode as * clean. Will only replay if the journal inode is marked dirty. */ static int ocfs2_replay_journal(struct ocfs2_super *osb, int node_num, int slot_num) { int status; int got_lock = 0; unsigned int flags; struct inode *inode = NULL; struct ocfs2_dinode *fe; journal_t *journal = NULL; struct buffer_head *bh = NULL; u32 slot_reco_gen; status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); if (status) { mlog_errno(status); goto done; } fe = (struct ocfs2_dinode *)bh->b_data; slot_reco_gen = ocfs2_get_recovery_generation(fe); brelse(bh); bh = NULL; /* * As the fs recovery is asynchronous, there is a small chance that * another node mounted (and recovered) the slot before the recovery * thread could get the lock. To handle that, we dirty read the journal * inode for that slot to get the recovery generation. If it is * different than what we expected, the slot has been recovered. * If not, it needs recovery. */ if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { trace_ocfs2_replay_journal_recovered(slot_num, osb->slot_recovery_generations[slot_num], slot_reco_gen); osb->slot_recovery_generations[slot_num] = slot_reco_gen; status = -EBUSY; goto done; } /* Continue with recovery as the journal has not yet been recovered */ status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); if (status < 0) { trace_ocfs2_replay_journal_lock_err(status); if (status != -ERESTARTSYS) mlog(ML_ERROR, "Could not lock journal!\n"); goto done; } got_lock = 1; fe = (struct ocfs2_dinode *) bh->b_data; flags = le32_to_cpu(fe->id1.journal1.ij_flags); slot_reco_gen = ocfs2_get_recovery_generation(fe); if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { trace_ocfs2_replay_journal_skip(node_num); /* Refresh recovery generation for the slot */ osb->slot_recovery_generations[slot_num] = slot_reco_gen; goto done; } /* we need to run complete recovery for offline orphan slots */ ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); status = ocfs2_force_read_journal(inode); if (status < 0) { mlog_errno(status); goto done; } journal = jbd2_journal_init_inode(inode); if (IS_ERR(journal)) { mlog(ML_ERROR, "Linux journal layer error\n"); status = PTR_ERR(journal); goto done; } status = jbd2_journal_load(journal); if (status < 0) { mlog_errno(status); BUG_ON(!igrab(inode)); jbd2_journal_destroy(journal); goto done; } ocfs2_clear_journal_error(osb->sb, journal, slot_num); /* wipe the journal */ jbd2_journal_lock_updates(journal); status = jbd2_journal_flush(journal, 0); jbd2_journal_unlock_updates(journal); if (status < 0) mlog_errno(status); /* This will mark the node clean */ flags = le32_to_cpu(fe->id1.journal1.ij_flags); flags &= ~OCFS2_JOURNAL_DIRTY_FL; fe->id1.journal1.ij_flags = cpu_to_le32(flags); /* Increment recovery generation to indicate successful recovery */ ocfs2_bump_recovery_generation(fe); osb->slot_recovery_generations[slot_num] = ocfs2_get_recovery_generation(fe); ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); if (status < 0) mlog_errno(status); BUG_ON(!igrab(inode)); jbd2_journal_destroy(journal); printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); done: /* drop the lock on this nodes journal */ if (got_lock) ocfs2_inode_unlock(inode, 1); iput(inode); brelse(bh); return status; } /* * Do the most important parts of node recovery: * - Replay it's journal * - Stamp a clean local allocator file * - Stamp a clean truncate log * - Mark the node clean * * If this function completes without error, a node in OCFS2 can be * said to have been safely recovered. As a result, failure during the * second part of a nodes recovery process (local alloc recovery) is * far less concerning. */ static int ocfs2_recover_node(struct ocfs2_super *osb, int node_num, int slot_num) { int status = 0; struct ocfs2_dinode *la_copy = NULL; struct ocfs2_dinode *tl_copy = NULL; trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); /* Should not ever be called to recover ourselves -- in that * case we should've called ocfs2_journal_load instead. */ BUG_ON(osb->node_num == node_num); status = ocfs2_replay_journal(osb, node_num, slot_num); if (status < 0) { if (status == -EBUSY) { trace_ocfs2_recover_node_skip(slot_num, node_num); status = 0; goto done; } mlog_errno(status); goto done; } /* Stamp a clean local alloc file AFTER recovering the journal... */ status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); if (status < 0) { mlog_errno(status); goto done; } /* An error from begin_truncate_log_recovery is not * serious enough to warrant halting the rest of * recovery. */ status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); if (status < 0) mlog_errno(status); /* Likewise, this would be a strange but ultimately not so * harmful place to get an error... */ status = ocfs2_clear_slot(osb, slot_num); if (status < 0) mlog_errno(status); /* This will kfree the memory pointed to by la_copy and tl_copy */ ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, tl_copy, NULL, ORPHAN_NEED_TRUNCATE); status = 0; done: return status; } /* Test node liveness by trylocking his journal. If we get the lock, * we drop it here. Return 0 if we got the lock, -EAGAIN if node is * still alive (we couldn't get the lock) and < 0 on error. */ static int ocfs2_trylock_journal(struct ocfs2_super *osb, int slot_num) { int status, flags; struct inode *inode = NULL; inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot_num); if (inode == NULL) { mlog(ML_ERROR, "access error\n"); status = -EACCES; goto bail; } if (is_bad_inode(inode)) { mlog(ML_ERROR, "access error (bad inode)\n"); iput(inode); inode = NULL; status = -EACCES; goto bail; } SET_INODE_JOURNAL(inode); flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; status = ocfs2_inode_lock_full(inode, NULL, 1, flags); if (status < 0) { if (status != -EAGAIN) mlog_errno(status); goto bail; } ocfs2_inode_unlock(inode, 1); bail: iput(inode); return status; } /* Call this underneath ocfs2_super_lock. It also assumes that the * slot info struct has been updated from disk. */ int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) { unsigned int node_num; int status, i; u32 gen; struct buffer_head *bh = NULL; struct ocfs2_dinode *di; /* This is called with the super block cluster lock, so we * know that the slot map can't change underneath us. */ for (i = 0; i < osb->max_slots; i++) { /* Read journal inode to get the recovery generation */ status = ocfs2_read_journal_inode(osb, i, &bh, NULL); if (status) { mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *)bh->b_data; gen = ocfs2_get_recovery_generation(di); brelse(bh); bh = NULL; spin_lock(&osb->osb_lock); osb->slot_recovery_generations[i] = gen; trace_ocfs2_mark_dead_nodes(i, osb->slot_recovery_generations[i]); if (i == osb->slot_num) { spin_unlock(&osb->osb_lock); continue; } status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); if (status == -ENOENT) { spin_unlock(&osb->osb_lock); continue; } if (__ocfs2_recovery_map_test(osb, node_num)) { spin_unlock(&osb->osb_lock); continue; } spin_unlock(&osb->osb_lock); /* Ok, we have a slot occupied by another node which * is not in the recovery map. We trylock his journal * file here to test if he's alive. */ status = ocfs2_trylock_journal(osb, i); if (!status) { /* Since we're called from mount, we know that * the recovery thread can't race us on * setting / checking the recovery bits. */ ocfs2_recovery_thread(osb, node_num); } else if ((status < 0) && (status != -EAGAIN)) { mlog_errno(status); goto bail; } } status = 0; bail: return status; } /* * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some * randomness to the timeout to minimize multple nodes firing the timer at the * same time. */ static inline unsigned long ocfs2_orphan_scan_timeout(void) { unsigned long time; get_random_bytes(&time, sizeof(time)); time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); return msecs_to_jiffies(time); } /* * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This * is done to catch any orphans that are left over in orphan directories. * * It scans all slots, even ones that are in use. It does so to handle the * case described below: * * Node 1 has an inode it was using. The dentry went away due to memory * pressure. Node 1 closes the inode, but it's on the free list. The node * has the open lock. * Node 2 unlinks the inode. It grabs the dentry lock to notify others, * but node 1 has no dentry and doesn't get the message. It trylocks the * open lock, sees that another node has a PR, and does nothing. * Later node 2 runs its orphan dir. It igets the inode, trylocks the * open lock, sees the PR still, and does nothing. * Basically, we have to trigger an orphan iput on node 1. The only way * for this to happen is if node 1 runs node 2's orphan dir. * * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT * seconds. It gets an EX lock on os_lockres and checks sequence number * stored in LVB. If the sequence number has changed, it means some other * node has done the scan. This node skips the scan and tracks the * sequence number. If the sequence number didn't change, it means a scan * hasn't happened. The node queues a scan and increments the * sequence number in the LVB. */ static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) { struct ocfs2_orphan_scan *os; int status, i; u32 seqno = 0; os = &osb->osb_orphan_scan; if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) goto out; trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, atomic_read(&os->os_state)); status = ocfs2_orphan_scan_lock(osb, &seqno); if (status < 0) { if (status != -EAGAIN) mlog_errno(status); goto out; } /* Do no queue the tasks if the volume is being umounted */ if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) goto unlock; if (os->os_seqno != seqno) { os->os_seqno = seqno; goto unlock; } for (i = 0; i < osb->max_slots; i++) ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); /* * We queued a recovery on orphan slots, increment the sequence * number and update LVB so other node will skip the scan for a while */ seqno++; os->os_count++; os->os_scantime = ktime_get_seconds(); unlock: ocfs2_orphan_scan_unlock(osb, seqno); out: trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, atomic_read(&os->os_state)); return; } /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ static void ocfs2_orphan_scan_work(struct work_struct *work) { struct ocfs2_orphan_scan *os; struct ocfs2_super *osb; os = container_of(work, struct ocfs2_orphan_scan, os_orphan_scan_work.work); osb = os->os_osb; mutex_lock(&os->os_lock); ocfs2_queue_orphan_scan(osb); if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, ocfs2_orphan_scan_timeout()); mutex_unlock(&os->os_lock); } void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) { struct ocfs2_orphan_scan *os; os = &osb->osb_orphan_scan; if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); mutex_lock(&os->os_lock); cancel_delayed_work(&os->os_orphan_scan_work); mutex_unlock(&os->os_lock); } } void ocfs2_orphan_scan_init(struct ocfs2_super *osb) { struct ocfs2_orphan_scan *os; os = &osb->osb_orphan_scan; os->os_osb = osb; os->os_count = 0; os->os_seqno = 0; mutex_init(&os->os_lock); INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); } void ocfs2_orphan_scan_start(struct ocfs2_super *osb) { struct ocfs2_orphan_scan *os; os = &osb->osb_orphan_scan; os->os_scantime = ktime_get_seconds(); if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); else { atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, ocfs2_orphan_scan_timeout()); } } struct ocfs2_orphan_filldir_priv { struct dir_context ctx; struct inode *head; struct ocfs2_super *osb; enum ocfs2_orphan_reco_type orphan_reco_type; }; static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, int name_len, loff_t pos, u64 ino, unsigned type) { struct ocfs2_orphan_filldir_priv *p = container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); struct inode *iter; if (name_len == 1 && !strncmp(".", name, 1)) return true; if (name_len == 2 && !strncmp("..", name, 2)) return true; /* do not include dio entry in case of orphan scan */ if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, OCFS2_DIO_ORPHAN_PREFIX_LEN))) return true; /* Skip bad inodes so that recovery can continue */ iter = ocfs2_iget(p->osb, ino, OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); if (IS_ERR(iter)) return true; if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, OCFS2_DIO_ORPHAN_PREFIX_LEN)) OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; /* Skip inodes which are already added to recover list, since dio may * happen concurrently with unlink/rename */ if (OCFS2_I(iter)->ip_next_orphan) { iput(iter); return true; } trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); /* No locking is required for the next_orphan queue as there * is only ever a single process doing orphan recovery. */ OCFS2_I(iter)->ip_next_orphan = p->head; p->head = iter; return true; } static int ocfs2_queue_orphans(struct ocfs2_super *osb, int slot, struct inode **head, enum ocfs2_orphan_reco_type orphan_reco_type) { int status; struct inode *orphan_dir_inode = NULL; struct ocfs2_orphan_filldir_priv priv = { .ctx.actor = ocfs2_orphan_filldir, .osb = osb, .head = *head, .orphan_reco_type = orphan_reco_type }; orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, slot); if (!orphan_dir_inode) { status = -ENOENT; mlog_errno(status); return status; } inode_lock(orphan_dir_inode); status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); if (status) { mlog_errno(status); goto out_cluster; } *head = priv.head; out_cluster: ocfs2_inode_unlock(orphan_dir_inode, 0); out: inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); return status; } static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, int slot) { int ret; spin_lock(&osb->osb_lock); ret = !osb->osb_orphan_wipes[slot]; spin_unlock(&osb->osb_lock); return ret; } static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, int slot) { spin_lock(&osb->osb_lock); /* Mark ourselves such that new processes in delete_inode() * know to quit early. */ ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); while (osb->osb_orphan_wipes[slot]) { /* If any processes are already in the middle of an * orphan wipe on this dir, then we need to wait for * them. */ spin_unlock(&osb->osb_lock); wait_event_interruptible(osb->osb_wipe_event, ocfs2_orphan_recovery_can_continue(osb, slot)); spin_lock(&osb->osb_lock); } spin_unlock(&osb->osb_lock); } static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, int slot) { ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); } /* * Orphan recovery. Each mounted node has it's own orphan dir which we * must run during recovery. Our strategy here is to build a list of * the inodes in the orphan dir and iget/iput them. The VFS does * (most) of the rest of the work. * * Orphan recovery can happen at any time, not just mount so we have a * couple of extra considerations. * * - We grab as many inodes as we can under the orphan dir lock - * doing iget() outside the orphan dir risks getting a reference on * an invalid inode. * - We must be sure not to deadlock with other processes on the * system wanting to run delete_inode(). This can happen when they go * to lock the orphan dir and the orphan recovery process attempts to * iget() inside the orphan dir lock. This can be avoided by * advertising our state to ocfs2_delete_inode(). */ static int ocfs2_recover_orphans(struct ocfs2_super *osb, int slot, enum ocfs2_orphan_reco_type orphan_reco_type) { int ret = 0; struct inode *inode = NULL; struct inode *iter; struct ocfs2_inode_info *oi; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di = NULL; trace_ocfs2_recover_orphans(slot); ocfs2_mark_recovering_orphan_dir(osb, slot); ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); ocfs2_clear_recovering_orphan_dir(osb, slot); /* Error here should be noted, but we want to continue with as * many queued inodes as we've got. */ if (ret) mlog_errno(ret); while (inode) { oi = OCFS2_I(inode); trace_ocfs2_recover_orphans_iput( (unsigned long long)oi->ip_blkno); iter = oi->ip_next_orphan; oi->ip_next_orphan = NULL; if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { inode_lock(inode); ret = ocfs2_rw_lock(inode, 1); if (ret < 0) { mlog_errno(ret); goto unlock_mutex; } /* * We need to take and drop the inode lock to * force read inode from disk. */ ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto unlock_rw; } di = (struct ocfs2_dinode *)di_bh->b_data; if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { ret = ocfs2_truncate_file(inode, di_bh, i_size_read(inode)); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto unlock_inode; } ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0); if (ret) mlog_errno(ret); } unlock_inode: ocfs2_inode_unlock(inode, 1); brelse(di_bh); di_bh = NULL; unlock_rw: ocfs2_rw_unlock(inode, 1); unlock_mutex: inode_unlock(inode); /* clear dio flag in ocfs2_inode_info */ oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; } else { spin_lock(&oi->ip_lock); /* Set the proper information to get us going into * ocfs2_delete_inode. */ oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; spin_unlock(&oi->ip_lock); } iput(inode); inode = iter; } return ret; } static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) { /* This check is good because ocfs2 will wait on our recovery * thread before changing it to something other than MOUNTED * or DISABLED. */ wait_event(osb->osb_mount_event, (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || atomic_read(&osb->vol_state) == VOLUME_DISABLED); /* If there's an error on mount, then we may never get to the * MOUNTED flag, but this is set right before * dismount_volume() so we can trust it. */ if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { trace_ocfs2_wait_on_mount(VOLUME_DISABLED); mlog(0, "mount error, exiting!\n"); return -EBUSY; } return 0; } static int ocfs2_commit_thread(void *arg) { int status; struct ocfs2_super *osb = arg; struct ocfs2_journal *journal = osb->journal; /* we can trust j_num_trans here because _should_stop() is only set in * shutdown and nobody other than ourselves should be able to start * transactions. committing on shutdown might take a few iterations * as final transactions put deleted inodes on the list */ while (!(kthread_should_stop() && atomic_read(&journal->j_num_trans) == 0)) { wait_event_interruptible(osb->checkpoint_event, atomic_read(&journal->j_num_trans) || kthread_should_stop()); status = ocfs2_commit_cache(osb); if (status < 0) { static unsigned long abort_warn_time; /* Warn about this once per minute */ if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) mlog(ML_ERROR, "status = %d, journal is " "already aborted.\n", status); /* * After ocfs2_commit_cache() fails, j_num_trans has a * non-zero value. Sleep here to avoid a busy-wait * loop. */ msleep_interruptible(1000); } if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ mlog(ML_KTHREAD, "commit_thread: %u transactions pending on " "shutdown\n", atomic_read(&journal->j_num_trans)); } } return 0; } /* Reads all the journal inodes without taking any cluster locks. Used * for hard readonly access to determine whether any journal requires * recovery. Also used to refresh the recovery generation numbers after * a journal has been recovered by another node. */ int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) { int ret = 0; unsigned int slot; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; int journal_dirty = 0; for(slot = 0; slot < osb->max_slots; slot++) { ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); if (ret) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *) di_bh->b_data; osb->slot_recovery_generations[slot] = ocfs2_get_recovery_generation(di); if (le32_to_cpu(di->id1.journal1.ij_flags) & OCFS2_JOURNAL_DIRTY_FL) journal_dirty = 1; brelse(di_bh); di_bh = NULL; } out: if (journal_dirty) ret = -EROFS; return ret; }
linux-master
fs/ocfs2/journal.c
// SPDX-License-Identifier: GPL-2.0-only /* * move_extents.c * * Copyright (C) 2011 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/mount.h> #include <linux/swap.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "ocfs2_ioctl.h" #include "alloc.h" #include "localalloc.h" #include "aops.h" #include "dlmglue.h" #include "extent_map.h" #include "inode.h" #include "journal.h" #include "suballoc.h" #include "uptodate.h" #include "super.h" #include "dir.h" #include "buffer_head_io.h" #include "sysfile.h" #include "refcounttree.h" #include "move_extents.h" struct ocfs2_move_extents_context { struct inode *inode; struct file *file; int auto_defrag; int partial; int credits; u32 new_phys_cpos; u32 clusters_moved; u64 refcount_loc; struct ocfs2_move_extents *range; struct ocfs2_extent_tree et; struct ocfs2_alloc_context *meta_ac; struct ocfs2_alloc_context *data_ac; struct ocfs2_cached_dealloc_ctxt dealloc; }; static int __ocfs2_move_extent(handle_t *handle, struct ocfs2_move_extents_context *context, u32 cpos, u32 len, u32 p_cpos, u32 new_p_cpos, int ext_flags) { int ret = 0, index; struct inode *inode = context->inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_rec *rec, replace_rec; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el; u64 ino = ocfs2_metadata_cache_owner(context->et.et_ci); u64 old_blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cpos); ret = ocfs2_duplicate_clusters_by_page(handle, inode, cpos, p_cpos, new_p_cpos, len); if (ret) { mlog_errno(ret); goto out; } memset(&replace_rec, 0, sizeof(replace_rec)); replace_rec.e_cpos = cpu_to_le32(cpos); replace_rec.e_leaf_clusters = cpu_to_le16(len); replace_rec.e_blkno = cpu_to_le64(ocfs2_clusters_to_blocks(inode->i_sb, new_p_cpos)); path = ocfs2_new_path_from_et(&context->et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(INODE_CACHE(inode), path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); index = ocfs2_search_extent_list(el, cpos); if (index == -1) { ret = ocfs2_error(inode->i_sb, "Inode %llu has an extent at cpos %u which can no longer be found\n", (unsigned long long)ino, cpos); goto out; } rec = &el->l_recs[index]; BUG_ON(ext_flags != rec->e_flags); /* * after moving/defraging to new location, the extent is not going * to be refcounted anymore. */ replace_rec.e_flags = ext_flags & ~OCFS2_EXT_REFCOUNTED; ret = ocfs2_split_extent(handle, &context->et, path, index, &replace_rec, context->meta_ac, &context->dealloc); if (ret) { mlog_errno(ret); goto out; } context->new_phys_cpos = new_p_cpos; /* * need I to append truncate log for old clusters? */ if (old_blkno) { if (ext_flags & OCFS2_EXT_REFCOUNTED) ret = ocfs2_decrease_refcount(inode, handle, ocfs2_blocks_to_clusters(osb->sb, old_blkno), len, context->meta_ac, &context->dealloc, 1); else ret = ocfs2_truncate_log_append(osb, handle, old_blkno, len); } ocfs2_update_inode_fsync_trans(handle, inode, 0); out: ocfs2_free_path(path); return ret; } /* * lock allocator, and reserve appropriate number of bits for * meta blocks. */ static int ocfs2_lock_meta_allocator_move_extents(struct inode *inode, struct ocfs2_extent_tree *et, u32 clusters_to_move, u32 extents_to_split, struct ocfs2_alloc_context **meta_ac, int extra_blocks, int *credits) { int ret, num_free_extents; unsigned int max_recs_needed = 2 * extents_to_split + clusters_to_move; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); num_free_extents = ocfs2_num_free_extents(et); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } if (!num_free_extents || (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, meta_ac); if (ret) { mlog_errno(ret); goto out; } *credits += ocfs2_calc_extend_credits(osb->sb, et->et_root_el); mlog(0, "reserve metadata_blocks: %d, data_clusters: %u, credits: %d\n", extra_blocks, clusters_to_move, *credits); out: if (ret) { if (*meta_ac) { ocfs2_free_alloc_context(*meta_ac); *meta_ac = NULL; } } return ret; } /* * Using one journal handle to guarantee the data consistency in case * crash happens anywhere. * * XXX: defrag can end up with finishing partial extent as requested, * due to not enough contiguous clusters can be found in allocator. */ static int ocfs2_defrag_extent(struct ocfs2_move_extents_context *context, u32 cpos, u32 phys_cpos, u32 *len, int ext_flags) { int ret, credits = 0, extra_blocks = 0, partial = context->partial; handle_t *handle; struct inode *inode = context->inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_refcount_tree *ref_tree = NULL; u32 new_phys_cpos, new_len; u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); int need_free = 0; if ((ext_flags & OCFS2_EXT_REFCOUNTED) && *len) { BUG_ON(!ocfs2_is_refcount_inode(inode)); BUG_ON(!context->refcount_loc); ret = ocfs2_lock_refcount_tree(osb, context->refcount_loc, 1, &ref_tree, NULL); if (ret) { mlog_errno(ret); return ret; } ret = ocfs2_prepare_refcount_change_for_del(inode, context->refcount_loc, phys_blkno, *len, &credits, &extra_blocks); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_lock_meta_allocator_move_extents(inode, &context->et, *len, 1, &context->meta_ac, extra_blocks, &credits); if (ret) { mlog_errno(ret); goto out; } /* * should be using allocation reservation strategy there? * * if (context->data_ac) * context->data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; */ inode_lock(tl_inode); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); goto out_unlock_mutex; } } /* * Make sure ocfs2_reserve_cluster is called after * __ocfs2_flush_truncate_log, otherwise, dead lock may happen. * * If ocfs2_reserve_cluster is called * before __ocfs2_flush_truncate_log, dead lock on global bitmap * may happen. * */ ret = ocfs2_reserve_clusters(osb, *len, &context->data_ac); if (ret) { mlog_errno(ret); goto out_unlock_mutex; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock_mutex; } ret = __ocfs2_claim_clusters(handle, context->data_ac, 1, *len, &new_phys_cpos, &new_len); if (ret) { mlog_errno(ret); goto out_commit; } /* * allowing partial extent moving is kind of 'pros and cons', it makes * whole defragmentation less likely to fail, on the contrary, the bad * thing is it may make the fs even more fragmented after moving, let * userspace make a good decision here. */ if (new_len != *len) { mlog(0, "len_claimed: %u, len: %u\n", new_len, *len); if (!partial) { context->range->me_flags &= ~OCFS2_MOVE_EXT_FL_COMPLETE; ret = -ENOSPC; need_free = 1; goto out_commit; } } mlog(0, "cpos: %u, phys_cpos: %u, new_phys_cpos: %u\n", cpos, phys_cpos, new_phys_cpos); ret = __ocfs2_move_extent(handle, context, cpos, new_len, phys_cpos, new_phys_cpos, ext_flags); if (ret) mlog_errno(ret); if (partial && (new_len != *len)) *len = new_len; /* * Here we should write the new page out first if we are * in write-back mode. */ ret = ocfs2_cow_sync_writeback(inode->i_sb, context->inode, cpos, *len); if (ret) mlog_errno(ret); out_commit: if (need_free && context->data_ac) { struct ocfs2_alloc_context *data_ac = context->data_ac; if (context->data_ac->ac_which == OCFS2_AC_USE_LOCAL) ocfs2_free_local_alloc_bits(osb, handle, data_ac, new_phys_cpos, new_len); else ocfs2_free_clusters(handle, data_ac->ac_inode, data_ac->ac_bh, ocfs2_clusters_to_blocks(osb->sb, new_phys_cpos), new_len); } ocfs2_commit_trans(osb, handle); out_unlock_mutex: inode_unlock(tl_inode); if (context->data_ac) { ocfs2_free_alloc_context(context->data_ac); context->data_ac = NULL; } if (context->meta_ac) { ocfs2_free_alloc_context(context->meta_ac); context->meta_ac = NULL; } out: if (ref_tree) ocfs2_unlock_refcount_tree(osb, ref_tree, 1); return ret; } /* * find the victim alloc group, where #blkno fits. */ static int ocfs2_find_victim_alloc_group(struct inode *inode, u64 vict_blkno, int type, int slot, int *vict_bit, struct buffer_head **ret_bh) { int ret, i, bits_per_unit = 0; u64 blkno; char namebuf[40]; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *ac_bh = NULL, *gd_bh = NULL; struct ocfs2_chain_list *cl; struct ocfs2_chain_rec *rec; struct ocfs2_dinode *ac_dinode; struct ocfs2_group_desc *bg; ocfs2_sprintf_system_inode_name(namebuf, sizeof(namebuf), type, slot); ret = ocfs2_lookup_ino_from_name(osb->sys_root_inode, namebuf, strlen(namebuf), &blkno); if (ret) { ret = -ENOENT; goto out; } ret = ocfs2_read_blocks_sync(osb, blkno, 1, &ac_bh); if (ret) { mlog_errno(ret); goto out; } ac_dinode = (struct ocfs2_dinode *)ac_bh->b_data; cl = &(ac_dinode->id2.i_chain); rec = &(cl->cl_recs[0]); if (type == GLOBAL_BITMAP_SYSTEM_INODE) bits_per_unit = osb->s_clustersize_bits - inode->i_sb->s_blocksize_bits; /* * 'vict_blkno' was out of the valid range. */ if ((vict_blkno < le64_to_cpu(rec->c_blkno)) || (vict_blkno >= ((u64)le32_to_cpu(ac_dinode->id1.bitmap1.i_total) << bits_per_unit))) { ret = -EINVAL; goto out; } for (i = 0; i < le16_to_cpu(cl->cl_next_free_rec); i++) { rec = &(cl->cl_recs[i]); if (!rec) continue; bg = NULL; do { if (!bg) blkno = le64_to_cpu(rec->c_blkno); else blkno = le64_to_cpu(bg->bg_next_group); if (gd_bh) { brelse(gd_bh); gd_bh = NULL; } ret = ocfs2_read_blocks_sync(osb, blkno, 1, &gd_bh); if (ret) { mlog_errno(ret); goto out; } bg = (struct ocfs2_group_desc *)gd_bh->b_data; if (vict_blkno < (le64_to_cpu(bg->bg_blkno) + (le16_to_cpu(bg->bg_bits) << bits_per_unit))) { *ret_bh = gd_bh; *vict_bit = (vict_blkno - blkno) >> bits_per_unit; mlog(0, "find the victim group: #%llu, " "total_bits: %u, vict_bit: %u\n", blkno, le16_to_cpu(bg->bg_bits), *vict_bit); goto out; } } while (le64_to_cpu(bg->bg_next_group)); } ret = -EINVAL; out: brelse(ac_bh); /* * caller has to release the gd_bh properly. */ return ret; } /* * XXX: helper to validate and adjust moving goal. */ static int ocfs2_validate_and_adjust_move_goal(struct inode *inode, struct ocfs2_move_extents *range) { int ret, goal_bit = 0; struct buffer_head *gd_bh = NULL; struct ocfs2_group_desc *bg; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int c_to_b = 1 << (osb->s_clustersize_bits - inode->i_sb->s_blocksize_bits); /* * make goal become cluster aligned. */ range->me_goal = ocfs2_block_to_cluster_start(inode->i_sb, range->me_goal); /* * validate goal sits within global_bitmap, and return the victim * group desc */ ret = ocfs2_find_victim_alloc_group(inode, range->me_goal, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT, &goal_bit, &gd_bh); if (ret) goto out; bg = (struct ocfs2_group_desc *)gd_bh->b_data; /* * moving goal is not allowd to start with a group desc blok(#0 blk) * let's compromise to the latter cluster. */ if (range->me_goal == le64_to_cpu(bg->bg_blkno)) range->me_goal += c_to_b; /* * movement is not gonna cross two groups. */ if ((le16_to_cpu(bg->bg_bits) - goal_bit) * osb->s_clustersize < range->me_len) { ret = -EINVAL; goto out; } /* * more exact validations/adjustments will be performed later during * moving operation for each extent range. */ mlog(0, "extents get ready to be moved to #%llu block\n", range->me_goal); out: brelse(gd_bh); return ret; } static void ocfs2_probe_alloc_group(struct inode *inode, struct buffer_head *bh, int *goal_bit, u32 move_len, u32 max_hop, u32 *phys_cpos) { int i, used, last_free_bits = 0, base_bit = *goal_bit; struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data; u32 base_cpos = ocfs2_blocks_to_clusters(inode->i_sb, le64_to_cpu(gd->bg_blkno)); for (i = base_bit; i < le16_to_cpu(gd->bg_bits); i++) { used = ocfs2_test_bit(i, (unsigned long *)gd->bg_bitmap); if (used) { /* * we even tried searching the free chunk by jumping * a 'max_hop' distance, but still failed. */ if ((i - base_bit) > max_hop) { *phys_cpos = 0; break; } if (last_free_bits) last_free_bits = 0; continue; } else last_free_bits++; if (last_free_bits == move_len) { i -= move_len; *goal_bit = i; *phys_cpos = base_cpos + i; break; } } mlog(0, "found phys_cpos: %u to fit the wanted moving.\n", *phys_cpos); } static int ocfs2_move_extent(struct ocfs2_move_extents_context *context, u32 cpos, u32 phys_cpos, u32 *new_phys_cpos, u32 len, int ext_flags) { int ret, credits = 0, extra_blocks = 0, goal_bit = 0; handle_t *handle; struct inode *inode = context->inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; struct inode *gb_inode = NULL; struct buffer_head *gb_bh = NULL; struct buffer_head *gd_bh = NULL; struct ocfs2_group_desc *gd; struct ocfs2_refcount_tree *ref_tree = NULL; u32 move_max_hop = ocfs2_blocks_to_clusters(inode->i_sb, context->range->me_threshold); u64 phys_blkno, new_phys_blkno; phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); if ((ext_flags & OCFS2_EXT_REFCOUNTED) && len) { BUG_ON(!ocfs2_is_refcount_inode(inode)); BUG_ON(!context->refcount_loc); ret = ocfs2_lock_refcount_tree(osb, context->refcount_loc, 1, &ref_tree, NULL); if (ret) { mlog_errno(ret); return ret; } ret = ocfs2_prepare_refcount_change_for_del(inode, context->refcount_loc, phys_blkno, len, &credits, &extra_blocks); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_lock_meta_allocator_move_extents(inode, &context->et, len, 1, &context->meta_ac, extra_blocks, &credits); if (ret) { mlog_errno(ret); goto out; } /* * need to count 2 extra credits for global_bitmap inode and * group descriptor. */ credits += OCFS2_INODE_UPDATE_CREDITS + 1; /* * ocfs2_move_extent() didn't reserve any clusters in lock_allocators() * logic, while we still need to lock the global_bitmap. */ gb_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!gb_inode) { mlog(ML_ERROR, "unable to get global_bitmap inode\n"); ret = -EIO; goto out; } inode_lock(gb_inode); ret = ocfs2_inode_lock(gb_inode, &gb_bh, 1); if (ret) { mlog_errno(ret); goto out_unlock_gb_mutex; } inode_lock(tl_inode); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock_tl_inode; } new_phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *new_phys_cpos); ret = ocfs2_find_victim_alloc_group(inode, new_phys_blkno, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT, &goal_bit, &gd_bh); if (ret) { mlog_errno(ret); goto out_commit; } /* * probe the victim cluster group to find a proper * region to fit wanted movement, it even will perfrom * a best-effort attempt by compromising to a threshold * around the goal. */ ocfs2_probe_alloc_group(inode, gd_bh, &goal_bit, len, move_max_hop, new_phys_cpos); if (!*new_phys_cpos) { ret = -ENOSPC; goto out_commit; } ret = __ocfs2_move_extent(handle, context, cpos, len, phys_cpos, *new_phys_cpos, ext_flags); if (ret) { mlog_errno(ret); goto out_commit; } gd = (struct ocfs2_group_desc *)gd_bh->b_data; ret = ocfs2_alloc_dinode_update_counts(gb_inode, handle, gb_bh, len, le16_to_cpu(gd->bg_chain)); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_block_group_set_bits(handle, gb_inode, gd, gd_bh, goal_bit, len); if (ret) { ocfs2_rollback_alloc_dinode_counts(gb_inode, gb_bh, len, le16_to_cpu(gd->bg_chain)); mlog_errno(ret); } /* * Here we should write the new page out first if we are * in write-back mode. */ ret = ocfs2_cow_sync_writeback(inode->i_sb, context->inode, cpos, len); if (ret) mlog_errno(ret); out_commit: ocfs2_commit_trans(osb, handle); brelse(gd_bh); out_unlock_tl_inode: inode_unlock(tl_inode); ocfs2_inode_unlock(gb_inode, 1); out_unlock_gb_mutex: inode_unlock(gb_inode); brelse(gb_bh); iput(gb_inode); out: if (context->meta_ac) { ocfs2_free_alloc_context(context->meta_ac); context->meta_ac = NULL; } if (ref_tree) ocfs2_unlock_refcount_tree(osb, ref_tree, 1); return ret; } /* * Helper to calculate the defraging length in one run according to threshold. */ static void ocfs2_calc_extent_defrag_len(u32 *alloc_size, u32 *len_defraged, u32 threshold, int *skip) { if ((*alloc_size + *len_defraged) < threshold) { /* * proceed defragmentation until we meet the thresh */ *len_defraged += *alloc_size; } else if (*len_defraged == 0) { /* * XXX: skip a large extent. */ *skip = 1; } else { /* * split this extent to coalesce with former pieces as * to reach the threshold. * * we're done here with one cycle of defragmentation * in a size of 'thresh', resetting 'len_defraged' * forces a new defragmentation. */ *alloc_size = threshold - *len_defraged; *len_defraged = 0; } } static int __ocfs2_move_extents_range(struct buffer_head *di_bh, struct ocfs2_move_extents_context *context) { int ret = 0, flags, do_defrag, skip = 0; u32 cpos, phys_cpos, move_start, len_to_move, alloc_size; u32 len_defraged = 0, defrag_thresh = 0, new_phys_cpos = 0; struct inode *inode = context->inode; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_move_extents *range = context->range; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if ((i_size_read(inode) == 0) || (range->me_len == 0)) return 0; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return 0; context->refcount_loc = le64_to_cpu(di->i_refcount_loc); ocfs2_init_dinode_extent_tree(&context->et, INODE_CACHE(inode), di_bh); ocfs2_init_dealloc_ctxt(&context->dealloc); /* * TO-DO XXX: * * - xattr extents. */ do_defrag = context->auto_defrag; /* * extents moving happens in unit of clusters, for the sake * of simplicity, we may ignore two clusters where 'byte_start' * and 'byte_start + len' were within. */ move_start = ocfs2_clusters_for_bytes(osb->sb, range->me_start); len_to_move = (range->me_start + range->me_len) >> osb->s_clustersize_bits; if (len_to_move >= move_start) len_to_move -= move_start; else len_to_move = 0; if (do_defrag) { defrag_thresh = range->me_threshold >> osb->s_clustersize_bits; if (defrag_thresh <= 1) goto done; } else new_phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, range->me_goal); mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u, " "thresh: %u\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)range->me_start, (unsigned long long)range->me_len, move_start, len_to_move, defrag_thresh); cpos = move_start; while (len_to_move) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &alloc_size, &flags); if (ret) { mlog_errno(ret); goto out; } if (alloc_size > len_to_move) alloc_size = len_to_move; /* * XXX: how to deal with a hole: * * - skip the hole of course * - force a new defragmentation */ if (!phys_cpos) { if (do_defrag) len_defraged = 0; goto next; } if (do_defrag) { ocfs2_calc_extent_defrag_len(&alloc_size, &len_defraged, defrag_thresh, &skip); /* * skip large extents */ if (skip) { skip = 0; goto next; } mlog(0, "#Defrag: cpos: %u, phys_cpos: %u, " "alloc_size: %u, len_defraged: %u\n", cpos, phys_cpos, alloc_size, len_defraged); ret = ocfs2_defrag_extent(context, cpos, phys_cpos, &alloc_size, flags); } else { ret = ocfs2_move_extent(context, cpos, phys_cpos, &new_phys_cpos, alloc_size, flags); new_phys_cpos += alloc_size; } if (ret < 0) { mlog_errno(ret); goto out; } context->clusters_moved += alloc_size; next: cpos += alloc_size; len_to_move -= alloc_size; } done: range->me_flags |= OCFS2_MOVE_EXT_FL_COMPLETE; out: range->me_moved_len = ocfs2_clusters_to_bytes(osb->sb, context->clusters_moved); range->me_new_offset = ocfs2_clusters_to_bytes(osb->sb, context->new_phys_cpos); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &context->dealloc); return ret; } static int ocfs2_move_extents(struct ocfs2_move_extents_context *context) { int status; handle_t *handle; struct inode *inode = context->inode; struct ocfs2_dinode *di; struct buffer_head *di_bh = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; inode_lock(inode); /* * This prevents concurrent writes from other nodes */ status = ocfs2_rw_lock(inode, 1); if (status) { mlog_errno(status); goto out; } status = ocfs2_inode_lock(inode, &di_bh, 1); if (status) { mlog_errno(status); goto out_rw_unlock; } /* * rememer ip_xattr_sem also needs to be held if necessary */ down_write(&OCFS2_I(inode)->ip_alloc_sem); status = __ocfs2_move_extents_range(di_bh, context); up_write(&OCFS2_I(inode)->ip_alloc_sem); if (status) { mlog_errno(status); goto out_inode_unlock; } /* * We update ctime for these changes */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_inode_unlock; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status) { mlog_errno(status); goto out_commit; } di = (struct ocfs2_dinode *)di_bh->b_data; inode_set_ctime_current(inode); di->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec); di->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(osb, handle); out_inode_unlock: brelse(di_bh); ocfs2_inode_unlock(inode, 1); out_rw_unlock: ocfs2_rw_unlock(inode, 1); out: inode_unlock(inode); return status; } int ocfs2_ioctl_move_extents(struct file *filp, void __user *argp) { int status; struct inode *inode = file_inode(filp); struct ocfs2_move_extents range; struct ocfs2_move_extents_context *context; if (!argp) return -EINVAL; status = mnt_want_write_file(filp); if (status) return status; if ((!S_ISREG(inode->i_mode)) || !(filp->f_mode & FMODE_WRITE)) { status = -EPERM; goto out_drop; } if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { status = -EPERM; goto out_drop; } context = kzalloc(sizeof(struct ocfs2_move_extents_context), GFP_NOFS); if (!context) { status = -ENOMEM; mlog_errno(status); goto out_drop; } context->inode = inode; context->file = filp; if (copy_from_user(&range, argp, sizeof(range))) { status = -EFAULT; goto out_free; } if (range.me_start > i_size_read(inode)) { status = -EINVAL; goto out_free; } if (range.me_start + range.me_len > i_size_read(inode)) range.me_len = i_size_read(inode) - range.me_start; context->range = &range; /* * ok, the default theshold for the defragmentation * is 1M, since our maximum clustersize was 1M also. * any thought? */ if (!range.me_threshold) range.me_threshold = 1024 * 1024; if (range.me_threshold > i_size_read(inode)) range.me_threshold = i_size_read(inode); if (range.me_flags & OCFS2_MOVE_EXT_FL_AUTO_DEFRAG) { context->auto_defrag = 1; if (range.me_flags & OCFS2_MOVE_EXT_FL_PART_DEFRAG) context->partial = 1; } else { /* * first best-effort attempt to validate and adjust the goal * (physical address in block), while it can't guarantee later * operation can succeed all the time since global_bitmap may * change a bit over time. */ status = ocfs2_validate_and_adjust_move_goal(inode, &range); if (status) goto out_copy; } status = ocfs2_move_extents(context); if (status) mlog_errno(status); out_copy: /* * movement/defragmentation may end up being partially completed, * that's the reason why we need to return userspace the finished * length and new_offset even if failure happens somewhere. */ if (copy_to_user(argp, &range, sizeof(range))) status = -EFAULT; out_free: kfree(context); out_drop: mnt_drop_write_file(filp); return status; }
linux-master
fs/ocfs2/move_extents.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * sysfile.c * * Initialize, read, write, etc. system files. * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dir.h" #include "inode.h" #include "journal.h" #include "sysfile.h" #include "buffer_head_io.h" static struct inode * _ocfs2_get_system_file_inode(struct ocfs2_super *osb, int type, u32 slot); #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key ocfs2_sysfile_cluster_lock_key[NUM_SYSTEM_INODES]; #endif static inline int is_global_system_inode(int type) { return type >= OCFS2_FIRST_ONLINE_SYSTEM_INODE && type <= OCFS2_LAST_GLOBAL_SYSTEM_INODE; } static struct inode **get_local_system_inode(struct ocfs2_super *osb, int type, u32 slot) { int index; struct inode **local_system_inodes, **free = NULL; BUG_ON(slot == OCFS2_INVALID_SLOT); BUG_ON(type < OCFS2_FIRST_LOCAL_SYSTEM_INODE || type > OCFS2_LAST_LOCAL_SYSTEM_INODE); spin_lock(&osb->osb_lock); local_system_inodes = osb->local_system_inodes; spin_unlock(&osb->osb_lock); if (unlikely(!local_system_inodes)) { local_system_inodes = kzalloc(array3_size(sizeof(struct inode *), NUM_LOCAL_SYSTEM_INODES, osb->max_slots), GFP_NOFS); if (!local_system_inodes) { mlog_errno(-ENOMEM); /* * return NULL here so that ocfs2_get_sytem_file_inodes * will try to create an inode and use it. We will try * to initialize local_system_inodes next time. */ return NULL; } spin_lock(&osb->osb_lock); if (osb->local_system_inodes) { /* Someone has initialized it for us. */ free = local_system_inodes; local_system_inodes = osb->local_system_inodes; } else osb->local_system_inodes = local_system_inodes; spin_unlock(&osb->osb_lock); kfree(free); } index = (slot * NUM_LOCAL_SYSTEM_INODES) + (type - OCFS2_FIRST_LOCAL_SYSTEM_INODE); return &local_system_inodes[index]; } struct inode *ocfs2_get_system_file_inode(struct ocfs2_super *osb, int type, u32 slot) { struct inode *inode = NULL; struct inode **arr = NULL; /* avoid the lookup if cached in local system file array */ if (is_global_system_inode(type)) { arr = &(osb->global_system_inodes[type]); } else arr = get_local_system_inode(osb, type, slot); mutex_lock(&osb->system_file_mutex); if (arr && ((inode = *arr) != NULL)) { /* get a ref in addition to the array ref */ inode = igrab(inode); mutex_unlock(&osb->system_file_mutex); BUG_ON(!inode); return inode; } /* this gets one ref thru iget */ inode = _ocfs2_get_system_file_inode(osb, type, slot); /* add one more if putting into array for first time */ if (arr && inode) { *arr = igrab(inode); BUG_ON(!*arr); } mutex_unlock(&osb->system_file_mutex); return inode; } static struct inode * _ocfs2_get_system_file_inode(struct ocfs2_super *osb, int type, u32 slot) { char namebuf[40]; struct inode *inode = NULL; u64 blkno; int status = 0; ocfs2_sprintf_system_inode_name(namebuf, sizeof(namebuf), type, slot); status = ocfs2_lookup_ino_from_name(osb->sys_root_inode, namebuf, strlen(namebuf), &blkno); if (status < 0) { goto bail; } inode = ocfs2_iget(osb, blkno, OCFS2_FI_FLAG_SYSFILE, type); if (IS_ERR(inode)) { mlog_errno(PTR_ERR(inode)); inode = NULL; goto bail; } #ifdef CONFIG_DEBUG_LOCK_ALLOC if (type == LOCAL_USER_QUOTA_SYSTEM_INODE || type == LOCAL_GROUP_QUOTA_SYSTEM_INODE || type == JOURNAL_SYSTEM_INODE) { /* Ignore inode lock on these inodes as the lock does not * really belong to any process and lockdep cannot handle * that */ OCFS2_I(inode)->ip_inode_lockres.l_lockdep_map.key = NULL; } else { lockdep_init_map(&OCFS2_I(inode)->ip_inode_lockres. l_lockdep_map, ocfs2_system_inodes[type].si_name, &ocfs2_sysfile_cluster_lock_key[type], 0); } #endif bail: return inode; }
linux-master
fs/ocfs2/sysfile.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * alloc.c * * Extent allocs and frees * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/swap.h> #include <linux/quotaops.h> #include <linux/blkdev.h> #include <linux/sched/signal.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "blockcheck.h" #include "dlmglue.h" #include "extent_map.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "suballoc.h" #include "sysfile.h" #include "file.h" #include "super.h" #include "uptodate.h" #include "xattr.h" #include "refcounttree.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" enum ocfs2_contig_type { CONTIG_NONE = 0, CONTIG_LEFT, CONTIG_RIGHT, CONTIG_LEFTRIGHT, }; static enum ocfs2_contig_type ocfs2_extent_rec_contig(struct super_block *sb, struct ocfs2_extent_rec *ext, struct ocfs2_extent_rec *insert_rec); /* * Operations for a specific extent tree type. * * To implement an on-disk btree (extent tree) type in ocfs2, add * an ocfs2_extent_tree_operations structure and the matching * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it * for the allocation portion of the extent tree. */ struct ocfs2_extent_tree_operations { /* * last_eb_blk is the block number of the right most leaf extent * block. Most on-disk structures containing an extent tree store * this value for fast access. The ->eo_set_last_eb_blk() and * ->eo_get_last_eb_blk() operations access this value. They are * both required. */ void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, u64 blkno); u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); /* * The on-disk structure usually keeps track of how many total * clusters are stored in this extent tree. This function updates * that value. new_clusters is the delta, and must be * added to the total. Required. */ void (*eo_update_clusters)(struct ocfs2_extent_tree *et, u32 new_clusters); /* * If this extent tree is supported by an extent map, insert * a record into the map. */ void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec); /* * If this extent tree is supported by an extent map, truncate the * map to clusters, */ void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, u32 clusters); /* * If ->eo_insert_check() exists, it is called before rec is * inserted into the extent tree. It is optional. */ int (*eo_insert_check)(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec); int (*eo_sanity_check)(struct ocfs2_extent_tree *et); /* * -------------------------------------------------------------- * The remaining are internal to ocfs2_extent_tree and don't have * accessor functions */ /* * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. * It is required. */ void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); /* * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if * it exists. If it does not, et->et_max_leaf_clusters is set * to 0 (unlimited). Optional. */ void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); /* * ->eo_extent_contig test whether the 2 ocfs2_extent_rec * are contiguous or not. Optional. Don't need to set it if use * ocfs2_extent_rec as the tree leaf. */ enum ocfs2_contig_type (*eo_extent_contig)(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *ext, struct ocfs2_extent_rec *insert_rec); }; /* * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check * in the methods. */ static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno); static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, u32 clusters); static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec); static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, u32 clusters); static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec); static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, struct ocfs2_extent_tree *et, struct buffer_head **new_eb_bh, int blk_wanted, int *blk_given); static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, .eo_update_clusters = ocfs2_dinode_update_clusters, .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, .eo_insert_check = ocfs2_dinode_insert_check, .eo_sanity_check = ocfs2_dinode_sanity_check, .eo_fill_root_el = ocfs2_dinode_fill_root_el, }; static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_dinode *di = et->et_object; BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); di->i_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_dinode *di = et->et_object; BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); return le64_to_cpu(di->i_last_eb_blk); } static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); struct ocfs2_dinode *di = et->et_object; le32_add_cpu(&di->i_clusters, clusters); spin_lock(&oi->ip_lock); oi->ip_clusters = le32_to_cpu(di->i_clusters); spin_unlock(&oi->ip_lock); } static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec) { struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; ocfs2_extent_map_insert_rec(inode, rec); } static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, u32 clusters) { struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; ocfs2_extent_map_trunc(inode, clusters); } static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec) { struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), "Device %s, asking for sparse allocation: inode %llu, " "cpos %u, clusters %u\n", osb->dev_str, (unsigned long long)oi->ip_blkno, rec->e_cpos, oi->ip_clusters); return 0; } static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) { struct ocfs2_dinode *di = et->et_object; BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); BUG_ON(!OCFS2_IS_VALID_DINODE(di)); return 0; } static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_dinode *di = et->et_object; et->et_root_el = &di->id2.i_list; } static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_value_buf *vb = et->et_object; et->et_root_el = &vb->vb_xv->xr_list; } static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_xattr_value_buf *vb = et->et_object; vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_value_buf *vb = et->et_object; return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); } static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_xattr_value_buf *vb = et->et_object; le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); } static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, .eo_update_clusters = ocfs2_xattr_value_update_clusters, .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, }; static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_block *xb = et->et_object; et->et_root_el = &xb->xb_attrs.xb_root.xt_list; } static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) { struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); et->et_max_leaf_clusters = ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); } static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_xattr_block *xb = et->et_object; struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; xt->xt_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_block *xb = et->et_object; struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; return le64_to_cpu(xt->xt_last_eb_blk); } static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_xattr_block *xb = et->et_object; le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); } static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, .eo_update_clusters = ocfs2_xattr_tree_update_clusters, .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, }; static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_dx_root_block *dx_root = et->et_object; dx_root->dr_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_dx_root_block *dx_root = et->et_object; return le64_to_cpu(dx_root->dr_last_eb_blk); } static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_dx_root_block *dx_root = et->et_object; le32_add_cpu(&dx_root->dr_clusters, clusters); } static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) { struct ocfs2_dx_root_block *dx_root = et->et_object; BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); return 0; } static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_dx_root_block *dx_root = et->et_object; et->et_root_el = &dx_root->dr_list; } static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, .eo_update_clusters = ocfs2_dx_root_update_clusters, .eo_sanity_check = ocfs2_dx_root_sanity_check, .eo_fill_root_el = ocfs2_dx_root_fill_root_el, }; static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_refcount_block *rb = et->et_object; et->et_root_el = &rb->rf_list; } static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_refcount_block *rb = et->et_object; rb->rf_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_refcount_block *rb = et->et_object; return le64_to_cpu(rb->rf_last_eb_blk); } static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_refcount_block *rb = et->et_object; le32_add_cpu(&rb->rf_clusters, clusters); } static enum ocfs2_contig_type ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *ext, struct ocfs2_extent_rec *insert_rec) { return CONTIG_NONE; } static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, .eo_update_clusters = ocfs2_refcount_tree_update_clusters, .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, .eo_extent_contig = ocfs2_refcount_tree_extent_contig, }; static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh, ocfs2_journal_access_func access, void *obj, const struct ocfs2_extent_tree_operations *ops) { et->et_ops = ops; et->et_root_bh = bh; et->et_ci = ci; et->et_root_journal_access = access; if (!obj) obj = (void *)bh->b_data; et->et_object = obj; et->et_dealloc = NULL; et->et_ops->eo_fill_root_el(et); if (!et->et_ops->eo_fill_max_leaf_clusters) et->et_max_leaf_clusters = 0; else et->et_ops->eo_fill_max_leaf_clusters(et); } void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, NULL, &ocfs2_dinode_et_ops); } void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, NULL, &ocfs2_xattr_tree_et_ops); } void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct ocfs2_xattr_value_buf *vb) { __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, &ocfs2_xattr_value_et_ops); } void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, NULL, &ocfs2_dx_root_et_ops); } void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, NULL, &ocfs2_refcount_tree_et_ops); } static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 new_last_eb_blk) { et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); } static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) { return et->et_ops->eo_get_last_eb_blk(et); } static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { et->et_ops->eo_update_clusters(et, clusters); } static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec) { if (et->et_ops->eo_extent_map_insert) et->et_ops->eo_extent_map_insert(et, rec); } static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, u32 clusters) { if (et->et_ops->eo_extent_map_truncate) et->et_ops->eo_extent_map_truncate(et, clusters); } static inline int ocfs2_et_root_journal_access(handle_t *handle, struct ocfs2_extent_tree *et, int type) { return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, type); } static inline enum ocfs2_contig_type ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec, struct ocfs2_extent_rec *insert_rec) { if (et->et_ops->eo_extent_contig) return et->et_ops->eo_extent_contig(et, rec, insert_rec); return ocfs2_extent_rec_contig( ocfs2_metadata_cache_get_super(et->et_ci), rec, insert_rec); } static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec) { int ret = 0; if (et->et_ops->eo_insert_check) ret = et->et_ops->eo_insert_check(et, rec); return ret; } static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) { int ret = 0; if (et->et_ops->eo_sanity_check) ret = et->et_ops->eo_sanity_check(et); return ret; } static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, struct ocfs2_extent_block *eb); static void ocfs2_adjust_rightmost_records(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_extent_rec *insert_rec); /* * Reset the actual path elements so that we can re-use the structure * to build another path. Generally, this involves freeing the buffer * heads. */ void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) { int i, start = 0, depth = 0; struct ocfs2_path_item *node; if (keep_root) start = 1; for(i = start; i < path_num_items(path); i++) { node = &path->p_node[i]; brelse(node->bh); node->bh = NULL; node->el = NULL; } /* * Tree depth may change during truncate, or insert. If we're * keeping the root extent list, then make sure that our path * structure reflects the proper depth. */ if (keep_root) depth = le16_to_cpu(path_root_el(path)->l_tree_depth); else path_root_access(path) = NULL; path->p_tree_depth = depth; } void ocfs2_free_path(struct ocfs2_path *path) { if (path) { ocfs2_reinit_path(path, 0); kfree(path); } } /* * All the elements of src into dest. After this call, src could be freed * without affecting dest. * * Both paths should have the same root. Any non-root elements of dest * will be freed. */ static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) { int i; BUG_ON(path_root_bh(dest) != path_root_bh(src)); BUG_ON(path_root_el(dest) != path_root_el(src)); BUG_ON(path_root_access(dest) != path_root_access(src)); ocfs2_reinit_path(dest, 1); for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { dest->p_node[i].bh = src->p_node[i].bh; dest->p_node[i].el = src->p_node[i].el; if (dest->p_node[i].bh) get_bh(dest->p_node[i].bh); } } /* * Make the *dest path the same as src and re-initialize src path to * have a root only. */ static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) { int i; BUG_ON(path_root_bh(dest) != path_root_bh(src)); BUG_ON(path_root_access(dest) != path_root_access(src)); for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { brelse(dest->p_node[i].bh); dest->p_node[i].bh = src->p_node[i].bh; dest->p_node[i].el = src->p_node[i].el; src->p_node[i].bh = NULL; src->p_node[i].el = NULL; } } /* * Insert an extent block at given index. * * This will not take an additional reference on eb_bh. */ static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, struct buffer_head *eb_bh) { struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; /* * Right now, no root bh is an extent block, so this helps * catch code errors with dinode trees. The assertion can be * safely removed if we ever need to insert extent block * structures at the root. */ BUG_ON(index == 0); path->p_node[index].bh = eb_bh; path->p_node[index].el = &eb->h_list; } static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, struct ocfs2_extent_list *root_el, ocfs2_journal_access_func access) { struct ocfs2_path *path; BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); path = kzalloc(sizeof(*path), GFP_NOFS); if (path) { path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); get_bh(root_bh); path_root_bh(path) = root_bh; path_root_el(path) = root_el; path_root_access(path) = access; } return path; } struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) { return ocfs2_new_path(path_root_bh(path), path_root_el(path), path_root_access(path)); } struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) { return ocfs2_new_path(et->et_root_bh, et->et_root_el, et->et_root_journal_access); } /* * Journal the buffer at depth idx. All idx>0 are extent_blocks, * otherwise it's the root_access function. * * I don't like the way this function's name looks next to * ocfs2_journal_access_path(), but I don't have a better one. */ int ocfs2_path_bh_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, struct ocfs2_path *path, int idx) { ocfs2_journal_access_func access = path_root_access(path); if (!access) access = ocfs2_journal_access; if (idx) access = ocfs2_journal_access_eb; return access(handle, ci, path->p_node[idx].bh, OCFS2_JOURNAL_ACCESS_WRITE); } /* * Convenience function to journal all components in a path. */ int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, handle_t *handle, struct ocfs2_path *path) { int i, ret = 0; if (!path) goto out; for(i = 0; i < path_num_items(path); i++) { ret = ocfs2_path_bh_journal_access(handle, ci, path, i); if (ret < 0) { mlog_errno(ret); goto out; } } out: return ret; } /* * Return the index of the extent record which contains cluster #v_cluster. * -1 is returned if it was not found. * * Should work fine on interior and exterior nodes. */ int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) { int ret = -1; int i; struct ocfs2_extent_rec *rec; u32 rec_end, rec_start, clusters; for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { rec = &el->l_recs[i]; rec_start = le32_to_cpu(rec->e_cpos); clusters = ocfs2_rec_clusters(el, rec); rec_end = rec_start + clusters; if (v_cluster >= rec_start && v_cluster < rec_end) { ret = i; break; } } return ret; } /* * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and * ocfs2_extent_rec_contig only work properly against leaf nodes! */ static int ocfs2_block_extent_contig(struct super_block *sb, struct ocfs2_extent_rec *ext, u64 blkno) { u64 blk_end = le64_to_cpu(ext->e_blkno); blk_end += ocfs2_clusters_to_blocks(sb, le16_to_cpu(ext->e_leaf_clusters)); return blkno == blk_end; } static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, struct ocfs2_extent_rec *right) { u32 left_range; left_range = le32_to_cpu(left->e_cpos) + le16_to_cpu(left->e_leaf_clusters); return (left_range == le32_to_cpu(right->e_cpos)); } static enum ocfs2_contig_type ocfs2_extent_rec_contig(struct super_block *sb, struct ocfs2_extent_rec *ext, struct ocfs2_extent_rec *insert_rec) { u64 blkno = le64_to_cpu(insert_rec->e_blkno); /* * Refuse to coalesce extent records with different flag * fields - we don't want to mix unwritten extents with user * data. */ if (ext->e_flags != insert_rec->e_flags) return CONTIG_NONE; if (ocfs2_extents_adjacent(ext, insert_rec) && ocfs2_block_extent_contig(sb, ext, blkno)) return CONTIG_RIGHT; blkno = le64_to_cpu(ext->e_blkno); if (ocfs2_extents_adjacent(insert_rec, ext) && ocfs2_block_extent_contig(sb, insert_rec, blkno)) return CONTIG_LEFT; return CONTIG_NONE; } /* * NOTE: We can have pretty much any combination of contiguousness and * appending. * * The usefulness of APPEND_TAIL is more in that it lets us know that * we'll have to update the path to that leaf. */ enum ocfs2_append_type { APPEND_NONE = 0, APPEND_TAIL, }; enum ocfs2_split_type { SPLIT_NONE = 0, SPLIT_LEFT, SPLIT_RIGHT, }; struct ocfs2_insert_type { enum ocfs2_split_type ins_split; enum ocfs2_append_type ins_appending; enum ocfs2_contig_type ins_contig; int ins_contig_index; int ins_tree_depth; }; struct ocfs2_merge_ctxt { enum ocfs2_contig_type c_contig_type; int c_has_empty_extent; int c_split_covers_rec; }; static int ocfs2_validate_extent_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)bh->b_data; trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); if (rc) { mlog(ML_ERROR, "Checksum failed for extent block %llu\n", (unsigned long long)bh->b_blocknr); return rc; } /* * Errors after here are fatal. */ if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { rc = ocfs2_error(sb, "Extent block #%llu has bad signature %.*s\n", (unsigned long long)bh->b_blocknr, 7, eb->h_signature); goto bail; } if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { rc = ocfs2_error(sb, "Extent block #%llu has an invalid h_blkno of %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(eb->h_blkno)); goto bail; } if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) rc = ocfs2_error(sb, "Extent block #%llu has an invalid h_fs_generation of #%u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(eb->h_fs_generation)); bail: return rc; } int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, struct buffer_head **bh) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_block(ci, eb_blkno, &tmp, ocfs2_validate_extent_block); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } /* * How many free extents have we got before we need more meta data? */ int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) { int retval; struct ocfs2_extent_list *el = NULL; struct ocfs2_extent_block *eb; struct buffer_head *eb_bh = NULL; u64 last_eb_blk = 0; el = et->et_root_el; last_eb_blk = ocfs2_et_get_last_eb_blk(et); if (last_eb_blk) { retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, &eb_bh); if (retval < 0) { mlog_errno(retval); goto bail; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; } BUG_ON(el->l_tree_depth != 0); retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); bail: brelse(eb_bh); trace_ocfs2_num_free_extents(retval); return retval; } /* expects array to already be allocated * * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and * l_count for you */ static int ocfs2_create_new_meta_bhs(handle_t *handle, struct ocfs2_extent_tree *et, int wanted, struct ocfs2_alloc_context *meta_ac, struct buffer_head *bhs[]) { int count, status, i; u16 suballoc_bit_start; u32 num_got; u64 suballoc_loc, first_blkno; struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); struct ocfs2_extent_block *eb; count = 0; while (count < wanted) { status = ocfs2_claim_metadata(handle, meta_ac, wanted - count, &suballoc_loc, &suballoc_bit_start, &num_got, &first_blkno); if (status < 0) { mlog_errno(status); goto bail; } for(i = count; i < (num_got + count); i++) { bhs[i] = sb_getblk(osb->sb, first_blkno); if (bhs[i] == NULL) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); status = ocfs2_journal_access_eb(handle, et->et_ci, bhs[i], OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); eb = (struct ocfs2_extent_block *) bhs[i]->b_data; /* Ok, setup the minimal stuff here. */ strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); eb->h_blkno = cpu_to_le64(first_blkno); eb->h_fs_generation = cpu_to_le32(osb->fs_generation); eb->h_suballoc_slot = cpu_to_le16(meta_ac->ac_alloc_slot); eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); eb->h_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); suballoc_bit_start++; first_blkno++; /* We'll also be dirtied by the caller, so * this isn't absolutely necessary. */ ocfs2_journal_dirty(handle, bhs[i]); } count += num_got; } status = 0; bail: if (status < 0) { for(i = 0; i < wanted; i++) { brelse(bhs[i]); bhs[i] = NULL; } } return status; } /* * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). * * Returns the sum of the rightmost extent rec logical offset and * cluster count. * * ocfs2_add_branch() uses this to determine what logical cluster * value should be populated into the leftmost new branch records. * * ocfs2_shift_tree_depth() uses this to determine the # clusters * value for the new topmost tree record. */ static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) { int i; i = le16_to_cpu(el->l_next_free_rec) - 1; return le32_to_cpu(el->l_recs[i].e_cpos) + ocfs2_rec_clusters(el, &el->l_recs[i]); } /* * Change range of the branches in the right most path according to the leaf * extent block's rightmost record. */ static int ocfs2_adjust_rightmost_branch(handle_t *handle, struct ocfs2_extent_tree *et) { int status; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; path = ocfs2_new_path_from_et(et); if (!path) { status = -ENOMEM; return status; } status = ocfs2_find_path(et->et_ci, path, UINT_MAX); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_extend_trans(handle, path_num_items(path)); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_journal_access_path(et->et_ci, handle, path); if (status < 0) { mlog_errno(status); goto out; } el = path_leaf_el(path); rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; ocfs2_adjust_rightmost_records(handle, et, path, rec); out: ocfs2_free_path(path); return status; } /* * Add an entire tree branch to our inode. eb_bh is the extent block * to start at, if we don't want to start the branch at the root * structure. * * last_eb_bh is required as we have to update it's next_leaf pointer * for the new last extent block. * * the new branch will be 'empty' in the sense that every block will * contain a single record with cluster count == 0. */ static int ocfs2_add_branch(handle_t *handle, struct ocfs2_extent_tree *et, struct buffer_head *eb_bh, struct buffer_head **last_eb_bh, struct ocfs2_alloc_context *meta_ac) { int status, new_blocks, i, block_given = 0; u64 next_blkno, new_last_eb_blk; struct buffer_head *bh; struct buffer_head **new_eb_bhs = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *eb_el; struct ocfs2_extent_list *el; u32 new_cpos, root_end; BUG_ON(!last_eb_bh || !*last_eb_bh); if (eb_bh) { eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; } else el = et->et_root_el; /* we never add a branch to a leaf. */ BUG_ON(!el->l_tree_depth); new_blocks = le16_to_cpu(el->l_tree_depth); eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); root_end = ocfs2_sum_rightmost_rec(et->et_root_el); /* * If there is a gap before the root end and the real end * of the righmost leaf block, we need to remove the gap * between new_cpos and root_end first so that the tree * is consistent after we add a new branch(it will start * from new_cpos). */ if (root_end > new_cpos) { trace_ocfs2_adjust_rightmost_branch( (unsigned long long) ocfs2_metadata_cache_owner(et->et_ci), root_end, new_cpos); status = ocfs2_adjust_rightmost_branch(handle, et); if (status) { mlog_errno(status); goto bail; } } /* allocate the number of new eb blocks we need */ new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), GFP_KERNEL); if (!new_eb_bhs) { status = -ENOMEM; mlog_errno(status); goto bail; } /* Firstyly, try to reuse dealloc since we have already estimated how * many extent blocks we may use. */ if (!ocfs2_is_dealloc_empty(et)) { status = ocfs2_reuse_blk_from_dealloc(handle, et, new_eb_bhs, new_blocks, &block_given); if (status < 0) { mlog_errno(status); goto bail; } } BUG_ON(block_given > new_blocks); if (block_given < new_blocks) { BUG_ON(!meta_ac); status = ocfs2_create_new_meta_bhs(handle, et, new_blocks - block_given, meta_ac, &new_eb_bhs[block_given]); if (status < 0) { mlog_errno(status); goto bail; } } /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be * linked with the rest of the tree. * conversly, new_eb_bhs[0] is the new bottommost leaf. * * when we leave the loop, new_last_eb_blk will point to the * newest leaf, and next_blkno will point to the topmost extent * block. */ next_blkno = new_last_eb_blk = 0; for(i = 0; i < new_blocks; i++) { bh = new_eb_bhs[i]; eb = (struct ocfs2_extent_block *) bh->b_data; /* ocfs2_create_new_meta_bhs() should create it right! */ BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); eb_el = &eb->h_list; status = ocfs2_journal_access_eb(handle, et->et_ci, bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } eb->h_next_leaf_blk = 0; eb_el->l_tree_depth = cpu_to_le16(i); eb_el->l_next_free_rec = cpu_to_le16(1); /* * This actually counts as an empty extent as * c_clusters == 0 */ eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); /* * eb_el isn't always an interior node, but even leaf * nodes want a zero'd flags and reserved field so * this gets the whole 32 bits regardless of use. */ eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); if (!eb_el->l_tree_depth) new_last_eb_blk = le64_to_cpu(eb->h_blkno); ocfs2_journal_dirty(handle, bh); next_blkno = le64_to_cpu(eb->h_blkno); } /* This is a bit hairy. We want to update up to three blocks * here without leaving any of them in an inconsistent state * in case of error. We don't have to worry about * journal_dirty erroring as it won't unless we've aborted the * handle (in which case we would never be here) so reserving * the write with journal_access is all we need to do. */ status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } if (eb_bh) { status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } } /* Link the new branch into the rest of the tree (el will * either be on the root_bh, or the extent block passed in. */ i = le16_to_cpu(el->l_next_free_rec); el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); el->l_recs[i].e_int_clusters = 0; le16_add_cpu(&el->l_next_free_rec, 1); /* fe needs a new last extent block pointer, as does the * next_leaf on the previously last-extent-block. */ ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); ocfs2_journal_dirty(handle, *last_eb_bh); ocfs2_journal_dirty(handle, et->et_root_bh); if (eb_bh) ocfs2_journal_dirty(handle, eb_bh); /* * Some callers want to track the rightmost leaf so pass it * back here. */ brelse(*last_eb_bh); get_bh(new_eb_bhs[0]); *last_eb_bh = new_eb_bhs[0]; status = 0; bail: if (new_eb_bhs) { for (i = 0; i < new_blocks; i++) brelse(new_eb_bhs[i]); kfree(new_eb_bhs); } return status; } /* * adds another level to the allocation tree. * returns back the new extent block so you can add a branch to it * after this call. */ static int ocfs2_shift_tree_depth(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_alloc_context *meta_ac, struct buffer_head **ret_new_eb_bh) { int status, i, block_given = 0; u32 new_clusters; struct buffer_head *new_eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *root_el; struct ocfs2_extent_list *eb_el; if (!ocfs2_is_dealloc_empty(et)) { status = ocfs2_reuse_blk_from_dealloc(handle, et, &new_eb_bh, 1, &block_given); } else if (meta_ac) { status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, &new_eb_bh); } else { BUG(); } if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; /* ocfs2_create_new_meta_bhs() should create it right! */ BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); eb_el = &eb->h_list; root_el = et->et_root_el; status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } /* copy the root extent list data into the new extent block */ eb_el->l_tree_depth = root_el->l_tree_depth; eb_el->l_next_free_rec = root_el->l_next_free_rec; for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) eb_el->l_recs[i] = root_el->l_recs[i]; ocfs2_journal_dirty(handle, new_eb_bh); status = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } new_clusters = ocfs2_sum_rightmost_rec(eb_el); /* update root_bh now */ le16_add_cpu(&root_el->l_tree_depth, 1); root_el->l_recs[0].e_cpos = 0; root_el->l_recs[0].e_blkno = eb->h_blkno; root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); root_el->l_next_free_rec = cpu_to_le16(1); /* If this is our 1st tree depth shift, then last_eb_blk * becomes the allocated extent block */ if (root_el->l_tree_depth == cpu_to_le16(1)) ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); ocfs2_journal_dirty(handle, et->et_root_bh); *ret_new_eb_bh = new_eb_bh; new_eb_bh = NULL; status = 0; bail: brelse(new_eb_bh); return status; } /* * Should only be called when there is no space left in any of the * leaf nodes. What we want to do is find the lowest tree depth * non-leaf extent block with room for new records. There are three * valid results of this search: * * 1) a lowest extent block is found, then we pass it back in * *lowest_eb_bh and return '0' * * 2) the search fails to find anything, but the root_el has room. We * pass NULL back in *lowest_eb_bh, but still return '0' * * 3) the search fails to find anything AND the root_el is full, in * which case we return > 0 * * return status < 0 indicates an error. */ static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, struct buffer_head **target_bh) { int status = 0, i; u64 blkno; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh = NULL; struct buffer_head *lowest_bh = NULL; *target_bh = NULL; el = et->et_root_el; while(le16_to_cpu(el->l_tree_depth) > 1) { if (le16_to_cpu(el->l_next_free_rec) == 0) { status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has empty extent list (next_free_rec == 0)\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); goto bail; } i = le16_to_cpu(el->l_next_free_rec) - 1; blkno = le64_to_cpu(el->l_recs[i].e_blkno); if (!blkno) { status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has extent list where extent # %d has no physical block start\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); goto bail; } brelse(bh); bh = NULL; status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) < le16_to_cpu(el->l_count)) { brelse(lowest_bh); lowest_bh = bh; get_bh(lowest_bh); } } /* If we didn't find one and the fe doesn't have any room, * then return '1' */ el = et->et_root_el; if (!lowest_bh && (el->l_next_free_rec == el->l_count)) status = 1; *target_bh = lowest_bh; bail: brelse(bh); return status; } /* * Grow a b-tree so that it has more records. * * We might shift the tree depth in which case existing paths should * be considered invalid. * * Tree depth after the grow is returned via *final_depth. * * *last_eb_bh will be updated by ocfs2_add_branch(). */ static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, int *final_depth, struct buffer_head **last_eb_bh, struct ocfs2_alloc_context *meta_ac) { int ret, shift; struct ocfs2_extent_list *el = et->et_root_el; int depth = le16_to_cpu(el->l_tree_depth); struct buffer_head *bh = NULL; BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); shift = ocfs2_find_branch_target(et, &bh); if (shift < 0) { ret = shift; mlog_errno(ret); goto out; } /* We traveled all the way to the bottom of the allocation tree * and didn't find room for any more extents - we need to add * another tree level */ if (shift) { BUG_ON(bh); trace_ocfs2_grow_tree( (unsigned long long) ocfs2_metadata_cache_owner(et->et_ci), depth); /* ocfs2_shift_tree_depth will return us a buffer with * the new extent block (so we can pass that to * ocfs2_add_branch). */ ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); if (ret < 0) { mlog_errno(ret); goto out; } depth++; if (depth == 1) { /* * Special case: we have room now if we shifted from * tree_depth 0, so no more work needs to be done. * * We won't be calling add_branch, so pass * back *last_eb_bh as the new leaf. At depth * zero, it should always be null so there's * no reason to brelse. */ BUG_ON(*last_eb_bh); get_bh(bh); *last_eb_bh = bh; goto out; } } /* call ocfs2_add_branch to add the final part of the tree with * the new data. */ ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, meta_ac); if (ret < 0) mlog_errno(ret); out: if (final_depth) *final_depth = depth; brelse(bh); return ret; } /* * This function will discard the rightmost extent record. */ static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) { int next_free = le16_to_cpu(el->l_next_free_rec); int count = le16_to_cpu(el->l_count); unsigned int num_bytes; BUG_ON(!next_free); /* This will cause us to go off the end of our extent list. */ BUG_ON(next_free >= count); num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); } static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i, insert_index, next_free, has_empty, num_bytes; u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); struct ocfs2_extent_rec *rec; next_free = le16_to_cpu(el->l_next_free_rec); has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); BUG_ON(!next_free); /* The tree code before us didn't allow enough room in the leaf. */ BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); /* * The easiest way to approach this is to just remove the * empty extent and temporarily decrement next_free. */ if (has_empty) { /* * If next_free was 1 (only an empty extent), this * loop won't execute, which is fine. We still want * the decrement above to happen. */ for(i = 0; i < (next_free - 1); i++) el->l_recs[i] = el->l_recs[i+1]; next_free--; } /* * Figure out what the new record index should be. */ for(i = 0; i < next_free; i++) { rec = &el->l_recs[i]; if (insert_cpos < le32_to_cpu(rec->e_cpos)) break; } insert_index = i; trace_ocfs2_rotate_leaf(insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); BUG_ON(insert_index < 0); BUG_ON(insert_index >= le16_to_cpu(el->l_count)); BUG_ON(insert_index > next_free); /* * No need to memmove if we're just adding to the tail. */ if (insert_index != next_free) { BUG_ON(next_free >= le16_to_cpu(el->l_count)); num_bytes = next_free - insert_index; num_bytes *= sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[insert_index + 1], &el->l_recs[insert_index], num_bytes); } /* * Either we had an empty extent, and need to re-increment or * there was no empty extent on a non full rightmost leaf node, * in which case we still need to increment. */ next_free++; el->l_next_free_rec = cpu_to_le16(next_free); /* * Make sure none of the math above just messed up our tree. */ BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); el->l_recs[insert_index] = *insert_rec; } static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) { int size, num_recs = le16_to_cpu(el->l_next_free_rec); BUG_ON(num_recs == 0); if (ocfs2_is_empty_extent(&el->l_recs[0])) { num_recs--; size = num_recs * sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[0], &el->l_recs[1], size); memset(&el->l_recs[num_recs], 0, sizeof(struct ocfs2_extent_rec)); el->l_next_free_rec = cpu_to_le16(num_recs); } } /* * Create an empty extent record . * * l_next_free_rec may be updated. * * If an empty extent already exists do nothing. */ static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) { int next_free = le16_to_cpu(el->l_next_free_rec); BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); if (next_free == 0) goto set_and_inc; if (ocfs2_is_empty_extent(&el->l_recs[0])) return; mlog_bug_on_msg(el->l_count == el->l_next_free_rec, "Asked to create an empty extent in a full list:\n" "count = %u, tree depth = %u", le16_to_cpu(el->l_count), le16_to_cpu(el->l_tree_depth)); ocfs2_shift_records_right(el); set_and_inc: le16_add_cpu(&el->l_next_free_rec, 1); memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } /* * For a rotation which involves two leaf nodes, the "root node" is * the lowest level tree node which contains a path to both leafs. This * resulting set of information can be used to form a complete "subtree" * * This function is passed two full paths from the dinode down to a * pair of adjacent leaves. It's task is to figure out which path * index contains the subtree root - this can be the root index itself * in a worst-case rotation. * * The array index of the subtree root is passed back. */ int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, struct ocfs2_path *left, struct ocfs2_path *right) { int i = 0; /* * Check that the caller passed in two paths from the same tree. */ BUG_ON(path_root_bh(left) != path_root_bh(right)); do { i++; /* * The caller didn't pass two adjacent paths. */ mlog_bug_on_msg(i > left->p_tree_depth, "Owner %llu, left depth %u, right depth %u\n" "left leaf blk %llu, right leaf blk %llu\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), left->p_tree_depth, right->p_tree_depth, (unsigned long long)path_leaf_bh(left)->b_blocknr, (unsigned long long)path_leaf_bh(right)->b_blocknr); } while (left->p_node[i].bh->b_blocknr == right->p_node[i].bh->b_blocknr); return i - 1; } typedef void (path_insert_t)(void *, struct buffer_head *); /* * Traverse a btree path in search of cpos, starting at root_el. * * This code can be called with a cpos larger than the tree, in which * case it will return the rightmost path. */ static int __ocfs2_find_path(struct ocfs2_caching_info *ci, struct ocfs2_extent_list *root_el, u32 cpos, path_insert_t *func, void *data) { int i, ret = 0; u32 range; u64 blkno; struct buffer_head *bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; el = root_el; while (el->l_tree_depth) { if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(ocfs2_metadata_cache_get_super(ci), "Owner %llu has empty extent list at depth %u\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), le16_to_cpu(el->l_tree_depth)); ret = -EROFS; goto out; } for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { rec = &el->l_recs[i]; /* * In the case that cpos is off the allocation * tree, this should just wind up returning the * rightmost record. */ range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) break; } blkno = le64_to_cpu(el->l_recs[i].e_blkno); if (blkno == 0) { ocfs2_error(ocfs2_metadata_cache_get_super(ci), "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), le16_to_cpu(el->l_tree_depth), i); ret = -EROFS; goto out; } brelse(bh); bh = NULL; ret = ocfs2_read_extent_block(ci, blkno, &bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)) { ocfs2_error(ocfs2_metadata_cache_get_super(ci), "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)bh->b_blocknr, le16_to_cpu(el->l_next_free_rec), le16_to_cpu(el->l_count)); ret = -EROFS; goto out; } if (func) func(data, bh); } out: /* * Catch any trailing bh that the loop didn't handle. */ brelse(bh); return ret; } /* * Given an initialized path (that is, it has a valid root extent * list), this function will traverse the btree in search of the path * which would contain cpos. * * The path traveled is recorded in the path structure. * * Note that this will not do any comparisons on leaf node extent * records, so it will work fine in the case that we just added a tree * branch. */ struct find_path_data { int index; struct ocfs2_path *path; }; static void find_path_ins(void *data, struct buffer_head *bh) { struct find_path_data *fp = data; get_bh(bh); ocfs2_path_insert_eb(fp->path, fp->index, bh); fp->index++; } int ocfs2_find_path(struct ocfs2_caching_info *ci, struct ocfs2_path *path, u32 cpos) { struct find_path_data data; data.index = 1; data.path = path; return __ocfs2_find_path(ci, path_root_el(path), cpos, find_path_ins, &data); } static void find_leaf_ins(void *data, struct buffer_head *bh) { struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; struct ocfs2_extent_list *el = &eb->h_list; struct buffer_head **ret = data; /* We want to retain only the leaf block. */ if (le16_to_cpu(el->l_tree_depth) == 0) { get_bh(bh); *ret = bh; } } /* * Find the leaf block in the tree which would contain cpos. No * checking of the actual leaf is done. * * Some paths want to call this instead of allocating a path structure * and calling ocfs2_find_path(). * * This function doesn't handle non btree extent lists. */ int ocfs2_find_leaf(struct ocfs2_caching_info *ci, struct ocfs2_extent_list *root_el, u32 cpos, struct buffer_head **leaf_bh) { int ret; struct buffer_head *bh = NULL; ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); if (ret) { mlog_errno(ret); goto out; } *leaf_bh = bh; out: return ret; } /* * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. * * Basically, we've moved stuff around at the bottom of the tree and * we need to fix up the extent records above the changes to reflect * the new changes. * * left_rec: the record on the left. * right_rec: the record to the right of left_rec * right_child_el: is the child list pointed to by right_rec * * By definition, this only works on interior nodes. */ static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, struct ocfs2_extent_rec *right_rec, struct ocfs2_extent_list *right_child_el) { u32 left_clusters, right_end; /* * Interior nodes never have holes. Their cpos is the cpos of * the leftmost record in their child list. Their cluster * count covers the full theoretical range of their child list * - the range between their cpos and the cpos of the record * immediately to their right. */ left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { BUG_ON(right_child_el->l_tree_depth); BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); } left_clusters -= le32_to_cpu(left_rec->e_cpos); left_rec->e_int_clusters = cpu_to_le32(left_clusters); /* * Calculate the rightmost cluster count boundary before * moving cpos - we will need to adjust clusters after * updating e_cpos to keep the same highest cluster count. */ right_end = le32_to_cpu(right_rec->e_cpos); right_end += le32_to_cpu(right_rec->e_int_clusters); right_rec->e_cpos = left_rec->e_cpos; le32_add_cpu(&right_rec->e_cpos, left_clusters); right_end -= le32_to_cpu(right_rec->e_cpos); right_rec->e_int_clusters = cpu_to_le32(right_end); } /* * Adjust the adjacent root node records involved in a * rotation. left_el_blkno is passed in as a key so that we can easily * find it's index in the root list. */ static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, struct ocfs2_extent_list *left_el, struct ocfs2_extent_list *right_el, u64 left_el_blkno) { int i; BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= le16_to_cpu(left_el->l_tree_depth)); for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) break; } /* * The path walking code should have never returned a root and * two paths which are not adjacent. */ BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); ocfs2_adjust_adjacent_records(&root_el->l_recs[i], &root_el->l_recs[i + 1], right_el); } /* * We've changed a leaf block (in right_path) and need to reflect that * change back up the subtree. * * This happens in multiple places: * - When we've moved an extent record from the left path leaf to the right * path leaf to make room for an empty extent in the left path leaf. * - When our insert into the right path leaf is at the leftmost edge * and requires an update of the path immediately to it's left. This * can occur at the end of some types of rotation and appending inserts. * - When we've adjusted the last extent record in the left path leaf and the * 1st extent record in the right path leaf during cross extent block merge. */ static void ocfs2_complete_edge_insert(handle_t *handle, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index) { int i, idx; struct ocfs2_extent_list *el, *left_el, *right_el; struct ocfs2_extent_rec *left_rec, *right_rec; struct buffer_head *root_bh; /* * Update the counts and position values within all the * interior nodes to reflect the leaf rotation we just did. * * The root node is handled below the loop. * * We begin the loop with right_el and left_el pointing to the * leaf lists and work our way up. * * NOTE: within this loop, left_el and right_el always refer * to the *child* lists. */ left_el = path_leaf_el(left_path); right_el = path_leaf_el(right_path); for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { trace_ocfs2_complete_edge_insert(i); /* * One nice property of knowing that all of these * nodes are below the root is that we only deal with * the leftmost right node record and the rightmost * left node record. */ el = left_path->p_node[i].el; idx = le16_to_cpu(left_el->l_next_free_rec) - 1; left_rec = &el->l_recs[idx]; el = right_path->p_node[i].el; right_rec = &el->l_recs[0]; ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); ocfs2_journal_dirty(handle, left_path->p_node[i].bh); ocfs2_journal_dirty(handle, right_path->p_node[i].bh); /* * Setup our list pointers now so that the current * parents become children in the next iteration. */ left_el = left_path->p_node[i].el; right_el = right_path->p_node[i].el; } /* * At the root node, adjust the two adjacent records which * begin our path to the leaves. */ el = left_path->p_node[subtree_index].el; left_el = left_path->p_node[subtree_index + 1].el; right_el = right_path->p_node[subtree_index + 1].el; ocfs2_adjust_root_records(el, left_el, right_el, left_path->p_node[subtree_index + 1].bh->b_blocknr); root_bh = left_path->p_node[subtree_index].bh; ocfs2_journal_dirty(handle, root_bh); } static int ocfs2_rotate_subtree_right(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index) { int ret, i; struct buffer_head *right_leaf_bh; struct buffer_head *left_leaf_bh = NULL; struct buffer_head *root_bh; struct ocfs2_extent_list *right_el, *left_el; struct ocfs2_extent_rec move_rec; left_leaf_bh = path_leaf_bh(left_path); left_el = path_leaf_el(left_path); if (left_el->l_next_free_rec != left_el->l_count) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)left_leaf_bh->b_blocknr, le16_to_cpu(left_el->l_next_free_rec)); return -EROFS; } /* * This extent block may already have an empty record, so we * return early if so. */ if (ocfs2_is_empty_extent(&left_el->l_recs[0])) return 0; root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for(i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } right_leaf_bh = path_leaf_bh(right_path); right_el = path_leaf_el(right_path); /* This is a code error, not a disk corruption. */ mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " "because rightmost leaf block %llu is empty\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)right_leaf_bh->b_blocknr); ocfs2_create_empty_extent(right_el); ocfs2_journal_dirty(handle, right_leaf_bh); /* Do the copy now. */ i = le16_to_cpu(left_el->l_next_free_rec) - 1; move_rec = left_el->l_recs[i]; right_el->l_recs[0] = move_rec; /* * Clear out the record we just copied and shift everything * over, leaving an empty extent in the left leaf. * * We temporarily subtract from next_free_rec so that the * shift will lose the tail record (which is now defunct). */ le16_add_cpu(&left_el->l_next_free_rec, -1); ocfs2_shift_records_right(left_el); memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&left_el->l_next_free_rec, 1); ocfs2_journal_dirty(handle, left_leaf_bh); ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); out: return ret; } /* * Given a full path, determine what cpos value would return us a path * containing the leaf immediately to the left of the current one. * * Will return zero if the path passed in is already the leftmost path. */ int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos) { int i, j, ret = 0; u64 blkno; struct ocfs2_extent_list *el; BUG_ON(path->p_tree_depth == 0); *cpos = 0; blkno = path_leaf_bh(path)->b_blocknr; /* Start at the tree node just above the leaf and work our way up. */ i = path->p_tree_depth - 1; while (i >= 0) { el = path->p_node[i].el; /* * Find the extent record just before the one in our * path. */ for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { if (j == 0) { if (i == 0) { /* * We've determined that the * path specified is already * the leftmost one - return a * cpos of zero. */ goto out; } /* * The leftmost record points to our * leaf - we need to travel up the * tree one level. */ goto next_node; } *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); *cpos = *cpos + ocfs2_rec_clusters(el, &el->l_recs[j - 1]); *cpos = *cpos - 1; goto out; } } /* * If we got here, we never found a valid node where * the tree indicated one should be. */ ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", (unsigned long long)blkno); ret = -EROFS; goto out; next_node: blkno = path->p_node[i].bh->b_blocknr; i--; } out: return ret; } /* * Extend the transaction by enough credits to complete the rotation, * and still leave at least the original number of credits allocated * to this transaction. */ static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, int op_credits, struct ocfs2_path *path) { int ret = 0; int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; if (jbd2_handle_buffer_credits(handle) < credits) ret = ocfs2_extend_trans(handle, credits - jbd2_handle_buffer_credits(handle)); return ret; } /* * Trap the case where we're inserting into the theoretical range past * the _actual_ left leaf range. Otherwise, we'll rotate a record * whose cpos is less than ours into the right leaf. * * It's only necessary to look at the rightmost record of the left * leaf because the logic that calls us should ensure that the * theoretical ranges in the path components above the leaves are * correct. */ static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, u32 insert_cpos) { struct ocfs2_extent_list *left_el; struct ocfs2_extent_rec *rec; int next_free; left_el = path_leaf_el(left_path); next_free = le16_to_cpu(left_el->l_next_free_rec); rec = &left_el->l_recs[next_free - 1]; if (insert_cpos > le32_to_cpu(rec->e_cpos)) return 1; return 0; } static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) { int next_free = le16_to_cpu(el->l_next_free_rec); unsigned int range; struct ocfs2_extent_rec *rec; if (next_free == 0) return 0; rec = &el->l_recs[0]; if (ocfs2_is_empty_extent(rec)) { /* Empty list. */ if (next_free == 1) return 0; rec = &el->l_recs[1]; } range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) return 1; return 0; } /* * Rotate all the records in a btree right one record, starting at insert_cpos. * * The path to the rightmost leaf should be passed in. * * The array is assumed to be large enough to hold an entire path (tree depth). * * Upon successful return from this function: * * - The 'right_path' array will contain a path to the leaf block * whose range contains e_cpos. * - That leaf block will have a single empty extent in list index 0. * - In the case that the rotation requires a post-insert update, * *ret_left_path will contain a valid path which can be passed to * ocfs2_insert_path(). */ static int ocfs2_rotate_tree_right(handle_t *handle, struct ocfs2_extent_tree *et, enum ocfs2_split_type split, u32 insert_cpos, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); u32 cpos; struct ocfs2_path *left_path = NULL; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); *ret_left_path = NULL; left_path = ocfs2_new_path_from_path(right_path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_rotate_tree_right( (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), insert_cpos, cpos); /* * What we want to do here is: * * 1) Start with the rightmost path. * * 2) Determine a path to the leaf block directly to the left * of that leaf. * * 3) Determine the 'subtree root' - the lowest level tree node * which contains a path to both leaves. * * 4) Rotate the subtree. * * 5) Find the next subtree by considering the left path to be * the new right path. * * The check at the top of this while loop also accepts * insert_cpos == cpos because cpos is only a _theoretical_ * value to get us the left path - insert_cpos might very well * be filling that hole. * * Stop at a cpos of '0' because we either started at the * leftmost branch (i.e., a tree with one branch and a * rotation inside of it), or we've gone as far as we can in * rotating subtrees. */ while (cpos && insert_cpos <= cpos) { trace_ocfs2_rotate_tree_right( (unsigned long long) ocfs2_metadata_cache_owner(et->et_ci), insert_cpos, cpos); ret = ocfs2_find_path(et->et_ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } mlog_bug_on_msg(path_leaf_bh(left_path) == path_leaf_bh(right_path), "Owner %llu: error during insert of %u " "(left path cpos %u) results in two identical " "paths ending at %llu\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), insert_cpos, cpos, (unsigned long long) path_leaf_bh(left_path)->b_blocknr); if (split == SPLIT_NONE && ocfs2_rotate_requires_path_adjustment(left_path, insert_cpos)) { /* * We've rotated the tree as much as we * should. The rest is up to * ocfs2_insert_path() to complete, after the * record insertion. We indicate this * situation by returning the left path. * * The reason we don't adjust the records here * before the record insert is that an error * later might break the rule where a parent * record e_cpos will reflect the actual * e_cpos of the 1st nonempty record of the * child list. */ *ret_left_path = left_path; goto out_ret_path; } start = ocfs2_find_subtree_root(et, left_path, right_path); trace_ocfs2_rotate_subtree(start, (unsigned long long) right_path->p_node[start].bh->b_blocknr, right_path->p_tree_depth); ret = ocfs2_extend_rotate_transaction(handle, start, orig_credits, right_path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_subtree_right(handle, et, left_path, right_path, start); if (ret) { mlog_errno(ret); goto out; } if (split != SPLIT_NONE && ocfs2_leftmost_rec_contains(path_leaf_el(right_path), insert_cpos)) { /* * A rotate moves the rightmost left leaf * record over to the leftmost right leaf * slot. If we're doing an extent split * instead of a real insert, then we have to * check that the extent to be split wasn't * just moved over. If it was, then we can * exit here, passing left_path back - * ocfs2_split_extent() is smart enough to * search both leaves. */ *ret_left_path = left_path; goto out_ret_path; } /* * There is no need to re-read the next right path * as we know that it'll be our current left * path. Optimize by copying values instead. */ ocfs2_mv_path(right_path, left_path); ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); if (ret) { mlog_errno(ret); goto out; } } out: ocfs2_free_path(left_path); out_ret_path: return ret; } static int ocfs2_update_edge_lengths(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path) { int i, idx, ret; struct ocfs2_extent_rec *rec; struct ocfs2_extent_list *el; struct ocfs2_extent_block *eb; u32 range; ret = ocfs2_journal_access_path(et->et_ci, handle, path); if (ret) { mlog_errno(ret); goto out; } /* Path should always be rightmost. */ eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; BUG_ON(eb->h_next_leaf_blk != 0ULL); el = &eb->h_list; BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); idx = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[idx]; range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); for (i = 0; i < path->p_tree_depth; i++) { el = path->p_node[i].el; idx = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[idx]; rec->e_int_clusters = cpu_to_le32(range); le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); ocfs2_journal_dirty(handle, path->p_node[i].bh); } out: return ret; } static void ocfs2_unlink_path(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_path *path, int unlink_start) { int ret, i; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh; for(i = unlink_start; i < path_num_items(path); i++) { bh = path->p_node[i].bh; eb = (struct ocfs2_extent_block *)bh->b_data; /* * Not all nodes might have had their final count * decremented by the caller - handle this here. */ el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) > 1) { mlog(ML_ERROR, "Inode %llu, attempted to remove extent block " "%llu with %u records\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)le64_to_cpu(eb->h_blkno), le16_to_cpu(el->l_next_free_rec)); ocfs2_journal_dirty(handle, bh); ocfs2_remove_from_cache(et->et_ci, bh); continue; } el->l_next_free_rec = 0; memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); ocfs2_journal_dirty(handle, bh); ret = ocfs2_cache_extent_block_free(dealloc, eb); if (ret) mlog_errno(ret); ocfs2_remove_from_cache(et->et_ci, bh); } } static void ocfs2_unlink_subtree(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index, struct ocfs2_cached_dealloc_ctxt *dealloc) { int i; struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; struct ocfs2_extent_block *eb; eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) if (root_el->l_recs[i].e_blkno == eb->h_blkno) break; BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&root_el->l_next_free_rec, -1); eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; eb->h_next_leaf_blk = 0; ocfs2_journal_dirty(handle, root_bh); ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); ocfs2_unlink_path(handle, et, dealloc, right_path, subtree_index + 1); } static int ocfs2_rotate_subtree_left(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index, struct ocfs2_cached_dealloc_ctxt *dealloc, int *deleted) { int ret, i, del_right_subtree = 0, right_has_empty = 0; struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; struct ocfs2_extent_block *eb; *deleted = 0; right_leaf_el = path_leaf_el(right_path); left_leaf_el = path_leaf_el(left_path); root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) return 0; eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { /* * It's legal for us to proceed if the right leaf is * the rightmost one and it has an empty extent. There * are two cases to handle - whether the leaf will be * empty after removal or not. If the leaf isn't empty * then just remove the empty extent up front. The * next block will handle empty leaves by flagging * them for unlink. * * Non rightmost leaves will throw -EAGAIN and the * caller can manually move the subtree and retry. */ if (eb->h_next_leaf_blk != 0ULL) return -EAGAIN; if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { ret = ocfs2_journal_access_eb(handle, et->et_ci, path_leaf_bh(right_path), OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ocfs2_remove_empty_extent(right_leaf_el); } else right_has_empty = 1; } if (eb->h_next_leaf_blk == 0ULL && le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { /* * We have to update i_last_eb_blk during the meta * data delete. */ ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } del_right_subtree = 1; } /* * Getting here with an empty extent in the right path implies * that it's the rightmost path and will be deleted. */ BUG_ON(right_has_empty && !del_right_subtree); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for(i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } if (!right_has_empty) { /* * Only do this if we're moving a real * record. Otherwise, the action is delayed until * after removal of the right path in which case we * can do a simple shift to remove the empty extent. */ ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); memset(&right_leaf_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } if (eb->h_next_leaf_blk == 0ULL) { /* * Move recs over to get rid of empty extent, decrease * next_free. This is allowed to remove the last * extent in our leaf (setting l_next_free_rec to * zero) - the delete code below won't care. */ ocfs2_remove_empty_extent(right_leaf_el); } ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); if (del_right_subtree) { ocfs2_unlink_subtree(handle, et, left_path, right_path, subtree_index, dealloc); ret = ocfs2_update_edge_lengths(handle, et, left_path); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); /* * Removal of the extent in the left leaf was skipped * above so we could delete the right path * 1st. */ if (right_has_empty) ocfs2_remove_empty_extent(left_leaf_el); ocfs2_journal_dirty(handle, et_root_bh); *deleted = 1; } else ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); out: return ret; } /* * Given a full path, determine what cpos value would return us a path * containing the leaf immediately to the right of the current one. * * Will return zero if the path passed in is already the rightmost path. * * This looks similar, but is subtly different to * ocfs2_find_cpos_for_left_leaf(). */ int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos) { int i, j, ret = 0; u64 blkno; struct ocfs2_extent_list *el; *cpos = 0; if (path->p_tree_depth == 0) return 0; blkno = path_leaf_bh(path)->b_blocknr; /* Start at the tree node just above the leaf and work our way up. */ i = path->p_tree_depth - 1; while (i >= 0) { int next_free; el = path->p_node[i].el; /* * Find the extent record just after the one in our * path. */ next_free = le16_to_cpu(el->l_next_free_rec); for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { if (j == (next_free - 1)) { if (i == 0) { /* * We've determined that the * path specified is already * the rightmost one - return a * cpos of zero. */ goto out; } /* * The rightmost record points to our * leaf - we need to travel up the * tree one level. */ goto next_node; } *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); goto out; } } /* * If we got here, we never found a valid node where * the tree indicated one should be. */ ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", (unsigned long long)blkno); ret = -EROFS; goto out; next_node: blkno = path->p_node[i].bh->b_blocknr; i--; } out: return ret; } static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path) { int ret; struct buffer_head *bh = path_leaf_bh(path); struct ocfs2_extent_list *el = path_leaf_el(path); if (!ocfs2_is_empty_extent(&el->l_recs[0])) return 0; ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, path_num_items(path) - 1); if (ret) { mlog_errno(ret); goto out; } ocfs2_remove_empty_extent(el); ocfs2_journal_dirty(handle, bh); out: return ret; } static int __ocfs2_rotate_tree_left(handle_t *handle, struct ocfs2_extent_tree *et, int orig_credits, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_path **empty_extent_path) { int ret, subtree_root, deleted; u32 right_cpos; struct ocfs2_path *left_path = NULL; struct ocfs2_path *right_path = NULL; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) return 0; *empty_extent_path = NULL; ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); if (ret) { mlog_errno(ret); goto out; } left_path = ocfs2_new_path_from_path(path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ocfs2_cp_path(left_path, path); right_path = ocfs2_new_path_from_path(path); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } while (right_cpos) { ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); if (ret) { mlog_errno(ret); goto out; } subtree_root = ocfs2_find_subtree_root(et, left_path, right_path); trace_ocfs2_rotate_subtree(subtree_root, (unsigned long long) right_path->p_node[subtree_root].bh->b_blocknr, right_path->p_tree_depth); ret = ocfs2_extend_rotate_transaction(handle, 0, orig_credits, left_path); if (ret) { mlog_errno(ret); goto out; } /* * Caller might still want to make changes to the * tree root, so re-add it to the journal here. */ ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 0); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_subtree_left(handle, et, left_path, right_path, subtree_root, dealloc, &deleted); if (ret == -EAGAIN) { /* * The rotation has to temporarily stop due to * the right subtree having an empty * extent. Pass it back to the caller for a * fixup. */ *empty_extent_path = right_path; right_path = NULL; goto out; } if (ret) { mlog_errno(ret); goto out; } /* * The subtree rotate might have removed records on * the rightmost edge. If so, then rotation is * complete. */ if (deleted) break; ocfs2_mv_path(left_path, right_path); ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, &right_cpos); if (ret) { mlog_errno(ret); goto out; } } out: ocfs2_free_path(right_path); ocfs2_free_path(left_path); return ret; } static int ocfs2_remove_rightmost_path(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, subtree_index; u32 cpos; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; ret = ocfs2_et_sanity_check(et); if (ret) goto out; ret = ocfs2_journal_access_path(et->et_ci, handle, path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), path, &cpos); if (ret) { mlog_errno(ret); goto out; } if (cpos) { /* * We have a path to the left of this one - it needs * an update too. */ left_path = ocfs2_new_path_from_path(path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); if (ret) { mlog_errno(ret); goto out; } subtree_index = ocfs2_find_subtree_root(et, left_path, path); ocfs2_unlink_subtree(handle, et, left_path, path, subtree_index, dealloc); ret = ocfs2_update_edge_lengths(handle, et, left_path); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); } else { /* * 'path' is also the leftmost path which * means it must be the only one. This gets * handled differently because we want to * revert the root back to having extents * in-line. */ ocfs2_unlink_path(handle, et, dealloc, path, 1); el = et->et_root_el; el->l_tree_depth = 0; el->l_next_free_rec = 0; memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); ocfs2_et_set_last_eb_blk(et, 0); } ocfs2_journal_dirty(handle, path_root_bh(path)); out: ocfs2_free_path(left_path); return ret; } static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc) { handle_t *handle; int ret; int credits = path->p_tree_depth * 2 + 1; handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); return ret; } ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); if (ret) mlog_errno(ret); ocfs2_commit_trans(osb, handle); return ret; } /* * Left rotation of btree records. * * In many ways, this is (unsurprisingly) the opposite of right * rotation. We start at some non-rightmost path containing an empty * extent in the leaf block. The code works its way to the rightmost * path by rotating records to the left in every subtree. * * This is used by any code which reduces the number of extent records * in a leaf. After removal, an empty record should be placed in the * leftmost list position. * * This won't handle a length update of the rightmost path records if * the rightmost tree leaf record is removed so the caller is * responsible for detecting and correcting that. */ static int ocfs2_rotate_tree_left(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, orig_credits = jbd2_handle_buffer_credits(handle); struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; el = path_leaf_el(path); if (!ocfs2_is_empty_extent(&el->l_recs[0])) return 0; if (path->p_tree_depth == 0) { rightmost_no_delete: /* * Inline extents. This is trivially handled, so do * it up front. */ ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); if (ret) mlog_errno(ret); goto out; } /* * Handle rightmost branch now. There's several cases: * 1) simple rotation leaving records in there. That's trivial. * 2) rotation requiring a branch delete - there's no more * records left. Two cases of this: * a) There are branches to the left. * b) This is also the leftmost (the only) branch. * * 1) is handled via ocfs2_rotate_rightmost_leaf_left() * 2a) we need the left branch so that we can update it with the unlink * 2b) we need to bring the root back to inline extents. */ eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; el = &eb->h_list; if (eb->h_next_leaf_blk == 0) { /* * This gets a bit tricky if we're going to delete the * rightmost path. Get the other cases out of the way * 1st. */ if (le16_to_cpu(el->l_next_free_rec) > 1) goto rightmost_no_delete; if (le16_to_cpu(el->l_next_free_rec) == 0) { ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has empty extent block at %llu\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)le64_to_cpu(eb->h_blkno)); goto out; } /* * XXX: The caller can not trust "path" any more after * this as it will have been deleted. What do we do? * * In theory the rotate-for-merge code will never get * here because it'll always ask for a rotate in a * nonempty list. */ ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); if (ret) mlog_errno(ret); goto out; } /* * Now we can loop, remembering the path we get from -EAGAIN * and restarting from there. */ try_rotate: ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, dealloc, &restart_path); if (ret && ret != -EAGAIN) { mlog_errno(ret); goto out; } while (ret == -EAGAIN) { tmp_path = restart_path; restart_path = NULL; ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, tmp_path, dealloc, &restart_path); if (ret && ret != -EAGAIN) { mlog_errno(ret); goto out; } ocfs2_free_path(tmp_path); tmp_path = NULL; if (ret == 0) goto try_rotate; } out: ocfs2_free_path(tmp_path); ocfs2_free_path(restart_path); return ret; } static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, int index) { struct ocfs2_extent_rec *rec = &el->l_recs[index]; unsigned int size; if (rec->e_leaf_clusters == 0) { /* * We consumed all of the merged-from record. An empty * extent cannot exist anywhere but the 1st array * position, so move things over if the merged-from * record doesn't occupy that position. * * This creates a new empty extent so the caller * should be smart enough to have removed any existing * ones. */ if (index > 0) { BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); size = index * sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[1], &el->l_recs[0], size); } /* * Always memset - the caller doesn't check whether it * created an empty extent, so there could be junk in * the other fields. */ memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } } static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path **ret_right_path) { int ret; u32 right_cpos; struct ocfs2_path *right_path = NULL; struct ocfs2_extent_list *left_el; *ret_right_path = NULL; /* This function shouldn't be called for non-trees. */ BUG_ON(left_path->p_tree_depth == 0); left_el = path_leaf_el(left_path); BUG_ON(left_el->l_next_free_rec != left_el->l_count); ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), left_path, &right_cpos); if (ret) { mlog_errno(ret); goto out; } /* This function shouldn't be called for the rightmost leaf. */ BUG_ON(right_cpos == 0); right_path = ocfs2_new_path_from_path(left_path); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); if (ret) { mlog_errno(ret); goto out; } *ret_right_path = right_path; out: if (ret) ocfs2_free_path(right_path); return ret; } /* * Remove split_rec clusters from the record at index and merge them * onto the beginning of the record "next" to it. * For index < l_count - 1, the next means the extent rec at index + 1. * For index == l_count - 1, the "next" means the 1st extent rec of the * next extent block. */ static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *split_rec, int index) { int ret, next_free, i; unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); struct ocfs2_extent_rec *left_rec; struct ocfs2_extent_rec *right_rec; struct ocfs2_extent_list *right_el; struct ocfs2_path *right_path = NULL; int subtree_index = 0; struct ocfs2_extent_list *el = path_leaf_el(left_path); struct buffer_head *bh = path_leaf_bh(left_path); struct buffer_head *root_bh = NULL; BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); left_rec = &el->l_recs[index]; if (index == le16_to_cpu(el->l_next_free_rec) - 1 && le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { /* we meet with a cross extent block merge. */ ret = ocfs2_get_right_path(et, left_path, &right_path); if (ret) { mlog_errno(ret); return ret; } right_el = path_leaf_el(right_path); next_free = le16_to_cpu(right_el->l_next_free_rec); BUG_ON(next_free <= 0); right_rec = &right_el->l_recs[0]; if (ocfs2_is_empty_extent(right_rec)) { BUG_ON(next_free <= 1); right_rec = &right_el->l_recs[1]; } BUG_ON(le32_to_cpu(left_rec->e_cpos) + le16_to_cpu(left_rec->e_leaf_clusters) != le32_to_cpu(right_rec->e_cpos)); subtree_index = ocfs2_find_subtree_root(et, left_path, right_path); ret = ocfs2_extend_rotate_transaction(handle, subtree_index, jbd2_handle_buffer_credits(handle), right_path); if (ret) { mlog_errno(ret); goto out; } root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for (i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } } else { BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); right_rec = &el->l_recs[index + 1]; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, path_num_items(left_path) - 1); if (ret) { mlog_errno(ret); goto out; } le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); le32_add_cpu(&right_rec->e_cpos, -split_clusters); le64_add_cpu(&right_rec->e_blkno, -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), split_clusters)); le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); ocfs2_cleanup_merge(el, index); ocfs2_journal_dirty(handle, bh); if (right_path) { ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); } out: ocfs2_free_path(right_path); return ret; } static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret; u32 left_cpos; struct ocfs2_path *left_path = NULL; *ret_left_path = NULL; /* This function shouldn't be called for non-trees. */ BUG_ON(right_path->p_tree_depth == 0); ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), right_path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } /* This function shouldn't be called for the leftmost leaf. */ BUG_ON(left_cpos == 0); left_path = ocfs2_new_path_from_path(right_path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } *ret_left_path = left_path; out: if (ret) ocfs2_free_path(left_path); return ret; } /* * Remove split_rec clusters from the record at index and merge them * onto the tail of the record "before" it. * For index > 0, the "before" means the extent rec at index - 1. * * For index == 0, the "before" means the last record of the previous * extent block. And there is also a situation that we may need to * remove the rightmost leaf extent block in the right_path and change * the right path to indicate the new rightmost path. */ static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *split_rec, struct ocfs2_cached_dealloc_ctxt *dealloc, int index) { int ret, i, subtree_index = 0, has_empty_extent = 0; unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); struct ocfs2_extent_rec *left_rec; struct ocfs2_extent_rec *right_rec; struct ocfs2_extent_list *el = path_leaf_el(right_path); struct buffer_head *bh = path_leaf_bh(right_path); struct buffer_head *root_bh = NULL; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *left_el; BUG_ON(index < 0); right_rec = &el->l_recs[index]; if (index == 0) { /* we meet with a cross extent block merge. */ ret = ocfs2_get_left_path(et, right_path, &left_path); if (ret) { mlog_errno(ret); return ret; } left_el = path_leaf_el(left_path); BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != le16_to_cpu(left_el->l_count)); left_rec = &left_el->l_recs[ le16_to_cpu(left_el->l_next_free_rec) - 1]; BUG_ON(le32_to_cpu(left_rec->e_cpos) + le16_to_cpu(left_rec->e_leaf_clusters) != le32_to_cpu(split_rec->e_cpos)); subtree_index = ocfs2_find_subtree_root(et, left_path, right_path); ret = ocfs2_extend_rotate_transaction(handle, subtree_index, jbd2_handle_buffer_credits(handle), left_path); if (ret) { mlog_errno(ret); goto out; } root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for (i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } } else { left_rec = &el->l_recs[index - 1]; if (ocfs2_is_empty_extent(&el->l_recs[0])) has_empty_extent = 1; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, path_num_items(right_path) - 1); if (ret) { mlog_errno(ret); goto out; } if (has_empty_extent && index == 1) { /* * The easy case - we can just plop the record right in. */ *left_rec = *split_rec; } else le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); le32_add_cpu(&right_rec->e_cpos, split_clusters); le64_add_cpu(&right_rec->e_blkno, ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), split_clusters)); le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); ocfs2_cleanup_merge(el, index); ocfs2_journal_dirty(handle, bh); if (left_path) { ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); /* * In the situation that the right_rec is empty and the extent * block is empty also, ocfs2_complete_edge_insert can't handle * it and we need to delete the right extent block. */ if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && le16_to_cpu(el->l_next_free_rec) == 1) { /* extend credit for ocfs2_remove_rightmost_path */ ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), right_path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_remove_rightmost_path(handle, et, right_path, dealloc); if (ret) { mlog_errno(ret); goto out; } /* Now the rightmost extent block has been deleted. * So we use the new rightmost path. */ ocfs2_mv_path(right_path, left_path); left_path = NULL; } else ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); } out: ocfs2_free_path(left_path); return ret; } static int ocfs2_try_to_merge_extent(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, int split_index, struct ocfs2_extent_rec *split_rec, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_merge_ctxt *ctxt) { int ret = 0; struct ocfs2_extent_list *el = path_leaf_el(path); struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; BUG_ON(ctxt->c_contig_type == CONTIG_NONE); if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { /* extend credit for ocfs2_remove_rightmost_path */ ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), path); if (ret) { mlog_errno(ret); goto out; } /* * The merge code will need to create an empty * extent to take the place of the newly * emptied slot. Remove any pre-existing empty * extents - having more than one in a leaf is * illegal. */ ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } split_index--; rec = &el->l_recs[split_index]; } if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { /* * Left-right contig implies this. */ BUG_ON(!ctxt->c_split_covers_rec); /* * Since the leftright insert always covers the entire * extent, this call will delete the insert record * entirely, resulting in an empty extent record added to * the extent block. * * Since the adding of an empty extent shifts * everything back to the right, there's no need to * update split_index here. * * When the split_index is zero, we need to merge it to the * prevoius extent block. It is more efficient and easier * if we do merge_right first and merge_left later. */ ret = ocfs2_merge_rec_right(path, handle, et, split_rec, split_index); if (ret) { mlog_errno(ret); goto out; } /* * We can only get this from logic error above. */ BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); /* extend credit for ocfs2_remove_rightmost_path */ ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), path); if (ret) { mlog_errno(ret); goto out; } /* The merge left us with an empty extent, remove it. */ ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } rec = &el->l_recs[split_index]; /* * Note that we don't pass split_rec here on purpose - * we've merged it into the rec already. */ ret = ocfs2_merge_rec_left(path, handle, et, rec, dealloc, split_index); if (ret) { mlog_errno(ret); goto out; } /* extend credit for ocfs2_remove_rightmost_path */ ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); /* * Error from this last rotate is not critical, so * print but don't bubble it up. */ if (ret) mlog_errno(ret); ret = 0; } else { /* * Merge a record to the left or right. * * 'contig_type' is relative to the existing record, * so for example, if we're "right contig", it's to * the record on the left (hence the left merge). */ if (ctxt->c_contig_type == CONTIG_RIGHT) { ret = ocfs2_merge_rec_left(path, handle, et, split_rec, dealloc, split_index); if (ret) { mlog_errno(ret); goto out; } } else { ret = ocfs2_merge_rec_right(path, handle, et, split_rec, split_index); if (ret) { mlog_errno(ret); goto out; } } if (ctxt->c_split_covers_rec) { /* extend credit for ocfs2_remove_rightmost_path */ ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), path); if (ret) { mlog_errno(ret); ret = 0; goto out; } /* * The merge may have left an empty extent in * our leaf. Try to rotate it away. */ ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) mlog_errno(ret); ret = 0; } } out: return ret; } static void ocfs2_subtract_from_rec(struct super_block *sb, enum ocfs2_split_type split, struct ocfs2_extent_rec *rec, struct ocfs2_extent_rec *split_rec) { u64 len_blocks; len_blocks = ocfs2_clusters_to_blocks(sb, le16_to_cpu(split_rec->e_leaf_clusters)); if (split == SPLIT_LEFT) { /* * Region is on the left edge of the existing * record. */ le32_add_cpu(&rec->e_cpos, le16_to_cpu(split_rec->e_leaf_clusters)); le64_add_cpu(&rec->e_blkno, len_blocks); le16_add_cpu(&rec->e_leaf_clusters, -le16_to_cpu(split_rec->e_leaf_clusters)); } else { /* * Region is on the right edge of the existing * record. */ le16_add_cpu(&rec->e_leaf_clusters, -le16_to_cpu(split_rec->e_leaf_clusters)); } } /* * Do the final bits of extent record insertion at the target leaf * list. If this leaf is part of an allocation tree, it is assumed * that the tree above has been prepared. */ static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *insert_rec, struct ocfs2_extent_list *el, struct ocfs2_insert_type *insert) { int i = insert->ins_contig_index; unsigned int range; struct ocfs2_extent_rec *rec; BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); if (insert->ins_split != SPLIT_NONE) { i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); BUG_ON(i == -1); rec = &el->l_recs[i]; ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), insert->ins_split, rec, insert_rec); goto rotate; } /* * Contiguous insert - either left or right. */ if (insert->ins_contig != CONTIG_NONE) { rec = &el->l_recs[i]; if (insert->ins_contig == CONTIG_LEFT) { rec->e_blkno = insert_rec->e_blkno; rec->e_cpos = insert_rec->e_cpos; } le16_add_cpu(&rec->e_leaf_clusters, le16_to_cpu(insert_rec->e_leaf_clusters)); return; } /* * Handle insert into an empty leaf. */ if (le16_to_cpu(el->l_next_free_rec) == 0 || ((le16_to_cpu(el->l_next_free_rec) == 1) && ocfs2_is_empty_extent(&el->l_recs[0]))) { el->l_recs[0] = *insert_rec; el->l_next_free_rec = cpu_to_le16(1); return; } /* * Appending insert. */ if (insert->ins_appending == APPEND_TAIL) { i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; range = le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters); BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= le16_to_cpu(el->l_count), "owner %llu, depth %u, count %u, next free %u, " "rec.cpos %u, rec.clusters %u, " "insert.cpos %u, insert.clusters %u\n", ocfs2_metadata_cache_owner(et->et_ci), le16_to_cpu(el->l_tree_depth), le16_to_cpu(el->l_count), le16_to_cpu(el->l_next_free_rec), le32_to_cpu(el->l_recs[i].e_cpos), le16_to_cpu(el->l_recs[i].e_leaf_clusters), le32_to_cpu(insert_rec->e_cpos), le16_to_cpu(insert_rec->e_leaf_clusters)); i++; el->l_recs[i] = *insert_rec; le16_add_cpu(&el->l_next_free_rec, 1); return; } rotate: /* * Ok, we have to rotate. * * At this point, it is safe to assume that inserting into an * empty leaf and appending to a leaf have both been handled * above. * * This leaf needs to have space, either by the empty 1st * extent record, or by virtue of an l_next_free_rec < l_count. */ ocfs2_rotate_leaf(el, insert_rec); } static void ocfs2_adjust_rightmost_records(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_extent_rec *insert_rec) { int i, next_free; struct buffer_head *bh; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; /* * Update everything except the leaf block. */ for (i = 0; i < path->p_tree_depth; i++) { bh = path->p_node[i].bh; el = path->p_node[i].el; next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has a bad extent list\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); return; } rec = &el->l_recs[next_free - 1]; rec->e_int_clusters = insert_rec->e_cpos; le32_add_cpu(&rec->e_int_clusters, le16_to_cpu(insert_rec->e_leaf_clusters)); le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); ocfs2_journal_dirty(handle, bh); } } static int ocfs2_append_rec_to_path(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *insert_rec, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret, next_free; struct ocfs2_extent_list *el; struct ocfs2_path *left_path = NULL; *ret_left_path = NULL; /* * This shouldn't happen for non-trees. The extent rec cluster * count manipulation below only works for interior nodes. */ BUG_ON(right_path->p_tree_depth == 0); /* * If our appending insert is at the leftmost edge of a leaf, * then we might need to update the rightmost records of the * neighboring path. */ el = path_leaf_el(right_path); next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0 || (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { u32 left_cpos; ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), right_path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_append_rec_to_path( (unsigned long long) ocfs2_metadata_cache_owner(et->et_ci), le32_to_cpu(insert_rec->e_cpos), left_cpos); /* * No need to worry if the append is already in the * leftmost leaf. */ if (left_cpos) { left_path = ocfs2_new_path_from_path(right_path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_insert_path() will pass the left_path to the * journal for us. */ } } ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); if (ret) { mlog_errno(ret); goto out; } ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); *ret_left_path = left_path; ret = 0; out: if (ret != 0) ocfs2_free_path(left_path); return ret; } static void ocfs2_split_record(struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, struct ocfs2_extent_rec *split_rec, enum ocfs2_split_type split) { int index; u32 cpos = le32_to_cpu(split_rec->e_cpos); struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; struct ocfs2_extent_rec *rec, *tmprec; right_el = path_leaf_el(right_path); if (left_path) left_el = path_leaf_el(left_path); el = right_el; insert_el = right_el; index = ocfs2_search_extent_list(el, cpos); if (index != -1) { if (index == 0 && left_path) { BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); /* * This typically means that the record * started in the left path but moved to the * right as a result of rotation. We either * move the existing record to the left, or we * do the later insert there. * * In this case, the left path should always * exist as the rotate code will have passed * it back for a post-insert update. */ if (split == SPLIT_LEFT) { /* * It's a left split. Since we know * that the rotate code gave us an * empty extent in the left path, we * can just do the insert there. */ insert_el = left_el; } else { /* * Right split - we have to move the * existing record over to the left * leaf. The insert will be into the * newly created empty extent in the * right leaf. */ tmprec = &right_el->l_recs[index]; ocfs2_rotate_leaf(left_el, tmprec); el = left_el; memset(tmprec, 0, sizeof(*tmprec)); index = ocfs2_search_extent_list(left_el, cpos); BUG_ON(index == -1); } } } else { BUG_ON(!left_path); BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); /* * Left path is easy - we can just allow the insert to * happen. */ el = left_el; insert_el = left_el; index = ocfs2_search_extent_list(el, cpos); BUG_ON(index == -1); } rec = &el->l_recs[index]; ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), split, rec, split_rec); ocfs2_rotate_leaf(insert_el, split_rec); } /* * This function only does inserts on an allocation b-tree. For tree * depth = 0, ocfs2_insert_at_leaf() is called directly. * * right_path is the path we want to do the actual insert * in. left_path should only be passed in if we need to update that * portion of the tree after an edge insert. */ static int ocfs2_insert_path(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *insert) { int ret, subtree_index; struct buffer_head *leaf_bh = path_leaf_bh(right_path); if (left_path) { /* * There's a chance that left_path got passed back to * us without being accounted for in the * journal. Extend our transaction here to be sure we * can change those blocks. */ ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); if (ret < 0) { mlog_errno(ret); goto out; } } /* * Pass both paths to the journal. The majority of inserts * will be touching all components anyway. */ ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); if (ret < 0) { mlog_errno(ret); goto out; } if (insert->ins_split != SPLIT_NONE) { /* * We could call ocfs2_insert_at_leaf() for some types * of splits, but it's easier to just let one separate * function sort it all out. */ ocfs2_split_record(et, left_path, right_path, insert_rec, insert->ins_split); /* * Split might have modified either leaf and we don't * have a guarantee that the later edge insert will * dirty this for us. */ if (left_path) ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); } else ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), insert); ocfs2_journal_dirty(handle, leaf_bh); if (left_path) { /* * The rotate code has indicated that we need to fix * up portions of the tree after the insert. * * XXX: Should we extend the transaction here? */ subtree_index = ocfs2_find_subtree_root(et, left_path, right_path); ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); } ret = 0; out: return ret; } static int ocfs2_do_insert_extent(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *type) { int ret, rotate = 0; u32 cpos; struct ocfs2_path *right_path = NULL; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *el; el = et->et_root_el; ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } if (le16_to_cpu(el->l_tree_depth) == 0) { ocfs2_insert_at_leaf(et, insert_rec, el, type); goto out_update_clusters; } right_path = ocfs2_new_path_from_et(et); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * Determine the path to start with. Rotations need the * rightmost path, everything else can go directly to the * target leaf. */ cpos = le32_to_cpu(insert_rec->e_cpos); if (type->ins_appending == APPEND_NONE && type->ins_contig == CONTIG_NONE) { rotate = 1; cpos = UINT_MAX; } ret = ocfs2_find_path(et->et_ci, right_path, cpos); if (ret) { mlog_errno(ret); goto out; } /* * Rotations and appends need special treatment - they modify * parts of the tree's above them. * * Both might pass back a path immediate to the left of the * one being inserted to. This will be cause * ocfs2_insert_path() to modify the rightmost records of * left_path to account for an edge insert. * * XXX: When modifying this code, keep in mind that an insert * can wind up skipping both of these two special cases... */ if (rotate) { ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, le32_to_cpu(insert_rec->e_cpos), right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_rotate_tree_right() might have extended the * transaction without re-journaling our tree root. */ ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } } else if (type->ins_appending == APPEND_TAIL && type->ins_contig != CONTIG_LEFT) { ret = ocfs2_append_rec_to_path(handle, et, insert_rec, right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_insert_path(handle, et, left_path, right_path, insert_rec, type); if (ret) { mlog_errno(ret); goto out; } out_update_clusters: if (type->ins_split == SPLIT_NONE) ocfs2_et_update_clusters(et, le16_to_cpu(insert_rec->e_leaf_clusters)); ocfs2_journal_dirty(handle, et->et_root_bh); out: ocfs2_free_path(left_path); ocfs2_free_path(right_path); return ret; } static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_extent_list *el, int index, struct ocfs2_extent_rec *split_rec, struct ocfs2_merge_ctxt *ctxt) { int status = 0; enum ocfs2_contig_type ret = CONTIG_NONE; u32 left_cpos, right_cpos; struct ocfs2_extent_rec *rec = NULL; struct ocfs2_extent_list *new_el; struct ocfs2_path *left_path = NULL, *right_path = NULL; struct buffer_head *bh; struct ocfs2_extent_block *eb; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); if (index > 0) { rec = &el->l_recs[index - 1]; } else if (path->p_tree_depth > 0) { status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); if (status) goto exit; if (left_cpos != 0) { left_path = ocfs2_new_path_from_path(path); if (!left_path) { status = -ENOMEM; mlog_errno(status); goto exit; } status = ocfs2_find_path(et->et_ci, left_path, left_cpos); if (status) goto free_left_path; new_el = path_leaf_el(left_path); if (le16_to_cpu(new_el->l_next_free_rec) != le16_to_cpu(new_el->l_count)) { bh = path_leaf_bh(left_path); eb = (struct ocfs2_extent_block *)bh->b_data; status = ocfs2_error(sb, "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", (unsigned long long)le64_to_cpu(eb->h_blkno), le16_to_cpu(new_el->l_next_free_rec), le16_to_cpu(new_el->l_count)); goto free_left_path; } rec = &new_el->l_recs[ le16_to_cpu(new_el->l_next_free_rec) - 1]; } } /* * We're careful to check for an empty extent record here - * the merge code will know what to do if it sees one. */ if (rec) { if (index == 1 && ocfs2_is_empty_extent(rec)) { if (split_rec->e_cpos == el->l_recs[index].e_cpos) ret = CONTIG_RIGHT; } else { ret = ocfs2_et_extent_contig(et, rec, split_rec); } } rec = NULL; if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) rec = &el->l_recs[index + 1]; else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && path->p_tree_depth > 0) { status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); if (status) goto free_left_path; if (right_cpos == 0) goto free_left_path; right_path = ocfs2_new_path_from_path(path); if (!right_path) { status = -ENOMEM; mlog_errno(status); goto free_left_path; } status = ocfs2_find_path(et->et_ci, right_path, right_cpos); if (status) goto free_right_path; new_el = path_leaf_el(right_path); rec = &new_el->l_recs[0]; if (ocfs2_is_empty_extent(rec)) { if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { bh = path_leaf_bh(right_path); eb = (struct ocfs2_extent_block *)bh->b_data; status = ocfs2_error(sb, "Extent block #%llu has an invalid l_next_free_rec of %d\n", (unsigned long long)le64_to_cpu(eb->h_blkno), le16_to_cpu(new_el->l_next_free_rec)); goto free_right_path; } rec = &new_el->l_recs[1]; } } if (rec) { enum ocfs2_contig_type contig_type; contig_type = ocfs2_et_extent_contig(et, rec, split_rec); if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) ret = CONTIG_LEFTRIGHT; else if (ret == CONTIG_NONE) ret = contig_type; } free_right_path: ocfs2_free_path(right_path); free_left_path: ocfs2_free_path(left_path); exit: if (status == 0) ctxt->c_contig_type = ret; return status; } static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, struct ocfs2_insert_type *insert, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i; enum ocfs2_contig_type contig_type = CONTIG_NONE; BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], insert_rec); if (contig_type != CONTIG_NONE) { insert->ins_contig_index = i; break; } } insert->ins_contig = contig_type; if (insert->ins_contig != CONTIG_NONE) { struct ocfs2_extent_rec *rec = &el->l_recs[insert->ins_contig_index]; unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + le16_to_cpu(insert_rec->e_leaf_clusters); /* * Caller might want us to limit the size of extents, don't * calculate contiguousness if we might exceed that limit. */ if (et->et_max_leaf_clusters && (len > et->et_max_leaf_clusters)) insert->ins_contig = CONTIG_NONE; } } /* * This should only be called against the righmost leaf extent list. * * ocfs2_figure_appending_type() will figure out whether we'll have to * insert at the tail of the rightmost leaf. * * This should also work against the root extent list for tree's with 0 * depth. If we consider the root extent list to be the rightmost leaf node * then the logic here makes sense. */ static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i; u32 cpos = le32_to_cpu(insert_rec->e_cpos); struct ocfs2_extent_rec *rec; insert->ins_appending = APPEND_NONE; BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); if (!el->l_next_free_rec) goto set_tail_append; if (ocfs2_is_empty_extent(&el->l_recs[0])) { /* Were all records empty? */ if (le16_to_cpu(el->l_next_free_rec) == 1) goto set_tail_append; } i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; if (cpos >= (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) goto set_tail_append; return; set_tail_append: insert->ins_appending = APPEND_TAIL; } /* * Helper function called at the beginning of an insert. * * This computes a few things that are commonly used in the process of * inserting into the btree: * - Whether the new extent is contiguous with an existing one. * - The current tree depth. * - Whether the insert is an appending one. * - The total # of free records in the tree. * * All of the information is stored on the ocfs2_insert_type * structure. */ static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, struct buffer_head **last_eb_bh, struct ocfs2_extent_rec *insert_rec, int *free_records, struct ocfs2_insert_type *insert) { int ret; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_path *path = NULL; struct buffer_head *bh = NULL; insert->ins_split = SPLIT_NONE; el = et->et_root_el; insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); if (el->l_tree_depth) { /* * If we have tree depth, we read in the * rightmost extent block ahead of time as * ocfs2_figure_insert_type() and ocfs2_add_branch() * may want it later. */ ret = ocfs2_read_extent_block(et->et_ci, ocfs2_et_get_last_eb_blk(et), &bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; } /* * Unless we have a contiguous insert, we'll need to know if * there is room left in our allocation tree for another * extent record. * * XXX: This test is simplistic, we can search for empty * extent records too. */ *free_records = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); if (!insert->ins_tree_depth) { ocfs2_figure_contig_type(et, insert, el, insert_rec); ocfs2_figure_appending_type(insert, el, insert_rec); return 0; } path = ocfs2_new_path_from_et(et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * In the case that we're inserting past what the tree * currently accounts for, ocfs2_find_path() will return for * us the rightmost tree path. This is accounted for below in * the appending code. */ ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); /* * Now that we have the path, there's two things we want to determine: * 1) Contiguousness (also set contig_index if this is so) * * 2) Are we doing an append? We can trivially break this up * into two types of appends: simple record append, or a * rotate inside the tail leaf. */ ocfs2_figure_contig_type(et, insert, el, insert_rec); /* * The insert code isn't quite ready to deal with all cases of * left contiguousness. Specifically, if it's an insert into * the 1st record in a leaf, it will require the adjustment of * cluster count on the last record of the path directly to it's * left. For now, just catch that case and fool the layers * above us. This works just fine for tree_depth == 0, which * is why we allow that above. */ if (insert->ins_contig == CONTIG_LEFT && insert->ins_contig_index == 0) insert->ins_contig = CONTIG_NONE; /* * Ok, so we can simply compare against last_eb to figure out * whether the path doesn't exist. This will only happen in * the case that we're doing a tail append, so maybe we can * take advantage of that information somehow. */ if (ocfs2_et_get_last_eb_blk(et) == path_leaf_bh(path)->b_blocknr) { /* * Ok, ocfs2_find_path() returned us the rightmost * tree path. This might be an appending insert. There are * two cases: * 1) We're doing a true append at the tail: * -This might even be off the end of the leaf * 2) We're "appending" by rotating in the tail */ ocfs2_figure_appending_type(insert, el, insert_rec); } out: ocfs2_free_path(path); if (ret == 0) *last_eb_bh = bh; else brelse(bh); return ret; } /* * Insert an extent into a btree. * * The caller needs to update the owning btree's cluster count. */ int ocfs2_insert_extent(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u64 start_blk, u32 new_clusters, u8 flags, struct ocfs2_alloc_context *meta_ac) { int status; int free_records; struct buffer_head *last_eb_bh = NULL; struct ocfs2_insert_type insert = {0, }; struct ocfs2_extent_rec rec; trace_ocfs2_insert_extent_start( (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos, new_clusters); memset(&rec, 0, sizeof(rec)); rec.e_cpos = cpu_to_le32(cpos); rec.e_blkno = cpu_to_le64(start_blk); rec.e_leaf_clusters = cpu_to_le16(new_clusters); rec.e_flags = flags; status = ocfs2_et_insert_check(et, &rec); if (status) { mlog_errno(status); goto bail; } status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, &free_records, &insert); if (status < 0) { mlog_errno(status); goto bail; } trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, insert.ins_contig_index, free_records, insert.ins_tree_depth); if (insert.ins_contig == CONTIG_NONE && free_records == 0) { status = ocfs2_grow_tree(handle, et, &insert.ins_tree_depth, &last_eb_bh, meta_ac); if (status) { mlog_errno(status); goto bail; } } /* Finally, we can add clusters. This might rotate the tree for us. */ status = ocfs2_do_insert_extent(handle, et, &rec, &insert); if (status < 0) mlog_errno(status); else ocfs2_et_extent_map_insert(et, &rec); bail: brelse(last_eb_bh); return status; } /* * Allcate and add clusters into the extent b-tree. * The new clusters(clusters_to_add) will be inserted at logical_offset. * The extent b-tree's root is specified by et, and * it is not limited to the file storage. Any extent tree can use this * function if it implements the proper ocfs2_extent_tree. */ int ocfs2_add_clusters_in_btree(handle_t *handle, struct ocfs2_extent_tree *et, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret) { int status = 0, err = 0; int need_free = 0; int free_extents; enum ocfs2_alloc_restarted reason = RESTART_NONE; u32 bit_off, num_bits; u64 block; u8 flags = 0; struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); BUG_ON(!clusters_to_add); if (mark_unwritten) flags = OCFS2_EXT_UNWRITTEN; free_extents = ocfs2_num_free_extents(et); if (free_extents < 0) { status = free_extents; mlog_errno(status); goto leave; } /* there are two cases which could cause us to EAGAIN in the * we-need-more-metadata case: * 1) we haven't reserved *any* * 2) we are so fragmented, we've needed to add metadata too * many times. */ if (!free_extents && !meta_ac) { err = -1; status = -EAGAIN; reason = RESTART_META; goto leave; } else if ((!free_extents) && (ocfs2_alloc_context_bits_left(meta_ac) < ocfs2_extend_meta_needed(et->et_root_el))) { err = -2; status = -EAGAIN; reason = RESTART_META; goto leave; } status = __ocfs2_claim_clusters(handle, data_ac, 1, clusters_to_add, &bit_off, &num_bits); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } BUG_ON(num_bits > clusters_to_add); /* reserve our write early -- insert_extent may update the tree root */ status = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); need_free = 1; goto bail; } block = ocfs2_clusters_to_blocks(osb->sb, bit_off); trace_ocfs2_add_clusters_in_btree( (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), bit_off, num_bits); status = ocfs2_insert_extent(handle, et, *logical_offset, block, num_bits, flags, meta_ac); if (status < 0) { mlog_errno(status); need_free = 1; goto bail; } ocfs2_journal_dirty(handle, et->et_root_bh); clusters_to_add -= num_bits; *logical_offset += num_bits; if (clusters_to_add) { err = clusters_to_add; status = -EAGAIN; reason = RESTART_TRANS; } bail: if (need_free) { if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) ocfs2_free_local_alloc_bits(osb, handle, data_ac, bit_off, num_bits); else ocfs2_free_clusters(handle, data_ac->ac_inode, data_ac->ac_bh, ocfs2_clusters_to_blocks(osb->sb, bit_off), num_bits); } leave: if (reason_ret) *reason_ret = reason; trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); return status; } static void ocfs2_make_right_split_rec(struct super_block *sb, struct ocfs2_extent_rec *split_rec, u32 cpos, struct ocfs2_extent_rec *rec) { u32 rec_cpos = le32_to_cpu(rec->e_cpos); u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); split_rec->e_cpos = cpu_to_le32(cpos); split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); split_rec->e_blkno = rec->e_blkno; le64_add_cpu(&split_rec->e_blkno, ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); split_rec->e_flags = rec->e_flags; } static int ocfs2_split_and_insert(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct buffer_head **last_eb_bh, int split_index, struct ocfs2_extent_rec *orig_split_rec, struct ocfs2_alloc_context *meta_ac) { int ret = 0, depth; unsigned int insert_range, rec_range, do_leftright = 0; struct ocfs2_extent_rec tmprec; struct ocfs2_extent_list *rightmost_el; struct ocfs2_extent_rec rec; struct ocfs2_extent_rec split_rec = *orig_split_rec; struct ocfs2_insert_type insert; struct ocfs2_extent_block *eb; leftright: /* * Store a copy of the record on the stack - it might move * around as the tree is manipulated below. */ rec = path_leaf_el(path)->l_recs[split_index]; rightmost_el = et->et_root_el; depth = le16_to_cpu(rightmost_el->l_tree_depth); if (depth) { BUG_ON(!(*last_eb_bh)); eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; rightmost_el = &eb->h_list; } if (le16_to_cpu(rightmost_el->l_next_free_rec) == le16_to_cpu(rightmost_el->l_count)) { ret = ocfs2_grow_tree(handle, et, &depth, last_eb_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } } memset(&insert, 0, sizeof(struct ocfs2_insert_type)); insert.ins_appending = APPEND_NONE; insert.ins_contig = CONTIG_NONE; insert.ins_tree_depth = depth; insert_range = le32_to_cpu(split_rec.e_cpos) + le16_to_cpu(split_rec.e_leaf_clusters); rec_range = le32_to_cpu(rec.e_cpos) + le16_to_cpu(rec.e_leaf_clusters); if (split_rec.e_cpos == rec.e_cpos) { insert.ins_split = SPLIT_LEFT; } else if (insert_range == rec_range) { insert.ins_split = SPLIT_RIGHT; } else { /* * Left/right split. We fake this as a right split * first and then make a second pass as a left split. */ insert.ins_split = SPLIT_RIGHT; ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), &tmprec, insert_range, &rec); split_rec = tmprec; BUG_ON(do_leftright); do_leftright = 1; } ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); if (ret) { mlog_errno(ret); goto out; } if (do_leftright == 1) { u32 cpos; struct ocfs2_extent_list *el; do_leftright++; split_rec = *orig_split_rec; ocfs2_reinit_path(path, 1); cpos = le32_to_cpu(split_rec.e_cpos); ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); split_index = ocfs2_search_extent_list(el, cpos); if (split_index == -1) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has an extent at cpos %u which can no longer be found\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos); ret = -EROFS; goto out; } goto leftright; } out: return ret; } static int ocfs2_replace_extent_rec(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_extent_list *el, int split_index, struct ocfs2_extent_rec *split_rec) { int ret; ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, path_num_items(path) - 1); if (ret) { mlog_errno(ret); goto out; } el->l_recs[split_index] = *split_rec; ocfs2_journal_dirty(handle, path_leaf_bh(path)); out: return ret; } /* * Split part or all of the extent record at split_index in the leaf * pointed to by path. Merge with the contiguous extent record if needed. * * Care is taken to handle contiguousness so as to not grow the tree. * * meta_ac is not strictly necessary - we only truly need it if growth * of the tree is required. All other cases will degrade into a less * optimal tree layout. * * last_eb_bh should be the rightmost leaf block for any extent * btree. Since a split may grow the tree or a merge might shrink it, * the caller cannot trust the contents of that buffer after this call. * * This code is optimized for readability - several passes might be * made over certain portions of the tree. All of those blocks will * have been brought into cache (and pinned via the journal), so the * extra overhead is not expressed in terms of disk reads. */ int ocfs2_split_extent(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, int split_index, struct ocfs2_extent_rec *split_rec, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; struct ocfs2_extent_list *el = path_leaf_el(path); struct buffer_head *last_eb_bh = NULL; struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; struct ocfs2_merge_ctxt ctxt; if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { ret = -EIO; mlog_errno(ret); goto out; } ret = ocfs2_figure_merge_contig_type(et, path, el, split_index, split_rec, &ctxt); if (ret) { mlog_errno(ret); goto out; } /* * The core merge / split code wants to know how much room is * left in this allocation tree, so we pass the * rightmost extent list. */ if (path->p_tree_depth) { ret = ocfs2_read_extent_block(et->et_ci, ocfs2_et_get_last_eb_blk(et), &last_eb_bh); if (ret) { mlog_errno(ret); goto out; } } if (rec->e_cpos == split_rec->e_cpos && rec->e_leaf_clusters == split_rec->e_leaf_clusters) ctxt.c_split_covers_rec = 1; else ctxt.c_split_covers_rec = 0; ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, ctxt.c_split_covers_rec); if (ctxt.c_contig_type == CONTIG_NONE) { if (ctxt.c_split_covers_rec) ret = ocfs2_replace_extent_rec(handle, et, path, el, split_index, split_rec); else ret = ocfs2_split_and_insert(handle, et, path, &last_eb_bh, split_index, split_rec, meta_ac); if (ret) mlog_errno(ret); } else { ret = ocfs2_try_to_merge_extent(handle, et, path, split_index, split_rec, dealloc, &ctxt); if (ret) mlog_errno(ret); } out: brelse(last_eb_bh); return ret; } /* * Change the flags of the already-existing extent at cpos for len clusters. * * new_flags: the flags we want to set. * clear_flags: the flags we want to clear. * phys: the new physical offset we want this new extent starts from. * * If the existing extent is larger than the request, initiate a * split. An attempt will be made at merging with adjacent extents. * * The caller is responsible for passing down meta_ac if we'll need it. */ int ocfs2_change_extent_flag(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u32 len, u32 phys, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc, int new_flags, int clear_flags) { int ret, index; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); struct ocfs2_extent_rec split_rec; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; left_path = ocfs2_new_path_from_et(et); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(left_path); index = ocfs2_search_extent_list(el, cpos); if (index == -1) { ocfs2_error(sb, "Owner %llu has an extent at cpos %u which can no longer be found\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos); ret = -EROFS; goto out; } ret = -EIO; rec = &el->l_recs[index]; if (new_flags && (rec->e_flags & new_flags)) { mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " "extent that already had them\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), new_flags); goto out; } if (clear_flags && !(rec->e_flags & clear_flags)) { mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " "extent that didn't have them\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), clear_flags); goto out; } memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); split_rec.e_cpos = cpu_to_le32(cpos); split_rec.e_leaf_clusters = cpu_to_le16(len); split_rec.e_blkno = cpu_to_le64(start_blkno); split_rec.e_flags = rec->e_flags; if (new_flags) split_rec.e_flags |= new_flags; if (clear_flags) split_rec.e_flags &= ~clear_flags; ret = ocfs2_split_extent(handle, et, left_path, index, &split_rec, meta_ac, dealloc); if (ret) mlog_errno(ret); out: ocfs2_free_path(left_path); return ret; } /* * Mark the already-existing extent at cpos as written for len clusters. * This removes the unwritten extent flag. * * If the existing extent is larger than the request, initiate a * split. An attempt will be made at merging with adjacent extents. * * The caller is responsible for passing down meta_ac if we'll need it. */ int ocfs2_mark_extent_written(struct inode *inode, struct ocfs2_extent_tree *et, handle_t *handle, u32 cpos, u32 len, u32 phys, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; trace_ocfs2_mark_extent_written( (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, phys); if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); ret = -EROFS; goto out; } /* * XXX: This should be fixed up so that we just re-insert the * next extent records. */ ocfs2_et_extent_map_truncate(et, 0); ret = ocfs2_change_extent_flag(handle, et, cpos, len, phys, meta_ac, dealloc, 0, OCFS2_EXT_UNWRITTEN); if (ret) mlog_errno(ret); out: return ret; } static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, int index, u32 new_range, struct ocfs2_alloc_context *meta_ac) { int ret, depth, credits; struct buffer_head *last_eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *rightmost_el, *el; struct ocfs2_extent_rec split_rec; struct ocfs2_extent_rec *rec; struct ocfs2_insert_type insert; /* * Setup the record to split before we grow the tree. */ el = path_leaf_el(path); rec = &el->l_recs[index]; ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), &split_rec, new_range, rec); depth = path->p_tree_depth; if (depth > 0) { ret = ocfs2_read_extent_block(et->et_ci, ocfs2_et_get_last_eb_blk(et), &last_eb_bh); if (ret < 0) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; rightmost_el = &eb->h_list; } else rightmost_el = path_leaf_el(path); credits = path->p_tree_depth + ocfs2_extend_meta_needed(et->et_root_el); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); goto out; } if (le16_to_cpu(rightmost_el->l_next_free_rec) == le16_to_cpu(rightmost_el->l_count)) { ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } } memset(&insert, 0, sizeof(struct ocfs2_insert_type)); insert.ins_appending = APPEND_NONE; insert.ins_contig = CONTIG_NONE; insert.ins_split = SPLIT_RIGHT; insert.ins_tree_depth = depth; ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); if (ret) mlog_errno(ret); out: brelse(last_eb_bh); return ret; } static int ocfs2_truncate_rec(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, int index, struct ocfs2_cached_dealloc_ctxt *dealloc, u32 cpos, u32 len) { int ret; u32 left_cpos, rec_range, trunc_range; int is_rightmost_tree_rec = 0; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *el = path_leaf_el(path); struct ocfs2_extent_rec *rec; struct ocfs2_extent_block *eb; if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { /* extend credit for ocfs2_remove_rightmost_path */ ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } index--; } if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && path->p_tree_depth) { /* * Check whether this is the rightmost tree record. If * we remove all of this record or part of its right * edge then an update of the record lengths above it * will be required. */ eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; if (eb->h_next_leaf_blk == 0) is_rightmost_tree_rec = 1; } rec = &el->l_recs[index]; if (index == 0 && path->p_tree_depth && le32_to_cpu(rec->e_cpos) == cpos) { /* * Changing the leftmost offset (via partial or whole * record truncate) of an interior (or rightmost) path * means we have to update the subtree that is formed * by this leaf and the one to it's left. * * There are two cases we can skip: * 1) Path is the leftmost one in our btree. * 2) The leaf is rightmost and will be empty after * we remove the extent record - the rotate code * knows how to update the newly formed edge. */ ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { left_path = ocfs2_new_path_from_path(path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } } } ret = ocfs2_extend_rotate_transaction(handle, 0, jbd2_handle_buffer_credits(handle), path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); if (ret) { mlog_errno(ret); goto out; } rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); trunc_range = cpos + len; if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { int next_free; memset(rec, 0, sizeof(*rec)); ocfs2_cleanup_merge(el, index); next_free = le16_to_cpu(el->l_next_free_rec); if (is_rightmost_tree_rec && next_free > 1) { /* * We skip the edge update if this path will * be deleted by the rotate code. */ rec = &el->l_recs[next_free - 1]; ocfs2_adjust_rightmost_records(handle, et, path, rec); } } else if (le32_to_cpu(rec->e_cpos) == cpos) { /* Remove leftmost portion of the record. */ le32_add_cpu(&rec->e_cpos, len); le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); le16_add_cpu(&rec->e_leaf_clusters, -len); } else if (rec_range == trunc_range) { /* Remove rightmost portion of the record */ le16_add_cpu(&rec->e_leaf_clusters, -len); if (is_rightmost_tree_rec) ocfs2_adjust_rightmost_records(handle, et, path, rec); } else { /* Caller should have trapped this. */ mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " "(%u, %u)\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), le32_to_cpu(rec->e_cpos), le16_to_cpu(rec->e_leaf_clusters), cpos, len); BUG(); } if (left_path) { int subtree_index; subtree_index = ocfs2_find_subtree_root(et, left_path, path); ocfs2_complete_edge_insert(handle, left_path, path, subtree_index); } ocfs2_journal_dirty(handle, path_leaf_bh(path)); ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) mlog_errno(ret); out: ocfs2_free_path(left_path); return ret; } int ocfs2_remove_extent(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u32 len, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, index; u32 rec_range, trunc_range; struct ocfs2_extent_rec *rec; struct ocfs2_extent_list *el; struct ocfs2_path *path = NULL; /* * XXX: Why are we truncating to 0 instead of wherever this * affects us? */ ocfs2_et_extent_map_truncate(et, 0); path = ocfs2_new_path_from_et(et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); index = ocfs2_search_extent_list(el, cpos); if (index == -1) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has an extent at cpos %u which can no longer be found\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos); ret = -EROFS; goto out; } /* * We have 3 cases of extent removal: * 1) Range covers the entire extent rec * 2) Range begins or ends on one edge of the extent rec * 3) Range is in the middle of the extent rec (no shared edges) * * For case 1 we remove the extent rec and left rotate to * fill the hole. * * For case 2 we just shrink the existing extent rec, with a * tree update if the shrinking edge is also the edge of an * extent block. * * For case 3 we do a right split to turn the extent rec into * something case 2 can handle. */ rec = &el->l_recs[index]; rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); trunc_range = cpos + len; BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); trace_ocfs2_remove_extent( (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos, len, index, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, cpos, len); if (ret) { mlog_errno(ret); goto out; } } else { ret = ocfs2_split_tree(handle, et, path, index, trunc_range, meta_ac); if (ret) { mlog_errno(ret); goto out; } /* * The split could have manipulated the tree enough to * move the record location, so we have to look for it again. */ ocfs2_reinit_path(path, 1); ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); index = ocfs2_search_extent_list(el, cpos); if (index == -1) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu: split at cpos %u lost record\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos); ret = -EROFS; goto out; } /* * Double check our values here. If anything is fishy, * it's easier to catch it at the top level. */ rec = &el->l_recs[index]; rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (rec_range != trunc_range) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), cpos, len, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); ret = -EROFS; goto out; } ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, cpos, len); if (ret) mlog_errno(ret); } out: ocfs2_free_path(path); return ret; } /* * ocfs2_reserve_blocks_for_rec_trunc() would look basically the * same as ocfs2_lock_alloctors(), except for it accepts a blocks * number to reserve some extra blocks, and it only handles meta * data allocations. * * Currently, only ocfs2_remove_btree_range() uses it for truncating * and punching holes. */ static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, struct ocfs2_extent_tree *et, u32 extents_to_split, struct ocfs2_alloc_context **ac, int extra_blocks) { int ret = 0, num_free_extents; unsigned int max_recs_needed = 2 * extents_to_split; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); *ac = NULL; num_free_extents = ocfs2_num_free_extents(et); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } if (!num_free_extents || (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); if (extra_blocks) { ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); } } out: if (ret) { if (*ac) { ocfs2_free_alloc_context(*ac); *ac = NULL; } } return ret; } int ocfs2_remove_btree_range(struct inode *inode, struct ocfs2_extent_tree *et, u32 cpos, u32 phys_cpos, u32 len, int flags, struct ocfs2_cached_dealloc_ctxt *dealloc, u64 refcount_loc, bool refcount_tree_locked) { int ret, credits = 0, extra_blocks = 0; u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_refcount_tree *ref_tree = NULL; if ((flags & OCFS2_EXT_REFCOUNTED) && len) { BUG_ON(!ocfs2_is_refcount_inode(inode)); if (!refcount_tree_locked) { ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, &ref_tree, NULL); if (ret) { mlog_errno(ret); goto bail; } } ret = ocfs2_prepare_refcount_change_for_del(inode, refcount_loc, phys_blkno, len, &credits, &extra_blocks); if (ret < 0) { mlog_errno(ret); goto bail; } } ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, extra_blocks); if (ret) { mlog_errno(ret); goto bail; } inode_lock(tl_inode); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb) + credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } dquot_free_space_nodirty(inode, ocfs2_clusters_to_bytes(inode->i_sb, len)); ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out_commit; } ocfs2_et_update_clusters(et, -len); ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_journal_dirty(handle, et->et_root_bh); if (phys_blkno) { if (flags & OCFS2_EXT_REFCOUNTED) ret = ocfs2_decrease_refcount(inode, handle, ocfs2_blocks_to_clusters(osb->sb, phys_blkno), len, meta_ac, dealloc, 1); else ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); if (ret) mlog_errno(ret); } out_commit: ocfs2_commit_trans(osb, handle); out: inode_unlock(tl_inode); bail: if (meta_ac) ocfs2_free_alloc_context(meta_ac); if (ref_tree) ocfs2_unlock_refcount_tree(osb, ref_tree, 1); return ret; } int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) { struct buffer_head *tl_bh = osb->osb_tl_bh; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), "slot %d, invalid truncate log parameters: used = " "%u, count = %u\n", osb->slot_num, le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); } static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, unsigned int new_start) { unsigned int tail_index; unsigned int current_tail; /* No records, nothing to coalesce */ if (!le16_to_cpu(tl->tl_used)) return 0; tail_index = le16_to_cpu(tl->tl_used) - 1; current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); return current_tail == new_start; } int ocfs2_truncate_log_append(struct ocfs2_super *osb, handle_t *handle, u64 start_blk, unsigned int num_clusters) { int status, index; unsigned int start_cluster, tl_count; struct inode *tl_inode = osb->osb_tl_inode; struct buffer_head *tl_bh = osb->osb_tl_bh; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; BUG_ON(inode_trylock(tl_inode)); start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); di = (struct ocfs2_dinode *) tl_bh->b_data; /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated * by the underlying call to ocfs2_read_inode_block(), so any * corruption is a code bug */ BUG_ON(!OCFS2_IS_VALID_DINODE(di)); tl = &di->id2.i_dealloc; tl_count = le16_to_cpu(tl->tl_count); mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || tl_count == 0, "Truncate record count on #%llu invalid " "wanted %u, actual %u\n", (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, ocfs2_truncate_recs_per_inode(osb->sb), le16_to_cpu(tl->tl_count)); /* Caller should have known to flush before calling us. */ index = le16_to_cpu(tl->tl_used); if (index >= tl_count) { status = -ENOSPC; mlog_errno(status); goto bail; } status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } trace_ocfs2_truncate_log_append( (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, start_cluster, num_clusters); if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { /* * Move index back to the record we are coalescing with. * ocfs2_truncate_log_can_coalesce() guarantees nonzero */ index--; num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); trace_ocfs2_truncate_log_append( (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, le32_to_cpu(tl->tl_recs[index].t_start), num_clusters); } else { tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); tl->tl_used = cpu_to_le16(index + 1); } tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); ocfs2_journal_dirty(handle, tl_bh); osb->truncated_clusters += num_clusters; bail: return status; } static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, struct inode *data_alloc_inode, struct buffer_head *data_alloc_bh) { int status = 0; int i; unsigned int num_clusters; u64 start_blk; struct ocfs2_truncate_rec rec; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; struct inode *tl_inode = osb->osb_tl_inode; struct buffer_head *tl_bh = osb->osb_tl_bh; handle_t *handle; di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; i = le16_to_cpu(tl->tl_used) - 1; while (i >= 0) { handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail; } /* Caller has given us at least enough credits to * update the truncate log dinode */ status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { ocfs2_commit_trans(osb, handle); mlog_errno(status); goto bail; } tl->tl_used = cpu_to_le16(i); ocfs2_journal_dirty(handle, tl_bh); rec = tl->tl_recs[i]; start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, le32_to_cpu(rec.t_start)); num_clusters = le32_to_cpu(rec.t_clusters); /* if start_blk is not set, we ignore the record as * invalid. */ if (start_blk) { trace_ocfs2_replay_truncate_records( (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, i, le32_to_cpu(rec.t_start), num_clusters); status = ocfs2_free_clusters(handle, data_alloc_inode, data_alloc_bh, start_blk, num_clusters); if (status < 0) { ocfs2_commit_trans(osb, handle); mlog_errno(status); goto bail; } } ocfs2_commit_trans(osb, handle); i--; } osb->truncated_clusters = 0; bail: return status; } /* Expects you to already be holding tl_inode->i_rwsem */ int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) { int status; unsigned int num_to_flush; struct inode *tl_inode = osb->osb_tl_inode; struct inode *data_alloc_inode = NULL; struct buffer_head *tl_bh = osb->osb_tl_bh; struct buffer_head *data_alloc_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; struct ocfs2_journal *journal = osb->journal; BUG_ON(inode_trylock(tl_inode)); di = (struct ocfs2_dinode *) tl_bh->b_data; /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated * by the underlying call to ocfs2_read_inode_block(), so any * corruption is a code bug */ BUG_ON(!OCFS2_IS_VALID_DINODE(di)); tl = &di->id2.i_dealloc; num_to_flush = le16_to_cpu(tl->tl_used); trace_ocfs2_flush_truncate_log( (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, num_to_flush); if (!num_to_flush) { status = 0; goto out; } /* Appending truncate log(TA) and flushing truncate log(TF) are * two separated transactions. They can be both committed but not * checkpointed. If crash occurs then, both two transaction will be * replayed with several already released to global bitmap clusters. * Then truncate log will be replayed resulting in cluster double free. */ jbd2_journal_lock_updates(journal->j_journal); status = jbd2_journal_flush(journal->j_journal, 0); jbd2_journal_unlock_updates(journal->j_journal); if (status < 0) { mlog_errno(status); goto out; } data_alloc_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!data_alloc_inode) { status = -EINVAL; mlog(ML_ERROR, "Could not get bitmap inode!\n"); goto out; } inode_lock(data_alloc_inode); status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); if (status < 0) { mlog_errno(status); goto out_mutex; } status = ocfs2_replay_truncate_records(osb, data_alloc_inode, data_alloc_bh); if (status < 0) mlog_errno(status); brelse(data_alloc_bh); ocfs2_inode_unlock(data_alloc_inode, 1); out_mutex: inode_unlock(data_alloc_inode); iput(data_alloc_inode); out: return status; } int ocfs2_flush_truncate_log(struct ocfs2_super *osb) { int status; struct inode *tl_inode = osb->osb_tl_inode; inode_lock(tl_inode); status = __ocfs2_flush_truncate_log(osb); inode_unlock(tl_inode); return status; } static void ocfs2_truncate_log_worker(struct work_struct *work) { int status; struct ocfs2_super *osb = container_of(work, struct ocfs2_super, osb_truncate_log_wq.work); status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); else ocfs2_init_steal_slots(osb); } #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, int cancel) { if (osb->osb_tl_inode && atomic_read(&osb->osb_tl_disable) == 0) { /* We want to push off log flushes while truncates are * still running. */ if (cancel) cancel_delayed_work(&osb->osb_truncate_log_wq); queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); } } /* * Try to flush truncate logs if we can free enough clusters from it. * As for return value, "< 0" means error, "0" no space and "1" means * we have freed enough spaces and let the caller try to allocate again. */ int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, unsigned int needed) { tid_t target; int ret = 0; unsigned int truncated_clusters; inode_lock(osb->osb_tl_inode); truncated_clusters = osb->truncated_clusters; inode_unlock(osb->osb_tl_inode); /* * Check whether we can succeed in allocating if we free * the truncate log. */ if (truncated_clusters < needed) goto out; ret = ocfs2_flush_truncate_log(osb); if (ret) { mlog_errno(ret); goto out; } if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { jbd2_log_wait_commit(osb->journal->j_journal, target); ret = 1; } out: return ret; } static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, int slot_num, struct inode **tl_inode, struct buffer_head **tl_bh) { int status; struct inode *inode = NULL; struct buffer_head *bh = NULL; inode = ocfs2_get_system_file_inode(osb, TRUNCATE_LOG_SYSTEM_INODE, slot_num); if (!inode) { status = -EINVAL; mlog(ML_ERROR, "Could not get load truncate log inode!\n"); goto bail; } status = ocfs2_read_inode_block(inode, &bh); if (status < 0) { iput(inode); mlog_errno(status); goto bail; } *tl_inode = inode; *tl_bh = bh; bail: return status; } /* called during the 1st stage of node recovery. we stamp a clean * truncate log and pass back a copy for processing later. if the * truncate log does not require processing, a *tl_copy is set to * NULL. */ int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, int slot_num, struct ocfs2_dinode **tl_copy) { int status; struct inode *tl_inode = NULL; struct buffer_head *tl_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; *tl_copy = NULL; trace_ocfs2_begin_truncate_log_recovery(slot_num); status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); if (status < 0) { mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) tl_bh->b_data; /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's * validated by the underlying call to ocfs2_read_inode_block(), * so any corruption is a code bug */ BUG_ON(!OCFS2_IS_VALID_DINODE(di)); tl = &di->id2.i_dealloc; if (le16_to_cpu(tl->tl_used)) { trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); /* * Assuming the write-out below goes well, this copy will be * passed back to recovery for processing. */ *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); if (!(*tl_copy)) { status = -ENOMEM; mlog_errno(status); goto bail; } /* All we need to do to clear the truncate log is set * tl_used. */ tl->tl_used = 0; ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); if (status < 0) { mlog_errno(status); goto bail; } } bail: iput(tl_inode); brelse(tl_bh); if (status < 0) { kfree(*tl_copy); *tl_copy = NULL; mlog_errno(status); } return status; } int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, struct ocfs2_dinode *tl_copy) { int status = 0; int i; unsigned int clusters, num_recs, start_cluster; u64 start_blk; handle_t *handle; struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_truncate_log *tl; if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); return -EINVAL; } tl = &tl_copy->id2.i_dealloc; num_recs = le16_to_cpu(tl->tl_used); trace_ocfs2_complete_truncate_log_recovery( (unsigned long long)le64_to_cpu(tl_copy->i_blkno), num_recs); inode_lock(tl_inode); for(i = 0; i < num_recs; i++) { if (ocfs2_truncate_log_needs_flush(osb)) { status = __ocfs2_flush_truncate_log(osb); if (status < 0) { mlog_errno(status); goto bail_up; } } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_up; } clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); status = ocfs2_truncate_log_append(osb, handle, start_blk, clusters); ocfs2_commit_trans(osb, handle); if (status < 0) { mlog_errno(status); goto bail_up; } } bail_up: inode_unlock(tl_inode); return status; } void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) { int status; struct inode *tl_inode = osb->osb_tl_inode; atomic_set(&osb->osb_tl_disable, 1); if (tl_inode) { cancel_delayed_work(&osb->osb_truncate_log_wq); flush_workqueue(osb->ocfs2_wq); status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); brelse(osb->osb_tl_bh); iput(osb->osb_tl_inode); } } int ocfs2_truncate_log_init(struct ocfs2_super *osb) { int status; struct inode *tl_inode = NULL; struct buffer_head *tl_bh = NULL; status = ocfs2_get_truncate_log_info(osb, osb->slot_num, &tl_inode, &tl_bh); if (status < 0) mlog_errno(status); /* ocfs2_truncate_log_shutdown keys on the existence of * osb->osb_tl_inode so we don't set any of the osb variables * until we're sure all is well. */ INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, ocfs2_truncate_log_worker); atomic_set(&osb->osb_tl_disable, 0); osb->osb_tl_bh = tl_bh; osb->osb_tl_inode = tl_inode; return status; } /* * Delayed de-allocation of suballocator blocks. * * Some sets of block de-allocations might involve multiple suballocator inodes. * * The locking for this can get extremely complicated, especially when * the suballocator inodes to delete from aren't known until deep * within an unrelated codepath. * * ocfs2_extent_block structures are a good example of this - an inode * btree could have been grown by any number of nodes each allocating * out of their own suballoc inode. * * These structures allow the delay of block de-allocation until a * later time, when locking of multiple cluster inodes won't cause * deadlock. */ /* * Describe a single bit freed from a suballocator. For the block * suballocators, it represents one block. For the global cluster * allocator, it represents some clusters and free_bit indicates * clusters number. */ struct ocfs2_cached_block_free { struct ocfs2_cached_block_free *free_next; u64 free_bg; u64 free_blk; unsigned int free_bit; }; struct ocfs2_per_slot_free_list { struct ocfs2_per_slot_free_list *f_next_suballocator; int f_inode_type; int f_slot; struct ocfs2_cached_block_free *f_first; }; static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, int sysfile_type, int slot, struct ocfs2_cached_block_free *head) { int ret; u64 bg_blkno; handle_t *handle; struct inode *inode; struct buffer_head *di_bh = NULL; struct ocfs2_cached_block_free *tmp; inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); if (!inode) { ret = -EINVAL; mlog_errno(ret); goto out; } inode_lock(inode); ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out_mutex; } while (head) { if (head->free_bg) bg_blkno = head->free_bg; else bg_blkno = ocfs2_which_suballoc_group(head->free_blk, head->free_bit); handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } trace_ocfs2_free_cached_blocks( (unsigned long long)head->free_blk, head->free_bit); ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, head->free_bit, bg_blkno, 1); if (ret) mlog_errno(ret); ocfs2_commit_trans(osb, handle); tmp = head; head = head->free_next; kfree(tmp); } out_unlock: ocfs2_inode_unlock(inode, 1); brelse(di_bh); out_mutex: inode_unlock(inode); iput(inode); out: while(head) { /* Premature exit may have left some dangling items. */ tmp = head; head = head->free_next; kfree(tmp); } return ret; } int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, u64 blkno, unsigned int bit) { int ret = 0; struct ocfs2_cached_block_free *item; item = kzalloc(sizeof(*item), GFP_NOFS); if (item == NULL) { ret = -ENOMEM; mlog_errno(ret); return ret; } trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); item->free_blk = blkno; item->free_bit = bit; item->free_next = ctxt->c_global_allocator; ctxt->c_global_allocator = item; return ret; } static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, struct ocfs2_cached_block_free *head) { struct ocfs2_cached_block_free *tmp; struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; int ret = 0; inode_lock(tl_inode); while (head) { if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); break; } } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); break; } ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, head->free_bit); ocfs2_commit_trans(osb, handle); tmp = head; head = head->free_next; kfree(tmp); if (ret < 0) { mlog_errno(ret); break; } } inode_unlock(tl_inode); while (head) { /* Premature exit may have left some dangling items. */ tmp = head; head = head->free_next; kfree(tmp); } return ret; } int ocfs2_run_deallocs(struct ocfs2_super *osb, struct ocfs2_cached_dealloc_ctxt *ctxt) { int ret = 0, ret2; struct ocfs2_per_slot_free_list *fl; if (!ctxt) return 0; while (ctxt->c_first_suballocator) { fl = ctxt->c_first_suballocator; if (fl->f_first) { trace_ocfs2_run_deallocs(fl->f_inode_type, fl->f_slot); ret2 = ocfs2_free_cached_blocks(osb, fl->f_inode_type, fl->f_slot, fl->f_first); if (ret2) mlog_errno(ret2); if (!ret) ret = ret2; } ctxt->c_first_suballocator = fl->f_next_suballocator; kfree(fl); } if (ctxt->c_global_allocator) { ret2 = ocfs2_free_cached_clusters(osb, ctxt->c_global_allocator); if (ret2) mlog_errno(ret2); if (!ret) ret = ret2; ctxt->c_global_allocator = NULL; } return ret; } static struct ocfs2_per_slot_free_list * ocfs2_find_per_slot_free_list(int type, int slot, struct ocfs2_cached_dealloc_ctxt *ctxt) { struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; while (fl) { if (fl->f_inode_type == type && fl->f_slot == slot) return fl; fl = fl->f_next_suballocator; } fl = kmalloc(sizeof(*fl), GFP_NOFS); if (fl) { fl->f_inode_type = type; fl->f_slot = slot; fl->f_first = NULL; fl->f_next_suballocator = ctxt->c_first_suballocator; ctxt->c_first_suballocator = fl; } return fl; } static struct ocfs2_per_slot_free_list * ocfs2_find_preferred_free_list(int type, int preferred_slot, int *real_slot, struct ocfs2_cached_dealloc_ctxt *ctxt) { struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; while (fl) { if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { *real_slot = fl->f_slot; return fl; } fl = fl->f_next_suballocator; } /* If we can't find any free list matching preferred slot, just use * the first one. */ fl = ctxt->c_first_suballocator; *real_slot = fl->f_slot; return fl; } /* Return Value 1 indicates empty */ static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) { struct ocfs2_per_slot_free_list *fl = NULL; if (!et->et_dealloc) return 1; fl = et->et_dealloc->c_first_suballocator; if (!fl) return 1; if (!fl->f_first) return 1; return 0; } /* If extent was deleted from tree due to extent rotation and merging, and * no metadata is reserved ahead of time. Try to reuse some extents * just deleted. This is only used to reuse extent blocks. * It is supposed to find enough extent blocks in dealloc if our estimation * on metadata is accurate. */ static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, struct ocfs2_extent_tree *et, struct buffer_head **new_eb_bh, int blk_wanted, int *blk_given) { int i, status = 0, real_slot; struct ocfs2_cached_dealloc_ctxt *dealloc; struct ocfs2_per_slot_free_list *fl; struct ocfs2_cached_block_free *bf; struct ocfs2_extent_block *eb; struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); *blk_given = 0; /* If extent tree doesn't have a dealloc, this is not faulty. Just * tell upper caller dealloc can't provide any block and it should * ask for alloc to claim more space. */ dealloc = et->et_dealloc; if (!dealloc) goto bail; for (i = 0; i < blk_wanted; i++) { /* Prefer to use local slot */ fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, osb->slot_num, &real_slot, dealloc); /* If no more block can be reused, we should claim more * from alloc. Just return here normally. */ if (!fl) { status = 0; break; } bf = fl->f_first; fl->f_first = bf->free_next; new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); if (new_eb_bh[i] == NULL) { status = -ENOMEM; mlog_errno(status); goto bail; } mlog(0, "Reusing block(%llu) from " "dealloc(local slot:%d, real slot:%d)\n", bf->free_blk, osb->slot_num, real_slot); ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh[i], OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; /* We can't guarantee that buffer head is still cached, so * polutlate the extent block again. */ strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); eb->h_blkno = cpu_to_le64(bf->free_blk); eb->h_fs_generation = cpu_to_le32(osb->fs_generation); eb->h_suballoc_slot = cpu_to_le16(real_slot); eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); eb->h_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); /* We'll also be dirtied by the caller, so * this isn't absolutely necessary. */ ocfs2_journal_dirty(handle, new_eb_bh[i]); if (!fl->f_first) { dealloc->c_first_suballocator = fl->f_next_suballocator; kfree(fl); } kfree(bf); } *blk_given = i; bail: if (unlikely(status < 0)) { for (i = 0; i < blk_wanted; i++) brelse(new_eb_bh[i]); } return status; } int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, int type, int slot, u64 suballoc, u64 blkno, unsigned int bit) { int ret; struct ocfs2_per_slot_free_list *fl; struct ocfs2_cached_block_free *item; fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); if (fl == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } item = kzalloc(sizeof(*item), GFP_NOFS); if (item == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } trace_ocfs2_cache_block_dealloc(type, slot, (unsigned long long)suballoc, (unsigned long long)blkno, bit); item->free_bg = suballoc; item->free_blk = blkno; item->free_bit = bit; item->free_next = fl->f_first; fl->f_first = item; ret = 0; out: return ret; } static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, struct ocfs2_extent_block *eb) { return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(eb->h_suballoc_slot), le64_to_cpu(eb->h_suballoc_loc), le64_to_cpu(eb->h_blkno), le16_to_cpu(eb->h_suballoc_bit)); } static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) { set_buffer_uptodate(bh); mark_buffer_dirty(bh); return 0; } void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, unsigned int from, unsigned int to, struct page *page, int zero, u64 *phys) { int ret, partial = 0; loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from; loff_t length = to - from; ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); if (ret) mlog_errno(ret); if (zero) zero_user_segment(page, from, to); /* * Need to set the buffers we zero'd into uptodate * here if they aren't - ocfs2_map_page_blocks() * might've skipped some */ ret = walk_page_buffers(handle, page_buffers(page), from, to, &partial, ocfs2_zero_func); if (ret < 0) mlog_errno(ret); else if (ocfs2_should_order_data(inode)) { ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); if (ret < 0) mlog_errno(ret); } if (!partial) SetPageUptodate(page); flush_dcache_page(page); } static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, loff_t end, struct page **pages, int numpages, u64 phys, handle_t *handle) { int i; struct page *page; unsigned int from, to = PAGE_SIZE; struct super_block *sb = inode->i_sb; BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); if (numpages == 0) goto out; to = PAGE_SIZE; for(i = 0; i < numpages; i++) { page = pages[i]; from = start & (PAGE_SIZE - 1); if ((end >> PAGE_SHIFT) == page->index) to = end & (PAGE_SIZE - 1); BUG_ON(from > PAGE_SIZE); BUG_ON(to > PAGE_SIZE); ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, &phys); start = (page->index + 1) << PAGE_SHIFT; } out: if (pages) ocfs2_unlock_and_free_pages(pages, numpages); } int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, struct page **pages, int *num) { int numpages, ret = 0; struct address_space *mapping = inode->i_mapping; unsigned long index; loff_t last_page_bytes; BUG_ON(start > end); numpages = 0; last_page_bytes = PAGE_ALIGN(end); index = start >> PAGE_SHIFT; do { pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); if (!pages[numpages]) { ret = -ENOMEM; mlog_errno(ret); goto out; } numpages++; index++; } while (index < (last_page_bytes >> PAGE_SHIFT)); out: if (ret != 0) { if (pages) ocfs2_unlock_and_free_pages(pages, numpages); numpages = 0; } *num = numpages; return ret; } static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, struct page **pages, int *num) { struct super_block *sb = inode->i_sb; BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); return ocfs2_grab_pages(inode, start, end, pages, num); } /* * Zero partial cluster for a hole punch or truncate. This avoids exposing * nonzero data on subsequent file extends. * * We need to call this before i_size is updated on the inode because * otherwise block_write_full_page() will skip writeout of pages past * i_size. */ int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, u64 range_start, u64 range_end) { int ret = 0, numpages; struct page **pages = NULL; u64 phys; unsigned int ext_flags; struct super_block *sb = inode->i_sb; /* * File systems which don't support sparse files zero on every * extend. */ if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) return 0; /* * Avoid zeroing pages fully beyond current i_size. It is pointless as * underlying blocks of those pages should be already zeroed out and * page writeback will skip them anyway. */ range_end = min_t(u64, range_end, i_size_read(inode)); if (range_start >= range_end) return 0; pages = kcalloc(ocfs2_pages_per_cluster(sb), sizeof(struct page *), GFP_NOFS); if (pages == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_extent_map_get_blocks(inode, range_start >> sb->s_blocksize_bits, &phys, NULL, &ext_flags); if (ret) { mlog_errno(ret); goto out; } /* * Tail is a hole, or is marked unwritten. In either case, we * can count on read and write to return/push zero's. */ if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) goto out; ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, &numpages); if (ret) { mlog_errno(ret); goto out; } ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, numpages, phys, handle); /* * Initiate writeout of the pages we zero'd here. We don't * wait on them - the truncate_inode_pages() call later will * do that for us. */ ret = filemap_fdatawrite_range(inode->i_mapping, range_start, range_end - 1); if (ret) mlog_errno(ret); out: kfree(pages); return ret; } static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, struct ocfs2_dinode *di) { unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2) - xattrsize); else memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2)); } void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di) { ocfs2_zero_dinode_id2_with_xattr(inode, di); di->id2.i_list.l_tree_depth = 0; di->id2.i_list.l_next_free_rec = 0; di->id2.i_list.l_count = cpu_to_le16( ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); } void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_inline_data *idata = &di->id2.i_data; spin_lock(&oi->ip_lock); oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); /* * We clear the entire i_data structure here so that all * fields can be properly initialized. */ ocfs2_zero_dinode_id2_with_xattr(inode, di); idata->id_count = cpu_to_le16( ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); } int ocfs2_convert_inline_data_to_extents(struct inode *inode, struct buffer_head *di_bh) { int ret, has_data, num_pages = 0; int need_free = 0; u32 bit_off, num; handle_t *handle; u64 block; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_alloc_context *data_ac = NULL; struct page *page = NULL; struct ocfs2_extent_tree et; int did_quota = 0; has_data = i_size_read(inode) ? 1 : 0; if (has_data) { ret = ocfs2_reserve_clusters(osb, 1, &data_ac); if (ret) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, ocfs2_inline_to_extents_credits(osb->sb)); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } if (has_data) { unsigned int page_end = min_t(unsigned, PAGE_SIZE, osb->s_clustersize); u64 phys; ret = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, 1)); if (ret) goto out_commit; did_quota = 1; data_ac->ac_resv = &oi->ip_la_data_resv; ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, &num); if (ret) { mlog_errno(ret); goto out_commit; } /* * Save two copies, one for insert, and one that can * be changed by ocfs2_map_and_dirty_page() below. */ block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); ret = ocfs2_grab_eof_pages(inode, 0, page_end, &page, &num_pages); if (ret) { mlog_errno(ret); need_free = 1; goto out_commit; } /* * This should populate the 1st page for us and mark * it up to date. */ ret = ocfs2_read_inline_data(inode, page, di_bh); if (ret) { mlog_errno(ret); need_free = 1; goto out_unlock; } ocfs2_map_and_dirty_page(inode, handle, 0, page_end, page, 0, &phys); } spin_lock(&oi->ip_lock); oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_dinode_new_extent_list(inode, di); ocfs2_journal_dirty(handle, di_bh); if (has_data) { /* * An error at this point should be extremely rare. If * this proves to be false, we could always re-build * the in-inode data from our pages. */ ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); if (ret) { mlog_errno(ret); need_free = 1; goto out_unlock; } inode->i_blocks = ocfs2_inode_sector_count(inode); } out_unlock: if (page) ocfs2_unlock_and_free_pages(&page, num_pages); out_commit: if (ret < 0 && did_quota) dquot_free_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, 1)); if (need_free) { if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) ocfs2_free_local_alloc_bits(osb, handle, data_ac, bit_off, num); else ocfs2_free_clusters(handle, data_ac->ac_inode, data_ac->ac_bh, ocfs2_clusters_to_blocks(osb->sb, bit_off), num); } ocfs2_commit_trans(osb, handle); out: if (data_ac) ocfs2_free_alloc_context(data_ac); return ret; } /* * It is expected, that by the time you call this function, * inode->i_size and fe->i_size have been adjusted. * * WARNING: This will kfree the truncate context */ int ocfs2_commit_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *di_bh) { int status = 0, i, flags = 0; u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; u64 blkno = 0; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; struct ocfs2_path *path = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_extent_list *root_el = &(di->id2.i_list); u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); struct ocfs2_extent_tree et; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_refcount_tree *ref_tree = NULL; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); ocfs2_init_dealloc_ctxt(&dealloc); new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, i_size_read(inode)); path = ocfs2_new_path(di_bh, &di->id2.i_list, ocfs2_journal_access_di); if (!path) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_extent_map_trunc(inode, new_highest_cpos); start: /* * Check that we still have allocation to delete. */ if (OCFS2_I(inode)->ip_clusters == 0) { status = 0; goto bail; } /* * Truncate always works against the rightmost tree branch. */ status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); if (status) { mlog_errno(status); goto bail; } trace_ocfs2_commit_truncate( (unsigned long long)OCFS2_I(inode)->ip_blkno, new_highest_cpos, OCFS2_I(inode)->ip_clusters, path->p_tree_depth); /* * By now, el will point to the extent list on the bottom most * portion of this tree. Only the tail record is considered in * each pass. * * We handle the following cases, in order: * - empty extent: delete the remaining branch * - remove the entire record * - remove a partial record * - no record needs to be removed (truncate has completed) */ el = path_leaf_el(path); if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(inode->i_sb, "Inode %llu has empty extent block at %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)path_leaf_bh(path)->b_blocknr); status = -EROFS; goto bail; } i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; flags = rec->e_flags; range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (i == 0 && ocfs2_is_empty_extent(rec)) { /* * Lower levels depend on this never happening, but it's best * to check it up here before changing the tree. */ if (root_el->l_tree_depth && rec->e_int_clusters == 0) { mlog(ML_ERROR, "Inode %lu has an empty " "extent record, depth %u\n", inode->i_ino, le16_to_cpu(root_el->l_tree_depth)); status = ocfs2_remove_rightmost_empty_extent(osb, &et, path, &dealloc); if (status) { mlog_errno(status); goto bail; } ocfs2_reinit_path(path, 1); goto start; } else { trunc_cpos = le32_to_cpu(rec->e_cpos); trunc_len = 0; blkno = 0; } } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { /* * Truncate entire record. */ trunc_cpos = le32_to_cpu(rec->e_cpos); trunc_len = ocfs2_rec_clusters(el, rec); blkno = le64_to_cpu(rec->e_blkno); } else if (range > new_highest_cpos) { /* * Partial truncate. it also should be * the last truncate we're doing. */ trunc_cpos = new_highest_cpos; trunc_len = range - new_highest_cpos; coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); blkno = le64_to_cpu(rec->e_blkno) + ocfs2_clusters_to_blocks(inode->i_sb, coff); } else { /* * Truncate completed, leave happily. */ status = 0; goto bail; } phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, &ref_tree, NULL); if (status) { mlog_errno(status); goto bail; } } status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, phys_cpos, trunc_len, flags, &dealloc, refcount_loc, true); if (status < 0) { mlog_errno(status); goto bail; } ocfs2_reinit_path(path, 1); /* * The check above will catch the case where we've truncated * away all allocation. */ goto start; bail: if (ref_tree) ocfs2_unlock_refcount_tree(osb, ref_tree, 1); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); ocfs2_free_path(path); return status; } /* * 'start' is inclusive, 'end' is not. */ int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, unsigned int start, unsigned int end, int trunc) { int ret; unsigned int numbytes; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_inline_data *idata = &di->id2.i_data; /* No need to punch hole beyond i_size. */ if (start >= i_size_read(inode)) return 0; if (end > i_size_read(inode)) end = i_size_read(inode); BUG_ON(start > end); if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || !ocfs2_supports_inline_data(osb)) { ocfs2_error(inode->i_sb, "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, le16_to_cpu(di->i_dyn_features), OCFS2_I(inode)->ip_dyn_features, osb->s_feature_incompat); ret = -EROFS; goto out; } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } numbytes = end - start; memset(idata->id_data + start, 0, numbytes); /* * No need to worry about the data page here - it's been * truncated already and inline data doesn't need it for * pushing zero's to disk, so we'll let read_folio pick it up * later. */ if (trunc) { i_size_write(inode, start); di->i_size = cpu_to_le64(start); } inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_mtime = inode_set_ctime_current(inode); di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime(inode).tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_trim_extent(struct super_block *sb, struct ocfs2_group_desc *gd, u64 group, u32 start, u32 count) { u64 discard, bcount; struct ocfs2_super *osb = OCFS2_SB(sb); bcount = ocfs2_clusters_to_blocks(sb, count); discard = ocfs2_clusters_to_blocks(sb, start); /* * For the first cluster group, the gd->bg_blkno is not at the start * of the group, but at an offset from the start. If we add it while * calculating discard for first group, we will wrongly start fstrim a * few blocks after the desried start block and the range can cross * over into the next cluster group. So, add it only if this is not * the first cluster group. */ if (group != osb->first_cluster_group_blkno) discard += le64_to_cpu(gd->bg_blkno); trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); } static int ocfs2_trim_group(struct super_block *sb, struct ocfs2_group_desc *gd, u64 group, u32 start, u32 max, u32 minbits) { int ret = 0, count = 0, next; void *bitmap = gd->bg_bitmap; if (le16_to_cpu(gd->bg_free_bits_count) < minbits) return 0; trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), start, max, minbits); while (start < max) { start = ocfs2_find_next_zero_bit(bitmap, max, start); if (start >= max) break; next = ocfs2_find_next_bit(bitmap, max, start); if ((next - start) >= minbits) { ret = ocfs2_trim_extent(sb, gd, group, start, next - start); if (ret < 0) { mlog_errno(ret); break; } count += next - start; } start = next + 1; if (fatal_signal_pending(current)) { count = -ERESTARTSYS; break; } if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) break; } if (ret < 0) count = ret; return count; } static int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) { struct ocfs2_super *osb = OCFS2_SB(sb); u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; int ret, cnt; u32 first_bit, last_bit, minlen; struct buffer_head *main_bm_bh = NULL; struct inode *main_bm_inode = NULL; struct buffer_head *gd_bh = NULL; struct ocfs2_dinode *main_bm; struct ocfs2_group_desc *gd = NULL; start = range->start >> osb->s_clustersize_bits; len = range->len >> osb->s_clustersize_bits; minlen = range->minlen >> osb->s_clustersize_bits; if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) return -EINVAL; trace_ocfs2_trim_mainbm(start, len, minlen); next_group: main_bm_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!main_bm_inode) { ret = -EIO; mlog_errno(ret); goto out; } inode_lock(main_bm_inode); ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); if (ret < 0) { mlog_errno(ret); goto out_mutex; } main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; /* * Do some check before trim the first group. */ if (!group) { if (start >= le32_to_cpu(main_bm->i_clusters)) { ret = -EINVAL; goto out_unlock; } if (start + len > le32_to_cpu(main_bm->i_clusters)) len = le32_to_cpu(main_bm->i_clusters) - start; /* * Determine first and last group to examine based on * start and len */ first_group = ocfs2_which_cluster_group(main_bm_inode, start); if (first_group == osb->first_cluster_group_blkno) first_bit = start; else first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); group = first_group; } do { if (first_bit + len >= osb->bitmap_cpg) last_bit = osb->bitmap_cpg; else last_bit = first_bit + len; ret = ocfs2_read_group_descriptor(main_bm_inode, main_bm, group, &gd_bh); if (ret < 0) { mlog_errno(ret); break; } gd = (struct ocfs2_group_desc *)gd_bh->b_data; cnt = ocfs2_trim_group(sb, gd, group, first_bit, last_bit, minlen); brelse(gd_bh); gd_bh = NULL; if (cnt < 0) { ret = cnt; mlog_errno(ret); break; } trimmed += cnt; len -= osb->bitmap_cpg - first_bit; first_bit = 0; if (group == osb->first_cluster_group_blkno) group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); else group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); } while (0); out_unlock: ocfs2_inode_unlock(main_bm_inode, 0); brelse(main_bm_bh); main_bm_bh = NULL; out_mutex: inode_unlock(main_bm_inode); iput(main_bm_inode); /* * If all the groups trim are not done or failed, but we should release * main_bm related locks for avoiding the current IO starve, then go to * trim the next group */ if (ret >= 0 && group <= last_group) { cond_resched(); goto next_group; } out: range->len = trimmed * sb->s_blocksize; return ret; } int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) { int ret; struct ocfs2_super *osb = OCFS2_SB(sb); struct ocfs2_trim_fs_info info, *pinfo = NULL; ocfs2_trim_fs_lock_res_init(osb); trace_ocfs2_trim_fs(range->start, range->len, range->minlen); ret = ocfs2_trim_fs_lock(osb, NULL, 1); if (ret < 0) { if (ret != -EAGAIN) { mlog_errno(ret); ocfs2_trim_fs_lock_res_uninit(osb); return ret; } mlog(ML_NOTICE, "Wait for trim on device (%s) to " "finish, which is running from another node.\n", osb->dev_str); ret = ocfs2_trim_fs_lock(osb, &info, 0); if (ret < 0) { mlog_errno(ret); ocfs2_trim_fs_lock_res_uninit(osb); return ret; } if (info.tf_valid && info.tf_success && info.tf_start == range->start && info.tf_len == range->len && info.tf_minlen == range->minlen) { /* Avoid sending duplicated trim to a shared device */ mlog(ML_NOTICE, "The same trim on device (%s) was " "just done from node (%u), return.\n", osb->dev_str, info.tf_nodenum); range->len = info.tf_trimlen; goto out; } } info.tf_nodenum = osb->node_num; info.tf_start = range->start; info.tf_len = range->len; info.tf_minlen = range->minlen; ret = ocfs2_trim_mainbm(sb, range); info.tf_trimlen = range->len; info.tf_success = (ret < 0 ? 0 : 1); pinfo = &info; out: ocfs2_trim_fs_unlock(osb, pinfo); ocfs2_trim_fs_lock_res_uninit(osb); return ret; }
linux-master
fs/ocfs2/alloc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dir.c * * Creates, reads, walks and deletes directory-nodes * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * Portions of this code from linux/fs/ext3/dir.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card ([email protected]) * Laboratoire MASI - Institut Blaise pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/dir.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/quotaops.h> #include <linux/sort.h> #include <linux/iversion.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "inode.h" #include "journal.h" #include "namei.h" #include "suballoc.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" #define NAMEI_RA_CHUNKS 2 #define NAMEI_RA_BLOCKS 4 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS) static int ocfs2_do_extend_dir(struct super_block *sb, handle_t *handle, struct inode *dir, struct buffer_head *parent_fe_bh, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, struct buffer_head **new_bh); static int ocfs2_dir_indexed(struct inode *inode); /* * These are distinct checks because future versions of the file system will * want to have a trailing dirent structure independent of indexing. */ static int ocfs2_supports_dir_trailer(struct inode *dir) { struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return 0; return ocfs2_meta_ecc(osb) || ocfs2_dir_indexed(dir); } /* * "new' here refers to the point at which we're creating a new * directory via "mkdir()", but also when we're expanding an inline * directory. In either case, we don't yet have the indexing bit set * on the directory, so the standard checks will fail in when metaecc * is turned off. Only directory-initialization type functions should * use this then. Everything else wants ocfs2_supports_dir_trailer() */ static int ocfs2_new_dir_wants_trailer(struct inode *dir) { struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); return ocfs2_meta_ecc(osb) || ocfs2_supports_indexed_dirs(osb); } static inline unsigned int ocfs2_dir_trailer_blk_off(struct super_block *sb) { return sb->s_blocksize - sizeof(struct ocfs2_dir_block_trailer); } #define ocfs2_trailer_from_bh(_bh, _sb) ((struct ocfs2_dir_block_trailer *) ((_bh)->b_data + ocfs2_dir_trailer_blk_off((_sb)))) /* XXX ocfs2_block_dqtrailer() is similar but not quite - can we make * them more consistent? */ struct ocfs2_dir_block_trailer *ocfs2_dir_trailer_from_size(int blocksize, void *data) { char *p = data; p += blocksize - sizeof(struct ocfs2_dir_block_trailer); return (struct ocfs2_dir_block_trailer *)p; } /* * XXX: This is executed once on every dirent. We should consider optimizing * it. */ static int ocfs2_skip_dir_trailer(struct inode *dir, struct ocfs2_dir_entry *de, unsigned long offset, unsigned long blklen) { unsigned long toff = blklen - sizeof(struct ocfs2_dir_block_trailer); if (!ocfs2_supports_dir_trailer(dir)) return 0; if (offset != toff) return 0; return 1; } static void ocfs2_init_dir_trailer(struct inode *inode, struct buffer_head *bh, u16 rec_len) { struct ocfs2_dir_block_trailer *trailer; trailer = ocfs2_trailer_from_bh(bh, inode->i_sb); strcpy(trailer->db_signature, OCFS2_DIR_TRAILER_SIGNATURE); trailer->db_compat_rec_len = cpu_to_le16(sizeof(struct ocfs2_dir_block_trailer)); trailer->db_parent_dinode = cpu_to_le64(OCFS2_I(inode)->ip_blkno); trailer->db_blkno = cpu_to_le64(bh->b_blocknr); trailer->db_free_rec_len = cpu_to_le16(rec_len); } /* * Link an unindexed block with a dir trailer structure into the index free * list. This function will modify dirdata_bh, but assumes you've already * passed it to the journal. */ static int ocfs2_dx_dir_link_trailer(struct inode *dir, handle_t *handle, struct buffer_head *dx_root_bh, struct buffer_head *dirdata_bh) { int ret; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dir_block_trailer *trailer; ret = ocfs2_journal_access_dr(handle, INODE_CACHE(dir), dx_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } trailer = ocfs2_trailer_from_bh(dirdata_bh, dir->i_sb); dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; trailer->db_free_next = dx_root->dr_free_blk; dx_root->dr_free_blk = cpu_to_le64(dirdata_bh->b_blocknr); ocfs2_journal_dirty(handle, dx_root_bh); out: return ret; } static int ocfs2_free_list_at_root(struct ocfs2_dir_lookup_result *res) { return res->dl_prev_leaf_bh == NULL; } void ocfs2_free_dir_lookup_result(struct ocfs2_dir_lookup_result *res) { brelse(res->dl_dx_root_bh); brelse(res->dl_leaf_bh); brelse(res->dl_dx_leaf_bh); brelse(res->dl_prev_leaf_bh); } static int ocfs2_dir_indexed(struct inode *inode) { if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INDEXED_DIR_FL) return 1; return 0; } static inline int ocfs2_dx_root_inline(struct ocfs2_dx_root_block *dx_root) { return dx_root->dr_flags & OCFS2_DX_FLAG_INLINE; } /* * Hashing code adapted from ext3 */ #define DELTA 0x9E3779B9 static void TEA_transform(__u32 buf[4], __u32 const in[]) { __u32 sum = 0; __u32 b0 = buf[0], b1 = buf[1]; __u32 a = in[0], b = in[1], c = in[2], d = in[3]; int n = 16; do { sum += DELTA; b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b); b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d); } while (--n); buf[0] += b0; buf[1] += b1; } static void str2hashbuf(const char *msg, int len, __u32 *buf, int num) { __u32 pad, val; int i; pad = (__u32)len | ((__u32)len << 8); pad |= pad << 16; val = pad; if (len > num*4) len = num * 4; for (i = 0; i < len; i++) { if ((i % 4) == 0) val = pad; val = msg[i] + (val << 8); if ((i % 4) == 3) { *buf++ = val; val = pad; num--; } } if (--num >= 0) *buf++ = val; while (--num >= 0) *buf++ = pad; } static void ocfs2_dx_dir_name_hash(struct inode *dir, const char *name, int len, struct ocfs2_dx_hinfo *hinfo) { struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); const char *p; __u32 in[8], buf[4]; /* * XXX: Is this really necessary, if the index is never looked * at by readdir? Is a hash value of '0' a bad idea? */ if ((len == 1 && !strncmp(".", name, 1)) || (len == 2 && !strncmp("..", name, 2))) { buf[0] = buf[1] = 0; goto out; } #ifdef OCFS2_DEBUG_DX_DIRS /* * This makes it very easy to debug indexing problems. We * should never allow this to be selected without hand editing * this file though. */ buf[0] = buf[1] = len; goto out; #endif memcpy(buf, osb->osb_dx_seed, sizeof(buf)); p = name; while (len > 0) { str2hashbuf(p, len, in, 4); TEA_transform(buf, in); len -= 16; p += 16; } out: hinfo->major_hash = buf[0]; hinfo->minor_hash = buf[1]; } /* * bh passed here can be an inode block or a dir data block, depending * on the inode inline data flag. */ static int ocfs2_check_dir_entry(struct inode * dir, struct ocfs2_dir_entry * de, struct buffer_head * bh, unsigned long offset) { const char *error_msg = NULL; const int rlen = le16_to_cpu(de->rec_len); if (unlikely(rlen < OCFS2_DIR_REC_LEN(1))) error_msg = "rec_len is smaller than minimal"; else if (unlikely(rlen % 4 != 0)) error_msg = "rec_len % 4 != 0"; else if (unlikely(rlen < OCFS2_DIR_REC_LEN(de->name_len))) error_msg = "rec_len is too small for name_len"; else if (unlikely( ((char *) de - bh->b_data) + rlen > dir->i_sb->s_blocksize)) error_msg = "directory entry across blocks"; if (unlikely(error_msg != NULL)) mlog(ML_ERROR, "bad entry in directory #%llu: %s - " "offset=%lu, inode=%llu, rec_len=%d, name_len=%d\n", (unsigned long long)OCFS2_I(dir)->ip_blkno, error_msg, offset, (unsigned long long)le64_to_cpu(de->inode), rlen, de->name_len); return error_msg == NULL ? 1 : 0; } static inline int ocfs2_match(int len, const char * const name, struct ocfs2_dir_entry *de) { if (len != de->name_len) return 0; if (!de->inode) return 0; return !memcmp(name, de->name, len); } /* * Returns 0 if not found, -1 on failure, and 1 on success */ static inline int ocfs2_search_dirblock(struct buffer_head *bh, struct inode *dir, const char *name, int namelen, unsigned long offset, char *first_de, unsigned int bytes, struct ocfs2_dir_entry **res_dir) { struct ocfs2_dir_entry *de; char *dlimit, *de_buf; int de_len; int ret = 0; de_buf = first_de; dlimit = de_buf + bytes; while (de_buf < dlimit) { /* this code is executed quadratically often */ /* do minimal checking `by hand' */ de = (struct ocfs2_dir_entry *) de_buf; if (de_buf + namelen <= dlimit && ocfs2_match(namelen, name, de)) { /* found a match - just to be sure, do a full check */ if (!ocfs2_check_dir_entry(dir, de, bh, offset)) { ret = -1; goto bail; } *res_dir = de; ret = 1; goto bail; } /* prevent looping on a bad block */ de_len = le16_to_cpu(de->rec_len); if (de_len <= 0) { ret = -1; goto bail; } de_buf += de_len; offset += de_len; } bail: trace_ocfs2_search_dirblock(ret); return ret; } static struct buffer_head *ocfs2_find_entry_id(const char *name, int namelen, struct inode *dir, struct ocfs2_dir_entry **res_dir) { int ret, found; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_inline_data *data; ret = ocfs2_read_inode_block(dir, &di_bh); if (ret) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *)di_bh->b_data; data = &di->id2.i_data; found = ocfs2_search_dirblock(di_bh, dir, name, namelen, 0, data->id_data, i_size_read(dir), res_dir); if (found == 1) return di_bh; brelse(di_bh); out: return NULL; } static int ocfs2_validate_dir_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_dir_block_trailer *trailer = ocfs2_trailer_from_bh(bh, sb); /* * We don't validate dirents here, that's handled * in-place when the code walks them. */ trace_ocfs2_validate_dir_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. * * Note that we are safe to call this even if the directory * doesn't have a trailer. Filesystems without metaecc will do * nothing, and filesystems with it will have one. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &trailer->db_check); if (rc) mlog(ML_ERROR, "Checksum failed for dinode %llu\n", (unsigned long long)bh->b_blocknr); return rc; } /* * Validate a directory trailer. * * We check the trailer here rather than in ocfs2_validate_dir_block() * because that function doesn't have the inode to test. */ static int ocfs2_check_dir_trailer(struct inode *dir, struct buffer_head *bh) { int rc = 0; struct ocfs2_dir_block_trailer *trailer; trailer = ocfs2_trailer_from_bh(bh, dir->i_sb); if (!OCFS2_IS_VALID_DIR_TRAILER(trailer)) { rc = ocfs2_error(dir->i_sb, "Invalid dirblock #%llu: signature = %.*s\n", (unsigned long long)bh->b_blocknr, 7, trailer->db_signature); goto out; } if (le64_to_cpu(trailer->db_blkno) != bh->b_blocknr) { rc = ocfs2_error(dir->i_sb, "Directory block #%llu has an invalid db_blkno of %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(trailer->db_blkno)); goto out; } if (le64_to_cpu(trailer->db_parent_dinode) != OCFS2_I(dir)->ip_blkno) { rc = ocfs2_error(dir->i_sb, "Directory block #%llu on dinode #%llu has an invalid parent_dinode of %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)le64_to_cpu(trailer->db_blkno)); goto out; } out: return rc; } /* * This function forces all errors to -EIO for consistency with its * predecessor, ocfs2_bread(). We haven't audited what returning the * real error codes would do to callers. We log the real codes with * mlog_errno() before we squash them. */ static int ocfs2_read_dir_block(struct inode *inode, u64 v_block, struct buffer_head **bh, int flags) { int rc = 0; struct buffer_head *tmp = *bh; rc = ocfs2_read_virt_blocks(inode, v_block, 1, &tmp, flags, ocfs2_validate_dir_block); if (rc) { mlog_errno(rc); goto out; } if (!(flags & OCFS2_BH_READAHEAD) && ocfs2_supports_dir_trailer(inode)) { rc = ocfs2_check_dir_trailer(inode, tmp); if (rc) { if (!*bh) brelse(tmp); mlog_errno(rc); goto out; } } /* If ocfs2_read_virt_blocks() got us a new bh, pass it up. */ if (!*bh) *bh = tmp; out: return rc ? -EIO : 0; } /* * Read the block at 'phys' which belongs to this directory * inode. This function does no virtual->physical block translation - * what's passed in is assumed to be a valid directory block. */ static int ocfs2_read_dir_block_direct(struct inode *dir, u64 phys, struct buffer_head **bh) { int ret; struct buffer_head *tmp = *bh; ret = ocfs2_read_block(INODE_CACHE(dir), phys, &tmp, ocfs2_validate_dir_block); if (ret) { mlog_errno(ret); goto out; } if (ocfs2_supports_dir_trailer(dir)) { ret = ocfs2_check_dir_trailer(dir, tmp); if (ret) { if (!*bh) brelse(tmp); mlog_errno(ret); goto out; } } if (!ret && !*bh) *bh = tmp; out: return ret; } static int ocfs2_validate_dx_root(struct super_block *sb, struct buffer_head *bh) { int ret; struct ocfs2_dx_root_block *dx_root; BUG_ON(!buffer_uptodate(bh)); dx_root = (struct ocfs2_dx_root_block *) bh->b_data; ret = ocfs2_validate_meta_ecc(sb, bh->b_data, &dx_root->dr_check); if (ret) { mlog(ML_ERROR, "Checksum failed for dir index root block %llu\n", (unsigned long long)bh->b_blocknr); return ret; } if (!OCFS2_IS_VALID_DX_ROOT(dx_root)) { ret = ocfs2_error(sb, "Dir Index Root # %llu has bad signature %.*s\n", (unsigned long long)le64_to_cpu(dx_root->dr_blkno), 7, dx_root->dr_signature); } return ret; } static int ocfs2_read_dx_root(struct inode *dir, struct ocfs2_dinode *di, struct buffer_head **dx_root_bh) { int ret; u64 blkno = le64_to_cpu(di->i_dx_root); struct buffer_head *tmp = *dx_root_bh; ret = ocfs2_read_block(INODE_CACHE(dir), blkno, &tmp, ocfs2_validate_dx_root); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!ret && !*dx_root_bh) *dx_root_bh = tmp; return ret; } static int ocfs2_validate_dx_leaf(struct super_block *sb, struct buffer_head *bh) { int ret; struct ocfs2_dx_leaf *dx_leaf = (struct ocfs2_dx_leaf *)bh->b_data; BUG_ON(!buffer_uptodate(bh)); ret = ocfs2_validate_meta_ecc(sb, bh->b_data, &dx_leaf->dl_check); if (ret) { mlog(ML_ERROR, "Checksum failed for dir index leaf block %llu\n", (unsigned long long)bh->b_blocknr); return ret; } if (!OCFS2_IS_VALID_DX_LEAF(dx_leaf)) { ret = ocfs2_error(sb, "Dir Index Leaf has bad signature %.*s\n", 7, dx_leaf->dl_signature); } return ret; } static int ocfs2_read_dx_leaf(struct inode *dir, u64 blkno, struct buffer_head **dx_leaf_bh) { int ret; struct buffer_head *tmp = *dx_leaf_bh; ret = ocfs2_read_block(INODE_CACHE(dir), blkno, &tmp, ocfs2_validate_dx_leaf); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!ret && !*dx_leaf_bh) *dx_leaf_bh = tmp; return ret; } /* * Read a series of dx_leaf blocks. This expects all buffer_head * pointers to be NULL on function entry. */ static int ocfs2_read_dx_leaves(struct inode *dir, u64 start, int num, struct buffer_head **dx_leaf_bhs) { int ret; ret = ocfs2_read_blocks(INODE_CACHE(dir), start, num, dx_leaf_bhs, 0, ocfs2_validate_dx_leaf); if (ret) mlog_errno(ret); return ret; } static struct buffer_head *ocfs2_find_entry_el(const char *name, int namelen, struct inode *dir, struct ocfs2_dir_entry **res_dir) { struct super_block *sb; struct buffer_head *bh_use[NAMEI_RA_SIZE]; struct buffer_head *bh, *ret = NULL; unsigned long start, block, b; int ra_max = 0; /* Number of bh's in the readahead buffer, bh_use[] */ int ra_ptr = 0; /* Current index into readahead buffer */ int num = 0; int nblocks, i; sb = dir->i_sb; nblocks = i_size_read(dir) >> sb->s_blocksize_bits; start = OCFS2_I(dir)->ip_dir_start_lookup; if (start >= nblocks) start = 0; block = start; restart: do { /* * We deal with the read-ahead logic here. */ if (ra_ptr >= ra_max) { /* Refill the readahead buffer */ ra_ptr = 0; b = block; for (ra_max = 0; ra_max < NAMEI_RA_SIZE; ra_max++) { /* * Terminate if we reach the end of the * directory and must wrap, or if our * search has finished at this block. */ if (b >= nblocks || (num && block == start)) { bh_use[ra_max] = NULL; break; } num++; bh = NULL; ocfs2_read_dir_block(dir, b++, &bh, OCFS2_BH_READAHEAD); bh_use[ra_max] = bh; } } if ((bh = bh_use[ra_ptr++]) == NULL) goto next; if (ocfs2_read_dir_block(dir, block, &bh, 0)) { /* read error, skip block & hope for the best. * ocfs2_read_dir_block() has released the bh. */ mlog(ML_ERROR, "reading directory %llu, " "offset %lu\n", (unsigned long long)OCFS2_I(dir)->ip_blkno, block); goto next; } i = ocfs2_search_dirblock(bh, dir, name, namelen, block << sb->s_blocksize_bits, bh->b_data, sb->s_blocksize, res_dir); if (i == 1) { OCFS2_I(dir)->ip_dir_start_lookup = block; ret = bh; goto cleanup_and_exit; } else { brelse(bh); if (i < 0) goto cleanup_and_exit; } next: if (++block >= nblocks) block = 0; } while (block != start); /* * If the directory has grown while we were searching, then * search the last part of the directory before giving up. */ block = nblocks; nblocks = i_size_read(dir) >> sb->s_blocksize_bits; if (block < nblocks) { start = 0; goto restart; } cleanup_and_exit: /* Clean up the read-ahead blocks */ for (; ra_ptr < ra_max; ra_ptr++) brelse(bh_use[ra_ptr]); trace_ocfs2_find_entry_el(ret); return ret; } static int ocfs2_dx_dir_lookup_rec(struct inode *inode, struct ocfs2_extent_list *el, u32 major_hash, u32 *ret_cpos, u64 *ret_phys_blkno, unsigned int *ret_clen) { int ret = 0, i, found; struct buffer_head *eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_rec *rec = NULL; if (el->l_tree_depth) { ret = ocfs2_find_leaf(INODE_CACHE(inode), el, major_hash, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ret = ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in btree tree block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); goto out; } } found = 0; for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) <= major_hash) { found = 1; break; } } if (!found) { ret = ocfs2_error(inode->i_sb, "Inode %lu has bad extent record (%u, %u, 0) in btree\n", inode->i_ino, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); goto out; } if (ret_phys_blkno) *ret_phys_blkno = le64_to_cpu(rec->e_blkno); if (ret_cpos) *ret_cpos = le32_to_cpu(rec->e_cpos); if (ret_clen) *ret_clen = le16_to_cpu(rec->e_leaf_clusters); out: brelse(eb_bh); return ret; } /* * Returns the block index, from the start of the cluster which this * hash belongs too. */ static inline unsigned int __ocfs2_dx_dir_hash_idx(struct ocfs2_super *osb, u32 minor_hash) { return minor_hash & osb->osb_dx_mask; } static inline unsigned int ocfs2_dx_dir_hash_idx(struct ocfs2_super *osb, struct ocfs2_dx_hinfo *hinfo) { return __ocfs2_dx_dir_hash_idx(osb, hinfo->minor_hash); } static int ocfs2_dx_dir_lookup(struct inode *inode, struct ocfs2_extent_list *el, struct ocfs2_dx_hinfo *hinfo, u32 *ret_cpos, u64 *ret_phys_blkno) { int ret = 0; unsigned int cend, clen; u32 cpos; u64 blkno; u32 name_hash = hinfo->major_hash; ret = ocfs2_dx_dir_lookup_rec(inode, el, name_hash, &cpos, &blkno, &clen); if (ret) { mlog_errno(ret); goto out; } cend = cpos + clen; if (name_hash >= cend) { /* We want the last cluster */ blkno += ocfs2_clusters_to_blocks(inode->i_sb, clen - 1); cpos += clen - 1; } else { blkno += ocfs2_clusters_to_blocks(inode->i_sb, name_hash - cpos); cpos = name_hash; } /* * We now have the cluster which should hold our entry. To * find the exact block from the start of the cluster to * search, we take the lower bits of the hash. */ blkno += ocfs2_dx_dir_hash_idx(OCFS2_SB(inode->i_sb), hinfo); if (ret_phys_blkno) *ret_phys_blkno = blkno; if (ret_cpos) *ret_cpos = cpos; out: return ret; } static int ocfs2_dx_dir_search(const char *name, int namelen, struct inode *dir, struct ocfs2_dx_root_block *dx_root, struct ocfs2_dir_lookup_result *res) { int ret, i, found; u64 phys; struct buffer_head *dx_leaf_bh = NULL; struct ocfs2_dx_leaf *dx_leaf; struct ocfs2_dx_entry *dx_entry = NULL; struct buffer_head *dir_ent_bh = NULL; struct ocfs2_dir_entry *dir_ent = NULL; struct ocfs2_dx_hinfo *hinfo = &res->dl_hinfo; struct ocfs2_extent_list *dr_el; struct ocfs2_dx_entry_list *entry_list; ocfs2_dx_dir_name_hash(dir, name, namelen, &res->dl_hinfo); if (ocfs2_dx_root_inline(dx_root)) { entry_list = &dx_root->dr_entries; goto search; } dr_el = &dx_root->dr_list; ret = ocfs2_dx_dir_lookup(dir, dr_el, hinfo, NULL, &phys); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_dx_dir_search((unsigned long long)OCFS2_I(dir)->ip_blkno, namelen, name, hinfo->major_hash, hinfo->minor_hash, (unsigned long long)phys); ret = ocfs2_read_dx_leaf(dir, phys, &dx_leaf_bh); if (ret) { mlog_errno(ret); goto out; } dx_leaf = (struct ocfs2_dx_leaf *) dx_leaf_bh->b_data; trace_ocfs2_dx_dir_search_leaf_info( le16_to_cpu(dx_leaf->dl_list.de_num_used), le16_to_cpu(dx_leaf->dl_list.de_count)); entry_list = &dx_leaf->dl_list; search: /* * Empty leaf is legal, so no need to check for that. */ found = 0; for (i = 0; i < le16_to_cpu(entry_list->de_num_used); i++) { dx_entry = &entry_list->de_entries[i]; if (hinfo->major_hash != le32_to_cpu(dx_entry->dx_major_hash) || hinfo->minor_hash != le32_to_cpu(dx_entry->dx_minor_hash)) continue; /* * Search unindexed leaf block now. We're not * guaranteed to find anything. */ ret = ocfs2_read_dir_block_direct(dir, le64_to_cpu(dx_entry->dx_dirent_blk), &dir_ent_bh); if (ret) { mlog_errno(ret); goto out; } /* * XXX: We should check the unindexed block here, * before using it. */ found = ocfs2_search_dirblock(dir_ent_bh, dir, name, namelen, 0, dir_ent_bh->b_data, dir->i_sb->s_blocksize, &dir_ent); if (found == 1) break; if (found == -1) { /* This means we found a bad directory entry. */ ret = -EIO; mlog_errno(ret); goto out; } brelse(dir_ent_bh); dir_ent_bh = NULL; } if (found <= 0) { ret = -ENOENT; goto out; } res->dl_leaf_bh = dir_ent_bh; res->dl_entry = dir_ent; res->dl_dx_leaf_bh = dx_leaf_bh; res->dl_dx_entry = dx_entry; ret = 0; out: if (ret) { brelse(dx_leaf_bh); brelse(dir_ent_bh); } return ret; } static int ocfs2_find_entry_dx(const char *name, int namelen, struct inode *dir, struct ocfs2_dir_lookup_result *lookup) { int ret; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; struct buffer_head *dx_root_bh = NULL; struct ocfs2_dx_root_block *dx_root; ret = ocfs2_read_inode_block(dir, &di_bh); if (ret) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *)di_bh->b_data; ret = ocfs2_read_dx_root(dir, di, &dx_root_bh); if (ret) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *) dx_root_bh->b_data; ret = ocfs2_dx_dir_search(name, namelen, dir, dx_root, lookup); if (ret) { if (ret != -ENOENT) mlog_errno(ret); goto out; } lookup->dl_dx_root_bh = dx_root_bh; dx_root_bh = NULL; out: brelse(di_bh); brelse(dx_root_bh); return ret; } /* * Try to find an entry of the provided name within 'dir'. * * If nothing was found, -ENOENT is returned. Otherwise, zero is * returned and the struct 'res' will contain information useful to * other directory manipulation functions. * * Caller can NOT assume anything about the contents of the * buffer_heads - they are passed back only so that it can be passed * into any one of the manipulation functions (add entry, delete * entry, etc). As an example, bh in the extent directory case is a * data block, in the inline-data case it actually points to an inode, * in the indexed directory case, multiple buffers are involved. */ int ocfs2_find_entry(const char *name, int namelen, struct inode *dir, struct ocfs2_dir_lookup_result *lookup) { struct buffer_head *bh; struct ocfs2_dir_entry *res_dir = NULL; if (ocfs2_dir_indexed(dir)) return ocfs2_find_entry_dx(name, namelen, dir, lookup); /* * The unindexed dir code only uses part of the lookup * structure, so there's no reason to push it down further * than this. */ if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) bh = ocfs2_find_entry_id(name, namelen, dir, &res_dir); else bh = ocfs2_find_entry_el(name, namelen, dir, &res_dir); if (bh == NULL) return -ENOENT; lookup->dl_leaf_bh = bh; lookup->dl_entry = res_dir; return 0; } /* * Update inode number and type of a previously found directory entry. */ int ocfs2_update_entry(struct inode *dir, handle_t *handle, struct ocfs2_dir_lookup_result *res, struct inode *new_entry_inode) { int ret; ocfs2_journal_access_func access = ocfs2_journal_access_db; struct ocfs2_dir_entry *de = res->dl_entry; struct buffer_head *de_bh = res->dl_leaf_bh; /* * The same code works fine for both inline-data and extent * based directories, so no need to split this up. The only * difference is the journal_access function. */ if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) access = ocfs2_journal_access_di; ret = access(handle, INODE_CACHE(dir), de_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } de->inode = cpu_to_le64(OCFS2_I(new_entry_inode)->ip_blkno); ocfs2_set_de_type(de, new_entry_inode->i_mode); ocfs2_journal_dirty(handle, de_bh); out: return ret; } /* * __ocfs2_delete_entry deletes a directory entry by merging it with the * previous entry */ static int __ocfs2_delete_entry(handle_t *handle, struct inode *dir, struct ocfs2_dir_entry *de_del, struct buffer_head *bh, char *first_de, unsigned int bytes) { struct ocfs2_dir_entry *de, *pde; int i, status = -ENOENT; ocfs2_journal_access_func access = ocfs2_journal_access_db; if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) access = ocfs2_journal_access_di; i = 0; pde = NULL; de = (struct ocfs2_dir_entry *) first_de; while (i < bytes) { if (!ocfs2_check_dir_entry(dir, de, bh, i)) { status = -EIO; mlog_errno(status); goto bail; } if (de == de_del) { status = access(handle, INODE_CACHE(dir), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { status = -EIO; mlog_errno(status); goto bail; } if (pde) le16_add_cpu(&pde->rec_len, le16_to_cpu(de->rec_len)); de->inode = 0; inode_inc_iversion(dir); ocfs2_journal_dirty(handle, bh); goto bail; } i += le16_to_cpu(de->rec_len); pde = de; de = (struct ocfs2_dir_entry *)((char *)de + le16_to_cpu(de->rec_len)); } bail: return status; } static unsigned int ocfs2_figure_dirent_hole(struct ocfs2_dir_entry *de) { unsigned int hole; if (le64_to_cpu(de->inode) == 0) hole = le16_to_cpu(de->rec_len); else hole = le16_to_cpu(de->rec_len) - OCFS2_DIR_REC_LEN(de->name_len); return hole; } static int ocfs2_find_max_rec_len(struct super_block *sb, struct buffer_head *dirblock_bh) { int size, this_hole, largest_hole = 0; char *trailer, *de_buf, *limit, *start = dirblock_bh->b_data; struct ocfs2_dir_entry *de; trailer = (char *)ocfs2_trailer_from_bh(dirblock_bh, sb); size = ocfs2_dir_trailer_blk_off(sb); limit = start + size; de_buf = start; de = (struct ocfs2_dir_entry *)de_buf; do { if (de_buf != trailer) { this_hole = ocfs2_figure_dirent_hole(de); if (this_hole > largest_hole) largest_hole = this_hole; } de_buf += le16_to_cpu(de->rec_len); de = (struct ocfs2_dir_entry *)de_buf; } while (de_buf < limit); if (largest_hole >= OCFS2_DIR_MIN_REC_LEN) return largest_hole; return 0; } static void ocfs2_dx_list_remove_entry(struct ocfs2_dx_entry_list *entry_list, int index) { int num_used = le16_to_cpu(entry_list->de_num_used); if (num_used == 1 || index == (num_used - 1)) goto clear; memmove(&entry_list->de_entries[index], &entry_list->de_entries[index + 1], (num_used - index - 1)*sizeof(struct ocfs2_dx_entry)); clear: num_used--; memset(&entry_list->de_entries[num_used], 0, sizeof(struct ocfs2_dx_entry)); entry_list->de_num_used = cpu_to_le16(num_used); } static int ocfs2_delete_entry_dx(handle_t *handle, struct inode *dir, struct ocfs2_dir_lookup_result *lookup) { int ret, index, max_rec_len, add_to_free_list = 0; struct buffer_head *dx_root_bh = lookup->dl_dx_root_bh; struct buffer_head *leaf_bh = lookup->dl_leaf_bh; struct ocfs2_dx_leaf *dx_leaf; struct ocfs2_dx_entry *dx_entry = lookup->dl_dx_entry; struct ocfs2_dir_block_trailer *trailer; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dx_entry_list *entry_list; /* * This function gets a bit messy because we might have to * modify the root block, regardless of whether the indexed * entries are stored inline. */ /* * *Only* set 'entry_list' here, based on where we're looking * for the indexed entries. Later, we might still want to * journal both blocks, based on free list state. */ dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; if (ocfs2_dx_root_inline(dx_root)) { entry_list = &dx_root->dr_entries; } else { dx_leaf = (struct ocfs2_dx_leaf *) lookup->dl_dx_leaf_bh->b_data; entry_list = &dx_leaf->dl_list; } /* Neither of these are a disk corruption - that should have * been caught by lookup, before we got here. */ BUG_ON(le16_to_cpu(entry_list->de_count) <= 0); BUG_ON(le16_to_cpu(entry_list->de_num_used) <= 0); index = (char *)dx_entry - (char *)entry_list->de_entries; index /= sizeof(*dx_entry); if (index >= le16_to_cpu(entry_list->de_num_used)) { mlog(ML_ERROR, "Dir %llu: Bad dx_entry ptr idx %d, (%p, %p)\n", (unsigned long long)OCFS2_I(dir)->ip_blkno, index, entry_list, dx_entry); return -EIO; } /* * We know that removal of this dirent will leave enough room * for a new one, so add this block to the free list if it * isn't already there. */ trailer = ocfs2_trailer_from_bh(leaf_bh, dir->i_sb); if (trailer->db_free_rec_len == 0) add_to_free_list = 1; /* * Add the block holding our index into the journal before * removing the unindexed entry. If we get an error return * from __ocfs2_delete_entry(), then it hasn't removed the * entry yet. Likewise, successful return means we *must* * remove the indexed entry. * * We're also careful to journal the root tree block here as * the entry count needs to be updated. Also, we might be * adding to the start of the free list. */ ret = ocfs2_journal_access_dr(handle, INODE_CACHE(dir), dx_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } if (!ocfs2_dx_root_inline(dx_root)) { ret = ocfs2_journal_access_dl(handle, INODE_CACHE(dir), lookup->dl_dx_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } } trace_ocfs2_delete_entry_dx((unsigned long long)OCFS2_I(dir)->ip_blkno, index); ret = __ocfs2_delete_entry(handle, dir, lookup->dl_entry, leaf_bh, leaf_bh->b_data, leaf_bh->b_size); if (ret) { mlog_errno(ret); goto out; } max_rec_len = ocfs2_find_max_rec_len(dir->i_sb, leaf_bh); trailer->db_free_rec_len = cpu_to_le16(max_rec_len); if (add_to_free_list) { trailer->db_free_next = dx_root->dr_free_blk; dx_root->dr_free_blk = cpu_to_le64(leaf_bh->b_blocknr); ocfs2_journal_dirty(handle, dx_root_bh); } /* leaf_bh was journal_accessed for us in __ocfs2_delete_entry */ ocfs2_journal_dirty(handle, leaf_bh); le32_add_cpu(&dx_root->dr_num_entries, -1); ocfs2_journal_dirty(handle, dx_root_bh); ocfs2_dx_list_remove_entry(entry_list, index); if (!ocfs2_dx_root_inline(dx_root)) ocfs2_journal_dirty(handle, lookup->dl_dx_leaf_bh); out: return ret; } static inline int ocfs2_delete_entry_id(handle_t *handle, struct inode *dir, struct ocfs2_dir_entry *de_del, struct buffer_head *bh) { int ret; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_inline_data *data; ret = ocfs2_read_inode_block(dir, &di_bh); if (ret) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *)di_bh->b_data; data = &di->id2.i_data; ret = __ocfs2_delete_entry(handle, dir, de_del, bh, data->id_data, i_size_read(dir)); brelse(di_bh); out: return ret; } static inline int ocfs2_delete_entry_el(handle_t *handle, struct inode *dir, struct ocfs2_dir_entry *de_del, struct buffer_head *bh) { return __ocfs2_delete_entry(handle, dir, de_del, bh, bh->b_data, bh->b_size); } /* * Delete a directory entry. Hide the details of directory * implementation from the caller. */ int ocfs2_delete_entry(handle_t *handle, struct inode *dir, struct ocfs2_dir_lookup_result *res) { if (ocfs2_dir_indexed(dir)) return ocfs2_delete_entry_dx(handle, dir, res); if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return ocfs2_delete_entry_id(handle, dir, res->dl_entry, res->dl_leaf_bh); return ocfs2_delete_entry_el(handle, dir, res->dl_entry, res->dl_leaf_bh); } /* * Check whether 'de' has enough room to hold an entry of * 'new_rec_len' bytes. */ static inline int ocfs2_dirent_would_fit(struct ocfs2_dir_entry *de, unsigned int new_rec_len) { unsigned int de_really_used; /* Check whether this is an empty record with enough space */ if (le64_to_cpu(de->inode) == 0 && le16_to_cpu(de->rec_len) >= new_rec_len) return 1; /* * Record might have free space at the end which we can * use. */ de_really_used = OCFS2_DIR_REC_LEN(de->name_len); if (le16_to_cpu(de->rec_len) >= (de_really_used + new_rec_len)) return 1; return 0; } static void ocfs2_dx_dir_leaf_insert_tail(struct ocfs2_dx_leaf *dx_leaf, struct ocfs2_dx_entry *dx_new_entry) { int i; i = le16_to_cpu(dx_leaf->dl_list.de_num_used); dx_leaf->dl_list.de_entries[i] = *dx_new_entry; le16_add_cpu(&dx_leaf->dl_list.de_num_used, 1); } static void ocfs2_dx_entry_list_insert(struct ocfs2_dx_entry_list *entry_list, struct ocfs2_dx_hinfo *hinfo, u64 dirent_blk) { int i; struct ocfs2_dx_entry *dx_entry; i = le16_to_cpu(entry_list->de_num_used); dx_entry = &entry_list->de_entries[i]; memset(dx_entry, 0, sizeof(*dx_entry)); dx_entry->dx_major_hash = cpu_to_le32(hinfo->major_hash); dx_entry->dx_minor_hash = cpu_to_le32(hinfo->minor_hash); dx_entry->dx_dirent_blk = cpu_to_le64(dirent_blk); le16_add_cpu(&entry_list->de_num_used, 1); } static int __ocfs2_dx_dir_leaf_insert(struct inode *dir, handle_t *handle, struct ocfs2_dx_hinfo *hinfo, u64 dirent_blk, struct buffer_head *dx_leaf_bh) { int ret; struct ocfs2_dx_leaf *dx_leaf; ret = ocfs2_journal_access_dl(handle, INODE_CACHE(dir), dx_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } dx_leaf = (struct ocfs2_dx_leaf *)dx_leaf_bh->b_data; ocfs2_dx_entry_list_insert(&dx_leaf->dl_list, hinfo, dirent_blk); ocfs2_journal_dirty(handle, dx_leaf_bh); out: return ret; } static void ocfs2_dx_inline_root_insert(struct inode *dir, handle_t *handle, struct ocfs2_dx_hinfo *hinfo, u64 dirent_blk, struct ocfs2_dx_root_block *dx_root) { ocfs2_dx_entry_list_insert(&dx_root->dr_entries, hinfo, dirent_blk); } static int ocfs2_dx_dir_insert(struct inode *dir, handle_t *handle, struct ocfs2_dir_lookup_result *lookup) { int ret = 0; struct ocfs2_dx_root_block *dx_root; struct buffer_head *dx_root_bh = lookup->dl_dx_root_bh; ret = ocfs2_journal_access_dr(handle, INODE_CACHE(dir), dx_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *)lookup->dl_dx_root_bh->b_data; if (ocfs2_dx_root_inline(dx_root)) { ocfs2_dx_inline_root_insert(dir, handle, &lookup->dl_hinfo, lookup->dl_leaf_bh->b_blocknr, dx_root); } else { ret = __ocfs2_dx_dir_leaf_insert(dir, handle, &lookup->dl_hinfo, lookup->dl_leaf_bh->b_blocknr, lookup->dl_dx_leaf_bh); if (ret) goto out; } le32_add_cpu(&dx_root->dr_num_entries, 1); ocfs2_journal_dirty(handle, dx_root_bh); out: return ret; } static void ocfs2_remove_block_from_free_list(struct inode *dir, handle_t *handle, struct ocfs2_dir_lookup_result *lookup) { struct ocfs2_dir_block_trailer *trailer, *prev; struct ocfs2_dx_root_block *dx_root; struct buffer_head *bh; trailer = ocfs2_trailer_from_bh(lookup->dl_leaf_bh, dir->i_sb); if (ocfs2_free_list_at_root(lookup)) { bh = lookup->dl_dx_root_bh; dx_root = (struct ocfs2_dx_root_block *)bh->b_data; dx_root->dr_free_blk = trailer->db_free_next; } else { bh = lookup->dl_prev_leaf_bh; prev = ocfs2_trailer_from_bh(bh, dir->i_sb); prev->db_free_next = trailer->db_free_next; } trailer->db_free_rec_len = cpu_to_le16(0); trailer->db_free_next = cpu_to_le64(0); ocfs2_journal_dirty(handle, bh); ocfs2_journal_dirty(handle, lookup->dl_leaf_bh); } /* * This expects that a journal write has been reserved on * lookup->dl_prev_leaf_bh or lookup->dl_dx_root_bh */ static void ocfs2_recalc_free_list(struct inode *dir, handle_t *handle, struct ocfs2_dir_lookup_result *lookup) { int max_rec_len; struct ocfs2_dir_block_trailer *trailer; /* Walk dl_leaf_bh to figure out what the new free rec_len is. */ max_rec_len = ocfs2_find_max_rec_len(dir->i_sb, lookup->dl_leaf_bh); if (max_rec_len) { /* * There's still room in this block, so no need to remove it * from the free list. In this case, we just want to update * the rec len accounting. */ trailer = ocfs2_trailer_from_bh(lookup->dl_leaf_bh, dir->i_sb); trailer->db_free_rec_len = cpu_to_le16(max_rec_len); ocfs2_journal_dirty(handle, lookup->dl_leaf_bh); } else { ocfs2_remove_block_from_free_list(dir, handle, lookup); } } /* we don't always have a dentry for what we want to add, so people * like orphan dir can call this instead. * * The lookup context must have been filled from * ocfs2_prepare_dir_for_insert. */ int __ocfs2_add_entry(handle_t *handle, struct inode *dir, const char *name, int namelen, struct inode *inode, u64 blkno, struct buffer_head *parent_fe_bh, struct ocfs2_dir_lookup_result *lookup) { unsigned long offset; unsigned short rec_len; struct ocfs2_dir_entry *de, *de1; struct ocfs2_dinode *di = (struct ocfs2_dinode *)parent_fe_bh->b_data; struct super_block *sb = dir->i_sb; int retval; unsigned int size = sb->s_blocksize; struct buffer_head *insert_bh = lookup->dl_leaf_bh; char *data_start = insert_bh->b_data; if (!namelen) return -EINVAL; if (ocfs2_dir_indexed(dir)) { struct buffer_head *bh; /* * An indexed dir may require that we update the free space * list. Reserve a write to the previous node in the list so * that we don't fail later. * * XXX: This can be either a dx_root_block, or an unindexed * directory tree leaf block. */ if (ocfs2_free_list_at_root(lookup)) { bh = lookup->dl_dx_root_bh; retval = ocfs2_journal_access_dr(handle, INODE_CACHE(dir), bh, OCFS2_JOURNAL_ACCESS_WRITE); } else { bh = lookup->dl_prev_leaf_bh; retval = ocfs2_journal_access_db(handle, INODE_CACHE(dir), bh, OCFS2_JOURNAL_ACCESS_WRITE); } if (retval) { mlog_errno(retval); return retval; } } else if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { data_start = di->id2.i_data.id_data; size = i_size_read(dir); BUG_ON(insert_bh != parent_fe_bh); } rec_len = OCFS2_DIR_REC_LEN(namelen); offset = 0; de = (struct ocfs2_dir_entry *) data_start; while (1) { BUG_ON((char *)de >= (size + data_start)); /* These checks should've already been passed by the * prepare function, but I guess we can leave them * here anyway. */ if (!ocfs2_check_dir_entry(dir, de, insert_bh, offset)) { retval = -ENOENT; goto bail; } if (ocfs2_match(namelen, name, de)) { retval = -EEXIST; goto bail; } /* We're guaranteed that we should have space, so we * can't possibly have hit the trailer...right? */ mlog_bug_on_msg(ocfs2_skip_dir_trailer(dir, de, offset, size), "Hit dir trailer trying to insert %.*s " "(namelen %d) into directory %llu. " "offset is %lu, trailer offset is %d\n", namelen, name, namelen, (unsigned long long)parent_fe_bh->b_blocknr, offset, ocfs2_dir_trailer_blk_off(dir->i_sb)); if (ocfs2_dirent_would_fit(de, rec_len)) { dir->i_mtime = inode_set_ctime_current(dir); retval = ocfs2_mark_inode_dirty(handle, dir, parent_fe_bh); if (retval < 0) { mlog_errno(retval); goto bail; } if (insert_bh == parent_fe_bh) retval = ocfs2_journal_access_di(handle, INODE_CACHE(dir), insert_bh, OCFS2_JOURNAL_ACCESS_WRITE); else { retval = ocfs2_journal_access_db(handle, INODE_CACHE(dir), insert_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (!retval && ocfs2_dir_indexed(dir)) retval = ocfs2_dx_dir_insert(dir, handle, lookup); } if (retval) { mlog_errno(retval); goto bail; } /* By now the buffer is marked for journaling */ offset += le16_to_cpu(de->rec_len); if (le64_to_cpu(de->inode)) { de1 = (struct ocfs2_dir_entry *)((char *) de + OCFS2_DIR_REC_LEN(de->name_len)); de1->rec_len = cpu_to_le16(le16_to_cpu(de->rec_len) - OCFS2_DIR_REC_LEN(de->name_len)); de->rec_len = cpu_to_le16(OCFS2_DIR_REC_LEN(de->name_len)); de = de1; } de->file_type = FT_UNKNOWN; if (blkno) { de->inode = cpu_to_le64(blkno); ocfs2_set_de_type(de, inode->i_mode); } else de->inode = 0; de->name_len = namelen; memcpy(de->name, name, namelen); if (ocfs2_dir_indexed(dir)) ocfs2_recalc_free_list(dir, handle, lookup); inode_inc_iversion(dir); ocfs2_journal_dirty(handle, insert_bh); retval = 0; goto bail; } offset += le16_to_cpu(de->rec_len); de = (struct ocfs2_dir_entry *) ((char *) de + le16_to_cpu(de->rec_len)); } /* when you think about it, the assert above should prevent us * from ever getting here. */ retval = -ENOSPC; bail: if (retval) mlog_errno(retval); return retval; } static int ocfs2_dir_foreach_blk_id(struct inode *inode, u64 *f_version, struct dir_context *ctx) { int ret, i; unsigned long offset = ctx->pos; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_inline_data *data; struct ocfs2_dir_entry *de; ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog(ML_ERROR, "Unable to read inode block for dir %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); goto out; } di = (struct ocfs2_dinode *)di_bh->b_data; data = &di->id2.i_data; while (ctx->pos < i_size_read(inode)) { /* If the dir block has changed since the last call to * readdir(2), then we might be pointing to an invalid * dirent right now. Scan from the start of the block * to make sure. */ if (!inode_eq_iversion(inode, *f_version)) { for (i = 0; i < i_size_read(inode) && i < offset; ) { de = (struct ocfs2_dir_entry *) (data->id_data + i); /* It's too expensive to do a full * dirent test each time round this * loop, but we do have to test at * least that it is non-zero. A * failure will be detected in the * dirent test below. */ if (le16_to_cpu(de->rec_len) < OCFS2_DIR_REC_LEN(1)) break; i += le16_to_cpu(de->rec_len); } ctx->pos = offset = i; *f_version = inode_query_iversion(inode); } de = (struct ocfs2_dir_entry *) (data->id_data + ctx->pos); if (!ocfs2_check_dir_entry(inode, de, di_bh, ctx->pos)) { /* On error, skip the f_pos to the end. */ ctx->pos = i_size_read(inode); break; } offset += le16_to_cpu(de->rec_len); if (le64_to_cpu(de->inode)) { if (!dir_emit(ctx, de->name, de->name_len, le64_to_cpu(de->inode), fs_ftype_to_dtype(de->file_type))) goto out; } ctx->pos += le16_to_cpu(de->rec_len); } out: brelse(di_bh); return 0; } /* * NOTE: This function can be called against unindexed directories, * and indexed ones. */ static int ocfs2_dir_foreach_blk_el(struct inode *inode, u64 *f_version, struct dir_context *ctx, bool persist) { unsigned long offset, blk, last_ra_blk = 0; int i; struct buffer_head * bh, * tmp; struct ocfs2_dir_entry * de; struct super_block * sb = inode->i_sb; unsigned int ra_sectors = 16; int stored = 0; bh = NULL; offset = ctx->pos & (sb->s_blocksize - 1); while (ctx->pos < i_size_read(inode)) { blk = ctx->pos >> sb->s_blocksize_bits; if (ocfs2_read_dir_block(inode, blk, &bh, 0)) { /* Skip the corrupt dirblock and keep trying */ ctx->pos += sb->s_blocksize - offset; continue; } /* The idea here is to begin with 8k read-ahead and to stay * 4k ahead of our current position. * * TODO: Use the pagecache for this. We just need to * make sure it's cluster-safe... */ if (!last_ra_blk || (((last_ra_blk - blk) << 9) <= (ra_sectors / 2))) { for (i = ra_sectors >> (sb->s_blocksize_bits - 9); i > 0; i--) { tmp = NULL; if (!ocfs2_read_dir_block(inode, ++blk, &tmp, OCFS2_BH_READAHEAD)) brelse(tmp); } last_ra_blk = blk; ra_sectors = 8; } /* If the dir block has changed since the last call to * readdir(2), then we might be pointing to an invalid * dirent right now. Scan from the start of the block * to make sure. */ if (!inode_eq_iversion(inode, *f_version)) { for (i = 0; i < sb->s_blocksize && i < offset; ) { de = (struct ocfs2_dir_entry *) (bh->b_data + i); /* It's too expensive to do a full * dirent test each time round this * loop, but we do have to test at * least that it is non-zero. A * failure will be detected in the * dirent test below. */ if (le16_to_cpu(de->rec_len) < OCFS2_DIR_REC_LEN(1)) break; i += le16_to_cpu(de->rec_len); } offset = i; ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1)) | offset; *f_version = inode_query_iversion(inode); } while (ctx->pos < i_size_read(inode) && offset < sb->s_blocksize) { de = (struct ocfs2_dir_entry *) (bh->b_data + offset); if (!ocfs2_check_dir_entry(inode, de, bh, offset)) { /* On error, skip the f_pos to the next block. */ ctx->pos = (ctx->pos | (sb->s_blocksize - 1)) + 1; break; } if (le64_to_cpu(de->inode)) { if (!dir_emit(ctx, de->name, de->name_len, le64_to_cpu(de->inode), fs_ftype_to_dtype(de->file_type))) { brelse(bh); return 0; } stored++; } offset += le16_to_cpu(de->rec_len); ctx->pos += le16_to_cpu(de->rec_len); } offset = 0; brelse(bh); bh = NULL; if (!persist && stored) break; } return 0; } static int ocfs2_dir_foreach_blk(struct inode *inode, u64 *f_version, struct dir_context *ctx, bool persist) { if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return ocfs2_dir_foreach_blk_id(inode, f_version, ctx); return ocfs2_dir_foreach_blk_el(inode, f_version, ctx, persist); } /* * This is intended to be called from inside other kernel functions, * so we fake some arguments. */ int ocfs2_dir_foreach(struct inode *inode, struct dir_context *ctx) { u64 version = inode_query_iversion(inode); ocfs2_dir_foreach_blk(inode, &version, ctx, true); return 0; } /* * ocfs2_readdir() * */ int ocfs2_readdir(struct file *file, struct dir_context *ctx) { int error = 0; struct inode *inode = file_inode(file); int lock_level = 0; trace_ocfs2_readdir((unsigned long long)OCFS2_I(inode)->ip_blkno); error = ocfs2_inode_lock_atime(inode, file->f_path.mnt, &lock_level, 1); if (lock_level && error >= 0) { /* We release EX lock which used to update atime * and get PR lock again to reduce contention * on commonly accessed directories. */ ocfs2_inode_unlock(inode, 1); lock_level = 0; error = ocfs2_inode_lock(inode, NULL, 0); } if (error < 0) { if (error != -ENOENT) mlog_errno(error); /* we haven't got any yet, so propagate the error. */ goto bail_nolock; } error = ocfs2_dir_foreach_blk(inode, &file->f_version, ctx, false); ocfs2_inode_unlock(inode, lock_level); if (error) mlog_errno(error); bail_nolock: return error; } /* * NOTE: this should always be called with parent dir i_rwsem taken. */ int ocfs2_find_files_on_disk(const char *name, int namelen, u64 *blkno, struct inode *inode, struct ocfs2_dir_lookup_result *lookup) { int status = -ENOENT; trace_ocfs2_find_files_on_disk(namelen, name, blkno, (unsigned long long)OCFS2_I(inode)->ip_blkno); status = ocfs2_find_entry(name, namelen, inode, lookup); if (status) goto leave; *blkno = le64_to_cpu(lookup->dl_entry->inode); status = 0; leave: return status; } /* * Convenience function for callers which just want the block number * mapped to a name and don't require the full dirent info, etc. */ int ocfs2_lookup_ino_from_name(struct inode *dir, const char *name, int namelen, u64 *blkno) { int ret; struct ocfs2_dir_lookup_result lookup = { NULL, }; ret = ocfs2_find_files_on_disk(name, namelen, blkno, dir, &lookup); ocfs2_free_dir_lookup_result(&lookup); return ret; } /* Check for a name within a directory. * * Return 0 if the name does not exist * Return -EEXIST if the directory contains the name * * Callers should have i_rwsem + a cluster lock on dir */ int ocfs2_check_dir_for_entry(struct inode *dir, const char *name, int namelen) { int ret = 0; struct ocfs2_dir_lookup_result lookup = { NULL, }; trace_ocfs2_check_dir_for_entry( (unsigned long long)OCFS2_I(dir)->ip_blkno, namelen, name); if (ocfs2_find_entry(name, namelen, dir, &lookup) == 0) { ret = -EEXIST; mlog_errno(ret); } ocfs2_free_dir_lookup_result(&lookup); return ret; } struct ocfs2_empty_dir_priv { struct dir_context ctx; unsigned seen_dot; unsigned seen_dot_dot; unsigned seen_other; unsigned dx_dir; }; static bool ocfs2_empty_dir_filldir(struct dir_context *ctx, const char *name, int name_len, loff_t pos, u64 ino, unsigned type) { struct ocfs2_empty_dir_priv *p = container_of(ctx, struct ocfs2_empty_dir_priv, ctx); /* * Check the positions of "." and ".." records to be sure * they're in the correct place. * * Indexed directories don't need to proceed past the first * two entries, so we end the scan after seeing '..'. Despite * that, we allow the scan to proceed In the event that we * have a corrupted indexed directory (no dot or dot dot * entries). This allows us to double check for existing * entries which might not have been found in the index. */ if (name_len == 1 && !strncmp(".", name, 1) && pos == 0) { p->seen_dot = 1; return true; } if (name_len == 2 && !strncmp("..", name, 2) && pos == OCFS2_DIR_REC_LEN(1)) { p->seen_dot_dot = 1; if (p->dx_dir && p->seen_dot) return false; return true; } p->seen_other = 1; return false; } static int ocfs2_empty_dir_dx(struct inode *inode, struct ocfs2_empty_dir_priv *priv) { int ret; struct buffer_head *di_bh = NULL; struct buffer_head *dx_root_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_dx_root_block *dx_root; priv->dx_dir = 1; ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *)di_bh->b_data; ret = ocfs2_read_dx_root(inode, di, &dx_root_bh); if (ret) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; if (le32_to_cpu(dx_root->dr_num_entries) != 2) priv->seen_other = 1; out: brelse(di_bh); brelse(dx_root_bh); return ret; } /* * routine to check that the specified directory is empty (for rmdir) * * Returns 1 if dir is empty, zero otherwise. * * XXX: This is a performance problem for unindexed directories. */ int ocfs2_empty_dir(struct inode *inode) { int ret; struct ocfs2_empty_dir_priv priv = { .ctx.actor = ocfs2_empty_dir_filldir, }; if (ocfs2_dir_indexed(inode)) { ret = ocfs2_empty_dir_dx(inode, &priv); if (ret) mlog_errno(ret); /* * We still run ocfs2_dir_foreach to get the checks * for "." and "..". */ } ret = ocfs2_dir_foreach(inode, &priv.ctx); if (ret) mlog_errno(ret); if (!priv.seen_dot || !priv.seen_dot_dot) { mlog(ML_ERROR, "bad directory (dir #%llu) - no `.' or `..'\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); /* * XXX: Is it really safe to allow an unlink to continue? */ return 1; } return !priv.seen_other; } /* * Fills "." and ".." dirents in a new directory block. Returns dirent for * "..", which might be used during creation of a directory with a trailing * header. It is otherwise safe to ignore the return code. */ static struct ocfs2_dir_entry *ocfs2_fill_initial_dirents(struct inode *inode, struct inode *parent, char *start, unsigned int size) { struct ocfs2_dir_entry *de = (struct ocfs2_dir_entry *)start; de->inode = cpu_to_le64(OCFS2_I(inode)->ip_blkno); de->name_len = 1; de->rec_len = cpu_to_le16(OCFS2_DIR_REC_LEN(de->name_len)); strcpy(de->name, "."); ocfs2_set_de_type(de, S_IFDIR); de = (struct ocfs2_dir_entry *) ((char *)de + le16_to_cpu(de->rec_len)); de->inode = cpu_to_le64(OCFS2_I(parent)->ip_blkno); de->rec_len = cpu_to_le16(size - OCFS2_DIR_REC_LEN(1)); de->name_len = 2; strcpy(de->name, ".."); ocfs2_set_de_type(de, S_IFDIR); return de; } /* * This works together with code in ocfs2_mknod_locked() which sets * the inline-data flag and initializes the inline-data section. */ static int ocfs2_fill_new_dir_id(struct ocfs2_super *osb, handle_t *handle, struct inode *parent, struct inode *inode, struct buffer_head *di_bh) { int ret; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_inline_data *data = &di->id2.i_data; unsigned int size = le16_to_cpu(data->id_count); ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ocfs2_fill_initial_dirents(inode, parent, data->id_data, size); ocfs2_journal_dirty(handle, di_bh); i_size_write(inode, size); set_nlink(inode, 2); inode->i_blocks = ocfs2_inode_sector_count(inode); ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); if (ret < 0) mlog_errno(ret); out: return ret; } static int ocfs2_fill_new_dir_el(struct ocfs2_super *osb, handle_t *handle, struct inode *parent, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_alloc_context *data_ac, struct buffer_head **ret_new_bh) { int status; unsigned int size = osb->sb->s_blocksize; struct buffer_head *new_bh = NULL; struct ocfs2_dir_entry *de; if (ocfs2_new_dir_wants_trailer(inode)) size = ocfs2_dir_trailer_blk_off(parent->i_sb); status = ocfs2_do_extend_dir(osb->sb, handle, inode, fe_bh, data_ac, NULL, &new_bh); if (status < 0) { mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), new_bh); status = ocfs2_journal_access_db(handle, INODE_CACHE(inode), new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(new_bh->b_data, 0, osb->sb->s_blocksize); de = ocfs2_fill_initial_dirents(inode, parent, new_bh->b_data, size); if (ocfs2_new_dir_wants_trailer(inode)) { int size = le16_to_cpu(de->rec_len); /* * Figure out the size of the hole left over after * insertion of '.' and '..'. The trailer wants this * information. */ size -= OCFS2_DIR_REC_LEN(2); size -= sizeof(struct ocfs2_dir_block_trailer); ocfs2_init_dir_trailer(inode, new_bh, size); } ocfs2_journal_dirty(handle, new_bh); i_size_write(inode, inode->i_sb->s_blocksize); set_nlink(inode, 2); inode->i_blocks = ocfs2_inode_sector_count(inode); status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } status = 0; if (ret_new_bh) { *ret_new_bh = new_bh; new_bh = NULL; } bail: brelse(new_bh); return status; } static int ocfs2_dx_dir_attach_index(struct ocfs2_super *osb, handle_t *handle, struct inode *dir, struct buffer_head *di_bh, struct buffer_head *dirdata_bh, struct ocfs2_alloc_context *meta_ac, int dx_inline, u32 num_entries, struct buffer_head **ret_dx_root_bh) { int ret; struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data; u16 dr_suballoc_bit; u64 suballoc_loc, dr_blkno; unsigned int num_bits; struct buffer_head *dx_root_bh = NULL; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dir_block_trailer *trailer = ocfs2_trailer_from_bh(dirdata_bh, dir->i_sb); ret = ocfs2_claim_metadata(handle, meta_ac, 1, &suballoc_loc, &dr_suballoc_bit, &num_bits, &dr_blkno); if (ret) { mlog_errno(ret); goto out; } trace_ocfs2_dx_dir_attach_index( (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)dr_blkno); dx_root_bh = sb_getblk(osb->sb, dr_blkno); if (dx_root_bh == NULL) { ret = -ENOMEM; goto out; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(dir), dx_root_bh); ret = ocfs2_journal_access_dr(handle, INODE_CACHE(dir), dx_root_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret < 0) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; memset(dx_root, 0, osb->sb->s_blocksize); strcpy(dx_root->dr_signature, OCFS2_DX_ROOT_SIGNATURE); dx_root->dr_suballoc_slot = cpu_to_le16(meta_ac->ac_alloc_slot); dx_root->dr_suballoc_loc = cpu_to_le64(suballoc_loc); dx_root->dr_suballoc_bit = cpu_to_le16(dr_suballoc_bit); dx_root->dr_fs_generation = cpu_to_le32(osb->fs_generation); dx_root->dr_blkno = cpu_to_le64(dr_blkno); dx_root->dr_dir_blkno = cpu_to_le64(OCFS2_I(dir)->ip_blkno); dx_root->dr_num_entries = cpu_to_le32(num_entries); if (le16_to_cpu(trailer->db_free_rec_len)) dx_root->dr_free_blk = cpu_to_le64(dirdata_bh->b_blocknr); else dx_root->dr_free_blk = cpu_to_le64(0); if (dx_inline) { dx_root->dr_flags |= OCFS2_DX_FLAG_INLINE; dx_root->dr_entries.de_count = cpu_to_le16(ocfs2_dx_entries_per_root(osb->sb)); } else { dx_root->dr_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_dx_root(osb->sb)); } ocfs2_journal_dirty(handle, dx_root_bh); ret = ocfs2_journal_access_di(handle, INODE_CACHE(dir), di_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out; } di->i_dx_root = cpu_to_le64(dr_blkno); spin_lock(&OCFS2_I(dir)->ip_lock); OCFS2_I(dir)->ip_dyn_features |= OCFS2_INDEXED_DIR_FL; di->i_dyn_features = cpu_to_le16(OCFS2_I(dir)->ip_dyn_features); spin_unlock(&OCFS2_I(dir)->ip_lock); ocfs2_journal_dirty(handle, di_bh); *ret_dx_root_bh = dx_root_bh; dx_root_bh = NULL; out: brelse(dx_root_bh); return ret; } static int ocfs2_dx_dir_format_cluster(struct ocfs2_super *osb, handle_t *handle, struct inode *dir, struct buffer_head **dx_leaves, int num_dx_leaves, u64 start_blk) { int ret, i; struct ocfs2_dx_leaf *dx_leaf; struct buffer_head *bh; for (i = 0; i < num_dx_leaves; i++) { bh = sb_getblk(osb->sb, start_blk + i); if (bh == NULL) { ret = -ENOMEM; goto out; } dx_leaves[i] = bh; ocfs2_set_new_buffer_uptodate(INODE_CACHE(dir), bh); ret = ocfs2_journal_access_dl(handle, INODE_CACHE(dir), bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret < 0) { mlog_errno(ret); goto out; } dx_leaf = (struct ocfs2_dx_leaf *) bh->b_data; memset(dx_leaf, 0, osb->sb->s_blocksize); strcpy(dx_leaf->dl_signature, OCFS2_DX_LEAF_SIGNATURE); dx_leaf->dl_fs_generation = cpu_to_le32(osb->fs_generation); dx_leaf->dl_blkno = cpu_to_le64(bh->b_blocknr); dx_leaf->dl_list.de_count = cpu_to_le16(ocfs2_dx_entries_per_leaf(osb->sb)); trace_ocfs2_dx_dir_format_cluster( (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)bh->b_blocknr, le16_to_cpu(dx_leaf->dl_list.de_count)); ocfs2_journal_dirty(handle, bh); } ret = 0; out: return ret; } /* * Allocates and formats a new cluster for use in an indexed dir * leaf. This version will not do the extent insert, so that it can be * used by operations which need careful ordering. */ static int __ocfs2_dx_dir_new_cluster(struct inode *dir, u32 cpos, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct buffer_head **dx_leaves, int num_dx_leaves, u64 *ret_phys_blkno) { int ret; u32 phys, num; u64 phys_blkno; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); /* * XXX: For create, this should claim cluster for the index * *before* the unindexed insert so that we have a better * chance of contiguousness as the directory grows in number * of entries. */ ret = __ocfs2_claim_clusters(handle, data_ac, 1, 1, &phys, &num); if (ret) { mlog_errno(ret); goto out; } /* * Format the new cluster first. That way, we're inserting * valid data. */ phys_blkno = ocfs2_clusters_to_blocks(osb->sb, phys); ret = ocfs2_dx_dir_format_cluster(osb, handle, dir, dx_leaves, num_dx_leaves, phys_blkno); if (ret) { mlog_errno(ret); goto out; } *ret_phys_blkno = phys_blkno; out: return ret; } static int ocfs2_dx_dir_new_cluster(struct inode *dir, struct ocfs2_extent_tree *et, u32 cpos, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, struct buffer_head **dx_leaves, int num_dx_leaves) { int ret; u64 phys_blkno; ret = __ocfs2_dx_dir_new_cluster(dir, cpos, handle, data_ac, dx_leaves, num_dx_leaves, &phys_blkno); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_insert_extent(handle, et, cpos, phys_blkno, 1, 0, meta_ac); if (ret) mlog_errno(ret); out: return ret; } static struct buffer_head **ocfs2_dx_dir_kmalloc_leaves(struct super_block *sb, int *ret_num_leaves) { int num_dx_leaves = ocfs2_clusters_to_blocks(sb, 1); struct buffer_head **dx_leaves; dx_leaves = kcalloc(num_dx_leaves, sizeof(struct buffer_head *), GFP_NOFS); if (dx_leaves && ret_num_leaves) *ret_num_leaves = num_dx_leaves; return dx_leaves; } static int ocfs2_fill_new_dir_dx(struct ocfs2_super *osb, handle_t *handle, struct inode *parent, struct inode *inode, struct buffer_head *di_bh, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac) { int ret; struct buffer_head *leaf_bh = NULL; struct buffer_head *dx_root_bh = NULL; struct ocfs2_dx_hinfo hinfo; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dx_entry_list *entry_list; /* * Our strategy is to create the directory as though it were * unindexed, then add the index block. This works with very * little complication since the state of a new directory is a * very well known quantity. * * Essentially, we have two dirents ("." and ".."), in the 1st * block which need indexing. These are easily inserted into * the index block. */ ret = ocfs2_fill_new_dir_el(osb, handle, parent, inode, di_bh, data_ac, &leaf_bh); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_dx_dir_attach_index(osb, handle, inode, di_bh, leaf_bh, meta_ac, 1, 2, &dx_root_bh); if (ret) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; entry_list = &dx_root->dr_entries; /* Buffer has been journaled for us by ocfs2_dx_dir_attach_index */ ocfs2_dx_dir_name_hash(inode, ".", 1, &hinfo); ocfs2_dx_entry_list_insert(entry_list, &hinfo, leaf_bh->b_blocknr); ocfs2_dx_dir_name_hash(inode, "..", 2, &hinfo); ocfs2_dx_entry_list_insert(entry_list, &hinfo, leaf_bh->b_blocknr); out: brelse(dx_root_bh); brelse(leaf_bh); return ret; } int ocfs2_fill_new_dir(struct ocfs2_super *osb, handle_t *handle, struct inode *parent, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac) { BUG_ON(!ocfs2_supports_inline_data(osb) && data_ac == NULL); if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return ocfs2_fill_new_dir_id(osb, handle, parent, inode, fe_bh); if (ocfs2_supports_indexed_dirs(osb)) return ocfs2_fill_new_dir_dx(osb, handle, parent, inode, fe_bh, data_ac, meta_ac); return ocfs2_fill_new_dir_el(osb, handle, parent, inode, fe_bh, data_ac, NULL); } static int ocfs2_dx_dir_index_block(struct inode *dir, handle_t *handle, struct buffer_head **dx_leaves, int num_dx_leaves, u32 *num_dx_entries, struct buffer_head *dirent_bh) { int ret = 0, namelen, i; char *de_buf, *limit; struct ocfs2_dir_entry *de; struct buffer_head *dx_leaf_bh; struct ocfs2_dx_hinfo hinfo; u64 dirent_blk = dirent_bh->b_blocknr; de_buf = dirent_bh->b_data; limit = de_buf + dir->i_sb->s_blocksize; while (de_buf < limit) { de = (struct ocfs2_dir_entry *)de_buf; namelen = de->name_len; if (!namelen || !de->inode) goto inc; ocfs2_dx_dir_name_hash(dir, de->name, namelen, &hinfo); i = ocfs2_dx_dir_hash_idx(OCFS2_SB(dir->i_sb), &hinfo); dx_leaf_bh = dx_leaves[i]; ret = __ocfs2_dx_dir_leaf_insert(dir, handle, &hinfo, dirent_blk, dx_leaf_bh); if (ret) { mlog_errno(ret); goto out; } *num_dx_entries = *num_dx_entries + 1; inc: de_buf += le16_to_cpu(de->rec_len); } out: return ret; } /* * XXX: This expects dx_root_bh to already be part of the transaction. */ static void ocfs2_dx_dir_index_root_block(struct inode *dir, struct buffer_head *dx_root_bh, struct buffer_head *dirent_bh) { char *de_buf, *limit; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dir_entry *de; struct ocfs2_dx_hinfo hinfo; u64 dirent_blk = dirent_bh->b_blocknr; dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; de_buf = dirent_bh->b_data; limit = de_buf + dir->i_sb->s_blocksize; while (de_buf < limit) { de = (struct ocfs2_dir_entry *)de_buf; if (!de->name_len || !de->inode) goto inc; ocfs2_dx_dir_name_hash(dir, de->name, de->name_len, &hinfo); trace_ocfs2_dx_dir_index_root_block( (unsigned long long)dir->i_ino, hinfo.major_hash, hinfo.minor_hash, de->name_len, de->name, le16_to_cpu(dx_root->dr_entries.de_num_used)); ocfs2_dx_entry_list_insert(&dx_root->dr_entries, &hinfo, dirent_blk); le32_add_cpu(&dx_root->dr_num_entries, 1); inc: de_buf += le16_to_cpu(de->rec_len); } } /* * Count the number of inline directory entries in di_bh and compare * them against the number of entries we can hold in an inline dx root * block. */ static int ocfs2_new_dx_should_be_inline(struct inode *dir, struct buffer_head *di_bh) { int dirent_count = 0; char *de_buf, *limit; struct ocfs2_dir_entry *de; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; de_buf = di->id2.i_data.id_data; limit = de_buf + i_size_read(dir); while (de_buf < limit) { de = (struct ocfs2_dir_entry *)de_buf; if (de->name_len && de->inode) dirent_count++; de_buf += le16_to_cpu(de->rec_len); } /* We are careful to leave room for one extra record. */ return dirent_count < ocfs2_dx_entries_per_root(dir->i_sb); } /* * Expand rec_len of the rightmost dirent in a directory block so that it * contains the end of our valid space for dirents. We do this during * expansion from an inline directory to one with extents. The first dir block * in that case is taken from the inline data portion of the inode block. * * This will also return the largest amount of contiguous space for a dirent * in the block. That value is *not* necessarily the last dirent, even after * expansion. The directory indexing code wants this value for free space * accounting. We do this here since we're already walking the entire dir * block. * * We add the dir trailer if this filesystem wants it. */ static unsigned int ocfs2_expand_last_dirent(char *start, unsigned int old_size, struct inode *dir) { struct super_block *sb = dir->i_sb; struct ocfs2_dir_entry *de; struct ocfs2_dir_entry *prev_de; char *de_buf, *limit; unsigned int new_size = sb->s_blocksize; unsigned int bytes, this_hole; unsigned int largest_hole = 0; if (ocfs2_new_dir_wants_trailer(dir)) new_size = ocfs2_dir_trailer_blk_off(sb); bytes = new_size - old_size; limit = start + old_size; de_buf = start; de = (struct ocfs2_dir_entry *)de_buf; do { this_hole = ocfs2_figure_dirent_hole(de); if (this_hole > largest_hole) largest_hole = this_hole; prev_de = de; de_buf += le16_to_cpu(de->rec_len); de = (struct ocfs2_dir_entry *)de_buf; } while (de_buf < limit); le16_add_cpu(&prev_de->rec_len, bytes); /* We need to double check this after modification of the final * dirent. */ this_hole = ocfs2_figure_dirent_hole(prev_de); if (this_hole > largest_hole) largest_hole = this_hole; if (largest_hole >= OCFS2_DIR_MIN_REC_LEN) return largest_hole; return 0; } /* * We allocate enough clusters to fulfill "blocks_wanted", but set * i_size to exactly one block. Ocfs2_extend_dir() will handle the * rest automatically for us. * * *first_block_bh is a pointer to the 1st data block allocated to the * directory. */ static int ocfs2_expand_inline_dir(struct inode *dir, struct buffer_head *di_bh, unsigned int blocks_wanted, struct ocfs2_dir_lookup_result *lookup, struct buffer_head **first_block_bh) { u32 alloc, dx_alloc, bit_off, len, num_dx_entries = 0; struct super_block *sb = dir->i_sb; int ret, i, num_dx_leaves = 0, dx_inline = 0, credits = ocfs2_inline_to_extents_credits(sb); u64 dx_insert_blkno, blkno, bytes = blocks_wanted << sb->s_blocksize_bits; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct ocfs2_inode_info *oi = OCFS2_I(dir); struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; struct buffer_head *dirdata_bh = NULL; struct buffer_head *dx_root_bh = NULL; struct buffer_head **dx_leaves = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; handle_t *handle; struct ocfs2_extent_tree et; struct ocfs2_extent_tree dx_et; int did_quota = 0, bytes_allocated = 0; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(dir), di_bh); alloc = ocfs2_clusters_for_bytes(sb, bytes); dx_alloc = 0; down_write(&oi->ip_alloc_sem); if (ocfs2_supports_indexed_dirs(osb)) { credits += ocfs2_add_dir_index_credits(sb); dx_inline = ocfs2_new_dx_should_be_inline(dir, di_bh); if (!dx_inline) { /* Add one more cluster for an index leaf */ dx_alloc++; dx_leaves = ocfs2_dx_dir_kmalloc_leaves(sb, &num_dx_leaves); if (!dx_leaves) { ret = -ENOMEM; mlog_errno(ret); goto out; } } /* This gets us the dx_root */ ret = ocfs2_reserve_new_metadata_blocks(osb, 1, &meta_ac); if (ret) { mlog_errno(ret); goto out; } } /* * We should never need more than 2 clusters for the unindexed * tree - maximum dirent size is far less than one block. In * fact, the only time we'd need more than one cluster is if * blocksize == clustersize and the dirent won't fit in the * extra space that the expansion to a single block gives. As * of today, that only happens on 4k/4k file systems. */ BUG_ON(alloc > 2); ret = ocfs2_reserve_clusters(osb, alloc + dx_alloc, &data_ac); if (ret) { mlog_errno(ret); goto out; } /* * Prepare for worst case allocation scenario of two separate * extents in the unindexed tree. */ if (alloc == 2) credits += OCFS2_SUBALLOC_ALLOC; handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = dquot_alloc_space_nodirty(dir, ocfs2_clusters_to_bytes(osb->sb, alloc + dx_alloc)); if (ret) goto out_commit; did_quota = 1; if (ocfs2_supports_indexed_dirs(osb) && !dx_inline) { /* * Allocate our index cluster first, to maximize the * possibility that unindexed leaves grow * contiguously. */ ret = __ocfs2_dx_dir_new_cluster(dir, 0, handle, data_ac, dx_leaves, num_dx_leaves, &dx_insert_blkno); if (ret) { mlog_errno(ret); goto out_commit; } bytes_allocated += ocfs2_clusters_to_bytes(dir->i_sb, 1); } /* * Try to claim as many clusters as the bitmap can give though * if we only get one now, that's enough to continue. The rest * will be claimed after the conversion to extents. */ if (ocfs2_dir_resv_allowed(osb)) data_ac->ac_resv = &oi->ip_la_data_resv; ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, &len); if (ret) { mlog_errno(ret); goto out_commit; } bytes_allocated += ocfs2_clusters_to_bytes(dir->i_sb, 1); /* * Operations are carefully ordered so that we set up the new * data block first. The conversion from inline data to * extents follows. */ blkno = ocfs2_clusters_to_blocks(dir->i_sb, bit_off); dirdata_bh = sb_getblk(sb, blkno); if (!dirdata_bh) { ret = -ENOMEM; mlog_errno(ret); goto out_commit; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(dir), dirdata_bh); ret = ocfs2_journal_access_db(handle, INODE_CACHE(dir), dirdata_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out_commit; } memcpy(dirdata_bh->b_data, di->id2.i_data.id_data, i_size_read(dir)); memset(dirdata_bh->b_data + i_size_read(dir), 0, sb->s_blocksize - i_size_read(dir)); i = ocfs2_expand_last_dirent(dirdata_bh->b_data, i_size_read(dir), dir); if (ocfs2_new_dir_wants_trailer(dir)) { /* * Prepare the dir trailer up front. It will otherwise look * like a valid dirent. Even if inserting the index fails * (unlikely), then all we'll have done is given first dir * block a small amount of fragmentation. */ ocfs2_init_dir_trailer(dir, dirdata_bh, i); } ocfs2_update_inode_fsync_trans(handle, dir, 1); ocfs2_journal_dirty(handle, dirdata_bh); if (ocfs2_supports_indexed_dirs(osb) && !dx_inline) { /* * Dx dirs with an external cluster need to do this up * front. Inline dx root's get handled later, after * we've allocated our root block. We get passed back * a total number of items so that dr_num_entries can * be correctly set once the dx_root has been * allocated. */ ret = ocfs2_dx_dir_index_block(dir, handle, dx_leaves, num_dx_leaves, &num_dx_entries, dirdata_bh); if (ret) { mlog_errno(ret); goto out_commit; } } /* * Set extent, i_size, etc on the directory. After this, the * inode should contain the same exact dirents as before and * be fully accessible from system calls. * * We let the later dirent insert modify c/mtime - to the user * the data hasn't changed. */ ret = ocfs2_journal_access_di(handle, INODE_CACHE(dir), di_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out_commit; } spin_lock(&oi->ip_lock); oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_dinode_new_extent_list(dir, di); i_size_write(dir, sb->s_blocksize); dir->i_mtime = inode_set_ctime_current(dir); di->i_size = cpu_to_le64(sb->s_blocksize); di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime(dir).tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime(dir).tv_nsec); ocfs2_update_inode_fsync_trans(handle, dir, 1); /* * This should never fail as our extent list is empty and all * related blocks have been journaled already. */ ret = ocfs2_insert_extent(handle, &et, 0, blkno, len, 0, NULL); if (ret) { mlog_errno(ret); goto out_commit; } /* * Set i_blocks after the extent insert for the most up to * date ip_clusters value. */ dir->i_blocks = ocfs2_inode_sector_count(dir); ocfs2_journal_dirty(handle, di_bh); if (ocfs2_supports_indexed_dirs(osb)) { ret = ocfs2_dx_dir_attach_index(osb, handle, dir, di_bh, dirdata_bh, meta_ac, dx_inline, num_dx_entries, &dx_root_bh); if (ret) { mlog_errno(ret); goto out_commit; } if (dx_inline) { ocfs2_dx_dir_index_root_block(dir, dx_root_bh, dirdata_bh); } else { ocfs2_init_dx_root_extent_tree(&dx_et, INODE_CACHE(dir), dx_root_bh); ret = ocfs2_insert_extent(handle, &dx_et, 0, dx_insert_blkno, 1, 0, NULL); if (ret) mlog_errno(ret); } } /* * We asked for two clusters, but only got one in the 1st * pass. Claim the 2nd cluster as a separate extent. */ if (alloc > len) { ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, &len); if (ret) { mlog_errno(ret); goto out_commit; } blkno = ocfs2_clusters_to_blocks(dir->i_sb, bit_off); ret = ocfs2_insert_extent(handle, &et, 1, blkno, len, 0, NULL); if (ret) { mlog_errno(ret); goto out_commit; } bytes_allocated += ocfs2_clusters_to_bytes(dir->i_sb, 1); } *first_block_bh = dirdata_bh; dirdata_bh = NULL; if (ocfs2_supports_indexed_dirs(osb)) { unsigned int off; if (!dx_inline) { /* * We need to return the correct block within the * cluster which should hold our entry. */ off = ocfs2_dx_dir_hash_idx(osb, &lookup->dl_hinfo); get_bh(dx_leaves[off]); lookup->dl_dx_leaf_bh = dx_leaves[off]; } lookup->dl_dx_root_bh = dx_root_bh; dx_root_bh = NULL; } out_commit: if (ret < 0 && did_quota) dquot_free_space_nodirty(dir, bytes_allocated); ocfs2_commit_trans(osb, handle); out: up_write(&oi->ip_alloc_sem); if (data_ac) ocfs2_free_alloc_context(data_ac); if (meta_ac) ocfs2_free_alloc_context(meta_ac); if (dx_leaves) { for (i = 0; i < num_dx_leaves; i++) brelse(dx_leaves[i]); kfree(dx_leaves); } brelse(dirdata_bh); brelse(dx_root_bh); return ret; } /* returns a bh of the 1st new block in the allocation. */ static int ocfs2_do_extend_dir(struct super_block *sb, handle_t *handle, struct inode *dir, struct buffer_head *parent_fe_bh, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, struct buffer_head **new_bh) { int status; int extend, did_quota = 0; u64 p_blkno, v_blkno; spin_lock(&OCFS2_I(dir)->ip_lock); extend = (i_size_read(dir) == ocfs2_clusters_to_bytes(sb, OCFS2_I(dir)->ip_clusters)); spin_unlock(&OCFS2_I(dir)->ip_lock); if (extend) { u32 offset = OCFS2_I(dir)->ip_clusters; status = dquot_alloc_space_nodirty(dir, ocfs2_clusters_to_bytes(sb, 1)); if (status) goto bail; did_quota = 1; status = ocfs2_add_inode_data(OCFS2_SB(sb), dir, &offset, 1, 0, parent_fe_bh, handle, data_ac, meta_ac, NULL); BUG_ON(status == -EAGAIN); if (status < 0) { mlog_errno(status); goto bail; } } v_blkno = ocfs2_blocks_for_bytes(sb, i_size_read(dir)); status = ocfs2_extent_map_get_blocks(dir, v_blkno, &p_blkno, NULL, NULL); if (status < 0) { mlog_errno(status); goto bail; } *new_bh = sb_getblk(sb, p_blkno); if (!*new_bh) { status = -ENOMEM; mlog_errno(status); goto bail; } status = 0; bail: if (did_quota && status < 0) dquot_free_space_nodirty(dir, ocfs2_clusters_to_bytes(sb, 1)); return status; } /* * Assumes you already have a cluster lock on the directory. * * 'blocks_wanted' is only used if we have an inline directory which * is to be turned into an extent based one. The size of the dirent to * insert might be larger than the space gained by growing to just one * block, so we may have to grow the inode by two blocks in that case. * * If the directory is already indexed, dx_root_bh must be provided. */ static int ocfs2_extend_dir(struct ocfs2_super *osb, struct inode *dir, struct buffer_head *parent_fe_bh, unsigned int blocks_wanted, struct ocfs2_dir_lookup_result *lookup, struct buffer_head **new_de_bh) { int status = 0; int credits, num_free_extents, drop_alloc_sem = 0; loff_t dir_i_size; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) parent_fe_bh->b_data; struct ocfs2_extent_list *el = &fe->id2.i_list; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; handle_t *handle = NULL; struct buffer_head *new_bh = NULL; struct ocfs2_dir_entry * de; struct super_block *sb = osb->sb; struct ocfs2_extent_tree et; struct buffer_head *dx_root_bh = lookup->dl_dx_root_bh; if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { /* * This would be a code error as an inline directory should * never have an index root. */ BUG_ON(dx_root_bh); status = ocfs2_expand_inline_dir(dir, parent_fe_bh, blocks_wanted, lookup, &new_bh); if (status) { mlog_errno(status); goto bail; } /* Expansion from inline to an indexed directory will * have given us this. */ dx_root_bh = lookup->dl_dx_root_bh; if (blocks_wanted == 1) { /* * If the new dirent will fit inside the space * created by pushing out to one block, then * we can complete the operation * here. Otherwise we have to expand i_size * and format the 2nd block below. */ BUG_ON(new_bh == NULL); goto bail_bh; } /* * Get rid of 'new_bh' - we want to format the 2nd * data block and return that instead. */ brelse(new_bh); new_bh = NULL; down_write(&OCFS2_I(dir)->ip_alloc_sem); drop_alloc_sem = 1; dir_i_size = i_size_read(dir); credits = OCFS2_SIMPLE_DIR_EXTEND_CREDITS; goto do_extend; } down_write(&OCFS2_I(dir)->ip_alloc_sem); drop_alloc_sem = 1; dir_i_size = i_size_read(dir); trace_ocfs2_extend_dir((unsigned long long)OCFS2_I(dir)->ip_blkno, dir_i_size); /* dir->i_size is always block aligned. */ spin_lock(&OCFS2_I(dir)->ip_lock); if (dir_i_size == ocfs2_clusters_to_bytes(sb, OCFS2_I(dir)->ip_clusters)) { spin_unlock(&OCFS2_I(dir)->ip_lock); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(dir), parent_fe_bh); num_free_extents = ocfs2_num_free_extents(&et); if (num_free_extents < 0) { status = num_free_extents; mlog_errno(status); goto bail; } if (!num_free_extents) { status = ocfs2_reserve_new_metadata(osb, el, &meta_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } } status = ocfs2_reserve_clusters(osb, 1, &data_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } if (ocfs2_dir_resv_allowed(osb)) data_ac->ac_resv = &OCFS2_I(dir)->ip_la_data_resv; credits = ocfs2_calc_extend_credits(sb, el); } else { spin_unlock(&OCFS2_I(dir)->ip_lock); credits = OCFS2_SIMPLE_DIR_EXTEND_CREDITS; } do_extend: if (ocfs2_dir_indexed(dir)) credits++; /* For attaching the new dirent block to the * dx_root */ handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } status = ocfs2_do_extend_dir(osb->sb, handle, dir, parent_fe_bh, data_ac, meta_ac, &new_bh); if (status < 0) { mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(dir), new_bh); status = ocfs2_journal_access_db(handle, INODE_CACHE(dir), new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(new_bh->b_data, 0, sb->s_blocksize); de = (struct ocfs2_dir_entry *) new_bh->b_data; de->inode = 0; if (ocfs2_supports_dir_trailer(dir)) { de->rec_len = cpu_to_le16(ocfs2_dir_trailer_blk_off(sb)); ocfs2_init_dir_trailer(dir, new_bh, le16_to_cpu(de->rec_len)); if (ocfs2_dir_indexed(dir)) { status = ocfs2_dx_dir_link_trailer(dir, handle, dx_root_bh, new_bh); if (status) { mlog_errno(status); goto bail; } } } else { de->rec_len = cpu_to_le16(sb->s_blocksize); } ocfs2_update_inode_fsync_trans(handle, dir, 1); ocfs2_journal_dirty(handle, new_bh); dir_i_size += dir->i_sb->s_blocksize; i_size_write(dir, dir_i_size); dir->i_blocks = ocfs2_inode_sector_count(dir); status = ocfs2_mark_inode_dirty(handle, dir, parent_fe_bh); if (status < 0) { mlog_errno(status); goto bail; } bail_bh: *new_de_bh = new_bh; get_bh(*new_de_bh); bail: if (handle) ocfs2_commit_trans(osb, handle); if (drop_alloc_sem) up_write(&OCFS2_I(dir)->ip_alloc_sem); if (data_ac) ocfs2_free_alloc_context(data_ac); if (meta_ac) ocfs2_free_alloc_context(meta_ac); brelse(new_bh); return status; } static int ocfs2_find_dir_space_id(struct inode *dir, struct buffer_head *di_bh, const char *name, int namelen, struct buffer_head **ret_de_bh, unsigned int *blocks_wanted) { int ret; struct super_block *sb = dir->i_sb; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_dir_entry *de, *last_de = NULL; char *de_buf, *limit; unsigned long offset = 0; unsigned int rec_len, new_rec_len, free_space; /* * This calculates how many free bytes we'd have in block zero, should * this function force expansion to an extent tree. */ if (ocfs2_new_dir_wants_trailer(dir)) free_space = ocfs2_dir_trailer_blk_off(sb) - i_size_read(dir); else free_space = dir->i_sb->s_blocksize - i_size_read(dir); de_buf = di->id2.i_data.id_data; limit = de_buf + i_size_read(dir); rec_len = OCFS2_DIR_REC_LEN(namelen); while (de_buf < limit) { de = (struct ocfs2_dir_entry *)de_buf; if (!ocfs2_check_dir_entry(dir, de, di_bh, offset)) { ret = -ENOENT; goto out; } if (ocfs2_match(namelen, name, de)) { ret = -EEXIST; goto out; } /* * No need to check for a trailing dirent record here as * they're not used for inline dirs. */ if (ocfs2_dirent_would_fit(de, rec_len)) { /* Ok, we found a spot. Return this bh and let * the caller actually fill it in. */ *ret_de_bh = di_bh; get_bh(*ret_de_bh); ret = 0; goto out; } last_de = de; de_buf += le16_to_cpu(de->rec_len); offset += le16_to_cpu(de->rec_len); } /* * We're going to require expansion of the directory - figure * out how many blocks we'll need so that a place for the * dirent can be found. */ *blocks_wanted = 1; new_rec_len = le16_to_cpu(last_de->rec_len) + free_space; if (new_rec_len < (rec_len + OCFS2_DIR_REC_LEN(last_de->name_len))) *blocks_wanted = 2; ret = -ENOSPC; out: return ret; } static int ocfs2_find_dir_space_el(struct inode *dir, const char *name, int namelen, struct buffer_head **ret_de_bh) { unsigned long offset; struct buffer_head *bh = NULL; unsigned short rec_len; struct ocfs2_dir_entry *de; struct super_block *sb = dir->i_sb; int status; int blocksize = dir->i_sb->s_blocksize; status = ocfs2_read_dir_block(dir, 0, &bh, 0); if (status) goto bail; rec_len = OCFS2_DIR_REC_LEN(namelen); offset = 0; de = (struct ocfs2_dir_entry *) bh->b_data; while (1) { if ((char *)de >= sb->s_blocksize + bh->b_data) { brelse(bh); bh = NULL; if (i_size_read(dir) <= offset) { /* * Caller will have to expand this * directory. */ status = -ENOSPC; goto bail; } status = ocfs2_read_dir_block(dir, offset >> sb->s_blocksize_bits, &bh, 0); if (status) goto bail; /* move to next block */ de = (struct ocfs2_dir_entry *) bh->b_data; } if (!ocfs2_check_dir_entry(dir, de, bh, offset)) { status = -ENOENT; goto bail; } if (ocfs2_match(namelen, name, de)) { status = -EEXIST; goto bail; } if (ocfs2_skip_dir_trailer(dir, de, offset % blocksize, blocksize)) goto next; if (ocfs2_dirent_would_fit(de, rec_len)) { /* Ok, we found a spot. Return this bh and let * the caller actually fill it in. */ *ret_de_bh = bh; get_bh(*ret_de_bh); status = 0; goto bail; } next: offset += le16_to_cpu(de->rec_len); de = (struct ocfs2_dir_entry *)((char *) de + le16_to_cpu(de->rec_len)); } bail: brelse(bh); if (status) mlog_errno(status); return status; } static int dx_leaf_sort_cmp(const void *a, const void *b) { const struct ocfs2_dx_entry *entry1 = a; const struct ocfs2_dx_entry *entry2 = b; u32 major_hash1 = le32_to_cpu(entry1->dx_major_hash); u32 major_hash2 = le32_to_cpu(entry2->dx_major_hash); u32 minor_hash1 = le32_to_cpu(entry1->dx_minor_hash); u32 minor_hash2 = le32_to_cpu(entry2->dx_minor_hash); if (major_hash1 > major_hash2) return 1; if (major_hash1 < major_hash2) return -1; /* * It is not strictly necessary to sort by minor */ if (minor_hash1 > minor_hash2) return 1; if (minor_hash1 < minor_hash2) return -1; return 0; } static void dx_leaf_sort_swap(void *a, void *b, int size) { struct ocfs2_dx_entry *entry1 = a; struct ocfs2_dx_entry *entry2 = b; BUG_ON(size != sizeof(*entry1)); swap(*entry1, *entry2); } static int ocfs2_dx_leaf_same_major(struct ocfs2_dx_leaf *dx_leaf) { struct ocfs2_dx_entry_list *dl_list = &dx_leaf->dl_list; int i, num = le16_to_cpu(dl_list->de_num_used); for (i = 0; i < (num - 1); i++) { if (le32_to_cpu(dl_list->de_entries[i].dx_major_hash) != le32_to_cpu(dl_list->de_entries[i + 1].dx_major_hash)) return 0; } return 1; } /* * Find the optimal value to split this leaf on. This expects the leaf * entries to be in sorted order. * * leaf_cpos is the cpos of the leaf we're splitting. insert_hash is * the hash we want to insert. * * This function is only concerned with the major hash - that which * determines which cluster an item belongs to. */ static int ocfs2_dx_dir_find_leaf_split(struct ocfs2_dx_leaf *dx_leaf, u32 leaf_cpos, u32 insert_hash, u32 *split_hash) { struct ocfs2_dx_entry_list *dl_list = &dx_leaf->dl_list; int i, num_used = le16_to_cpu(dl_list->de_num_used); int allsame; /* * There's a couple rare, but nasty corner cases we have to * check for here. All of them involve a leaf where all value * have the same hash, which is what we look for first. * * Most of the time, all of the above is false, and we simply * pick the median value for a split. */ allsame = ocfs2_dx_leaf_same_major(dx_leaf); if (allsame) { u32 val = le32_to_cpu(dl_list->de_entries[0].dx_major_hash); if (val == insert_hash) { /* * No matter where we would choose to split, * the new entry would want to occupy the same * block as these. Since there's no space left * in their existing block, we know there * won't be space after the split. */ return -ENOSPC; } if (val == leaf_cpos) { /* * Because val is the same as leaf_cpos (which * is the smallest value this leaf can have), * yet is not equal to insert_hash, then we * know that insert_hash *must* be larger than * val (and leaf_cpos). At least cpos+1 in value. * * We also know then, that there cannot be an * adjacent extent (otherwise we'd be looking * at it). Choosing this value gives us a * chance to get some contiguousness. */ *split_hash = leaf_cpos + 1; return 0; } if (val > insert_hash) { /* * val can not be the same as insert hash, and * also must be larger than leaf_cpos. Also, * we know that there can't be a leaf between * cpos and val, otherwise the entries with * hash 'val' would be there. */ *split_hash = val; return 0; } *split_hash = insert_hash; return 0; } /* * Since the records are sorted and the checks above * guaranteed that not all records in this block are the same, * we simple travel forward, from the median, and pick the 1st * record whose value is larger than leaf_cpos. */ for (i = (num_used / 2); i < num_used; i++) if (le32_to_cpu(dl_list->de_entries[i].dx_major_hash) > leaf_cpos) break; BUG_ON(i == num_used); /* Should be impossible */ *split_hash = le32_to_cpu(dl_list->de_entries[i].dx_major_hash); return 0; } /* * Transfer all entries in orig_dx_leaves whose major hash is equal to or * larger than split_hash into new_dx_leaves. We use a temporary * buffer (tmp_dx_leaf) to make the changes to the original leaf blocks. * * Since the block offset inside a leaf (cluster) is a constant mask * of minor_hash, we can optimize - an item at block offset X within * the original cluster, will be at offset X within the new cluster. */ static void ocfs2_dx_dir_transfer_leaf(struct inode *dir, u32 split_hash, handle_t *handle, struct ocfs2_dx_leaf *tmp_dx_leaf, struct buffer_head **orig_dx_leaves, struct buffer_head **new_dx_leaves, int num_dx_leaves) { int i, j, num_used; u32 major_hash; struct ocfs2_dx_leaf *orig_dx_leaf, *new_dx_leaf; struct ocfs2_dx_entry_list *orig_list, *tmp_list; struct ocfs2_dx_entry *dx_entry; tmp_list = &tmp_dx_leaf->dl_list; for (i = 0; i < num_dx_leaves; i++) { orig_dx_leaf = (struct ocfs2_dx_leaf *) orig_dx_leaves[i]->b_data; orig_list = &orig_dx_leaf->dl_list; new_dx_leaf = (struct ocfs2_dx_leaf *) new_dx_leaves[i]->b_data; num_used = le16_to_cpu(orig_list->de_num_used); memcpy(tmp_dx_leaf, orig_dx_leaf, dir->i_sb->s_blocksize); tmp_list->de_num_used = cpu_to_le16(0); memset(&tmp_list->de_entries, 0, sizeof(*dx_entry)*num_used); for (j = 0; j < num_used; j++) { dx_entry = &orig_list->de_entries[j]; major_hash = le32_to_cpu(dx_entry->dx_major_hash); if (major_hash >= split_hash) ocfs2_dx_dir_leaf_insert_tail(new_dx_leaf, dx_entry); else ocfs2_dx_dir_leaf_insert_tail(tmp_dx_leaf, dx_entry); } memcpy(orig_dx_leaf, tmp_dx_leaf, dir->i_sb->s_blocksize); ocfs2_journal_dirty(handle, orig_dx_leaves[i]); ocfs2_journal_dirty(handle, new_dx_leaves[i]); } } static int ocfs2_dx_dir_rebalance_credits(struct ocfs2_super *osb, struct ocfs2_dx_root_block *dx_root) { int credits = ocfs2_clusters_to_blocks(osb->sb, 3); credits += ocfs2_calc_extend_credits(osb->sb, &dx_root->dr_list); credits += ocfs2_quota_trans_credits(osb->sb); return credits; } /* * Find the median value in dx_leaf_bh and allocate a new leaf to move * half our entries into. */ static int ocfs2_dx_dir_rebalance(struct ocfs2_super *osb, struct inode *dir, struct buffer_head *dx_root_bh, struct buffer_head *dx_leaf_bh, struct ocfs2_dx_hinfo *hinfo, u32 leaf_cpos, u64 leaf_blkno) { struct ocfs2_dx_leaf *dx_leaf = (struct ocfs2_dx_leaf *)dx_leaf_bh->b_data; int credits, ret, i, num_used, did_quota = 0; u32 cpos, split_hash, insert_hash = hinfo->major_hash; u64 orig_leaves_start; int num_dx_leaves; struct buffer_head **orig_dx_leaves = NULL; struct buffer_head **new_dx_leaves = NULL; struct ocfs2_alloc_context *data_ac = NULL, *meta_ac = NULL; struct ocfs2_extent_tree et; handle_t *handle = NULL; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dx_leaf *tmp_dx_leaf = NULL; trace_ocfs2_dx_dir_rebalance((unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)leaf_blkno, insert_hash); ocfs2_init_dx_root_extent_tree(&et, INODE_CACHE(dir), dx_root_bh); dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; /* * XXX: This is a rather large limit. We should use a more * realistic value. */ if (le32_to_cpu(dx_root->dr_clusters) == UINT_MAX) return -ENOSPC; num_used = le16_to_cpu(dx_leaf->dl_list.de_num_used); if (num_used < le16_to_cpu(dx_leaf->dl_list.de_count)) { mlog(ML_ERROR, "DX Dir: %llu, Asked to rebalance empty leaf: " "%llu, %d\n", (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)leaf_blkno, num_used); ret = -EIO; goto out; } orig_dx_leaves = ocfs2_dx_dir_kmalloc_leaves(osb->sb, &num_dx_leaves); if (!orig_dx_leaves) { ret = -ENOMEM; mlog_errno(ret); goto out; } new_dx_leaves = ocfs2_dx_dir_kmalloc_leaves(osb->sb, NULL); if (!new_dx_leaves) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_lock_allocators(dir, &et, 1, 0, &data_ac, &meta_ac); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } credits = ocfs2_dx_dir_rebalance_credits(osb, dx_root); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; mlog_errno(ret); goto out; } ret = dquot_alloc_space_nodirty(dir, ocfs2_clusters_to_bytes(dir->i_sb, 1)); if (ret) goto out_commit; did_quota = 1; ret = ocfs2_journal_access_dl(handle, INODE_CACHE(dir), dx_leaf_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } /* * This block is changing anyway, so we can sort it in place. */ sort(dx_leaf->dl_list.de_entries, num_used, sizeof(struct ocfs2_dx_entry), dx_leaf_sort_cmp, dx_leaf_sort_swap); ocfs2_journal_dirty(handle, dx_leaf_bh); ret = ocfs2_dx_dir_find_leaf_split(dx_leaf, leaf_cpos, insert_hash, &split_hash); if (ret) { mlog_errno(ret); goto out_commit; } trace_ocfs2_dx_dir_rebalance_split(leaf_cpos, split_hash, insert_hash); /* * We have to carefully order operations here. There are items * which want to be in the new cluster before insert, but in * order to put those items in the new cluster, we alter the * old cluster. A failure to insert gets nasty. * * So, start by reserving writes to the old * cluster. ocfs2_dx_dir_new_cluster will reserve writes on * the new cluster for us, before inserting it. The insert * won't happen if there's an error before that. Once the * insert is done then, we can transfer from one leaf into the * other without fear of hitting any error. */ /* * The leaf transfer wants some scratch space so that we don't * wind up doing a bunch of expensive memmove(). */ tmp_dx_leaf = kmalloc(osb->sb->s_blocksize, GFP_NOFS); if (!tmp_dx_leaf) { ret = -ENOMEM; mlog_errno(ret); goto out_commit; } orig_leaves_start = ocfs2_block_to_cluster_start(dir->i_sb, leaf_blkno); ret = ocfs2_read_dx_leaves(dir, orig_leaves_start, num_dx_leaves, orig_dx_leaves); if (ret) { mlog_errno(ret); goto out_commit; } cpos = split_hash; ret = ocfs2_dx_dir_new_cluster(dir, &et, cpos, handle, data_ac, meta_ac, new_dx_leaves, num_dx_leaves); if (ret) { mlog_errno(ret); goto out_commit; } for (i = 0; i < num_dx_leaves; i++) { ret = ocfs2_journal_access_dl(handle, INODE_CACHE(dir), orig_dx_leaves[i], OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_journal_access_dl(handle, INODE_CACHE(dir), new_dx_leaves[i], OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } } ocfs2_dx_dir_transfer_leaf(dir, split_hash, handle, tmp_dx_leaf, orig_dx_leaves, new_dx_leaves, num_dx_leaves); out_commit: if (ret < 0 && did_quota) dquot_free_space_nodirty(dir, ocfs2_clusters_to_bytes(dir->i_sb, 1)); ocfs2_update_inode_fsync_trans(handle, dir, 1); ocfs2_commit_trans(osb, handle); out: if (orig_dx_leaves || new_dx_leaves) { for (i = 0; i < num_dx_leaves; i++) { if (orig_dx_leaves) brelse(orig_dx_leaves[i]); if (new_dx_leaves) brelse(new_dx_leaves[i]); } kfree(orig_dx_leaves); kfree(new_dx_leaves); } if (meta_ac) ocfs2_free_alloc_context(meta_ac); if (data_ac) ocfs2_free_alloc_context(data_ac); kfree(tmp_dx_leaf); return ret; } static int ocfs2_find_dir_space_dx(struct ocfs2_super *osb, struct inode *dir, struct buffer_head *di_bh, struct buffer_head *dx_root_bh, const char *name, int namelen, struct ocfs2_dir_lookup_result *lookup) { int ret, rebalanced = 0; struct ocfs2_dx_root_block *dx_root; struct buffer_head *dx_leaf_bh = NULL; struct ocfs2_dx_leaf *dx_leaf; u64 blkno; u32 leaf_cpos; dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; restart_search: ret = ocfs2_dx_dir_lookup(dir, &dx_root->dr_list, &lookup->dl_hinfo, &leaf_cpos, &blkno); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_dx_leaf(dir, blkno, &dx_leaf_bh); if (ret) { mlog_errno(ret); goto out; } dx_leaf = (struct ocfs2_dx_leaf *)dx_leaf_bh->b_data; if (le16_to_cpu(dx_leaf->dl_list.de_num_used) >= le16_to_cpu(dx_leaf->dl_list.de_count)) { if (rebalanced) { /* * Rebalancing should have provided us with * space in an appropriate leaf. * * XXX: Is this an abnormal condition then? * Should we print a message here? */ ret = -ENOSPC; goto out; } ret = ocfs2_dx_dir_rebalance(osb, dir, dx_root_bh, dx_leaf_bh, &lookup->dl_hinfo, leaf_cpos, blkno); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } /* * Restart the lookup. The rebalance might have * changed which block our item fits into. Mark our * progress, so we only execute this once. */ brelse(dx_leaf_bh); dx_leaf_bh = NULL; rebalanced = 1; goto restart_search; } lookup->dl_dx_leaf_bh = dx_leaf_bh; dx_leaf_bh = NULL; out: brelse(dx_leaf_bh); return ret; } static int ocfs2_search_dx_free_list(struct inode *dir, struct buffer_head *dx_root_bh, int namelen, struct ocfs2_dir_lookup_result *lookup) { int ret = -ENOSPC; struct buffer_head *leaf_bh = NULL, *prev_leaf_bh = NULL; struct ocfs2_dir_block_trailer *db; u64 next_block; int rec_len = OCFS2_DIR_REC_LEN(namelen); struct ocfs2_dx_root_block *dx_root; dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; next_block = le64_to_cpu(dx_root->dr_free_blk); while (next_block) { brelse(prev_leaf_bh); prev_leaf_bh = leaf_bh; leaf_bh = NULL; ret = ocfs2_read_dir_block_direct(dir, next_block, &leaf_bh); if (ret) { mlog_errno(ret); goto out; } db = ocfs2_trailer_from_bh(leaf_bh, dir->i_sb); if (rec_len <= le16_to_cpu(db->db_free_rec_len)) { lookup->dl_leaf_bh = leaf_bh; lookup->dl_prev_leaf_bh = prev_leaf_bh; leaf_bh = NULL; prev_leaf_bh = NULL; break; } next_block = le64_to_cpu(db->db_free_next); } if (!next_block) ret = -ENOSPC; out: brelse(leaf_bh); brelse(prev_leaf_bh); return ret; } static int ocfs2_expand_inline_dx_root(struct inode *dir, struct buffer_head *dx_root_bh) { int ret, num_dx_leaves, i, j, did_quota = 0; struct buffer_head **dx_leaves = NULL; struct ocfs2_extent_tree et; u64 insert_blkno; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); handle_t *handle = NULL; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dx_entry_list *entry_list; struct ocfs2_dx_entry *dx_entry; struct ocfs2_dx_leaf *target_leaf; ret = ocfs2_reserve_clusters(osb, 1, &data_ac); if (ret) { mlog_errno(ret); goto out; } dx_leaves = ocfs2_dx_dir_kmalloc_leaves(osb->sb, &num_dx_leaves); if (!dx_leaves) { ret = -ENOMEM; mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, ocfs2_calc_dxi_expand_credits(osb->sb)); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = dquot_alloc_space_nodirty(dir, ocfs2_clusters_to_bytes(osb->sb, 1)); if (ret) goto out_commit; did_quota = 1; /* * We do this up front, before the allocation, so that a * failure to add the dx_root_bh to the journal won't result * us losing clusters. */ ret = ocfs2_journal_access_dr(handle, INODE_CACHE(dir), dx_root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = __ocfs2_dx_dir_new_cluster(dir, 0, handle, data_ac, dx_leaves, num_dx_leaves, &insert_blkno); if (ret) { mlog_errno(ret); goto out_commit; } /* * Transfer the entries from our dx_root into the appropriate * block */ dx_root = (struct ocfs2_dx_root_block *) dx_root_bh->b_data; entry_list = &dx_root->dr_entries; for (i = 0; i < le16_to_cpu(entry_list->de_num_used); i++) { dx_entry = &entry_list->de_entries[i]; j = __ocfs2_dx_dir_hash_idx(osb, le32_to_cpu(dx_entry->dx_minor_hash)); target_leaf = (struct ocfs2_dx_leaf *)dx_leaves[j]->b_data; ocfs2_dx_dir_leaf_insert_tail(target_leaf, dx_entry); /* Each leaf has been passed to the journal already * via __ocfs2_dx_dir_new_cluster() */ } dx_root->dr_flags &= ~OCFS2_DX_FLAG_INLINE; memset(&dx_root->dr_list, 0, osb->sb->s_blocksize - offsetof(struct ocfs2_dx_root_block, dr_list)); dx_root->dr_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_dx_root(osb->sb)); /* This should never fail considering we start with an empty * dx_root. */ ocfs2_init_dx_root_extent_tree(&et, INODE_CACHE(dir), dx_root_bh); ret = ocfs2_insert_extent(handle, &et, 0, insert_blkno, 1, 0, NULL); if (ret) mlog_errno(ret); did_quota = 0; ocfs2_update_inode_fsync_trans(handle, dir, 1); ocfs2_journal_dirty(handle, dx_root_bh); out_commit: if (ret < 0 && did_quota) dquot_free_space_nodirty(dir, ocfs2_clusters_to_bytes(dir->i_sb, 1)); ocfs2_commit_trans(osb, handle); out: if (data_ac) ocfs2_free_alloc_context(data_ac); if (dx_leaves) { for (i = 0; i < num_dx_leaves; i++) brelse(dx_leaves[i]); kfree(dx_leaves); } return ret; } static int ocfs2_inline_dx_has_space(struct buffer_head *dx_root_bh) { struct ocfs2_dx_root_block *dx_root; struct ocfs2_dx_entry_list *entry_list; dx_root = (struct ocfs2_dx_root_block *) dx_root_bh->b_data; entry_list = &dx_root->dr_entries; if (le16_to_cpu(entry_list->de_num_used) >= le16_to_cpu(entry_list->de_count)) return -ENOSPC; return 0; } static int ocfs2_prepare_dx_dir_for_insert(struct inode *dir, struct buffer_head *di_bh, const char *name, int namelen, struct ocfs2_dir_lookup_result *lookup) { int ret, free_dx_root = 1; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct buffer_head *dx_root_bh = NULL; struct buffer_head *leaf_bh = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_dx_root_block *dx_root; ret = ocfs2_read_dx_root(dir, di, &dx_root_bh); if (ret) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; if (le32_to_cpu(dx_root->dr_num_entries) == OCFS2_DX_ENTRIES_MAX) { ret = -ENOSPC; mlog_errno(ret); goto out; } if (ocfs2_dx_root_inline(dx_root)) { ret = ocfs2_inline_dx_has_space(dx_root_bh); if (ret == 0) goto search_el; /* * We ran out of room in the root block. Expand it to * an extent, then allow ocfs2_find_dir_space_dx to do * the rest. */ ret = ocfs2_expand_inline_dx_root(dir, dx_root_bh); if (ret) { mlog_errno(ret); goto out; } } /* * Insert preparation for an indexed directory is split into two * steps. The call to find_dir_space_dx reserves room in the index for * an additional item. If we run out of space there, it's a real error * we can't continue on. */ ret = ocfs2_find_dir_space_dx(osb, dir, di_bh, dx_root_bh, name, namelen, lookup); if (ret) { mlog_errno(ret); goto out; } search_el: /* * Next, we need to find space in the unindexed tree. This call * searches using the free space linked list. If the unindexed tree * lacks sufficient space, we'll expand it below. The expansion code * is smart enough to add any new blocks to the free space list. */ ret = ocfs2_search_dx_free_list(dir, dx_root_bh, namelen, lookup); if (ret && ret != -ENOSPC) { mlog_errno(ret); goto out; } /* Do this up here - ocfs2_extend_dir might need the dx_root */ lookup->dl_dx_root_bh = dx_root_bh; free_dx_root = 0; if (ret == -ENOSPC) { ret = ocfs2_extend_dir(osb, dir, di_bh, 1, lookup, &leaf_bh); if (ret) { mlog_errno(ret); goto out; } /* * We make the assumption here that new leaf blocks are added * to the front of our free list. */ lookup->dl_prev_leaf_bh = NULL; lookup->dl_leaf_bh = leaf_bh; } out: if (free_dx_root) brelse(dx_root_bh); return ret; } /* * Get a directory ready for insert. Any directory allocation required * happens here. Success returns zero, and enough context in the dir * lookup result that ocfs2_add_entry() will be able complete the task * with minimal performance impact. */ int ocfs2_prepare_dir_for_insert(struct ocfs2_super *osb, struct inode *dir, struct buffer_head *parent_fe_bh, const char *name, int namelen, struct ocfs2_dir_lookup_result *lookup) { int ret; unsigned int blocks_wanted = 1; struct buffer_head *bh = NULL; trace_ocfs2_prepare_dir_for_insert( (unsigned long long)OCFS2_I(dir)->ip_blkno, namelen); if (!namelen) { ret = -EINVAL; mlog_errno(ret); goto out; } /* * Do this up front to reduce confusion. * * The directory might start inline, then be turned into an * indexed one, in which case we'd need to hash deep inside * ocfs2_find_dir_space_id(). Since * ocfs2_prepare_dx_dir_for_insert() also needs this hash * done, there seems no point in spreading out the calls. We * can optimize away the case where the file system doesn't * support indexing. */ if (ocfs2_supports_indexed_dirs(osb)) ocfs2_dx_dir_name_hash(dir, name, namelen, &lookup->dl_hinfo); if (ocfs2_dir_indexed(dir)) { ret = ocfs2_prepare_dx_dir_for_insert(dir, parent_fe_bh, name, namelen, lookup); if (ret) mlog_errno(ret); goto out; } if (OCFS2_I(dir)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_find_dir_space_id(dir, parent_fe_bh, name, namelen, &bh, &blocks_wanted); } else ret = ocfs2_find_dir_space_el(dir, name, namelen, &bh); if (ret && ret != -ENOSPC) { mlog_errno(ret); goto out; } if (ret == -ENOSPC) { /* * We have to expand the directory to add this name. */ BUG_ON(bh); ret = ocfs2_extend_dir(osb, dir, parent_fe_bh, blocks_wanted, lookup, &bh); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } BUG_ON(!bh); } lookup->dl_leaf_bh = bh; bh = NULL; out: brelse(bh); return ret; } static int ocfs2_dx_dir_remove_index(struct inode *dir, struct buffer_head *di_bh, struct buffer_head *dx_root_bh) { int ret; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_dx_root_block *dx_root; struct inode *dx_alloc_inode = NULL; struct buffer_head *dx_alloc_bh = NULL; handle_t *handle; u64 blk; u16 bit; u64 bg_blkno; dx_root = (struct ocfs2_dx_root_block *) dx_root_bh->b_data; dx_alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(dx_root->dr_suballoc_slot)); if (!dx_alloc_inode) { ret = -ENOMEM; mlog_errno(ret); goto out; } inode_lock(dx_alloc_inode); ret = ocfs2_inode_lock(dx_alloc_inode, &dx_alloc_bh, 1); if (ret) { mlog_errno(ret); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_DX_ROOT_REMOVE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(dir), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } spin_lock(&OCFS2_I(dir)->ip_lock); OCFS2_I(dir)->ip_dyn_features &= ~OCFS2_INDEXED_DIR_FL; di->i_dyn_features = cpu_to_le16(OCFS2_I(dir)->ip_dyn_features); spin_unlock(&OCFS2_I(dir)->ip_lock); di->i_dx_root = cpu_to_le64(0ULL); ocfs2_update_inode_fsync_trans(handle, dir, 1); ocfs2_journal_dirty(handle, di_bh); blk = le64_to_cpu(dx_root->dr_blkno); bit = le16_to_cpu(dx_root->dr_suballoc_bit); if (dx_root->dr_suballoc_loc) bg_blkno = le64_to_cpu(dx_root->dr_suballoc_loc); else bg_blkno = ocfs2_which_suballoc_group(blk, bit); ret = ocfs2_free_suballoc_bits(handle, dx_alloc_inode, dx_alloc_bh, bit, bg_blkno, 1); if (ret) mlog_errno(ret); out_commit: ocfs2_commit_trans(osb, handle); out_unlock: ocfs2_inode_unlock(dx_alloc_inode, 1); out_mutex: inode_unlock(dx_alloc_inode); brelse(dx_alloc_bh); out: iput(dx_alloc_inode); return ret; } int ocfs2_dx_dir_truncate(struct inode *dir, struct buffer_head *di_bh) { int ret; unsigned int clen; u32 major_hash = UINT_MAX, p_cpos, cpos; u64 blkno; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct buffer_head *dx_root_bh = NULL; struct ocfs2_dx_root_block *dx_root; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_extent_tree et; ocfs2_init_dealloc_ctxt(&dealloc); if (!ocfs2_dir_indexed(dir)) return 0; ret = ocfs2_read_dx_root(dir, di, &dx_root_bh); if (ret) { mlog_errno(ret); goto out; } dx_root = (struct ocfs2_dx_root_block *)dx_root_bh->b_data; if (ocfs2_dx_root_inline(dx_root)) goto remove_index; ocfs2_init_dx_root_extent_tree(&et, INODE_CACHE(dir), dx_root_bh); /* XXX: What if dr_clusters is too large? */ while (le32_to_cpu(dx_root->dr_clusters)) { ret = ocfs2_dx_dir_lookup_rec(dir, &dx_root->dr_list, major_hash, &cpos, &blkno, &clen); if (ret) { mlog_errno(ret); goto out; } p_cpos = ocfs2_blocks_to_clusters(dir->i_sb, blkno); ret = ocfs2_remove_btree_range(dir, &et, cpos, p_cpos, clen, 0, &dealloc, 0, false); if (ret) { mlog_errno(ret); goto out; } if (cpos == 0) break; major_hash = cpos - 1; } remove_index: ret = ocfs2_dx_dir_remove_index(dir, di_bh, dx_root_bh); if (ret) { mlog_errno(ret); goto out; } ocfs2_remove_from_cache(INODE_CACHE(dir), dx_root_bh); out: ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); brelse(dx_root_bh); return ret; }
linux-master
fs/ocfs2/dir.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * locks.c * * Userspace file locking support * * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/filelock.h> #include <linux/fcntl.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "dlmglue.h" #include "file.h" #include "inode.h" #include "locks.h" static int ocfs2_do_flock(struct file *file, struct inode *inode, int cmd, struct file_lock *fl) { int ret = 0, level = 0, trylock = 0; struct ocfs2_file_private *fp = file->private_data; struct ocfs2_lock_res *lockres = &fp->fp_flock; if (fl->fl_type == F_WRLCK) level = 1; if (!IS_SETLKW(cmd)) trylock = 1; mutex_lock(&fp->fp_mutex); if (lockres->l_flags & OCFS2_LOCK_ATTACHED && lockres->l_level > LKM_NLMODE) { int old_level = 0; struct file_lock request; if (lockres->l_level == LKM_EXMODE) old_level = 1; if (level == old_level) goto out; /* * Converting an existing lock is not guaranteed to be * atomic, so we can get away with simply unlocking * here and allowing the lock code to try at the new * level. */ locks_init_lock(&request); request.fl_type = F_UNLCK; request.fl_flags = FL_FLOCK; locks_lock_file_wait(file, &request); ocfs2_file_unlock(file); } ret = ocfs2_file_lock(file, level, trylock); if (ret) { if (ret == -EAGAIN && trylock) ret = -EWOULDBLOCK; else mlog_errno(ret); goto out; } ret = locks_lock_file_wait(file, fl); if (ret) ocfs2_file_unlock(file); out: mutex_unlock(&fp->fp_mutex); return ret; } static int ocfs2_do_funlock(struct file *file, int cmd, struct file_lock *fl) { int ret; struct ocfs2_file_private *fp = file->private_data; mutex_lock(&fp->fp_mutex); ocfs2_file_unlock(file); ret = locks_lock_file_wait(file, fl); mutex_unlock(&fp->fp_mutex); return ret; } /* * Overall flow of ocfs2_flock() was influenced by gfs2_flock(). */ int ocfs2_flock(struct file *file, int cmd, struct file_lock *fl) { struct inode *inode = file->f_mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (!(fl->fl_flags & FL_FLOCK)) return -ENOLCK; if ((osb->s_mount_opt & OCFS2_MOUNT_LOCALFLOCKS) || ocfs2_mount_local(osb)) return locks_lock_file_wait(file, fl); if (fl->fl_type == F_UNLCK) return ocfs2_do_funlock(file, cmd, fl); else return ocfs2_do_flock(file, inode, cmd, fl); } int ocfs2_lock(struct file *file, int cmd, struct file_lock *fl) { struct inode *inode = file->f_mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (!(fl->fl_flags & FL_POSIX)) return -ENOLCK; return ocfs2_plock(osb->cconn, OCFS2_I(inode)->ip_blkno, file, cmd, fl); }
linux-master
fs/ocfs2/locks.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * inode.c * * vfs' aops, fops, dops and iops * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/quotaops.h> #include <linux/iversion.h> #include <asm/byteorder.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dir.h" #include "blockcheck.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "namei.h" #include "suballoc.h" #include "super.h" #include "symlink.h" #include "sysfile.h" #include "uptodate.h" #include "xattr.h" #include "refcounttree.h" #include "ocfs2_trace.h" #include "filecheck.h" #include "buffer_head_io.h" struct ocfs2_find_inode_args { u64 fi_blkno; unsigned long fi_ino; unsigned int fi_flags; unsigned int fi_sysfile_type; }; static struct lock_class_key ocfs2_sysfile_lock_key[NUM_SYSTEM_INODES]; static int ocfs2_read_locked_inode(struct inode *inode, struct ocfs2_find_inode_args *args); static int ocfs2_init_locked_inode(struct inode *inode, void *opaque); static int ocfs2_find_actor(struct inode *inode, void *opaque); static int ocfs2_truncate_for_delete(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh); static int ocfs2_filecheck_read_inode_block_full(struct inode *inode, struct buffer_head **bh, int flags, int type); static int ocfs2_filecheck_validate_inode_block(struct super_block *sb, struct buffer_head *bh); static int ocfs2_filecheck_repair_inode_block(struct super_block *sb, struct buffer_head *bh); void ocfs2_set_inode_flags(struct inode *inode) { unsigned int flags = OCFS2_I(inode)->ip_attr; inode->i_flags &= ~(S_IMMUTABLE | S_SYNC | S_APPEND | S_NOATIME | S_DIRSYNC); if (flags & OCFS2_IMMUTABLE_FL) inode->i_flags |= S_IMMUTABLE; if (flags & OCFS2_SYNC_FL) inode->i_flags |= S_SYNC; if (flags & OCFS2_APPEND_FL) inode->i_flags |= S_APPEND; if (flags & OCFS2_NOATIME_FL) inode->i_flags |= S_NOATIME; if (flags & OCFS2_DIRSYNC_FL) inode->i_flags |= S_DIRSYNC; } /* Propagate flags from i_flags to OCFS2_I(inode)->ip_attr */ void ocfs2_get_inode_flags(struct ocfs2_inode_info *oi) { unsigned int flags = oi->vfs_inode.i_flags; oi->ip_attr &= ~(OCFS2_SYNC_FL|OCFS2_APPEND_FL| OCFS2_IMMUTABLE_FL|OCFS2_NOATIME_FL|OCFS2_DIRSYNC_FL); if (flags & S_SYNC) oi->ip_attr |= OCFS2_SYNC_FL; if (flags & S_APPEND) oi->ip_attr |= OCFS2_APPEND_FL; if (flags & S_IMMUTABLE) oi->ip_attr |= OCFS2_IMMUTABLE_FL; if (flags & S_NOATIME) oi->ip_attr |= OCFS2_NOATIME_FL; if (flags & S_DIRSYNC) oi->ip_attr |= OCFS2_DIRSYNC_FL; } struct inode *ocfs2_ilookup(struct super_block *sb, u64 blkno) { struct ocfs2_find_inode_args args; args.fi_blkno = blkno; args.fi_flags = 0; args.fi_ino = ino_from_blkno(sb, blkno); args.fi_sysfile_type = 0; return ilookup5(sb, blkno, ocfs2_find_actor, &args); } struct inode *ocfs2_iget(struct ocfs2_super *osb, u64 blkno, unsigned flags, int sysfile_type) { int rc = -ESTALE; struct inode *inode = NULL; struct super_block *sb = osb->sb; struct ocfs2_find_inode_args args; journal_t *journal = osb->journal->j_journal; trace_ocfs2_iget_begin((unsigned long long)blkno, flags, sysfile_type); /* Ok. By now we've either got the offsets passed to us by the * caller, or we just pulled them off the bh. Lets do some * sanity checks to make sure they're OK. */ if (blkno == 0) { inode = ERR_PTR(-EINVAL); mlog_errno(PTR_ERR(inode)); goto bail; } args.fi_blkno = blkno; args.fi_flags = flags; args.fi_ino = ino_from_blkno(sb, blkno); args.fi_sysfile_type = sysfile_type; inode = iget5_locked(sb, args.fi_ino, ocfs2_find_actor, ocfs2_init_locked_inode, &args); /* inode was *not* in the inode cache. 2.6.x requires * us to do our own read_inode call and unlock it * afterwards. */ if (inode == NULL) { inode = ERR_PTR(-ENOMEM); mlog_errno(PTR_ERR(inode)); goto bail; } trace_ocfs2_iget5_locked(inode->i_state); if (inode->i_state & I_NEW) { rc = ocfs2_read_locked_inode(inode, &args); unlock_new_inode(inode); } if (is_bad_inode(inode)) { iput(inode); inode = ERR_PTR(rc); goto bail; } /* * Set transaction id's of transactions that have to be committed * to finish f[data]sync. We set them to currently running transaction * as we cannot be sure that the inode or some of its metadata isn't * part of the transaction - the inode could have been reclaimed and * now it is reread from disk. */ if (journal) { transaction_t *transaction; tid_t tid; struct ocfs2_inode_info *oi = OCFS2_I(inode); read_lock(&journal->j_state_lock); if (journal->j_running_transaction) transaction = journal->j_running_transaction; else transaction = journal->j_committing_transaction; if (transaction) tid = transaction->t_tid; else tid = journal->j_commit_sequence; read_unlock(&journal->j_state_lock); oi->i_sync_tid = tid; oi->i_datasync_tid = tid; } bail: if (!IS_ERR(inode)) { trace_ocfs2_iget_end(inode, (unsigned long long)OCFS2_I(inode)->ip_blkno); } return inode; } /* * here's how inodes get read from disk: * iget5_locked -> find_actor -> OCFS2_FIND_ACTOR * found? : return the in-memory inode * not found? : get_new_inode -> OCFS2_INIT_LOCKED_INODE */ static int ocfs2_find_actor(struct inode *inode, void *opaque) { struct ocfs2_find_inode_args *args = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); int ret = 0; args = opaque; mlog_bug_on_msg(!inode, "No inode in find actor!\n"); trace_ocfs2_find_actor(inode, inode->i_ino, opaque, args->fi_blkno); if (oi->ip_blkno != args->fi_blkno) goto bail; ret = 1; bail: return ret; } /* * initialize the new inode, but don't do anything that would cause * us to sleep. * return 0 on success, 1 on failure */ static int ocfs2_init_locked_inode(struct inode *inode, void *opaque) { struct ocfs2_find_inode_args *args = opaque; static struct lock_class_key ocfs2_quota_ip_alloc_sem_key, ocfs2_file_ip_alloc_sem_key; inode->i_ino = args->fi_ino; OCFS2_I(inode)->ip_blkno = args->fi_blkno; if (args->fi_sysfile_type != 0) lockdep_set_class(&inode->i_rwsem, &ocfs2_sysfile_lock_key[args->fi_sysfile_type]); if (args->fi_sysfile_type == USER_QUOTA_SYSTEM_INODE || args->fi_sysfile_type == GROUP_QUOTA_SYSTEM_INODE || args->fi_sysfile_type == LOCAL_USER_QUOTA_SYSTEM_INODE || args->fi_sysfile_type == LOCAL_GROUP_QUOTA_SYSTEM_INODE) lockdep_set_class(&OCFS2_I(inode)->ip_alloc_sem, &ocfs2_quota_ip_alloc_sem_key); else lockdep_set_class(&OCFS2_I(inode)->ip_alloc_sem, &ocfs2_file_ip_alloc_sem_key); return 0; } void ocfs2_populate_inode(struct inode *inode, struct ocfs2_dinode *fe, int create_ino) { struct super_block *sb; struct ocfs2_super *osb; int use_plocks = 1; sb = inode->i_sb; osb = OCFS2_SB(sb); if ((osb->s_mount_opt & OCFS2_MOUNT_LOCALFLOCKS) || ocfs2_mount_local(osb) || !ocfs2_stack_supports_plocks()) use_plocks = 0; /* * These have all been checked by ocfs2_read_inode_block() or set * by ocfs2_mknod_locked(), so a failure is a code bug. */ BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); /* This means that read_inode cannot create a superblock inode today. change if that is needed. */ BUG_ON(!(fe->i_flags & cpu_to_le32(OCFS2_VALID_FL))); BUG_ON(le32_to_cpu(fe->i_fs_generation) != osb->fs_generation); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); OCFS2_I(inode)->ip_attr = le32_to_cpu(fe->i_attr); OCFS2_I(inode)->ip_dyn_features = le16_to_cpu(fe->i_dyn_features); inode_set_iversion(inode, 1); inode->i_generation = le32_to_cpu(fe->i_generation); inode->i_rdev = huge_decode_dev(le64_to_cpu(fe->id1.dev1.i_rdev)); inode->i_mode = le16_to_cpu(fe->i_mode); i_uid_write(inode, le32_to_cpu(fe->i_uid)); i_gid_write(inode, le32_to_cpu(fe->i_gid)); /* Fast symlinks will have i_size but no allocated clusters. */ if (S_ISLNK(inode->i_mode) && !fe->i_clusters) { inode->i_blocks = 0; inode->i_mapping->a_ops = &ocfs2_fast_symlink_aops; } else { inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_mapping->a_ops = &ocfs2_aops; } inode->i_atime.tv_sec = le64_to_cpu(fe->i_atime); inode->i_atime.tv_nsec = le32_to_cpu(fe->i_atime_nsec); inode->i_mtime.tv_sec = le64_to_cpu(fe->i_mtime); inode->i_mtime.tv_nsec = le32_to_cpu(fe->i_mtime_nsec); inode_set_ctime(inode, le64_to_cpu(fe->i_ctime), le32_to_cpu(fe->i_ctime_nsec)); if (OCFS2_I(inode)->ip_blkno != le64_to_cpu(fe->i_blkno)) mlog(ML_ERROR, "ip_blkno %llu != i_blkno %llu!\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)le64_to_cpu(fe->i_blkno)); set_nlink(inode, ocfs2_read_links_count(fe)); trace_ocfs2_populate_inode(OCFS2_I(inode)->ip_blkno, le32_to_cpu(fe->i_flags)); if (fe->i_flags & cpu_to_le32(OCFS2_SYSTEM_FL)) { OCFS2_I(inode)->ip_flags |= OCFS2_INODE_SYSTEM_FILE; inode->i_flags |= S_NOQUOTA; } if (fe->i_flags & cpu_to_le32(OCFS2_LOCAL_ALLOC_FL)) { OCFS2_I(inode)->ip_flags |= OCFS2_INODE_BITMAP; } else if (fe->i_flags & cpu_to_le32(OCFS2_BITMAP_FL)) { OCFS2_I(inode)->ip_flags |= OCFS2_INODE_BITMAP; } else if (fe->i_flags & cpu_to_le32(OCFS2_QUOTA_FL)) { inode->i_flags |= S_NOQUOTA; } else if (fe->i_flags & cpu_to_le32(OCFS2_SUPER_BLOCK_FL)) { /* we can't actually hit this as read_inode can't * handle superblocks today ;-) */ BUG(); } switch (inode->i_mode & S_IFMT) { case S_IFREG: if (use_plocks) inode->i_fop = &ocfs2_fops; else inode->i_fop = &ocfs2_fops_no_plocks; inode->i_op = &ocfs2_file_iops; i_size_write(inode, le64_to_cpu(fe->i_size)); break; case S_IFDIR: inode->i_op = &ocfs2_dir_iops; if (use_plocks) inode->i_fop = &ocfs2_dops; else inode->i_fop = &ocfs2_dops_no_plocks; i_size_write(inode, le64_to_cpu(fe->i_size)); OCFS2_I(inode)->ip_dir_lock_gen = 1; break; case S_IFLNK: inode->i_op = &ocfs2_symlink_inode_operations; inode_nohighmem(inode); i_size_write(inode, le64_to_cpu(fe->i_size)); break; default: inode->i_op = &ocfs2_special_file_iops; init_special_inode(inode, inode->i_mode, inode->i_rdev); break; } if (create_ino) { inode->i_ino = ino_from_blkno(inode->i_sb, le64_to_cpu(fe->i_blkno)); /* * If we ever want to create system files from kernel, * the generation argument to * ocfs2_inode_lock_res_init() will have to change. */ BUG_ON(le32_to_cpu(fe->i_flags) & OCFS2_SYSTEM_FL); ocfs2_inode_lock_res_init(&OCFS2_I(inode)->ip_inode_lockres, OCFS2_LOCK_TYPE_META, 0, inode); ocfs2_inode_lock_res_init(&OCFS2_I(inode)->ip_open_lockres, OCFS2_LOCK_TYPE_OPEN, 0, inode); } ocfs2_inode_lock_res_init(&OCFS2_I(inode)->ip_rw_lockres, OCFS2_LOCK_TYPE_RW, inode->i_generation, inode); ocfs2_set_inode_flags(inode); OCFS2_I(inode)->ip_last_used_slot = 0; OCFS2_I(inode)->ip_last_used_group = 0; if (S_ISDIR(inode->i_mode)) ocfs2_resv_set_type(&OCFS2_I(inode)->ip_la_data_resv, OCFS2_RESV_FLAG_DIR); } static int ocfs2_read_locked_inode(struct inode *inode, struct ocfs2_find_inode_args *args) { struct super_block *sb; struct ocfs2_super *osb; struct ocfs2_dinode *fe; struct buffer_head *bh = NULL; int status, can_lock, lock_level = 0; u32 generation = 0; status = -EINVAL; sb = inode->i_sb; osb = OCFS2_SB(sb); /* * To improve performance of cold-cache inode stats, we take * the cluster lock here if possible. * * Generally, OCFS2 never trusts the contents of an inode * unless it's holding a cluster lock, so taking it here isn't * a correctness issue as much as it is a performance * improvement. * * There are three times when taking the lock is not a good idea: * * 1) During startup, before we have initialized the DLM. * * 2) If we are reading certain system files which never get * cluster locks (local alloc, truncate log). * * 3) If the process doing the iget() is responsible for * orphan dir recovery. We're holding the orphan dir lock and * can get into a deadlock with another process on another * node in ->delete_inode(). * * #1 and #2 can be simply solved by never taking the lock * here for system files (which are the only type we read * during mount). It's a heavier approach, but our main * concern is user-accessible files anyway. * * #3 works itself out because we'll eventually take the * cluster lock before trusting anything anyway. */ can_lock = !(args->fi_flags & OCFS2_FI_FLAG_SYSFILE) && !(args->fi_flags & OCFS2_FI_FLAG_ORPHAN_RECOVERY) && !ocfs2_mount_local(osb); trace_ocfs2_read_locked_inode( (unsigned long long)OCFS2_I(inode)->ip_blkno, can_lock); /* * To maintain backwards compatibility with older versions of * ocfs2-tools, we still store the generation value for system * files. The only ones that actually matter to userspace are * the journals, but it's easier and inexpensive to just flag * all system files similarly. */ if (args->fi_flags & OCFS2_FI_FLAG_SYSFILE) generation = osb->fs_generation; ocfs2_inode_lock_res_init(&OCFS2_I(inode)->ip_inode_lockres, OCFS2_LOCK_TYPE_META, generation, inode); ocfs2_inode_lock_res_init(&OCFS2_I(inode)->ip_open_lockres, OCFS2_LOCK_TYPE_OPEN, 0, inode); if (can_lock) { status = ocfs2_open_lock(inode); if (status) { make_bad_inode(inode); mlog_errno(status); return status; } status = ocfs2_inode_lock(inode, NULL, lock_level); if (status) { make_bad_inode(inode); mlog_errno(status); return status; } } if (args->fi_flags & OCFS2_FI_FLAG_ORPHAN_RECOVERY) { status = ocfs2_try_open_lock(inode, 0); if (status) { make_bad_inode(inode); return status; } } if (can_lock) { if (args->fi_flags & OCFS2_FI_FLAG_FILECHECK_CHK) status = ocfs2_filecheck_read_inode_block_full(inode, &bh, OCFS2_BH_IGNORE_CACHE, 0); else if (args->fi_flags & OCFS2_FI_FLAG_FILECHECK_FIX) status = ocfs2_filecheck_read_inode_block_full(inode, &bh, OCFS2_BH_IGNORE_CACHE, 1); else status = ocfs2_read_inode_block_full(inode, &bh, OCFS2_BH_IGNORE_CACHE); } else { status = ocfs2_read_blocks_sync(osb, args->fi_blkno, 1, &bh); /* * If buffer is in jbd, then its checksum may not have been * computed as yet. */ if (!status && !buffer_jbd(bh)) { if (args->fi_flags & OCFS2_FI_FLAG_FILECHECK_CHK) status = ocfs2_filecheck_validate_inode_block( osb->sb, bh); else if (args->fi_flags & OCFS2_FI_FLAG_FILECHECK_FIX) status = ocfs2_filecheck_repair_inode_block( osb->sb, bh); else status = ocfs2_validate_inode_block( osb->sb, bh); } } if (status < 0) { mlog_errno(status); goto bail; } status = -EINVAL; fe = (struct ocfs2_dinode *) bh->b_data; /* * This is a code bug. Right now the caller needs to * understand whether it is asking for a system file inode or * not so the proper lock names can be built. */ mlog_bug_on_msg(!!(fe->i_flags & cpu_to_le32(OCFS2_SYSTEM_FL)) != !!(args->fi_flags & OCFS2_FI_FLAG_SYSFILE), "Inode %llu: system file state is ambiguous\n", (unsigned long long)args->fi_blkno); if (S_ISCHR(le16_to_cpu(fe->i_mode)) || S_ISBLK(le16_to_cpu(fe->i_mode))) inode->i_rdev = huge_decode_dev(le64_to_cpu(fe->id1.dev1.i_rdev)); ocfs2_populate_inode(inode, fe, 0); BUG_ON(args->fi_blkno != le64_to_cpu(fe->i_blkno)); if (buffer_dirty(bh) && !buffer_jbd(bh)) { if (can_lock) { ocfs2_inode_unlock(inode, lock_level); lock_level = 1; ocfs2_inode_lock(inode, NULL, lock_level); } status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); if (status < 0) { mlog_errno(status); goto bail; } } status = 0; bail: if (can_lock) ocfs2_inode_unlock(inode, lock_level); if (status < 0) make_bad_inode(inode); brelse(bh); return status; } void ocfs2_sync_blockdev(struct super_block *sb) { sync_blockdev(sb->s_bdev); } static int ocfs2_truncate_for_delete(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh) { int status = 0; struct ocfs2_dinode *fe; handle_t *handle = NULL; fe = (struct ocfs2_dinode *) fe_bh->b_data; /* * This check will also skip truncate of inodes with inline * data and fast symlinks. */ if (fe->i_clusters) { if (ocfs2_should_order_data(inode)) ocfs2_begin_ordered_truncate(inode, 0); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto out; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out; } i_size_write(inode, 0); status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); if (status < 0) { mlog_errno(status); goto out; } ocfs2_commit_trans(osb, handle); handle = NULL; status = ocfs2_commit_truncate(osb, inode, fe_bh); if (status < 0) mlog_errno(status); } out: if (handle) ocfs2_commit_trans(osb, handle); return status; } static int ocfs2_remove_inode(struct inode *inode, struct buffer_head *di_bh, struct inode *orphan_dir_inode, struct buffer_head *orphan_dir_bh) { int status; struct inode *inode_alloc_inode = NULL; struct buffer_head *inode_alloc_bh = NULL; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data; inode_alloc_inode = ocfs2_get_system_file_inode(osb, INODE_ALLOC_SYSTEM_INODE, le16_to_cpu(di->i_suballoc_slot)); if (!inode_alloc_inode) { status = -ENOENT; mlog_errno(status); goto bail; } inode_lock(inode_alloc_inode); status = ocfs2_inode_lock(inode_alloc_inode, &inode_alloc_bh, 1); if (status < 0) { inode_unlock(inode_alloc_inode); mlog_errno(status); goto bail; } handle = ocfs2_start_trans(osb, OCFS2_DELETE_INODE_CREDITS + ocfs2_quota_trans_credits(inode->i_sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } if (!(OCFS2_I(inode)->ip_flags & OCFS2_INODE_SKIP_ORPHAN_DIR)) { status = ocfs2_orphan_del(osb, handle, orphan_dir_inode, inode, orphan_dir_bh, false); if (status < 0) { mlog_errno(status); goto bail_commit; } } /* set the inodes dtime */ status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail_commit; } di->i_dtime = cpu_to_le64(ktime_get_real_seconds()); di->i_flags &= cpu_to_le32(~(OCFS2_VALID_FL | OCFS2_ORPHANED_FL)); ocfs2_journal_dirty(handle, di_bh); ocfs2_remove_from_cache(INODE_CACHE(inode), di_bh); dquot_free_inode(inode); status = ocfs2_free_dinode(handle, inode_alloc_inode, inode_alloc_bh, di); if (status < 0) mlog_errno(status); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock: ocfs2_inode_unlock(inode_alloc_inode, 1); inode_unlock(inode_alloc_inode); brelse(inode_alloc_bh); bail: iput(inode_alloc_inode); return status; } /* * Serialize with orphan dir recovery. If the process doing * recovery on this orphan dir does an iget() with the dir * i_rwsem held, we'll deadlock here. Instead we detect this * and exit early - recovery will wipe this inode for us. */ static int ocfs2_check_orphan_recovery_state(struct ocfs2_super *osb, int slot) { int ret = 0; spin_lock(&osb->osb_lock); if (ocfs2_node_map_test_bit(osb, &osb->osb_recovering_orphan_dirs, slot)) { ret = -EDEADLK; goto out; } /* This signals to the orphan recovery process that it should * wait for us to handle the wipe. */ osb->osb_orphan_wipes[slot]++; out: spin_unlock(&osb->osb_lock); trace_ocfs2_check_orphan_recovery_state(slot, ret); return ret; } static void ocfs2_signal_wipe_completion(struct ocfs2_super *osb, int slot) { spin_lock(&osb->osb_lock); osb->osb_orphan_wipes[slot]--; spin_unlock(&osb->osb_lock); wake_up(&osb->osb_wipe_event); } static int ocfs2_wipe_inode(struct inode *inode, struct buffer_head *di_bh) { int status, orphaned_slot = -1; struct inode *orphan_dir_inode = NULL; struct buffer_head *orphan_dir_bh = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data; if (!(OCFS2_I(inode)->ip_flags & OCFS2_INODE_SKIP_ORPHAN_DIR)) { orphaned_slot = le16_to_cpu(di->i_orphaned_slot); status = ocfs2_check_orphan_recovery_state(osb, orphaned_slot); if (status) return status; orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, orphaned_slot); if (!orphan_dir_inode) { status = -ENOENT; mlog_errno(status); goto bail; } /* Lock the orphan dir. The lock will be held for the entire * delete_inode operation. We do this now to avoid races with * recovery completion on other nodes. */ inode_lock(orphan_dir_inode); status = ocfs2_inode_lock(orphan_dir_inode, &orphan_dir_bh, 1); if (status < 0) { inode_unlock(orphan_dir_inode); mlog_errno(status); goto bail; } } /* we do this while holding the orphan dir lock because we * don't want recovery being run from another node to try an * inode delete underneath us -- this will result in two nodes * truncating the same file! */ status = ocfs2_truncate_for_delete(osb, inode, di_bh); if (status < 0) { mlog_errno(status); goto bail_unlock_dir; } /* Remove any dir index tree */ if (S_ISDIR(inode->i_mode)) { status = ocfs2_dx_dir_truncate(inode, di_bh); if (status) { mlog_errno(status); goto bail_unlock_dir; } } /*Free extended attribute resources associated with this inode.*/ status = ocfs2_xattr_remove(inode, di_bh); if (status < 0) { mlog_errno(status); goto bail_unlock_dir; } status = ocfs2_remove_refcount_tree(inode, di_bh); if (status < 0) { mlog_errno(status); goto bail_unlock_dir; } status = ocfs2_remove_inode(inode, di_bh, orphan_dir_inode, orphan_dir_bh); if (status < 0) mlog_errno(status); bail_unlock_dir: if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SKIP_ORPHAN_DIR) return status; ocfs2_inode_unlock(orphan_dir_inode, 1); inode_unlock(orphan_dir_inode); brelse(orphan_dir_bh); bail: iput(orphan_dir_inode); ocfs2_signal_wipe_completion(osb, orphaned_slot); return status; } /* There is a series of simple checks that should be done before a * trylock is even considered. Encapsulate those in this function. */ static int ocfs2_inode_is_valid_to_delete(struct inode *inode) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); trace_ocfs2_inode_is_valid_to_delete(current, osb->dc_task, (unsigned long long)oi->ip_blkno, oi->ip_flags); /* We shouldn't be getting here for the root directory * inode.. */ if (inode == osb->root_inode) { mlog(ML_ERROR, "Skipping delete of root inode.\n"); goto bail; } /* * If we're coming from downconvert_thread we can't go into our own * voting [hello, deadlock city!] so we cannot delete the inode. But * since we dropped last inode ref when downconverting dentry lock, * we cannot have the file open and thus the node doing unlink will * take care of deleting the inode. */ if (current == osb->dc_task) goto bail; spin_lock(&oi->ip_lock); /* OCFS2 *never* deletes system files. This should technically * never get here as system file inodes should always have a * positive link count. */ if (oi->ip_flags & OCFS2_INODE_SYSTEM_FILE) { mlog(ML_ERROR, "Skipping delete of system file %llu\n", (unsigned long long)oi->ip_blkno); goto bail_unlock; } ret = 1; bail_unlock: spin_unlock(&oi->ip_lock); bail: return ret; } /* Query the cluster to determine whether we should wipe an inode from * disk or not. * * Requires the inode to have the cluster lock. */ static int ocfs2_query_inode_wipe(struct inode *inode, struct buffer_head *di_bh, int *wipe) { int status = 0, reason = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di; *wipe = 0; trace_ocfs2_query_inode_wipe_begin((unsigned long long)oi->ip_blkno, inode->i_nlink); /* While we were waiting for the cluster lock in * ocfs2_delete_inode, another node might have asked to delete * the inode. Recheck our flags to catch this. */ if (!ocfs2_inode_is_valid_to_delete(inode)) { reason = 1; goto bail; } /* Now that we have an up to date inode, we can double check * the link count. */ if (inode->i_nlink) goto bail; /* Do some basic inode verification... */ di = (struct ocfs2_dinode *) di_bh->b_data; if (!(di->i_flags & cpu_to_le32(OCFS2_ORPHANED_FL)) && !(oi->ip_flags & OCFS2_INODE_SKIP_ORPHAN_DIR)) { /* * Inodes in the orphan dir must have ORPHANED_FL. The only * inodes that come back out of the orphan dir are reflink * targets. A reflink target may be moved out of the orphan * dir between the time we scan the directory and the time we * process it. This would lead to HAS_REFCOUNT_FL being set but * ORPHANED_FL not. */ if (di->i_dyn_features & cpu_to_le16(OCFS2_HAS_REFCOUNT_FL)) { reason = 2; goto bail; } /* for lack of a better error? */ status = -EEXIST; mlog(ML_ERROR, "Inode %llu (on-disk %llu) not orphaned! " "Disk flags 0x%x, inode flags 0x%x\n", (unsigned long long)oi->ip_blkno, (unsigned long long)le64_to_cpu(di->i_blkno), le32_to_cpu(di->i_flags), oi->ip_flags); goto bail; } /* has someone already deleted us?! baaad... */ if (di->i_dtime) { status = -EEXIST; mlog_errno(status); goto bail; } /* * This is how ocfs2 determines whether an inode is still live * within the cluster. Every node takes a shared read lock on * the inode open lock in ocfs2_read_locked_inode(). When we * get to ->delete_inode(), each node tries to convert it's * lock to an exclusive. Trylocks are serialized by the inode * meta data lock. If the upconvert succeeds, we know the inode * is no longer live and can be deleted. * * Though we call this with the meta data lock held, the * trylock keeps us from ABBA deadlock. */ status = ocfs2_try_open_lock(inode, 1); if (status == -EAGAIN) { status = 0; reason = 3; goto bail; } if (status < 0) { mlog_errno(status); goto bail; } *wipe = 1; trace_ocfs2_query_inode_wipe_succ(le16_to_cpu(di->i_orphaned_slot)); bail: trace_ocfs2_query_inode_wipe_end(status, reason); return status; } /* Support function for ocfs2_delete_inode. Will help us keep the * inode data in a consistent state for clear_inode. Always truncates * pages, optionally sync's them first. */ static void ocfs2_cleanup_delete_inode(struct inode *inode, int sync_data) { trace_ocfs2_cleanup_delete_inode( (unsigned long long)OCFS2_I(inode)->ip_blkno, sync_data); if (sync_data) filemap_write_and_wait(inode->i_mapping); truncate_inode_pages_final(&inode->i_data); } static void ocfs2_delete_inode(struct inode *inode) { int wipe, status; sigset_t oldset; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di = NULL; trace_ocfs2_delete_inode(inode->i_ino, (unsigned long long)OCFS2_I(inode)->ip_blkno, is_bad_inode(inode)); /* When we fail in read_inode() we mark inode as bad. The second test * catches the case when inode allocation fails before allocating * a block for inode. */ if (is_bad_inode(inode) || !OCFS2_I(inode)->ip_blkno) goto bail; if (!ocfs2_inode_is_valid_to_delete(inode)) { /* It's probably not necessary to truncate_inode_pages * here but we do it for safety anyway (it will most * likely be a no-op anyway) */ ocfs2_cleanup_delete_inode(inode, 0); goto bail; } dquot_initialize(inode); /* We want to block signals in delete_inode as the lock and * messaging paths may return us -ERESTARTSYS. Which would * cause us to exit early, resulting in inodes being orphaned * forever. */ ocfs2_block_signals(&oldset); /* * Synchronize us against ocfs2_get_dentry. We take this in * shared mode so that all nodes can still concurrently * process deletes. */ status = ocfs2_nfs_sync_lock(OCFS2_SB(inode->i_sb), 0); if (status < 0) { mlog(ML_ERROR, "getting nfs sync lock(PR) failed %d\n", status); ocfs2_cleanup_delete_inode(inode, 0); goto bail_unblock; } /* Lock down the inode. This gives us an up to date view of * it's metadata (for verification), and allows us to * serialize delete_inode on multiple nodes. * * Even though we might be doing a truncate, we don't take the * allocation lock here as it won't be needed - nobody will * have the file open. */ status = ocfs2_inode_lock(inode, &di_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); ocfs2_cleanup_delete_inode(inode, 0); goto bail_unlock_nfs_sync; } di = (struct ocfs2_dinode *)di_bh->b_data; /* Skip inode deletion and wait for dio orphan entry recovered * first */ if (unlikely(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) { ocfs2_cleanup_delete_inode(inode, 0); goto bail_unlock_inode; } /* Query the cluster. This will be the final decision made * before we go ahead and wipe the inode. */ status = ocfs2_query_inode_wipe(inode, di_bh, &wipe); if (!wipe || status < 0) { /* Error and remote inode busy both mean we won't be * removing the inode, so they take almost the same * path. */ if (status < 0) mlog_errno(status); /* Someone in the cluster has disallowed a wipe of * this inode, or it was never completely * orphaned. Write out the pages and exit now. */ ocfs2_cleanup_delete_inode(inode, 1); goto bail_unlock_inode; } ocfs2_cleanup_delete_inode(inode, 0); status = ocfs2_wipe_inode(inode, di_bh); if (status < 0) { if (status != -EDEADLK) mlog_errno(status); goto bail_unlock_inode; } /* * Mark the inode as successfully deleted. * * This is important for ocfs2_clear_inode() as it will check * this flag and skip any checkpointing work * * ocfs2_stuff_meta_lvb() also uses this flag to invalidate * the LVB for other nodes. */ OCFS2_I(inode)->ip_flags |= OCFS2_INODE_DELETED; bail_unlock_inode: ocfs2_inode_unlock(inode, 1); brelse(di_bh); bail_unlock_nfs_sync: ocfs2_nfs_sync_unlock(OCFS2_SB(inode->i_sb), 0); bail_unblock: ocfs2_unblock_signals(&oldset); bail: return; } static void ocfs2_clear_inode(struct inode *inode) { int status; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); clear_inode(inode); trace_ocfs2_clear_inode((unsigned long long)oi->ip_blkno, inode->i_nlink); mlog_bug_on_msg(osb == NULL, "Inode=%lu\n", inode->i_ino); dquot_drop(inode); /* To preven remote deletes we hold open lock before, now it * is time to unlock PR and EX open locks. */ ocfs2_open_unlock(inode); /* Do these before all the other work so that we don't bounce * the downconvert thread while waiting to destroy the locks. */ ocfs2_mark_lockres_freeing(osb, &oi->ip_rw_lockres); ocfs2_mark_lockres_freeing(osb, &oi->ip_inode_lockres); ocfs2_mark_lockres_freeing(osb, &oi->ip_open_lockres); ocfs2_resv_discard(&osb->osb_la_resmap, &oi->ip_la_data_resv); ocfs2_resv_init_once(&oi->ip_la_data_resv); /* We very well may get a clear_inode before all an inodes * metadata has hit disk. Of course, we can't drop any cluster * locks until the journal has finished with it. The only * exception here are successfully wiped inodes - their * metadata can now be considered to be part of the system * inodes from which it came. */ if (!(oi->ip_flags & OCFS2_INODE_DELETED)) ocfs2_checkpoint_inode(inode); mlog_bug_on_msg(!list_empty(&oi->ip_io_markers), "Clear inode of %llu, inode has io markers\n", (unsigned long long)oi->ip_blkno); mlog_bug_on_msg(!list_empty(&oi->ip_unwritten_list), "Clear inode of %llu, inode has unwritten extents\n", (unsigned long long)oi->ip_blkno); ocfs2_extent_map_trunc(inode, 0); status = ocfs2_drop_inode_locks(inode); if (status < 0) mlog_errno(status); ocfs2_lock_res_free(&oi->ip_rw_lockres); ocfs2_lock_res_free(&oi->ip_inode_lockres); ocfs2_lock_res_free(&oi->ip_open_lockres); ocfs2_metadata_cache_exit(INODE_CACHE(inode)); mlog_bug_on_msg(INODE_CACHE(inode)->ci_num_cached, "Clear inode of %llu, inode has %u cache items\n", (unsigned long long)oi->ip_blkno, INODE_CACHE(inode)->ci_num_cached); mlog_bug_on_msg(!(INODE_CACHE(inode)->ci_flags & OCFS2_CACHE_FL_INLINE), "Clear inode of %llu, inode has a bad flag\n", (unsigned long long)oi->ip_blkno); mlog_bug_on_msg(spin_is_locked(&oi->ip_lock), "Clear inode of %llu, inode is locked\n", (unsigned long long)oi->ip_blkno); mlog_bug_on_msg(!mutex_trylock(&oi->ip_io_mutex), "Clear inode of %llu, io_mutex is locked\n", (unsigned long long)oi->ip_blkno); mutex_unlock(&oi->ip_io_mutex); /* * down_trylock() returns 0, down_write_trylock() returns 1 * kernel 1, world 0 */ mlog_bug_on_msg(!down_write_trylock(&oi->ip_alloc_sem), "Clear inode of %llu, alloc_sem is locked\n", (unsigned long long)oi->ip_blkno); up_write(&oi->ip_alloc_sem); mlog_bug_on_msg(oi->ip_open_count, "Clear inode of %llu has open count %d\n", (unsigned long long)oi->ip_blkno, oi->ip_open_count); /* Clear all other flags. */ oi->ip_flags = 0; oi->ip_dir_start_lookup = 0; oi->ip_blkno = 0ULL; /* * ip_jinode is used to track txns against this inode. We ensure that * the journal is flushed before journal shutdown. Thus it is safe to * have inodes get cleaned up after journal shutdown. */ jbd2_journal_release_jbd_inode(osb->journal->j_journal, &oi->ip_jinode); } void ocfs2_evict_inode(struct inode *inode) { if (!inode->i_nlink || (OCFS2_I(inode)->ip_flags & OCFS2_INODE_MAYBE_ORPHANED)) { ocfs2_delete_inode(inode); } else { truncate_inode_pages_final(&inode->i_data); } ocfs2_clear_inode(inode); } /* Called under inode_lock, with no more references on the * struct inode, so it's safe here to check the flags field * and to manipulate i_nlink without any other locks. */ int ocfs2_drop_inode(struct inode *inode) { struct ocfs2_inode_info *oi = OCFS2_I(inode); trace_ocfs2_drop_inode((unsigned long long)oi->ip_blkno, inode->i_nlink, oi->ip_flags); assert_spin_locked(&inode->i_lock); inode->i_state |= I_WILL_FREE; spin_unlock(&inode->i_lock); write_inode_now(inode, 1); spin_lock(&inode->i_lock); WARN_ON(inode->i_state & I_NEW); inode->i_state &= ~I_WILL_FREE; return 1; } /* * This is called from our getattr. */ int ocfs2_inode_revalidate(struct dentry *dentry) { struct inode *inode = d_inode(dentry); int status = 0; trace_ocfs2_inode_revalidate(inode, inode ? (unsigned long long)OCFS2_I(inode)->ip_blkno : 0ULL, inode ? (unsigned long long)OCFS2_I(inode)->ip_flags : 0); if (!inode) { status = -ENOENT; goto bail; } spin_lock(&OCFS2_I(inode)->ip_lock); if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { spin_unlock(&OCFS2_I(inode)->ip_lock); status = -ENOENT; goto bail; } spin_unlock(&OCFS2_I(inode)->ip_lock); /* Let ocfs2_inode_lock do the work of updating our struct * inode for us. */ status = ocfs2_inode_lock(inode, NULL, 0); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail; } ocfs2_inode_unlock(inode, 0); bail: return status; } /* * Updates a disk inode from a * struct inode. * Only takes ip_lock. */ int ocfs2_mark_inode_dirty(handle_t *handle, struct inode *inode, struct buffer_head *bh) { int status; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) bh->b_data; trace_ocfs2_mark_inode_dirty((unsigned long long)OCFS2_I(inode)->ip_blkno); status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } spin_lock(&OCFS2_I(inode)->ip_lock); fe->i_clusters = cpu_to_le32(OCFS2_I(inode)->ip_clusters); ocfs2_get_inode_flags(OCFS2_I(inode)); fe->i_attr = cpu_to_le32(OCFS2_I(inode)->ip_attr); fe->i_dyn_features = cpu_to_le16(OCFS2_I(inode)->ip_dyn_features); spin_unlock(&OCFS2_I(inode)->ip_lock); fe->i_size = cpu_to_le64(i_size_read(inode)); ocfs2_set_links_count(fe, inode->i_nlink); fe->i_uid = cpu_to_le32(i_uid_read(inode)); fe->i_gid = cpu_to_le32(i_gid_read(inode)); fe->i_mode = cpu_to_le16(inode->i_mode); fe->i_atime = cpu_to_le64(inode->i_atime.tv_sec); fe->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); fe->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec); fe->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); fe->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); fe->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); ocfs2_journal_dirty(handle, bh); ocfs2_update_inode_fsync_trans(handle, inode, 1); leave: return status; } /* * * Updates a struct inode from a disk inode. * does no i/o, only takes ip_lock. */ void ocfs2_refresh_inode(struct inode *inode, struct ocfs2_dinode *fe) { spin_lock(&OCFS2_I(inode)->ip_lock); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); OCFS2_I(inode)->ip_attr = le32_to_cpu(fe->i_attr); OCFS2_I(inode)->ip_dyn_features = le16_to_cpu(fe->i_dyn_features); ocfs2_set_inode_flags(inode); i_size_write(inode, le64_to_cpu(fe->i_size)); set_nlink(inode, ocfs2_read_links_count(fe)); i_uid_write(inode, le32_to_cpu(fe->i_uid)); i_gid_write(inode, le32_to_cpu(fe->i_gid)); inode->i_mode = le16_to_cpu(fe->i_mode); if (S_ISLNK(inode->i_mode) && le32_to_cpu(fe->i_clusters) == 0) inode->i_blocks = 0; else inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_atime.tv_sec = le64_to_cpu(fe->i_atime); inode->i_atime.tv_nsec = le32_to_cpu(fe->i_atime_nsec); inode->i_mtime.tv_sec = le64_to_cpu(fe->i_mtime); inode->i_mtime.tv_nsec = le32_to_cpu(fe->i_mtime_nsec); inode_set_ctime(inode, le64_to_cpu(fe->i_ctime), le32_to_cpu(fe->i_ctime_nsec)); spin_unlock(&OCFS2_I(inode)->ip_lock); } int ocfs2_validate_inode_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; trace_ocfs2_validate_inode_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &di->i_check); if (rc) { mlog(ML_ERROR, "Checksum failed for dinode %llu\n", (unsigned long long)bh->b_blocknr); goto bail; } /* * Errors after here are fatal. */ rc = -EINVAL; if (!OCFS2_IS_VALID_DINODE(di)) { rc = ocfs2_error(sb, "Invalid dinode #%llu: signature = %.*s\n", (unsigned long long)bh->b_blocknr, 7, di->i_signature); goto bail; } if (le64_to_cpu(di->i_blkno) != bh->b_blocknr) { rc = ocfs2_error(sb, "Invalid dinode #%llu: i_blkno is %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(di->i_blkno)); goto bail; } if (!(di->i_flags & cpu_to_le32(OCFS2_VALID_FL))) { rc = ocfs2_error(sb, "Invalid dinode #%llu: OCFS2_VALID_FL not set\n", (unsigned long long)bh->b_blocknr); goto bail; } if (le32_to_cpu(di->i_fs_generation) != OCFS2_SB(sb)->fs_generation) { rc = ocfs2_error(sb, "Invalid dinode #%llu: fs_generation is %u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(di->i_fs_generation)); goto bail; } rc = 0; bail: return rc; } static int ocfs2_filecheck_validate_inode_block(struct super_block *sb, struct buffer_head *bh) { int rc = 0; struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; trace_ocfs2_filecheck_validate_inode_block( (unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * Call ocfs2_validate_meta_ecc() first since it has ecc repair * function, but we should not return error immediately when ecc * validation fails, because the reason is quite likely the invalid * inode number inputed. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &di->i_check); if (rc) { mlog(ML_ERROR, "Filecheck: checksum failed for dinode %llu\n", (unsigned long long)bh->b_blocknr); rc = -OCFS2_FILECHECK_ERR_BLOCKECC; } if (!OCFS2_IS_VALID_DINODE(di)) { mlog(ML_ERROR, "Filecheck: invalid dinode #%llu: signature = %.*s\n", (unsigned long long)bh->b_blocknr, 7, di->i_signature); rc = -OCFS2_FILECHECK_ERR_INVALIDINO; goto bail; } else if (rc) goto bail; if (le64_to_cpu(di->i_blkno) != bh->b_blocknr) { mlog(ML_ERROR, "Filecheck: invalid dinode #%llu: i_blkno is %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(di->i_blkno)); rc = -OCFS2_FILECHECK_ERR_BLOCKNO; goto bail; } if (!(di->i_flags & cpu_to_le32(OCFS2_VALID_FL))) { mlog(ML_ERROR, "Filecheck: invalid dinode #%llu: OCFS2_VALID_FL " "not set\n", (unsigned long long)bh->b_blocknr); rc = -OCFS2_FILECHECK_ERR_VALIDFLAG; goto bail; } if (le32_to_cpu(di->i_fs_generation) != OCFS2_SB(sb)->fs_generation) { mlog(ML_ERROR, "Filecheck: invalid dinode #%llu: fs_generation is %u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(di->i_fs_generation)); rc = -OCFS2_FILECHECK_ERR_GENERATION; } bail: return rc; } static int ocfs2_filecheck_repair_inode_block(struct super_block *sb, struct buffer_head *bh) { int changed = 0; struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; if (!ocfs2_filecheck_validate_inode_block(sb, bh)) return 0; trace_ocfs2_filecheck_repair_inode_block( (unsigned long long)bh->b_blocknr); if (ocfs2_is_hard_readonly(OCFS2_SB(sb)) || ocfs2_is_soft_readonly(OCFS2_SB(sb))) { mlog(ML_ERROR, "Filecheck: cannot repair dinode #%llu " "on readonly filesystem\n", (unsigned long long)bh->b_blocknr); return -OCFS2_FILECHECK_ERR_READONLY; } if (buffer_jbd(bh)) { mlog(ML_ERROR, "Filecheck: cannot repair dinode #%llu, " "its buffer is in jbd\n", (unsigned long long)bh->b_blocknr); return -OCFS2_FILECHECK_ERR_INJBD; } if (!OCFS2_IS_VALID_DINODE(di)) { /* Cannot fix invalid inode block */ return -OCFS2_FILECHECK_ERR_INVALIDINO; } if (!(di->i_flags & cpu_to_le32(OCFS2_VALID_FL))) { /* Cannot just add VALID_FL flag back as a fix, * need more things to check here. */ return -OCFS2_FILECHECK_ERR_VALIDFLAG; } if (le64_to_cpu(di->i_blkno) != bh->b_blocknr) { di->i_blkno = cpu_to_le64(bh->b_blocknr); changed = 1; mlog(ML_ERROR, "Filecheck: reset dinode #%llu: i_blkno to %llu\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(di->i_blkno)); } if (le32_to_cpu(di->i_fs_generation) != OCFS2_SB(sb)->fs_generation) { di->i_fs_generation = cpu_to_le32(OCFS2_SB(sb)->fs_generation); changed = 1; mlog(ML_ERROR, "Filecheck: reset dinode #%llu: fs_generation to %u\n", (unsigned long long)bh->b_blocknr, le32_to_cpu(di->i_fs_generation)); } if (changed || ocfs2_validate_meta_ecc(sb, bh->b_data, &di->i_check)) { ocfs2_compute_meta_ecc(sb, bh->b_data, &di->i_check); mark_buffer_dirty(bh); mlog(ML_ERROR, "Filecheck: reset dinode #%llu: compute meta ecc\n", (unsigned long long)bh->b_blocknr); } return 0; } static int ocfs2_filecheck_read_inode_block_full(struct inode *inode, struct buffer_head **bh, int flags, int type) { int rc; struct buffer_head *tmp = *bh; if (!type) /* Check inode block */ rc = ocfs2_read_blocks(INODE_CACHE(inode), OCFS2_I(inode)->ip_blkno, 1, &tmp, flags, ocfs2_filecheck_validate_inode_block); else /* Repair inode block */ rc = ocfs2_read_blocks(INODE_CACHE(inode), OCFS2_I(inode)->ip_blkno, 1, &tmp, flags, ocfs2_filecheck_repair_inode_block); /* If ocfs2_read_blocks() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } int ocfs2_read_inode_block_full(struct inode *inode, struct buffer_head **bh, int flags) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_blocks(INODE_CACHE(inode), OCFS2_I(inode)->ip_blkno, 1, &tmp, flags, ocfs2_validate_inode_block); /* If ocfs2_read_blocks() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } int ocfs2_read_inode_block(struct inode *inode, struct buffer_head **bh) { return ocfs2_read_inode_block_full(inode, bh, 0); } static u64 ocfs2_inode_cache_owner(struct ocfs2_caching_info *ci) { struct ocfs2_inode_info *oi = cache_info_to_inode(ci); return oi->ip_blkno; } static struct super_block *ocfs2_inode_cache_get_super(struct ocfs2_caching_info *ci) { struct ocfs2_inode_info *oi = cache_info_to_inode(ci); return oi->vfs_inode.i_sb; } static void ocfs2_inode_cache_lock(struct ocfs2_caching_info *ci) { struct ocfs2_inode_info *oi = cache_info_to_inode(ci); spin_lock(&oi->ip_lock); } static void ocfs2_inode_cache_unlock(struct ocfs2_caching_info *ci) { struct ocfs2_inode_info *oi = cache_info_to_inode(ci); spin_unlock(&oi->ip_lock); } static void ocfs2_inode_cache_io_lock(struct ocfs2_caching_info *ci) { struct ocfs2_inode_info *oi = cache_info_to_inode(ci); mutex_lock(&oi->ip_io_mutex); } static void ocfs2_inode_cache_io_unlock(struct ocfs2_caching_info *ci) { struct ocfs2_inode_info *oi = cache_info_to_inode(ci); mutex_unlock(&oi->ip_io_mutex); } const struct ocfs2_caching_operations ocfs2_inode_caching_ops = { .co_owner = ocfs2_inode_cache_owner, .co_get_super = ocfs2_inode_cache_get_super, .co_cache_lock = ocfs2_inode_cache_lock, .co_cache_unlock = ocfs2_inode_cache_unlock, .co_io_lock = ocfs2_inode_cache_io_lock, .co_io_unlock = ocfs2_inode_cache_io_unlock, };
linux-master
fs/ocfs2/inode.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ocfs2/ioctl.c * * Copyright (C) 2006 Herbert Poetzl * adapted from Remy Card's ext2/ioctl.c */ #include <linux/fs.h> #include <linux/mount.h> #include <linux/blkdev.h> #include <linux/compat.h> #include <linux/fileattr.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dlmglue.h" #include "file.h" #include "inode.h" #include "journal.h" #include "ocfs2_fs.h" #include "ioctl.h" #include "resize.h" #include "refcounttree.h" #include "sysfile.h" #include "dir.h" #include "buffer_head_io.h" #include "suballoc.h" #include "move_extents.h" #define o2info_from_user(a, b) \ copy_from_user(&(a), (b), sizeof(a)) #define o2info_to_user(a, b) \ copy_to_user((typeof(a) __user *)b, &(a), sizeof(a)) /* * This is just a best-effort to tell userspace that this request * caused the error. */ static inline void o2info_set_request_error(struct ocfs2_info_request *kreq, struct ocfs2_info_request __user *req) { kreq->ir_flags |= OCFS2_INFO_FL_ERROR; (void)put_user(kreq->ir_flags, (__u32 __user *)&(req->ir_flags)); } static inline void o2info_set_request_filled(struct ocfs2_info_request *req) { req->ir_flags |= OCFS2_INFO_FL_FILLED; } static inline void o2info_clear_request_filled(struct ocfs2_info_request *req) { req->ir_flags &= ~OCFS2_INFO_FL_FILLED; } static inline int o2info_coherent(struct ocfs2_info_request *req) { return (!(req->ir_flags & OCFS2_INFO_FL_NON_COHERENT)); } int ocfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); unsigned int flags; int status; status = ocfs2_inode_lock(inode, NULL, 0); if (status < 0) { mlog_errno(status); return status; } ocfs2_get_inode_flags(OCFS2_I(inode)); flags = OCFS2_I(inode)->ip_attr; ocfs2_inode_unlock(inode, 0); fileattr_fill_flags(fa, flags & OCFS2_FL_VISIBLE); return status; } int ocfs2_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); unsigned int flags = fa->flags; struct ocfs2_inode_info *ocfs2_inode = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; struct buffer_head *bh = NULL; unsigned oldflags; int status; if (fileattr_has_fsx(fa)) return -EOPNOTSUPP; status = ocfs2_inode_lock(inode, &bh, 1); if (status < 0) { mlog_errno(status); goto bail; } if (!S_ISDIR(inode->i_mode)) flags &= ~OCFS2_DIRSYNC_FL; oldflags = ocfs2_inode->ip_attr; flags = flags & OCFS2_FL_MODIFIABLE; flags |= oldflags & ~OCFS2_FL_MODIFIABLE; /* Check already done by VFS, but repeat with ocfs lock */ status = -EPERM; if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) && !capable(CAP_LINUX_IMMUTABLE)) goto bail_unlock; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } ocfs2_inode->ip_attr = flags; ocfs2_set_inode_flags(inode); status = ocfs2_mark_inode_dirty(handle, inode, bh); if (status < 0) mlog_errno(status); ocfs2_commit_trans(osb, handle); bail_unlock: ocfs2_inode_unlock(inode, 1); bail: brelse(bh); return status; } static int ocfs2_info_handle_blocksize(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_blocksize oib; if (o2info_from_user(oib, req)) return -EFAULT; oib.ib_blocksize = inode->i_sb->s_blocksize; o2info_set_request_filled(&oib.ib_req); if (o2info_to_user(oib, req)) return -EFAULT; return 0; } static int ocfs2_info_handle_clustersize(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_clustersize oic; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (o2info_from_user(oic, req)) return -EFAULT; oic.ic_clustersize = osb->s_clustersize; o2info_set_request_filled(&oic.ic_req); if (o2info_to_user(oic, req)) return -EFAULT; return 0; } static int ocfs2_info_handle_maxslots(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_maxslots oim; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (o2info_from_user(oim, req)) return -EFAULT; oim.im_max_slots = osb->max_slots; o2info_set_request_filled(&oim.im_req); if (o2info_to_user(oim, req)) return -EFAULT; return 0; } static int ocfs2_info_handle_label(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_label oil; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (o2info_from_user(oil, req)) return -EFAULT; memcpy(oil.il_label, osb->vol_label, OCFS2_MAX_VOL_LABEL_LEN); o2info_set_request_filled(&oil.il_req); if (o2info_to_user(oil, req)) return -EFAULT; return 0; } static int ocfs2_info_handle_uuid(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_uuid oiu; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (o2info_from_user(oiu, req)) return -EFAULT; memcpy(oiu.iu_uuid_str, osb->uuid_str, OCFS2_TEXT_UUID_LEN + 1); o2info_set_request_filled(&oiu.iu_req); if (o2info_to_user(oiu, req)) return -EFAULT; return 0; } static int ocfs2_info_handle_fs_features(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_fs_features oif; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (o2info_from_user(oif, req)) return -EFAULT; oif.if_compat_features = osb->s_feature_compat; oif.if_incompat_features = osb->s_feature_incompat; oif.if_ro_compat_features = osb->s_feature_ro_compat; o2info_set_request_filled(&oif.if_req); if (o2info_to_user(oif, req)) return -EFAULT; return 0; } static int ocfs2_info_handle_journal_size(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_journal_size oij; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (o2info_from_user(oij, req)) return -EFAULT; oij.ij_journal_size = i_size_read(osb->journal->j_inode); o2info_set_request_filled(&oij.ij_req); if (o2info_to_user(oij, req)) return -EFAULT; return 0; } static int ocfs2_info_scan_inode_alloc(struct ocfs2_super *osb, struct inode *inode_alloc, u64 blkno, struct ocfs2_info_freeinode *fi, u32 slot) { int status = 0, unlock = 0; struct buffer_head *bh = NULL; struct ocfs2_dinode *dinode_alloc = NULL; if (inode_alloc) inode_lock(inode_alloc); if (inode_alloc && o2info_coherent(&fi->ifi_req)) { status = ocfs2_inode_lock(inode_alloc, &bh, 0); if (status < 0) { mlog_errno(status); goto bail; } unlock = 1; } else { status = ocfs2_read_blocks_sync(osb, blkno, 1, &bh); if (status < 0) { mlog_errno(status); goto bail; } } dinode_alloc = (struct ocfs2_dinode *)bh->b_data; fi->ifi_stat[slot].lfi_total = le32_to_cpu(dinode_alloc->id1.bitmap1.i_total); fi->ifi_stat[slot].lfi_free = le32_to_cpu(dinode_alloc->id1.bitmap1.i_total) - le32_to_cpu(dinode_alloc->id1.bitmap1.i_used); bail: if (unlock) ocfs2_inode_unlock(inode_alloc, 0); if (inode_alloc) inode_unlock(inode_alloc); brelse(bh); return status; } static int ocfs2_info_handle_freeinode(struct inode *inode, struct ocfs2_info_request __user *req) { u32 i; u64 blkno = -1; char namebuf[40]; int status, type = INODE_ALLOC_SYSTEM_INODE; struct ocfs2_info_freeinode *oifi = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *inode_alloc = NULL; oifi = kzalloc(sizeof(struct ocfs2_info_freeinode), GFP_KERNEL); if (!oifi) { status = -ENOMEM; mlog_errno(status); goto out_err; } if (o2info_from_user(*oifi, req)) { status = -EFAULT; goto out_free; } oifi->ifi_slotnum = osb->max_slots; for (i = 0; i < oifi->ifi_slotnum; i++) { if (o2info_coherent(&oifi->ifi_req)) { inode_alloc = ocfs2_get_system_file_inode(osb, type, i); if (!inode_alloc) { mlog(ML_ERROR, "unable to get alloc inode in " "slot %u\n", i); status = -EIO; goto bail; } } else { ocfs2_sprintf_system_inode_name(namebuf, sizeof(namebuf), type, i); status = ocfs2_lookup_ino_from_name(osb->sys_root_inode, namebuf, strlen(namebuf), &blkno); if (status < 0) { status = -ENOENT; goto bail; } } status = ocfs2_info_scan_inode_alloc(osb, inode_alloc, blkno, oifi, i); iput(inode_alloc); inode_alloc = NULL; if (status < 0) goto bail; } o2info_set_request_filled(&oifi->ifi_req); if (o2info_to_user(*oifi, req)) { status = -EFAULT; goto out_free; } status = 0; bail: if (status) o2info_set_request_error(&oifi->ifi_req, req); out_free: kfree(oifi); out_err: return status; } static void o2ffg_update_histogram(struct ocfs2_info_free_chunk_list *hist, unsigned int chunksize) { u32 index; index = __ilog2_u32(chunksize); if (index >= OCFS2_INFO_MAX_HIST) index = OCFS2_INFO_MAX_HIST - 1; hist->fc_chunks[index]++; hist->fc_clusters[index] += chunksize; } static void o2ffg_update_stats(struct ocfs2_info_freefrag_stats *stats, unsigned int chunksize) { if (chunksize > stats->ffs_max) stats->ffs_max = chunksize; if (chunksize < stats->ffs_min) stats->ffs_min = chunksize; stats->ffs_avg += chunksize; stats->ffs_free_chunks_real++; } static void ocfs2_info_update_ffg(struct ocfs2_info_freefrag *ffg, unsigned int chunksize) { o2ffg_update_histogram(&(ffg->iff_ffs.ffs_fc_hist), chunksize); o2ffg_update_stats(&(ffg->iff_ffs), chunksize); } static int ocfs2_info_freefrag_scan_chain(struct ocfs2_super *osb, struct inode *gb_inode, struct ocfs2_dinode *gb_dinode, struct ocfs2_chain_rec *rec, struct ocfs2_info_freefrag *ffg, u32 chunks_in_group) { int status = 0, used; u64 blkno; struct buffer_head *bh = NULL; struct ocfs2_group_desc *bg = NULL; unsigned int max_bits, num_clusters; unsigned int offset = 0, cluster, chunk; unsigned int chunk_free, last_chunksize = 0; if (!le32_to_cpu(rec->c_free)) goto bail; do { if (!bg) blkno = le64_to_cpu(rec->c_blkno); else blkno = le64_to_cpu(bg->bg_next_group); if (bh) { brelse(bh); bh = NULL; } if (o2info_coherent(&ffg->iff_req)) status = ocfs2_read_group_descriptor(gb_inode, gb_dinode, blkno, &bh); else status = ocfs2_read_blocks_sync(osb, blkno, 1, &bh); if (status < 0) { mlog(ML_ERROR, "Can't read the group descriptor # " "%llu from device.", (unsigned long long)blkno); status = -EIO; goto bail; } bg = (struct ocfs2_group_desc *)bh->b_data; if (!le16_to_cpu(bg->bg_free_bits_count)) continue; max_bits = le16_to_cpu(bg->bg_bits); offset = 0; for (chunk = 0; chunk < chunks_in_group; chunk++) { /* * last chunk may be not an entire one. */ if ((offset + ffg->iff_chunksize) > max_bits) num_clusters = max_bits - offset; else num_clusters = ffg->iff_chunksize; chunk_free = 0; for (cluster = 0; cluster < num_clusters; cluster++) { used = ocfs2_test_bit(offset, (unsigned long *)bg->bg_bitmap); /* * - chunk_free counts free clusters in #N chunk. * - last_chunksize records the size(in) clusters * for the last real free chunk being counted. */ if (!used) { last_chunksize++; chunk_free++; } if (used && last_chunksize) { ocfs2_info_update_ffg(ffg, last_chunksize); last_chunksize = 0; } offset++; } if (chunk_free == ffg->iff_chunksize) ffg->iff_ffs.ffs_free_chunks++; } /* * need to update the info for last free chunk. */ if (last_chunksize) ocfs2_info_update_ffg(ffg, last_chunksize); } while (le64_to_cpu(bg->bg_next_group)); bail: brelse(bh); return status; } static int ocfs2_info_freefrag_scan_bitmap(struct ocfs2_super *osb, struct inode *gb_inode, u64 blkno, struct ocfs2_info_freefrag *ffg) { u32 chunks_in_group; int status = 0, unlock = 0, i; struct buffer_head *bh = NULL; struct ocfs2_chain_list *cl = NULL; struct ocfs2_chain_rec *rec = NULL; struct ocfs2_dinode *gb_dinode = NULL; if (gb_inode) inode_lock(gb_inode); if (o2info_coherent(&ffg->iff_req)) { status = ocfs2_inode_lock(gb_inode, &bh, 0); if (status < 0) { mlog_errno(status); goto bail; } unlock = 1; } else { status = ocfs2_read_blocks_sync(osb, blkno, 1, &bh); if (status < 0) { mlog_errno(status); goto bail; } } gb_dinode = (struct ocfs2_dinode *)bh->b_data; cl = &(gb_dinode->id2.i_chain); /* * Chunksize(in) clusters from userspace should be * less than clusters in a group. */ if (ffg->iff_chunksize > le16_to_cpu(cl->cl_cpg)) { status = -EINVAL; goto bail; } memset(&ffg->iff_ffs, 0, sizeof(struct ocfs2_info_freefrag_stats)); ffg->iff_ffs.ffs_min = ~0U; ffg->iff_ffs.ffs_clusters = le32_to_cpu(gb_dinode->id1.bitmap1.i_total); ffg->iff_ffs.ffs_free_clusters = ffg->iff_ffs.ffs_clusters - le32_to_cpu(gb_dinode->id1.bitmap1.i_used); chunks_in_group = le16_to_cpu(cl->cl_cpg) / ffg->iff_chunksize + 1; for (i = 0; i < le16_to_cpu(cl->cl_next_free_rec); i++) { rec = &(cl->cl_recs[i]); status = ocfs2_info_freefrag_scan_chain(osb, gb_inode, gb_dinode, rec, ffg, chunks_in_group); if (status) goto bail; } if (ffg->iff_ffs.ffs_free_chunks_real) ffg->iff_ffs.ffs_avg = (ffg->iff_ffs.ffs_avg / ffg->iff_ffs.ffs_free_chunks_real); bail: if (unlock) ocfs2_inode_unlock(gb_inode, 0); if (gb_inode) inode_unlock(gb_inode); iput(gb_inode); brelse(bh); return status; } static int ocfs2_info_handle_freefrag(struct inode *inode, struct ocfs2_info_request __user *req) { u64 blkno = -1; char namebuf[40]; int status, type = GLOBAL_BITMAP_SYSTEM_INODE; struct ocfs2_info_freefrag *oiff; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *gb_inode = NULL; oiff = kzalloc(sizeof(struct ocfs2_info_freefrag), GFP_KERNEL); if (!oiff) { status = -ENOMEM; mlog_errno(status); goto out_err; } if (o2info_from_user(*oiff, req)) { status = -EFAULT; goto out_free; } /* * chunksize from userspace should be power of 2. */ if ((oiff->iff_chunksize & (oiff->iff_chunksize - 1)) || (!oiff->iff_chunksize)) { status = -EINVAL; goto bail; } if (o2info_coherent(&oiff->iff_req)) { gb_inode = ocfs2_get_system_file_inode(osb, type, OCFS2_INVALID_SLOT); if (!gb_inode) { mlog(ML_ERROR, "unable to get global_bitmap inode\n"); status = -EIO; goto bail; } } else { ocfs2_sprintf_system_inode_name(namebuf, sizeof(namebuf), type, OCFS2_INVALID_SLOT); status = ocfs2_lookup_ino_from_name(osb->sys_root_inode, namebuf, strlen(namebuf), &blkno); if (status < 0) { status = -ENOENT; goto bail; } } status = ocfs2_info_freefrag_scan_bitmap(osb, gb_inode, blkno, oiff); if (status < 0) goto bail; o2info_set_request_filled(&oiff->iff_req); if (o2info_to_user(*oiff, req)) { status = -EFAULT; goto out_free; } status = 0; bail: if (status) o2info_set_request_error(&oiff->iff_req, req); out_free: kfree(oiff); out_err: return status; } static int ocfs2_info_handle_unknown(struct inode *inode, struct ocfs2_info_request __user *req) { struct ocfs2_info_request oir; if (o2info_from_user(oir, req)) return -EFAULT; o2info_clear_request_filled(&oir); if (o2info_to_user(oir, req)) return -EFAULT; return 0; } /* * Validate and distinguish OCFS2_IOC_INFO requests. * * - validate the magic number. * - distinguish different requests. * - validate size of different requests. */ static int ocfs2_info_handle_request(struct inode *inode, struct ocfs2_info_request __user *req) { int status = -EFAULT; struct ocfs2_info_request oir; if (o2info_from_user(oir, req)) goto bail; status = -EINVAL; if (oir.ir_magic != OCFS2_INFO_MAGIC) goto bail; switch (oir.ir_code) { case OCFS2_INFO_BLOCKSIZE: if (oir.ir_size == sizeof(struct ocfs2_info_blocksize)) status = ocfs2_info_handle_blocksize(inode, req); break; case OCFS2_INFO_CLUSTERSIZE: if (oir.ir_size == sizeof(struct ocfs2_info_clustersize)) status = ocfs2_info_handle_clustersize(inode, req); break; case OCFS2_INFO_MAXSLOTS: if (oir.ir_size == sizeof(struct ocfs2_info_maxslots)) status = ocfs2_info_handle_maxslots(inode, req); break; case OCFS2_INFO_LABEL: if (oir.ir_size == sizeof(struct ocfs2_info_label)) status = ocfs2_info_handle_label(inode, req); break; case OCFS2_INFO_UUID: if (oir.ir_size == sizeof(struct ocfs2_info_uuid)) status = ocfs2_info_handle_uuid(inode, req); break; case OCFS2_INFO_FS_FEATURES: if (oir.ir_size == sizeof(struct ocfs2_info_fs_features)) status = ocfs2_info_handle_fs_features(inode, req); break; case OCFS2_INFO_JOURNAL_SIZE: if (oir.ir_size == sizeof(struct ocfs2_info_journal_size)) status = ocfs2_info_handle_journal_size(inode, req); break; case OCFS2_INFO_FREEINODE: if (oir.ir_size == sizeof(struct ocfs2_info_freeinode)) status = ocfs2_info_handle_freeinode(inode, req); break; case OCFS2_INFO_FREEFRAG: if (oir.ir_size == sizeof(struct ocfs2_info_freefrag)) status = ocfs2_info_handle_freefrag(inode, req); break; default: status = ocfs2_info_handle_unknown(inode, req); break; } bail: return status; } static int ocfs2_get_request_ptr(struct ocfs2_info *info, int idx, u64 *req_addr, int compat_flag) { int status = -EFAULT; u64 __user *bp = NULL; if (compat_flag) { #ifdef CONFIG_COMPAT /* * pointer bp stores the base address of a pointers array, * which collects all addresses of separate request. */ bp = (u64 __user *)(unsigned long)compat_ptr(info->oi_requests); #else BUG(); #endif } else bp = (u64 __user *)(unsigned long)(info->oi_requests); if (o2info_from_user(*req_addr, bp + idx)) goto bail; status = 0; bail: return status; } /* * OCFS2_IOC_INFO handles an array of requests passed from userspace. * * ocfs2_info_handle() recevies a large info aggregation, grab and * validate the request count from header, then break it into small * pieces, later specific handlers can handle them one by one. * * Idea here is to make each separate request small enough to ensure * a better backward&forward compatibility, since a small piece of * request will be less likely to be broken if disk layout get changed. */ static noinline_for_stack int ocfs2_info_handle(struct inode *inode, struct ocfs2_info *info, int compat_flag) { int i, status = 0; u64 req_addr; struct ocfs2_info_request __user *reqp; if ((info->oi_count > OCFS2_INFO_MAX_REQUEST) || (!info->oi_requests)) { status = -EINVAL; goto bail; } for (i = 0; i < info->oi_count; i++) { status = ocfs2_get_request_ptr(info, i, &req_addr, compat_flag); if (status) break; reqp = (struct ocfs2_info_request __user *)(unsigned long)req_addr; if (!reqp) { status = -EINVAL; goto bail; } status = ocfs2_info_handle_request(inode, reqp); if (status) break; } bail: return status; } long ocfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(filp); void __user *argp = (void __user *)arg; int status; switch (cmd) { case OCFS2_IOC_RESVSP: case OCFS2_IOC_RESVSP64: case OCFS2_IOC_UNRESVSP: case OCFS2_IOC_UNRESVSP64: { struct ocfs2_space_resv sr; if (copy_from_user(&sr, (int __user *) arg, sizeof(sr))) return -EFAULT; return ocfs2_change_file_space(filp, cmd, &sr); } case OCFS2_IOC_GROUP_EXTEND: { int new_clusters; if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (get_user(new_clusters, (int __user *)arg)) return -EFAULT; status = mnt_want_write_file(filp); if (status) return status; status = ocfs2_group_extend(inode, new_clusters); mnt_drop_write_file(filp); return status; } case OCFS2_IOC_GROUP_ADD: case OCFS2_IOC_GROUP_ADD64: { struct ocfs2_new_group_input input; if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (copy_from_user(&input, (int __user *) arg, sizeof(input))) return -EFAULT; status = mnt_want_write_file(filp); if (status) return status; status = ocfs2_group_add(inode, &input); mnt_drop_write_file(filp); return status; } case OCFS2_IOC_REFLINK: { struct reflink_arguments args; const char __user *old_path; const char __user *new_path; bool preserve; if (copy_from_user(&args, argp, sizeof(args))) return -EFAULT; old_path = (const char __user *)(unsigned long)args.old_path; new_path = (const char __user *)(unsigned long)args.new_path; preserve = (args.preserve != 0); return ocfs2_reflink_ioctl(inode, old_path, new_path, preserve); } case OCFS2_IOC_INFO: { struct ocfs2_info info; if (copy_from_user(&info, argp, sizeof(struct ocfs2_info))) return -EFAULT; return ocfs2_info_handle(inode, &info, 0); } case FITRIM: { struct super_block *sb = inode->i_sb; struct fstrim_range range; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!bdev_max_discard_sectors(sb->s_bdev)) return -EOPNOTSUPP; if (copy_from_user(&range, argp, sizeof(range))) return -EFAULT; range.minlen = max_t(u64, bdev_discard_granularity(sb->s_bdev), range.minlen); ret = ocfs2_trim_fs(sb, &range); if (ret < 0) return ret; if (copy_to_user(argp, &range, sizeof(range))) return -EFAULT; return 0; } case OCFS2_IOC_MOVE_EXT: return ocfs2_ioctl_move_extents(filp, argp); default: return -ENOTTY; } } #ifdef CONFIG_COMPAT long ocfs2_compat_ioctl(struct file *file, unsigned cmd, unsigned long arg) { bool preserve; struct reflink_arguments args; struct inode *inode = file_inode(file); struct ocfs2_info info; void __user *argp = (void __user *)arg; switch (cmd) { case OCFS2_IOC_RESVSP: case OCFS2_IOC_RESVSP64: case OCFS2_IOC_UNRESVSP: case OCFS2_IOC_UNRESVSP64: case OCFS2_IOC_GROUP_EXTEND: case OCFS2_IOC_GROUP_ADD: case OCFS2_IOC_GROUP_ADD64: break; case OCFS2_IOC_REFLINK: if (copy_from_user(&args, argp, sizeof(args))) return -EFAULT; preserve = (args.preserve != 0); return ocfs2_reflink_ioctl(inode, compat_ptr(args.old_path), compat_ptr(args.new_path), preserve); case OCFS2_IOC_INFO: if (copy_from_user(&info, argp, sizeof(struct ocfs2_info))) return -EFAULT; return ocfs2_info_handle(inode, &info, 1); case FITRIM: case OCFS2_IOC_MOVE_EXT: break; default: return -ENOIOCTLCMD; } return ocfs2_ioctl(file, cmd, arg); } #endif
linux-master
fs/ocfs2/ioctl.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * slot_map.c * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "dlmglue.h" #include "extent_map.h" #include "heartbeat.h" #include "inode.h" #include "slot_map.h" #include "super.h" #include "sysfile.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" struct ocfs2_slot { int sl_valid; unsigned int sl_node_num; }; struct ocfs2_slot_info { int si_extended; int si_slots_per_block; struct inode *si_inode; unsigned int si_blocks; struct buffer_head **si_bh; unsigned int si_num_slots; struct ocfs2_slot si_slots[]; }; static int __ocfs2_node_num_to_slot(struct ocfs2_slot_info *si, unsigned int node_num); static void ocfs2_invalidate_slot(struct ocfs2_slot_info *si, int slot_num) { BUG_ON((slot_num < 0) || (slot_num >= si->si_num_slots)); si->si_slots[slot_num].sl_valid = 0; } static void ocfs2_set_slot(struct ocfs2_slot_info *si, int slot_num, unsigned int node_num) { BUG_ON((slot_num < 0) || (slot_num >= si->si_num_slots)); si->si_slots[slot_num].sl_valid = 1; si->si_slots[slot_num].sl_node_num = node_num; } /* This version is for the extended slot map */ static void ocfs2_update_slot_info_extended(struct ocfs2_slot_info *si) { int b, i, slotno; struct ocfs2_slot_map_extended *se; slotno = 0; for (b = 0; b < si->si_blocks; b++) { se = (struct ocfs2_slot_map_extended *)si->si_bh[b]->b_data; for (i = 0; (i < si->si_slots_per_block) && (slotno < si->si_num_slots); i++, slotno++) { if (se->se_slots[i].es_valid) ocfs2_set_slot(si, slotno, le32_to_cpu(se->se_slots[i].es_node_num)); else ocfs2_invalidate_slot(si, slotno); } } } /* * Post the slot information on disk into our slot_info struct. * Must be protected by osb_lock. */ static void ocfs2_update_slot_info_old(struct ocfs2_slot_info *si) { int i; struct ocfs2_slot_map *sm; sm = (struct ocfs2_slot_map *)si->si_bh[0]->b_data; for (i = 0; i < si->si_num_slots; i++) { if (le16_to_cpu(sm->sm_slots[i]) == (u16)OCFS2_INVALID_SLOT) ocfs2_invalidate_slot(si, i); else ocfs2_set_slot(si, i, le16_to_cpu(sm->sm_slots[i])); } } static void ocfs2_update_slot_info(struct ocfs2_slot_info *si) { /* * The slot data will have been refreshed when ocfs2_super_lock * was taken. */ if (si->si_extended) ocfs2_update_slot_info_extended(si); else ocfs2_update_slot_info_old(si); } int ocfs2_refresh_slot_info(struct ocfs2_super *osb) { int ret; struct ocfs2_slot_info *si = osb->slot_info; if (si == NULL) return 0; BUG_ON(si->si_blocks == 0); BUG_ON(si->si_bh == NULL); trace_ocfs2_refresh_slot_info(si->si_blocks); /* * We pass -1 as blocknr because we expect all of si->si_bh to * be !NULL. Thus, ocfs2_read_blocks() will ignore blocknr. If * this is not true, the read of -1 (UINT64_MAX) will fail. */ ret = ocfs2_read_blocks(INODE_CACHE(si->si_inode), -1, si->si_blocks, si->si_bh, OCFS2_BH_IGNORE_CACHE, NULL); if (ret == 0) { spin_lock(&osb->osb_lock); ocfs2_update_slot_info(si); spin_unlock(&osb->osb_lock); } return ret; } /* post the our slot info stuff into it's destination bh and write it * out. */ static void ocfs2_update_disk_slot_extended(struct ocfs2_slot_info *si, int slot_num, struct buffer_head **bh) { int blkind = slot_num / si->si_slots_per_block; int slotno = slot_num % si->si_slots_per_block; struct ocfs2_slot_map_extended *se; BUG_ON(blkind >= si->si_blocks); se = (struct ocfs2_slot_map_extended *)si->si_bh[blkind]->b_data; se->se_slots[slotno].es_valid = si->si_slots[slot_num].sl_valid; if (si->si_slots[slot_num].sl_valid) se->se_slots[slotno].es_node_num = cpu_to_le32(si->si_slots[slot_num].sl_node_num); *bh = si->si_bh[blkind]; } static void ocfs2_update_disk_slot_old(struct ocfs2_slot_info *si, int slot_num, struct buffer_head **bh) { int i; struct ocfs2_slot_map *sm; sm = (struct ocfs2_slot_map *)si->si_bh[0]->b_data; for (i = 0; i < si->si_num_slots; i++) { if (si->si_slots[i].sl_valid) sm->sm_slots[i] = cpu_to_le16(si->si_slots[i].sl_node_num); else sm->sm_slots[i] = cpu_to_le16(OCFS2_INVALID_SLOT); } *bh = si->si_bh[0]; } static int ocfs2_update_disk_slot(struct ocfs2_super *osb, struct ocfs2_slot_info *si, int slot_num) { int status; struct buffer_head *bh; spin_lock(&osb->osb_lock); if (si->si_extended) ocfs2_update_disk_slot_extended(si, slot_num, &bh); else ocfs2_update_disk_slot_old(si, slot_num, &bh); spin_unlock(&osb->osb_lock); status = ocfs2_write_block(osb, bh, INODE_CACHE(si->si_inode)); if (status < 0) mlog_errno(status); return status; } /* * Calculate how many bytes are needed by the slot map. Returns * an error if the slot map file is too small. */ static int ocfs2_slot_map_physical_size(struct ocfs2_super *osb, struct inode *inode, unsigned long long *bytes) { unsigned long long bytes_needed; if (ocfs2_uses_extended_slot_map(osb)) { bytes_needed = osb->max_slots * sizeof(struct ocfs2_extended_slot); } else { bytes_needed = osb->max_slots * sizeof(__le16); } if (bytes_needed > i_size_read(inode)) { mlog(ML_ERROR, "Slot map file is too small! (size %llu, needed %llu)\n", i_size_read(inode), bytes_needed); return -ENOSPC; } *bytes = bytes_needed; return 0; } /* try to find global node in the slot info. Returns -ENOENT * if nothing is found. */ static int __ocfs2_node_num_to_slot(struct ocfs2_slot_info *si, unsigned int node_num) { int i, ret = -ENOENT; for(i = 0; i < si->si_num_slots; i++) { if (si->si_slots[i].sl_valid && (node_num == si->si_slots[i].sl_node_num)) { ret = i; break; } } return ret; } static int __ocfs2_find_empty_slot(struct ocfs2_slot_info *si, int preferred) { int i, ret = -ENOSPC; if ((preferred >= 0) && (preferred < si->si_num_slots)) { if (!si->si_slots[preferred].sl_valid) { ret = preferred; goto out; } } for(i = 0; i < si->si_num_slots; i++) { if (!si->si_slots[i].sl_valid) { ret = i; break; } } out: return ret; } int ocfs2_node_num_to_slot(struct ocfs2_super *osb, unsigned int node_num) { int slot; struct ocfs2_slot_info *si = osb->slot_info; spin_lock(&osb->osb_lock); slot = __ocfs2_node_num_to_slot(si, node_num); spin_unlock(&osb->osb_lock); return slot; } int ocfs2_slot_to_node_num_locked(struct ocfs2_super *osb, int slot_num, unsigned int *node_num) { struct ocfs2_slot_info *si = osb->slot_info; assert_spin_locked(&osb->osb_lock); BUG_ON(slot_num < 0); BUG_ON(slot_num >= osb->max_slots); if (!si->si_slots[slot_num].sl_valid) return -ENOENT; *node_num = si->si_slots[slot_num].sl_node_num; return 0; } static void __ocfs2_free_slot_info(struct ocfs2_slot_info *si) { unsigned int i; if (si == NULL) return; iput(si->si_inode); if (si->si_bh) { for (i = 0; i < si->si_blocks; i++) { if (si->si_bh[i]) { brelse(si->si_bh[i]); si->si_bh[i] = NULL; } } kfree(si->si_bh); } kfree(si); } int ocfs2_clear_slot(struct ocfs2_super *osb, int slot_num) { struct ocfs2_slot_info *si = osb->slot_info; if (si == NULL) return 0; spin_lock(&osb->osb_lock); ocfs2_invalidate_slot(si, slot_num); spin_unlock(&osb->osb_lock); return ocfs2_update_disk_slot(osb, osb->slot_info, slot_num); } static int ocfs2_map_slot_buffers(struct ocfs2_super *osb, struct ocfs2_slot_info *si) { int status = 0; u64 blkno; unsigned long long blocks, bytes = 0; unsigned int i; struct buffer_head *bh; status = ocfs2_slot_map_physical_size(osb, si->si_inode, &bytes); if (status) goto bail; blocks = ocfs2_blocks_for_bytes(si->si_inode->i_sb, bytes); BUG_ON(blocks > UINT_MAX); si->si_blocks = blocks; if (!si->si_blocks) goto bail; if (si->si_extended) si->si_slots_per_block = (osb->sb->s_blocksize / sizeof(struct ocfs2_extended_slot)); else si->si_slots_per_block = osb->sb->s_blocksize / sizeof(__le16); /* The size checks above should ensure this */ BUG_ON((osb->max_slots / si->si_slots_per_block) > blocks); trace_ocfs2_map_slot_buffers(bytes, si->si_blocks); si->si_bh = kcalloc(si->si_blocks, sizeof(struct buffer_head *), GFP_KERNEL); if (!si->si_bh) { status = -ENOMEM; mlog_errno(status); goto bail; } for (i = 0; i < si->si_blocks; i++) { status = ocfs2_extent_map_get_blocks(si->si_inode, i, &blkno, NULL, NULL); if (status < 0) { mlog_errno(status); goto bail; } trace_ocfs2_map_slot_buffers_block((unsigned long long)blkno, i); bh = NULL; /* Acquire a fresh bh */ status = ocfs2_read_blocks(INODE_CACHE(si->si_inode), blkno, 1, &bh, OCFS2_BH_IGNORE_CACHE, NULL); if (status < 0) { mlog_errno(status); goto bail; } si->si_bh[i] = bh; } bail: return status; } int ocfs2_init_slot_info(struct ocfs2_super *osb) { int status; struct inode *inode = NULL; struct ocfs2_slot_info *si; si = kzalloc(struct_size(si, si_slots, osb->max_slots), GFP_KERNEL); if (!si) { status = -ENOMEM; mlog_errno(status); return status; } si->si_extended = ocfs2_uses_extended_slot_map(osb); si->si_num_slots = osb->max_slots; inode = ocfs2_get_system_file_inode(osb, SLOT_MAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { status = -EINVAL; mlog_errno(status); goto bail; } si->si_inode = inode; status = ocfs2_map_slot_buffers(osb, si); if (status < 0) { mlog_errno(status); goto bail; } osb->slot_info = (struct ocfs2_slot_info *)si; bail: if (status < 0) __ocfs2_free_slot_info(si); return status; } void ocfs2_free_slot_info(struct ocfs2_super *osb) { struct ocfs2_slot_info *si = osb->slot_info; osb->slot_info = NULL; __ocfs2_free_slot_info(si); } int ocfs2_find_slot(struct ocfs2_super *osb) { int status; int slot; struct ocfs2_slot_info *si; si = osb->slot_info; spin_lock(&osb->osb_lock); ocfs2_update_slot_info(si); /* search for ourselves first and take the slot if it already * exists. Perhaps we need to mark this in a variable for our * own journal recovery? Possibly not, though we certainly * need to warn to the user */ slot = __ocfs2_node_num_to_slot(si, osb->node_num); if (slot < 0) { /* if no slot yet, then just take 1st available * one. */ slot = __ocfs2_find_empty_slot(si, osb->preferred_slot); if (slot < 0) { spin_unlock(&osb->osb_lock); mlog(ML_ERROR, "no free slots available!\n"); status = -EINVAL; goto bail; } } else printk(KERN_INFO "ocfs2: Slot %d on device (%s) was already " "allocated to this node!\n", slot, osb->dev_str); ocfs2_set_slot(si, slot, osb->node_num); osb->slot_num = slot; spin_unlock(&osb->osb_lock); trace_ocfs2_find_slot(osb->slot_num); status = ocfs2_update_disk_slot(osb, si, osb->slot_num); if (status < 0) { mlog_errno(status); /* * if write block failed, invalidate slot to avoid overwrite * slot during dismount in case another node rightly has mounted */ spin_lock(&osb->osb_lock); ocfs2_invalidate_slot(si, osb->slot_num); osb->slot_num = OCFS2_INVALID_SLOT; spin_unlock(&osb->osb_lock); } bail: return status; } void ocfs2_put_slot(struct ocfs2_super *osb) { int status, slot_num; struct ocfs2_slot_info *si = osb->slot_info; if (!si) return; spin_lock(&osb->osb_lock); ocfs2_update_slot_info(si); slot_num = osb->slot_num; ocfs2_invalidate_slot(si, osb->slot_num); osb->slot_num = OCFS2_INVALID_SLOT; spin_unlock(&osb->osb_lock); status = ocfs2_update_disk_slot(osb, si, slot_num); if (status < 0) mlog_errno(status); ocfs2_free_slot_info(osb); }
linux-master
fs/ocfs2/slot_map.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * namei.c * * Create and rename file, directory, symlinks * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * Portions of this code from linux/fs/ext3/dir.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card ([email protected]) * Laboratoire MASI - Institut Blaise pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/dir.c * * Copyright (C) 1991, 1992 Linux Torvalds */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/quotaops.h> #include <linux/iversion.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dcache.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "inode.h" #include "journal.h" #include "namei.h" #include "suballoc.h" #include "super.h" #include "symlink.h" #include "sysfile.h" #include "uptodate.h" #include "xattr.h" #include "acl.h" #include "ocfs2_trace.h" #include "ioctl.h" #include "buffer_head_io.h" static int ocfs2_mknod_locked(struct ocfs2_super *osb, struct inode *dir, struct inode *inode, dev_t dev, struct buffer_head **new_fe_bh, struct buffer_head *parent_fe_bh, handle_t *handle, struct ocfs2_alloc_context *inode_ac); static int ocfs2_prepare_orphan_dir(struct ocfs2_super *osb, struct inode **ret_orphan_dir, u64 blkno, char *name, struct ocfs2_dir_lookup_result *lookup, bool dio); static int ocfs2_orphan_add(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, char *name, struct ocfs2_dir_lookup_result *lookup, struct inode *orphan_dir_inode, bool dio); static int ocfs2_create_symlink_data(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, const char *symname); static int ocfs2_double_lock(struct ocfs2_super *osb, struct buffer_head **bh1, struct inode *inode1, struct buffer_head **bh2, struct inode *inode2, int rename); static void ocfs2_double_unlock(struct inode *inode1, struct inode *inode2); /* An orphan dir name is an 8 byte value, printed as a hex string */ #define OCFS2_ORPHAN_NAMELEN ((int)(2 * sizeof(u64))) static struct dentry *ocfs2_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { int status; u64 blkno; struct inode *inode = NULL; struct dentry *ret; struct ocfs2_inode_info *oi; trace_ocfs2_lookup(dir, dentry, dentry->d_name.len, dentry->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno, 0); if (dentry->d_name.len > OCFS2_MAX_FILENAME_LEN) { ret = ERR_PTR(-ENAMETOOLONG); goto bail; } status = ocfs2_inode_lock_nested(dir, NULL, 0, OI_LS_PARENT); if (status < 0) { if (status != -ENOENT) mlog_errno(status); ret = ERR_PTR(status); goto bail; } status = ocfs2_lookup_ino_from_name(dir, dentry->d_name.name, dentry->d_name.len, &blkno); if (status < 0) goto bail_add; inode = ocfs2_iget(OCFS2_SB(dir->i_sb), blkno, 0, 0); if (IS_ERR(inode)) { ret = ERR_PTR(-EACCES); goto bail_unlock; } oi = OCFS2_I(inode); /* Clear any orphaned state... If we were able to look up the * inode from a directory, it certainly can't be orphaned. We * might have the bad state from a node which intended to * orphan this inode but crashed before it could commit the * unlink. */ spin_lock(&oi->ip_lock); oi->ip_flags &= ~OCFS2_INODE_MAYBE_ORPHANED; spin_unlock(&oi->ip_lock); bail_add: ret = d_splice_alias(inode, dentry); if (inode) { /* * If d_splice_alias() finds a DCACHE_DISCONNECTED * dentry, it will d_move() it on top of ourse. The * return value will indicate this however, so in * those cases, we switch them around for the locking * code. * * NOTE: This dentry already has ->d_op set from * ocfs2_get_parent() and ocfs2_get_dentry() */ if (!IS_ERR_OR_NULL(ret)) dentry = ret; status = ocfs2_dentry_attach_lock(dentry, inode, OCFS2_I(dir)->ip_blkno); if (status) { mlog_errno(status); ret = ERR_PTR(status); goto bail_unlock; } } else ocfs2_dentry_attach_gen(dentry); bail_unlock: /* Don't drop the cluster lock until *after* the d_add -- * unlink on another node will message us to remove that * dentry under this lock so otherwise we can race this with * the downconvert thread and have a stale dentry. */ ocfs2_inode_unlock(dir, 0); bail: trace_ocfs2_lookup_ret(ret); return ret; } static struct inode *ocfs2_get_init_inode(struct inode *dir, umode_t mode) { struct inode *inode; int status; inode = new_inode(dir->i_sb); if (!inode) { mlog(ML_ERROR, "new_inode failed!\n"); return ERR_PTR(-ENOMEM); } /* populate as many fields early on as possible - many of * these are used by the support functions here and in * callers. */ if (S_ISDIR(mode)) set_nlink(inode, 2); mode = mode_strip_sgid(&nop_mnt_idmap, dir, mode); inode_init_owner(&nop_mnt_idmap, inode, dir, mode); status = dquot_initialize(inode); if (status) return ERR_PTR(status); return inode; } static void ocfs2_cleanup_add_entry_failure(struct ocfs2_super *osb, struct dentry *dentry, struct inode *inode) { struct ocfs2_dentry_lock *dl = dentry->d_fsdata; ocfs2_simple_drop_lockres(osb, &dl->dl_lockres); ocfs2_lock_res_free(&dl->dl_lockres); BUG_ON(dl->dl_count != 1); spin_lock(&dentry_attach_lock); dentry->d_fsdata = NULL; spin_unlock(&dentry_attach_lock); kfree(dl); iput(inode); } static int ocfs2_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { int status = 0; struct buffer_head *parent_fe_bh = NULL; handle_t *handle = NULL; struct ocfs2_super *osb; struct ocfs2_dinode *dirfe; struct ocfs2_dinode *fe = NULL; struct buffer_head *new_fe_bh = NULL; struct inode *inode = NULL; struct ocfs2_alloc_context *inode_ac = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; int want_clusters = 0; int want_meta = 0; int xattr_credits = 0; struct ocfs2_security_xattr_info si = { .name = NULL, .enable = 1, }; int did_quota_inode = 0; struct ocfs2_dir_lookup_result lookup = { NULL, }; sigset_t oldset; int did_block_signals = 0; struct ocfs2_dentry_lock *dl = NULL; trace_ocfs2_mknod(dir, dentry, dentry->d_name.len, dentry->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long)dev, mode); status = dquot_initialize(dir); if (status) { mlog_errno(status); return status; } /* get our super block */ osb = OCFS2_SB(dir->i_sb); status = ocfs2_inode_lock(dir, &parent_fe_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } if (S_ISDIR(mode) && (dir->i_nlink >= ocfs2_link_max(osb))) { status = -EMLINK; goto leave; } dirfe = (struct ocfs2_dinode *) parent_fe_bh->b_data; if (!ocfs2_read_links_count(dirfe)) { /* can't make a file in a deleted directory. */ status = -ENOENT; goto leave; } status = ocfs2_check_dir_for_entry(dir, dentry->d_name.name, dentry->d_name.len); if (status) goto leave; /* get a spot inside the dir. */ status = ocfs2_prepare_dir_for_insert(osb, dir, parent_fe_bh, dentry->d_name.name, dentry->d_name.len, &lookup); if (status < 0) { mlog_errno(status); goto leave; } /* reserve an inode spot */ status = ocfs2_reserve_new_inode(osb, &inode_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } inode = ocfs2_get_init_inode(dir, mode); if (IS_ERR(inode)) { status = PTR_ERR(inode); inode = NULL; mlog_errno(status); goto leave; } /* get security xattr */ status = ocfs2_init_security_get(inode, dir, &dentry->d_name, &si); if (status) { if (status == -EOPNOTSUPP) si.enable = 0; else { mlog_errno(status); goto leave; } } /* calculate meta data/clusters for setting security and acl xattr */ status = ocfs2_calc_xattr_init(dir, parent_fe_bh, mode, &si, &want_clusters, &xattr_credits, &want_meta); if (status < 0) { mlog_errno(status); goto leave; } /* Reserve a cluster if creating an extent based directory. */ if (S_ISDIR(mode) && !ocfs2_supports_inline_data(osb)) { want_clusters += 1; /* Dir indexing requires extra space as well */ if (ocfs2_supports_indexed_dirs(osb)) want_meta++; } status = ocfs2_reserve_new_metadata_blocks(osb, want_meta, &meta_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } status = ocfs2_reserve_clusters(osb, want_clusters, &data_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } handle = ocfs2_start_trans(osb, ocfs2_mknod_credits(osb->sb, S_ISDIR(mode), xattr_credits)); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } /* Starting to change things, restart is no longer possible. */ ocfs2_block_signals(&oldset); did_block_signals = 1; status = dquot_alloc_inode(inode); if (status) goto leave; did_quota_inode = 1; /* do the real work now. */ status = ocfs2_mknod_locked(osb, dir, inode, dev, &new_fe_bh, parent_fe_bh, handle, inode_ac); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) new_fe_bh->b_data; if (S_ISDIR(mode)) { status = ocfs2_fill_new_dir(osb, handle, dir, inode, new_fe_bh, data_ac, meta_ac); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_journal_access_di(handle, INODE_CACHE(dir), parent_fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } ocfs2_add_links_count(dirfe, 1); ocfs2_journal_dirty(handle, parent_fe_bh); inc_nlink(dir); } status = ocfs2_init_acl(handle, inode, dir, new_fe_bh, parent_fe_bh, meta_ac, data_ac); if (status < 0) { mlog_errno(status); goto roll_back; } if (si.enable) { status = ocfs2_init_security_set(handle, inode, new_fe_bh, &si, meta_ac, data_ac); if (status < 0) { mlog_errno(status); goto roll_back; } } /* * Do this before adding the entry to the directory. We add * also set d_op after success so that ->d_iput() will cleanup * the dentry lock even if ocfs2_add_entry() fails below. */ status = ocfs2_dentry_attach_lock(dentry, inode, OCFS2_I(dir)->ip_blkno); if (status) { mlog_errno(status); goto roll_back; } dl = dentry->d_fsdata; status = ocfs2_add_entry(handle, dentry, inode, OCFS2_I(inode)->ip_blkno, parent_fe_bh, &lookup); if (status < 0) { mlog_errno(status); goto roll_back; } insert_inode_hash(inode); d_instantiate(dentry, inode); status = 0; roll_back: if (status < 0 && S_ISDIR(mode)) { ocfs2_add_links_count(dirfe, -1); drop_nlink(dir); } leave: if (status < 0 && did_quota_inode) dquot_free_inode(inode); if (handle) { if (status < 0 && fe) ocfs2_set_links_count(fe, 0); ocfs2_commit_trans(osb, handle); } ocfs2_inode_unlock(dir, 1); if (did_block_signals) ocfs2_unblock_signals(&oldset); brelse(new_fe_bh); brelse(parent_fe_bh); kfree(si.value); ocfs2_free_dir_lookup_result(&lookup); if (inode_ac) ocfs2_free_alloc_context(inode_ac); if (data_ac) ocfs2_free_alloc_context(data_ac); if (meta_ac) ocfs2_free_alloc_context(meta_ac); /* * We should call iput after the i_rwsem of the bitmap been * unlocked in ocfs2_free_alloc_context, or the * ocfs2_delete_inode will mutex_lock again. */ if ((status < 0) && inode) { if (dl) ocfs2_cleanup_add_entry_failure(osb, dentry, inode); OCFS2_I(inode)->ip_flags |= OCFS2_INODE_SKIP_ORPHAN_DIR; clear_nlink(inode); iput(inode); } if (status) mlog_errno(status); return status; } static int __ocfs2_mknod_locked(struct inode *dir, struct inode *inode, dev_t dev, struct buffer_head **new_fe_bh, struct buffer_head *parent_fe_bh, handle_t *handle, struct ocfs2_alloc_context *inode_ac, u64 fe_blkno, u64 suballoc_loc, u16 suballoc_bit) { int status = 0; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct ocfs2_dinode *fe = NULL; struct ocfs2_extent_list *fel; u16 feat; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct timespec64 ts; *new_fe_bh = NULL; /* populate as many fields early on as possible - many of * these are used by the support functions here and in * callers. */ inode->i_ino = ino_from_blkno(osb->sb, fe_blkno); oi->ip_blkno = fe_blkno; spin_lock(&osb->osb_lock); inode->i_generation = osb->s_next_generation++; spin_unlock(&osb->osb_lock); *new_fe_bh = sb_getblk(osb->sb, fe_blkno); if (!*new_fe_bh) { status = -ENOMEM; mlog_errno(status); goto leave; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), *new_fe_bh); status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), *new_fe_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) (*new_fe_bh)->b_data; memset(fe, 0, osb->sb->s_blocksize); fe->i_generation = cpu_to_le32(inode->i_generation); fe->i_fs_generation = cpu_to_le32(osb->fs_generation); fe->i_blkno = cpu_to_le64(fe_blkno); fe->i_suballoc_loc = cpu_to_le64(suballoc_loc); fe->i_suballoc_bit = cpu_to_le16(suballoc_bit); fe->i_suballoc_slot = cpu_to_le16(inode_ac->ac_alloc_slot); fe->i_uid = cpu_to_le32(i_uid_read(inode)); fe->i_gid = cpu_to_le32(i_gid_read(inode)); fe->i_mode = cpu_to_le16(inode->i_mode); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) fe->id1.dev1.i_rdev = cpu_to_le64(huge_encode_dev(dev)); ocfs2_set_links_count(fe, inode->i_nlink); fe->i_last_eb_blk = 0; strcpy(fe->i_signature, OCFS2_INODE_SIGNATURE); fe->i_flags |= cpu_to_le32(OCFS2_VALID_FL); ktime_get_real_ts64(&ts); fe->i_atime = fe->i_ctime = fe->i_mtime = cpu_to_le64(ts.tv_sec); fe->i_mtime_nsec = fe->i_ctime_nsec = fe->i_atime_nsec = cpu_to_le32(ts.tv_nsec); fe->i_dtime = 0; /* * If supported, directories start with inline data. If inline * isn't supported, but indexing is, we start them as indexed. */ feat = le16_to_cpu(fe->i_dyn_features); if (S_ISDIR(inode->i_mode) && ocfs2_supports_inline_data(osb)) { fe->i_dyn_features = cpu_to_le16(feat | OCFS2_INLINE_DATA_FL); fe->id2.i_data.id_count = cpu_to_le16( ocfs2_max_inline_data_with_xattr(osb->sb, fe)); } else { fel = &fe->id2.i_list; fel->l_tree_depth = 0; fel->l_next_free_rec = 0; fel->l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(osb->sb)); } ocfs2_journal_dirty(handle, *new_fe_bh); ocfs2_populate_inode(inode, fe, 1); ocfs2_ci_set_new(osb, INODE_CACHE(inode)); if (!ocfs2_mount_local(osb)) { status = ocfs2_create_new_inode_locks(inode); if (status < 0) mlog_errno(status); } ocfs2_update_inode_fsync_trans(handle, inode, 1); leave: if (status < 0) { if (*new_fe_bh) { brelse(*new_fe_bh); *new_fe_bh = NULL; } } if (status) mlog_errno(status); return status; } static int ocfs2_mknod_locked(struct ocfs2_super *osb, struct inode *dir, struct inode *inode, dev_t dev, struct buffer_head **new_fe_bh, struct buffer_head *parent_fe_bh, handle_t *handle, struct ocfs2_alloc_context *inode_ac) { int status = 0; u64 suballoc_loc, fe_blkno = 0; u16 suballoc_bit; *new_fe_bh = NULL; status = ocfs2_claim_new_inode(handle, dir, parent_fe_bh, inode_ac, &suballoc_loc, &suballoc_bit, &fe_blkno); if (status < 0) { mlog_errno(status); return status; } return __ocfs2_mknod_locked(dir, inode, dev, new_fe_bh, parent_fe_bh, handle, inode_ac, fe_blkno, suballoc_loc, suballoc_bit); } static int ocfs2_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { int ret; trace_ocfs2_mkdir(dir, dentry, dentry->d_name.len, dentry->d_name.name, OCFS2_I(dir)->ip_blkno, mode); ret = ocfs2_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFDIR, 0); if (ret) mlog_errno(ret); return ret; } static int ocfs2_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { int ret; trace_ocfs2_create(dir, dentry, dentry->d_name.len, dentry->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno, mode); ret = ocfs2_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0); if (ret) mlog_errno(ret); return ret; } static int ocfs2_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { handle_t *handle; struct inode *inode = d_inode(old_dentry); struct inode *old_dir = d_inode(old_dentry->d_parent); int err; struct buffer_head *fe_bh = NULL; struct buffer_head *old_dir_bh = NULL; struct buffer_head *parent_fe_bh = NULL; struct ocfs2_dinode *fe = NULL; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct ocfs2_dir_lookup_result lookup = { NULL, }; sigset_t oldset; u64 old_de_ino; trace_ocfs2_link((unsigned long long)OCFS2_I(inode)->ip_blkno, old_dentry->d_name.len, old_dentry->d_name.name, dentry->d_name.len, dentry->d_name.name); if (S_ISDIR(inode->i_mode)) return -EPERM; err = dquot_initialize(dir); if (err) { mlog_errno(err); return err; } err = ocfs2_double_lock(osb, &old_dir_bh, old_dir, &parent_fe_bh, dir, 0); if (err < 0) { if (err != -ENOENT) mlog_errno(err); return err; } /* make sure both dirs have bhs * get an extra ref on old_dir_bh if old==new */ if (!parent_fe_bh) { if (old_dir_bh) { parent_fe_bh = old_dir_bh; get_bh(parent_fe_bh); } else { mlog(ML_ERROR, "%s: no old_dir_bh!\n", osb->uuid_str); err = -EIO; goto out; } } if (!dir->i_nlink) { err = -ENOENT; goto out; } err = ocfs2_lookup_ino_from_name(old_dir, old_dentry->d_name.name, old_dentry->d_name.len, &old_de_ino); if (err) { err = -ENOENT; goto out; } /* * Check whether another node removed the source inode while we * were in the vfs. */ if (old_de_ino != OCFS2_I(inode)->ip_blkno) { err = -ENOENT; goto out; } err = ocfs2_check_dir_for_entry(dir, dentry->d_name.name, dentry->d_name.len); if (err) goto out; err = ocfs2_prepare_dir_for_insert(osb, dir, parent_fe_bh, dentry->d_name.name, dentry->d_name.len, &lookup); if (err < 0) { mlog_errno(err); goto out; } err = ocfs2_inode_lock(inode, &fe_bh, 1); if (err < 0) { if (err != -ENOENT) mlog_errno(err); goto out; } fe = (struct ocfs2_dinode *) fe_bh->b_data; if (ocfs2_read_links_count(fe) >= ocfs2_link_max(osb)) { err = -EMLINK; goto out_unlock_inode; } handle = ocfs2_start_trans(osb, ocfs2_link_credits(osb->sb)); if (IS_ERR(handle)) { err = PTR_ERR(handle); handle = NULL; mlog_errno(err); goto out_unlock_inode; } /* Starting to change things, restart is no longer possible. */ ocfs2_block_signals(&oldset); err = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (err < 0) { mlog_errno(err); goto out_commit; } inc_nlink(inode); inode_set_ctime_current(inode); ocfs2_set_links_count(fe, inode->i_nlink); fe->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec); fe->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_journal_dirty(handle, fe_bh); err = ocfs2_add_entry(handle, dentry, inode, OCFS2_I(inode)->ip_blkno, parent_fe_bh, &lookup); if (err) { ocfs2_add_links_count(fe, -1); drop_nlink(inode); mlog_errno(err); goto out_commit; } err = ocfs2_dentry_attach_lock(dentry, inode, OCFS2_I(dir)->ip_blkno); if (err) { mlog_errno(err); goto out_commit; } ihold(inode); d_instantiate(dentry, inode); out_commit: ocfs2_commit_trans(osb, handle); ocfs2_unblock_signals(&oldset); out_unlock_inode: ocfs2_inode_unlock(inode, 1); out: ocfs2_double_unlock(old_dir, dir); brelse(fe_bh); brelse(parent_fe_bh); brelse(old_dir_bh); ocfs2_free_dir_lookup_result(&lookup); if (err) mlog_errno(err); return err; } /* * Takes and drops an exclusive lock on the given dentry. This will * force other nodes to drop it. */ static int ocfs2_remote_dentry_delete(struct dentry *dentry) { int ret; ret = ocfs2_dentry_lock(dentry, 1); if (ret) mlog_errno(ret); else ocfs2_dentry_unlock(dentry, 1); return ret; } static inline int ocfs2_inode_is_unlinkable(struct inode *inode) { if (S_ISDIR(inode->i_mode)) { if (inode->i_nlink == 2) return 1; return 0; } if (inode->i_nlink == 1) return 1; return 0; } static int ocfs2_unlink(struct inode *dir, struct dentry *dentry) { int status; int child_locked = 0; bool is_unlinkable = false; struct inode *inode = d_inode(dentry); struct inode *orphan_dir = NULL; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); u64 blkno; struct ocfs2_dinode *fe = NULL; struct buffer_head *fe_bh = NULL; struct buffer_head *parent_node_bh = NULL; handle_t *handle = NULL; char orphan_name[OCFS2_ORPHAN_NAMELEN + 1]; struct ocfs2_dir_lookup_result lookup = { NULL, }; struct ocfs2_dir_lookup_result orphan_insert = { NULL, }; trace_ocfs2_unlink(dir, dentry, dentry->d_name.len, dentry->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)OCFS2_I(inode)->ip_blkno); status = dquot_initialize(dir); if (status) { mlog_errno(status); return status; } BUG_ON(d_inode(dentry->d_parent) != dir); if (inode == osb->root_inode) return -EPERM; status = ocfs2_inode_lock_nested(dir, &parent_node_bh, 1, OI_LS_PARENT); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } status = ocfs2_find_files_on_disk(dentry->d_name.name, dentry->d_name.len, &blkno, dir, &lookup); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto leave; } if (OCFS2_I(inode)->ip_blkno != blkno) { status = -ENOENT; trace_ocfs2_unlink_noent( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)blkno, OCFS2_I(inode)->ip_flags); goto leave; } status = ocfs2_inode_lock(inode, &fe_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto leave; } child_locked = 1; if (S_ISDIR(inode->i_mode)) { if (inode->i_nlink != 2 || !ocfs2_empty_dir(inode)) { status = -ENOTEMPTY; goto leave; } } status = ocfs2_remote_dentry_delete(dentry); if (status < 0) { /* This remote delete should succeed under all normal * circumstances. */ mlog_errno(status); goto leave; } if (ocfs2_inode_is_unlinkable(inode)) { status = ocfs2_prepare_orphan_dir(osb, &orphan_dir, OCFS2_I(inode)->ip_blkno, orphan_name, &orphan_insert, false); if (status < 0) { mlog_errno(status); goto leave; } is_unlinkable = true; } handle = ocfs2_start_trans(osb, ocfs2_unlink_credits(osb->sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) fe_bh->b_data; /* delete the name from the parent dir */ status = ocfs2_delete_entry(handle, dir, &lookup); if (status < 0) { mlog_errno(status); goto leave; } if (S_ISDIR(inode->i_mode)) drop_nlink(inode); drop_nlink(inode); ocfs2_set_links_count(fe, inode->i_nlink); ocfs2_journal_dirty(handle, fe_bh); dir->i_mtime = inode_set_ctime_current(dir); if (S_ISDIR(inode->i_mode)) drop_nlink(dir); status = ocfs2_mark_inode_dirty(handle, dir, parent_node_bh); if (status < 0) { mlog_errno(status); if (S_ISDIR(inode->i_mode)) inc_nlink(dir); goto leave; } if (is_unlinkable) { status = ocfs2_orphan_add(osb, handle, inode, fe_bh, orphan_name, &orphan_insert, orphan_dir, false); if (status < 0) mlog_errno(status); } leave: if (handle) ocfs2_commit_trans(osb, handle); if (orphan_dir) { /* This was locked for us in ocfs2_prepare_orphan_dir() */ ocfs2_inode_unlock(orphan_dir, 1); inode_unlock(orphan_dir); iput(orphan_dir); } if (child_locked) ocfs2_inode_unlock(inode, 1); ocfs2_inode_unlock(dir, 1); brelse(fe_bh); brelse(parent_node_bh); ocfs2_free_dir_lookup_result(&orphan_insert); ocfs2_free_dir_lookup_result(&lookup); if (status && (status != -ENOTEMPTY) && (status != -ENOENT)) mlog_errno(status); return status; } static int ocfs2_check_if_ancestor(struct ocfs2_super *osb, u64 src_inode_no, u64 dest_inode_no) { int ret = 0, i = 0; u64 parent_inode_no = 0; u64 child_inode_no = src_inode_no; struct inode *child_inode; #define MAX_LOOKUP_TIMES 32 while (1) { child_inode = ocfs2_iget(osb, child_inode_no, 0, 0); if (IS_ERR(child_inode)) { ret = PTR_ERR(child_inode); break; } ret = ocfs2_inode_lock(child_inode, NULL, 0); if (ret < 0) { iput(child_inode); if (ret != -ENOENT) mlog_errno(ret); break; } ret = ocfs2_lookup_ino_from_name(child_inode, "..", 2, &parent_inode_no); ocfs2_inode_unlock(child_inode, 0); iput(child_inode); if (ret < 0) { ret = -ENOENT; break; } if (parent_inode_no == dest_inode_no) { ret = 1; break; } if (parent_inode_no == osb->root_inode->i_ino) { ret = 0; break; } child_inode_no = parent_inode_no; if (++i >= MAX_LOOKUP_TIMES) { mlog_ratelimited(ML_NOTICE, "max lookup times reached, " "filesystem may have nested directories, " "src inode: %llu, dest inode: %llu.\n", (unsigned long long)src_inode_no, (unsigned long long)dest_inode_no); ret = 0; break; } } return ret; } /* * The only place this should be used is rename and link! * if they have the same id, then the 1st one is the only one locked. */ static int ocfs2_double_lock(struct ocfs2_super *osb, struct buffer_head **bh1, struct inode *inode1, struct buffer_head **bh2, struct inode *inode2, int rename) { int status; int inode1_is_ancestor, inode2_is_ancestor; struct ocfs2_inode_info *oi1 = OCFS2_I(inode1); struct ocfs2_inode_info *oi2 = OCFS2_I(inode2); trace_ocfs2_double_lock((unsigned long long)oi1->ip_blkno, (unsigned long long)oi2->ip_blkno); if (*bh1) *bh1 = NULL; if (*bh2) *bh2 = NULL; /* we always want to lock the one with the lower lockid first. * and if they are nested, we lock ancestor first */ if (oi1->ip_blkno != oi2->ip_blkno) { inode1_is_ancestor = ocfs2_check_if_ancestor(osb, oi2->ip_blkno, oi1->ip_blkno); if (inode1_is_ancestor < 0) { status = inode1_is_ancestor; goto bail; } inode2_is_ancestor = ocfs2_check_if_ancestor(osb, oi1->ip_blkno, oi2->ip_blkno); if (inode2_is_ancestor < 0) { status = inode2_is_ancestor; goto bail; } if ((inode1_is_ancestor == 1) || (oi1->ip_blkno < oi2->ip_blkno && inode2_is_ancestor == 0)) { /* switch id1 and id2 around */ swap(bh2, bh1); swap(inode2, inode1); } /* lock id2 */ status = ocfs2_inode_lock_nested(inode2, bh2, 1, rename == 1 ? OI_LS_RENAME1 : OI_LS_PARENT); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail; } } /* lock id1 */ status = ocfs2_inode_lock_nested(inode1, bh1, 1, rename == 1 ? OI_LS_RENAME2 : OI_LS_PARENT); if (status < 0) { /* * An error return must mean that no cluster locks * were held on function exit. */ if (oi1->ip_blkno != oi2->ip_blkno) { ocfs2_inode_unlock(inode2, 1); brelse(*bh2); *bh2 = NULL; } if (status != -ENOENT) mlog_errno(status); } trace_ocfs2_double_lock_end( (unsigned long long)oi1->ip_blkno, (unsigned long long)oi2->ip_blkno); bail: if (status) mlog_errno(status); return status; } static void ocfs2_double_unlock(struct inode *inode1, struct inode *inode2) { ocfs2_inode_unlock(inode1, 1); if (inode1 != inode2) ocfs2_inode_unlock(inode2, 1); } static int ocfs2_rename(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { int status = 0, rename_lock = 0, parents_locked = 0, target_exists = 0; int old_child_locked = 0, new_child_locked = 0, update_dot_dot = 0; struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct inode *orphan_dir = NULL; struct ocfs2_dinode *newfe = NULL; char orphan_name[OCFS2_ORPHAN_NAMELEN + 1]; struct buffer_head *newfe_bh = NULL; struct buffer_head *old_inode_bh = NULL; struct ocfs2_super *osb = NULL; u64 newfe_blkno, old_de_ino; handle_t *handle = NULL; struct buffer_head *old_dir_bh = NULL; struct buffer_head *new_dir_bh = NULL; u32 old_dir_nlink = old_dir->i_nlink; struct ocfs2_dinode *old_di; struct ocfs2_dir_lookup_result old_inode_dot_dot_res = { NULL, }; struct ocfs2_dir_lookup_result target_lookup_res = { NULL, }; struct ocfs2_dir_lookup_result old_entry_lookup = { NULL, }; struct ocfs2_dir_lookup_result orphan_insert = { NULL, }; struct ocfs2_dir_lookup_result target_insert = { NULL, }; bool should_add_orphan = false; if (flags) return -EINVAL; /* At some point it might be nice to break this function up a * bit. */ trace_ocfs2_rename(old_dir, old_dentry, new_dir, new_dentry, old_dentry->d_name.len, old_dentry->d_name.name, new_dentry->d_name.len, new_dentry->d_name.name); status = dquot_initialize(old_dir); if (status) { mlog_errno(status); goto bail; } status = dquot_initialize(new_dir); if (status) { mlog_errno(status); goto bail; } osb = OCFS2_SB(old_dir->i_sb); if (new_inode) { if (!igrab(new_inode)) BUG(); } /* Assume a directory hierarchy thusly: * a/b/c * a/d * a,b,c, and d are all directories. * * from cwd of 'a' on both nodes: * node1: mv b/c d * node2: mv d b/c * * And that's why, just like the VFS, we need a file system * rename lock. */ if (old_dir != new_dir && S_ISDIR(old_inode->i_mode)) { status = ocfs2_rename_lock(osb); if (status < 0) { mlog_errno(status); goto bail; } rename_lock = 1; /* here we cannot guarantee the inodes haven't just been * changed, so check if they are nested again */ status = ocfs2_check_if_ancestor(osb, new_dir->i_ino, old_inode->i_ino); if (status < 0) { mlog_errno(status); goto bail; } else if (status == 1) { status = -EPERM; trace_ocfs2_rename_not_permitted( (unsigned long long)old_inode->i_ino, (unsigned long long)new_dir->i_ino); goto bail; } } /* if old and new are the same, this'll just do one lock. */ status = ocfs2_double_lock(osb, &old_dir_bh, old_dir, &new_dir_bh, new_dir, 1); if (status < 0) { mlog_errno(status); goto bail; } parents_locked = 1; if (!new_dir->i_nlink) { status = -EACCES; goto bail; } /* make sure both dirs have bhs * get an extra ref on old_dir_bh if old==new */ if (!new_dir_bh) { if (old_dir_bh) { new_dir_bh = old_dir_bh; get_bh(new_dir_bh); } else { mlog(ML_ERROR, "no old_dir_bh!\n"); status = -EIO; goto bail; } } /* * Aside from allowing a meta data update, the locking here * also ensures that the downconvert thread on other nodes * won't have to concurrently downconvert the inode and the * dentry locks. */ status = ocfs2_inode_lock_nested(old_inode, &old_inode_bh, 1, OI_LS_PARENT); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail; } old_child_locked = 1; status = ocfs2_remote_dentry_delete(old_dentry); if (status < 0) { mlog_errno(status); goto bail; } if (S_ISDIR(old_inode->i_mode)) { u64 old_inode_parent; update_dot_dot = 1; status = ocfs2_find_files_on_disk("..", 2, &old_inode_parent, old_inode, &old_inode_dot_dot_res); if (status) { status = -EIO; goto bail; } if (old_inode_parent != OCFS2_I(old_dir)->ip_blkno) { status = -EIO; goto bail; } if (!new_inode && new_dir != old_dir && new_dir->i_nlink >= ocfs2_link_max(osb)) { status = -EMLINK; goto bail; } } status = ocfs2_lookup_ino_from_name(old_dir, old_dentry->d_name.name, old_dentry->d_name.len, &old_de_ino); if (status) { status = -ENOENT; goto bail; } /* * Check for inode number is _not_ due to possible IO errors. * We might rmdir the source, keep it as pwd of some process * and merrily kill the link to whatever was created under the * same name. Goodbye sticky bit ;-< */ if (old_de_ino != OCFS2_I(old_inode)->ip_blkno) { status = -ENOENT; goto bail; } /* check if the target already exists (in which case we need * to delete it */ status = ocfs2_find_files_on_disk(new_dentry->d_name.name, new_dentry->d_name.len, &newfe_blkno, new_dir, &target_lookup_res); /* The only error we allow here is -ENOENT because the new * file not existing is perfectly valid. */ if ((status < 0) && (status != -ENOENT)) { /* If we cannot find the file specified we should just */ /* return the error... */ mlog_errno(status); goto bail; } if (status == 0) target_exists = 1; if (!target_exists && new_inode) { /* * Target was unlinked by another node while we were * waiting to get to ocfs2_rename(). There isn't * anything we can do here to help the situation, so * bubble up the appropriate error. */ status = -ENOENT; goto bail; } /* In case we need to overwrite an existing file, we blow it * away first */ if (target_exists) { /* VFS didn't think there existed an inode here, but * someone else in the cluster must have raced our * rename to create one. Today we error cleanly, in * the future we should consider calling iget to build * a new struct inode for this entry. */ if (!new_inode) { status = -EACCES; trace_ocfs2_rename_target_exists(new_dentry->d_name.len, new_dentry->d_name.name); goto bail; } if (OCFS2_I(new_inode)->ip_blkno != newfe_blkno) { status = -EACCES; trace_ocfs2_rename_disagree( (unsigned long long)OCFS2_I(new_inode)->ip_blkno, (unsigned long long)newfe_blkno, OCFS2_I(new_inode)->ip_flags); goto bail; } status = ocfs2_inode_lock(new_inode, &newfe_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail; } new_child_locked = 1; status = ocfs2_remote_dentry_delete(new_dentry); if (status < 0) { mlog_errno(status); goto bail; } newfe = (struct ocfs2_dinode *) newfe_bh->b_data; trace_ocfs2_rename_over_existing( (unsigned long long)newfe_blkno, newfe_bh, newfe_bh ? (unsigned long long)newfe_bh->b_blocknr : 0ULL); if (S_ISDIR(new_inode->i_mode) || (new_inode->i_nlink == 1)) { status = ocfs2_prepare_orphan_dir(osb, &orphan_dir, OCFS2_I(new_inode)->ip_blkno, orphan_name, &orphan_insert, false); if (status < 0) { mlog_errno(status); goto bail; } should_add_orphan = true; } } else { BUG_ON(d_inode(new_dentry->d_parent) != new_dir); status = ocfs2_check_dir_for_entry(new_dir, new_dentry->d_name.name, new_dentry->d_name.len); if (status) goto bail; status = ocfs2_prepare_dir_for_insert(osb, new_dir, new_dir_bh, new_dentry->d_name.name, new_dentry->d_name.len, &target_insert); if (status < 0) { mlog_errno(status); goto bail; } } handle = ocfs2_start_trans(osb, ocfs2_rename_credits(osb->sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } if (target_exists) { if (S_ISDIR(new_inode->i_mode)) { if (new_inode->i_nlink != 2 || !ocfs2_empty_dir(new_inode)) { status = -ENOTEMPTY; goto bail; } } status = ocfs2_journal_access_di(handle, INODE_CACHE(new_inode), newfe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } /* change the dirent to point to the correct inode */ status = ocfs2_update_entry(new_dir, handle, &target_lookup_res, old_inode); if (status < 0) { mlog_errno(status); goto bail; } inode_inc_iversion(new_dir); if (S_ISDIR(new_inode->i_mode)) ocfs2_set_links_count(newfe, 0); else ocfs2_add_links_count(newfe, -1); ocfs2_journal_dirty(handle, newfe_bh); if (should_add_orphan) { status = ocfs2_orphan_add(osb, handle, new_inode, newfe_bh, orphan_name, &orphan_insert, orphan_dir, false); if (status < 0) { mlog_errno(status); goto bail; } } } else { /* if the name was not found in new_dir, add it now */ status = ocfs2_add_entry(handle, new_dentry, old_inode, OCFS2_I(old_inode)->ip_blkno, new_dir_bh, &target_insert); if (status < 0) { mlog_errno(status); goto bail; } } inode_set_ctime_current(old_inode); mark_inode_dirty(old_inode); status = ocfs2_journal_access_di(handle, INODE_CACHE(old_inode), old_inode_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status >= 0) { old_di = (struct ocfs2_dinode *) old_inode_bh->b_data; old_di->i_ctime = cpu_to_le64(inode_get_ctime(old_inode).tv_sec); old_di->i_ctime_nsec = cpu_to_le32(inode_get_ctime(old_inode).tv_nsec); ocfs2_journal_dirty(handle, old_inode_bh); } else mlog_errno(status); /* * Now that the name has been added to new_dir, remove the old name. * * We don't keep any directory entry context around until now * because the insert might have changed the type of directory * we're dealing with. */ status = ocfs2_find_entry(old_dentry->d_name.name, old_dentry->d_name.len, old_dir, &old_entry_lookup); if (status) { if (!is_journal_aborted(osb->journal->j_journal)) { ocfs2_error(osb->sb, "new entry %.*s is added, but old entry %.*s " "is not deleted.", new_dentry->d_name.len, new_dentry->d_name.name, old_dentry->d_name.len, old_dentry->d_name.name); } goto bail; } status = ocfs2_delete_entry(handle, old_dir, &old_entry_lookup); if (status < 0) { mlog_errno(status); if (!is_journal_aborted(osb->journal->j_journal)) { ocfs2_error(osb->sb, "new entry %.*s is added, but old entry %.*s " "is not deleted.", new_dentry->d_name.len, new_dentry->d_name.name, old_dentry->d_name.len, old_dentry->d_name.name); } goto bail; } if (new_inode) { drop_nlink(new_inode); inode_set_ctime_current(new_inode); } old_dir->i_mtime = inode_set_ctime_current(old_dir); if (update_dot_dot) { status = ocfs2_update_entry(old_inode, handle, &old_inode_dot_dot_res, new_dir); drop_nlink(old_dir); if (new_inode) { drop_nlink(new_inode); } else { inc_nlink(new_dir); mark_inode_dirty(new_dir); } } mark_inode_dirty(old_dir); ocfs2_mark_inode_dirty(handle, old_dir, old_dir_bh); if (new_inode) { mark_inode_dirty(new_inode); ocfs2_mark_inode_dirty(handle, new_inode, newfe_bh); } if (old_dir != new_dir) { /* Keep the same times on both directories.*/ new_dir->i_mtime = inode_set_ctime_to_ts(new_dir, inode_get_ctime(old_dir)); /* * This will also pick up the i_nlink change from the * block above. */ ocfs2_mark_inode_dirty(handle, new_dir, new_dir_bh); } if (old_dir_nlink != old_dir->i_nlink) { if (!old_dir_bh) { mlog(ML_ERROR, "need to change nlink for old dir " "%llu from %d to %d but bh is NULL!\n", (unsigned long long)OCFS2_I(old_dir)->ip_blkno, (int)old_dir_nlink, old_dir->i_nlink); } else { struct ocfs2_dinode *fe; status = ocfs2_journal_access_di(handle, INODE_CACHE(old_dir), old_dir_bh, OCFS2_JOURNAL_ACCESS_WRITE); fe = (struct ocfs2_dinode *) old_dir_bh->b_data; ocfs2_set_links_count(fe, old_dir->i_nlink); ocfs2_journal_dirty(handle, old_dir_bh); } } ocfs2_dentry_move(old_dentry, new_dentry, old_dir, new_dir); status = 0; bail: if (handle) ocfs2_commit_trans(osb, handle); if (orphan_dir) { /* This was locked for us in ocfs2_prepare_orphan_dir() */ ocfs2_inode_unlock(orphan_dir, 1); inode_unlock(orphan_dir); iput(orphan_dir); } if (new_child_locked) ocfs2_inode_unlock(new_inode, 1); if (old_child_locked) ocfs2_inode_unlock(old_inode, 1); if (parents_locked) ocfs2_double_unlock(old_dir, new_dir); if (rename_lock) ocfs2_rename_unlock(osb); if (new_inode) sync_mapping_buffers(old_inode->i_mapping); iput(new_inode); ocfs2_free_dir_lookup_result(&target_lookup_res); ocfs2_free_dir_lookup_result(&old_entry_lookup); ocfs2_free_dir_lookup_result(&old_inode_dot_dot_res); ocfs2_free_dir_lookup_result(&orphan_insert); ocfs2_free_dir_lookup_result(&target_insert); brelse(newfe_bh); brelse(old_inode_bh); brelse(old_dir_bh); brelse(new_dir_bh); if (status) mlog_errno(status); return status; } /* * we expect i_size = strlen(symname). Copy symname into the file * data, including the null terminator. */ static int ocfs2_create_symlink_data(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, const char *symname) { struct buffer_head **bhs = NULL; const char *c; struct super_block *sb = osb->sb; u64 p_blkno, p_blocks; int virtual, blocks, status, i, bytes_left; bytes_left = i_size_read(inode) + 1; /* we can't trust i_blocks because we're actually going to * write i_size + 1 bytes. */ blocks = (bytes_left + sb->s_blocksize - 1) >> sb->s_blocksize_bits; trace_ocfs2_create_symlink_data((unsigned long long)inode->i_blocks, i_size_read(inode), blocks); /* Sanity check -- make sure we're going to fit. */ if (bytes_left > ocfs2_clusters_to_bytes(sb, OCFS2_I(inode)->ip_clusters)) { status = -EIO; mlog_errno(status); goto bail; } bhs = kcalloc(blocks, sizeof(struct buffer_head *), GFP_KERNEL); if (!bhs) { status = -ENOMEM; mlog_errno(status); goto bail; } status = ocfs2_extent_map_get_blocks(inode, 0, &p_blkno, &p_blocks, NULL); if (status < 0) { mlog_errno(status); goto bail; } /* links can never be larger than one cluster so we know this * is all going to be contiguous, but do a sanity check * anyway. */ if ((p_blocks << sb->s_blocksize_bits) < bytes_left) { status = -EIO; mlog_errno(status); goto bail; } virtual = 0; while(bytes_left > 0) { c = &symname[virtual * sb->s_blocksize]; bhs[virtual] = sb_getblk(sb, p_blkno); if (!bhs[virtual]) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), bhs[virtual]); status = ocfs2_journal_access(handle, INODE_CACHE(inode), bhs[virtual], OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(bhs[virtual]->b_data, 0, sb->s_blocksize); memcpy(bhs[virtual]->b_data, c, (bytes_left > sb->s_blocksize) ? sb->s_blocksize : bytes_left); ocfs2_journal_dirty(handle, bhs[virtual]); virtual++; p_blkno++; bytes_left -= sb->s_blocksize; } status = 0; bail: if (bhs) { for(i = 0; i < blocks; i++) brelse(bhs[i]); kfree(bhs); } if (status) mlog_errno(status); return status; } static int ocfs2_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *symname) { int status, l, credits; u64 newsize; struct ocfs2_super *osb = NULL; struct inode *inode = NULL; struct super_block *sb; struct buffer_head *new_fe_bh = NULL; struct buffer_head *parent_fe_bh = NULL; struct ocfs2_dinode *fe = NULL; struct ocfs2_dinode *dirfe; handle_t *handle = NULL; struct ocfs2_alloc_context *inode_ac = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *xattr_ac = NULL; int want_clusters = 0; int xattr_credits = 0; struct ocfs2_security_xattr_info si = { .name = NULL, .enable = 1, }; int did_quota = 0, did_quota_inode = 0; struct ocfs2_dir_lookup_result lookup = { NULL, }; sigset_t oldset; int did_block_signals = 0; struct ocfs2_dentry_lock *dl = NULL; trace_ocfs2_symlink_begin(dir, dentry, symname, dentry->d_name.len, dentry->d_name.name); status = dquot_initialize(dir); if (status) { mlog_errno(status); goto bail; } sb = dir->i_sb; osb = OCFS2_SB(sb); l = strlen(symname) + 1; credits = ocfs2_calc_symlink_credits(sb); /* lock the parent directory */ status = ocfs2_inode_lock(dir, &parent_fe_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } dirfe = (struct ocfs2_dinode *) parent_fe_bh->b_data; if (!ocfs2_read_links_count(dirfe)) { /* can't make a file in a deleted directory. */ status = -ENOENT; goto bail; } status = ocfs2_check_dir_for_entry(dir, dentry->d_name.name, dentry->d_name.len); if (status) goto bail; status = ocfs2_prepare_dir_for_insert(osb, dir, parent_fe_bh, dentry->d_name.name, dentry->d_name.len, &lookup); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_reserve_new_inode(osb, &inode_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } inode = ocfs2_get_init_inode(dir, S_IFLNK | S_IRWXUGO); if (IS_ERR(inode)) { status = PTR_ERR(inode); inode = NULL; mlog_errno(status); goto bail; } /* get security xattr */ status = ocfs2_init_security_get(inode, dir, &dentry->d_name, &si); if (status) { if (status == -EOPNOTSUPP) si.enable = 0; else { mlog_errno(status); goto bail; } } /* calculate meta data/clusters for setting security xattr */ if (si.enable) { status = ocfs2_calc_security_init(dir, &si, &want_clusters, &xattr_credits, &xattr_ac); if (status < 0) { mlog_errno(status); goto bail; } } /* don't reserve bitmap space for fast symlinks. */ if (l > ocfs2_fast_symlink_chars(sb)) want_clusters += 1; status = ocfs2_reserve_clusters(osb, want_clusters, &data_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } handle = ocfs2_start_trans(osb, credits + xattr_credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } /* Starting to change things, restart is no longer possible. */ ocfs2_block_signals(&oldset); did_block_signals = 1; status = dquot_alloc_inode(inode); if (status) goto bail; did_quota_inode = 1; trace_ocfs2_symlink_create(dir, dentry, dentry->d_name.len, dentry->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno, inode->i_mode); status = ocfs2_mknod_locked(osb, dir, inode, 0, &new_fe_bh, parent_fe_bh, handle, inode_ac); if (status < 0) { mlog_errno(status); goto bail; } fe = (struct ocfs2_dinode *) new_fe_bh->b_data; inode->i_rdev = 0; newsize = l - 1; inode->i_op = &ocfs2_symlink_inode_operations; inode_nohighmem(inode); if (l > ocfs2_fast_symlink_chars(sb)) { u32 offset = 0; status = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, 1)); if (status) goto bail; did_quota = 1; inode->i_mapping->a_ops = &ocfs2_aops; status = ocfs2_add_inode_data(osb, inode, &offset, 1, 0, new_fe_bh, handle, data_ac, NULL, NULL); if (status < 0) { if (status != -ENOSPC && status != -EINTR) { mlog(ML_ERROR, "Failed to extend file to %llu\n", (unsigned long long)newsize); mlog_errno(status); status = -ENOSPC; } goto bail; } i_size_write(inode, newsize); inode->i_blocks = ocfs2_inode_sector_count(inode); } else { inode->i_mapping->a_ops = &ocfs2_fast_symlink_aops; memcpy((char *) fe->id2.i_symlink, symname, l); i_size_write(inode, newsize); inode->i_blocks = 0; } status = ocfs2_mark_inode_dirty(handle, inode, new_fe_bh); if (status < 0) { mlog_errno(status); goto bail; } if (!ocfs2_inode_is_fast_symlink(inode)) { status = ocfs2_create_symlink_data(osb, handle, inode, symname); if (status < 0) { mlog_errno(status); goto bail; } } if (si.enable) { status = ocfs2_init_security_set(handle, inode, new_fe_bh, &si, xattr_ac, data_ac); if (status < 0) { mlog_errno(status); goto bail; } } /* * Do this before adding the entry to the directory. We add * also set d_op after success so that ->d_iput() will cleanup * the dentry lock even if ocfs2_add_entry() fails below. */ status = ocfs2_dentry_attach_lock(dentry, inode, OCFS2_I(dir)->ip_blkno); if (status) { mlog_errno(status); goto bail; } dl = dentry->d_fsdata; status = ocfs2_add_entry(handle, dentry, inode, le64_to_cpu(fe->i_blkno), parent_fe_bh, &lookup); if (status < 0) { mlog_errno(status); goto bail; } insert_inode_hash(inode); d_instantiate(dentry, inode); bail: if (status < 0 && did_quota) dquot_free_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, 1)); if (status < 0 && did_quota_inode) dquot_free_inode(inode); if (handle) { if (status < 0 && fe) ocfs2_set_links_count(fe, 0); ocfs2_commit_trans(osb, handle); } ocfs2_inode_unlock(dir, 1); if (did_block_signals) ocfs2_unblock_signals(&oldset); brelse(new_fe_bh); brelse(parent_fe_bh); kfree(si.value); ocfs2_free_dir_lookup_result(&lookup); if (inode_ac) ocfs2_free_alloc_context(inode_ac); if (data_ac) ocfs2_free_alloc_context(data_ac); if (xattr_ac) ocfs2_free_alloc_context(xattr_ac); if ((status < 0) && inode) { if (dl) ocfs2_cleanup_add_entry_failure(osb, dentry, inode); OCFS2_I(inode)->ip_flags |= OCFS2_INODE_SKIP_ORPHAN_DIR; clear_nlink(inode); iput(inode); } if (status) mlog_errno(status); return status; } static int ocfs2_blkno_stringify(u64 blkno, char *name) { int status, namelen; namelen = snprintf(name, OCFS2_ORPHAN_NAMELEN + 1, "%016llx", (long long)blkno); if (namelen <= 0) { if (namelen) status = namelen; else status = -EINVAL; mlog_errno(status); goto bail; } if (namelen != OCFS2_ORPHAN_NAMELEN) { status = -EINVAL; mlog_errno(status); goto bail; } trace_ocfs2_blkno_stringify(blkno, name, namelen); status = 0; bail: if (status < 0) mlog_errno(status); return status; } static int ocfs2_lookup_lock_orphan_dir(struct ocfs2_super *osb, struct inode **ret_orphan_dir, struct buffer_head **ret_orphan_dir_bh) { struct inode *orphan_dir_inode; struct buffer_head *orphan_dir_bh = NULL; int ret = 0; orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, osb->slot_num); if (!orphan_dir_inode) { ret = -ENOENT; mlog_errno(ret); return ret; } inode_lock(orphan_dir_inode); ret = ocfs2_inode_lock(orphan_dir_inode, &orphan_dir_bh, 1); if (ret < 0) { inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); mlog_errno(ret); return ret; } *ret_orphan_dir = orphan_dir_inode; *ret_orphan_dir_bh = orphan_dir_bh; return 0; } static int __ocfs2_prepare_orphan_dir(struct inode *orphan_dir_inode, struct buffer_head *orphan_dir_bh, u64 blkno, char *name, struct ocfs2_dir_lookup_result *lookup, bool dio) { int ret; struct ocfs2_super *osb = OCFS2_SB(orphan_dir_inode->i_sb); int namelen = dio ? (OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN) : OCFS2_ORPHAN_NAMELEN; if (dio) { ret = snprintf(name, OCFS2_DIO_ORPHAN_PREFIX_LEN + 1, "%s", OCFS2_DIO_ORPHAN_PREFIX); if (ret != OCFS2_DIO_ORPHAN_PREFIX_LEN) { ret = -EINVAL; mlog_errno(ret); return ret; } ret = ocfs2_blkno_stringify(blkno, name + OCFS2_DIO_ORPHAN_PREFIX_LEN); } else ret = ocfs2_blkno_stringify(blkno, name); if (ret < 0) { mlog_errno(ret); return ret; } ret = ocfs2_prepare_dir_for_insert(osb, orphan_dir_inode, orphan_dir_bh, name, namelen, lookup); if (ret < 0) { mlog_errno(ret); return ret; } return 0; } /** * ocfs2_prepare_orphan_dir() - Prepare an orphan directory for * insertion of an orphan. * @osb: ocfs2 file system * @ret_orphan_dir: Orphan dir inode - returned locked! * @blkno: Actual block number of the inode to be inserted into orphan dir. * @lookup: dir lookup result, to be passed back into functions like * ocfs2_orphan_add * * Returns zero on success and the ret_orphan_dir, name and lookup * fields will be populated. * * Returns non-zero on failure. */ static int ocfs2_prepare_orphan_dir(struct ocfs2_super *osb, struct inode **ret_orphan_dir, u64 blkno, char *name, struct ocfs2_dir_lookup_result *lookup, bool dio) { struct inode *orphan_dir_inode = NULL; struct buffer_head *orphan_dir_bh = NULL; int ret = 0; ret = ocfs2_lookup_lock_orphan_dir(osb, &orphan_dir_inode, &orphan_dir_bh); if (ret < 0) { mlog_errno(ret); return ret; } ret = __ocfs2_prepare_orphan_dir(orphan_dir_inode, orphan_dir_bh, blkno, name, lookup, dio); if (ret < 0) { mlog_errno(ret); goto out; } *ret_orphan_dir = orphan_dir_inode; out: brelse(orphan_dir_bh); if (ret) { ocfs2_inode_unlock(orphan_dir_inode, 1); inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); } if (ret) mlog_errno(ret); return ret; } static int ocfs2_orphan_add(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, char *name, struct ocfs2_dir_lookup_result *lookup, struct inode *orphan_dir_inode, bool dio) { struct buffer_head *orphan_dir_bh = NULL; int status = 0; struct ocfs2_dinode *orphan_fe; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data; int namelen = dio ? (OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN) : OCFS2_ORPHAN_NAMELEN; trace_ocfs2_orphan_add_begin( (unsigned long long)OCFS2_I(inode)->ip_blkno); status = ocfs2_read_inode_block(orphan_dir_inode, &orphan_dir_bh); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_journal_access_di(handle, INODE_CACHE(orphan_dir_inode), orphan_dir_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } /* * We're going to journal the change of i_flags and i_orphaned_slot. * It's safe anyway, though some callers may duplicate the journaling. * Journaling within the func just make the logic look more * straightforward. */ status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } /* we're a cluster, and nlink can change on disk from * underneath us... */ orphan_fe = (struct ocfs2_dinode *) orphan_dir_bh->b_data; if (S_ISDIR(inode->i_mode)) ocfs2_add_links_count(orphan_fe, 1); set_nlink(orphan_dir_inode, ocfs2_read_links_count(orphan_fe)); ocfs2_journal_dirty(handle, orphan_dir_bh); status = __ocfs2_add_entry(handle, orphan_dir_inode, name, namelen, inode, OCFS2_I(inode)->ip_blkno, orphan_dir_bh, lookup); if (status < 0) { mlog_errno(status); goto rollback; } if (dio) { /* Update flag OCFS2_DIO_ORPHANED_FL and record the orphan * slot. */ fe->i_flags |= cpu_to_le32(OCFS2_DIO_ORPHANED_FL); fe->i_dio_orphaned_slot = cpu_to_le16(osb->slot_num); } else { fe->i_flags |= cpu_to_le32(OCFS2_ORPHANED_FL); OCFS2_I(inode)->ip_flags &= ~OCFS2_INODE_SKIP_ORPHAN_DIR; /* Record which orphan dir our inode now resides * in. delete_inode will use this to determine which orphan * dir to lock. */ fe->i_orphaned_slot = cpu_to_le16(osb->slot_num); } ocfs2_journal_dirty(handle, fe_bh); trace_ocfs2_orphan_add_end((unsigned long long)OCFS2_I(inode)->ip_blkno, osb->slot_num); rollback: if (status < 0) { if (S_ISDIR(inode->i_mode)) ocfs2_add_links_count(orphan_fe, -1); set_nlink(orphan_dir_inode, ocfs2_read_links_count(orphan_fe)); } leave: brelse(orphan_dir_bh); return status; } /* unlike orphan_add, we expect the orphan dir to already be locked here. */ int ocfs2_orphan_del(struct ocfs2_super *osb, handle_t *handle, struct inode *orphan_dir_inode, struct inode *inode, struct buffer_head *orphan_dir_bh, bool dio) { char name[OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN + 1]; struct ocfs2_dinode *orphan_fe; int status = 0; struct ocfs2_dir_lookup_result lookup = { NULL, }; if (dio) { status = snprintf(name, OCFS2_DIO_ORPHAN_PREFIX_LEN + 1, "%s", OCFS2_DIO_ORPHAN_PREFIX); if (status != OCFS2_DIO_ORPHAN_PREFIX_LEN) { status = -EINVAL; mlog_errno(status); return status; } status = ocfs2_blkno_stringify(OCFS2_I(inode)->ip_blkno, name + OCFS2_DIO_ORPHAN_PREFIX_LEN); } else status = ocfs2_blkno_stringify(OCFS2_I(inode)->ip_blkno, name); if (status < 0) { mlog_errno(status); goto leave; } trace_ocfs2_orphan_del( (unsigned long long)OCFS2_I(orphan_dir_inode)->ip_blkno, name, strlen(name)); status = ocfs2_journal_access_di(handle, INODE_CACHE(orphan_dir_inode), orphan_dir_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } /* find it's spot in the orphan directory */ status = ocfs2_find_entry(name, strlen(name), orphan_dir_inode, &lookup); if (status) { mlog_errno(status); goto leave; } /* remove it from the orphan directory */ status = ocfs2_delete_entry(handle, orphan_dir_inode, &lookup); if (status < 0) { mlog_errno(status); goto leave; } /* do the i_nlink dance! :) */ orphan_fe = (struct ocfs2_dinode *) orphan_dir_bh->b_data; if (S_ISDIR(inode->i_mode)) ocfs2_add_links_count(orphan_fe, -1); set_nlink(orphan_dir_inode, ocfs2_read_links_count(orphan_fe)); ocfs2_journal_dirty(handle, orphan_dir_bh); leave: ocfs2_free_dir_lookup_result(&lookup); if (status) mlog_errno(status); return status; } /** * ocfs2_prep_new_orphaned_file() - Prepare the orphan dir to receive a newly * allocated file. This is different from the typical 'add to orphan dir' * operation in that the inode does not yet exist. This is a problem because * the orphan dir stringifies the inode block number to come up with it's * dirent. Obviously if the inode does not yet exist we have a chicken and egg * problem. This function works around it by calling deeper into the orphan * and suballoc code than other callers. Use this only by necessity. * @dir: The directory which this inode will ultimately wind up under - not the * orphan dir! * @dir_bh: buffer_head the @dir inode block * @orphan_name: string of length (CFS2_ORPHAN_NAMELEN + 1). Will be filled * with the string to be used for orphan dirent. Pass back to the orphan dir * code. * @ret_orphan_dir: orphan dir inode returned to be passed back into orphan * dir code. * @ret_di_blkno: block number where the new inode will be allocated. * @orphan_insert: Dir insert context to be passed back into orphan dir code. * @ret_inode_ac: Inode alloc context to be passed back to the allocator. * * Returns zero on success and the ret_orphan_dir, name and lookup * fields will be populated. * * Returns non-zero on failure. */ static int ocfs2_prep_new_orphaned_file(struct inode *dir, struct buffer_head *dir_bh, char *orphan_name, struct inode **ret_orphan_dir, u64 *ret_di_blkno, struct ocfs2_dir_lookup_result *orphan_insert, struct ocfs2_alloc_context **ret_inode_ac) { int ret; u64 di_blkno; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct inode *orphan_dir = NULL; struct buffer_head *orphan_dir_bh = NULL; struct ocfs2_alloc_context *inode_ac = NULL; ret = ocfs2_lookup_lock_orphan_dir(osb, &orphan_dir, &orphan_dir_bh); if (ret < 0) { mlog_errno(ret); return ret; } /* reserve an inode spot */ ret = ocfs2_reserve_new_inode(osb, &inode_ac); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } ret = ocfs2_find_new_inode_loc(dir, dir_bh, inode_ac, &di_blkno); if (ret) { mlog_errno(ret); goto out; } ret = __ocfs2_prepare_orphan_dir(orphan_dir, orphan_dir_bh, di_blkno, orphan_name, orphan_insert, false); if (ret < 0) { mlog_errno(ret); goto out; } out: if (ret == 0) { *ret_orphan_dir = orphan_dir; *ret_di_blkno = di_blkno; *ret_inode_ac = inode_ac; /* * orphan_name and orphan_insert are already up to * date via prepare_orphan_dir */ } else { /* Unroll reserve_new_inode* */ if (inode_ac) ocfs2_free_alloc_context(inode_ac); /* Unroll orphan dir locking */ inode_unlock(orphan_dir); ocfs2_inode_unlock(orphan_dir, 1); iput(orphan_dir); } brelse(orphan_dir_bh); return ret; } int ocfs2_create_inode_in_orphan(struct inode *dir, int mode, struct inode **new_inode) { int status, did_quota_inode = 0; struct inode *inode = NULL; struct inode *orphan_dir = NULL; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); handle_t *handle = NULL; char orphan_name[OCFS2_ORPHAN_NAMELEN + 1]; struct buffer_head *parent_di_bh = NULL; struct buffer_head *new_di_bh = NULL; struct ocfs2_alloc_context *inode_ac = NULL; struct ocfs2_dir_lookup_result orphan_insert = { NULL, }; u64 di_blkno, suballoc_loc; u16 suballoc_bit; status = ocfs2_inode_lock(dir, &parent_di_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } status = ocfs2_prep_new_orphaned_file(dir, parent_di_bh, orphan_name, &orphan_dir, &di_blkno, &orphan_insert, &inode_ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } inode = ocfs2_get_init_inode(dir, mode); if (IS_ERR(inode)) { status = PTR_ERR(inode); inode = NULL; mlog_errno(status); goto leave; } handle = ocfs2_start_trans(osb, ocfs2_mknod_credits(osb->sb, 0, 0)); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } status = dquot_alloc_inode(inode); if (status) goto leave; did_quota_inode = 1; status = ocfs2_claim_new_inode_at_loc(handle, dir, inode_ac, &suballoc_loc, &suballoc_bit, di_blkno); if (status < 0) { mlog_errno(status); goto leave; } clear_nlink(inode); /* do the real work now. */ status = __ocfs2_mknod_locked(dir, inode, 0, &new_di_bh, parent_di_bh, handle, inode_ac, di_blkno, suballoc_loc, suballoc_bit); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_orphan_add(osb, handle, inode, new_di_bh, orphan_name, &orphan_insert, orphan_dir, false); if (status < 0) { mlog_errno(status); goto leave; } /* get open lock so that only nodes can't remove it from orphan dir. */ status = ocfs2_open_lock(inode); if (status < 0) mlog_errno(status); insert_inode_hash(inode); leave: if (status < 0 && did_quota_inode) dquot_free_inode(inode); if (handle) ocfs2_commit_trans(osb, handle); if (orphan_dir) { /* This was locked for us in ocfs2_prepare_orphan_dir() */ ocfs2_inode_unlock(orphan_dir, 1); inode_unlock(orphan_dir); iput(orphan_dir); } if ((status < 0) && inode) { clear_nlink(inode); iput(inode); } if (inode_ac) ocfs2_free_alloc_context(inode_ac); brelse(new_di_bh); if (!status) *new_inode = inode; ocfs2_free_dir_lookup_result(&orphan_insert); ocfs2_inode_unlock(dir, 1); brelse(parent_di_bh); return status; } int ocfs2_add_inode_to_orphan(struct ocfs2_super *osb, struct inode *inode) { char orphan_name[OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN + 1]; struct inode *orphan_dir_inode = NULL; struct ocfs2_dir_lookup_result orphan_insert = { NULL, }; struct buffer_head *di_bh = NULL; int status = 0; handle_t *handle = NULL; struct ocfs2_dinode *di = NULL; status = ocfs2_inode_lock(inode, &di_bh, 1); if (status < 0) { mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) di_bh->b_data; /* * Another append dio crashed? * If so, manually recover it first. */ if (unlikely(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) { status = ocfs2_truncate_file(inode, di_bh, i_size_read(inode)); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail_unlock_inode; } status = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0); if (status < 0) { mlog_errno(status); goto bail_unlock_inode; } } status = ocfs2_prepare_orphan_dir(osb, &orphan_dir_inode, OCFS2_I(inode)->ip_blkno, orphan_name, &orphan_insert, true); if (status < 0) { mlog_errno(status); goto bail_unlock_inode; } handle = ocfs2_start_trans(osb, OCFS2_INODE_ADD_TO_ORPHAN_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); goto bail_unlock_orphan; } status = ocfs2_orphan_add(osb, handle, inode, di_bh, orphan_name, &orphan_insert, orphan_dir_inode, true); if (status) mlog_errno(status); ocfs2_commit_trans(osb, handle); bail_unlock_orphan: ocfs2_inode_unlock(orphan_dir_inode, 1); inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); ocfs2_free_dir_lookup_result(&orphan_insert); bail_unlock_inode: ocfs2_inode_unlock(inode, 1); brelse(di_bh); bail: return status; } int ocfs2_del_inode_from_orphan(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *di_bh, int update_isize, loff_t end) { struct inode *orphan_dir_inode = NULL; struct buffer_head *orphan_dir_bh = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; handle_t *handle = NULL; int status = 0; orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, le16_to_cpu(di->i_dio_orphaned_slot)); if (!orphan_dir_inode) { status = -ENOENT; mlog_errno(status); goto bail; } inode_lock(orphan_dir_inode); status = ocfs2_inode_lock(orphan_dir_inode, &orphan_dir_bh, 1); if (status < 0) { inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); mlog_errno(status); goto bail; } handle = ocfs2_start_trans(osb, OCFS2_INODE_DEL_FROM_ORPHAN_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); goto bail_unlock_orphan; } BUG_ON(!(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))); status = ocfs2_orphan_del(osb, handle, orphan_dir_inode, inode, orphan_dir_bh, true); if (status < 0) { mlog_errno(status); goto bail_commit; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail_commit; } di->i_flags &= ~cpu_to_le32(OCFS2_DIO_ORPHANED_FL); di->i_dio_orphaned_slot = 0; if (update_isize) { status = ocfs2_set_inode_size(handle, inode, di_bh, end); if (status) mlog_errno(status); } else ocfs2_journal_dirty(handle, di_bh); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock_orphan: ocfs2_inode_unlock(orphan_dir_inode, 1); inode_unlock(orphan_dir_inode); brelse(orphan_dir_bh); iput(orphan_dir_inode); bail: return status; } int ocfs2_mv_orphaned_inode_to_new(struct inode *dir, struct inode *inode, struct dentry *dentry) { int status = 0; struct buffer_head *parent_di_bh = NULL; handle_t *handle = NULL; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); struct ocfs2_dinode *dir_di, *di; struct inode *orphan_dir_inode = NULL; struct buffer_head *orphan_dir_bh = NULL; struct buffer_head *di_bh = NULL; struct ocfs2_dir_lookup_result lookup = { NULL, }; trace_ocfs2_mv_orphaned_inode_to_new(dir, dentry, dentry->d_name.len, dentry->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno, (unsigned long long)OCFS2_I(inode)->ip_blkno); status = ocfs2_inode_lock(dir, &parent_di_bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } dir_di = (struct ocfs2_dinode *) parent_di_bh->b_data; if (!dir_di->i_links_count) { /* can't make a file in a deleted directory. */ status = -ENOENT; goto leave; } status = ocfs2_check_dir_for_entry(dir, dentry->d_name.name, dentry->d_name.len); if (status) goto leave; /* get a spot inside the dir. */ status = ocfs2_prepare_dir_for_insert(osb, dir, parent_di_bh, dentry->d_name.name, dentry->d_name.len, &lookup); if (status < 0) { mlog_errno(status); goto leave; } orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, osb->slot_num); if (!orphan_dir_inode) { status = -ENOENT; mlog_errno(status); goto leave; } inode_lock(orphan_dir_inode); status = ocfs2_inode_lock(orphan_dir_inode, &orphan_dir_bh, 1); if (status < 0) { mlog_errno(status); inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); goto leave; } status = ocfs2_read_inode_block(inode, &di_bh); if (status < 0) { mlog_errno(status); goto orphan_unlock; } handle = ocfs2_start_trans(osb, ocfs2_rename_credits(osb->sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto orphan_unlock; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } status = ocfs2_orphan_del(osb, handle, orphan_dir_inode, inode, orphan_dir_bh, false); if (status < 0) { mlog_errno(status); goto out_commit; } di = (struct ocfs2_dinode *)di_bh->b_data; di->i_flags &= ~cpu_to_le32(OCFS2_ORPHANED_FL); di->i_orphaned_slot = 0; set_nlink(inode, 1); ocfs2_set_links_count(di, inode->i_nlink); ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_journal_dirty(handle, di_bh); status = ocfs2_add_entry(handle, dentry, inode, OCFS2_I(inode)->ip_blkno, parent_di_bh, &lookup); if (status < 0) { mlog_errno(status); goto out_commit; } status = ocfs2_dentry_attach_lock(dentry, inode, OCFS2_I(dir)->ip_blkno); if (status) { mlog_errno(status); goto out_commit; } d_instantiate(dentry, inode); status = 0; out_commit: ocfs2_commit_trans(osb, handle); orphan_unlock: ocfs2_inode_unlock(orphan_dir_inode, 1); inode_unlock(orphan_dir_inode); iput(orphan_dir_inode); leave: ocfs2_inode_unlock(dir, 1); brelse(di_bh); brelse(parent_di_bh); brelse(orphan_dir_bh); ocfs2_free_dir_lookup_result(&lookup); if (status) mlog_errno(status); return status; } const struct inode_operations ocfs2_dir_iops = { .create = ocfs2_create, .lookup = ocfs2_lookup, .link = ocfs2_link, .unlink = ocfs2_unlink, .rmdir = ocfs2_unlink, .symlink = ocfs2_symlink, .mkdir = ocfs2_mkdir, .mknod = ocfs2_mknod, .rename = ocfs2_rename, .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .listxattr = ocfs2_listxattr, .fiemap = ocfs2_fiemap, .get_inode_acl = ocfs2_iop_get_acl, .set_acl = ocfs2_iop_set_acl, .fileattr_get = ocfs2_fileattr_get, .fileattr_set = ocfs2_fileattr_set, };
linux-master
fs/ocfs2/namei.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * localalloc.c * * Node local data allocation * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/bitops.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "dlmglue.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "suballoc.h" #include "super.h" #include "sysfile.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" #define OCFS2_LOCAL_ALLOC(dinode) (&((dinode)->id2.i_lab)) static u32 ocfs2_local_alloc_count_bits(struct ocfs2_dinode *alloc); static int ocfs2_local_alloc_find_clear_bits(struct ocfs2_super *osb, struct ocfs2_dinode *alloc, u32 *numbits, struct ocfs2_alloc_reservation *resv); static void ocfs2_clear_local_alloc(struct ocfs2_dinode *alloc); static int ocfs2_sync_local_to_main(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_dinode *alloc, struct inode *main_bm_inode, struct buffer_head *main_bm_bh); static int ocfs2_local_alloc_reserve_for_window(struct ocfs2_super *osb, struct ocfs2_alloc_context **ac, struct inode **bitmap_inode, struct buffer_head **bitmap_bh); static int ocfs2_local_alloc_new_window(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_alloc_context *ac); static int ocfs2_local_alloc_slide_window(struct ocfs2_super *osb, struct inode *local_alloc_inode); /* * ocfs2_la_default_mb() - determine a default size, in megabytes of * the local alloc. * * Generally, we'd like to pick as large a local alloc as * possible. Performance on large workloads tends to scale * proportionally to la size. In addition to that, the reservations * code functions more efficiently as it can reserve more windows for * write. * * Some things work against us when trying to choose a large local alloc: * * - We need to ensure our sizing is picked to leave enough space in * group descriptors for other allocations (such as block groups, * etc). Picking default sizes which are a multiple of 4 could help * - block groups are allocated in 2mb and 4mb chunks. * * - Likewise, we don't want to starve other nodes of bits on small * file systems. This can easily be taken care of by limiting our * default to a reasonable size (256M) on larger cluster sizes. * * - Some file systems can't support very large sizes - 4k and 8k in * particular are limited to less than 128 and 256 megabytes respectively. * * The following reference table shows group descriptor and local * alloc maximums at various cluster sizes (4k blocksize) * * csize: 4K group: 126M la: 121M * csize: 8K group: 252M la: 243M * csize: 16K group: 504M la: 486M * csize: 32K group: 1008M la: 972M * csize: 64K group: 2016M la: 1944M * csize: 128K group: 4032M la: 3888M * csize: 256K group: 8064M la: 7776M * csize: 512K group: 16128M la: 15552M * csize: 1024K group: 32256M la: 31104M */ #define OCFS2_LA_MAX_DEFAULT_MB 256 #define OCFS2_LA_OLD_DEFAULT 8 unsigned int ocfs2_la_default_mb(struct ocfs2_super *osb) { unsigned int la_mb; unsigned int gd_mb; unsigned int la_max_mb; unsigned int megs_per_slot; struct super_block *sb = osb->sb; gd_mb = ocfs2_clusters_to_megabytes(osb->sb, 8 * ocfs2_group_bitmap_size(sb, 0, osb->s_feature_incompat)); /* * This takes care of files systems with very small group * descriptors - 512 byte blocksize at cluster sizes lower * than 16K and also 1k blocksize with 4k cluster size. */ if ((sb->s_blocksize == 512 && osb->s_clustersize <= 8192) || (sb->s_blocksize == 1024 && osb->s_clustersize == 4096)) return OCFS2_LA_OLD_DEFAULT; /* * Leave enough room for some block groups and make the final * value we work from a multiple of 4. */ gd_mb -= 16; gd_mb &= 0xFFFFFFFB; la_mb = gd_mb; /* * Keep window sizes down to a reasonable default */ if (la_mb > OCFS2_LA_MAX_DEFAULT_MB) { /* * Some clustersize / blocksize combinations will have * given us a larger than OCFS2_LA_MAX_DEFAULT_MB * default size, but get poor distribution when * limited to exactly 256 megabytes. * * As an example, 16K clustersize at 4K blocksize * gives us a cluster group size of 504M. Paring the * local alloc size down to 256 however, would give us * only one window and around 200MB left in the * cluster group. Instead, find the first size below * 256 which would give us an even distribution. * * Larger cluster group sizes actually work out pretty * well when pared to 256, so we don't have to do this * for any group that fits more than two * OCFS2_LA_MAX_DEFAULT_MB windows. */ if (gd_mb > (2 * OCFS2_LA_MAX_DEFAULT_MB)) la_mb = 256; else { unsigned int gd_mult = gd_mb; while (gd_mult > 256) gd_mult = gd_mult >> 1; la_mb = gd_mult; } } megs_per_slot = osb->osb_clusters_at_boot / osb->max_slots; megs_per_slot = ocfs2_clusters_to_megabytes(osb->sb, megs_per_slot); /* Too many nodes, too few disk clusters. */ if (megs_per_slot < la_mb) la_mb = megs_per_slot; /* We can't store more bits than we can in a block. */ la_max_mb = ocfs2_clusters_to_megabytes(osb->sb, ocfs2_local_alloc_size(sb) * 8); if (la_mb > la_max_mb) la_mb = la_max_mb; return la_mb; } void ocfs2_la_set_sizes(struct ocfs2_super *osb, int requested_mb) { struct super_block *sb = osb->sb; unsigned int la_default_mb = ocfs2_la_default_mb(osb); unsigned int la_max_mb; la_max_mb = ocfs2_clusters_to_megabytes(sb, ocfs2_local_alloc_size(sb) * 8); trace_ocfs2_la_set_sizes(requested_mb, la_max_mb, la_default_mb); if (requested_mb == -1) { /* No user request - use defaults */ osb->local_alloc_default_bits = ocfs2_megabytes_to_clusters(sb, la_default_mb); } else if (requested_mb > la_max_mb) { /* Request is too big, we give the maximum available */ osb->local_alloc_default_bits = ocfs2_megabytes_to_clusters(sb, la_max_mb); } else { osb->local_alloc_default_bits = ocfs2_megabytes_to_clusters(sb, requested_mb); } osb->local_alloc_bits = osb->local_alloc_default_bits; } static inline int ocfs2_la_state_enabled(struct ocfs2_super *osb) { return (osb->local_alloc_state == OCFS2_LA_THROTTLED || osb->local_alloc_state == OCFS2_LA_ENABLED); } void ocfs2_local_alloc_seen_free_bits(struct ocfs2_super *osb, unsigned int num_clusters) { spin_lock(&osb->osb_lock); if (osb->local_alloc_state == OCFS2_LA_DISABLED || osb->local_alloc_state == OCFS2_LA_THROTTLED) if (num_clusters >= osb->local_alloc_default_bits) { cancel_delayed_work(&osb->la_enable_wq); osb->local_alloc_state = OCFS2_LA_ENABLED; } spin_unlock(&osb->osb_lock); } void ocfs2_la_enable_worker(struct work_struct *work) { struct ocfs2_super *osb = container_of(work, struct ocfs2_super, la_enable_wq.work); spin_lock(&osb->osb_lock); osb->local_alloc_state = OCFS2_LA_ENABLED; spin_unlock(&osb->osb_lock); } /* * Tell us whether a given allocation should use the local alloc * file. Otherwise, it has to go to the main bitmap. * * This function does semi-dirty reads of local alloc size and state! * This is ok however, as the values are re-checked once under mutex. */ int ocfs2_alloc_should_use_local(struct ocfs2_super *osb, u64 bits) { int ret = 0; int la_bits; spin_lock(&osb->osb_lock); la_bits = osb->local_alloc_bits; if (!ocfs2_la_state_enabled(osb)) goto bail; /* la_bits should be at least twice the size (in clusters) of * a new block group. We want to be sure block group * allocations go through the local alloc, so allow an * allocation to take up to half the bitmap. */ if (bits > (la_bits / 2)) goto bail; ret = 1; bail: trace_ocfs2_alloc_should_use_local( (unsigned long long)bits, osb->local_alloc_state, la_bits, ret); spin_unlock(&osb->osb_lock); return ret; } int ocfs2_load_local_alloc(struct ocfs2_super *osb) { int status = 0; struct ocfs2_dinode *alloc = NULL; struct buffer_head *alloc_bh = NULL; u32 num_used; struct inode *inode = NULL; struct ocfs2_local_alloc *la; if (osb->local_alloc_bits == 0) goto bail; if (osb->local_alloc_bits >= osb->bitmap_cpg) { mlog(ML_NOTICE, "Requested local alloc window %d is larger " "than max possible %u. Using defaults.\n", osb->local_alloc_bits, (osb->bitmap_cpg - 1)); osb->local_alloc_bits = ocfs2_megabytes_to_clusters(osb->sb, ocfs2_la_default_mb(osb)); } /* read the alloc off disk */ inode = ocfs2_get_system_file_inode(osb, LOCAL_ALLOC_SYSTEM_INODE, osb->slot_num); if (!inode) { status = -EINVAL; mlog_errno(status); goto bail; } status = ocfs2_read_inode_block_full(inode, &alloc_bh, OCFS2_BH_IGNORE_CACHE); if (status < 0) { mlog_errno(status); goto bail; } alloc = (struct ocfs2_dinode *) alloc_bh->b_data; la = OCFS2_LOCAL_ALLOC(alloc); if (!(le32_to_cpu(alloc->i_flags) & (OCFS2_LOCAL_ALLOC_FL|OCFS2_BITMAP_FL))) { mlog(ML_ERROR, "Invalid local alloc inode, %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); status = -EINVAL; goto bail; } if ((la->la_size == 0) || (le16_to_cpu(la->la_size) > ocfs2_local_alloc_size(inode->i_sb))) { mlog(ML_ERROR, "Local alloc size is invalid (la_size = %u)\n", le16_to_cpu(la->la_size)); status = -EINVAL; goto bail; } /* do a little verification. */ num_used = ocfs2_local_alloc_count_bits(alloc); /* hopefully the local alloc has always been recovered before * we load it. */ if (num_used || alloc->id1.bitmap1.i_used || alloc->id1.bitmap1.i_total || la->la_bm_off) { mlog(ML_ERROR, "inconsistent detected, clean journal with" " unrecovered local alloc, please run fsck.ocfs2!\n" "found = %u, set = %u, taken = %u, off = %u\n", num_used, le32_to_cpu(alloc->id1.bitmap1.i_used), le32_to_cpu(alloc->id1.bitmap1.i_total), OCFS2_LOCAL_ALLOC(alloc)->la_bm_off); status = -EINVAL; goto bail; } osb->local_alloc_bh = alloc_bh; osb->local_alloc_state = OCFS2_LA_ENABLED; bail: if (status < 0) brelse(alloc_bh); iput(inode); trace_ocfs2_load_local_alloc(osb->local_alloc_bits); if (status) mlog_errno(status); return status; } /* * return any unused bits to the bitmap and write out a clean * local_alloc. * * local_alloc_bh is optional. If not passed, we will simply use the * one off osb. If you do pass it however, be warned that it *will* be * returned brelse'd and NULL'd out.*/ void ocfs2_shutdown_local_alloc(struct ocfs2_super *osb) { int status; handle_t *handle; struct inode *local_alloc_inode = NULL; struct buffer_head *bh = NULL; struct buffer_head *main_bm_bh = NULL; struct inode *main_bm_inode = NULL; struct ocfs2_dinode *alloc_copy = NULL; struct ocfs2_dinode *alloc = NULL; cancel_delayed_work(&osb->la_enable_wq); if (osb->ocfs2_wq) flush_workqueue(osb->ocfs2_wq); if (osb->local_alloc_state == OCFS2_LA_UNUSED) goto out; local_alloc_inode = ocfs2_get_system_file_inode(osb, LOCAL_ALLOC_SYSTEM_INODE, osb->slot_num); if (!local_alloc_inode) { status = -ENOENT; mlog_errno(status); goto out; } osb->local_alloc_state = OCFS2_LA_DISABLED; ocfs2_resmap_uninit(&osb->osb_la_resmap); main_bm_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!main_bm_inode) { status = -EINVAL; mlog_errno(status); goto out; } inode_lock(main_bm_inode); status = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 1); if (status < 0) { mlog_errno(status); goto out_mutex; } /* WINDOW_MOVE_CREDITS is a bit heavy... */ handle = ocfs2_start_trans(osb, OCFS2_WINDOW_MOVE_CREDITS); if (IS_ERR(handle)) { mlog_errno(PTR_ERR(handle)); handle = NULL; goto out_unlock; } bh = osb->local_alloc_bh; alloc = (struct ocfs2_dinode *) bh->b_data; alloc_copy = kmemdup(alloc, bh->b_size, GFP_NOFS); if (!alloc_copy) { status = -ENOMEM; goto out_commit; } status = ocfs2_journal_access_di(handle, INODE_CACHE(local_alloc_inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } ocfs2_clear_local_alloc(alloc); ocfs2_journal_dirty(handle, bh); brelse(bh); osb->local_alloc_bh = NULL; osb->local_alloc_state = OCFS2_LA_UNUSED; status = ocfs2_sync_local_to_main(osb, handle, alloc_copy, main_bm_inode, main_bm_bh); if (status < 0) mlog_errno(status); out_commit: ocfs2_commit_trans(osb, handle); out_unlock: brelse(main_bm_bh); ocfs2_inode_unlock(main_bm_inode, 1); out_mutex: inode_unlock(main_bm_inode); iput(main_bm_inode); out: iput(local_alloc_inode); kfree(alloc_copy); } /* * We want to free the bitmap bits outside of any recovery context as * we'll need a cluster lock to do so, but we must clear the local * alloc before giving up the recovered nodes journal. To solve this, * we kmalloc a copy of the local alloc before it's change for the * caller to process with ocfs2_complete_local_alloc_recovery */ int ocfs2_begin_local_alloc_recovery(struct ocfs2_super *osb, int slot_num, struct ocfs2_dinode **alloc_copy) { int status = 0; struct buffer_head *alloc_bh = NULL; struct inode *inode = NULL; struct ocfs2_dinode *alloc; trace_ocfs2_begin_local_alloc_recovery(slot_num); *alloc_copy = NULL; inode = ocfs2_get_system_file_inode(osb, LOCAL_ALLOC_SYSTEM_INODE, slot_num); if (!inode) { status = -EINVAL; mlog_errno(status); goto bail; } inode_lock(inode); status = ocfs2_read_inode_block_full(inode, &alloc_bh, OCFS2_BH_IGNORE_CACHE); if (status < 0) { mlog_errno(status); goto bail; } *alloc_copy = kmalloc(alloc_bh->b_size, GFP_KERNEL); if (!(*alloc_copy)) { status = -ENOMEM; goto bail; } memcpy((*alloc_copy), alloc_bh->b_data, alloc_bh->b_size); alloc = (struct ocfs2_dinode *) alloc_bh->b_data; ocfs2_clear_local_alloc(alloc); ocfs2_compute_meta_ecc(osb->sb, alloc_bh->b_data, &alloc->i_check); status = ocfs2_write_block(osb, alloc_bh, INODE_CACHE(inode)); if (status < 0) mlog_errno(status); bail: if (status < 0) { kfree(*alloc_copy); *alloc_copy = NULL; } brelse(alloc_bh); if (inode) { inode_unlock(inode); iput(inode); } if (status) mlog_errno(status); return status; } /* * Step 2: By now, we've completed the journal recovery, we've stamped * a clean local alloc on disk and dropped the node out of the * recovery map. Dlm locks will no longer stall, so lets clear out the * main bitmap. */ int ocfs2_complete_local_alloc_recovery(struct ocfs2_super *osb, struct ocfs2_dinode *alloc) { int status; handle_t *handle; struct buffer_head *main_bm_bh = NULL; struct inode *main_bm_inode; main_bm_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!main_bm_inode) { status = -EINVAL; mlog_errno(status); goto out; } inode_lock(main_bm_inode); status = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 1); if (status < 0) { mlog_errno(status); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_WINDOW_MOVE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto out_unlock; } /* we want the bitmap change to be recorded on disk asap */ handle->h_sync = 1; status = ocfs2_sync_local_to_main(osb, handle, alloc, main_bm_inode, main_bm_bh); if (status < 0) mlog_errno(status); ocfs2_commit_trans(osb, handle); out_unlock: ocfs2_inode_unlock(main_bm_inode, 1); out_mutex: inode_unlock(main_bm_inode); brelse(main_bm_bh); iput(main_bm_inode); out: if (!status) ocfs2_init_steal_slots(osb); if (status) mlog_errno(status); return status; } /* * make sure we've got at least bits_wanted contiguous bits in the * local alloc. You lose them when you drop i_rwsem. * * We will add ourselves to the transaction passed in, but may start * our own in order to shift windows. */ int ocfs2_reserve_local_alloc_bits(struct ocfs2_super *osb, u32 bits_wanted, struct ocfs2_alloc_context *ac) { int status; struct ocfs2_dinode *alloc; struct inode *local_alloc_inode; unsigned int free_bits; BUG_ON(!ac); local_alloc_inode = ocfs2_get_system_file_inode(osb, LOCAL_ALLOC_SYSTEM_INODE, osb->slot_num); if (!local_alloc_inode) { status = -ENOENT; mlog_errno(status); goto bail; } inode_lock(local_alloc_inode); /* * We must double check state and allocator bits because * another process may have changed them while holding i_rwsem. */ spin_lock(&osb->osb_lock); if (!ocfs2_la_state_enabled(osb) || (bits_wanted > osb->local_alloc_bits)) { spin_unlock(&osb->osb_lock); status = -ENOSPC; goto bail; } spin_unlock(&osb->osb_lock); alloc = (struct ocfs2_dinode *) osb->local_alloc_bh->b_data; #ifdef CONFIG_OCFS2_DEBUG_FS if (le32_to_cpu(alloc->id1.bitmap1.i_used) != ocfs2_local_alloc_count_bits(alloc)) { status = ocfs2_error(osb->sb, "local alloc inode %llu says it has %u used bits, but a count shows %u\n", (unsigned long long)le64_to_cpu(alloc->i_blkno), le32_to_cpu(alloc->id1.bitmap1.i_used), ocfs2_local_alloc_count_bits(alloc)); goto bail; } #endif free_bits = le32_to_cpu(alloc->id1.bitmap1.i_total) - le32_to_cpu(alloc->id1.bitmap1.i_used); if (bits_wanted > free_bits) { /* uhoh, window change time. */ status = ocfs2_local_alloc_slide_window(osb, local_alloc_inode); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } /* * Under certain conditions, the window slide code * might have reduced the number of bits available or * disabled the local alloc entirely. Re-check * here and return -ENOSPC if necessary. */ status = -ENOSPC; if (!ocfs2_la_state_enabled(osb)) goto bail; free_bits = le32_to_cpu(alloc->id1.bitmap1.i_total) - le32_to_cpu(alloc->id1.bitmap1.i_used); if (bits_wanted > free_bits) goto bail; } ac->ac_inode = local_alloc_inode; /* We should never use localalloc from another slot */ ac->ac_alloc_slot = osb->slot_num; ac->ac_which = OCFS2_AC_USE_LOCAL; get_bh(osb->local_alloc_bh); ac->ac_bh = osb->local_alloc_bh; status = 0; bail: if (status < 0 && local_alloc_inode) { inode_unlock(local_alloc_inode); iput(local_alloc_inode); } trace_ocfs2_reserve_local_alloc_bits( (unsigned long long)ac->ac_max_block, bits_wanted, osb->slot_num, status); if (status) mlog_errno(status); return status; } int ocfs2_claim_local_alloc_bits(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_alloc_context *ac, u32 bits_wanted, u32 *bit_off, u32 *num_bits) { int status, start; struct inode *local_alloc_inode; void *bitmap; struct ocfs2_dinode *alloc; struct ocfs2_local_alloc *la; BUG_ON(ac->ac_which != OCFS2_AC_USE_LOCAL); local_alloc_inode = ac->ac_inode; alloc = (struct ocfs2_dinode *) osb->local_alloc_bh->b_data; la = OCFS2_LOCAL_ALLOC(alloc); start = ocfs2_local_alloc_find_clear_bits(osb, alloc, &bits_wanted, ac->ac_resv); if (start == -1) { /* TODO: Shouldn't we just BUG here? */ status = -ENOSPC; mlog_errno(status); goto bail; } bitmap = la->la_bitmap; *bit_off = le32_to_cpu(la->la_bm_off) + start; *num_bits = bits_wanted; status = ocfs2_journal_access_di(handle, INODE_CACHE(local_alloc_inode), osb->local_alloc_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } ocfs2_resmap_claimed_bits(&osb->osb_la_resmap, ac->ac_resv, start, bits_wanted); while(bits_wanted--) ocfs2_set_bit(start++, bitmap); le32_add_cpu(&alloc->id1.bitmap1.i_used, *num_bits); ocfs2_journal_dirty(handle, osb->local_alloc_bh); bail: if (status) mlog_errno(status); return status; } int ocfs2_free_local_alloc_bits(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_alloc_context *ac, u32 bit_off, u32 num_bits) { int status, start; u32 clear_bits; struct inode *local_alloc_inode; void *bitmap; struct ocfs2_dinode *alloc; struct ocfs2_local_alloc *la; BUG_ON(ac->ac_which != OCFS2_AC_USE_LOCAL); local_alloc_inode = ac->ac_inode; alloc = (struct ocfs2_dinode *) osb->local_alloc_bh->b_data; la = OCFS2_LOCAL_ALLOC(alloc); bitmap = la->la_bitmap; start = bit_off - le32_to_cpu(la->la_bm_off); clear_bits = num_bits; status = ocfs2_journal_access_di(handle, INODE_CACHE(local_alloc_inode), osb->local_alloc_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } while (clear_bits--) ocfs2_clear_bit(start++, bitmap); le32_add_cpu(&alloc->id1.bitmap1.i_used, -num_bits); ocfs2_journal_dirty(handle, osb->local_alloc_bh); bail: return status; } static u32 ocfs2_local_alloc_count_bits(struct ocfs2_dinode *alloc) { u32 count; struct ocfs2_local_alloc *la = OCFS2_LOCAL_ALLOC(alloc); count = memweight(la->la_bitmap, le16_to_cpu(la->la_size)); trace_ocfs2_local_alloc_count_bits(count); return count; } static int ocfs2_local_alloc_find_clear_bits(struct ocfs2_super *osb, struct ocfs2_dinode *alloc, u32 *numbits, struct ocfs2_alloc_reservation *resv) { int numfound = 0, bitoff, left, startoff; int local_resv = 0; struct ocfs2_alloc_reservation r; void *bitmap = NULL; struct ocfs2_reservation_map *resmap = &osb->osb_la_resmap; if (!alloc->id1.bitmap1.i_total) { bitoff = -1; goto bail; } if (!resv) { local_resv = 1; ocfs2_resv_init_once(&r); ocfs2_resv_set_type(&r, OCFS2_RESV_FLAG_TMP); resv = &r; } numfound = *numbits; if (ocfs2_resmap_resv_bits(resmap, resv, &bitoff, &numfound) == 0) { if (numfound < *numbits) *numbits = numfound; goto bail; } /* * Code error. While reservations are enabled, local * allocation should _always_ go through them. */ BUG_ON(osb->osb_resv_level != 0); /* * Reservations are disabled. Handle this the old way. */ bitmap = OCFS2_LOCAL_ALLOC(alloc)->la_bitmap; numfound = bitoff = startoff = 0; left = le32_to_cpu(alloc->id1.bitmap1.i_total); while ((bitoff = ocfs2_find_next_zero_bit(bitmap, left, startoff)) != -1) { if (bitoff == left) { /* mlog(0, "bitoff (%d) == left", bitoff); */ break; } /* mlog(0, "Found a zero: bitoff = %d, startoff = %d, " "numfound = %d\n", bitoff, startoff, numfound);*/ /* Ok, we found a zero bit... is it contig. or do we * start over?*/ if (bitoff == startoff) { /* we found a zero */ numfound++; startoff++; } else { /* got a zero after some ones */ numfound = 1; startoff = bitoff+1; } /* we got everything we needed */ if (numfound == *numbits) { /* mlog(0, "Found it all!\n"); */ break; } } trace_ocfs2_local_alloc_find_clear_bits_search_bitmap(bitoff, numfound); if (numfound == *numbits) bitoff = startoff - numfound; else bitoff = -1; bail: if (local_resv) ocfs2_resv_discard(resmap, resv); trace_ocfs2_local_alloc_find_clear_bits(*numbits, le32_to_cpu(alloc->id1.bitmap1.i_total), bitoff, numfound); return bitoff; } static void ocfs2_clear_local_alloc(struct ocfs2_dinode *alloc) { struct ocfs2_local_alloc *la = OCFS2_LOCAL_ALLOC(alloc); int i; alloc->id1.bitmap1.i_total = 0; alloc->id1.bitmap1.i_used = 0; la->la_bm_off = 0; for(i = 0; i < le16_to_cpu(la->la_size); i++) la->la_bitmap[i] = 0; } #if 0 /* turn this on and uncomment below to aid debugging window shifts. */ static void ocfs2_verify_zero_bits(unsigned long *bitmap, unsigned int start, unsigned int count) { unsigned int tmp = count; while(tmp--) { if (ocfs2_test_bit(start + tmp, bitmap)) { printk("ocfs2_verify_zero_bits: start = %u, count = " "%u\n", start, count); printk("ocfs2_verify_zero_bits: bit %u is set!", start + tmp); BUG(); } } } #endif /* * sync the local alloc to main bitmap. * * assumes you've already locked the main bitmap -- the bitmap inode * passed is used for caching. */ static int ocfs2_sync_local_to_main(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_dinode *alloc, struct inode *main_bm_inode, struct buffer_head *main_bm_bh) { int status = 0; int bit_off, left, count, start; u64 la_start_blk; u64 blkno; void *bitmap; struct ocfs2_local_alloc *la = OCFS2_LOCAL_ALLOC(alloc); trace_ocfs2_sync_local_to_main( le32_to_cpu(alloc->id1.bitmap1.i_total), le32_to_cpu(alloc->id1.bitmap1.i_used)); if (!alloc->id1.bitmap1.i_total) { goto bail; } if (le32_to_cpu(alloc->id1.bitmap1.i_used) == le32_to_cpu(alloc->id1.bitmap1.i_total)) { goto bail; } la_start_blk = ocfs2_clusters_to_blocks(osb->sb, le32_to_cpu(la->la_bm_off)); bitmap = la->la_bitmap; start = count = 0; left = le32_to_cpu(alloc->id1.bitmap1.i_total); while ((bit_off = ocfs2_find_next_zero_bit(bitmap, left, start)) != -1) { if ((bit_off < left) && (bit_off == start)) { count++; start++; continue; } if (count) { blkno = la_start_blk + ocfs2_clusters_to_blocks(osb->sb, start - count); trace_ocfs2_sync_local_to_main_free( count, start - count, (unsigned long long)la_start_blk, (unsigned long long)blkno); status = ocfs2_release_clusters(handle, main_bm_inode, main_bm_bh, blkno, count); if (status < 0) { mlog_errno(status); goto bail; } } if (bit_off >= left) break; count = 1; start = bit_off + 1; } bail: if (status) mlog_errno(status); return status; } enum ocfs2_la_event { OCFS2_LA_EVENT_SLIDE, /* Normal window slide. */ OCFS2_LA_EVENT_FRAGMENTED, /* The global bitmap has * enough bits theoretically * free, but a contiguous * allocation could not be * found. */ OCFS2_LA_EVENT_ENOSPC, /* Global bitmap doesn't have * enough bits free to satisfy * our request. */ }; #define OCFS2_LA_ENABLE_INTERVAL (30 * HZ) /* * Given an event, calculate the size of our next local alloc window. * * This should always be called under i_rwsem of the local alloc inode * so that local alloc disabling doesn't race with processes trying to * use the allocator. * * Returns the state which the local alloc was left in. This value can * be ignored by some paths. */ static int ocfs2_recalc_la_window(struct ocfs2_super *osb, enum ocfs2_la_event event) { unsigned int bits; int state; spin_lock(&osb->osb_lock); if (osb->local_alloc_state == OCFS2_LA_DISABLED) { WARN_ON_ONCE(osb->local_alloc_state == OCFS2_LA_DISABLED); goto out_unlock; } /* * ENOSPC and fragmentation are treated similarly for now. */ if (event == OCFS2_LA_EVENT_ENOSPC || event == OCFS2_LA_EVENT_FRAGMENTED) { /* * We ran out of contiguous space in the primary * bitmap. Drastically reduce the number of bits used * by local alloc until we have to disable it. */ bits = osb->local_alloc_bits >> 1; if (bits > ocfs2_megabytes_to_clusters(osb->sb, 1)) { /* * By setting state to THROTTLED, we'll keep * the number of local alloc bits used down * until an event occurs which would give us * reason to assume the bitmap situation might * have changed. */ osb->local_alloc_state = OCFS2_LA_THROTTLED; osb->local_alloc_bits = bits; } else { osb->local_alloc_state = OCFS2_LA_DISABLED; } queue_delayed_work(osb->ocfs2_wq, &osb->la_enable_wq, OCFS2_LA_ENABLE_INTERVAL); goto out_unlock; } /* * Don't increase the size of the local alloc window until we * know we might be able to fulfill the request. Otherwise, we * risk bouncing around the global bitmap during periods of * low space. */ if (osb->local_alloc_state != OCFS2_LA_THROTTLED) osb->local_alloc_bits = osb->local_alloc_default_bits; out_unlock: state = osb->local_alloc_state; spin_unlock(&osb->osb_lock); return state; } static int ocfs2_local_alloc_reserve_for_window(struct ocfs2_super *osb, struct ocfs2_alloc_context **ac, struct inode **bitmap_inode, struct buffer_head **bitmap_bh) { int status; *ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL); if (!(*ac)) { status = -ENOMEM; mlog_errno(status); goto bail; } retry_enospc: (*ac)->ac_bits_wanted = osb->local_alloc_bits; status = ocfs2_reserve_cluster_bitmap_bits(osb, *ac); if (status == -ENOSPC) { if (ocfs2_recalc_la_window(osb, OCFS2_LA_EVENT_ENOSPC) == OCFS2_LA_DISABLED) goto bail; ocfs2_free_ac_resource(*ac); memset(*ac, 0, sizeof(struct ocfs2_alloc_context)); goto retry_enospc; } if (status < 0) { mlog_errno(status); goto bail; } *bitmap_inode = (*ac)->ac_inode; igrab(*bitmap_inode); *bitmap_bh = (*ac)->ac_bh; get_bh(*bitmap_bh); status = 0; bail: if ((status < 0) && *ac) { ocfs2_free_alloc_context(*ac); *ac = NULL; } if (status) mlog_errno(status); return status; } /* * pass it the bitmap lock in lock_bh if you have it. */ static int ocfs2_local_alloc_new_window(struct ocfs2_super *osb, handle_t *handle, struct ocfs2_alloc_context *ac) { int status = 0; u32 cluster_off, cluster_count; struct ocfs2_dinode *alloc = NULL; struct ocfs2_local_alloc *la; alloc = (struct ocfs2_dinode *) osb->local_alloc_bh->b_data; la = OCFS2_LOCAL_ALLOC(alloc); trace_ocfs2_local_alloc_new_window( le32_to_cpu(alloc->id1.bitmap1.i_total), osb->local_alloc_bits); /* Instruct the allocation code to try the most recently used * cluster group. We'll re-record the group used this pass * below. */ ac->ac_last_group = osb->la_last_gd; /* we used the generic suballoc reserve function, but we set * everything up nicely, so there's no reason why we can't use * the more specific cluster api to claim bits. */ status = ocfs2_claim_clusters(handle, ac, osb->local_alloc_bits, &cluster_off, &cluster_count); if (status == -ENOSPC) { retry_enospc: /* * Note: We could also try syncing the journal here to * allow use of any free bits which the current * transaction can't give us access to. --Mark */ if (ocfs2_recalc_la_window(osb, OCFS2_LA_EVENT_FRAGMENTED) == OCFS2_LA_DISABLED) goto bail; ac->ac_bits_wanted = osb->local_alloc_bits; status = ocfs2_claim_clusters(handle, ac, osb->local_alloc_bits, &cluster_off, &cluster_count); if (status == -ENOSPC) goto retry_enospc; /* * We only shrunk the *minimum* number of in our * request - it's entirely possible that the allocator * might give us more than we asked for. */ if (status == 0) { spin_lock(&osb->osb_lock); osb->local_alloc_bits = cluster_count; spin_unlock(&osb->osb_lock); } } if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } osb->la_last_gd = ac->ac_last_group; la->la_bm_off = cpu_to_le32(cluster_off); alloc->id1.bitmap1.i_total = cpu_to_le32(cluster_count); /* just in case... In the future when we find space ourselves, * we don't have to get all contiguous -- but we'll have to * set all previously used bits in bitmap and update * la_bits_set before setting the bits in the main bitmap. */ alloc->id1.bitmap1.i_used = 0; memset(OCFS2_LOCAL_ALLOC(alloc)->la_bitmap, 0, le16_to_cpu(la->la_size)); ocfs2_resmap_restart(&osb->osb_la_resmap, cluster_count, OCFS2_LOCAL_ALLOC(alloc)->la_bitmap); trace_ocfs2_local_alloc_new_window_result( OCFS2_LOCAL_ALLOC(alloc)->la_bm_off, le32_to_cpu(alloc->id1.bitmap1.i_total)); bail: if (status) mlog_errno(status); return status; } /* Note that we do *NOT* lock the local alloc inode here as * it's been locked already for us. */ static int ocfs2_local_alloc_slide_window(struct ocfs2_super *osb, struct inode *local_alloc_inode) { int status = 0; struct buffer_head *main_bm_bh = NULL; struct inode *main_bm_inode = NULL; handle_t *handle = NULL; struct ocfs2_dinode *alloc; struct ocfs2_dinode *alloc_copy = NULL; struct ocfs2_alloc_context *ac = NULL; ocfs2_recalc_la_window(osb, OCFS2_LA_EVENT_SLIDE); /* This will lock the main bitmap for us. */ status = ocfs2_local_alloc_reserve_for_window(osb, &ac, &main_bm_inode, &main_bm_bh); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } handle = ocfs2_start_trans(osb, OCFS2_WINDOW_MOVE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } alloc = (struct ocfs2_dinode *) osb->local_alloc_bh->b_data; /* We want to clear the local alloc before doing anything * else, so that if we error later during this operation, * local alloc shutdown won't try to double free main bitmap * bits. Make a copy so the sync function knows which bits to * free. */ alloc_copy = kmemdup(alloc, osb->local_alloc_bh->b_size, GFP_NOFS); if (!alloc_copy) { status = -ENOMEM; mlog_errno(status); goto bail; } status = ocfs2_journal_access_di(handle, INODE_CACHE(local_alloc_inode), osb->local_alloc_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } ocfs2_clear_local_alloc(alloc); ocfs2_journal_dirty(handle, osb->local_alloc_bh); status = ocfs2_sync_local_to_main(osb, handle, alloc_copy, main_bm_inode, main_bm_bh); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_local_alloc_new_window(osb, handle, ac); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto bail; } atomic_inc(&osb->alloc_stats.moves); bail: if (handle) ocfs2_commit_trans(osb, handle); brelse(main_bm_bh); iput(main_bm_inode); kfree(alloc_copy); if (ac) ocfs2_free_alloc_context(ac); if (status) mlog_errno(status); return status; }
linux-master
fs/ocfs2/localalloc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <asm/byteorder.h> #include <linux/swap.h> #include <linux/mpage.h> #include <linux/quotaops.h> #include <linux/blkdev.h> #include <linux/uio.h> #include <linux/mm.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "inode.h" #include "journal.h" #include "suballoc.h" #include "super.h" #include "symlink.h" #include "refcounttree.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" #include "dir.h" #include "namei.h" #include "sysfile.h" static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { int err = -EIO; int status; struct ocfs2_dinode *fe = NULL; struct buffer_head *bh = NULL; struct buffer_head *buffer_cache_bh = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); void *kaddr; trace_ocfs2_symlink_get_block( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)iblock, bh_result, create); BUG_ON(ocfs2_inode_is_fast_symlink(inode)); if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { mlog(ML_ERROR, "block offset > PATH_MAX: %llu", (unsigned long long)iblock); goto bail; } status = ocfs2_read_inode_block(inode, &bh); if (status < 0) { mlog_errno(status); goto bail; } fe = (struct ocfs2_dinode *) bh->b_data; if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, le32_to_cpu(fe->i_clusters))) { err = -ENOMEM; mlog(ML_ERROR, "block offset is outside the allocated size: " "%llu\n", (unsigned long long)iblock); goto bail; } /* We don't use the page cache to create symlink data, so if * need be, copy it over from the buffer cache. */ if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock; buffer_cache_bh = sb_getblk(osb->sb, blkno); if (!buffer_cache_bh) { err = -ENOMEM; mlog(ML_ERROR, "couldn't getblock for symlink!\n"); goto bail; } /* we haven't locked out transactions, so a commit * could've happened. Since we've got a reference on * the bh, even if it commits while we're doing the * copy, the data is still good. */ if (buffer_jbd(buffer_cache_bh) && ocfs2_inode_is_new(inode)) { kaddr = kmap_atomic(bh_result->b_page); if (!kaddr) { mlog(ML_ERROR, "couldn't kmap!\n"); goto bail; } memcpy(kaddr + (bh_result->b_size * iblock), buffer_cache_bh->b_data, bh_result->b_size); kunmap_atomic(kaddr); set_buffer_uptodate(bh_result); } brelse(buffer_cache_bh); } map_bh(bh_result, inode->i_sb, le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); err = 0; bail: brelse(bh); return err; } static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); down_read(&oi->ip_alloc_sem); ret = ocfs2_get_block(inode, iblock, bh_result, create); up_read(&oi->ip_alloc_sem); return ret; } int ocfs2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { int err = 0; unsigned int ext_flags; u64 max_blocks = bh_result->b_size >> inode->i_blkbits; u64 p_blkno, count, past_eof; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)iblock, bh_result, create); if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", inode, inode->i_ino); if (S_ISLNK(inode->i_mode)) { /* this always does I/O for some reason. */ err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); goto bail; } err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, &ext_flags); if (err) { mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " "%llu, NULL)\n", err, inode, (unsigned long long)iblock, (unsigned long long)p_blkno); goto bail; } if (max_blocks < count) count = max_blocks; /* * ocfs2 never allocates in this function - the only time we * need to use BH_New is when we're extending i_size on a file * system which doesn't support holes, in which case BH_New * allows __block_write_begin() to zero. * * If we see this on a sparse file system, then a truncate has * raced us and removed the cluster. In this case, we clear * the buffers dirty and uptodate bits and let the buffer code * ignore it as a hole. */ if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { clear_buffer_dirty(bh_result); clear_buffer_uptodate(bh_result); goto bail; } /* Treat the unwritten extent as a hole for zeroing purposes. */ if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) map_bh(bh_result, inode->i_sb, p_blkno); bh_result->b_size = count << inode->i_blkbits; if (!ocfs2_sparse_alloc(osb)) { if (p_blkno == 0) { err = -EIO; mlog(ML_ERROR, "iblock = %llu p_blkno = %llu blkno=(%llu)\n", (unsigned long long)iblock, (unsigned long long)p_blkno, (unsigned long long)OCFS2_I(inode)->ip_blkno); mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); dump_stack(); goto bail; } } past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)past_eof); if (create && (iblock >= past_eof)) set_buffer_new(bh_result); bail: if (err < 0) err = -EIO; return err; } int ocfs2_read_inline_data(struct inode *inode, struct page *page, struct buffer_head *di_bh) { void *kaddr; loff_t size; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); return -EROFS; } size = i_size_read(inode); if (size > PAGE_SIZE || size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { ocfs2_error(inode->i_sb, "Inode %llu has with inline data has bad size: %Lu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)size); return -EROFS; } kaddr = kmap_atomic(page); if (size) memcpy(kaddr, di->id2.i_data.id_data, size); /* Clear the remaining part of the page */ memset(kaddr + size, 0, PAGE_SIZE - size); flush_dcache_page(page); kunmap_atomic(kaddr); SetPageUptodate(page); return 0; } static int ocfs2_readpage_inline(struct inode *inode, struct page *page) { int ret; struct buffer_head *di_bh = NULL; BUG_ON(!PageLocked(page)); BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_inline_data(inode, page, di_bh); out: unlock_page(page); brelse(di_bh); return ret; } static int ocfs2_read_folio(struct file *file, struct folio *folio) { struct inode *inode = folio->mapping->host; struct ocfs2_inode_info *oi = OCFS2_I(inode); loff_t start = folio_pos(folio); int ret, unlock = 1; trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index); ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page); if (ret != 0) { if (ret == AOP_TRUNCATED_PAGE) unlock = 0; mlog_errno(ret); goto out; } if (down_read_trylock(&oi->ip_alloc_sem) == 0) { /* * Unlock the folio and cycle ip_alloc_sem so that we don't * busyloop waiting for ip_alloc_sem to unlock */ ret = AOP_TRUNCATED_PAGE; folio_unlock(folio); unlock = 0; down_read(&oi->ip_alloc_sem); up_read(&oi->ip_alloc_sem); goto out_inode_unlock; } /* * i_size might have just been updated as we grabed the meta lock. We * might now be discovering a truncate that hit on another node. * block_read_full_folio->get_block freaks out if it is asked to read * beyond the end of a file, so we check here. Callers * (generic_file_read, vm_ops->fault) are clever enough to check i_size * and notice that the folio they just read isn't needed. * * XXX sys_readahead() seems to get that wrong? */ if (start >= i_size_read(inode)) { folio_zero_segment(folio, 0, folio_size(folio)); folio_mark_uptodate(folio); ret = 0; goto out_alloc; } if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) ret = ocfs2_readpage_inline(inode, &folio->page); else ret = block_read_full_folio(folio, ocfs2_get_block); unlock = 0; out_alloc: up_read(&oi->ip_alloc_sem); out_inode_unlock: ocfs2_inode_unlock(inode, 0); out: if (unlock) folio_unlock(folio); return ret; } /* * This is used only for read-ahead. Failures or difficult to handle * situations are safe to ignore. * * Right now, we don't bother with BH_Boundary - in-inode extent lists * are quite large (243 extents on 4k blocks), so most inodes don't * grow out to a tree. If need be, detecting boundary extents could * trivially be added in a future version of ocfs2_get_block(). */ static void ocfs2_readahead(struct readahead_control *rac) { int ret; struct inode *inode = rac->mapping->host; struct ocfs2_inode_info *oi = OCFS2_I(inode); /* * Use the nonblocking flag for the dlm code to avoid page * lock inversion, but don't bother with retrying. */ ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); if (ret) return; if (down_read_trylock(&oi->ip_alloc_sem) == 0) goto out_unlock; /* * Don't bother with inline-data. There isn't anything * to read-ahead in that case anyway... */ if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) goto out_up; /* * Check whether a remote node truncated this file - we just * drop out in that case as it's not worth handling here. */ if (readahead_pos(rac) >= i_size_read(inode)) goto out_up; mpage_readahead(rac, ocfs2_get_block); out_up: up_read(&oi->ip_alloc_sem); out_unlock: ocfs2_inode_unlock(inode, 0); } /* Note: Because we don't support holes, our allocation has * already happened (allocation writes zeros to the file data) * so we don't have to worry about ordered writes in * ocfs2_writepage. * * ->writepage is called during the process of invalidating the page cache * during blocked lock processing. It can't block on any cluster locks * to during block mapping. It's relying on the fact that the block * mapping can't have disappeared under the dirty pages that it is * being asked to write back. */ static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) { trace_ocfs2_writepage( (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, page->index); return block_write_full_page(page, ocfs2_get_block, wbc); } /* Taken from ext3. We don't necessarily need the full blown * functionality yet, but IMHO it's better to cut and paste the whole * thing so we can avoid introducing our own bugs (and easily pick up * their fixes when they happen) --Mark */ int walk_page_buffers( handle_t *handle, struct buffer_head *head, unsigned from, unsigned to, int *partial, int (*fn)( handle_t *handle, struct buffer_head *bh)) { struct buffer_head *bh; unsigned block_start, block_end; unsigned blocksize = head->b_size; int err, ret = 0; struct buffer_head *next; for ( bh = head, block_start = 0; ret == 0 && (bh != head || !block_start); block_start = block_end, bh = next) { next = bh->b_this_page; block_end = block_start + blocksize; if (block_end <= from || block_start >= to) { if (partial && !buffer_uptodate(bh)) *partial = 1; continue; } err = (*fn)(handle, bh); if (!ret) ret = err; } return ret; } static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) { sector_t status; u64 p_blkno = 0; int err = 0; struct inode *inode = mapping->host; trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)block); /* * The swap code (ab-)uses ->bmap to get a block mapping and then * bypasseѕ the file system for actual I/O. We really can't allow * that on refcounted inodes, so we have to skip out here. And yes, * 0 is the magic code for a bmap error.. */ if (ocfs2_is_refcount_inode(inode)) return 0; /* We don't need to lock journal system files, since they aren't * accessed concurrently from multiple nodes. */ if (!INODE_JOURNAL(inode)) { err = ocfs2_inode_lock(inode, NULL, 0); if (err) { if (err != -ENOENT) mlog_errno(err); goto bail; } down_read(&OCFS2_I(inode)->ip_alloc_sem); } if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL); if (!INODE_JOURNAL(inode)) { up_read(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_inode_unlock(inode, 0); } if (err) { mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", (unsigned long long)block); mlog_errno(err); goto bail; } bail: status = err ? 0 : p_blkno; return status; } static bool ocfs2_release_folio(struct folio *folio, gfp_t wait) { if (!folio_buffers(folio)) return false; return try_to_free_buffers(folio); } static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, u32 cpos, unsigned int *start, unsigned int *end) { unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { unsigned int cpp; cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); cluster_start = cpos % cpp; cluster_start = cluster_start << osb->s_clustersize_bits; cluster_end = cluster_start + osb->s_clustersize; } BUG_ON(cluster_start > PAGE_SIZE); BUG_ON(cluster_end > PAGE_SIZE); if (start) *start = cluster_start; if (end) *end = cluster_end; } /* * 'from' and 'to' are the region in the page to avoid zeroing. * * If pagesize > clustersize, this function will avoid zeroing outside * of the cluster boundary. * * from == to == 0 is code for "zero the entire cluster region" */ static void ocfs2_clear_page_regions(struct page *page, struct ocfs2_super *osb, u32 cpos, unsigned from, unsigned to) { void *kaddr; unsigned int cluster_start, cluster_end; ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); kaddr = kmap_atomic(page); if (from || to) { if (from > cluster_start) memset(kaddr + cluster_start, 0, from - cluster_start); if (to < cluster_end) memset(kaddr + to, 0, cluster_end - to); } else { memset(kaddr + cluster_start, 0, cluster_end - cluster_start); } kunmap_atomic(kaddr); } /* * Nonsparse file systems fully allocate before we get to the write * code. This prevents ocfs2_write() from tagging the write as an * allocating one, which means ocfs2_map_page_blocks() might try to * read-in the blocks at the tail of our file. Avoid reading them by * testing i_size against each block offset. */ static int ocfs2_should_read_blk(struct inode *inode, struct page *page, unsigned int block_start) { u64 offset = page_offset(page) + block_start; if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) return 1; if (i_size_read(inode) > offset) return 1; return 0; } /* * Some of this taken from __block_write_begin(). We already have our * mapping by now though, and the entire write will be allocating or * it won't, so not much need to use BH_New. * * This will also skip zeroing, which is handled externally. */ int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, struct inode *inode, unsigned int from, unsigned int to, int new) { int ret = 0; struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; unsigned int block_end, block_start; unsigned int bsize = i_blocksize(inode); if (!page_has_buffers(page)) create_empty_buffers(page, bsize, 0); head = page_buffers(page); for (bh = head, block_start = 0; bh != head || !block_start; bh = bh->b_this_page, block_start += bsize) { block_end = block_start + bsize; clear_buffer_new(bh); /* * Ignore blocks outside of our i/o range - * they may belong to unallocated clusters. */ if (block_start >= to || block_end <= from) { if (PageUptodate(page)) set_buffer_uptodate(bh); continue; } /* * For an allocating write with cluster size >= page * size, we always write the entire page. */ if (new) set_buffer_new(bh); if (!buffer_mapped(bh)) { map_bh(bh, inode->i_sb, *p_blkno); clean_bdev_bh_alias(bh); } if (PageUptodate(page)) { set_buffer_uptodate(bh); } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_new(bh) && ocfs2_should_read_blk(inode, page, block_start) && (block_start < from || block_end > to)) { bh_read_nowait(bh, 0); *wait_bh++=bh; } *p_blkno = *p_blkno + 1; } /* * If we issued read requests - let them complete. */ while(wait_bh > wait) { wait_on_buffer(*--wait_bh); if (!buffer_uptodate(*wait_bh)) ret = -EIO; } if (ret == 0 || !new) return ret; /* * If we get -EIO above, zero out any newly allocated blocks * to avoid exposing stale data. */ bh = head; block_start = 0; do { block_end = block_start + bsize; if (block_end <= from) goto next_bh; if (block_start >= to) break; zero_user(page, block_start, bh->b_size); set_buffer_uptodate(bh); mark_buffer_dirty(bh); next_bh: block_start = block_end; bh = bh->b_this_page; } while (bh != head); return ret; } #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) #define OCFS2_MAX_CTXT_PAGES 1 #else #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) #endif #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) struct ocfs2_unwritten_extent { struct list_head ue_node; struct list_head ue_ip_node; u32 ue_cpos; u32 ue_phys; }; /* * Describe the state of a single cluster to be written to. */ struct ocfs2_write_cluster_desc { u32 c_cpos; u32 c_phys; /* * Give this a unique field because c_phys eventually gets * filled. */ unsigned c_new; unsigned c_clear_unwritten; unsigned c_needs_zero; }; struct ocfs2_write_ctxt { /* Logical cluster position / len of write */ u32 w_cpos; u32 w_clen; /* First cluster allocated in a nonsparse extend */ u32 w_first_new_cpos; /* Type of caller. Must be one of buffer, mmap, direct. */ ocfs2_write_type_t w_type; struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; /* * This is true if page_size > cluster_size. * * It triggers a set of special cases during write which might * have to deal with allocating writes to partial pages. */ unsigned int w_large_pages; /* * Pages involved in this write. * * w_target_page is the page being written to by the user. * * w_pages is an array of pages which always contains * w_target_page, and in the case of an allocating write with * page_size < cluster size, it will contain zero'd and mapped * pages adjacent to w_target_page which need to be written * out in so that future reads from that region will get * zero's. */ unsigned int w_num_pages; struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; struct page *w_target_page; /* * w_target_locked is used for page_mkwrite path indicating no unlocking * against w_target_page in ocfs2_write_end_nolock. */ unsigned int w_target_locked:1; /* * ocfs2_write_end() uses this to know what the real range to * write in the target should be. */ unsigned int w_target_from; unsigned int w_target_to; /* * We could use journal_current_handle() but this is cleaner, * IMHO -Mark */ handle_t *w_handle; struct buffer_head *w_di_bh; struct ocfs2_cached_dealloc_ctxt w_dealloc; struct list_head w_unwritten_list; unsigned int w_unwritten_count; }; void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) { int i; for(i = 0; i < num_pages; i++) { if (pages[i]) { unlock_page(pages[i]); mark_page_accessed(pages[i]); put_page(pages[i]); } } } static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) { int i; /* * w_target_locked is only set to true in the page_mkwrite() case. * The intent is to allow us to lock the target page from write_begin() * to write_end(). The caller must hold a ref on w_target_page. */ if (wc->w_target_locked) { BUG_ON(!wc->w_target_page); for (i = 0; i < wc->w_num_pages; i++) { if (wc->w_target_page == wc->w_pages[i]) { wc->w_pages[i] = NULL; break; } } mark_page_accessed(wc->w_target_page); put_page(wc->w_target_page); } ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); } static void ocfs2_free_unwritten_list(struct inode *inode, struct list_head *head) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; list_for_each_entry_safe(ue, tmp, head, ue_node) { list_del(&ue->ue_node); spin_lock(&oi->ip_lock); list_del(&ue->ue_ip_node); spin_unlock(&oi->ip_lock); kfree(ue); } } static void ocfs2_free_write_ctxt(struct inode *inode, struct ocfs2_write_ctxt *wc) { ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); ocfs2_unlock_pages(wc); brelse(wc->w_di_bh); kfree(wc); } static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, struct ocfs2_super *osb, loff_t pos, unsigned len, ocfs2_write_type_t type, struct buffer_head *di_bh) { u32 cend; struct ocfs2_write_ctxt *wc; wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); if (!wc) return -ENOMEM; wc->w_cpos = pos >> osb->s_clustersize_bits; wc->w_first_new_cpos = UINT_MAX; cend = (pos + len - 1) >> osb->s_clustersize_bits; wc->w_clen = cend - wc->w_cpos + 1; get_bh(di_bh); wc->w_di_bh = di_bh; wc->w_type = type; if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) wc->w_large_pages = 1; else wc->w_large_pages = 0; ocfs2_init_dealloc_ctxt(&wc->w_dealloc); INIT_LIST_HEAD(&wc->w_unwritten_list); *wcp = wc; return 0; } /* * If a page has any new buffers, zero them out here, and mark them uptodate * and dirty so they'll be written out (in order to prevent uninitialised * block data from leaking). And clear the new bit. */ static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) { unsigned int block_start, block_end; struct buffer_head *head, *bh; BUG_ON(!PageLocked(page)); if (!page_has_buffers(page)) return; bh = head = page_buffers(page); block_start = 0; do { block_end = block_start + bh->b_size; if (buffer_new(bh)) { if (block_end > from && block_start < to) { if (!PageUptodate(page)) { unsigned start, end; start = max(from, block_start); end = min(to, block_end); zero_user_segment(page, start, end); set_buffer_uptodate(bh); } clear_buffer_new(bh); mark_buffer_dirty(bh); } } block_start = block_end; bh = bh->b_this_page; } while (bh != head); } /* * Only called when we have a failure during allocating write to write * zero's to the newly allocated region. */ static void ocfs2_write_failure(struct inode *inode, struct ocfs2_write_ctxt *wc, loff_t user_pos, unsigned user_len) { int i; unsigned from = user_pos & (PAGE_SIZE - 1), to = user_pos + user_len; struct page *tmppage; if (wc->w_target_page) ocfs2_zero_new_buffers(wc->w_target_page, from, to); for(i = 0; i < wc->w_num_pages; i++) { tmppage = wc->w_pages[i]; if (tmppage && page_has_buffers(tmppage)) { if (ocfs2_should_order_data(inode)) ocfs2_jbd2_inode_add_write(wc->w_handle, inode, user_pos, user_len); block_commit_write(tmppage, from, to); } } } static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, struct ocfs2_write_ctxt *wc, struct page *page, u32 cpos, loff_t user_pos, unsigned user_len, int new) { int ret; unsigned int map_from = 0, map_to = 0; unsigned int cluster_start, cluster_end; unsigned int user_data_from = 0, user_data_to = 0; ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, &cluster_start, &cluster_end); /* treat the write as new if the a hole/lseek spanned across * the page boundary. */ new = new | ((i_size_read(inode) <= page_offset(page)) && (page_offset(page) <= user_pos)); if (page == wc->w_target_page) { map_from = user_pos & (PAGE_SIZE - 1); map_to = map_from + user_len; if (new) ret = ocfs2_map_page_blocks(page, p_blkno, inode, cluster_start, cluster_end, new); else ret = ocfs2_map_page_blocks(page, p_blkno, inode, map_from, map_to, new); if (ret) { mlog_errno(ret); goto out; } user_data_from = map_from; user_data_to = map_to; if (new) { map_from = cluster_start; map_to = cluster_end; } } else { /* * If we haven't allocated the new page yet, we * shouldn't be writing it out without copying user * data. This is likely a math error from the caller. */ BUG_ON(!new); map_from = cluster_start; map_to = cluster_end; ret = ocfs2_map_page_blocks(page, p_blkno, inode, cluster_start, cluster_end, new); if (ret) { mlog_errno(ret); goto out; } } /* * Parts of newly allocated pages need to be zero'd. * * Above, we have also rewritten 'to' and 'from' - as far as * the rest of the function is concerned, the entire cluster * range inside of a page needs to be written. * * We can skip this if the page is up to date - it's already * been zero'd from being read in as a hole. */ if (new && !PageUptodate(page)) ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), cpos, user_data_from, user_data_to); flush_dcache_page(page); out: return ret; } /* * This function will only grab one clusters worth of pages. */ static int ocfs2_grab_pages_for_write(struct address_space *mapping, struct ocfs2_write_ctxt *wc, u32 cpos, loff_t user_pos, unsigned user_len, int new, struct page *mmap_page) { int ret = 0, i; unsigned long start, target_index, end_index, index; struct inode *inode = mapping->host; loff_t last_byte; target_index = user_pos >> PAGE_SHIFT; /* * Figure out how many pages we'll be manipulating here. For * non allocating write, we just change the one * page. Otherwise, we'll need a whole clusters worth. If we're * writing past i_size, we only need enough pages to cover the * last page of the write. */ if (new) { wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); /* * We need the index *past* the last page we could possibly * touch. This is the page past the end of the write or * i_size, whichever is greater. */ last_byte = max(user_pos + user_len, i_size_read(inode)); BUG_ON(last_byte < 1); end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; if ((start + wc->w_num_pages) > end_index) wc->w_num_pages = end_index - start; } else { wc->w_num_pages = 1; start = target_index; } end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; for(i = 0; i < wc->w_num_pages; i++) { index = start + i; if (index >= target_index && index <= end_index && wc->w_type == OCFS2_WRITE_MMAP) { /* * ocfs2_pagemkwrite() is a little different * and wants us to directly use the page * passed in. */ lock_page(mmap_page); /* Exit and let the caller retry */ if (mmap_page->mapping != mapping) { WARN_ON(mmap_page->mapping); unlock_page(mmap_page); ret = -EAGAIN; goto out; } get_page(mmap_page); wc->w_pages[i] = mmap_page; wc->w_target_locked = true; } else if (index >= target_index && index <= end_index && wc->w_type == OCFS2_WRITE_DIRECT) { /* Direct write has no mapping page. */ wc->w_pages[i] = NULL; continue; } else { wc->w_pages[i] = find_or_create_page(mapping, index, GFP_NOFS); if (!wc->w_pages[i]) { ret = -ENOMEM; mlog_errno(ret); goto out; } } wait_for_stable_page(wc->w_pages[i]); if (index == target_index) wc->w_target_page = wc->w_pages[i]; } out: if (ret) wc->w_target_locked = false; return ret; } /* * Prepare a single cluster for write one cluster into the file. */ static int ocfs2_write_cluster(struct address_space *mapping, u32 *phys, unsigned int new, unsigned int clear_unwritten, unsigned int should_zero, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, struct ocfs2_write_ctxt *wc, u32 cpos, loff_t user_pos, unsigned user_len) { int ret, i; u64 p_blkno; struct inode *inode = mapping->host; struct ocfs2_extent_tree et; int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); if (new) { u32 tmp_pos; /* * This is safe to call with the page locks - it won't take * any additional semaphores or cluster locks. */ tmp_pos = cpos; ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, &tmp_pos, 1, !clear_unwritten, wc->w_di_bh, wc->w_handle, data_ac, meta_ac, NULL); /* * This shouldn't happen because we must have already * calculated the correct meta data allocation required. The * internal tree allocation code should know how to increase * transaction credits itself. * * If need be, we could handle -EAGAIN for a * RESTART_TRANS here. */ mlog_bug_on_msg(ret == -EAGAIN, "Inode %llu: EAGAIN return during allocation.\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); if (ret < 0) { mlog_errno(ret); goto out; } } else if (clear_unwritten) { ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), wc->w_di_bh); ret = ocfs2_mark_extent_written(inode, &et, wc->w_handle, cpos, 1, *phys, meta_ac, &wc->w_dealloc); if (ret < 0) { mlog_errno(ret); goto out; } } /* * The only reason this should fail is due to an inability to * find the extent added. */ ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); if (ret < 0) { mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " "at logical cluster %u", (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); goto out; } BUG_ON(*phys == 0); p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); if (!should_zero) p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); for(i = 0; i < wc->w_num_pages; i++) { int tmpret; /* This is the direct io target page. */ if (wc->w_pages[i] == NULL) { p_blkno++; continue; } tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, wc->w_pages[i], cpos, user_pos, user_len, should_zero); if (tmpret) { mlog_errno(tmpret); if (ret == 0) ret = tmpret; } } /* * We only have cleanup to do in case of allocating write. */ if (ret && new) ocfs2_write_failure(inode, wc, user_pos, user_len); out: return ret; } static int ocfs2_write_cluster_by_desc(struct address_space *mapping, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, struct ocfs2_write_ctxt *wc, loff_t pos, unsigned len) { int ret, i; loff_t cluster_off; unsigned int local_len = len; struct ocfs2_write_cluster_desc *desc; struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); for (i = 0; i < wc->w_clen; i++) { desc = &wc->w_desc[i]; /* * We have to make sure that the total write passed in * doesn't extend past a single cluster. */ local_len = len; cluster_off = pos & (osb->s_clustersize - 1); if ((cluster_off + local_len) > osb->s_clustersize) local_len = osb->s_clustersize - cluster_off; ret = ocfs2_write_cluster(mapping, &desc->c_phys, desc->c_new, desc->c_clear_unwritten, desc->c_needs_zero, data_ac, meta_ac, wc, desc->c_cpos, pos, local_len); if (ret) { mlog_errno(ret); goto out; } len -= local_len; pos += local_len; } ret = 0; out: return ret; } /* * ocfs2_write_end() wants to know which parts of the target page it * should complete the write on. It's easiest to compute them ahead of * time when a more complete view of the write is available. */ static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, struct ocfs2_write_ctxt *wc, loff_t pos, unsigned len, int alloc) { struct ocfs2_write_cluster_desc *desc; wc->w_target_from = pos & (PAGE_SIZE - 1); wc->w_target_to = wc->w_target_from + len; if (alloc == 0) return; /* * Allocating write - we may have different boundaries based * on page size and cluster size. * * NOTE: We can no longer compute one value from the other as * the actual write length and user provided length may be * different. */ if (wc->w_large_pages) { /* * We only care about the 1st and last cluster within * our range and whether they should be zero'd or not. Either * value may be extended out to the start/end of a * newly allocated cluster. */ desc = &wc->w_desc[0]; if (desc->c_needs_zero) ocfs2_figure_cluster_boundaries(osb, desc->c_cpos, &wc->w_target_from, NULL); desc = &wc->w_desc[wc->w_clen - 1]; if (desc->c_needs_zero) ocfs2_figure_cluster_boundaries(osb, desc->c_cpos, NULL, &wc->w_target_to); } else { wc->w_target_from = 0; wc->w_target_to = PAGE_SIZE; } } /* * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to * do the zero work. And should not to clear UNWRITTEN since it will be cleared * by the direct io procedure. * If this is a new extent that allocated by direct io, we should mark it in * the ip_unwritten_list. */ static int ocfs2_unwritten_check(struct inode *inode, struct ocfs2_write_ctxt *wc, struct ocfs2_write_cluster_desc *desc) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; int ret = 0; if (!desc->c_needs_zero) return 0; retry: spin_lock(&oi->ip_lock); /* Needs not to zero no metter buffer or direct. The one who is zero * the cluster is doing zero. And he will clear unwritten after all * cluster io finished. */ list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { if (desc->c_cpos == ue->ue_cpos) { BUG_ON(desc->c_new); desc->c_needs_zero = 0; desc->c_clear_unwritten = 0; goto unlock; } } if (wc->w_type != OCFS2_WRITE_DIRECT) goto unlock; if (new == NULL) { spin_unlock(&oi->ip_lock); new = kmalloc(sizeof(struct ocfs2_unwritten_extent), GFP_NOFS); if (new == NULL) { ret = -ENOMEM; goto out; } goto retry; } /* This direct write will doing zero. */ new->ue_cpos = desc->c_cpos; new->ue_phys = desc->c_phys; desc->c_clear_unwritten = 0; list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); list_add_tail(&new->ue_node, &wc->w_unwritten_list); wc->w_unwritten_count++; new = NULL; unlock: spin_unlock(&oi->ip_lock); out: kfree(new); return ret; } /* * Populate each single-cluster write descriptor in the write context * with information about the i/o to be done. * * Returns the number of clusters that will have to be allocated, as * well as a worst case estimate of the number of extent records that * would have to be created during a write to an unwritten region. */ static int ocfs2_populate_write_desc(struct inode *inode, struct ocfs2_write_ctxt *wc, unsigned int *clusters_to_alloc, unsigned int *extents_to_split) { int ret; struct ocfs2_write_cluster_desc *desc; unsigned int num_clusters = 0; unsigned int ext_flags = 0; u32 phys = 0; int i; *clusters_to_alloc = 0; *extents_to_split = 0; for (i = 0; i < wc->w_clen; i++) { desc = &wc->w_desc[i]; desc->c_cpos = wc->w_cpos + i; if (num_clusters == 0) { /* * Need to look up the next extent record. */ ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, &num_clusters, &ext_flags); if (ret) { mlog_errno(ret); goto out; } /* We should already CoW the refcountd extent. */ BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); /* * Assume worst case - that we're writing in * the middle of the extent. * * We can assume that the write proceeds from * left to right, in which case the extent * insert code is smart enough to coalesce the * next splits into the previous records created. */ if (ext_flags & OCFS2_EXT_UNWRITTEN) *extents_to_split = *extents_to_split + 2; } else if (phys) { /* * Only increment phys if it doesn't describe * a hole. */ phys++; } /* * If w_first_new_cpos is < UINT_MAX, we have a non-sparse * file that got extended. w_first_new_cpos tells us * where the newly allocated clusters are so we can * zero them. */ if (desc->c_cpos >= wc->w_first_new_cpos) { BUG_ON(phys == 0); desc->c_needs_zero = 1; } desc->c_phys = phys; if (phys == 0) { desc->c_new = 1; desc->c_needs_zero = 1; desc->c_clear_unwritten = 1; *clusters_to_alloc = *clusters_to_alloc + 1; } if (ext_flags & OCFS2_EXT_UNWRITTEN) { desc->c_clear_unwritten = 1; desc->c_needs_zero = 1; } ret = ocfs2_unwritten_check(inode, wc, desc); if (ret) { mlog_errno(ret); goto out; } num_clusters--; } ret = 0; out: return ret; } static int ocfs2_write_begin_inline(struct address_space *mapping, struct inode *inode, struct ocfs2_write_ctxt *wc) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct page *page; handle_t *handle; struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } page = find_or_create_page(mapping, 0, GFP_NOFS); if (!page) { ocfs2_commit_trans(osb, handle); ret = -ENOMEM; mlog_errno(ret); goto out; } /* * If we don't set w_num_pages then this page won't get unlocked * and freed on cleanup of the write context. */ wc->w_pages[0] = wc->w_target_page = page; wc->w_num_pages = 1; ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { ocfs2_commit_trans(osb, handle); mlog_errno(ret); goto out; } if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) ocfs2_set_inode_data_inline(inode, di); if (!PageUptodate(page)) { ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); if (ret) { ocfs2_commit_trans(osb, handle); goto out; } } wc->w_handle = handle; out: return ret; } int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) return 1; return 0; } static int ocfs2_try_to_write_inline_data(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, struct page *mmap_page, struct ocfs2_write_ctxt *wc) { int ret, written = 0; loff_t end = pos + len; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = NULL; trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, oi->ip_dyn_features); /* * Handle inodes which already have inline data 1st. */ if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { if (mmap_page == NULL && ocfs2_size_fits_inline_data(wc->w_di_bh, end)) goto do_inline_write; /* * The write won't fit - we have to give this inode an * inline extent list now. */ ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); if (ret) mlog_errno(ret); goto out; } /* * Check whether the inode can accept inline data. */ if (oi->ip_clusters != 0 || i_size_read(inode) != 0) return 0; /* * Check whether the write can fit. */ di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; if (mmap_page || end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) return 0; do_inline_write: ret = ocfs2_write_begin_inline(mapping, inode, wc); if (ret) { mlog_errno(ret); goto out; } /* * This signals to the caller that the data can be written * inline. */ written = 1; out: return written ? written : ret; } /* * This function only does anything for file systems which can't * handle sparse files. * * What we want to do here is fill in any hole between the current end * of allocation and the end of our write. That way the rest of the * write path can treat it as an non-allocating write, which has no * special case code for sparse/nonsparse files. */ static int ocfs2_expand_nonsparse_inode(struct inode *inode, struct buffer_head *di_bh, loff_t pos, unsigned len, struct ocfs2_write_ctxt *wc) { int ret; loff_t newsize = pos + len; BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); if (newsize <= i_size_read(inode)) return 0; ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); if (ret) mlog_errno(ret); /* There is no wc if this is call from direct. */ if (wc) wc->w_first_new_cpos = ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); return ret; } static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, loff_t pos) { int ret = 0; BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); if (pos > i_size_read(inode)) ret = ocfs2_zero_extend(inode, di_bh, pos); return ret; } int ocfs2_write_begin_nolock(struct address_space *mapping, loff_t pos, unsigned len, ocfs2_write_type_t type, struct page **pagep, void **fsdata, struct buffer_head *di_bh, struct page *mmap_page) { int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; struct ocfs2_write_ctxt *wc; struct inode *inode = mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; handle_t *handle; struct ocfs2_extent_tree et; int try_free = 1, ret1; try_again: ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); if (ret) { mlog_errno(ret); return ret; } if (ocfs2_supports_inline_data(osb)) { ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, mmap_page, wc); if (ret == 1) { ret = 0; goto success; } if (ret < 0) { mlog_errno(ret); goto out; } } /* Direct io change i_size late, should not zero tail here. */ if (type != OCFS2_WRITE_DIRECT) { if (ocfs2_sparse_alloc(osb)) ret = ocfs2_zero_tail(inode, di_bh, pos); else ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, wc); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_check_range_for_refcount(inode, pos, len); if (ret < 0) { mlog_errno(ret); goto out; } else if (ret == 1) { clusters_need = wc->w_clen; ret = ocfs2_refcount_cow(inode, di_bh, wc->w_cpos, wc->w_clen, UINT_MAX); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, &extents_to_split); if (ret) { mlog_errno(ret); goto out; } clusters_need += clusters_to_alloc; di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; trace_ocfs2_write_begin_nolock( (unsigned long long)OCFS2_I(inode)->ip_blkno, (long long)i_size_read(inode), le32_to_cpu(di->i_clusters), pos, len, type, mmap_page, clusters_to_alloc, extents_to_split); /* * We set w_target_from, w_target_to here so that * ocfs2_write_end() knows which range in the target page to * write out. An allocation requires that we write the entire * cluster range. */ if (clusters_to_alloc || extents_to_split) { /* * XXX: We are stretching the limits of * ocfs2_lock_allocators(). It greatly over-estimates * the work to be done. */ ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), wc->w_di_bh); ret = ocfs2_lock_allocators(inode, &et, clusters_to_alloc, extents_to_split, &data_ac, &meta_ac); if (ret) { mlog_errno(ret); goto out; } if (data_ac) data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); } else if (type == OCFS2_WRITE_DIRECT) /* direct write needs not to start trans if no extents alloc. */ goto success; /* * We have to zero sparse allocated clusters, unwritten extent clusters, * and non-sparse clusters we just extended. For non-sparse writes, * we know zeros will only be needed in the first and/or last cluster. */ if (wc->w_clen && (wc->w_desc[0].c_needs_zero || wc->w_desc[wc->w_clen - 1].c_needs_zero)) cluster_of_pages = 1; else cluster_of_pages = 0; ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } wc->w_handle = handle; if (clusters_to_alloc) { ret = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); if (ret) goto out_commit; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_quota; } /* * Fill our page array first. That way we've grabbed enough so * that we can zero and flush if we error after adding the * extent. */ ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, cluster_of_pages, mmap_page); if (ret) { /* * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock * the target page. In this case, we exit with no error and no target * page. This will trigger the caller, page_mkwrite(), to re-try * the operation. */ if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { BUG_ON(wc->w_target_page); ret = 0; goto out_quota; } mlog_errno(ret); goto out_quota; } ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, len); if (ret) { mlog_errno(ret); goto out_quota; } if (data_ac) ocfs2_free_alloc_context(data_ac); if (meta_ac) ocfs2_free_alloc_context(meta_ac); success: if (pagep) *pagep = wc->w_target_page; *fsdata = wc; return 0; out_quota: if (clusters_to_alloc) dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); out_commit: ocfs2_commit_trans(osb, handle); out: /* * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), * even in case of error here like ENOSPC and ENOMEM. So, we need * to unlock the target page manually to prevent deadlocks when * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED * to VM code. */ if (wc->w_target_locked) unlock_page(mmap_page); ocfs2_free_write_ctxt(inode, wc); if (data_ac) { ocfs2_free_alloc_context(data_ac); data_ac = NULL; } if (meta_ac) { ocfs2_free_alloc_context(meta_ac); meta_ac = NULL; } if (ret == -ENOSPC && try_free) { /* * Try to free some truncate log so that we can have enough * clusters to allocate. */ try_free = 0; ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); if (ret1 == 1) goto try_again; if (ret1 < 0) mlog_errno(ret1); } return ret; } static int ocfs2_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { int ret; struct buffer_head *di_bh = NULL; struct inode *inode = mapping->host; ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); return ret; } /* * Take alloc sem here to prevent concurrent lookups. That way * the mapping, zeroing and tree manipulation within * ocfs2_write() will be safe against ->read_folio(). This * should also serve to lock out allocation from a shared * writeable region. */ down_write(&OCFS2_I(inode)->ip_alloc_sem); ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, pagep, fsdata, di_bh, NULL); if (ret) { mlog_errno(ret); goto out_fail; } brelse(di_bh); return 0; out_fail: up_write(&OCFS2_I(inode)->ip_alloc_sem); brelse(di_bh); ocfs2_inode_unlock(inode, 1); return ret; } static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, unsigned len, unsigned *copied, struct ocfs2_dinode *di, struct ocfs2_write_ctxt *wc) { void *kaddr; if (unlikely(*copied < len)) { if (!PageUptodate(wc->w_target_page)) { *copied = 0; return; } } kaddr = kmap_atomic(wc->w_target_page); memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); kunmap_atomic(kaddr); trace_ocfs2_write_end_inline( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)pos, *copied, le16_to_cpu(di->id2.i_data.id_count), le16_to_cpu(di->i_dyn_features)); } int ocfs2_write_end_nolock(struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, void *fsdata) { int i, ret; unsigned from, to, start = pos & (PAGE_SIZE - 1); struct inode *inode = mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_write_ctxt *wc = fsdata; struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; handle_t *handle = wc->w_handle; struct page *tmppage; BUG_ON(!list_empty(&wc->w_unwritten_list)); if (handle) { ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { copied = ret; mlog_errno(ret); goto out; } } if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); goto out_write_size; } if (unlikely(copied < len) && wc->w_target_page) { loff_t new_isize; if (!PageUptodate(wc->w_target_page)) copied = 0; new_isize = max_t(loff_t, i_size_read(inode), pos + copied); if (new_isize > page_offset(wc->w_target_page)) ocfs2_zero_new_buffers(wc->w_target_page, start+copied, start+len); else { /* * When page is fully beyond new isize (data copy * failed), do not bother zeroing the page. Invalidate * it instead so that writeback does not get confused * put page & buffer dirty bits into inconsistent * state. */ block_invalidate_folio(page_folio(wc->w_target_page), 0, PAGE_SIZE); } } if (wc->w_target_page) flush_dcache_page(wc->w_target_page); for(i = 0; i < wc->w_num_pages; i++) { tmppage = wc->w_pages[i]; /* This is the direct io target page. */ if (tmppage == NULL) continue; if (tmppage == wc->w_target_page) { from = wc->w_target_from; to = wc->w_target_to; BUG_ON(from > PAGE_SIZE || to > PAGE_SIZE || to < from); } else { /* * Pages adjacent to the target (if any) imply * a hole-filling write in which case we want * to flush their entire range. */ from = 0; to = PAGE_SIZE; } if (page_has_buffers(tmppage)) { if (handle && ocfs2_should_order_data(inode)) { loff_t start_byte = ((loff_t)tmppage->index << PAGE_SHIFT) + from; loff_t length = to - from; ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); } block_commit_write(tmppage, from, to); } } out_write_size: /* Direct io do not update i_size here. */ if (wc->w_type != OCFS2_WRITE_DIRECT) { pos += copied; if (pos > i_size_read(inode)) { i_size_write(inode, pos); mark_inode_dirty(inode); } inode->i_blocks = ocfs2_inode_sector_count(inode); di->i_size = cpu_to_le64((u64)i_size_read(inode)); inode->i_mtime = inode_set_ctime_current(inode); di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); if (handle) ocfs2_update_inode_fsync_trans(handle, inode, 1); } if (handle) ocfs2_journal_dirty(handle, wc->w_di_bh); out: /* unlock pages before dealloc since it needs acquiring j_trans_barrier * lock, or it will cause a deadlock since journal commit threads holds * this lock and will ask for the page lock when flushing the data. * put it here to preserve the unlock order. */ ocfs2_unlock_pages(wc); if (handle) ocfs2_commit_trans(osb, handle); ocfs2_run_deallocs(osb, &wc->w_dealloc); brelse(wc->w_di_bh); kfree(wc); return copied; } static int ocfs2_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { int ret; struct inode *inode = mapping->host; ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); up_write(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_inode_unlock(inode, 1); return ret; } struct ocfs2_dio_write_ctxt { struct list_head dw_zero_list; unsigned dw_zero_count; int dw_orphaned; pid_t dw_writer_pid; }; static struct ocfs2_dio_write_ctxt * ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) { struct ocfs2_dio_write_ctxt *dwc = NULL; if (bh->b_private) return bh->b_private; dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); if (dwc == NULL) return NULL; INIT_LIST_HEAD(&dwc->dw_zero_list); dwc->dw_zero_count = 0; dwc->dw_orphaned = 0; dwc->dw_writer_pid = task_pid_nr(current); bh->b_private = dwc; *alloc = 1; return dwc; } static void ocfs2_dio_free_write_ctx(struct inode *inode, struct ocfs2_dio_write_ctxt *dwc) { ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); kfree(dwc); } /* * TODO: Make this into a generic get_blocks function. * * From do_direct_io in direct-io.c: * "So what we do is to permit the ->get_blocks function to populate * bh.b_size with the size of IO which is permitted at this offset and * this i_blkbits." * * This function is called directly from get_more_blocks in direct-io.c. * * called like this: dio->get_blocks(dio->inode, fs_startblk, * fs_count, map_bh, dio->rw == WRITE); */ static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_write_ctxt *wc; struct ocfs2_write_cluster_desc *desc = NULL; struct ocfs2_dio_write_ctxt *dwc = NULL; struct buffer_head *di_bh = NULL; u64 p_blkno; unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; loff_t pos = iblock << i_blkbits; sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; unsigned len, total_len = bh_result->b_size; int ret = 0, first_get_block = 0; len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); len = min(total_len, len); /* * bh_result->b_size is count in get_more_blocks according to write * "pos" and "end", we need map twice to return different buffer state: * 1. area in file size, not set NEW; * 2. area out file size, set NEW. * * iblock endblk * |--------|---------|---------|--------- * |<-------area in file------->| */ if ((iblock <= endblk) && ((iblock + ((len - 1) >> i_blkbits)) > endblk)) len = (endblk - iblock + 1) << i_blkbits; mlog(0, "get block of %lu at %llu:%u req %u\n", inode->i_ino, pos, len, total_len); /* * Because we need to change file size in ocfs2_dio_end_io_write(), or * we may need to add it to orphan dir. So can not fall to fast path * while file size will be changed. */ if (pos + total_len <= i_size_read(inode)) { /* This is the fast path for re-write. */ ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); if (buffer_mapped(bh_result) && !buffer_new(bh_result) && ret == 0) goto out; /* Clear state set by ocfs2_get_block. */ bh_result->b_state = 0; } dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); if (unlikely(dwc == NULL)) { ret = -ENOMEM; mlog_errno(ret); goto out; } if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && !dwc->dw_orphaned) { /* * when we are going to alloc extents beyond file size, add the * inode to orphan dir, so we can recall those spaces when * system crashed during write. */ ret = ocfs2_add_inode_to_orphan(osb, inode); if (ret < 0) { mlog_errno(ret); goto out; } dwc->dw_orphaned = 1; } ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out; } down_write(&oi->ip_alloc_sem); if (first_get_block) { if (ocfs2_sparse_alloc(osb)) ret = ocfs2_zero_tail(inode, di_bh, pos); else ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, total_len, NULL); if (ret < 0) { mlog_errno(ret); goto unlock; } } ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, OCFS2_WRITE_DIRECT, NULL, (void **)&wc, di_bh, NULL); if (ret) { mlog_errno(ret); goto unlock; } desc = &wc->w_desc[0]; p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); BUG_ON(p_blkno == 0); p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); map_bh(bh_result, inode->i_sb, p_blkno); bh_result->b_size = len; if (desc->c_needs_zero) set_buffer_new(bh_result); if (iblock > endblk) set_buffer_new(bh_result); /* May sleep in end_io. It should not happen in a irq context. So defer * it to dio work queue. */ set_buffer_defer_completion(bh_result); if (!list_empty(&wc->w_unwritten_list)) { struct ocfs2_unwritten_extent *ue = NULL; ue = list_first_entry(&wc->w_unwritten_list, struct ocfs2_unwritten_extent, ue_node); BUG_ON(ue->ue_cpos != desc->c_cpos); /* The physical address may be 0, fill it. */ ue->ue_phys = desc->c_phys; list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); dwc->dw_zero_count += wc->w_unwritten_count; } ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); BUG_ON(ret != len); ret = 0; unlock: up_write(&oi->ip_alloc_sem); ocfs2_inode_unlock(inode, 1); brelse(di_bh); out: if (ret < 0) ret = -EIO; return ret; } static int ocfs2_dio_end_io_write(struct inode *inode, struct ocfs2_dio_write_ctxt *dwc, loff_t offset, ssize_t bytes) { struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_extent_tree et; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_unwritten_extent *ue = NULL; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; handle_t *handle = NULL; loff_t end = offset + bytes; int ret = 0, credits = 0; ocfs2_init_dealloc_ctxt(&dealloc); /* We do clear unwritten, delete orphan, change i_size here. If neither * of these happen, we can skip all this. */ if (list_empty(&dwc->dw_zero_list) && end <= i_size_read(inode) && !dwc->dw_orphaned) goto out; ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret < 0) { mlog_errno(ret); goto out; } down_write(&oi->ip_alloc_sem); /* Delete orphan before acquire i_rwsem. */ if (dwc->dw_orphaned) { BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); end = end > i_size_read(inode) ? end : 0; ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, !!end, end); if (ret < 0) mlog_errno(ret); } di = (struct ocfs2_dinode *)di_bh->b_data; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); /* Attach dealloc with extent tree in case that we may reuse extents * which are already unlinked from current extent tree due to extent * rotation and merging. */ et.et_dealloc = &dealloc; ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, &data_ac, &meta_ac); if (ret) { mlog_errno(ret); goto unlock; } credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto unlock; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto commit; } list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { ret = ocfs2_mark_extent_written(inode, &et, handle, ue->ue_cpos, 1, ue->ue_phys, meta_ac, &dealloc); if (ret < 0) { mlog_errno(ret); break; } } if (end > i_size_read(inode)) { ret = ocfs2_set_inode_size(handle, inode, di_bh, end); if (ret < 0) mlog_errno(ret); } commit: ocfs2_commit_trans(osb, handle); unlock: up_write(&oi->ip_alloc_sem); ocfs2_inode_unlock(inode, 1); brelse(di_bh); out: if (data_ac) ocfs2_free_alloc_context(data_ac); if (meta_ac) ocfs2_free_alloc_context(meta_ac); ocfs2_run_deallocs(osb, &dealloc); ocfs2_dio_free_write_ctx(inode, dwc); return ret; } /* * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're * particularly interested in the aio/dio case. We use the rw_lock DLM lock * to protect io on one node from truncation on another. */ static int ocfs2_dio_end_io(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private) { struct inode *inode = file_inode(iocb->ki_filp); int level; int ret = 0; /* this io's submitter should not have unlocked this before we could */ BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); if (bytes <= 0) mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", (long long)bytes); if (private) { if (bytes > 0) ret = ocfs2_dio_end_io_write(inode, private, offset, bytes); else ocfs2_dio_free_write_ctx(inode, private); } ocfs2_iocb_clear_rw_locked(iocb); level = ocfs2_iocb_rw_locked_level(iocb); ocfs2_rw_unlock(inode, level); return ret; } static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); get_block_t *get_block; /* * Fallback to buffered I/O if we see an inode without * extents. */ if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return 0; /* Fallback to buffered I/O if we do not support append dio. */ if (iocb->ki_pos + iter->count > i_size_read(inode) && !ocfs2_supports_append_dio(osb)) return 0; if (iov_iter_rw(iter) == READ) get_block = ocfs2_lock_get_block; else get_block = ocfs2_dio_wr_get_block; return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, get_block, ocfs2_dio_end_io, 0); } const struct address_space_operations ocfs2_aops = { .dirty_folio = block_dirty_folio, .read_folio = ocfs2_read_folio, .readahead = ocfs2_readahead, .writepage = ocfs2_writepage, .write_begin = ocfs2_write_begin, .write_end = ocfs2_write_end, .bmap = ocfs2_bmap, .direct_IO = ocfs2_direct_IO, .invalidate_folio = block_invalidate_folio, .release_folio = ocfs2_release_folio, .migrate_folio = buffer_migrate_folio, .is_partially_uptodate = block_is_partially_uptodate, .error_remove_page = generic_error_remove_page, };
linux-master
fs/ocfs2/aops.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * io.c * * Buffer cache handling * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/bio.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "inode.h" #include "journal.h" #include "uptodate.h" #include "buffer_head_io.h" #include "ocfs2_trace.h" /* * Bits on bh->b_state used by ocfs2. * * These MUST be after the JBD2 bits. Hence, we use BH_JBDPrivateStart. */ enum ocfs2_state_bits { BH_NeedsValidate = BH_JBDPrivateStart, }; /* Expand the magic b_state functions */ BUFFER_FNS(NeedsValidate, needs_validate); int ocfs2_write_block(struct ocfs2_super *osb, struct buffer_head *bh, struct ocfs2_caching_info *ci) { int ret = 0; trace_ocfs2_write_block((unsigned long long)bh->b_blocknr, ci); BUG_ON(bh->b_blocknr < OCFS2_SUPER_BLOCK_BLKNO); BUG_ON(buffer_jbd(bh)); /* No need to check for a soft readonly file system here. non * journalled writes are only ever done on system files which * can get modified during recovery even if read-only. */ if (ocfs2_is_hard_readonly(osb)) { ret = -EROFS; mlog_errno(ret); goto out; } ocfs2_metadata_cache_io_lock(ci); lock_buffer(bh); set_buffer_uptodate(bh); /* remove from dirty list before I/O. */ clear_buffer_dirty(bh); get_bh(bh); /* for end_buffer_write_sync() */ bh->b_end_io = end_buffer_write_sync; submit_bh(REQ_OP_WRITE, bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) { ocfs2_set_buffer_uptodate(ci, bh); } else { /* We don't need to remove the clustered uptodate * information for this bh as it's not marked locally * uptodate. */ ret = -EIO; mlog_errno(ret); } ocfs2_metadata_cache_io_unlock(ci); out: return ret; } /* Caller must provide a bhs[] with all NULL or non-NULL entries, so it * will be easier to handle read failure. */ int ocfs2_read_blocks_sync(struct ocfs2_super *osb, u64 block, unsigned int nr, struct buffer_head *bhs[]) { int status = 0; unsigned int i; struct buffer_head *bh; int new_bh = 0; trace_ocfs2_read_blocks_sync((unsigned long long)block, nr); if (!nr) goto bail; /* Don't put buffer head and re-assign it to NULL if it is allocated * outside since the caller can't be aware of this alternation! */ new_bh = (bhs[0] == NULL); for (i = 0 ; i < nr ; i++) { if (bhs[i] == NULL) { bhs[i] = sb_getblk(osb->sb, block++); if (bhs[i] == NULL) { status = -ENOMEM; mlog_errno(status); break; } } bh = bhs[i]; if (buffer_jbd(bh)) { trace_ocfs2_read_blocks_sync_jbd( (unsigned long long)bh->b_blocknr); continue; } if (buffer_dirty(bh)) { /* This should probably be a BUG, or * at least return an error. */ mlog(ML_ERROR, "trying to sync read a dirty " "buffer! (blocknr = %llu), skipping\n", (unsigned long long)bh->b_blocknr); continue; } lock_buffer(bh); if (buffer_jbd(bh)) { #ifdef CATCH_BH_JBD_RACES mlog(ML_ERROR, "block %llu had the JBD bit set " "while I was in lock_buffer!", (unsigned long long)bh->b_blocknr); BUG(); #else unlock_buffer(bh); continue; #endif } get_bh(bh); /* for end_buffer_read_sync() */ bh->b_end_io = end_buffer_read_sync; submit_bh(REQ_OP_READ, bh); } read_failure: for (i = nr; i > 0; i--) { bh = bhs[i - 1]; if (unlikely(status)) { if (new_bh && bh) { /* If middle bh fails, let previous bh * finish its read and then put it to * aovoid bh leak */ if (!buffer_jbd(bh)) wait_on_buffer(bh); put_bh(bh); bhs[i - 1] = NULL; } else if (bh && buffer_uptodate(bh)) { clear_buffer_uptodate(bh); } continue; } /* No need to wait on the buffer if it's managed by JBD. */ if (!buffer_jbd(bh)) wait_on_buffer(bh); if (!buffer_uptodate(bh)) { /* Status won't be cleared from here on out, * so we can safely record this and loop back * to cleanup the other buffers. */ status = -EIO; goto read_failure; } } bail: return status; } /* Caller must provide a bhs[] with all NULL or non-NULL entries, so it * will be easier to handle read failure. */ int ocfs2_read_blocks(struct ocfs2_caching_info *ci, u64 block, int nr, struct buffer_head *bhs[], int flags, int (*validate)(struct super_block *sb, struct buffer_head *bh)) { int status = 0; int i, ignore_cache = 0; struct buffer_head *bh; struct super_block *sb = ocfs2_metadata_cache_get_super(ci); int new_bh = 0; trace_ocfs2_read_blocks_begin(ci, (unsigned long long)block, nr, flags); BUG_ON(!ci); BUG_ON((flags & OCFS2_BH_READAHEAD) && (flags & OCFS2_BH_IGNORE_CACHE)); if (bhs == NULL) { status = -EINVAL; mlog_errno(status); goto bail; } if (nr < 0) { mlog(ML_ERROR, "asked to read %d blocks!\n", nr); status = -EINVAL; mlog_errno(status); goto bail; } if (nr == 0) { status = 0; goto bail; } /* Don't put buffer head and re-assign it to NULL if it is allocated * outside since the caller can't be aware of this alternation! */ new_bh = (bhs[0] == NULL); ocfs2_metadata_cache_io_lock(ci); for (i = 0 ; i < nr ; i++) { if (bhs[i] == NULL) { bhs[i] = sb_getblk(sb, block++); if (bhs[i] == NULL) { ocfs2_metadata_cache_io_unlock(ci); status = -ENOMEM; mlog_errno(status); /* Don't forget to put previous bh! */ break; } } bh = bhs[i]; ignore_cache = (flags & OCFS2_BH_IGNORE_CACHE); /* There are three read-ahead cases here which we need to * be concerned with. All three assume a buffer has * previously been submitted with OCFS2_BH_READAHEAD * and it hasn't yet completed I/O. * * 1) The current request is sync to disk. This rarely * happens these days, and never when performance * matters - the code can just wait on the buffer * lock and re-submit. * * 2) The current request is cached, but not * readahead. ocfs2_buffer_uptodate() will return * false anyway, so we'll wind up waiting on the * buffer lock to do I/O. We re-check the request * with after getting the lock to avoid a re-submit. * * 3) The current request is readahead (and so must * also be a caching one). We short circuit if the * buffer is locked (under I/O) and if it's in the * uptodate cache. The re-check from #2 catches the * case that the previous read-ahead completes just * before our is-it-in-flight check. */ if (!ignore_cache && !ocfs2_buffer_uptodate(ci, bh)) { trace_ocfs2_read_blocks_from_disk( (unsigned long long)bh->b_blocknr, (unsigned long long)ocfs2_metadata_cache_owner(ci)); /* We're using ignore_cache here to say * "go to disk" */ ignore_cache = 1; } trace_ocfs2_read_blocks_bh((unsigned long long)bh->b_blocknr, ignore_cache, buffer_jbd(bh), buffer_dirty(bh)); if (buffer_jbd(bh)) { continue; } if (ignore_cache) { if (buffer_dirty(bh)) { /* This should probably be a BUG, or * at least return an error. */ continue; } /* A read-ahead request was made - if the * buffer is already under read-ahead from a * previously submitted request than we are * done here. */ if ((flags & OCFS2_BH_READAHEAD) && ocfs2_buffer_read_ahead(ci, bh)) continue; lock_buffer(bh); if (buffer_jbd(bh)) { #ifdef CATCH_BH_JBD_RACES mlog(ML_ERROR, "block %llu had the JBD bit set " "while I was in lock_buffer!", (unsigned long long)bh->b_blocknr); BUG(); #else unlock_buffer(bh); continue; #endif } /* Re-check ocfs2_buffer_uptodate() as a * previously read-ahead buffer may have * completed I/O while we were waiting for the * buffer lock. */ if (!(flags & OCFS2_BH_IGNORE_CACHE) && !(flags & OCFS2_BH_READAHEAD) && ocfs2_buffer_uptodate(ci, bh)) { unlock_buffer(bh); continue; } get_bh(bh); /* for end_buffer_read_sync() */ if (validate) set_buffer_needs_validate(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(REQ_OP_READ, bh); continue; } } read_failure: for (i = (nr - 1); i >= 0; i--) { bh = bhs[i]; if (!(flags & OCFS2_BH_READAHEAD)) { if (unlikely(status)) { /* Clear the buffers on error including those * ever succeeded in reading */ if (new_bh && bh) { /* If middle bh fails, let previous bh * finish its read and then put it to * aovoid bh leak */ if (!buffer_jbd(bh)) wait_on_buffer(bh); put_bh(bh); bhs[i] = NULL; } else if (bh && buffer_uptodate(bh)) { clear_buffer_uptodate(bh); } continue; } /* We know this can't have changed as we hold the * owner sem. Avoid doing any work on the bh if the * journal has it. */ if (!buffer_jbd(bh)) wait_on_buffer(bh); if (!buffer_uptodate(bh)) { /* Status won't be cleared from here on out, * so we can safely record this and loop back * to cleanup the other buffers. Don't need to * remove the clustered uptodate information * for this bh as it's not marked locally * uptodate. */ status = -EIO; clear_buffer_needs_validate(bh); goto read_failure; } if (buffer_needs_validate(bh)) { /* We never set NeedsValidate if the * buffer was held by the journal, so * that better not have changed */ BUG_ON(buffer_jbd(bh)); clear_buffer_needs_validate(bh); status = validate(sb, bh); if (status) goto read_failure; } } /* Always set the buffer in the cache, even if it was * a forced read, or read-ahead which hasn't yet * completed. */ ocfs2_set_buffer_uptodate(ci, bh); } ocfs2_metadata_cache_io_unlock(ci); trace_ocfs2_read_blocks_end((unsigned long long)block, nr, flags, ignore_cache); bail: return status; } /* Check whether the blkno is the super block or one of the backups. */ static void ocfs2_check_super_or_backup(struct super_block *sb, sector_t blkno) { int i; u64 backup_blkno; if (blkno == OCFS2_SUPER_BLOCK_BLKNO) return; for (i = 0; i < OCFS2_MAX_BACKUP_SUPERBLOCKS; i++) { backup_blkno = ocfs2_backup_super_blkno(sb, i); if (backup_blkno == blkno) return; } BUG(); } /* * Write super block and backups doesn't need to collaborate with journal, * so we don't need to lock ip_io_mutex and ci doesn't need to bea passed * into this function. */ int ocfs2_write_super_or_backup(struct ocfs2_super *osb, struct buffer_head *bh) { int ret = 0; struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; BUG_ON(buffer_jbd(bh)); ocfs2_check_super_or_backup(osb->sb, bh->b_blocknr); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) { ret = -EROFS; mlog_errno(ret); goto out; } lock_buffer(bh); set_buffer_uptodate(bh); /* remove from dirty list before I/O. */ clear_buffer_dirty(bh); get_bh(bh); /* for end_buffer_write_sync() */ bh->b_end_io = end_buffer_write_sync; ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &di->i_check); submit_bh(REQ_OP_WRITE, bh); wait_on_buffer(bh); if (!buffer_uptodate(bh)) { ret = -EIO; mlog_errno(ret); } out: return ret; }
linux-master
fs/ocfs2/buffer_head_io.c
// SPDX-License-Identifier: GPL-2.0 /* * Implementation of operations over global quota file */ #include <linux/spinlock.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/quota.h> #include <linux/quotaops.h> #include <linux/dqblk_qtree.h> #include <linux/jiffies.h> #include <linux/writeback.h> #include <linux/workqueue.h> #include <linux/llist.h> #include <linux/iversion.h> #include <cluster/masklog.h> #include "ocfs2_fs.h" #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "inode.h" #include "journal.h" #include "file.h" #include "sysfile.h" #include "dlmglue.h" #include "uptodate.h" #include "super.h" #include "buffer_head_io.h" #include "quota.h" #include "ocfs2_trace.h" /* * Locking of quotas with OCFS2 is rather complex. Here are rules that * should be obeyed by all the functions: * - any write of quota structure (either to local or global file) is protected * by dqio_sem or dquot->dq_lock. * - any modification of global quota file holds inode cluster lock, i_rwsem, * and ip_alloc_sem of the global quota file (achieved by * ocfs2_lock_global_qf). It also has to hold qinfo_lock. * - an allocation of new blocks for local quota file is protected by * its ip_alloc_sem * * A rough sketch of locking dependencies (lf = local file, gf = global file): * Normal filesystem operation: * start_trans -> dqio_sem -> write to lf * Syncing of local and global file: * ocfs2_lock_global_qf -> start_trans -> dqio_sem -> qinfo_lock -> * write to gf * -> write to lf * Acquire dquot for the first time: * dq_lock -> ocfs2_lock_global_qf -> qinfo_lock -> read from gf * -> alloc space for gf * -> start_trans -> qinfo_lock -> write to gf * -> ip_alloc_sem of lf -> alloc space for lf * -> write to lf * Release last reference to dquot: * dq_lock -> ocfs2_lock_global_qf -> start_trans -> qinfo_lock -> write to gf * -> write to lf * Note that all the above operations also hold the inode cluster lock of lf. * Recovery: * inode cluster lock of recovered lf * -> read bitmaps -> ip_alloc_sem of lf * -> ocfs2_lock_global_qf -> start_trans -> dqio_sem -> qinfo_lock -> * write to gf */ static void qsync_work_fn(struct work_struct *work); static void ocfs2_global_disk2memdqb(struct dquot *dquot, void *dp) { struct ocfs2_global_disk_dqblk *d = dp; struct mem_dqblk *m = &dquot->dq_dqb; /* Update from disk only entries not set by the admin */ if (!test_bit(DQ_LASTSET_B + QIF_ILIMITS_B, &dquot->dq_flags)) { m->dqb_ihardlimit = le64_to_cpu(d->dqb_ihardlimit); m->dqb_isoftlimit = le64_to_cpu(d->dqb_isoftlimit); } if (!test_bit(DQ_LASTSET_B + QIF_INODES_B, &dquot->dq_flags)) m->dqb_curinodes = le64_to_cpu(d->dqb_curinodes); if (!test_bit(DQ_LASTSET_B + QIF_BLIMITS_B, &dquot->dq_flags)) { m->dqb_bhardlimit = le64_to_cpu(d->dqb_bhardlimit); m->dqb_bsoftlimit = le64_to_cpu(d->dqb_bsoftlimit); } if (!test_bit(DQ_LASTSET_B + QIF_SPACE_B, &dquot->dq_flags)) m->dqb_curspace = le64_to_cpu(d->dqb_curspace); if (!test_bit(DQ_LASTSET_B + QIF_BTIME_B, &dquot->dq_flags)) m->dqb_btime = le64_to_cpu(d->dqb_btime); if (!test_bit(DQ_LASTSET_B + QIF_ITIME_B, &dquot->dq_flags)) m->dqb_itime = le64_to_cpu(d->dqb_itime); OCFS2_DQUOT(dquot)->dq_use_count = le32_to_cpu(d->dqb_use_count); } static void ocfs2_global_mem2diskdqb(void *dp, struct dquot *dquot) { struct ocfs2_global_disk_dqblk *d = dp; struct mem_dqblk *m = &dquot->dq_dqb; d->dqb_id = cpu_to_le32(from_kqid(&init_user_ns, dquot->dq_id)); d->dqb_use_count = cpu_to_le32(OCFS2_DQUOT(dquot)->dq_use_count); d->dqb_ihardlimit = cpu_to_le64(m->dqb_ihardlimit); d->dqb_isoftlimit = cpu_to_le64(m->dqb_isoftlimit); d->dqb_curinodes = cpu_to_le64(m->dqb_curinodes); d->dqb_bhardlimit = cpu_to_le64(m->dqb_bhardlimit); d->dqb_bsoftlimit = cpu_to_le64(m->dqb_bsoftlimit); d->dqb_curspace = cpu_to_le64(m->dqb_curspace); d->dqb_btime = cpu_to_le64(m->dqb_btime); d->dqb_itime = cpu_to_le64(m->dqb_itime); d->dqb_pad1 = d->dqb_pad2 = 0; } static int ocfs2_global_is_id(void *dp, struct dquot *dquot) { struct ocfs2_global_disk_dqblk *d = dp; struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(dquot->dq_sb, dquot->dq_id.type)->dqi_priv; if (qtree_entry_unused(&oinfo->dqi_gi, dp)) return 0; return qid_eq(make_kqid(&init_user_ns, dquot->dq_id.type, le32_to_cpu(d->dqb_id)), dquot->dq_id); } const struct qtree_fmt_operations ocfs2_global_ops = { .mem2disk_dqblk = ocfs2_global_mem2diskdqb, .disk2mem_dqblk = ocfs2_global_disk2memdqb, .is_id = ocfs2_global_is_id, }; int ocfs2_validate_quota_block(struct super_block *sb, struct buffer_head *bh) { struct ocfs2_disk_dqtrailer *dqt = ocfs2_block_dqtrailer(sb->s_blocksize, bh->b_data); trace_ocfs2_validate_quota_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ return ocfs2_validate_meta_ecc(sb, bh->b_data, &dqt->dq_check); } int ocfs2_read_quota_phys_block(struct inode *inode, u64 p_block, struct buffer_head **bhp) { int rc; *bhp = NULL; rc = ocfs2_read_blocks(INODE_CACHE(inode), p_block, 1, bhp, 0, ocfs2_validate_quota_block); if (rc) mlog_errno(rc); return rc; } /* Read data from global quotafile - avoid pagecache and such because we cannot * afford acquiring the locks... We use quota cluster lock to serialize * operations. Caller is responsible for acquiring it. */ ssize_t ocfs2_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; struct inode *gqinode = oinfo->dqi_gqinode; loff_t i_size = i_size_read(gqinode); int offset = off & (sb->s_blocksize - 1); sector_t blk = off >> sb->s_blocksize_bits; int err = 0; struct buffer_head *bh; size_t toread, tocopy; u64 pblock = 0, pcount = 0; if (off > i_size) return 0; if (off + len > i_size) len = i_size - off; toread = len; while (toread > 0) { tocopy = min_t(size_t, (sb->s_blocksize - offset), toread); if (!pcount) { err = ocfs2_extent_map_get_blocks(gqinode, blk, &pblock, &pcount, NULL); if (err) { mlog_errno(err); return err; } } else { pcount--; pblock++; } bh = NULL; err = ocfs2_read_quota_phys_block(gqinode, pblock, &bh); if (err) { mlog_errno(err); return err; } memcpy(data, bh->b_data + offset, tocopy); brelse(bh); offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile (we know the transaction is already started and has * enough credits) */ ssize_t ocfs2_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct inode *gqinode = oinfo->dqi_gqinode; int offset = off & (sb->s_blocksize - 1); sector_t blk = off >> sb->s_blocksize_bits; int err = 0, new = 0, ja_type; struct buffer_head *bh = NULL; handle_t *handle = journal_current_handle(); u64 pblock, pcount; if (!handle) { mlog(ML_ERROR, "Quota write (off=%llu, len=%llu) cancelled " "because transaction was not started.\n", (unsigned long long)off, (unsigned long long)len); return -EIO; } if (len > sb->s_blocksize - OCFS2_QBLK_RESERVED_SPACE - offset) { WARN_ON(1); len = sb->s_blocksize - OCFS2_QBLK_RESERVED_SPACE - offset; } if (i_size_read(gqinode) < off + len) { loff_t rounded_end = ocfs2_align_bytes_to_blocks(sb, off + len); /* Space is already allocated in ocfs2_acquire_dquot() */ err = ocfs2_simple_size_update(gqinode, oinfo->dqi_gqi_bh, rounded_end); if (err < 0) goto out; new = 1; } err = ocfs2_extent_map_get_blocks(gqinode, blk, &pblock, &pcount, NULL); if (err) { mlog_errno(err); goto out; } /* Not rewriting whole block? */ if ((offset || len < sb->s_blocksize - OCFS2_QBLK_RESERVED_SPACE) && !new) { err = ocfs2_read_quota_phys_block(gqinode, pblock, &bh); ja_type = OCFS2_JOURNAL_ACCESS_WRITE; } else { bh = sb_getblk(sb, pblock); if (!bh) err = -ENOMEM; ja_type = OCFS2_JOURNAL_ACCESS_CREATE; } if (err) { mlog_errno(err); goto out; } lock_buffer(bh); if (new) memset(bh->b_data, 0, sb->s_blocksize); memcpy(bh->b_data + offset, data, len); flush_dcache_page(bh->b_page); set_buffer_uptodate(bh); unlock_buffer(bh); ocfs2_set_buffer_uptodate(INODE_CACHE(gqinode), bh); err = ocfs2_journal_access_dq(handle, INODE_CACHE(gqinode), bh, ja_type); if (err < 0) { brelse(bh); goto out; } ocfs2_journal_dirty(handle, bh); brelse(bh); out: if (err) { mlog_errno(err); return err; } inode_inc_iversion(gqinode); ocfs2_mark_inode_dirty(handle, gqinode, oinfo->dqi_gqi_bh); return len; } int ocfs2_lock_global_qf(struct ocfs2_mem_dqinfo *oinfo, int ex) { int status; struct buffer_head *bh = NULL; status = ocfs2_inode_lock(oinfo->dqi_gqinode, &bh, ex); if (status < 0) return status; spin_lock(&dq_data_lock); if (!oinfo->dqi_gqi_count++) oinfo->dqi_gqi_bh = bh; else WARN_ON(bh != oinfo->dqi_gqi_bh); spin_unlock(&dq_data_lock); if (ex) { inode_lock(oinfo->dqi_gqinode); down_write(&OCFS2_I(oinfo->dqi_gqinode)->ip_alloc_sem); } else { down_read(&OCFS2_I(oinfo->dqi_gqinode)->ip_alloc_sem); } return 0; } void ocfs2_unlock_global_qf(struct ocfs2_mem_dqinfo *oinfo, int ex) { if (ex) { up_write(&OCFS2_I(oinfo->dqi_gqinode)->ip_alloc_sem); inode_unlock(oinfo->dqi_gqinode); } else { up_read(&OCFS2_I(oinfo->dqi_gqinode)->ip_alloc_sem); } ocfs2_inode_unlock(oinfo->dqi_gqinode, ex); brelse(oinfo->dqi_gqi_bh); spin_lock(&dq_data_lock); if (!--oinfo->dqi_gqi_count) oinfo->dqi_gqi_bh = NULL; spin_unlock(&dq_data_lock); } /* Read information header from global quota file */ int ocfs2_global_read_info(struct super_block *sb, int type) { unsigned int ino[OCFS2_MAXQUOTAS] = { USER_QUOTA_SYSTEM_INODE, GROUP_QUOTA_SYSTEM_INODE }; struct ocfs2_global_disk_dqinfo dinfo; struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; u64 pcount; int status; oinfo->dqi_gi.dqi_sb = sb; oinfo->dqi_gi.dqi_type = type; ocfs2_qinfo_lock_res_init(&oinfo->dqi_gqlock, oinfo); oinfo->dqi_gi.dqi_entry_size = sizeof(struct ocfs2_global_disk_dqblk); oinfo->dqi_gi.dqi_ops = &ocfs2_global_ops; oinfo->dqi_gqi_bh = NULL; oinfo->dqi_gqi_count = 0; /* Read global header */ oinfo->dqi_gqinode = ocfs2_get_system_file_inode(OCFS2_SB(sb), ino[type], OCFS2_INVALID_SLOT); if (!oinfo->dqi_gqinode) { mlog(ML_ERROR, "failed to get global quota inode (type=%d)\n", type); status = -EINVAL; goto out_err; } status = ocfs2_lock_global_qf(oinfo, 0); if (status < 0) { mlog_errno(status); goto out_err; } status = ocfs2_extent_map_get_blocks(oinfo->dqi_gqinode, 0, &oinfo->dqi_giblk, &pcount, NULL); if (status < 0) goto out_unlock; status = ocfs2_qinfo_lock(oinfo, 0); if (status < 0) goto out_unlock; status = sb->s_op->quota_read(sb, type, (char *)&dinfo, sizeof(struct ocfs2_global_disk_dqinfo), OCFS2_GLOBAL_INFO_OFF); ocfs2_qinfo_unlock(oinfo, 0); ocfs2_unlock_global_qf(oinfo, 0); if (status != sizeof(struct ocfs2_global_disk_dqinfo)) { mlog(ML_ERROR, "Cannot read global quota info (%d).\n", status); if (status >= 0) status = -EIO; mlog_errno(status); goto out_err; } info->dqi_bgrace = le32_to_cpu(dinfo.dqi_bgrace); info->dqi_igrace = le32_to_cpu(dinfo.dqi_igrace); oinfo->dqi_syncms = le32_to_cpu(dinfo.dqi_syncms); oinfo->dqi_gi.dqi_blocks = le32_to_cpu(dinfo.dqi_blocks); oinfo->dqi_gi.dqi_free_blk = le32_to_cpu(dinfo.dqi_free_blk); oinfo->dqi_gi.dqi_free_entry = le32_to_cpu(dinfo.dqi_free_entry); oinfo->dqi_gi.dqi_blocksize_bits = sb->s_blocksize_bits; oinfo->dqi_gi.dqi_usable_bs = sb->s_blocksize - OCFS2_QBLK_RESERVED_SPACE; oinfo->dqi_gi.dqi_qtree_depth = qtree_depth(&oinfo->dqi_gi); INIT_DELAYED_WORK(&oinfo->dqi_sync_work, qsync_work_fn); schedule_delayed_work(&oinfo->dqi_sync_work, msecs_to_jiffies(oinfo->dqi_syncms)); out_err: return status; out_unlock: ocfs2_unlock_global_qf(oinfo, 0); mlog_errno(status); goto out_err; } /* Write information to global quota file. Expects exclusive lock on quota * file inode and quota info */ static int __ocfs2_global_write_info(struct super_block *sb, int type) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct ocfs2_global_disk_dqinfo dinfo; ssize_t size; spin_lock(&dq_data_lock); info->dqi_flags &= ~DQF_INFO_DIRTY; dinfo.dqi_bgrace = cpu_to_le32(info->dqi_bgrace); dinfo.dqi_igrace = cpu_to_le32(info->dqi_igrace); spin_unlock(&dq_data_lock); dinfo.dqi_syncms = cpu_to_le32(oinfo->dqi_syncms); dinfo.dqi_blocks = cpu_to_le32(oinfo->dqi_gi.dqi_blocks); dinfo.dqi_free_blk = cpu_to_le32(oinfo->dqi_gi.dqi_free_blk); dinfo.dqi_free_entry = cpu_to_le32(oinfo->dqi_gi.dqi_free_entry); size = sb->s_op->quota_write(sb, type, (char *)&dinfo, sizeof(struct ocfs2_global_disk_dqinfo), OCFS2_GLOBAL_INFO_OFF); if (size != sizeof(struct ocfs2_global_disk_dqinfo)) { mlog(ML_ERROR, "Cannot write global quota info structure\n"); if (size >= 0) size = -EIO; return size; } return 0; } int ocfs2_global_write_info(struct super_block *sb, int type) { int err; struct quota_info *dqopt = sb_dqopt(sb); struct ocfs2_mem_dqinfo *info = dqopt->info[type].dqi_priv; down_write(&dqopt->dqio_sem); err = ocfs2_qinfo_lock(info, 1); if (err < 0) goto out_sem; err = __ocfs2_global_write_info(sb, type); ocfs2_qinfo_unlock(info, 1); out_sem: up_write(&dqopt->dqio_sem); return err; } static int ocfs2_global_qinit_alloc(struct super_block *sb, int type) { struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; /* * We may need to allocate tree blocks and a leaf block but not the * root block */ return oinfo->dqi_gi.dqi_qtree_depth; } static int ocfs2_calc_global_qinit_credits(struct super_block *sb, int type) { /* We modify all the allocated blocks, tree root, info block and * the inode */ return (ocfs2_global_qinit_alloc(sb, type) + 2) * OCFS2_QUOTA_BLOCK_UPDATE_CREDITS + 1; } /* Sync local information about quota modifications with global quota file. * Caller must have started the transaction and obtained exclusive lock for * global quota file inode */ int __ocfs2_sync_dquot(struct dquot *dquot, int freeing) { int err, err2; struct super_block *sb = dquot->dq_sb; int type = dquot->dq_id.type; struct ocfs2_mem_dqinfo *info = sb_dqinfo(sb, type)->dqi_priv; struct ocfs2_global_disk_dqblk dqblk; s64 spacechange, inodechange; time64_t olditime, oldbtime; err = sb->s_op->quota_read(sb, type, (char *)&dqblk, sizeof(struct ocfs2_global_disk_dqblk), dquot->dq_off); if (err != sizeof(struct ocfs2_global_disk_dqblk)) { if (err >= 0) { mlog(ML_ERROR, "Short read from global quota file " "(%u read)\n", err); err = -EIO; } goto out; } /* Update space and inode usage. Get also other information from * global quota file so that we don't overwrite any changes there. * We are */ spin_lock(&dquot->dq_dqb_lock); spacechange = dquot->dq_dqb.dqb_curspace - OCFS2_DQUOT(dquot)->dq_origspace; inodechange = dquot->dq_dqb.dqb_curinodes - OCFS2_DQUOT(dquot)->dq_originodes; olditime = dquot->dq_dqb.dqb_itime; oldbtime = dquot->dq_dqb.dqb_btime; ocfs2_global_disk2memdqb(dquot, &dqblk); trace_ocfs2_sync_dquot(from_kqid(&init_user_ns, dquot->dq_id), dquot->dq_dqb.dqb_curspace, (long long)spacechange, dquot->dq_dqb.dqb_curinodes, (long long)inodechange); if (!test_bit(DQ_LASTSET_B + QIF_SPACE_B, &dquot->dq_flags)) dquot->dq_dqb.dqb_curspace += spacechange; if (!test_bit(DQ_LASTSET_B + QIF_INODES_B, &dquot->dq_flags)) dquot->dq_dqb.dqb_curinodes += inodechange; /* Set properly space grace time... */ if (dquot->dq_dqb.dqb_bsoftlimit && dquot->dq_dqb.dqb_curspace > dquot->dq_dqb.dqb_bsoftlimit) { if (!test_bit(DQ_LASTSET_B + QIF_BTIME_B, &dquot->dq_flags) && oldbtime > 0) { if (dquot->dq_dqb.dqb_btime > 0) dquot->dq_dqb.dqb_btime = min(dquot->dq_dqb.dqb_btime, oldbtime); else dquot->dq_dqb.dqb_btime = oldbtime; } } else { dquot->dq_dqb.dqb_btime = 0; clear_bit(DQ_BLKS_B, &dquot->dq_flags); } /* Set properly inode grace time... */ if (dquot->dq_dqb.dqb_isoftlimit && dquot->dq_dqb.dqb_curinodes > dquot->dq_dqb.dqb_isoftlimit) { if (!test_bit(DQ_LASTSET_B + QIF_ITIME_B, &dquot->dq_flags) && olditime > 0) { if (dquot->dq_dqb.dqb_itime > 0) dquot->dq_dqb.dqb_itime = min(dquot->dq_dqb.dqb_itime, olditime); else dquot->dq_dqb.dqb_itime = olditime; } } else { dquot->dq_dqb.dqb_itime = 0; clear_bit(DQ_INODES_B, &dquot->dq_flags); } /* All information is properly updated, clear the flags */ __clear_bit(DQ_LASTSET_B + QIF_SPACE_B, &dquot->dq_flags); __clear_bit(DQ_LASTSET_B + QIF_INODES_B, &dquot->dq_flags); __clear_bit(DQ_LASTSET_B + QIF_BLIMITS_B, &dquot->dq_flags); __clear_bit(DQ_LASTSET_B + QIF_ILIMITS_B, &dquot->dq_flags); __clear_bit(DQ_LASTSET_B + QIF_BTIME_B, &dquot->dq_flags); __clear_bit(DQ_LASTSET_B + QIF_ITIME_B, &dquot->dq_flags); OCFS2_DQUOT(dquot)->dq_origspace = dquot->dq_dqb.dqb_curspace; OCFS2_DQUOT(dquot)->dq_originodes = dquot->dq_dqb.dqb_curinodes; spin_unlock(&dquot->dq_dqb_lock); err = ocfs2_qinfo_lock(info, freeing); if (err < 0) { mlog(ML_ERROR, "Failed to lock quota info, losing quota write" " (type=%d, id=%u)\n", dquot->dq_id.type, (unsigned)from_kqid(&init_user_ns, dquot->dq_id)); goto out; } if (freeing) OCFS2_DQUOT(dquot)->dq_use_count--; err = qtree_write_dquot(&info->dqi_gi, dquot); if (err < 0) goto out_qlock; if (freeing && !OCFS2_DQUOT(dquot)->dq_use_count) { err = qtree_release_dquot(&info->dqi_gi, dquot); if (info_dirty(sb_dqinfo(sb, type))) { err2 = __ocfs2_global_write_info(sb, type); if (!err) err = err2; } } out_qlock: ocfs2_qinfo_unlock(info, freeing); out: if (err < 0) mlog_errno(err); return err; } /* * Functions for periodic syncing of dquots with global file */ static int ocfs2_sync_dquot_helper(struct dquot *dquot, unsigned long type) { handle_t *handle; struct super_block *sb = dquot->dq_sb; struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; struct ocfs2_super *osb = OCFS2_SB(sb); int status = 0; trace_ocfs2_sync_dquot_helper(from_kqid(&init_user_ns, dquot->dq_id), dquot->dq_id.type, type, sb->s_id); if (type != dquot->dq_id.type) goto out; status = ocfs2_lock_global_qf(oinfo, 1); if (status < 0) goto out; handle = ocfs2_start_trans(osb, OCFS2_QSYNC_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_ilock; } down_write(&sb_dqopt(sb)->dqio_sem); status = ocfs2_sync_dquot(dquot); if (status < 0) mlog_errno(status); /* We have to write local structure as well... */ status = ocfs2_local_write_dquot(dquot); if (status < 0) mlog_errno(status); up_write(&sb_dqopt(sb)->dqio_sem); ocfs2_commit_trans(osb, handle); out_ilock: ocfs2_unlock_global_qf(oinfo, 1); out: return status; } static void qsync_work_fn(struct work_struct *work) { struct ocfs2_mem_dqinfo *oinfo = container_of(work, struct ocfs2_mem_dqinfo, dqi_sync_work.work); struct super_block *sb = oinfo->dqi_gqinode->i_sb; /* * We have to be careful here not to deadlock on s_umount as umount * disabling quotas may be in progress and it waits for this work to * complete. If trylock fails, we'll do the sync next time... */ if (down_read_trylock(&sb->s_umount)) { dquot_scan_active(sb, ocfs2_sync_dquot_helper, oinfo->dqi_type); up_read(&sb->s_umount); } schedule_delayed_work(&oinfo->dqi_sync_work, msecs_to_jiffies(oinfo->dqi_syncms)); } /* * Wrappers for generic quota functions */ static int ocfs2_write_dquot(struct dquot *dquot) { handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(dquot->dq_sb); int status = 0; trace_ocfs2_write_dquot(from_kqid(&init_user_ns, dquot->dq_id), dquot->dq_id.type); handle = ocfs2_start_trans(osb, OCFS2_QWRITE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } down_write(&sb_dqopt(dquot->dq_sb)->dqio_sem); status = ocfs2_local_write_dquot(dquot); up_write(&sb_dqopt(dquot->dq_sb)->dqio_sem); ocfs2_commit_trans(osb, handle); out: return status; } static int ocfs2_calc_qdel_credits(struct super_block *sb, int type) { struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; /* * We modify tree, leaf block, global info, local chunk header, * global and local inode; OCFS2_QINFO_WRITE_CREDITS already * accounts for inode update */ return (oinfo->dqi_gi.dqi_qtree_depth + 2) * OCFS2_QUOTA_BLOCK_UPDATE_CREDITS + OCFS2_QINFO_WRITE_CREDITS + OCFS2_INODE_UPDATE_CREDITS; } void ocfs2_drop_dquot_refs(struct work_struct *work) { struct ocfs2_super *osb = container_of(work, struct ocfs2_super, dquot_drop_work); struct llist_node *list; struct ocfs2_dquot *odquot, *next_odquot; list = llist_del_all(&osb->dquot_drop_list); llist_for_each_entry_safe(odquot, next_odquot, list, list) { /* Drop the reference we acquired in ocfs2_dquot_release() */ dqput(&odquot->dq_dquot); } } /* * Called when the last reference to dquot is dropped. If we are called from * downconvert thread, we cannot do all the handling here because grabbing * quota lock could deadlock (the node holding the quota lock could need some * other cluster lock to proceed but with blocked downconvert thread we cannot * release any lock). */ static int ocfs2_release_dquot(struct dquot *dquot) { handle_t *handle; struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(dquot->dq_sb, dquot->dq_id.type)->dqi_priv; struct ocfs2_super *osb = OCFS2_SB(dquot->dq_sb); int status = 0; trace_ocfs2_release_dquot(from_kqid(&init_user_ns, dquot->dq_id), dquot->dq_id.type); mutex_lock(&dquot->dq_lock); /* Check whether we are not racing with some other dqget() */ if (dquot_is_busy(dquot)) goto out; /* Running from downconvert thread? Postpone quota processing to wq */ if (current == osb->dc_task) { /* * Grab our own reference to dquot and queue it for delayed * dropping. Quota code rechecks after calling * ->release_dquot() and won't free dquot structure. */ dqgrab(dquot); /* First entry on list -> queue work */ if (llist_add(&OCFS2_DQUOT(dquot)->list, &osb->dquot_drop_list)) queue_work(osb->ocfs2_wq, &osb->dquot_drop_work); goto out; } status = ocfs2_lock_global_qf(oinfo, 1); if (status < 0) goto out; handle = ocfs2_start_trans(osb, ocfs2_calc_qdel_credits(dquot->dq_sb, dquot->dq_id.type)); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_ilock; } status = ocfs2_global_release_dquot(dquot); if (status < 0) { mlog_errno(status); goto out_trans; } status = ocfs2_local_release_dquot(handle, dquot); /* * If we fail here, we cannot do much as global structure is * already released. So just complain... */ if (status < 0) mlog_errno(status); /* * Clear dq_off so that we search for the structure in quota file next * time we acquire it. The structure might be deleted and reallocated * elsewhere by another node while our dquot structure is on freelist. */ dquot->dq_off = 0; clear_bit(DQ_ACTIVE_B, &dquot->dq_flags); out_trans: ocfs2_commit_trans(osb, handle); out_ilock: ocfs2_unlock_global_qf(oinfo, 1); out: mutex_unlock(&dquot->dq_lock); if (status) mlog_errno(status); return status; } /* * Read global dquot structure from disk or create it if it does * not exist. Also update use count of the global structure and * create structure in node-local quota file. */ static int ocfs2_acquire_dquot(struct dquot *dquot) { int status = 0, err; int ex = 0; struct super_block *sb = dquot->dq_sb; struct ocfs2_super *osb = OCFS2_SB(sb); int type = dquot->dq_id.type; struct ocfs2_mem_dqinfo *info = sb_dqinfo(sb, type)->dqi_priv; struct inode *gqinode = info->dqi_gqinode; int need_alloc = ocfs2_global_qinit_alloc(sb, type); handle_t *handle; trace_ocfs2_acquire_dquot(from_kqid(&init_user_ns, dquot->dq_id), type); mutex_lock(&dquot->dq_lock); /* * We need an exclusive lock, because we're going to update use count * and instantiate possibly new dquot structure */ status = ocfs2_lock_global_qf(info, 1); if (status < 0) goto out; status = ocfs2_qinfo_lock(info, 0); if (status < 0) goto out_dq; /* * We always want to read dquot structure from disk because we don't * know what happened with it while it was on freelist. */ status = qtree_read_dquot(&info->dqi_gi, dquot); ocfs2_qinfo_unlock(info, 0); if (status < 0) goto out_dq; OCFS2_DQUOT(dquot)->dq_use_count++; OCFS2_DQUOT(dquot)->dq_origspace = dquot->dq_dqb.dqb_curspace; OCFS2_DQUOT(dquot)->dq_originodes = dquot->dq_dqb.dqb_curinodes; if (!dquot->dq_off) { /* No real quota entry? */ ex = 1; /* * Add blocks to quota file before we start a transaction since * locking allocators ranks above a transaction start */ WARN_ON(journal_current_handle()); status = ocfs2_extend_no_holes(gqinode, NULL, i_size_read(gqinode) + (need_alloc << sb->s_blocksize_bits), i_size_read(gqinode)); if (status < 0) goto out_dq; } handle = ocfs2_start_trans(osb, ocfs2_calc_global_qinit_credits(sb, type)); if (IS_ERR(handle)) { status = PTR_ERR(handle); goto out_dq; } status = ocfs2_qinfo_lock(info, ex); if (status < 0) goto out_trans; status = qtree_write_dquot(&info->dqi_gi, dquot); if (ex && info_dirty(sb_dqinfo(sb, type))) { err = __ocfs2_global_write_info(sb, type); if (!status) status = err; } ocfs2_qinfo_unlock(info, ex); out_trans: ocfs2_commit_trans(osb, handle); out_dq: ocfs2_unlock_global_qf(info, 1); if (status < 0) goto out; status = ocfs2_create_local_dquot(dquot); if (status < 0) goto out; set_bit(DQ_ACTIVE_B, &dquot->dq_flags); out: mutex_unlock(&dquot->dq_lock); if (status) mlog_errno(status); return status; } static int ocfs2_get_next_id(struct super_block *sb, struct kqid *qid) { int type = qid->type; struct ocfs2_mem_dqinfo *info = sb_dqinfo(sb, type)->dqi_priv; int status = 0; trace_ocfs2_get_next_id(from_kqid(&init_user_ns, *qid), type); if (!sb_has_quota_loaded(sb, type)) { status = -ESRCH; goto out; } status = ocfs2_lock_global_qf(info, 0); if (status < 0) goto out; status = ocfs2_qinfo_lock(info, 0); if (status < 0) goto out_global; status = qtree_get_next_id(&info->dqi_gi, qid); ocfs2_qinfo_unlock(info, 0); out_global: ocfs2_unlock_global_qf(info, 0); out: /* * Avoid logging ENOENT since it just means there isn't next ID and * ESRCH which means quota isn't enabled for the filesystem. */ if (status && status != -ENOENT && status != -ESRCH) mlog_errno(status); return status; } static int ocfs2_mark_dquot_dirty(struct dquot *dquot) { unsigned long mask = (1 << (DQ_LASTSET_B + QIF_ILIMITS_B)) | (1 << (DQ_LASTSET_B + QIF_BLIMITS_B)) | (1 << (DQ_LASTSET_B + QIF_INODES_B)) | (1 << (DQ_LASTSET_B + QIF_SPACE_B)) | (1 << (DQ_LASTSET_B + QIF_BTIME_B)) | (1 << (DQ_LASTSET_B + QIF_ITIME_B)); int sync = 0; int status; struct super_block *sb = dquot->dq_sb; int type = dquot->dq_id.type; struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(sb); trace_ocfs2_mark_dquot_dirty(from_kqid(&init_user_ns, dquot->dq_id), type); /* In case user set some limits, sync dquot immediately to global * quota file so that information propagates quicker */ spin_lock(&dquot->dq_dqb_lock); if (dquot->dq_flags & mask) sync = 1; spin_unlock(&dquot->dq_dqb_lock); /* This is a slight hack but we can't afford getting global quota * lock if we already have a transaction started. */ if (!sync || journal_current_handle()) { status = ocfs2_write_dquot(dquot); goto out; } status = ocfs2_lock_global_qf(oinfo, 1); if (status < 0) goto out; handle = ocfs2_start_trans(osb, OCFS2_QSYNC_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_ilock; } down_write(&sb_dqopt(sb)->dqio_sem); status = ocfs2_sync_dquot(dquot); if (status < 0) { mlog_errno(status); goto out_dlock; } /* Now write updated local dquot structure */ status = ocfs2_local_write_dquot(dquot); out_dlock: up_write(&sb_dqopt(sb)->dqio_sem); ocfs2_commit_trans(osb, handle); out_ilock: ocfs2_unlock_global_qf(oinfo, 1); out: if (status) mlog_errno(status); return status; } /* This should happen only after set_dqinfo(). */ static int ocfs2_write_info(struct super_block *sb, int type) { handle_t *handle; int status = 0; struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; status = ocfs2_lock_global_qf(oinfo, 1); if (status < 0) goto out; handle = ocfs2_start_trans(OCFS2_SB(sb), OCFS2_QINFO_WRITE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_ilock; } status = dquot_commit_info(sb, type); ocfs2_commit_trans(OCFS2_SB(sb), handle); out_ilock: ocfs2_unlock_global_qf(oinfo, 1); out: if (status) mlog_errno(status); return status; } static struct dquot *ocfs2_alloc_dquot(struct super_block *sb, int type) { struct ocfs2_dquot *dquot = kmem_cache_zalloc(ocfs2_dquot_cachep, GFP_NOFS); if (!dquot) return NULL; return &dquot->dq_dquot; } static void ocfs2_destroy_dquot(struct dquot *dquot) { kmem_cache_free(ocfs2_dquot_cachep, dquot); } const struct dquot_operations ocfs2_quota_operations = { /* We never make dquot dirty so .write_dquot is never called */ .acquire_dquot = ocfs2_acquire_dquot, .release_dquot = ocfs2_release_dquot, .mark_dirty = ocfs2_mark_dquot_dirty, .write_info = ocfs2_write_info, .alloc_dquot = ocfs2_alloc_dquot, .destroy_dquot = ocfs2_destroy_dquot, .get_next_id = ocfs2_get_next_id, };
linux-master
fs/ocfs2/quota_global.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * export.c * * Functions to facilitate NFS exporting * * Copyright (C) 2002, 2005 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dir.h" #include "dlmglue.h" #include "dcache.h" #include "export.h" #include "inode.h" #include "buffer_head_io.h" #include "suballoc.h" #include "ocfs2_trace.h" struct ocfs2_inode_handle { u64 ih_blkno; u32 ih_generation; }; static struct dentry *ocfs2_get_dentry(struct super_block *sb, struct ocfs2_inode_handle *handle) { struct inode *inode; struct ocfs2_super *osb = OCFS2_SB(sb); u64 blkno = handle->ih_blkno; int status, set; struct dentry *result; trace_ocfs2_get_dentry_begin(sb, handle, (unsigned long long)blkno); if (blkno == 0) { result = ERR_PTR(-ESTALE); goto bail; } inode = ocfs2_ilookup(sb, blkno); /* * If the inode exists in memory, we only need to check it's * generation number */ if (inode) goto check_gen; /* * This will synchronize us against ocfs2_delete_inode() on * all nodes */ status = ocfs2_nfs_sync_lock(osb, 1); if (status < 0) { mlog(ML_ERROR, "getting nfs sync lock(EX) failed %d\n", status); goto check_err; } status = ocfs2_test_inode_bit(osb, blkno, &set); if (status < 0) { if (status == -EINVAL) { /* * The blkno NFS gave us doesn't even show up * as an inode, we return -ESTALE to be * nice */ status = -ESTALE; } else mlog(ML_ERROR, "test inode bit failed %d\n", status); goto unlock_nfs_sync; } trace_ocfs2_get_dentry_test_bit(status, set); /* If the inode allocator bit is clear, this inode must be stale */ if (!set) { status = -ESTALE; goto unlock_nfs_sync; } inode = ocfs2_iget(osb, blkno, 0, 0); unlock_nfs_sync: ocfs2_nfs_sync_unlock(osb, 1); check_err: if (status < 0) { if (status == -ESTALE) { trace_ocfs2_get_dentry_stale((unsigned long long)blkno, handle->ih_generation); } result = ERR_PTR(status); goto bail; } if (IS_ERR(inode)) { mlog_errno(PTR_ERR(inode)); result = ERR_CAST(inode); goto bail; } check_gen: if (handle->ih_generation != inode->i_generation) { trace_ocfs2_get_dentry_generation((unsigned long long)blkno, handle->ih_generation, inode->i_generation); iput(inode); result = ERR_PTR(-ESTALE); goto bail; } result = d_obtain_alias(inode); if (IS_ERR(result)) mlog_errno(PTR_ERR(result)); bail: trace_ocfs2_get_dentry_end(result); return result; } static struct dentry *ocfs2_get_parent(struct dentry *child) { int status; u64 blkno; struct dentry *parent; struct inode *dir = d_inode(child); int set; trace_ocfs2_get_parent(child, child->d_name.len, child->d_name.name, (unsigned long long)OCFS2_I(dir)->ip_blkno); status = ocfs2_nfs_sync_lock(OCFS2_SB(dir->i_sb), 1); if (status < 0) { mlog(ML_ERROR, "getting nfs sync lock(EX) failed %d\n", status); parent = ERR_PTR(status); goto bail; } status = ocfs2_inode_lock(dir, NULL, 0); if (status < 0) { if (status != -ENOENT) mlog_errno(status); parent = ERR_PTR(status); goto unlock_nfs_sync; } status = ocfs2_lookup_ino_from_name(dir, "..", 2, &blkno); if (status < 0) { parent = ERR_PTR(-ENOENT); goto bail_unlock; } status = ocfs2_test_inode_bit(OCFS2_SB(dir->i_sb), blkno, &set); if (status < 0) { if (status == -EINVAL) { status = -ESTALE; } else mlog(ML_ERROR, "test inode bit failed %d\n", status); parent = ERR_PTR(status); goto bail_unlock; } trace_ocfs2_get_dentry_test_bit(status, set); if (!set) { status = -ESTALE; parent = ERR_PTR(status); goto bail_unlock; } parent = d_obtain_alias(ocfs2_iget(OCFS2_SB(dir->i_sb), blkno, 0, 0)); bail_unlock: ocfs2_inode_unlock(dir, 0); unlock_nfs_sync: ocfs2_nfs_sync_unlock(OCFS2_SB(dir->i_sb), 1); bail: trace_ocfs2_get_parent_end(parent); return parent; } static int ocfs2_encode_fh(struct inode *inode, u32 *fh_in, int *max_len, struct inode *parent) { int len = *max_len; int type = 1; u64 blkno; u32 generation; __le32 *fh = (__force __le32 *) fh_in; #ifdef TRACE_HOOKS_ARE_NOT_BRAINDEAD_IN_YOUR_OPINION #error "You go ahead and fix that mess, then. Somehow" trace_ocfs2_encode_fh_begin(dentry, dentry->d_name.len, dentry->d_name.name, fh, len, connectable); #endif if (parent && (len < 6)) { *max_len = 6; type = FILEID_INVALID; goto bail; } else if (len < 3) { *max_len = 3; type = FILEID_INVALID; goto bail; } blkno = OCFS2_I(inode)->ip_blkno; generation = inode->i_generation; trace_ocfs2_encode_fh_self((unsigned long long)blkno, generation); len = 3; fh[0] = cpu_to_le32((u32)(blkno >> 32)); fh[1] = cpu_to_le32((u32)(blkno & 0xffffffff)); fh[2] = cpu_to_le32(generation); if (parent) { blkno = OCFS2_I(parent)->ip_blkno; generation = parent->i_generation; fh[3] = cpu_to_le32((u32)(blkno >> 32)); fh[4] = cpu_to_le32((u32)(blkno & 0xffffffff)); fh[5] = cpu_to_le32(generation); len = 6; type = 2; trace_ocfs2_encode_fh_parent((unsigned long long)blkno, generation); } *max_len = len; bail: trace_ocfs2_encode_fh_type(type); return type; } static struct dentry *ocfs2_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct ocfs2_inode_handle handle; if (fh_len < 3 || fh_type > 2) return NULL; handle.ih_blkno = (u64)le32_to_cpu(fid->raw[0]) << 32; handle.ih_blkno |= (u64)le32_to_cpu(fid->raw[1]); handle.ih_generation = le32_to_cpu(fid->raw[2]); return ocfs2_get_dentry(sb, &handle); } static struct dentry *ocfs2_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct ocfs2_inode_handle parent; if (fh_type != 2 || fh_len < 6) return NULL; parent.ih_blkno = (u64)le32_to_cpu(fid->raw[3]) << 32; parent.ih_blkno |= (u64)le32_to_cpu(fid->raw[4]); parent.ih_generation = le32_to_cpu(fid->raw[5]); return ocfs2_get_dentry(sb, &parent); } const struct export_operations ocfs2_export_ops = { .encode_fh = ocfs2_encode_fh, .fh_to_dentry = ocfs2_fh_to_dentry, .fh_to_parent = ocfs2_fh_to_parent, .get_parent = ocfs2_get_parent, };
linux-master
fs/ocfs2/export.c
// SPDX-License-Identifier: GPL-2.0-only /* * stackglue.c * * Code which implements an OCFS2 specific interface to underlying * cluster stacks. * * Copyright (C) 2007, 2009 Oracle. All rights reserved. */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/fs.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <linux/sysctl.h> #include "ocfs2_fs.h" #include "stackglue.h" #define OCFS2_STACK_PLUGIN_O2CB "o2cb" #define OCFS2_STACK_PLUGIN_USER "user" #define OCFS2_MAX_HB_CTL_PATH 256 static struct ocfs2_protocol_version locking_max_version; static DEFINE_SPINLOCK(ocfs2_stack_lock); static LIST_HEAD(ocfs2_stack_list); static char cluster_stack_name[OCFS2_STACK_LABEL_LEN + 1]; static char ocfs2_hb_ctl_path[OCFS2_MAX_HB_CTL_PATH] = "/sbin/ocfs2_hb_ctl"; /* * The stack currently in use. If not null, active_stack->sp_count > 0, * the module is pinned, and the locking protocol cannot be changed. */ static struct ocfs2_stack_plugin *active_stack; static struct ocfs2_stack_plugin *ocfs2_stack_lookup(const char *name) { struct ocfs2_stack_plugin *p; assert_spin_locked(&ocfs2_stack_lock); list_for_each_entry(p, &ocfs2_stack_list, sp_list) { if (!strcmp(p->sp_name, name)) return p; } return NULL; } static int ocfs2_stack_driver_request(const char *stack_name, const char *plugin_name) { int rc; struct ocfs2_stack_plugin *p; spin_lock(&ocfs2_stack_lock); /* * If the stack passed by the filesystem isn't the selected one, * we can't continue. */ if (strcmp(stack_name, cluster_stack_name)) { rc = -EBUSY; goto out; } if (active_stack) { /* * If the active stack isn't the one we want, it cannot * be selected right now. */ if (!strcmp(active_stack->sp_name, plugin_name)) rc = 0; else rc = -EBUSY; goto out; } p = ocfs2_stack_lookup(plugin_name); if (!p || !try_module_get(p->sp_owner)) { rc = -ENOENT; goto out; } active_stack = p; rc = 0; out: /* If we found it, pin it */ if (!rc) active_stack->sp_count++; spin_unlock(&ocfs2_stack_lock); return rc; } /* * This function looks up the appropriate stack and makes it active. If * there is no stack, it tries to load it. It will fail if the stack still * cannot be found. It will also fail if a different stack is in use. */ static int ocfs2_stack_driver_get(const char *stack_name) { int rc; char *plugin_name = OCFS2_STACK_PLUGIN_O2CB; /* * Classic stack does not pass in a stack name. This is * compatible with older tools as well. */ if (!stack_name || !*stack_name) stack_name = OCFS2_STACK_PLUGIN_O2CB; if (strlen(stack_name) != OCFS2_STACK_LABEL_LEN) { printk(KERN_ERR "ocfs2 passed an invalid cluster stack label: \"%s\"\n", stack_name); return -EINVAL; } /* Anything that isn't the classic stack is a user stack */ if (strcmp(stack_name, OCFS2_STACK_PLUGIN_O2CB)) plugin_name = OCFS2_STACK_PLUGIN_USER; rc = ocfs2_stack_driver_request(stack_name, plugin_name); if (rc == -ENOENT) { request_module("ocfs2_stack_%s", plugin_name); rc = ocfs2_stack_driver_request(stack_name, plugin_name); } if (rc == -ENOENT) { printk(KERN_ERR "ocfs2: Cluster stack driver \"%s\" cannot be found\n", plugin_name); } else if (rc == -EBUSY) { printk(KERN_ERR "ocfs2: A different cluster stack is in use\n"); } return rc; } static void ocfs2_stack_driver_put(void) { spin_lock(&ocfs2_stack_lock); BUG_ON(active_stack == NULL); BUG_ON(active_stack->sp_count == 0); active_stack->sp_count--; if (!active_stack->sp_count) { module_put(active_stack->sp_owner); active_stack = NULL; } spin_unlock(&ocfs2_stack_lock); } int ocfs2_stack_glue_register(struct ocfs2_stack_plugin *plugin) { int rc; spin_lock(&ocfs2_stack_lock); if (!ocfs2_stack_lookup(plugin->sp_name)) { plugin->sp_count = 0; plugin->sp_max_proto = locking_max_version; list_add(&plugin->sp_list, &ocfs2_stack_list); printk(KERN_INFO "ocfs2: Registered cluster interface %s\n", plugin->sp_name); rc = 0; } else { printk(KERN_ERR "ocfs2: Stack \"%s\" already registered\n", plugin->sp_name); rc = -EEXIST; } spin_unlock(&ocfs2_stack_lock); return rc; } EXPORT_SYMBOL_GPL(ocfs2_stack_glue_register); void ocfs2_stack_glue_unregister(struct ocfs2_stack_plugin *plugin) { struct ocfs2_stack_plugin *p; spin_lock(&ocfs2_stack_lock); p = ocfs2_stack_lookup(plugin->sp_name); if (p) { BUG_ON(p != plugin); BUG_ON(plugin == active_stack); BUG_ON(plugin->sp_count != 0); list_del_init(&plugin->sp_list); printk(KERN_INFO "ocfs2: Unregistered cluster interface %s\n", plugin->sp_name); } else { printk(KERN_ERR "Stack \"%s\" is not registered\n", plugin->sp_name); } spin_unlock(&ocfs2_stack_lock); } EXPORT_SYMBOL_GPL(ocfs2_stack_glue_unregister); void ocfs2_stack_glue_set_max_proto_version(struct ocfs2_protocol_version *max_proto) { struct ocfs2_stack_plugin *p; spin_lock(&ocfs2_stack_lock); if (memcmp(max_proto, &locking_max_version, sizeof(struct ocfs2_protocol_version))) { BUG_ON(locking_max_version.pv_major != 0); locking_max_version = *max_proto; list_for_each_entry(p, &ocfs2_stack_list, sp_list) { p->sp_max_proto = locking_max_version; } } spin_unlock(&ocfs2_stack_lock); } EXPORT_SYMBOL_GPL(ocfs2_stack_glue_set_max_proto_version); /* * The ocfs2_dlm_lock() and ocfs2_dlm_unlock() functions take no argument * for the ast and bast functions. They will pass the lksb to the ast * and bast. The caller can wrap the lksb with their own structure to * get more information. */ int ocfs2_dlm_lock(struct ocfs2_cluster_connection *conn, int mode, struct ocfs2_dlm_lksb *lksb, u32 flags, void *name, unsigned int namelen) { if (!lksb->lksb_conn) lksb->lksb_conn = conn; else BUG_ON(lksb->lksb_conn != conn); return active_stack->sp_ops->dlm_lock(conn, mode, lksb, flags, name, namelen); } EXPORT_SYMBOL_GPL(ocfs2_dlm_lock); int ocfs2_dlm_unlock(struct ocfs2_cluster_connection *conn, struct ocfs2_dlm_lksb *lksb, u32 flags) { BUG_ON(lksb->lksb_conn == NULL); return active_stack->sp_ops->dlm_unlock(conn, lksb, flags); } EXPORT_SYMBOL_GPL(ocfs2_dlm_unlock); int ocfs2_dlm_lock_status(struct ocfs2_dlm_lksb *lksb) { return active_stack->sp_ops->lock_status(lksb); } EXPORT_SYMBOL_GPL(ocfs2_dlm_lock_status); int ocfs2_dlm_lvb_valid(struct ocfs2_dlm_lksb *lksb) { return active_stack->sp_ops->lvb_valid(lksb); } EXPORT_SYMBOL_GPL(ocfs2_dlm_lvb_valid); void *ocfs2_dlm_lvb(struct ocfs2_dlm_lksb *lksb) { return active_stack->sp_ops->lock_lvb(lksb); } EXPORT_SYMBOL_GPL(ocfs2_dlm_lvb); void ocfs2_dlm_dump_lksb(struct ocfs2_dlm_lksb *lksb) { active_stack->sp_ops->dump_lksb(lksb); } EXPORT_SYMBOL_GPL(ocfs2_dlm_dump_lksb); int ocfs2_stack_supports_plocks(void) { return active_stack && active_stack->sp_ops->plock; } EXPORT_SYMBOL_GPL(ocfs2_stack_supports_plocks); /* * ocfs2_plock() can only be safely called if * ocfs2_stack_supports_plocks() returned true */ int ocfs2_plock(struct ocfs2_cluster_connection *conn, u64 ino, struct file *file, int cmd, struct file_lock *fl) { WARN_ON_ONCE(active_stack->sp_ops->plock == NULL); if (active_stack->sp_ops->plock) return active_stack->sp_ops->plock(conn, ino, file, cmd, fl); return -EOPNOTSUPP; } EXPORT_SYMBOL_GPL(ocfs2_plock); int ocfs2_cluster_connect(const char *stack_name, const char *cluster_name, int cluster_name_len, const char *group, int grouplen, struct ocfs2_locking_protocol *lproto, void (*recovery_handler)(int node_num, void *recovery_data), void *recovery_data, struct ocfs2_cluster_connection **conn) { int rc = 0; struct ocfs2_cluster_connection *new_conn; BUG_ON(group == NULL); BUG_ON(conn == NULL); BUG_ON(recovery_handler == NULL); if (grouplen > GROUP_NAME_MAX) { rc = -EINVAL; goto out; } if (memcmp(&lproto->lp_max_version, &locking_max_version, sizeof(struct ocfs2_protocol_version))) { rc = -EINVAL; goto out; } new_conn = kzalloc(sizeof(struct ocfs2_cluster_connection), GFP_KERNEL); if (!new_conn) { rc = -ENOMEM; goto out; } strscpy(new_conn->cc_name, group, GROUP_NAME_MAX + 1); new_conn->cc_namelen = grouplen; if (cluster_name_len) strscpy(new_conn->cc_cluster_name, cluster_name, CLUSTER_NAME_MAX + 1); new_conn->cc_cluster_name_len = cluster_name_len; new_conn->cc_recovery_handler = recovery_handler; new_conn->cc_recovery_data = recovery_data; new_conn->cc_proto = lproto; /* Start the new connection at our maximum compatibility level */ new_conn->cc_version = lproto->lp_max_version; /* This will pin the stack driver if successful */ rc = ocfs2_stack_driver_get(stack_name); if (rc) goto out_free; rc = active_stack->sp_ops->connect(new_conn); if (rc) { ocfs2_stack_driver_put(); goto out_free; } *conn = new_conn; out_free: if (rc) kfree(new_conn); out: return rc; } EXPORT_SYMBOL_GPL(ocfs2_cluster_connect); /* The caller will ensure all nodes have the same cluster stack */ int ocfs2_cluster_connect_agnostic(const char *group, int grouplen, struct ocfs2_locking_protocol *lproto, void (*recovery_handler)(int node_num, void *recovery_data), void *recovery_data, struct ocfs2_cluster_connection **conn) { char *stack_name = NULL; if (cluster_stack_name[0]) stack_name = cluster_stack_name; return ocfs2_cluster_connect(stack_name, NULL, 0, group, grouplen, lproto, recovery_handler, recovery_data, conn); } EXPORT_SYMBOL_GPL(ocfs2_cluster_connect_agnostic); /* If hangup_pending is 0, the stack driver will be dropped */ int ocfs2_cluster_disconnect(struct ocfs2_cluster_connection *conn, int hangup_pending) { int ret; BUG_ON(conn == NULL); ret = active_stack->sp_ops->disconnect(conn); /* XXX Should we free it anyway? */ if (!ret) { kfree(conn); if (!hangup_pending) ocfs2_stack_driver_put(); } return ret; } EXPORT_SYMBOL_GPL(ocfs2_cluster_disconnect); /* * Leave the group for this filesystem. This is executed by a userspace * program (stored in ocfs2_hb_ctl_path). */ static void ocfs2_leave_group(const char *group) { int ret; char *argv[5], *envp[3]; argv[0] = ocfs2_hb_ctl_path; argv[1] = "-K"; argv[2] = "-u"; argv[3] = (char *)group; argv[4] = NULL; /* minimal command environment taken from cpu_run_sbin_hotplug */ envp[0] = "HOME=/"; envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[2] = NULL; ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); if (ret < 0) { printk(KERN_ERR "ocfs2: Error %d running user helper " "\"%s %s %s %s\"\n", ret, argv[0], argv[1], argv[2], argv[3]); } } /* * Hangup is a required post-umount. ocfs2-tools software expects the * filesystem to call "ocfs2_hb_ctl" during unmount. This happens * regardless of whether the DLM got started, so we can't do it * in ocfs2_cluster_disconnect(). The ocfs2_leave_group() function does * the actual work. */ void ocfs2_cluster_hangup(const char *group, int grouplen) { BUG_ON(group == NULL); BUG_ON(group[grouplen] != '\0'); ocfs2_leave_group(group); /* cluster_disconnect() was called with hangup_pending==1 */ ocfs2_stack_driver_put(); } EXPORT_SYMBOL_GPL(ocfs2_cluster_hangup); int ocfs2_cluster_this_node(struct ocfs2_cluster_connection *conn, unsigned int *node) { return active_stack->sp_ops->this_node(conn, node); } EXPORT_SYMBOL_GPL(ocfs2_cluster_this_node); /* * Sysfs bits */ static ssize_t ocfs2_max_locking_protocol_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret = 0; spin_lock(&ocfs2_stack_lock); if (locking_max_version.pv_major) ret = snprintf(buf, PAGE_SIZE, "%u.%u\n", locking_max_version.pv_major, locking_max_version.pv_minor); spin_unlock(&ocfs2_stack_lock); return ret; } static struct kobj_attribute ocfs2_attr_max_locking_protocol = __ATTR(max_locking_protocol, S_IRUGO, ocfs2_max_locking_protocol_show, NULL); static ssize_t ocfs2_loaded_cluster_plugins_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret = 0, total = 0, remain = PAGE_SIZE; struct ocfs2_stack_plugin *p; spin_lock(&ocfs2_stack_lock); list_for_each_entry(p, &ocfs2_stack_list, sp_list) { ret = snprintf(buf, remain, "%s\n", p->sp_name); if (ret >= remain) { /* snprintf() didn't fit */ total = -E2BIG; break; } total += ret; remain -= ret; } spin_unlock(&ocfs2_stack_lock); return total; } static struct kobj_attribute ocfs2_attr_loaded_cluster_plugins = __ATTR(loaded_cluster_plugins, S_IRUGO, ocfs2_loaded_cluster_plugins_show, NULL); static ssize_t ocfs2_active_cluster_plugin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret = 0; spin_lock(&ocfs2_stack_lock); if (active_stack) { ret = snprintf(buf, PAGE_SIZE, "%s\n", active_stack->sp_name); if (ret >= PAGE_SIZE) ret = -E2BIG; } spin_unlock(&ocfs2_stack_lock); return ret; } static struct kobj_attribute ocfs2_attr_active_cluster_plugin = __ATTR(active_cluster_plugin, S_IRUGO, ocfs2_active_cluster_plugin_show, NULL); static ssize_t ocfs2_cluster_stack_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret; spin_lock(&ocfs2_stack_lock); ret = snprintf(buf, PAGE_SIZE, "%s\n", cluster_stack_name); spin_unlock(&ocfs2_stack_lock); return ret; } static ssize_t ocfs2_cluster_stack_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { size_t len = count; ssize_t ret; if (len == 0) return len; if (buf[len - 1] == '\n') len--; if ((len != OCFS2_STACK_LABEL_LEN) || (strnlen(buf, len) != len)) return -EINVAL; spin_lock(&ocfs2_stack_lock); if (active_stack) { if (!strncmp(buf, cluster_stack_name, len)) ret = count; else ret = -EBUSY; } else { memcpy(cluster_stack_name, buf, len); ret = count; } spin_unlock(&ocfs2_stack_lock); return ret; } static struct kobj_attribute ocfs2_attr_cluster_stack = __ATTR(cluster_stack, S_IRUGO | S_IWUSR, ocfs2_cluster_stack_show, ocfs2_cluster_stack_store); static ssize_t ocfs2_dlm_recover_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "1\n"); } static struct kobj_attribute ocfs2_attr_dlm_recover_support = __ATTR(dlm_recover_callback_support, S_IRUGO, ocfs2_dlm_recover_show, NULL); static struct attribute *ocfs2_attrs[] = { &ocfs2_attr_max_locking_protocol.attr, &ocfs2_attr_loaded_cluster_plugins.attr, &ocfs2_attr_active_cluster_plugin.attr, &ocfs2_attr_cluster_stack.attr, &ocfs2_attr_dlm_recover_support.attr, NULL, }; static const struct attribute_group ocfs2_attr_group = { .attrs = ocfs2_attrs, }; struct kset *ocfs2_kset; EXPORT_SYMBOL_GPL(ocfs2_kset); static void ocfs2_sysfs_exit(void) { kset_unregister(ocfs2_kset); } static int ocfs2_sysfs_init(void) { int ret; ocfs2_kset = kset_create_and_add("ocfs2", NULL, fs_kobj); if (!ocfs2_kset) return -ENOMEM; ret = sysfs_create_group(&ocfs2_kset->kobj, &ocfs2_attr_group); if (ret) goto error; return 0; error: kset_unregister(ocfs2_kset); return ret; } /* * Sysctl bits * * The sysctl lives at /proc/sys/fs/ocfs2/nm/hb_ctl_path. The 'nm' doesn't * make as much sense in a multiple cluster stack world, but it's safer * and easier to preserve the name. */ static struct ctl_table ocfs2_nm_table[] = { { .procname = "hb_ctl_path", .data = ocfs2_hb_ctl_path, .maxlen = OCFS2_MAX_HB_CTL_PATH, .mode = 0644, .proc_handler = proc_dostring, }, { } }; static struct ctl_table_header *ocfs2_table_header; /* * Initialization */ static int __init ocfs2_stack_glue_init(void) { int ret; strcpy(cluster_stack_name, OCFS2_STACK_PLUGIN_O2CB); ocfs2_table_header = register_sysctl("fs/ocfs2/nm", ocfs2_nm_table); if (!ocfs2_table_header) { printk(KERN_ERR "ocfs2 stack glue: unable to register sysctl\n"); return -ENOMEM; /* or something. */ } ret = ocfs2_sysfs_init(); if (ret) unregister_sysctl_table(ocfs2_table_header); return ret; } static void __exit ocfs2_stack_glue_exit(void) { memset(&locking_max_version, 0, sizeof(struct ocfs2_protocol_version)); ocfs2_sysfs_exit(); if (ocfs2_table_header) unregister_sysctl_table(ocfs2_table_header); } MODULE_AUTHOR("Oracle"); MODULE_DESCRIPTION("ocfs2 cluster stack glue layer"); MODULE_LICENSE("GPL"); module_init(ocfs2_stack_glue_init); module_exit(ocfs2_stack_glue_exit);
linux-master
fs/ocfs2/stackglue.c
// SPDX-License-Identifier: GPL-2.0-only /* * acl.c * * Copyright (C) 2004, 2008 Oracle. All rights reserved. * * CREDITS: * Lots of code in this file is copy from linux/fs/ext3/acl.c. * Copyright (C) 2001-2003 Andreas Gruenbacher, <[email protected]> */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/string.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dlmglue.h" #include "file.h" #include "inode.h" #include "journal.h" #include "ocfs2_fs.h" #include "xattr.h" #include "acl.h" /* * Convert from xattr value to acl struct. */ static struct posix_acl *ocfs2_acl_from_xattr(const void *value, size_t size) { int n, count; struct posix_acl *acl; if (!value) return NULL; if (size < sizeof(struct posix_acl_entry)) return ERR_PTR(-EINVAL); count = size / sizeof(struct posix_acl_entry); acl = posix_acl_alloc(count, GFP_NOFS); if (!acl) return ERR_PTR(-ENOMEM); for (n = 0; n < count; n++) { struct ocfs2_acl_entry *entry = (struct ocfs2_acl_entry *)value; acl->a_entries[n].e_tag = le16_to_cpu(entry->e_tag); acl->a_entries[n].e_perm = le16_to_cpu(entry->e_perm); switch(acl->a_entries[n].e_tag) { case ACL_USER: acl->a_entries[n].e_uid = make_kuid(&init_user_ns, le32_to_cpu(entry->e_id)); break; case ACL_GROUP: acl->a_entries[n].e_gid = make_kgid(&init_user_ns, le32_to_cpu(entry->e_id)); break; default: break; } value += sizeof(struct posix_acl_entry); } return acl; } /* * Convert acl struct to xattr value. */ static void *ocfs2_acl_to_xattr(const struct posix_acl *acl, size_t *size) { struct ocfs2_acl_entry *entry = NULL; char *ocfs2_acl; size_t n; *size = acl->a_count * sizeof(struct posix_acl_entry); ocfs2_acl = kmalloc(*size, GFP_NOFS); if (!ocfs2_acl) return ERR_PTR(-ENOMEM); entry = (struct ocfs2_acl_entry *)ocfs2_acl; for (n = 0; n < acl->a_count; n++, entry++) { entry->e_tag = cpu_to_le16(acl->a_entries[n].e_tag); entry->e_perm = cpu_to_le16(acl->a_entries[n].e_perm); switch(acl->a_entries[n].e_tag) { case ACL_USER: entry->e_id = cpu_to_le32( from_kuid(&init_user_ns, acl->a_entries[n].e_uid)); break; case ACL_GROUP: entry->e_id = cpu_to_le32( from_kgid(&init_user_ns, acl->a_entries[n].e_gid)); break; default: entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID); break; } } return ocfs2_acl; } static struct posix_acl *ocfs2_get_acl_nolock(struct inode *inode, int type, struct buffer_head *di_bh) { int name_index; char *value = NULL; struct posix_acl *acl; int retval; switch (type) { case ACL_TYPE_ACCESS: name_index = OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS; break; case ACL_TYPE_DEFAULT: name_index = OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT; break; default: return ERR_PTR(-EINVAL); } retval = ocfs2_xattr_get_nolock(inode, di_bh, name_index, "", NULL, 0); if (retval > 0) { value = kmalloc(retval, GFP_NOFS); if (!value) return ERR_PTR(-ENOMEM); retval = ocfs2_xattr_get_nolock(inode, di_bh, name_index, "", value, retval); } if (retval > 0) acl = ocfs2_acl_from_xattr(value, retval); else if (retval == -ENODATA || retval == 0) acl = NULL; else acl = ERR_PTR(retval); kfree(value); return acl; } /* * Helper function to set i_mode in memory and disk. Some call paths * will not have di_bh or a journal handle to pass, in which case it * will create it's own. */ static int ocfs2_acl_set_mode(struct inode *inode, struct buffer_head *di_bh, handle_t *handle, umode_t new_mode) { int ret, commit_handle = 0; struct ocfs2_dinode *di; if (di_bh == NULL) { ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } } else get_bh(di_bh); if (handle == NULL) { handle = ocfs2_start_trans(OCFS2_SB(inode->i_sb), OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_brelse; } commit_handle = 1; } di = (struct ocfs2_dinode *)di_bh->b_data; ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } inode->i_mode = new_mode; inode_set_ctime_current(inode); di->i_mode = cpu_to_le16(inode->i_mode); di->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec); di->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, di_bh); out_commit: if (commit_handle) ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out_brelse: brelse(di_bh); out: return ret; } /* * Set the access or default ACL of an inode. */ static int ocfs2_set_acl(handle_t *handle, struct inode *inode, struct buffer_head *di_bh, int type, struct posix_acl *acl, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac) { int name_index; void *value = NULL; size_t size = 0; int ret; if (S_ISLNK(inode->i_mode)) return -EOPNOTSUPP; switch (type) { case ACL_TYPE_ACCESS: name_index = OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS; break; case ACL_TYPE_DEFAULT: name_index = OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT; if (!S_ISDIR(inode->i_mode)) return acl ? -EACCES : 0; break; default: return -EINVAL; } if (acl) { value = ocfs2_acl_to_xattr(acl, &size); if (IS_ERR(value)) return (int)PTR_ERR(value); } if (handle) ret = ocfs2_xattr_set_handle(handle, inode, di_bh, name_index, "", value, size, 0, meta_ac, data_ac); else ret = ocfs2_xattr_set(inode, name_index, "", value, size, 0); kfree(value); if (!ret) set_cached_acl(inode, type, acl); return ret; } int ocfs2_iop_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, struct posix_acl *acl, int type) { struct buffer_head *bh = NULL; int status, had_lock; struct ocfs2_lock_holder oh; struct inode *inode = d_inode(dentry); had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); if (had_lock < 0) return had_lock; if (type == ACL_TYPE_ACCESS && acl) { umode_t mode; status = posix_acl_update_mode(&nop_mnt_idmap, inode, &mode, &acl); if (status) goto unlock; status = ocfs2_acl_set_mode(inode, bh, NULL, mode); if (status) goto unlock; } status = ocfs2_set_acl(NULL, inode, bh, type, acl, NULL, NULL); unlock: ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); brelse(bh); return status; } struct posix_acl *ocfs2_iop_get_acl(struct inode *inode, int type, bool rcu) { struct ocfs2_super *osb; struct buffer_head *di_bh = NULL; struct posix_acl *acl; int had_lock; struct ocfs2_lock_holder oh; if (rcu) return ERR_PTR(-ECHILD); osb = OCFS2_SB(inode->i_sb); if (!(osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL)) return NULL; had_lock = ocfs2_inode_lock_tracker(inode, &di_bh, 0, &oh); if (had_lock < 0) return ERR_PTR(had_lock); down_read(&OCFS2_I(inode)->ip_xattr_sem); acl = ocfs2_get_acl_nolock(inode, type, di_bh); up_read(&OCFS2_I(inode)->ip_xattr_sem); ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); brelse(di_bh); return acl; } int ocfs2_acl_chmod(struct inode *inode, struct buffer_head *bh) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct posix_acl *acl; int ret; if (S_ISLNK(inode->i_mode)) return -EOPNOTSUPP; if (!(osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL)) return 0; down_read(&OCFS2_I(inode)->ip_xattr_sem); acl = ocfs2_get_acl_nolock(inode, ACL_TYPE_ACCESS, bh); up_read(&OCFS2_I(inode)->ip_xattr_sem); if (IS_ERR_OR_NULL(acl)) return PTR_ERR_OR_ZERO(acl); ret = __posix_acl_chmod(&acl, GFP_KERNEL, inode->i_mode); if (ret) return ret; ret = ocfs2_set_acl(NULL, inode, NULL, ACL_TYPE_ACCESS, acl, NULL, NULL); posix_acl_release(acl); return ret; } /* * Initialize the ACLs of a new inode. If parent directory has default ACL, * then clone to new inode. Called from ocfs2_mknod. */ int ocfs2_init_acl(handle_t *handle, struct inode *inode, struct inode *dir, struct buffer_head *di_bh, struct buffer_head *dir_bh, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct posix_acl *acl = NULL; int ret = 0, ret2; umode_t mode; if (!S_ISLNK(inode->i_mode)) { if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) { down_read(&OCFS2_I(dir)->ip_xattr_sem); acl = ocfs2_get_acl_nolock(dir, ACL_TYPE_DEFAULT, dir_bh); up_read(&OCFS2_I(dir)->ip_xattr_sem); if (IS_ERR(acl)) return PTR_ERR(acl); } if (!acl) { mode = inode->i_mode & ~current_umask(); ret = ocfs2_acl_set_mode(inode, di_bh, handle, mode); if (ret) { mlog_errno(ret); goto cleanup; } } } if ((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) && acl) { if (S_ISDIR(inode->i_mode)) { ret = ocfs2_set_acl(handle, inode, di_bh, ACL_TYPE_DEFAULT, acl, meta_ac, data_ac); if (ret) goto cleanup; } mode = inode->i_mode; ret = __posix_acl_create(&acl, GFP_NOFS, &mode); if (ret < 0) return ret; ret2 = ocfs2_acl_set_mode(inode, di_bh, handle, mode); if (ret2) { mlog_errno(ret2); ret = ret2; goto cleanup; } if (ret > 0) { ret = ocfs2_set_acl(handle, inode, di_bh, ACL_TYPE_ACCESS, acl, meta_ac, data_ac); } } cleanup: posix_acl_release(acl); return ret; }
linux-master
fs/ocfs2/acl.c
/* * linux/cluster/ssi/cfs/symlink.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE * or NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to [email protected] * * Copyright (C) 1992 Rick Sladkey * * Optimization changes Copyright (C) 1994 Florian La Roche * * Jun 7 1999, cache symlink lookups in the page cache. -DaveM * * Portions Copyright (C) 2001 Compaq Computer Corporation * * ocfs2 symlink handling code. * * Copyright (C) 2004, 2005 Oracle. * */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/namei.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "file.h" #include "inode.h" #include "journal.h" #include "symlink.h" #include "xattr.h" #include "buffer_head_io.h" static int ocfs2_fast_symlink_read_folio(struct file *f, struct folio *folio) { struct page *page = &folio->page; struct inode *inode = page->mapping->host; struct buffer_head *bh = NULL; int status = ocfs2_read_inode_block(inode, &bh); struct ocfs2_dinode *fe; const char *link; void *kaddr; size_t len; if (status < 0) { mlog_errno(status); return status; } fe = (struct ocfs2_dinode *) bh->b_data; link = (char *) fe->id2.i_symlink; /* will be less than a page size */ len = strnlen(link, ocfs2_fast_symlink_chars(inode->i_sb)); kaddr = kmap_atomic(page); memcpy(kaddr, link, len + 1); kunmap_atomic(kaddr); SetPageUptodate(page); unlock_page(page); brelse(bh); return 0; } const struct address_space_operations ocfs2_fast_symlink_aops = { .read_folio = ocfs2_fast_symlink_read_folio, }; const struct inode_operations ocfs2_symlink_inode_operations = { .get_link = page_get_link, .getattr = ocfs2_getattr, .setattr = ocfs2_setattr, .listxattr = ocfs2_listxattr, .fiemap = ocfs2_fiemap, };
linux-master
fs/ocfs2/symlink.c
// SPDX-License-Identifier: GPL-2.0-only /* * stack_o2cb.c * * Code which interfaces ocfs2 with the o2cb stack. * * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/kernel.h> #include <linux/crc32.h> #include <linux/slab.h> #include <linux/module.h> /* Needed for AOP_TRUNCATED_PAGE in mlog_errno() */ #include <linux/fs.h> #include "cluster/masklog.h" #include "cluster/nodemanager.h" #include "cluster/heartbeat.h" #include "cluster/tcp.h" #include "stackglue.h" struct o2dlm_private { struct dlm_eviction_cb op_eviction_cb; }; static struct ocfs2_stack_plugin o2cb_stack; /* These should be identical */ #if (DLM_LOCK_IV != LKM_IVMODE) # error Lock modes do not match #endif #if (DLM_LOCK_NL != LKM_NLMODE) # error Lock modes do not match #endif #if (DLM_LOCK_CR != LKM_CRMODE) # error Lock modes do not match #endif #if (DLM_LOCK_CW != LKM_CWMODE) # error Lock modes do not match #endif #if (DLM_LOCK_PR != LKM_PRMODE) # error Lock modes do not match #endif #if (DLM_LOCK_PW != LKM_PWMODE) # error Lock modes do not match #endif #if (DLM_LOCK_EX != LKM_EXMODE) # error Lock modes do not match #endif static inline int mode_to_o2dlm(int mode) { BUG_ON(mode > LKM_MAXMODE); return mode; } static int flags_to_o2dlm(u32 flags) { int o2dlm_flags = 0; if (flags & DLM_LKF_NOQUEUE) o2dlm_flags |= LKM_NOQUEUE; if (flags & DLM_LKF_CANCEL) o2dlm_flags |= LKM_CANCEL; if (flags & DLM_LKF_CONVERT) o2dlm_flags |= LKM_CONVERT; if (flags & DLM_LKF_VALBLK) o2dlm_flags |= LKM_VALBLK; if (flags & DLM_LKF_IVVALBLK) o2dlm_flags |= LKM_INVVALBLK; if (flags & DLM_LKF_ORPHAN) o2dlm_flags |= LKM_ORPHAN; if (flags & DLM_LKF_FORCEUNLOCK) o2dlm_flags |= LKM_FORCE; if (flags & DLM_LKF_TIMEOUT) o2dlm_flags |= LKM_TIMEOUT; if (flags & DLM_LKF_LOCAL) o2dlm_flags |= LKM_LOCAL; return o2dlm_flags; } /* * Map an o2dlm status to standard errno values. * * o2dlm only uses a handful of these, and returns even fewer to the * caller. Still, we try to assign sane values to each error. * * The following value pairs have special meanings to dlmglue, thus * the right hand side needs to stay unique - never duplicate the * mapping elsewhere in the table! * * DLM_NORMAL: 0 * DLM_NOTQUEUED: -EAGAIN * DLM_CANCELGRANT: -EBUSY * DLM_CANCEL: -DLM_ECANCEL */ /* Keep in sync with dlmapi.h */ static int status_map[] = { [DLM_NORMAL] = 0, /* Success */ [DLM_GRANTED] = -EINVAL, [DLM_DENIED] = -EACCES, [DLM_DENIED_NOLOCKS] = -EACCES, [DLM_WORKING] = -EACCES, [DLM_BLOCKED] = -EINVAL, [DLM_BLOCKED_ORPHAN] = -EINVAL, [DLM_DENIED_GRACE_PERIOD] = -EACCES, [DLM_SYSERR] = -ENOMEM, /* It is what it is */ [DLM_NOSUPPORT] = -EPROTO, [DLM_CANCELGRANT] = -EBUSY, /* Cancel after grant */ [DLM_IVLOCKID] = -EINVAL, [DLM_SYNC] = -EINVAL, [DLM_BADTYPE] = -EINVAL, [DLM_BADRESOURCE] = -EINVAL, [DLM_MAXHANDLES] = -ENOMEM, [DLM_NOCLINFO] = -EINVAL, [DLM_NOLOCKMGR] = -EINVAL, [DLM_NOPURGED] = -EINVAL, [DLM_BADARGS] = -EINVAL, [DLM_VOID] = -EINVAL, [DLM_NOTQUEUED] = -EAGAIN, /* Trylock failed */ [DLM_IVBUFLEN] = -EINVAL, [DLM_CVTUNGRANT] = -EPERM, [DLM_BADPARAM] = -EINVAL, [DLM_VALNOTVALID] = -EINVAL, [DLM_REJECTED] = -EPERM, [DLM_ABORT] = -EINVAL, [DLM_CANCEL] = -DLM_ECANCEL, /* Successful cancel */ [DLM_IVRESHANDLE] = -EINVAL, [DLM_DEADLOCK] = -EDEADLK, [DLM_DENIED_NOASTS] = -EINVAL, [DLM_FORWARD] = -EINVAL, [DLM_TIMEOUT] = -ETIMEDOUT, [DLM_IVGROUPID] = -EINVAL, [DLM_VERS_CONFLICT] = -EOPNOTSUPP, [DLM_BAD_DEVICE_PATH] = -ENOENT, [DLM_NO_DEVICE_PERMISSION] = -EPERM, [DLM_NO_CONTROL_DEVICE] = -ENOENT, [DLM_RECOVERING] = -ENOTCONN, [DLM_MIGRATING] = -ERESTART, [DLM_MAXSTATS] = -EINVAL, }; static int dlm_status_to_errno(enum dlm_status status) { BUG_ON(status < 0 || status >= ARRAY_SIZE(status_map)); return status_map[status]; } static void o2dlm_lock_ast_wrapper(void *astarg) { struct ocfs2_dlm_lksb *lksb = astarg; lksb->lksb_conn->cc_proto->lp_lock_ast(lksb); } static void o2dlm_blocking_ast_wrapper(void *astarg, int level) { struct ocfs2_dlm_lksb *lksb = astarg; lksb->lksb_conn->cc_proto->lp_blocking_ast(lksb, level); } static void o2dlm_unlock_ast_wrapper(void *astarg, enum dlm_status status) { struct ocfs2_dlm_lksb *lksb = astarg; int error = dlm_status_to_errno(status); /* * In o2dlm, you can get both the lock_ast() for the lock being * granted and the unlock_ast() for the CANCEL failing. A * successful cancel sends DLM_NORMAL here. If the * lock grant happened before the cancel arrived, you get * DLM_CANCELGRANT. * * There's no need for the double-ast. If we see DLM_CANCELGRANT, * we just ignore it. We expect the lock_ast() to handle the * granted lock. */ if (status == DLM_CANCELGRANT) return; lksb->lksb_conn->cc_proto->lp_unlock_ast(lksb, error); } static int o2cb_dlm_lock(struct ocfs2_cluster_connection *conn, int mode, struct ocfs2_dlm_lksb *lksb, u32 flags, void *name, unsigned int namelen) { enum dlm_status status; int o2dlm_mode = mode_to_o2dlm(mode); int o2dlm_flags = flags_to_o2dlm(flags); int ret; status = dlmlock(conn->cc_lockspace, o2dlm_mode, &lksb->lksb_o2dlm, o2dlm_flags, name, namelen, o2dlm_lock_ast_wrapper, lksb, o2dlm_blocking_ast_wrapper); ret = dlm_status_to_errno(status); return ret; } static int o2cb_dlm_unlock(struct ocfs2_cluster_connection *conn, struct ocfs2_dlm_lksb *lksb, u32 flags) { enum dlm_status status; int o2dlm_flags = flags_to_o2dlm(flags); int ret; status = dlmunlock(conn->cc_lockspace, &lksb->lksb_o2dlm, o2dlm_flags, o2dlm_unlock_ast_wrapper, lksb); ret = dlm_status_to_errno(status); return ret; } static int o2cb_dlm_lock_status(struct ocfs2_dlm_lksb *lksb) { return dlm_status_to_errno(lksb->lksb_o2dlm.status); } /* * o2dlm aways has a "valid" LVB. If the dlm loses track of the LVB * contents, it will zero out the LVB. Thus the caller can always trust * the contents. */ static int o2cb_dlm_lvb_valid(struct ocfs2_dlm_lksb *lksb) { return 1; } static void *o2cb_dlm_lvb(struct ocfs2_dlm_lksb *lksb) { return (void *)(lksb->lksb_o2dlm.lvb); } static void o2cb_dump_lksb(struct ocfs2_dlm_lksb *lksb) { dlm_print_one_lock(lksb->lksb_o2dlm.lockid); } /* * Check if this node is heartbeating and is connected to all other * heartbeating nodes. */ static int o2cb_cluster_check(void) { u8 node_num; int i; unsigned long hbmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; unsigned long netmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; node_num = o2nm_this_node(); if (node_num == O2NM_MAX_NODES) { printk(KERN_ERR "o2cb: This node has not been configured.\n"); return -EINVAL; } /* * o2dlm expects o2net sockets to be created. If not, then * dlm_join_domain() fails with a stack of errors which are both cryptic * and incomplete. The idea here is to detect upfront whether we have * managed to connect to all nodes or not. If not, then list the nodes * to allow the user to check the configuration (incorrect IP, firewall, * etc.) Yes, this is racy. But its not the end of the world. */ #define O2CB_MAP_STABILIZE_COUNT 60 for (i = 0; i < O2CB_MAP_STABILIZE_COUNT; ++i) { o2hb_fill_node_map(hbmap, O2NM_MAX_NODES); if (!test_bit(node_num, hbmap)) { printk(KERN_ERR "o2cb: %s heartbeat has not been " "started.\n", (o2hb_global_heartbeat_active() ? "Global" : "Local")); return -EINVAL; } o2net_fill_node_map(netmap, O2NM_MAX_NODES); /* Force set the current node to allow easy compare */ set_bit(node_num, netmap); if (bitmap_equal(hbmap, netmap, O2NM_MAX_NODES)) return 0; if (i < O2CB_MAP_STABILIZE_COUNT - 1) msleep(1000); } printk(KERN_ERR "o2cb: This node could not connect to nodes:"); i = -1; while ((i = find_next_bit(hbmap, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { if (!test_bit(i, netmap)) printk(" %u", i); } printk(".\n"); return -ENOTCONN; } /* * Called from the dlm when it's about to evict a node. This is how the * classic stack signals node death. */ static void o2dlm_eviction_cb(int node_num, void *data) { struct ocfs2_cluster_connection *conn = data; printk(KERN_NOTICE "o2cb: o2dlm has evicted node %d from domain %.*s\n", node_num, conn->cc_namelen, conn->cc_name); conn->cc_recovery_handler(node_num, conn->cc_recovery_data); } static int o2cb_cluster_connect(struct ocfs2_cluster_connection *conn) { int rc = 0; u32 dlm_key; struct dlm_ctxt *dlm; struct o2dlm_private *priv; struct dlm_protocol_version fs_version; BUG_ON(conn == NULL); BUG_ON(conn->cc_proto == NULL); /* Ensure cluster stack is up and all nodes are connected */ rc = o2cb_cluster_check(); if (rc) { printk(KERN_ERR "o2cb: Cluster check failed. Fix errors " "before retrying.\n"); goto out; } priv = kzalloc(sizeof(struct o2dlm_private), GFP_KERNEL); if (!priv) { rc = -ENOMEM; goto out_free; } /* This just fills the structure in. It is safe to pass conn. */ dlm_setup_eviction_cb(&priv->op_eviction_cb, o2dlm_eviction_cb, conn); conn->cc_private = priv; /* used by the dlm code to make message headers unique, each * node in this domain must agree on this. */ dlm_key = crc32_le(0, conn->cc_name, conn->cc_namelen); fs_version.pv_major = conn->cc_version.pv_major; fs_version.pv_minor = conn->cc_version.pv_minor; dlm = dlm_register_domain(conn->cc_name, dlm_key, &fs_version); if (IS_ERR(dlm)) { rc = PTR_ERR(dlm); mlog_errno(rc); goto out_free; } conn->cc_version.pv_major = fs_version.pv_major; conn->cc_version.pv_minor = fs_version.pv_minor; conn->cc_lockspace = dlm; dlm_register_eviction_cb(dlm, &priv->op_eviction_cb); out_free: if (rc) kfree(conn->cc_private); out: return rc; } static int o2cb_cluster_disconnect(struct ocfs2_cluster_connection *conn) { struct dlm_ctxt *dlm = conn->cc_lockspace; struct o2dlm_private *priv = conn->cc_private; dlm_unregister_eviction_cb(&priv->op_eviction_cb); conn->cc_private = NULL; kfree(priv); dlm_unregister_domain(dlm); conn->cc_lockspace = NULL; return 0; } static int o2cb_cluster_this_node(struct ocfs2_cluster_connection *conn, unsigned int *node) { int node_num; node_num = o2nm_this_node(); if (node_num == O2NM_INVALID_NODE_NUM) return -ENOENT; if (node_num >= O2NM_MAX_NODES) return -EOVERFLOW; *node = node_num; return 0; } static struct ocfs2_stack_operations o2cb_stack_ops = { .connect = o2cb_cluster_connect, .disconnect = o2cb_cluster_disconnect, .this_node = o2cb_cluster_this_node, .dlm_lock = o2cb_dlm_lock, .dlm_unlock = o2cb_dlm_unlock, .lock_status = o2cb_dlm_lock_status, .lvb_valid = o2cb_dlm_lvb_valid, .lock_lvb = o2cb_dlm_lvb, .dump_lksb = o2cb_dump_lksb, }; static struct ocfs2_stack_plugin o2cb_stack = { .sp_name = "o2cb", .sp_ops = &o2cb_stack_ops, .sp_owner = THIS_MODULE, }; static int __init o2cb_stack_init(void) { return ocfs2_stack_glue_register(&o2cb_stack); } static void __exit o2cb_stack_exit(void) { ocfs2_stack_glue_unregister(&o2cb_stack); } MODULE_AUTHOR("Oracle"); MODULE_DESCRIPTION("ocfs2 driver for the classic o2cb stack"); MODULE_LICENSE("GPL"); module_init(o2cb_stack_init); module_exit(o2cb_stack_exit);
linux-master
fs/ocfs2/stack_o2cb.c
// SPDX-License-Identifier: GPL-2.0-only /* * reservations.c * * Allocation reservations implementation * * Some code borrowed from fs/ext3/balloc.c and is: * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card ([email protected]) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * The rest is copyright (C) 2010 Novell. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/bitops.h> #include <linux/list.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "ocfs2_trace.h" #ifdef CONFIG_OCFS2_DEBUG_FS #define OCFS2_CHECK_RESERVATIONS #endif static DEFINE_SPINLOCK(resv_lock); int ocfs2_dir_resv_allowed(struct ocfs2_super *osb) { return (osb->osb_resv_level && osb->osb_dir_resv_level); } static unsigned int ocfs2_resv_window_bits(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv) { struct ocfs2_super *osb = resmap->m_osb; unsigned int bits; if (!(resv->r_flags & OCFS2_RESV_FLAG_DIR)) { /* 8, 16, 32, 64, 128, 256, 512, 1024 */ bits = 4 << osb->osb_resv_level; } else { bits = 4 << osb->osb_dir_resv_level; } return bits; } static inline unsigned int ocfs2_resv_end(struct ocfs2_alloc_reservation *resv) { if (resv->r_len) return resv->r_start + resv->r_len - 1; return resv->r_start; } static inline int ocfs2_resv_empty(struct ocfs2_alloc_reservation *resv) { return !!(resv->r_len == 0); } static inline int ocfs2_resmap_disabled(struct ocfs2_reservation_map *resmap) { if (resmap->m_osb->osb_resv_level == 0) return 1; return 0; } static void ocfs2_dump_resv(struct ocfs2_reservation_map *resmap) { struct ocfs2_super *osb = resmap->m_osb; struct rb_node *node; struct ocfs2_alloc_reservation *resv; int i = 0; mlog(ML_NOTICE, "Dumping resmap for device %s. Bitmap length: %u\n", osb->dev_str, resmap->m_bitmap_len); node = rb_first(&resmap->m_reservations); while (node) { resv = rb_entry(node, struct ocfs2_alloc_reservation, r_node); mlog(ML_NOTICE, "start: %u\tend: %u\tlen: %u\tlast_start: %u" "\tlast_len: %u\n", resv->r_start, ocfs2_resv_end(resv), resv->r_len, resv->r_last_start, resv->r_last_len); node = rb_next(node); i++; } mlog(ML_NOTICE, "%d reservations found. LRU follows\n", i); i = 0; list_for_each_entry(resv, &resmap->m_lru, r_lru) { mlog(ML_NOTICE, "LRU(%d) start: %u\tend: %u\tlen: %u\t" "last_start: %u\tlast_len: %u\n", i, resv->r_start, ocfs2_resv_end(resv), resv->r_len, resv->r_last_start, resv->r_last_len); i++; } } #ifdef OCFS2_CHECK_RESERVATIONS static int ocfs2_validate_resmap_bits(struct ocfs2_reservation_map *resmap, int i, struct ocfs2_alloc_reservation *resv) { char *disk_bitmap = resmap->m_disk_bitmap; unsigned int start = resv->r_start; unsigned int end = ocfs2_resv_end(resv); while (start <= end) { if (ocfs2_test_bit(start, disk_bitmap)) { mlog(ML_ERROR, "reservation %d covers an allocated area " "starting at bit %u!\n", i, start); return 1; } start++; } return 0; } static void ocfs2_check_resmap(struct ocfs2_reservation_map *resmap) { unsigned int off = 0; int i = 0; struct rb_node *node; struct ocfs2_alloc_reservation *resv; node = rb_first(&resmap->m_reservations); while (node) { resv = rb_entry(node, struct ocfs2_alloc_reservation, r_node); if (i > 0 && resv->r_start <= off) { mlog(ML_ERROR, "reservation %d has bad start off!\n", i); goto bad; } if (resv->r_len == 0) { mlog(ML_ERROR, "reservation %d has no length!\n", i); goto bad; } if (resv->r_start > ocfs2_resv_end(resv)) { mlog(ML_ERROR, "reservation %d has invalid range!\n", i); goto bad; } if (ocfs2_resv_end(resv) >= resmap->m_bitmap_len) { mlog(ML_ERROR, "reservation %d extends past bitmap!\n", i); goto bad; } if (ocfs2_validate_resmap_bits(resmap, i, resv)) goto bad; off = ocfs2_resv_end(resv); node = rb_next(node); i++; } return; bad: ocfs2_dump_resv(resmap); BUG(); } #else static inline void ocfs2_check_resmap(struct ocfs2_reservation_map *resmap) { } #endif void ocfs2_resv_init_once(struct ocfs2_alloc_reservation *resv) { memset(resv, 0, sizeof(*resv)); INIT_LIST_HEAD(&resv->r_lru); } void ocfs2_resv_set_type(struct ocfs2_alloc_reservation *resv, unsigned int flags) { BUG_ON(flags & ~OCFS2_RESV_TYPES); resv->r_flags |= flags; } void ocfs2_resmap_init(struct ocfs2_super *osb, struct ocfs2_reservation_map *resmap) { memset(resmap, 0, sizeof(*resmap)); resmap->m_osb = osb; resmap->m_reservations = RB_ROOT; /* m_bitmap_len is initialized to zero by the above memset. */ INIT_LIST_HEAD(&resmap->m_lru); } static void ocfs2_resv_mark_lru(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv) { assert_spin_locked(&resv_lock); if (!list_empty(&resv->r_lru)) list_del_init(&resv->r_lru); list_add_tail(&resv->r_lru, &resmap->m_lru); } static void __ocfs2_resv_trunc(struct ocfs2_alloc_reservation *resv) { resv->r_len = 0; resv->r_start = 0; } static void ocfs2_resv_remove(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv) { if (resv->r_flags & OCFS2_RESV_FLAG_INUSE) { list_del_init(&resv->r_lru); rb_erase(&resv->r_node, &resmap->m_reservations); resv->r_flags &= ~OCFS2_RESV_FLAG_INUSE; } } static void __ocfs2_resv_discard(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv) { assert_spin_locked(&resv_lock); __ocfs2_resv_trunc(resv); /* * last_len and last_start no longer make sense if * we're changing the range of our allocations. */ resv->r_last_len = resv->r_last_start = 0; ocfs2_resv_remove(resmap, resv); } /* does nothing if 'resv' is null */ void ocfs2_resv_discard(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv) { if (resv) { spin_lock(&resv_lock); __ocfs2_resv_discard(resmap, resv); spin_unlock(&resv_lock); } } static void ocfs2_resmap_clear_all_resv(struct ocfs2_reservation_map *resmap) { struct rb_node *node; struct ocfs2_alloc_reservation *resv; assert_spin_locked(&resv_lock); while ((node = rb_last(&resmap->m_reservations)) != NULL) { resv = rb_entry(node, struct ocfs2_alloc_reservation, r_node); __ocfs2_resv_discard(resmap, resv); } } void ocfs2_resmap_restart(struct ocfs2_reservation_map *resmap, unsigned int clen, char *disk_bitmap) { if (ocfs2_resmap_disabled(resmap)) return; spin_lock(&resv_lock); ocfs2_resmap_clear_all_resv(resmap); resmap->m_bitmap_len = clen; resmap->m_disk_bitmap = disk_bitmap; spin_unlock(&resv_lock); } void ocfs2_resmap_uninit(struct ocfs2_reservation_map *resmap) { /* Does nothing for now. Keep this around for API symmetry */ } static void ocfs2_resv_insert(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *new) { struct rb_root *root = &resmap->m_reservations; struct rb_node *parent = NULL; struct rb_node **p = &root->rb_node; struct ocfs2_alloc_reservation *tmp; assert_spin_locked(&resv_lock); trace_ocfs2_resv_insert(new->r_start, new->r_len); while (*p) { parent = *p; tmp = rb_entry(parent, struct ocfs2_alloc_reservation, r_node); if (new->r_start < tmp->r_start) { p = &(*p)->rb_left; /* * This is a good place to check for * overlapping reservations. */ BUG_ON(ocfs2_resv_end(new) >= tmp->r_start); } else if (new->r_start > ocfs2_resv_end(tmp)) { p = &(*p)->rb_right; } else { /* This should never happen! */ mlog(ML_ERROR, "Duplicate reservation window!\n"); BUG(); } } rb_link_node(&new->r_node, parent, p); rb_insert_color(&new->r_node, root); new->r_flags |= OCFS2_RESV_FLAG_INUSE; ocfs2_resv_mark_lru(resmap, new); ocfs2_check_resmap(resmap); } /** * ocfs2_find_resv_lhs() - find the window which contains goal * @resmap: reservation map to search * @goal: which bit to search for * * If a window containing that goal is not found, we return the window * which comes before goal. Returns NULL on empty rbtree or no window * before goal. */ static struct ocfs2_alloc_reservation * ocfs2_find_resv_lhs(struct ocfs2_reservation_map *resmap, unsigned int goal) { struct ocfs2_alloc_reservation *resv = NULL; struct ocfs2_alloc_reservation *prev_resv = NULL; struct rb_node *node = resmap->m_reservations.rb_node; assert_spin_locked(&resv_lock); if (!node) return NULL; node = rb_first(&resmap->m_reservations); while (node) { resv = rb_entry(node, struct ocfs2_alloc_reservation, r_node); if (resv->r_start <= goal && ocfs2_resv_end(resv) >= goal) break; /* Check if we overshot the reservation just before goal? */ if (resv->r_start > goal) { resv = prev_resv; break; } prev_resv = resv; node = rb_next(node); } return resv; } /* * We are given a range within the bitmap, which corresponds to a gap * inside the reservations tree (search_start, search_len). The range * can be anything from the whole bitmap, to a gap between * reservations. * * The start value of *rstart is insignificant. * * This function searches the bitmap range starting at search_start * with length search_len for a set of contiguous free bits. We try * to find up to 'wanted' bits, but can sometimes return less. * * Returns the length of allocation, 0 if no free bits are found. * * *cstart and *clen will also be populated with the result. */ static int ocfs2_resmap_find_free_bits(struct ocfs2_reservation_map *resmap, unsigned int wanted, unsigned int search_start, unsigned int search_len, unsigned int *rstart, unsigned int *rlen) { void *bitmap = resmap->m_disk_bitmap; unsigned int best_start, best_len = 0; int offset, start, found; trace_ocfs2_resmap_find_free_bits_begin(search_start, search_len, wanted, resmap->m_bitmap_len); found = best_start = best_len = 0; start = search_start; while ((offset = ocfs2_find_next_zero_bit(bitmap, resmap->m_bitmap_len, start)) != -1) { /* Search reached end of the region */ if (offset >= (search_start + search_len)) break; if (offset == start) { /* we found a zero */ found++; /* move start to the next bit to test */ start++; } else { /* got a zero after some ones */ found = 1; start = offset + 1; } if (found > best_len) { best_len = found; best_start = start - found; } if (found >= wanted) break; } if (best_len == 0) return 0; if (best_len >= wanted) best_len = wanted; *rlen = best_len; *rstart = best_start; trace_ocfs2_resmap_find_free_bits_end(best_start, best_len); return *rlen; } static void __ocfs2_resv_find_window(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv, unsigned int goal, unsigned int wanted) { struct rb_root *root = &resmap->m_reservations; unsigned int gap_start, gap_end, gap_len; struct ocfs2_alloc_reservation *prev_resv, *next_resv; struct rb_node *prev, *next; unsigned int cstart, clen; unsigned int best_start = 0, best_len = 0; /* * Nasty cases to consider: * * - rbtree is empty * - our window should be first in all reservations * - our window should be last in all reservations * - need to make sure we don't go past end of bitmap */ trace_ocfs2_resv_find_window_begin(resv->r_start, ocfs2_resv_end(resv), goal, wanted, RB_EMPTY_ROOT(root)); assert_spin_locked(&resv_lock); if (RB_EMPTY_ROOT(root)) { /* * Easiest case - empty tree. We can just take * whatever window of free bits we want. */ clen = ocfs2_resmap_find_free_bits(resmap, wanted, goal, resmap->m_bitmap_len - goal, &cstart, &clen); /* * This should never happen - the local alloc window * will always have free bits when we're called. */ BUG_ON(goal == 0 && clen == 0); if (clen == 0) return; resv->r_start = cstart; resv->r_len = clen; ocfs2_resv_insert(resmap, resv); return; } prev_resv = ocfs2_find_resv_lhs(resmap, goal); if (prev_resv == NULL) { /* * A NULL here means that the search code couldn't * find a window that starts before goal. * * However, we can take the first window after goal, * which is also by definition, the leftmost window in * the entire tree. If we can find free bits in the * gap between goal and the LHS window, then the * reservation can safely be placed there. * * Otherwise we fall back to a linear search, checking * the gaps in between windows for a place to * allocate. */ next = rb_first(root); next_resv = rb_entry(next, struct ocfs2_alloc_reservation, r_node); /* * The search should never return such a window. (see * comment above */ if (next_resv->r_start <= goal) { mlog(ML_ERROR, "goal: %u next_resv: start %u len %u\n", goal, next_resv->r_start, next_resv->r_len); ocfs2_dump_resv(resmap); BUG(); } clen = ocfs2_resmap_find_free_bits(resmap, wanted, goal, next_resv->r_start - goal, &cstart, &clen); if (clen) { best_len = clen; best_start = cstart; if (best_len == wanted) goto out_insert; } prev_resv = next_resv; next_resv = NULL; } trace_ocfs2_resv_find_window_prev(prev_resv->r_start, ocfs2_resv_end(prev_resv)); prev = &prev_resv->r_node; /* Now we do a linear search for a window, starting at 'prev_rsv' */ while (1) { next = rb_next(prev); if (next) { next_resv = rb_entry(next, struct ocfs2_alloc_reservation, r_node); gap_start = ocfs2_resv_end(prev_resv) + 1; gap_end = next_resv->r_start - 1; gap_len = gap_end - gap_start + 1; } else { /* * We're at the rightmost edge of the * tree. See if a reservation between this * window and the end of the bitmap will work. */ gap_start = ocfs2_resv_end(prev_resv) + 1; gap_len = resmap->m_bitmap_len - gap_start; gap_end = resmap->m_bitmap_len - 1; } trace_ocfs2_resv_find_window_next(next ? next_resv->r_start: -1, next ? ocfs2_resv_end(next_resv) : -1); /* * No need to check this gap if we have already found * a larger region of free bits. */ if (gap_len <= best_len) goto next_resv; clen = ocfs2_resmap_find_free_bits(resmap, wanted, gap_start, gap_len, &cstart, &clen); if (clen == wanted) { best_len = clen; best_start = cstart; goto out_insert; } else if (clen > best_len) { best_len = clen; best_start = cstart; } next_resv: if (!next) break; prev = next; prev_resv = rb_entry(prev, struct ocfs2_alloc_reservation, r_node); } out_insert: if (best_len) { resv->r_start = best_start; resv->r_len = best_len; ocfs2_resv_insert(resmap, resv); } } static void ocfs2_cannibalize_resv(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv, unsigned int wanted) { struct ocfs2_alloc_reservation *lru_resv; int tmpwindow = !!(resv->r_flags & OCFS2_RESV_FLAG_TMP); unsigned int min_bits; if (!tmpwindow) min_bits = ocfs2_resv_window_bits(resmap, resv) >> 1; else min_bits = wanted; /* We at know the temp window will use all * of these bits */ /* * Take the first reservation off the LRU as our 'target'. We * don't try to be smart about it. There might be a case for * searching based on size but I don't have enough data to be * sure. --Mark (3/16/2010) */ lru_resv = list_first_entry(&resmap->m_lru, struct ocfs2_alloc_reservation, r_lru); trace_ocfs2_cannibalize_resv_begin(lru_resv->r_start, lru_resv->r_len, ocfs2_resv_end(lru_resv)); /* * Cannibalize (some or all) of the target reservation and * feed it to the current window. */ if (lru_resv->r_len <= min_bits) { /* * Discard completely if size is less than or equal to a * reasonable threshold - 50% of window bits for non temporary * windows. */ resv->r_start = lru_resv->r_start; resv->r_len = lru_resv->r_len; __ocfs2_resv_discard(resmap, lru_resv); } else { unsigned int shrink; if (tmpwindow) shrink = min_bits; else shrink = lru_resv->r_len / 2; lru_resv->r_len -= shrink; resv->r_start = ocfs2_resv_end(lru_resv) + 1; resv->r_len = shrink; } trace_ocfs2_cannibalize_resv_end(resv->r_start, ocfs2_resv_end(resv), resv->r_len, resv->r_last_start, resv->r_last_len); ocfs2_resv_insert(resmap, resv); } static void ocfs2_resv_find_window(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv, unsigned int wanted) { unsigned int goal = 0; BUG_ON(!ocfs2_resv_empty(resv)); /* * Begin by trying to get a window as close to the previous * one as possible. Using the most recent allocation as a * start goal makes sense. */ if (resv->r_last_len) { goal = resv->r_last_start + resv->r_last_len; if (goal >= resmap->m_bitmap_len) goal = 0; } __ocfs2_resv_find_window(resmap, resv, goal, wanted); /* Search from last alloc didn't work, try once more from beginning. */ if (ocfs2_resv_empty(resv) && goal != 0) __ocfs2_resv_find_window(resmap, resv, 0, wanted); if (ocfs2_resv_empty(resv)) { /* * Still empty? Pull oldest one off the LRU, remove it from * tree, put this one in it's place. */ ocfs2_cannibalize_resv(resmap, resv, wanted); } BUG_ON(ocfs2_resv_empty(resv)); } int ocfs2_resmap_resv_bits(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv, int *cstart, int *clen) { if (resv == NULL || ocfs2_resmap_disabled(resmap)) return -ENOSPC; spin_lock(&resv_lock); if (ocfs2_resv_empty(resv)) { /* * We don't want to over-allocate for temporary * windows. Otherwise, we run the risk of fragmenting the * allocation space. */ unsigned int wanted = ocfs2_resv_window_bits(resmap, resv); if ((resv->r_flags & OCFS2_RESV_FLAG_TMP) || wanted < *clen) wanted = *clen; /* * Try to get a window here. If it works, we must fall * through and test the bitmap . This avoids some * ping-ponging of windows due to non-reserved space * being allocation before we initialize a window for * that inode. */ ocfs2_resv_find_window(resmap, resv, wanted); trace_ocfs2_resmap_resv_bits(resv->r_start, resv->r_len); } BUG_ON(ocfs2_resv_empty(resv)); *cstart = resv->r_start; *clen = resv->r_len; spin_unlock(&resv_lock); return 0; } static void ocfs2_adjust_resv_from_alloc(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv, unsigned int start, unsigned int end) { unsigned int rhs = 0; unsigned int old_end = ocfs2_resv_end(resv); BUG_ON(start != resv->r_start || old_end < end); /* * Completely used? We can remove it then. */ if (old_end == end) { __ocfs2_resv_discard(resmap, resv); return; } rhs = old_end - end; /* * This should have been trapped above. */ BUG_ON(rhs == 0); resv->r_start = end + 1; resv->r_len = old_end - resv->r_start + 1; } void ocfs2_resmap_claimed_bits(struct ocfs2_reservation_map *resmap, struct ocfs2_alloc_reservation *resv, u32 cstart, u32 clen) { unsigned int cend = cstart + clen - 1; if (resmap == NULL || ocfs2_resmap_disabled(resmap)) return; if (resv == NULL) return; BUG_ON(cstart != resv->r_start); spin_lock(&resv_lock); trace_ocfs2_resmap_claimed_bits_begin(cstart, cend, clen, resv->r_start, ocfs2_resv_end(resv), resv->r_len, resv->r_last_start, resv->r_last_len); BUG_ON(cstart < resv->r_start); BUG_ON(cstart > ocfs2_resv_end(resv)); BUG_ON(cend > ocfs2_resv_end(resv)); ocfs2_adjust_resv_from_alloc(resmap, resv, cstart, cend); resv->r_last_start = cstart; resv->r_last_len = clen; /* * May have been discarded above from * ocfs2_adjust_resv_from_alloc(). */ if (!ocfs2_resv_empty(resv)) ocfs2_resv_mark_lru(resmap, resv); trace_ocfs2_resmap_claimed_bits_end(resv->r_start, ocfs2_resv_end(resv), resv->r_len, resv->r_last_start, resv->r_last_len); ocfs2_check_resmap(resmap); spin_unlock(&resv_lock); }
linux-master
fs/ocfs2/reservations.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * file.c * * File open, close, extend, truncate * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/capability.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/uio.h> #include <linux/sched.h> #include <linux/splice.h> #include <linux/mount.h> #include <linux/writeback.h> #include <linux/falloc.h> #include <linux/quotaops.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "sysfile.h" #include "inode.h" #include "ioctl.h" #include "journal.h" #include "locks.h" #include "mmap.h" #include "suballoc.h" #include "super.h" #include "xattr.h" #include "acl.h" #include "quota.h" #include "refcounttree.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" static int ocfs2_init_file_private(struct inode *inode, struct file *file) { struct ocfs2_file_private *fp; fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); if (!fp) return -ENOMEM; fp->fp_file = file; mutex_init(&fp->fp_mutex); ocfs2_file_lock_res_init(&fp->fp_flock, fp); file->private_data = fp; return 0; } static void ocfs2_free_file_private(struct inode *inode, struct file *file) { struct ocfs2_file_private *fp = file->private_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (fp) { ocfs2_simple_drop_lockres(osb, &fp->fp_flock); ocfs2_lock_res_free(&fp->fp_flock); kfree(fp); file->private_data = NULL; } } static int ocfs2_file_open(struct inode *inode, struct file *file) { int status; int mode = file->f_flags; struct ocfs2_inode_info *oi = OCFS2_I(inode); trace_ocfs2_file_open(inode, file, file->f_path.dentry, (unsigned long long)oi->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, mode); if (file->f_mode & FMODE_WRITE) { status = dquot_initialize(inode); if (status) goto leave; } spin_lock(&oi->ip_lock); /* Check that the inode hasn't been wiped from disk by another * node. If it hasn't then we're safe as long as we hold the * spin lock until our increment of open count. */ if (oi->ip_flags & OCFS2_INODE_DELETED) { spin_unlock(&oi->ip_lock); status = -ENOENT; goto leave; } if (mode & O_DIRECT) oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; oi->ip_open_count++; spin_unlock(&oi->ip_lock); status = ocfs2_init_file_private(inode, file); if (status) { /* * We want to set open count back if we're failing the * open. */ spin_lock(&oi->ip_lock); oi->ip_open_count--; spin_unlock(&oi->ip_lock); } file->f_mode |= FMODE_NOWAIT; leave: return status; } static int ocfs2_file_release(struct inode *inode, struct file *file) { struct ocfs2_inode_info *oi = OCFS2_I(inode); spin_lock(&oi->ip_lock); if (!--oi->ip_open_count) oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; trace_ocfs2_file_release(inode, file, file->f_path.dentry, oi->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, oi->ip_open_count); spin_unlock(&oi->ip_lock); ocfs2_free_file_private(inode, file); return 0; } static int ocfs2_dir_open(struct inode *inode, struct file *file) { return ocfs2_init_file_private(inode, file); } static int ocfs2_dir_release(struct inode *inode, struct file *file) { ocfs2_free_file_private(inode, file); return 0; } static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { int err = 0; struct inode *inode = file->f_mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_inode_info *oi = OCFS2_I(inode); journal_t *journal = osb->journal->j_journal; int ret; tid_t commit_tid; bool needs_barrier = false; trace_ocfs2_sync_file(inode, file, file->f_path.dentry, oi->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, (unsigned long long)datasync); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; err = file_write_and_wait_range(file, start, end); if (err) return err; commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; if (journal->j_flags & JBD2_BARRIER && !jbd2_trans_will_send_data_barrier(journal, commit_tid)) needs_barrier = true; err = jbd2_complete_transaction(journal, commit_tid); if (needs_barrier) { ret = blkdev_issue_flush(inode->i_sb->s_bdev); if (!err) err = ret; } if (err) mlog_errno(err); return (err < 0) ? -EIO : 0; } int ocfs2_should_update_atime(struct inode *inode, struct vfsmount *vfsmnt) { struct timespec64 now; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return 0; if ((inode->i_flags & S_NOATIME) || ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; /* * We can be called with no vfsmnt structure - NFSD will * sometimes do this. * * Note that our action here is different than touch_atime() - * if we can't tell whether this is a noatime mount, then we * don't know whether to trust the value of s_atime_quantum. */ if (vfsmnt == NULL) return 0; if ((vfsmnt->mnt_flags & MNT_NOATIME) || ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; if (vfsmnt->mnt_flags & MNT_RELATIME) { struct timespec64 ctime = inode_get_ctime(inode); if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || (timespec64_compare(&inode->i_atime, &ctime) <= 0)) return 1; return 0; } now = current_time(inode); if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) return 0; else return 1; } int ocfs2_update_inode_atime(struct inode *inode, struct buffer_head *bh) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle; struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } /* * Don't use ocfs2_mark_inode_dirty() here as we don't always * have i_rwsem to guard against concurrent changes to other * inode fields. */ inode->i_atime = current_time(inode); di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, bh); out_commit: ocfs2_commit_trans(osb, handle); out: return ret; } int ocfs2_set_inode_size(handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; i_size_write(inode, new_i_size); inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_mtime = inode_set_ctime_current(inode); status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } bail: return status; } int ocfs2_simple_size_update(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_set_inode_size(handle, inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_cow_file_pos(struct inode *inode, struct buffer_head *fe_bh, u64 offset) { int status; u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; unsigned int num_clusters = 0; unsigned int ext_flags = 0; /* * If the new offset is aligned to the range of the cluster, there is * no space for ocfs2_zero_range_for_truncate to fill, so no need to * CoW either. */ if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) return 0; status = ocfs2_get_clusters(inode, cpos, &phys, &num_clusters, &ext_flags); if (status) { mlog_errno(status); goto out; } if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); out: return status; } static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; handle_t *handle; struct ocfs2_dinode *di; u64 cluster_bytes; /* * We need to CoW the cluster contains the offset if it is reflinked * since we will call ocfs2_zero_range_for_truncate later which will * write "0" from offset to the end of the cluster. */ status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); if (status) { mlog_errno(status); return status; } /* TODO: This needs to actually orphan the inode in this * transaction. */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } /* * Do this before setting i_size. */ cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, cluster_bytes); if (status) { mlog_errno(status); goto out_commit; } i_size_write(inode, new_i_size); inode->i_mtime = inode_set_ctime_current(inode); di = (struct ocfs2_dinode *) fe_bh->b_data; di->i_size = cpu_to_le64(new_i_size); di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime(inode).tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, fe_bh); out_commit: ocfs2_commit_trans(osb, handle); out: return status; } int ocfs2_truncate_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int status = 0; struct ocfs2_dinode *fe = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); /* We trust di_bh because it comes from ocfs2_inode_lock(), which * already validated it */ fe = (struct ocfs2_dinode *) di_bh->b_data; trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), "Inode %llu, inode i_size = %lld != di " "i_size = %llu, i_flags = 0x%x\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, i_size_read(inode), (unsigned long long)le64_to_cpu(fe->i_size), le32_to_cpu(fe->i_flags)); if (new_i_size > le64_to_cpu(fe->i_size)) { trace_ocfs2_truncate_file_error( (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); status = -EINVAL; mlog_errno(status); goto bail; } down_write(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_resv_discard(&osb->osb_la_resmap, &OCFS2_I(inode)->ip_la_data_resv); /* * The inode lock forced other nodes to sync and drop their * pages, which (correctly) happens even if we have a truncate * without allocation change - ocfs2 cluster sizes can be much * greater than page size, so we have to truncate them * anyway. */ if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(inode->i_mapping, new_i_size); status = ocfs2_truncate_inline(inode, di_bh, new_i_size, i_size_read(inode), 1); if (status) mlog_errno(status); goto bail_unlock_sem; } /* alright, we're going to need to do a full blown alloc size * change. Orphan the inode so that recovery can complete the * truncate if necessary. This does the task of marking * i_size. */ status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); if (status < 0) { mlog_errno(status); goto bail_unlock_sem; } unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(inode->i_mapping, new_i_size); status = ocfs2_commit_truncate(osb, inode, di_bh); if (status < 0) { mlog_errno(status); goto bail_unlock_sem; } /* TODO: orphan dir cleanup here. */ bail_unlock_sem: up_write(&OCFS2_I(inode)->ip_alloc_sem); bail: if (!status && OCFS2_I(inode)->ip_clusters == 0) status = ocfs2_try_remove_refcount_tree(inode, di_bh); return status; } /* * extend file allocation only here. * we'll update all the disk stuff, and oip->alloc_size * * expect stuff to be locked, a transaction started and enough data / * metadata reservations in the contexts. * * Will return -EAGAIN, and a reason if a restart is needed. * If passed in, *reason will always be set, even in error. */ int ocfs2_add_inode_data(struct ocfs2_super *osb, struct inode *inode, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct buffer_head *fe_bh, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret) { struct ocfs2_extent_tree et; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, clusters_to_add, mark_unwritten, data_ac, meta_ac, reason_ret); } static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, u32 clusters_to_add, int mark_unwritten) { int status = 0; int restart_func = 0; int credits; u32 prev_clusters; struct buffer_head *bh = NULL; struct ocfs2_dinode *fe = NULL; handle_t *handle = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; enum ocfs2_alloc_restarted why = RESTART_NONE; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_tree et; int did_quota = 0; /* * Unwritten extent only exists for file systems which * support holes. */ BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); status = ocfs2_read_inode_block(inode, &bh); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) bh->b_data; restart_all: BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, &data_ac, &meta_ac); if (status) { mlog_errno(status); goto leave; } credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } restarted_transaction: trace_ocfs2_extend_allocation( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)i_size_read(inode), le32_to_cpu(fe->i_clusters), clusters_to_add, why, restart_func); status = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); if (status) goto leave; did_quota = 1; /* reserve a write to the file entry early on - that we if we * run out of credits in the allocation path, we can still * update i_size. */ status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } prev_clusters = OCFS2_I(inode)->ip_clusters; status = ocfs2_add_inode_data(osb, inode, &logical_start, clusters_to_add, mark_unwritten, bh, handle, data_ac, meta_ac, &why); if ((status < 0) && (status != -EAGAIN)) { if (status != -ENOSPC) mlog_errno(status); goto leave; } ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_journal_dirty(handle, bh); spin_lock(&OCFS2_I(inode)->ip_lock); clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); spin_unlock(&OCFS2_I(inode)->ip_lock); /* Release unused quota reservation */ dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); did_quota = 0; if (why != RESTART_NONE && clusters_to_add) { if (why == RESTART_META) { restart_func = 1; status = 0; } else { BUG_ON(why != RESTART_TRANS); status = ocfs2_allocate_extend_trans(handle, 1); if (status < 0) { /* handle still has to be committed at * this point. */ status = -ENOMEM; mlog_errno(status); goto leave; } goto restarted_transaction; } } trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, le32_to_cpu(fe->i_clusters), (unsigned long long)le64_to_cpu(fe->i_size), OCFS2_I(inode)->ip_clusters, (unsigned long long)i_size_read(inode)); leave: if (status < 0 && did_quota) dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); if (handle) { ocfs2_commit_trans(osb, handle); handle = NULL; } if (data_ac) { ocfs2_free_alloc_context(data_ac); data_ac = NULL; } if (meta_ac) { ocfs2_free_alloc_context(meta_ac); meta_ac = NULL; } if ((!status) && restart_func) { restart_func = 0; goto restart_all; } brelse(bh); bh = NULL; return status; } /* * While a write will already be ordering the data, a truncate will not. * Thus, we need to explicitly order the zeroed pages. */ static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, struct buffer_head *di_bh, loff_t start_byte, loff_t length) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; int ret = 0; if (!ocfs2_should_order_data(inode)) goto out; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) mlog_errno(ret); ocfs2_update_inode_fsync_trans(handle, inode, 1); out: if (ret) { if (!IS_ERR(handle)) ocfs2_commit_trans(osb, handle); handle = ERR_PTR(ret); } return handle; } /* Some parts of this taken from generic_cont_expand, which turned out * to be too fragile to do exactly what we need without us having to * worry about recursive locking in ->write_begin() and ->write_end(). */ static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, u64 abs_to, struct buffer_head *di_bh) { struct address_space *mapping = inode->i_mapping; struct page *page; unsigned long index = abs_from >> PAGE_SHIFT; handle_t *handle; int ret = 0; unsigned zero_from, zero_to, block_start, block_end; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; BUG_ON(abs_from >= abs_to); BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); BUG_ON(abs_from & (inode->i_blkbits - 1)); handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, abs_from, abs_to - abs_from); if (IS_ERR(handle)) { ret = PTR_ERR(handle); goto out; } page = find_or_create_page(mapping, index, GFP_NOFS); if (!page) { ret = -ENOMEM; mlog_errno(ret); goto out_commit_trans; } /* Get the offsets within the page that we want to zero */ zero_from = abs_from & (PAGE_SIZE - 1); zero_to = abs_to & (PAGE_SIZE - 1); if (!zero_to) zero_to = PAGE_SIZE; trace_ocfs2_write_zero_page( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)abs_from, (unsigned long long)abs_to, index, zero_from, zero_to); /* We know that zero_from is block aligned */ for (block_start = zero_from; block_start < zero_to; block_start = block_end) { block_end = block_start + i_blocksize(inode); /* * block_start is block-aligned. Bump it by one to force * __block_write_begin and block_commit_write to zero the * whole block. */ ret = __block_write_begin(page, block_start + 1, 0, ocfs2_get_block); if (ret < 0) { mlog_errno(ret); goto out_unlock; } /* must not update i_size! */ block_commit_write(page, block_start + 1, block_start + 1); } /* * fs-writeback will release the dirty pages without page lock * whose offset are over inode size, the release happens at * block_write_full_page(). */ i_size_write(inode, abs_to); inode->i_blocks = ocfs2_inode_sector_count(inode); di->i_size = cpu_to_le64((u64)i_size_read(inode)); inode->i_mtime = inode_set_ctime_current(inode); di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); di->i_mtime_nsec = di->i_ctime_nsec; if (handle) { ocfs2_journal_dirty(handle, di_bh); ocfs2_update_inode_fsync_trans(handle, inode, 1); } out_unlock: unlock_page(page); put_page(page); out_commit_trans: if (handle) ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: return ret; } /* * Find the next range to zero. We do this in terms of bytes because * that's what ocfs2_zero_extend() wants, and it is dealing with the * pagecache. We may return multiple extents. * * zero_start and zero_end are ocfs2_zero_extend()s current idea of what * needs to be zeroed. range_start and range_end return the next zeroing * range. A subsequent call should pass the previous range_end as its * zero_start. If range_end is 0, there's nothing to do. * * Unwritten extents are skipped over. Refcounted extents are CoWd. */ static int ocfs2_zero_extend_get_range(struct inode *inode, struct buffer_head *di_bh, u64 zero_start, u64 zero_end, u64 *range_start, u64 *range_end) { int rc = 0, needs_cow = 0; u32 p_cpos, zero_clusters = 0; u32 zero_cpos = zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); unsigned int num_clusters = 0; unsigned int ext_flags = 0; while (zero_cpos < last_cpos) { rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, &num_clusters, &ext_flags); if (rc) { mlog_errno(rc); goto out; } if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { zero_clusters = num_clusters; if (ext_flags & OCFS2_EXT_REFCOUNTED) needs_cow = 1; break; } zero_cpos += num_clusters; } if (!zero_clusters) { *range_end = 0; goto out; } while ((zero_cpos + zero_clusters) < last_cpos) { rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, &p_cpos, &num_clusters, &ext_flags); if (rc) { mlog_errno(rc); goto out; } if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) break; if (ext_flags & OCFS2_EXT_REFCOUNTED) needs_cow = 1; zero_clusters += num_clusters; } if ((zero_cpos + zero_clusters) > last_cpos) zero_clusters = last_cpos - zero_cpos; if (needs_cow) { rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, zero_clusters, UINT_MAX); if (rc) { mlog_errno(rc); goto out; } } *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); *range_end = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos + zero_clusters); out: return rc; } /* * Zero one range returned from ocfs2_zero_extend_get_range(). The caller * has made sure that the entire range needs zeroing. */ static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, u64 range_end, struct buffer_head *di_bh) { int rc = 0; u64 next_pos; u64 zero_pos = range_start; trace_ocfs2_zero_extend_range( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)range_start, (unsigned long long)range_end); BUG_ON(range_start >= range_end); while (zero_pos < range_end) { next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; if (next_pos > range_end) next_pos = range_end; rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); if (rc < 0) { mlog_errno(rc); break; } zero_pos = next_pos; /* * Very large extends have the potential to lock up * the cpu for extended periods of time. */ cond_resched(); } return rc; } int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, loff_t zero_to_size) { int ret = 0; u64 zero_start, range_start = 0, range_end = 0; struct super_block *sb = inode->i_sb; zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)zero_start, (unsigned long long)i_size_read(inode)); while (zero_start < zero_to_size) { ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, zero_to_size, &range_start, &range_end); if (ret) { mlog_errno(ret); break; } if (!range_end) break; /* Trim the ends */ if (range_start < zero_start) range_start = zero_start; if (range_end > zero_to_size) range_end = zero_to_size; ret = ocfs2_zero_extend_range(inode, range_start, range_end, di_bh); if (ret) { mlog_errno(ret); break; } zero_start = range_end; } return ret; } int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size, u64 zero_to) { int ret; u32 clusters_to_add; struct ocfs2_inode_info *oi = OCFS2_I(inode); /* * Only quota files call this without a bh, and they can't be * refcounted. */ BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); if (clusters_to_add < oi->ip_clusters) clusters_to_add = 0; else clusters_to_add -= oi->ip_clusters; if (clusters_to_add) { ret = ocfs2_extend_allocation(inode, oi->ip_clusters, clusters_to_add, 0); if (ret) { mlog_errno(ret); goto out; } } /* * Call this even if we don't add any clusters to the tree. We * still need to zero the area between the old i_size and the * new i_size. */ ret = ocfs2_zero_extend(inode, di_bh, zero_to); if (ret < 0) mlog_errno(ret); out: return ret; } static int ocfs2_extend_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); BUG_ON(!di_bh); /* setattr sometimes calls us like this. */ if (new_i_size == 0) goto out; if (i_size_read(inode) == new_i_size) goto out; BUG_ON(new_i_size < i_size_read(inode)); /* * The alloc sem blocks people in read/write from reading our * allocation until we're done changing it. We depend on * i_rwsem to block other extend/truncate calls while we're * here. We even have to hold it for sparse files because there * might be some tail zeroing. */ down_write(&oi->ip_alloc_sem); if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { /* * We can optimize small extends by keeping the inodes * inline data. */ if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { up_write(&oi->ip_alloc_sem); goto out_update_size; } ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); if (ret) { up_write(&oi->ip_alloc_sem); mlog_errno(ret); goto out; } } if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) ret = ocfs2_zero_extend(inode, di_bh, new_i_size); else ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, new_i_size); up_write(&oi->ip_alloc_sem); if (ret < 0) { mlog_errno(ret); goto out; } out_update_size: ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); out: return ret; } int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { int status = 0, size_change; int inode_locked = 0; struct inode *inode = d_inode(dentry); struct super_block *sb = inode->i_sb; struct ocfs2_super *osb = OCFS2_SB(sb); struct buffer_head *bh = NULL; handle_t *handle = NULL; struct dquot *transfer_to[MAXQUOTAS] = { }; int qtype; int had_lock; struct ocfs2_lock_holder oh; trace_ocfs2_setattr(inode, dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, dentry->d_name.len, dentry->d_name.name, attr->ia_valid, attr->ia_mode, from_kuid(&init_user_ns, attr->ia_uid), from_kgid(&init_user_ns, attr->ia_gid)); /* ensuring we don't even attempt to truncate a symlink */ if (S_ISLNK(inode->i_mode)) attr->ia_valid &= ~ATTR_SIZE; #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ | ATTR_GID | ATTR_UID | ATTR_MODE) if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) return 0; status = setattr_prepare(&nop_mnt_idmap, dentry, attr); if (status) return status; if (is_quota_modification(&nop_mnt_idmap, inode, attr)) { status = dquot_initialize(inode); if (status) return status; } size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; if (size_change) { /* * Here we should wait dio to finish before inode lock * to avoid a deadlock between ocfs2_setattr() and * ocfs2_dio_end_io_write() */ inode_dio_wait(inode); status = ocfs2_rw_lock(inode, 1); if (status < 0) { mlog_errno(status); goto bail; } } had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); if (had_lock < 0) { status = had_lock; goto bail_unlock_rw; } else if (had_lock) { /* * As far as we know, ocfs2_setattr() could only be the first * VFS entry point in the call chain of recursive cluster * locking issue. * * For instance: * chmod_common() * notify_change() * ocfs2_setattr() * posix_acl_chmod() * ocfs2_iop_get_acl() * * But, we're not 100% sure if it's always true, because the * ordering of the VFS entry points in the call chain is out * of our control. So, we'd better dump the stack here to * catch the other cases of recursive locking. */ mlog(ML_ERROR, "Another case of recursive locking:\n"); dump_stack(); } inode_locked = 1; if (size_change) { status = inode_newsize_ok(inode, attr->ia_size); if (status) goto bail_unlock; if (i_size_read(inode) >= attr->ia_size) { if (ocfs2_should_order_data(inode)) { status = ocfs2_begin_ordered_truncate(inode, attr->ia_size); if (status) goto bail_unlock; } status = ocfs2_truncate_file(inode, bh, attr->ia_size); } else status = ocfs2_extend_file(inode, bh, attr->ia_size); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); status = -ENOSPC; goto bail_unlock; } } if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { /* * Gather pointers to quota structures so that allocation / * freeing of quota structures happens here and not inside * dquot_transfer() where we have problems with lock ordering */ if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); if (IS_ERR(transfer_to[USRQUOTA])) { status = PTR_ERR(transfer_to[USRQUOTA]); transfer_to[USRQUOTA] = NULL; goto bail_unlock; } } if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); if (IS_ERR(transfer_to[GRPQUOTA])) { status = PTR_ERR(transfer_to[GRPQUOTA]); transfer_to[GRPQUOTA] = NULL; goto bail_unlock; } } down_write(&OCFS2_I(inode)->ip_alloc_sem); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 2 * ocfs2_quota_trans_credits(sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock_alloc; } status = __dquot_transfer(inode, transfer_to); if (status < 0) goto bail_commit; } else { down_write(&OCFS2_I(inode)->ip_alloc_sem); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock_alloc; } } setattr_copy(&nop_mnt_idmap, inode, attr); mark_inode_dirty(inode); status = ocfs2_mark_inode_dirty(handle, inode, bh); if (status < 0) mlog_errno(status); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock_alloc: up_write(&OCFS2_I(inode)->ip_alloc_sem); bail_unlock: if (status && inode_locked) { ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); inode_locked = 0; } bail_unlock_rw: if (size_change) ocfs2_rw_unlock(inode, 1); bail: /* Release quota pointers in case we acquired them */ for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) dqput(transfer_to[qtype]); if (!status && attr->ia_valid & ATTR_MODE) { status = ocfs2_acl_chmod(inode, bh); if (status < 0) mlog_errno(status); } if (inode_locked) ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); brelse(bh); return status; } int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags) { struct inode *inode = d_inode(path->dentry); struct super_block *sb = path->dentry->d_sb; struct ocfs2_super *osb = sb->s_fs_info; int err; err = ocfs2_inode_revalidate(path->dentry); if (err) { if (err != -ENOENT) mlog_errno(err); goto bail; } generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); /* * If there is inline data in the inode, the inode will normally not * have data blocks allocated (it may have an external xattr block). * Report at least one sector for such files, so tools like tar, rsync, * others don't incorrectly think the file is completely sparse. */ if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) stat->blocks += (stat->size + 511)>>9; /* We set the blksize from the cluster size for performance */ stat->blksize = osb->s_clustersize; bail: return err; } int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { int ret, had_lock; struct ocfs2_lock_holder oh; if (mask & MAY_NOT_BLOCK) return -ECHILD; had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); if (had_lock < 0) { ret = had_lock; goto out; } else if (had_lock) { /* See comments in ocfs2_setattr() for details. * The call chain of this case could be: * do_sys_open() * may_open() * inode_permission() * ocfs2_permission() * ocfs2_iop_get_acl() */ mlog(ML_ERROR, "Another case of recursive locking:\n"); dump_stack(); } ret = generic_permission(&nop_mnt_idmap, inode, mask); ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); out: return ret; } static int __ocfs2_write_remove_suid(struct inode *inode, struct buffer_head *bh) { int ret; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di; trace_ocfs2_write_remove_suid( (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out_trans; } inode->i_mode &= ~S_ISUID; if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) inode->i_mode &= ~S_ISGID; di = (struct ocfs2_dinode *) bh->b_data; di->i_mode = cpu_to_le16(inode->i_mode); ocfs2_update_inode_fsync_trans(handle, inode, 0); ocfs2_journal_dirty(handle, bh); out_trans: ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_write_remove_suid(struct inode *inode) { int ret; struct buffer_head *bh = NULL; ret = ocfs2_read_inode_block(inode, &bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = __ocfs2_write_remove_suid(inode, bh); out: brelse(bh); return ret; } /* * Allocate enough extents to cover the region starting at byte offset * start for len bytes. Existing extents are skipped, any extents * added are marked as "unwritten". */ static int ocfs2_allocate_unwritten_extents(struct inode *inode, u64 start, u64 len) { int ret; u32 cpos, phys_cpos, clusters, alloc_size; u64 end = start + len; struct buffer_head *di_bh = NULL; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } /* * Nothing to do if the requested reservation range * fits within the inode. */ if (ocfs2_size_fits_inline_data(di_bh, end)) goto out; ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); if (ret) { mlog_errno(ret); goto out; } } /* * We consider both start and len to be inclusive. */ cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); clusters -= cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &alloc_size, NULL); if (ret) { mlog_errno(ret); goto out; } /* * Hole or existing extent len can be arbitrary, so * cap it to our own allocation request. */ if (alloc_size > clusters) alloc_size = clusters; if (phys_cpos) { /* * We already have an allocation at this * region so we can safely skip it. */ goto next; } ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } next: cpos += alloc_size; clusters -= alloc_size; } ret = 0; out: brelse(di_bh); return ret; } /* * Truncate a byte range, avoiding pages within partial clusters. This * preserves those pages for the zeroing code to write to. */ static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, u64 byte_len) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); loff_t start, end; struct address_space *mapping = inode->i_mapping; start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); end = byte_start + byte_len; end = end & ~(osb->s_clustersize - 1); if (start < end) { unmap_mapping_range(mapping, start, end - start, 0); truncate_inode_pages_range(mapping, start, end - 1); } } /* * zero out partial blocks of one cluster. * * start: file offset where zero starts, will be made upper block aligned. * len: it will be trimmed to the end of current cluster if "start + len" * is bigger than it. */ static int ocfs2_zeroout_partial_cluster(struct inode *inode, u64 start, u64 len) { int ret; u64 start_block, end_block, nr_blocks; u64 p_block, offset; u32 cluster, p_cluster, nr_clusters; struct super_block *sb = inode->i_sb; u64 end = ocfs2_align_bytes_to_clusters(sb, start); if (start + len < end) end = start + len; start_block = ocfs2_blocks_for_bytes(sb, start); end_block = ocfs2_blocks_for_bytes(sb, end); nr_blocks = end_block - start_block; if (!nr_blocks) return 0; cluster = ocfs2_bytes_to_clusters(sb, start); ret = ocfs2_get_clusters(inode, cluster, &p_cluster, &nr_clusters, NULL); if (ret) return ret; if (!p_cluster) return 0; offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); } static int ocfs2_zero_partial_clusters(struct inode *inode, u64 start, u64 len) { int ret = 0; u64 tmpend = 0; u64 end = start + len; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int csize = osb->s_clustersize; handle_t *handle; loff_t isize = i_size_read(inode); /* * The "start" and "end" values are NOT necessarily part of * the range whose allocation is being deleted. Rather, this * is what the user passed in with the request. We must zero * partial clusters here. There's no need to worry about * physical allocation - the zeroing code knows to skip holes. */ trace_ocfs2_zero_partial_clusters( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)start, (unsigned long long)end); /* * If both edges are on a cluster boundary then there's no * zeroing required as the region is part of the allocation to * be truncated. */ if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) goto out; /* No page cache for EOF blocks, issue zero out to disk. */ if (end > isize) { /* * zeroout eof blocks in last cluster starting from * "isize" even "start" > "isize" because it is * complicated to zeroout just at "start" as "start" * may be not aligned with block size, buffer write * would be required to do that, but out of eof buffer * write is not supported. */ ret = ocfs2_zeroout_partial_cluster(inode, isize, end - isize); if (ret) { mlog_errno(ret); goto out; } if (start >= isize) goto out; end = isize; } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } /* * If start is on a cluster boundary and end is somewhere in another * cluster, we have not COWed the cluster starting at start, unless * end is also within the same cluster. So, in this case, we skip this * first call to ocfs2_zero_range_for_truncate() truncate and move on * to the next one. */ if ((start & (csize - 1)) != 0) { /* * We want to get the byte offset of the end of the 1st * cluster. */ tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); if (tmpend > end) tmpend = end; trace_ocfs2_zero_partial_clusters_range1( (unsigned long long)start, (unsigned long long)tmpend); ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); if (ret) mlog_errno(ret); } if (tmpend < end) { /* * This may make start and end equal, but the zeroing * code will skip any work in that case so there's no * need to catch it up here. */ start = end & ~(osb->s_clustersize - 1); trace_ocfs2_zero_partial_clusters_range2( (unsigned long long)start, (unsigned long long)end); ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); if (ret) mlog_errno(ret); } ocfs2_update_inode_fsync_trans(handle, inode, 1); ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) { int i; struct ocfs2_extent_rec *rec = NULL; for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) < pos) break; } return i; } /* * Helper to calculate the punching pos and length in one run, we handle the * following three cases in order: * * - remove the entire record * - remove a partial record * - no record needs to be removed (hole-punching completed) */ static void ocfs2_calc_trunc_pos(struct inode *inode, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *rec, u32 trunc_start, u32 *trunc_cpos, u32 *trunc_len, u32 *trunc_end, u64 *blkno, int *done) { int ret = 0; u32 coff, range; range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (le32_to_cpu(rec->e_cpos) >= trunc_start) { /* * remove an entire extent record. */ *trunc_cpos = le32_to_cpu(rec->e_cpos); /* * Skip holes if any. */ if (range < *trunc_end) *trunc_end = range; *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); *blkno = le64_to_cpu(rec->e_blkno); *trunc_end = le32_to_cpu(rec->e_cpos); } else if (range > trunc_start) { /* * remove a partial extent record, which means we're * removing the last extent record. */ *trunc_cpos = trunc_start; /* * skip hole if any. */ if (range < *trunc_end) *trunc_end = range; *trunc_len = *trunc_end - trunc_start; coff = trunc_start - le32_to_cpu(rec->e_cpos); *blkno = le64_to_cpu(rec->e_blkno) + ocfs2_clusters_to_blocks(inode->i_sb, coff); *trunc_end = trunc_start; } else { /* * It may have two following possibilities: * * - last record has been removed * - trunc_start was within a hole * * both two cases mean the completion of hole punching. */ ret = 1; } *done = ret; } int ocfs2_remove_inode_range(struct inode *inode, struct buffer_head *di_bh, u64 byte_start, u64 byte_len) { int ret = 0, flags = 0, done = 0, i; u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; u32 cluster_in_el; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_cached_dealloc_ctxt dealloc; struct address_space *mapping = inode->i_mapping; struct ocfs2_extent_tree et; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el = NULL; struct ocfs2_extent_rec *rec = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); ocfs2_init_dealloc_ctxt(&dealloc); trace_ocfs2_remove_inode_range( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)byte_start, (unsigned long long)byte_len); if (byte_len == 0) return 0; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_truncate_inline(inode, di_bh, byte_start, byte_start + byte_len, 0); if (ret) { mlog_errno(ret); goto out; } /* * There's no need to get fancy with the page cache * truncate of an inline-data inode. We're talking * about less than a page here, which will be cached * in the dinode buffer anyway. */ unmap_mapping_range(mapping, 0, 0, 0); truncate_inode_pages(mapping, 0); goto out; } /* * For reflinks, we may need to CoW 2 clusters which might be * partially zero'd later, if hole's start and end offset were * within one cluster(means is not exactly aligned to clustersize). */ if (ocfs2_is_refcount_inode(inode)) { ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); if (ret) { mlog_errno(ret); goto out; } } trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; cluster_in_el = trunc_end; ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); if (ret) { mlog_errno(ret); goto out; } path = ocfs2_new_path_from_et(&et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } while (trunc_end > trunc_start) { ret = ocfs2_find_path(INODE_CACHE(inode), path, cluster_in_el); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); i = ocfs2_find_rec(el, trunc_end); /* * Need to go to previous extent block. */ if (i < 0) { if (path->p_tree_depth == 0) break; ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cluster_in_el); if (ret) { mlog_errno(ret); goto out; } /* * We've reached the leftmost extent block, * it's safe to leave. */ if (cluster_in_el == 0) break; /* * The 'pos' searched for previous extent block is * always one cluster less than actual trunc_end. */ trunc_end = cluster_in_el + 1; ocfs2_reinit_path(path, 1); continue; } else rec = &el->l_recs[i]; ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, &trunc_len, &trunc_end, &blkno, &done); if (done) break; flags = rec->e_flags; phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, phys_cpos, trunc_len, flags, &dealloc, refcount_loc, false); if (ret < 0) { mlog_errno(ret); goto out; } cluster_in_el = trunc_end; ocfs2_reinit_path(path, 1); } ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); out: ocfs2_free_path(path); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); return ret; } /* * Parts of this function taken from xfs_change_file_space() */ static int __ocfs2_change_file_space(struct file *file, struct inode *inode, loff_t f_pos, unsigned int cmd, struct ocfs2_space_resv *sr, int change_size) { int ret; s64 llen; loff_t size, orig_isize; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *di_bh = NULL; handle_t *handle; unsigned long long max_off = inode->i_sb->s_maxbytes; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; inode_lock(inode); /* * This prevents concurrent writes on other nodes */ ret = ocfs2_rw_lock(inode, 1); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out_rw_unlock; } if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { ret = -EPERM; goto out_inode_unlock; } switch (sr->l_whence) { case 0: /*SEEK_SET*/ break; case 1: /*SEEK_CUR*/ sr->l_start += f_pos; break; case 2: /*SEEK_END*/ sr->l_start += i_size_read(inode); break; default: ret = -EINVAL; goto out_inode_unlock; } sr->l_whence = 0; llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; if (sr->l_start < 0 || sr->l_start > max_off || (sr->l_start + llen) < 0 || (sr->l_start + llen) > max_off) { ret = -EINVAL; goto out_inode_unlock; } size = sr->l_start + sr->l_len; if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { if (sr->l_len <= 0) { ret = -EINVAL; goto out_inode_unlock; } } if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) { ret = __ocfs2_write_remove_suid(inode, di_bh); if (ret) { mlog_errno(ret); goto out_inode_unlock; } } down_write(&OCFS2_I(inode)->ip_alloc_sem); switch (cmd) { case OCFS2_IOC_RESVSP: case OCFS2_IOC_RESVSP64: /* * This takes unsigned offsets, but the signed ones we * pass have been checked against overflow above. */ ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, sr->l_len); break; case OCFS2_IOC_UNRESVSP: case OCFS2_IOC_UNRESVSP64: ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, sr->l_len); break; default: ret = -EINVAL; } orig_isize = i_size_read(inode); /* zeroout eof blocks in the cluster. */ if (!ret && change_size && orig_isize < size) { ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, size - orig_isize); if (!ret) i_size_write(inode, size); } up_write(&OCFS2_I(inode)->ip_alloc_sem); if (ret) { mlog_errno(ret); goto out_inode_unlock; } /* * We update c/mtime for these changes */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_inode_unlock; } inode->i_mtime = inode_set_ctime_current(inode); ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); if (ret < 0) mlog_errno(ret); if (file && (file->f_flags & O_SYNC)) handle->h_sync = 1; ocfs2_commit_trans(osb, handle); out_inode_unlock: brelse(di_bh); ocfs2_inode_unlock(inode, 1); out_rw_unlock: ocfs2_rw_unlock(inode, 1); out: inode_unlock(inode); return ret; } int ocfs2_change_file_space(struct file *file, unsigned int cmd, struct ocfs2_space_resv *sr) { struct inode *inode = file_inode(file); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int ret; if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && !ocfs2_writes_unwritten_extents(osb)) return -ENOTTY; else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && !ocfs2_sparse_alloc(osb)) return -ENOTTY; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; ret = mnt_want_write_file(file); if (ret) return ret; ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); mnt_drop_write_file(file); return ret; } static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_space_resv sr; int change_size = 1; int cmd = OCFS2_IOC_RESVSP64; int ret = 0; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; if (!ocfs2_writes_unwritten_extents(osb)) return -EOPNOTSUPP; if (mode & FALLOC_FL_KEEP_SIZE) { change_size = 0; } else { ret = inode_newsize_ok(inode, offset + len); if (ret) return ret; } if (mode & FALLOC_FL_PUNCH_HOLE) cmd = OCFS2_IOC_UNRESVSP64; sr.l_whence = 0; sr.l_start = (s64)offset; sr.l_len = (s64)len; return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, change_size); } int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, size_t count) { int ret = 0; unsigned int extent_flags; u32 cpos, clusters, extent_len, phys_cpos; struct super_block *sb = inode->i_sb; if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || !ocfs2_is_refcount_inode(inode) || OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return 0; cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, &extent_flags); if (ret < 0) { mlog_errno(ret); goto out; } if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { ret = 1; break; } if (extent_len > clusters) extent_len = clusters; clusters -= extent_len; cpos += extent_len; } out: return ret; } static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) { int blockmask = inode->i_sb->s_blocksize - 1; loff_t final_size = pos + count; if ((pos & blockmask) || (final_size & blockmask)) return 1; return 0; } static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, struct buffer_head **di_bh, int meta_level, int write_sem, int wait) { int ret = 0; if (wait) ret = ocfs2_inode_lock(inode, di_bh, meta_level); else ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); if (ret < 0) goto out; if (wait) { if (write_sem) down_write(&OCFS2_I(inode)->ip_alloc_sem); else down_read(&OCFS2_I(inode)->ip_alloc_sem); } else { if (write_sem) ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); else ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); if (!ret) { ret = -EAGAIN; goto out_unlock; } } return ret; out_unlock: brelse(*di_bh); *di_bh = NULL; ocfs2_inode_unlock(inode, meta_level); out: return ret; } static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, struct buffer_head **di_bh, int meta_level, int write_sem) { if (write_sem) up_write(&OCFS2_I(inode)->ip_alloc_sem); else up_read(&OCFS2_I(inode)->ip_alloc_sem); brelse(*di_bh); *di_bh = NULL; if (meta_level >= 0) ocfs2_inode_unlock(inode, meta_level); } static int ocfs2_prepare_inode_for_write(struct file *file, loff_t pos, size_t count, int wait) { int ret = 0, meta_level = 0, overwrite_io = 0; int write_sem = 0; struct dentry *dentry = file->f_path.dentry; struct inode *inode = d_inode(dentry); struct buffer_head *di_bh = NULL; u32 cpos; u32 clusters; /* * We start with a read level meta lock and only jump to an ex * if we need to make modifications here. */ for(;;) { ret = ocfs2_inode_lock_for_extent_tree(inode, &di_bh, meta_level, write_sem, wait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } /* * Check if IO will overwrite allocated blocks in case * IOCB_NOWAIT flag is set. */ if (!wait && !overwrite_io) { overwrite_io = 1; ret = ocfs2_overwrite_io(inode, di_bh, pos, count); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out_unlock; } } /* Clear suid / sgid if necessary. We do this here * instead of later in the write path because * remove_suid() calls ->setattr without any hint that * we may have already done our cluster locking. Since * ocfs2_setattr() *must* take cluster locks to * proceed, this will lead us to recursively lock the * inode. There's also the dinode i_size state which * can be lost via setattr during extending writes (we * set inode->i_size at the end of a write. */ if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) { if (meta_level == 0) { ocfs2_inode_unlock_for_extent_tree(inode, &di_bh, meta_level, write_sem); meta_level = 1; continue; } ret = ocfs2_write_remove_suid(inode); if (ret < 0) { mlog_errno(ret); goto out_unlock; } } ret = ocfs2_check_range_for_refcount(inode, pos, count); if (ret == 1) { ocfs2_inode_unlock_for_extent_tree(inode, &di_bh, meta_level, write_sem); meta_level = 1; write_sem = 1; ret = ocfs2_inode_lock_for_extent_tree(inode, &di_bh, meta_level, write_sem, wait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); } if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out_unlock; } break; } out_unlock: trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, pos, count, wait); ocfs2_inode_unlock_for_extent_tree(inode, &di_bh, meta_level, write_sem); out: return ret; } static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { int rw_level; ssize_t written = 0; ssize_t ret; size_t count = iov_iter_count(from); struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int full_coherency = !(osb->s_mount_opt & OCFS2_MOUNT_COHERENCY_BUFFERED); void *saved_ki_complete = NULL; int append_write = ((iocb->ki_pos + count) >= i_size_read(inode) ? 1 : 0); int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name, (unsigned int)from->nr_segs); /* GRRRRR */ if (!direct_io && nowait) return -EOPNOTSUPP; if (count == 0) return 0; if (nowait) { if (!inode_trylock(inode)) return -EAGAIN; } else inode_lock(inode); /* * Concurrent O_DIRECT writes are allowed with * mount_option "coherency=buffered". * For append write, we must take rw EX. */ rw_level = (!direct_io || full_coherency || append_write); if (nowait) ret = ocfs2_try_rw_lock(inode, rw_level); else ret = ocfs2_rw_lock(inode, rw_level); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out_mutex; } /* * O_DIRECT writes with "coherency=full" need to take EX cluster * inode_lock to guarantee coherency. */ if (direct_io && full_coherency) { /* * We need to take and drop the inode lock to force * other nodes to drop their caches. Buffered I/O * already does this in write_begin(). */ if (nowait) ret = ocfs2_try_inode_lock(inode, NULL, 1); else ret = ocfs2_inode_lock(inode, NULL, 1); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } ocfs2_inode_unlock(inode, 1); } ret = generic_write_checks(iocb, from); if (ret <= 0) { if (ret) mlog_errno(ret); goto out; } count = ret; ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto out; } if (direct_io && !is_sync_kiocb(iocb) && ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { /* * Make it a sync io if it's an unaligned aio. */ saved_ki_complete = xchg(&iocb->ki_complete, NULL); } /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); written = __generic_file_write_iter(iocb, from); /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(written == -EIOCBQUEUED && !direct_io); /* * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io * function pointer which is called when o_direct io completes so that * it can unlock our rw lock. * Unfortunately there are error cases which call end_io and others * that don't. so we don't have to unlock the rw_lock if either an * async dio is going to do it in the future or an end_io after an * error has already done it. */ if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { rw_level = -1; } if (unlikely(written <= 0)) goto out; if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode)) { ret = filemap_fdatawrite_range(file->f_mapping, iocb->ki_pos - written, iocb->ki_pos - 1); if (ret < 0) written = ret; if (!ret) { ret = jbd2_journal_force_commit(osb->journal->j_journal); if (ret < 0) written = ret; } if (!ret) ret = filemap_fdatawait_range(file->f_mapping, iocb->ki_pos - written, iocb->ki_pos - 1); } out: if (saved_ki_complete) xchg(&iocb->ki_complete, saved_ki_complete); if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); out_mutex: inode_unlock(inode); if (written) ret = written; return ret; } static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { int ret = 0, rw_level = -1, lock_level = 0; struct file *filp = iocb->ki_filp; struct inode *inode = file_inode(filp); int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, filp->f_path.dentry->d_name.len, filp->f_path.dentry->d_name.name, to->nr_segs); /* GRRRRR */ if (!inode) { ret = -EINVAL; mlog_errno(ret); goto bail; } if (!direct_io && nowait) return -EOPNOTSUPP; /* * buffered reads protect themselves in ->read_folio(). O_DIRECT reads * need locks to protect pending reads from racing with truncate. */ if (direct_io) { if (nowait) ret = ocfs2_try_rw_lock(inode, 0); else ret = ocfs2_rw_lock(inode, 0); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto bail; } rw_level = 0; /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); } /* * We're fine letting folks race truncates and extending * writes with read across the cluster, just like they can * locally. Hence no rw_lock during read. * * Take and drop the meta data lock to update inode fields * like i_size. This allows the checks down below * copy_splice_read() a chance of actually working. */ ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, !nowait); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto bail; } ocfs2_inode_unlock(inode, lock_level); ret = generic_file_read_iter(iocb, to); trace_generic_file_read_iter_ret(ret); /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(ret == -EIOCBQUEUED && !direct_io); /* see ocfs2_file_write_iter */ if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { rw_level = -1; } bail: if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); return ret; } static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct inode *inode = file_inode(in); ssize_t ret = 0; int lock_level = 0; trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, in->f_path.dentry->d_name.len, in->f_path.dentry->d_name.name, flags); /* * We're fine letting folks race truncates and extending writes with * read across the cluster, just like they can locally. Hence no * rw_lock during read. * * Take and drop the meta data lock to update inode fields like i_size. * This allows the checks down below filemap_splice_read() a chance of * actually working. */ ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); goto bail; } ocfs2_inode_unlock(inode, lock_level); ret = filemap_splice_read(in, ppos, pipe, len, flags); trace_filemap_splice_read_ret(ret); bail: return ret; } /* Refer generic_file_llseek_unlocked() */ static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; int ret = 0; inode_lock(inode); switch (whence) { case SEEK_SET: break; case SEEK_END: /* SEEK_END requires the OCFS2 inode lock for the file * because it references the file's size. */ ret = ocfs2_inode_lock(inode, NULL, 0); if (ret < 0) { mlog_errno(ret); goto out; } offset += i_size_read(inode); ocfs2_inode_unlock(inode, 0); break; case SEEK_CUR: if (offset == 0) { offset = file->f_pos; goto out; } offset += file->f_pos; break; case SEEK_DATA: case SEEK_HOLE: ret = ocfs2_seek_data_hole_offset(file, &offset, whence); if (ret) goto out; break; default: ret = -EINVAL; goto out; } offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); out: inode_unlock(inode); if (ret) return ret; return offset; } static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags) { struct inode *inode_in = file_inode(file_in); struct inode *inode_out = file_inode(file_out); struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); struct buffer_head *in_bh = NULL, *out_bh = NULL; bool same_inode = (inode_in == inode_out); loff_t remapped = 0; ssize_t ret; if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) return -EINVAL; if (!ocfs2_refcount_tree(osb)) return -EOPNOTSUPP; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; /* Lock both files against IO */ ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); if (ret) return ret; /* Check file eligibility and prepare for block sharing. */ ret = -EINVAL; if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) goto out_unlock; ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, &len, remap_flags); if (ret < 0 || len == 0) goto out_unlock; /* Lock out changes to the allocation maps and remap. */ down_write(&OCFS2_I(inode_in)->ip_alloc_sem); if (!same_inode) down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, SINGLE_DEPTH_NESTING); /* Zap any page cache for the destination file's range. */ truncate_inode_pages_range(&inode_out->i_data, round_down(pos_out, PAGE_SIZE), round_up(pos_out + len, PAGE_SIZE) - 1); remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, inode_out, out_bh, pos_out, len); up_write(&OCFS2_I(inode_in)->ip_alloc_sem); if (!same_inode) up_write(&OCFS2_I(inode_out)->ip_alloc_sem); if (remapped < 0) { ret = remapped; mlog_errno(ret); goto out_unlock; } /* * Empty the extent map so that we may get the right extent * record from the disk. */ ocfs2_extent_map_trunc(inode_in, 0); ocfs2_extent_map_trunc(inode_out, 0); ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); if (ret) { mlog_errno(ret); goto out_unlock; } out_unlock: ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); return remapped > 0 ? remapped : ret; } const struct inode_operations ocfs2_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .listxattr = ocfs2_listxattr, .fiemap = ocfs2_fiemap, .get_inode_acl = ocfs2_iop_get_acl, .set_acl = ocfs2_iop_set_acl, .fileattr_get = ocfs2_fileattr_get, .fileattr_set = ocfs2_fileattr_set, }; const struct inode_operations ocfs2_special_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .get_inode_acl = ocfs2_iop_get_acl, .set_acl = ocfs2_iop_set_acl, }; /* * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! */ const struct file_operations ocfs2_fops = { .llseek = ocfs2_file_llseek, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .read_iter = ocfs2_file_read_iter, .write_iter = ocfs2_file_write_iter, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .lock = ocfs2_lock, .flock = ocfs2_flock, .splice_read = ocfs2_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = ocfs2_fallocate, .remap_file_range = ocfs2_remap_file_range, }; WRAP_DIR_ITER(ocfs2_readdir) // FIXME! const struct file_operations ocfs2_dops = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = shared_ocfs2_readdir, .fsync = ocfs2_sync_file, .release = ocfs2_dir_release, .open = ocfs2_dir_open, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .lock = ocfs2_lock, .flock = ocfs2_flock, }; /* * POSIX-lockless variants of our file_operations. * * These will be used if the underlying cluster stack does not support * posix file locking, if the user passes the "localflocks" mount * option, or if we have a local-only fs. * * ocfs2_flock is in here because all stacks handle UNIX file locks, * so we still want it in the case of no stack support for * plocks. Internally, it will do the right thing when asked to ignore * the cluster. */ const struct file_operations ocfs2_fops_no_plocks = { .llseek = ocfs2_file_llseek, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .read_iter = ocfs2_file_read_iter, .write_iter = ocfs2_file_write_iter, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .flock = ocfs2_flock, .splice_read = filemap_splice_read, .splice_write = iter_file_splice_write, .fallocate = ocfs2_fallocate, .remap_file_range = ocfs2_remap_file_range, }; const struct file_operations ocfs2_dops_no_plocks = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = shared_ocfs2_readdir, .fsync = ocfs2_sync_file, .release = ocfs2_dir_release, .open = ocfs2_dir_open, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .flock = ocfs2_flock, };
linux-master
fs/ocfs2/file.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * heartbeat.c * * Register ourselves with the heartbeat service, keep our node maps * up to date, and fire off recovery when needed. * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/bitmap.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "ocfs2_trace.h" #include "buffer_head_io.h" /* special case -1 for now * TODO: should *really* make sure the calling func never passes -1!! */ static void ocfs2_node_map_init(struct ocfs2_node_map *map) { map->num_nodes = OCFS2_NODE_MAP_MAX_NODES; bitmap_zero(map->map, OCFS2_NODE_MAP_MAX_NODES); } void ocfs2_init_node_maps(struct ocfs2_super *osb) { spin_lock_init(&osb->node_map_lock); ocfs2_node_map_init(&osb->osb_recovering_orphan_dirs); } void ocfs2_do_node_down(int node_num, void *data) { struct ocfs2_super *osb = data; BUG_ON(osb->node_num == node_num); trace_ocfs2_do_node_down(node_num); if (!osb->cconn) { /* * No cluster connection means we're not even ready to * participate yet. We check the slots after the cluster * comes up, so we will notice the node death then. We * can safely ignore it here. */ return; } ocfs2_recovery_thread(osb, node_num); } void ocfs2_node_map_set_bit(struct ocfs2_super *osb, struct ocfs2_node_map *map, int bit) { if (bit==-1) return; BUG_ON(bit >= map->num_nodes); spin_lock(&osb->node_map_lock); set_bit(bit, map->map); spin_unlock(&osb->node_map_lock); } void ocfs2_node_map_clear_bit(struct ocfs2_super *osb, struct ocfs2_node_map *map, int bit) { if (bit==-1) return; BUG_ON(bit >= map->num_nodes); spin_lock(&osb->node_map_lock); clear_bit(bit, map->map); spin_unlock(&osb->node_map_lock); } int ocfs2_node_map_test_bit(struct ocfs2_super *osb, struct ocfs2_node_map *map, int bit) { int ret; if (bit >= map->num_nodes) { mlog(ML_ERROR, "bit=%d map->num_nodes=%d\n", bit, map->num_nodes); BUG(); } spin_lock(&osb->node_map_lock); ret = test_bit(bit, map->map); spin_unlock(&osb->node_map_lock); return ret; }
linux-master
fs/ocfs2/heartbeat.c
// SPDX-License-Identifier: GPL-2.0 /* * Implementation of operations over local quota file */ #include <linux/fs.h> #include <linux/slab.h> #include <linux/quota.h> #include <linux/quotaops.h> #include <linux/module.h> #include <cluster/masklog.h> #include "ocfs2_fs.h" #include "ocfs2.h" #include "inode.h" #include "alloc.h" #include "file.h" #include "buffer_head_io.h" #include "journal.h" #include "sysfile.h" #include "dlmglue.h" #include "quota.h" #include "uptodate.h" #include "super.h" #include "ocfs2_trace.h" /* Number of local quota structures per block */ static inline unsigned int ol_quota_entries_per_block(struct super_block *sb) { return ((sb->s_blocksize - OCFS2_QBLK_RESERVED_SPACE) / sizeof(struct ocfs2_local_disk_dqblk)); } /* Number of blocks with entries in one chunk */ static inline unsigned int ol_chunk_blocks(struct super_block *sb) { return ((sb->s_blocksize - sizeof(struct ocfs2_local_disk_chunk) - OCFS2_QBLK_RESERVED_SPACE) << 3) / ol_quota_entries_per_block(sb); } /* Number of entries in a chunk bitmap */ static unsigned int ol_chunk_entries(struct super_block *sb) { return ol_chunk_blocks(sb) * ol_quota_entries_per_block(sb); } /* Offset of the chunk in quota file */ static unsigned int ol_quota_chunk_block(struct super_block *sb, int c) { /* 1 block for local quota file info, 1 block per chunk for chunk info */ return 1 + (ol_chunk_blocks(sb) + 1) * c; } static unsigned int ol_dqblk_block(struct super_block *sb, int c, int off) { int epb = ol_quota_entries_per_block(sb); return ol_quota_chunk_block(sb, c) + 1 + off / epb; } static unsigned int ol_dqblk_block_off(struct super_block *sb, int c, int off) { int epb = ol_quota_entries_per_block(sb); return (off % epb) * sizeof(struct ocfs2_local_disk_dqblk); } /* Offset of the dquot structure in the quota file */ static loff_t ol_dqblk_off(struct super_block *sb, int c, int off) { return (ol_dqblk_block(sb, c, off) << sb->s_blocksize_bits) + ol_dqblk_block_off(sb, c, off); } static inline unsigned int ol_dqblk_block_offset(struct super_block *sb, loff_t off) { return off & ((1 << sb->s_blocksize_bits) - 1); } /* Compute offset in the chunk of a structure with the given offset */ static int ol_dqblk_chunk_off(struct super_block *sb, int c, loff_t off) { int epb = ol_quota_entries_per_block(sb); return ((off >> sb->s_blocksize_bits) - ol_quota_chunk_block(sb, c) - 1) * epb + ((unsigned int)(off & ((1 << sb->s_blocksize_bits) - 1))) / sizeof(struct ocfs2_local_disk_dqblk); } /* Write bufferhead into the fs */ static int ocfs2_modify_bh(struct inode *inode, struct buffer_head *bh, void (*modify)(struct buffer_head *, void *), void *private) { struct super_block *sb = inode->i_sb; handle_t *handle; int status; handle = ocfs2_start_trans(OCFS2_SB(sb), OCFS2_QUOTA_BLOCK_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); return status; } status = ocfs2_journal_access_dq(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); ocfs2_commit_trans(OCFS2_SB(sb), handle); return status; } lock_buffer(bh); modify(bh, private); unlock_buffer(bh); ocfs2_journal_dirty(handle, bh); status = ocfs2_commit_trans(OCFS2_SB(sb), handle); if (status < 0) { mlog_errno(status); return status; } return 0; } /* * Read quota block from a given logical offset. * * This function acquires ip_alloc_sem and thus it must not be called with a * transaction started. */ static int ocfs2_read_quota_block(struct inode *inode, u64 v_block, struct buffer_head **bh) { int rc = 0; struct buffer_head *tmp = *bh; if (i_size_read(inode) >> inode->i_sb->s_blocksize_bits <= v_block) return ocfs2_error(inode->i_sb, "Quota file %llu is probably corrupted! Requested to read block %Lu but file has size only %Lu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)v_block, (unsigned long long)i_size_read(inode)); rc = ocfs2_read_virt_blocks(inode, v_block, 1, &tmp, 0, ocfs2_validate_quota_block); if (rc) mlog_errno(rc); /* If ocfs2_read_virt_blocks() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } /* Check whether we understand format of quota files */ static int ocfs2_local_check_quota_file(struct super_block *sb, int type) { unsigned int lmagics[OCFS2_MAXQUOTAS] = OCFS2_LOCAL_QMAGICS; unsigned int lversions[OCFS2_MAXQUOTAS] = OCFS2_LOCAL_QVERSIONS; unsigned int gmagics[OCFS2_MAXQUOTAS] = OCFS2_GLOBAL_QMAGICS; unsigned int gversions[OCFS2_MAXQUOTAS] = OCFS2_GLOBAL_QVERSIONS; unsigned int ino[OCFS2_MAXQUOTAS] = { USER_QUOTA_SYSTEM_INODE, GROUP_QUOTA_SYSTEM_INODE }; struct buffer_head *bh = NULL; struct inode *linode = sb_dqopt(sb)->files[type]; struct inode *ginode = NULL; struct ocfs2_disk_dqheader *dqhead; int status, ret = 0; /* First check whether we understand local quota file */ status = ocfs2_read_quota_block(linode, 0, &bh); if (status) { mlog_errno(status); mlog(ML_ERROR, "failed to read quota file header (type=%d)\n", type); goto out_err; } dqhead = (struct ocfs2_disk_dqheader *)(bh->b_data); if (le32_to_cpu(dqhead->dqh_magic) != lmagics[type]) { mlog(ML_ERROR, "quota file magic does not match (%u != %u)," " type=%d\n", le32_to_cpu(dqhead->dqh_magic), lmagics[type], type); goto out_err; } if (le32_to_cpu(dqhead->dqh_version) != lversions[type]) { mlog(ML_ERROR, "quota file version does not match (%u != %u)," " type=%d\n", le32_to_cpu(dqhead->dqh_version), lversions[type], type); goto out_err; } brelse(bh); bh = NULL; /* Next check whether we understand global quota file */ ginode = ocfs2_get_system_file_inode(OCFS2_SB(sb), ino[type], OCFS2_INVALID_SLOT); if (!ginode) { mlog(ML_ERROR, "cannot get global quota file inode " "(type=%d)\n", type); goto out_err; } /* Since the header is read only, we don't care about locking */ status = ocfs2_read_quota_block(ginode, 0, &bh); if (status) { mlog_errno(status); mlog(ML_ERROR, "failed to read global quota file header " "(type=%d)\n", type); goto out_err; } dqhead = (struct ocfs2_disk_dqheader *)(bh->b_data); if (le32_to_cpu(dqhead->dqh_magic) != gmagics[type]) { mlog(ML_ERROR, "global quota file magic does not match " "(%u != %u), type=%d\n", le32_to_cpu(dqhead->dqh_magic), gmagics[type], type); goto out_err; } if (le32_to_cpu(dqhead->dqh_version) != gversions[type]) { mlog(ML_ERROR, "global quota file version does not match " "(%u != %u), type=%d\n", le32_to_cpu(dqhead->dqh_version), gversions[type], type); goto out_err; } ret = 1; out_err: brelse(bh); iput(ginode); return ret; } /* Release given list of quota file chunks */ static void ocfs2_release_local_quota_bitmaps(struct list_head *head) { struct ocfs2_quota_chunk *pos, *next; list_for_each_entry_safe(pos, next, head, qc_chunk) { list_del(&pos->qc_chunk); brelse(pos->qc_headerbh); kmem_cache_free(ocfs2_qf_chunk_cachep, pos); } } /* Load quota bitmaps into memory */ static int ocfs2_load_local_quota_bitmaps(struct inode *inode, struct ocfs2_local_disk_dqinfo *ldinfo, struct list_head *head) { struct ocfs2_quota_chunk *newchunk; int i, status; INIT_LIST_HEAD(head); for (i = 0; i < le32_to_cpu(ldinfo->dqi_chunks); i++) { newchunk = kmem_cache_alloc(ocfs2_qf_chunk_cachep, GFP_NOFS); if (!newchunk) { ocfs2_release_local_quota_bitmaps(head); return -ENOMEM; } newchunk->qc_num = i; newchunk->qc_headerbh = NULL; status = ocfs2_read_quota_block(inode, ol_quota_chunk_block(inode->i_sb, i), &newchunk->qc_headerbh); if (status) { mlog_errno(status); kmem_cache_free(ocfs2_qf_chunk_cachep, newchunk); ocfs2_release_local_quota_bitmaps(head); return status; } list_add_tail(&newchunk->qc_chunk, head); } return 0; } static void olq_update_info(struct buffer_head *bh, void *private) { struct mem_dqinfo *info = private; struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct ocfs2_local_disk_dqinfo *ldinfo; ldinfo = (struct ocfs2_local_disk_dqinfo *)(bh->b_data + OCFS2_LOCAL_INFO_OFF); spin_lock(&dq_data_lock); ldinfo->dqi_flags = cpu_to_le32(oinfo->dqi_flags); ldinfo->dqi_chunks = cpu_to_le32(oinfo->dqi_chunks); ldinfo->dqi_blocks = cpu_to_le32(oinfo->dqi_blocks); spin_unlock(&dq_data_lock); } static int ocfs2_add_recovery_chunk(struct super_block *sb, struct ocfs2_local_disk_chunk *dchunk, int chunk, struct list_head *head) { struct ocfs2_recovery_chunk *rc; rc = kmalloc(sizeof(struct ocfs2_recovery_chunk), GFP_NOFS); if (!rc) return -ENOMEM; rc->rc_chunk = chunk; rc->rc_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); if (!rc->rc_bitmap) { kfree(rc); return -ENOMEM; } memcpy(rc->rc_bitmap, dchunk->dqc_bitmap, (ol_chunk_entries(sb) + 7) >> 3); list_add_tail(&rc->rc_list, head); return 0; } static void free_recovery_list(struct list_head *head) { struct ocfs2_recovery_chunk *next; struct ocfs2_recovery_chunk *rchunk; list_for_each_entry_safe(rchunk, next, head, rc_list) { list_del(&rchunk->rc_list); kfree(rchunk->rc_bitmap); kfree(rchunk); } } void ocfs2_free_quota_recovery(struct ocfs2_quota_recovery *rec) { int type; for (type = 0; type < OCFS2_MAXQUOTAS; type++) free_recovery_list(&(rec->r_list[type])); kfree(rec); } /* Load entries in our quota file we have to recover*/ static int ocfs2_recovery_load_quota(struct inode *lqinode, struct ocfs2_local_disk_dqinfo *ldinfo, int type, struct list_head *head) { struct super_block *sb = lqinode->i_sb; struct buffer_head *hbh; struct ocfs2_local_disk_chunk *dchunk; int i, chunks = le32_to_cpu(ldinfo->dqi_chunks); int status = 0; for (i = 0; i < chunks; i++) { hbh = NULL; status = ocfs2_read_quota_block(lqinode, ol_quota_chunk_block(sb, i), &hbh); if (status) { mlog_errno(status); break; } dchunk = (struct ocfs2_local_disk_chunk *)hbh->b_data; if (le32_to_cpu(dchunk->dqc_free) < ol_chunk_entries(sb)) status = ocfs2_add_recovery_chunk(sb, dchunk, i, head); brelse(hbh); if (status < 0) break; } if (status < 0) free_recovery_list(head); return status; } static struct ocfs2_quota_recovery *ocfs2_alloc_quota_recovery(void) { int type; struct ocfs2_quota_recovery *rec; rec = kmalloc(sizeof(struct ocfs2_quota_recovery), GFP_NOFS); if (!rec) return NULL; for (type = 0; type < OCFS2_MAXQUOTAS; type++) INIT_LIST_HEAD(&(rec->r_list[type])); return rec; } /* Load information we need for quota recovery into memory */ struct ocfs2_quota_recovery *ocfs2_begin_quota_recovery( struct ocfs2_super *osb, int slot_num) { unsigned int feature[OCFS2_MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA}; unsigned int ino[OCFS2_MAXQUOTAS] = { LOCAL_USER_QUOTA_SYSTEM_INODE, LOCAL_GROUP_QUOTA_SYSTEM_INODE }; struct super_block *sb = osb->sb; struct ocfs2_local_disk_dqinfo *ldinfo; struct inode *lqinode; struct buffer_head *bh; int type; int status = 0; struct ocfs2_quota_recovery *rec; printk(KERN_NOTICE "ocfs2: Beginning quota recovery on device (%s) for " "slot %u\n", osb->dev_str, slot_num); rec = ocfs2_alloc_quota_recovery(); if (!rec) return ERR_PTR(-ENOMEM); /* First init... */ for (type = 0; type < OCFS2_MAXQUOTAS; type++) { if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type])) continue; /* At this point, journal of the slot is already replayed so * we can trust metadata and data of the quota file */ lqinode = ocfs2_get_system_file_inode(osb, ino[type], slot_num); if (!lqinode) { status = -ENOENT; goto out; } status = ocfs2_inode_lock_full(lqinode, NULL, 1, OCFS2_META_LOCK_RECOVERY); if (status < 0) { mlog_errno(status); goto out_put; } /* Now read local header */ bh = NULL; status = ocfs2_read_quota_block(lqinode, 0, &bh); if (status) { mlog_errno(status); mlog(ML_ERROR, "failed to read quota file info header " "(slot=%d type=%d)\n", slot_num, type); goto out_lock; } ldinfo = (struct ocfs2_local_disk_dqinfo *)(bh->b_data + OCFS2_LOCAL_INFO_OFF); status = ocfs2_recovery_load_quota(lqinode, ldinfo, type, &rec->r_list[type]); brelse(bh); out_lock: ocfs2_inode_unlock(lqinode, 1); out_put: iput(lqinode); if (status < 0) break; } out: if (status < 0) { ocfs2_free_quota_recovery(rec); rec = ERR_PTR(status); } return rec; } /* Sync changes in local quota file into global quota file and * reinitialize local quota file. * The function expects local quota file to be already locked and * s_umount locked in shared mode. */ static int ocfs2_recover_local_quota_file(struct inode *lqinode, int type, struct ocfs2_quota_recovery *rec) { struct super_block *sb = lqinode->i_sb; struct ocfs2_mem_dqinfo *oinfo = sb_dqinfo(sb, type)->dqi_priv; struct ocfs2_local_disk_chunk *dchunk; struct ocfs2_local_disk_dqblk *dqblk; struct dquot *dquot; handle_t *handle; struct buffer_head *hbh = NULL, *qbh = NULL; int status = 0; int bit, chunk; struct ocfs2_recovery_chunk *rchunk, *next; qsize_t spacechange, inodechange; trace_ocfs2_recover_local_quota_file((unsigned long)lqinode->i_ino, type); list_for_each_entry_safe(rchunk, next, &(rec->r_list[type]), rc_list) { chunk = rchunk->rc_chunk; hbh = NULL; status = ocfs2_read_quota_block(lqinode, ol_quota_chunk_block(sb, chunk), &hbh); if (status) { mlog_errno(status); break; } dchunk = (struct ocfs2_local_disk_chunk *)hbh->b_data; for_each_set_bit(bit, rchunk->rc_bitmap, ol_chunk_entries(sb)) { qbh = NULL; status = ocfs2_read_quota_block(lqinode, ol_dqblk_block(sb, chunk, bit), &qbh); if (status) { mlog_errno(status); break; } dqblk = (struct ocfs2_local_disk_dqblk *)(qbh->b_data + ol_dqblk_block_off(sb, chunk, bit)); dquot = dqget(sb, make_kqid(&init_user_ns, type, le64_to_cpu(dqblk->dqb_id))); if (IS_ERR(dquot)) { status = PTR_ERR(dquot); mlog(ML_ERROR, "Failed to get quota structure " "for id %u, type %d. Cannot finish quota " "file recovery.\n", (unsigned)le64_to_cpu(dqblk->dqb_id), type); goto out_put_bh; } status = ocfs2_lock_global_qf(oinfo, 1); if (status < 0) { mlog_errno(status); goto out_put_dquot; } handle = ocfs2_start_trans(OCFS2_SB(sb), OCFS2_QSYNC_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_drop_lock; } down_write(&sb_dqopt(sb)->dqio_sem); spin_lock(&dquot->dq_dqb_lock); /* Add usage from quota entry into quota changes * of our node. Auxiliary variables are important * due to signedness */ spacechange = le64_to_cpu(dqblk->dqb_spacemod); inodechange = le64_to_cpu(dqblk->dqb_inodemod); dquot->dq_dqb.dqb_curspace += spacechange; dquot->dq_dqb.dqb_curinodes += inodechange; spin_unlock(&dquot->dq_dqb_lock); /* We want to drop reference held by the crashed * node. Since we have our own reference we know * global structure actually won't be freed. */ status = ocfs2_global_release_dquot(dquot); if (status < 0) { mlog_errno(status); goto out_commit; } /* Release local quota file entry */ status = ocfs2_journal_access_dq(handle, INODE_CACHE(lqinode), qbh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } lock_buffer(qbh); WARN_ON(!ocfs2_test_bit_unaligned(bit, dchunk->dqc_bitmap)); ocfs2_clear_bit_unaligned(bit, dchunk->dqc_bitmap); le32_add_cpu(&dchunk->dqc_free, 1); unlock_buffer(qbh); ocfs2_journal_dirty(handle, qbh); out_commit: up_write(&sb_dqopt(sb)->dqio_sem); ocfs2_commit_trans(OCFS2_SB(sb), handle); out_drop_lock: ocfs2_unlock_global_qf(oinfo, 1); out_put_dquot: dqput(dquot); out_put_bh: brelse(qbh); if (status < 0) break; } brelse(hbh); list_del(&rchunk->rc_list); kfree(rchunk->rc_bitmap); kfree(rchunk); if (status < 0) break; } if (status < 0) free_recovery_list(&(rec->r_list[type])); if (status) mlog_errno(status); return status; } /* Recover local quota files for given node different from us */ int ocfs2_finish_quota_recovery(struct ocfs2_super *osb, struct ocfs2_quota_recovery *rec, int slot_num) { unsigned int ino[OCFS2_MAXQUOTAS] = { LOCAL_USER_QUOTA_SYSTEM_INODE, LOCAL_GROUP_QUOTA_SYSTEM_INODE }; struct super_block *sb = osb->sb; struct ocfs2_local_disk_dqinfo *ldinfo; struct buffer_head *bh; handle_t *handle; int type; int status = 0; struct inode *lqinode; unsigned int flags; printk(KERN_NOTICE "ocfs2: Finishing quota recovery on device (%s) for " "slot %u\n", osb->dev_str, slot_num); down_read(&sb->s_umount); for (type = 0; type < OCFS2_MAXQUOTAS; type++) { if (list_empty(&(rec->r_list[type]))) continue; trace_ocfs2_finish_quota_recovery(slot_num); lqinode = ocfs2_get_system_file_inode(osb, ino[type], slot_num); if (!lqinode) { status = -ENOENT; goto out; } status = ocfs2_inode_lock_full(lqinode, NULL, 1, OCFS2_META_LOCK_NOQUEUE); /* Someone else is holding the lock? Then he must be * doing the recovery. Just skip the file... */ if (status == -EAGAIN) { printk(KERN_NOTICE "ocfs2: Skipping quota recovery on " "device (%s) for slot %d because quota file is " "locked.\n", osb->dev_str, slot_num); status = 0; goto out_put; } else if (status < 0) { mlog_errno(status); goto out_put; } /* Now read local header */ bh = NULL; status = ocfs2_read_quota_block(lqinode, 0, &bh); if (status) { mlog_errno(status); mlog(ML_ERROR, "failed to read quota file info header " "(slot=%d type=%d)\n", slot_num, type); goto out_lock; } ldinfo = (struct ocfs2_local_disk_dqinfo *)(bh->b_data + OCFS2_LOCAL_INFO_OFF); /* Is recovery still needed? */ flags = le32_to_cpu(ldinfo->dqi_flags); if (!(flags & OLQF_CLEAN)) status = ocfs2_recover_local_quota_file(lqinode, type, rec); /* We don't want to mark file as clean when it is actually * active */ if (slot_num == osb->slot_num) goto out_bh; /* Mark quota file as clean if we are recovering quota file of * some other node. */ handle = ocfs2_start_trans(osb, OCFS2_LOCAL_QINFO_WRITE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_bh; } status = ocfs2_journal_access_dq(handle, INODE_CACHE(lqinode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_trans; } lock_buffer(bh); ldinfo->dqi_flags = cpu_to_le32(flags | OLQF_CLEAN); unlock_buffer(bh); ocfs2_journal_dirty(handle, bh); out_trans: ocfs2_commit_trans(osb, handle); out_bh: brelse(bh); out_lock: ocfs2_inode_unlock(lqinode, 1); out_put: iput(lqinode); if (status < 0) break; } out: up_read(&sb->s_umount); kfree(rec); return status; } /* Read information header from quota file */ static int ocfs2_local_read_info(struct super_block *sb, int type) { struct ocfs2_local_disk_dqinfo *ldinfo; struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo; struct inode *lqinode = sb_dqopt(sb)->files[type]; int status; struct buffer_head *bh = NULL; struct ocfs2_quota_recovery *rec; int locked = 0; info->dqi_max_spc_limit = 0x7fffffffffffffffLL; info->dqi_max_ino_limit = 0x7fffffffffffffffLL; oinfo = kmalloc(sizeof(struct ocfs2_mem_dqinfo), GFP_NOFS); if (!oinfo) { mlog(ML_ERROR, "failed to allocate memory for ocfs2 quota" " info."); goto out_err; } info->dqi_priv = oinfo; oinfo->dqi_type = type; INIT_LIST_HEAD(&oinfo->dqi_chunk); oinfo->dqi_rec = NULL; oinfo->dqi_lqi_bh = NULL; oinfo->dqi_libh = NULL; status = ocfs2_global_read_info(sb, type); if (status < 0) goto out_err; status = ocfs2_inode_lock(lqinode, &oinfo->dqi_lqi_bh, 1); if (status < 0) { mlog_errno(status); goto out_err; } locked = 1; /* Now read local header */ status = ocfs2_read_quota_block(lqinode, 0, &bh); if (status) { mlog_errno(status); mlog(ML_ERROR, "failed to read quota file info header " "(type=%d)\n", type); goto out_err; } ldinfo = (struct ocfs2_local_disk_dqinfo *)(bh->b_data + OCFS2_LOCAL_INFO_OFF); oinfo->dqi_flags = le32_to_cpu(ldinfo->dqi_flags); oinfo->dqi_chunks = le32_to_cpu(ldinfo->dqi_chunks); oinfo->dqi_blocks = le32_to_cpu(ldinfo->dqi_blocks); oinfo->dqi_libh = bh; /* We crashed when using local quota file? */ if (!(oinfo->dqi_flags & OLQF_CLEAN)) { rec = OCFS2_SB(sb)->quota_rec; if (!rec) { rec = ocfs2_alloc_quota_recovery(); if (!rec) { status = -ENOMEM; mlog_errno(status); goto out_err; } OCFS2_SB(sb)->quota_rec = rec; } status = ocfs2_recovery_load_quota(lqinode, ldinfo, type, &rec->r_list[type]); if (status < 0) { mlog_errno(status); goto out_err; } } status = ocfs2_load_local_quota_bitmaps(lqinode, ldinfo, &oinfo->dqi_chunk); if (status < 0) { mlog_errno(status); goto out_err; } /* Now mark quota file as used */ oinfo->dqi_flags &= ~OLQF_CLEAN; status = ocfs2_modify_bh(lqinode, bh, olq_update_info, info); if (status < 0) { mlog_errno(status); goto out_err; } return 0; out_err: if (oinfo) { iput(oinfo->dqi_gqinode); ocfs2_simple_drop_lockres(OCFS2_SB(sb), &oinfo->dqi_gqlock); ocfs2_lock_res_free(&oinfo->dqi_gqlock); brelse(oinfo->dqi_lqi_bh); if (locked) ocfs2_inode_unlock(lqinode, 1); ocfs2_release_local_quota_bitmaps(&oinfo->dqi_chunk); kfree(oinfo); } brelse(bh); return -1; } /* Write local info to quota file */ static int ocfs2_local_write_info(struct super_block *sb, int type) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct buffer_head *bh = ((struct ocfs2_mem_dqinfo *)info->dqi_priv) ->dqi_libh; int status; status = ocfs2_modify_bh(sb_dqopt(sb)->files[type], bh, olq_update_info, info); if (status < 0) { mlog_errno(status); return -1; } return 0; } /* Release info from memory */ static int ocfs2_local_free_info(struct super_block *sb, int type) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct ocfs2_quota_chunk *chunk; struct ocfs2_local_disk_chunk *dchunk; int mark_clean = 1, len; int status = 0; iput(oinfo->dqi_gqinode); ocfs2_simple_drop_lockres(OCFS2_SB(sb), &oinfo->dqi_gqlock); ocfs2_lock_res_free(&oinfo->dqi_gqlock); list_for_each_entry(chunk, &oinfo->dqi_chunk, qc_chunk) { dchunk = (struct ocfs2_local_disk_chunk *) (chunk->qc_headerbh->b_data); if (chunk->qc_num < oinfo->dqi_chunks - 1) { len = ol_chunk_entries(sb); } else { len = (oinfo->dqi_blocks - ol_quota_chunk_block(sb, chunk->qc_num) - 1) * ol_quota_entries_per_block(sb); } /* Not all entries free? Bug! */ if (le32_to_cpu(dchunk->dqc_free) != len) { mlog(ML_ERROR, "releasing quota file with used " "entries (type=%d)\n", type); mark_clean = 0; } } ocfs2_release_local_quota_bitmaps(&oinfo->dqi_chunk); /* * s_umount held in exclusive mode protects us against racing with * recovery thread... */ if (oinfo->dqi_rec) { ocfs2_free_quota_recovery(oinfo->dqi_rec); mark_clean = 0; } if (!mark_clean) goto out; /* Mark local file as clean */ oinfo->dqi_flags |= OLQF_CLEAN; status = ocfs2_modify_bh(sb_dqopt(sb)->files[type], oinfo->dqi_libh, olq_update_info, info); if (status < 0) mlog_errno(status); out: ocfs2_inode_unlock(sb_dqopt(sb)->files[type], 1); brelse(oinfo->dqi_libh); brelse(oinfo->dqi_lqi_bh); kfree(oinfo); return status; } static void olq_set_dquot(struct buffer_head *bh, void *private) { struct ocfs2_dquot *od = private; struct ocfs2_local_disk_dqblk *dqblk; struct super_block *sb = od->dq_dquot.dq_sb; dqblk = (struct ocfs2_local_disk_dqblk *)(bh->b_data + ol_dqblk_block_offset(sb, od->dq_local_off)); dqblk->dqb_id = cpu_to_le64(from_kqid(&init_user_ns, od->dq_dquot.dq_id)); spin_lock(&od->dq_dquot.dq_dqb_lock); dqblk->dqb_spacemod = cpu_to_le64(od->dq_dquot.dq_dqb.dqb_curspace - od->dq_origspace); dqblk->dqb_inodemod = cpu_to_le64(od->dq_dquot.dq_dqb.dqb_curinodes - od->dq_originodes); spin_unlock(&od->dq_dquot.dq_dqb_lock); trace_olq_set_dquot( (unsigned long long)le64_to_cpu(dqblk->dqb_spacemod), (unsigned long long)le64_to_cpu(dqblk->dqb_inodemod), from_kqid(&init_user_ns, od->dq_dquot.dq_id)); } /* Write dquot to local quota file */ int ocfs2_local_write_dquot(struct dquot *dquot) { struct super_block *sb = dquot->dq_sb; struct ocfs2_dquot *od = OCFS2_DQUOT(dquot); struct buffer_head *bh; struct inode *lqinode = sb_dqopt(sb)->files[dquot->dq_id.type]; int status; status = ocfs2_read_quota_phys_block(lqinode, od->dq_local_phys_blk, &bh); if (status) { mlog_errno(status); goto out; } status = ocfs2_modify_bh(lqinode, bh, olq_set_dquot, od); if (status < 0) { mlog_errno(status); goto out; } out: brelse(bh); return status; } /* Find free entry in local quota file */ static struct ocfs2_quota_chunk *ocfs2_find_free_entry(struct super_block *sb, int type, int *offset) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct ocfs2_quota_chunk *chunk = NULL, *iter; struct ocfs2_local_disk_chunk *dchunk; int found = 0, len; list_for_each_entry(iter, &oinfo->dqi_chunk, qc_chunk) { dchunk = (struct ocfs2_local_disk_chunk *) iter->qc_headerbh->b_data; if (le32_to_cpu(dchunk->dqc_free) > 0) { chunk = iter; break; } } if (!chunk) return NULL; if (chunk->qc_num < oinfo->dqi_chunks - 1) { len = ol_chunk_entries(sb); } else { len = (oinfo->dqi_blocks - ol_quota_chunk_block(sb, chunk->qc_num) - 1) * ol_quota_entries_per_block(sb); } found = ocfs2_find_next_zero_bit_unaligned(dchunk->dqc_bitmap, len, 0); /* We failed? */ if (found == len) { mlog(ML_ERROR, "Did not find empty entry in chunk %d with %u" " entries free (type=%d)\n", chunk->qc_num, le32_to_cpu(dchunk->dqc_free), type); return ERR_PTR(-EIO); } *offset = found; return chunk; } /* Add new chunk to the local quota file */ static struct ocfs2_quota_chunk *ocfs2_local_quota_add_chunk( struct super_block *sb, int type, int *offset) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct inode *lqinode = sb_dqopt(sb)->files[type]; struct ocfs2_quota_chunk *chunk = NULL; struct ocfs2_local_disk_chunk *dchunk; int status; handle_t *handle; struct buffer_head *bh = NULL, *dbh = NULL; u64 p_blkno; /* We are protected by dqio_sem so no locking needed */ status = ocfs2_extend_no_holes(lqinode, NULL, i_size_read(lqinode) + 2 * sb->s_blocksize, i_size_read(lqinode)); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_simple_size_update(lqinode, oinfo->dqi_lqi_bh, i_size_read(lqinode) + 2 * sb->s_blocksize); if (status < 0) { mlog_errno(status); goto out; } chunk = kmem_cache_alloc(ocfs2_qf_chunk_cachep, GFP_NOFS); if (!chunk) { status = -ENOMEM; mlog_errno(status); goto out; } /* Local quota info and two new blocks we initialize */ handle = ocfs2_start_trans(OCFS2_SB(sb), OCFS2_LOCAL_QINFO_WRITE_CREDITS + 2 * OCFS2_QUOTA_BLOCK_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } /* Initialize chunk header */ status = ocfs2_extent_map_get_blocks(lqinode, oinfo->dqi_blocks, &p_blkno, NULL, NULL); if (status < 0) { mlog_errno(status); goto out_trans; } bh = sb_getblk(sb, p_blkno); if (!bh) { status = -ENOMEM; mlog_errno(status); goto out_trans; } dchunk = (struct ocfs2_local_disk_chunk *)bh->b_data; ocfs2_set_new_buffer_uptodate(INODE_CACHE(lqinode), bh); status = ocfs2_journal_access_dq(handle, INODE_CACHE(lqinode), bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto out_trans; } lock_buffer(bh); dchunk->dqc_free = cpu_to_le32(ol_quota_entries_per_block(sb)); memset(dchunk->dqc_bitmap, 0, sb->s_blocksize - sizeof(struct ocfs2_local_disk_chunk) - OCFS2_QBLK_RESERVED_SPACE); unlock_buffer(bh); ocfs2_journal_dirty(handle, bh); /* Initialize new block with structures */ status = ocfs2_extent_map_get_blocks(lqinode, oinfo->dqi_blocks + 1, &p_blkno, NULL, NULL); if (status < 0) { mlog_errno(status); goto out_trans; } dbh = sb_getblk(sb, p_blkno); if (!dbh) { status = -ENOMEM; mlog_errno(status); goto out_trans; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(lqinode), dbh); status = ocfs2_journal_access_dq(handle, INODE_CACHE(lqinode), dbh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto out_trans; } lock_buffer(dbh); memset(dbh->b_data, 0, sb->s_blocksize - OCFS2_QBLK_RESERVED_SPACE); unlock_buffer(dbh); ocfs2_journal_dirty(handle, dbh); /* Update local quotafile info */ oinfo->dqi_blocks += 2; oinfo->dqi_chunks++; status = ocfs2_local_write_info(sb, type); if (status < 0) { mlog_errno(status); goto out_trans; } status = ocfs2_commit_trans(OCFS2_SB(sb), handle); if (status < 0) { mlog_errno(status); goto out; } list_add_tail(&chunk->qc_chunk, &oinfo->dqi_chunk); chunk->qc_num = list_entry(chunk->qc_chunk.prev, struct ocfs2_quota_chunk, qc_chunk)->qc_num + 1; chunk->qc_headerbh = bh; *offset = 0; return chunk; out_trans: ocfs2_commit_trans(OCFS2_SB(sb), handle); out: brelse(bh); brelse(dbh); kmem_cache_free(ocfs2_qf_chunk_cachep, chunk); return ERR_PTR(status); } /* Find free entry in local quota file */ static struct ocfs2_quota_chunk *ocfs2_extend_local_quota_file( struct super_block *sb, int type, int *offset) { struct mem_dqinfo *info = sb_dqinfo(sb, type); struct ocfs2_mem_dqinfo *oinfo = info->dqi_priv; struct ocfs2_quota_chunk *chunk; struct inode *lqinode = sb_dqopt(sb)->files[type]; struct ocfs2_local_disk_chunk *dchunk; int epb = ol_quota_entries_per_block(sb); unsigned int chunk_blocks; struct buffer_head *bh; u64 p_blkno; int status; handle_t *handle; if (list_empty(&oinfo->dqi_chunk)) return ocfs2_local_quota_add_chunk(sb, type, offset); /* Is the last chunk full? */ chunk = list_entry(oinfo->dqi_chunk.prev, struct ocfs2_quota_chunk, qc_chunk); chunk_blocks = oinfo->dqi_blocks - ol_quota_chunk_block(sb, chunk->qc_num) - 1; if (ol_chunk_blocks(sb) == chunk_blocks) return ocfs2_local_quota_add_chunk(sb, type, offset); /* We are protected by dqio_sem so no locking needed */ status = ocfs2_extend_no_holes(lqinode, NULL, i_size_read(lqinode) + sb->s_blocksize, i_size_read(lqinode)); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_simple_size_update(lqinode, oinfo->dqi_lqi_bh, i_size_read(lqinode) + sb->s_blocksize); if (status < 0) { mlog_errno(status); goto out; } /* Get buffer from the just added block */ status = ocfs2_extent_map_get_blocks(lqinode, oinfo->dqi_blocks, &p_blkno, NULL, NULL); if (status < 0) { mlog_errno(status); goto out; } bh = sb_getblk(sb, p_blkno); if (!bh) { status = -ENOMEM; mlog_errno(status); goto out; } ocfs2_set_new_buffer_uptodate(INODE_CACHE(lqinode), bh); /* Local quota info, chunk header and the new block we initialize */ handle = ocfs2_start_trans(OCFS2_SB(sb), OCFS2_LOCAL_QINFO_WRITE_CREDITS + 2 * OCFS2_QUOTA_BLOCK_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } /* Zero created block */ status = ocfs2_journal_access_dq(handle, INODE_CACHE(lqinode), bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto out_trans; } lock_buffer(bh); memset(bh->b_data, 0, sb->s_blocksize); unlock_buffer(bh); ocfs2_journal_dirty(handle, bh); /* Update chunk header */ status = ocfs2_journal_access_dq(handle, INODE_CACHE(lqinode), chunk->qc_headerbh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_trans; } dchunk = (struct ocfs2_local_disk_chunk *)chunk->qc_headerbh->b_data; lock_buffer(chunk->qc_headerbh); le32_add_cpu(&dchunk->dqc_free, ol_quota_entries_per_block(sb)); unlock_buffer(chunk->qc_headerbh); ocfs2_journal_dirty(handle, chunk->qc_headerbh); /* Update file header */ oinfo->dqi_blocks++; status = ocfs2_local_write_info(sb, type); if (status < 0) { mlog_errno(status); goto out_trans; } status = ocfs2_commit_trans(OCFS2_SB(sb), handle); if (status < 0) { mlog_errno(status); goto out; } *offset = chunk_blocks * epb; return chunk; out_trans: ocfs2_commit_trans(OCFS2_SB(sb), handle); out: return ERR_PTR(status); } static void olq_alloc_dquot(struct buffer_head *bh, void *private) { int *offset = private; struct ocfs2_local_disk_chunk *dchunk; dchunk = (struct ocfs2_local_disk_chunk *)bh->b_data; ocfs2_set_bit_unaligned(*offset, dchunk->dqc_bitmap); le32_add_cpu(&dchunk->dqc_free, -1); } /* Create dquot in the local file for given id */ int ocfs2_create_local_dquot(struct dquot *dquot) { struct super_block *sb = dquot->dq_sb; int type = dquot->dq_id.type; struct inode *lqinode = sb_dqopt(sb)->files[type]; struct ocfs2_quota_chunk *chunk; struct ocfs2_dquot *od = OCFS2_DQUOT(dquot); int offset; int status; u64 pcount; down_write(&OCFS2_I(lqinode)->ip_alloc_sem); chunk = ocfs2_find_free_entry(sb, type, &offset); if (!chunk) { chunk = ocfs2_extend_local_quota_file(sb, type, &offset); if (IS_ERR(chunk)) { status = PTR_ERR(chunk); goto out; } } else if (IS_ERR(chunk)) { status = PTR_ERR(chunk); goto out; } od->dq_local_off = ol_dqblk_off(sb, chunk->qc_num, offset); od->dq_chunk = chunk; status = ocfs2_extent_map_get_blocks(lqinode, ol_dqblk_block(sb, chunk->qc_num, offset), &od->dq_local_phys_blk, &pcount, NULL); /* Initialize dquot structure on disk */ status = ocfs2_local_write_dquot(dquot); if (status < 0) { mlog_errno(status); goto out; } /* Mark structure as allocated */ status = ocfs2_modify_bh(lqinode, chunk->qc_headerbh, olq_alloc_dquot, &offset); if (status < 0) { mlog_errno(status); goto out; } out: up_write(&OCFS2_I(lqinode)->ip_alloc_sem); return status; } /* * Release dquot structure from local quota file. ocfs2_release_dquot() has * already started a transaction and written all changes to global quota file */ int ocfs2_local_release_dquot(handle_t *handle, struct dquot *dquot) { int status; int type = dquot->dq_id.type; struct ocfs2_dquot *od = OCFS2_DQUOT(dquot); struct super_block *sb = dquot->dq_sb; struct ocfs2_local_disk_chunk *dchunk; int offset; status = ocfs2_journal_access_dq(handle, INODE_CACHE(sb_dqopt(sb)->files[type]), od->dq_chunk->qc_headerbh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out; } offset = ol_dqblk_chunk_off(sb, od->dq_chunk->qc_num, od->dq_local_off); dchunk = (struct ocfs2_local_disk_chunk *) (od->dq_chunk->qc_headerbh->b_data); /* Mark structure as freed */ lock_buffer(od->dq_chunk->qc_headerbh); ocfs2_clear_bit_unaligned(offset, dchunk->dqc_bitmap); le32_add_cpu(&dchunk->dqc_free, 1); unlock_buffer(od->dq_chunk->qc_headerbh); ocfs2_journal_dirty(handle, od->dq_chunk->qc_headerbh); out: return status; } static const struct quota_format_ops ocfs2_format_ops = { .check_quota_file = ocfs2_local_check_quota_file, .read_file_info = ocfs2_local_read_info, .write_file_info = ocfs2_global_write_info, .free_file_info = ocfs2_local_free_info, }; struct quota_format_type ocfs2_quota_format = { .qf_fmt_id = QFMT_OCFS2, .qf_ops = &ocfs2_format_ops, .qf_owner = THIS_MODULE };
linux-master
fs/ocfs2/quota_local.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmglue.c * * Code which implements an OCFS2 specific interface to our DLM. * * Copyright (C) 2003, 2004 Oracle. All rights reserved. */ #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/mm.h> #include <linux/kthread.h> #include <linux/pagemap.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/quotaops.h> #include <linux/sched/signal.h> #define MLOG_MASK_PREFIX ML_DLM_GLUE #include <cluster/masklog.h> #include "ocfs2.h" #include "ocfs2_lockingver.h" #include "alloc.h" #include "dcache.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "stackglue.h" #include "slot_map.h" #include "super.h" #include "uptodate.h" #include "quota.h" #include "refcounttree.h" #include "acl.h" #include "buffer_head_io.h" struct ocfs2_mask_waiter { struct list_head mw_item; int mw_status; struct completion mw_complete; unsigned long mw_mask; unsigned long mw_goal; #ifdef CONFIG_OCFS2_FS_STATS ktime_t mw_lock_start; #endif }; static struct ocfs2_super *ocfs2_get_dentry_osb(struct ocfs2_lock_res *lockres); static struct ocfs2_super *ocfs2_get_inode_osb(struct ocfs2_lock_res *lockres); static struct ocfs2_super *ocfs2_get_file_osb(struct ocfs2_lock_res *lockres); static struct ocfs2_super *ocfs2_get_qinfo_osb(struct ocfs2_lock_res *lockres); /* * Return value from ->downconvert_worker functions. * * These control the precise actions of ocfs2_unblock_lock() * and ocfs2_process_blocked_lock() * */ enum ocfs2_unblock_action { UNBLOCK_CONTINUE = 0, /* Continue downconvert */ UNBLOCK_CONTINUE_POST = 1, /* Continue downconvert, fire * ->post_unlock callback */ UNBLOCK_STOP_POST = 2, /* Do not downconvert, fire * ->post_unlock() callback. */ }; struct ocfs2_unblock_ctl { int requeue; enum ocfs2_unblock_action unblock_action; }; /* Lockdep class keys */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key lockdep_keys[OCFS2_NUM_LOCK_TYPES]; #endif static int ocfs2_check_meta_downconvert(struct ocfs2_lock_res *lockres, int new_level); static void ocfs2_set_meta_lvb(struct ocfs2_lock_res *lockres); static int ocfs2_data_convert_worker(struct ocfs2_lock_res *lockres, int blocking); static int ocfs2_dentry_convert_worker(struct ocfs2_lock_res *lockres, int blocking); static void ocfs2_dentry_post_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres); static void ocfs2_set_qinfo_lvb(struct ocfs2_lock_res *lockres); static int ocfs2_check_refcount_downconvert(struct ocfs2_lock_res *lockres, int new_level); static int ocfs2_refcount_convert_worker(struct ocfs2_lock_res *lockres, int blocking); #define mlog_meta_lvb(__level, __lockres) ocfs2_dump_meta_lvb_info(__level, __PRETTY_FUNCTION__, __LINE__, __lockres) /* This aids in debugging situations where a bad LVB might be involved. */ static void ocfs2_dump_meta_lvb_info(u64 level, const char *function, unsigned int line, struct ocfs2_lock_res *lockres) { struct ocfs2_meta_lvb *lvb = ocfs2_dlm_lvb(&lockres->l_lksb); mlog(level, "LVB information for %s (called from %s:%u):\n", lockres->l_name, function, line); mlog(level, "version: %u, clusters: %u, generation: 0x%x\n", lvb->lvb_version, be32_to_cpu(lvb->lvb_iclusters), be32_to_cpu(lvb->lvb_igeneration)); mlog(level, "size: %llu, uid %u, gid %u, mode 0x%x\n", (unsigned long long)be64_to_cpu(lvb->lvb_isize), be32_to_cpu(lvb->lvb_iuid), be32_to_cpu(lvb->lvb_igid), be16_to_cpu(lvb->lvb_imode)); mlog(level, "nlink %u, atime_packed 0x%llx, ctime_packed 0x%llx, " "mtime_packed 0x%llx iattr 0x%x\n", be16_to_cpu(lvb->lvb_inlink), (long long)be64_to_cpu(lvb->lvb_iatime_packed), (long long)be64_to_cpu(lvb->lvb_ictime_packed), (long long)be64_to_cpu(lvb->lvb_imtime_packed), be32_to_cpu(lvb->lvb_iattr)); } /* * OCFS2 Lock Resource Operations * * These fine tune the behavior of the generic dlmglue locking infrastructure. * * The most basic of lock types can point ->l_priv to their respective * struct ocfs2_super and allow the default actions to manage things. * * Right now, each lock type also needs to implement an init function, * and trivial lock/unlock wrappers. ocfs2_simple_drop_lockres() * should be called when the lock is no longer needed (i.e., object * destruction time). */ struct ocfs2_lock_res_ops { /* * Translate an ocfs2_lock_res * into an ocfs2_super *. Define * this callback if ->l_priv is not an ocfs2_super pointer */ struct ocfs2_super * (*get_osb)(struct ocfs2_lock_res *); /* * Optionally called in the downconvert thread after a * successful downconvert. The lockres will not be referenced * after this callback is called, so it is safe to free * memory, etc. * * The exact semantics of when this is called are controlled * by ->downconvert_worker() */ void (*post_unlock)(struct ocfs2_super *, struct ocfs2_lock_res *); /* * Allow a lock type to add checks to determine whether it is * safe to downconvert a lock. Return 0 to re-queue the * downconvert at a later time, nonzero to continue. * * For most locks, the default checks that there are no * incompatible holders are sufficient. * * Called with the lockres spinlock held. */ int (*check_downconvert)(struct ocfs2_lock_res *, int); /* * Allows a lock type to populate the lock value block. This * is called on downconvert, and when we drop a lock. * * Locks that want to use this should set LOCK_TYPE_USES_LVB * in the flags field. * * Called with the lockres spinlock held. */ void (*set_lvb)(struct ocfs2_lock_res *); /* * Called from the downconvert thread when it is determined * that a lock will be downconverted. This is called without * any locks held so the function can do work that might * schedule (syncing out data, etc). * * This should return any one of the ocfs2_unblock_action * values, depending on what it wants the thread to do. */ int (*downconvert_worker)(struct ocfs2_lock_res *, int); /* * LOCK_TYPE_* flags which describe the specific requirements * of a lock type. Descriptions of each individual flag follow. */ int flags; }; /* * Some locks want to "refresh" potentially stale data when a * meaningful (PRMODE or EXMODE) lock level is first obtained. If this * flag is set, the OCFS2_LOCK_NEEDS_REFRESH flag will be set on the * individual lockres l_flags member from the ast function. It is * expected that the locking wrapper will clear the * OCFS2_LOCK_NEEDS_REFRESH flag when done. */ #define LOCK_TYPE_REQUIRES_REFRESH 0x1 /* * Indicate that a lock type makes use of the lock value block. The * ->set_lvb lock type callback must be defined. */ #define LOCK_TYPE_USES_LVB 0x2 static struct ocfs2_lock_res_ops ocfs2_inode_rw_lops = { .get_osb = ocfs2_get_inode_osb, .flags = 0, }; static struct ocfs2_lock_res_ops ocfs2_inode_inode_lops = { .get_osb = ocfs2_get_inode_osb, .check_downconvert = ocfs2_check_meta_downconvert, .set_lvb = ocfs2_set_meta_lvb, .downconvert_worker = ocfs2_data_convert_worker, .flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB, }; static struct ocfs2_lock_res_ops ocfs2_super_lops = { .flags = LOCK_TYPE_REQUIRES_REFRESH, }; static struct ocfs2_lock_res_ops ocfs2_rename_lops = { .flags = 0, }; static struct ocfs2_lock_res_ops ocfs2_nfs_sync_lops = { .flags = 0, }; static struct ocfs2_lock_res_ops ocfs2_trim_fs_lops = { .flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB, }; static struct ocfs2_lock_res_ops ocfs2_orphan_scan_lops = { .flags = LOCK_TYPE_REQUIRES_REFRESH|LOCK_TYPE_USES_LVB, }; static struct ocfs2_lock_res_ops ocfs2_dentry_lops = { .get_osb = ocfs2_get_dentry_osb, .post_unlock = ocfs2_dentry_post_unlock, .downconvert_worker = ocfs2_dentry_convert_worker, .flags = 0, }; static struct ocfs2_lock_res_ops ocfs2_inode_open_lops = { .get_osb = ocfs2_get_inode_osb, .flags = 0, }; static struct ocfs2_lock_res_ops ocfs2_flock_lops = { .get_osb = ocfs2_get_file_osb, .flags = 0, }; static struct ocfs2_lock_res_ops ocfs2_qinfo_lops = { .set_lvb = ocfs2_set_qinfo_lvb, .get_osb = ocfs2_get_qinfo_osb, .flags = LOCK_TYPE_REQUIRES_REFRESH | LOCK_TYPE_USES_LVB, }; static struct ocfs2_lock_res_ops ocfs2_refcount_block_lops = { .check_downconvert = ocfs2_check_refcount_downconvert, .downconvert_worker = ocfs2_refcount_convert_worker, .flags = 0, }; static inline int ocfs2_is_inode_lock(struct ocfs2_lock_res *lockres) { return lockres->l_type == OCFS2_LOCK_TYPE_META || lockres->l_type == OCFS2_LOCK_TYPE_RW || lockres->l_type == OCFS2_LOCK_TYPE_OPEN; } static inline struct ocfs2_lock_res *ocfs2_lksb_to_lock_res(struct ocfs2_dlm_lksb *lksb) { return container_of(lksb, struct ocfs2_lock_res, l_lksb); } static inline struct inode *ocfs2_lock_res_inode(struct ocfs2_lock_res *lockres) { BUG_ON(!ocfs2_is_inode_lock(lockres)); return (struct inode *) lockres->l_priv; } static inline struct ocfs2_dentry_lock *ocfs2_lock_res_dl(struct ocfs2_lock_res *lockres) { BUG_ON(lockres->l_type != OCFS2_LOCK_TYPE_DENTRY); return (struct ocfs2_dentry_lock *)lockres->l_priv; } static inline struct ocfs2_mem_dqinfo *ocfs2_lock_res_qinfo(struct ocfs2_lock_res *lockres) { BUG_ON(lockres->l_type != OCFS2_LOCK_TYPE_QINFO); return (struct ocfs2_mem_dqinfo *)lockres->l_priv; } static inline struct ocfs2_refcount_tree * ocfs2_lock_res_refcount_tree(struct ocfs2_lock_res *res) { return container_of(res, struct ocfs2_refcount_tree, rf_lockres); } static inline struct ocfs2_super *ocfs2_get_lockres_osb(struct ocfs2_lock_res *lockres) { if (lockres->l_ops->get_osb) return lockres->l_ops->get_osb(lockres); return (struct ocfs2_super *)lockres->l_priv; } static int ocfs2_lock_create(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level, u32 dlm_flags); static inline int ocfs2_may_continue_on_blocked_lock(struct ocfs2_lock_res *lockres, int wanted); static void __ocfs2_cluster_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level, unsigned long caller_ip); static inline void ocfs2_cluster_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level) { __ocfs2_cluster_unlock(osb, lockres, level, _RET_IP_); } static inline void ocfs2_generic_handle_downconvert_action(struct ocfs2_lock_res *lockres); static inline void ocfs2_generic_handle_convert_action(struct ocfs2_lock_res *lockres); static inline void ocfs2_generic_handle_attach_action(struct ocfs2_lock_res *lockres); static int ocfs2_generic_handle_bast(struct ocfs2_lock_res *lockres, int level); static void ocfs2_schedule_blocked_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres); static inline void ocfs2_recover_from_dlm_error(struct ocfs2_lock_res *lockres, int convert); #define ocfs2_log_dlm_error(_func, _err, _lockres) do { \ if ((_lockres)->l_type != OCFS2_LOCK_TYPE_DENTRY) \ mlog(ML_ERROR, "DLM error %d while calling %s on resource %s\n", \ _err, _func, _lockres->l_name); \ else \ mlog(ML_ERROR, "DLM error %d while calling %s on resource %.*s%08x\n", \ _err, _func, OCFS2_DENTRY_LOCK_INO_START - 1, (_lockres)->l_name, \ (unsigned int)ocfs2_get_dentry_lock_ino(_lockres)); \ } while (0) static int ocfs2_downconvert_thread(void *arg); static void ocfs2_downconvert_on_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres); static int ocfs2_inode_lock_update(struct inode *inode, struct buffer_head **bh); static void ocfs2_drop_osb_locks(struct ocfs2_super *osb); static inline int ocfs2_highest_compat_lock_level(int level); static unsigned int ocfs2_prepare_downconvert(struct ocfs2_lock_res *lockres, int new_level); static int ocfs2_downconvert_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int new_level, int lvb, unsigned int generation); static int ocfs2_prepare_cancel_convert(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres); static int ocfs2_cancel_convert(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres); static void ocfs2_build_lock_name(enum ocfs2_lock_type type, u64 blkno, u32 generation, char *name) { int len; BUG_ON(type >= OCFS2_NUM_LOCK_TYPES); len = snprintf(name, OCFS2_LOCK_ID_MAX_LEN, "%c%s%016llx%08x", ocfs2_lock_type_char(type), OCFS2_LOCK_ID_PAD, (long long)blkno, generation); BUG_ON(len != (OCFS2_LOCK_ID_MAX_LEN - 1)); mlog(0, "built lock resource with name: %s\n", name); } static DEFINE_SPINLOCK(ocfs2_dlm_tracking_lock); static void ocfs2_add_lockres_tracking(struct ocfs2_lock_res *res, struct ocfs2_dlm_debug *dlm_debug) { mlog(0, "Add tracking for lockres %s\n", res->l_name); spin_lock(&ocfs2_dlm_tracking_lock); list_add(&res->l_debug_list, &dlm_debug->d_lockres_tracking); spin_unlock(&ocfs2_dlm_tracking_lock); } static void ocfs2_remove_lockres_tracking(struct ocfs2_lock_res *res) { spin_lock(&ocfs2_dlm_tracking_lock); if (!list_empty(&res->l_debug_list)) list_del_init(&res->l_debug_list); spin_unlock(&ocfs2_dlm_tracking_lock); } #ifdef CONFIG_OCFS2_FS_STATS static void ocfs2_init_lock_stats(struct ocfs2_lock_res *res) { res->l_lock_refresh = 0; res->l_lock_wait = 0; memset(&res->l_lock_prmode, 0, sizeof(struct ocfs2_lock_stats)); memset(&res->l_lock_exmode, 0, sizeof(struct ocfs2_lock_stats)); } static void ocfs2_update_lock_stats(struct ocfs2_lock_res *res, int level, struct ocfs2_mask_waiter *mw, int ret) { u32 usec; ktime_t kt; struct ocfs2_lock_stats *stats; if (level == LKM_PRMODE) stats = &res->l_lock_prmode; else if (level == LKM_EXMODE) stats = &res->l_lock_exmode; else return; kt = ktime_sub(ktime_get(), mw->mw_lock_start); usec = ktime_to_us(kt); stats->ls_gets++; stats->ls_total += ktime_to_ns(kt); /* overflow */ if (unlikely(stats->ls_gets == 0)) { stats->ls_gets++; stats->ls_total = ktime_to_ns(kt); } if (stats->ls_max < usec) stats->ls_max = usec; if (ret) stats->ls_fail++; stats->ls_last = ktime_to_us(ktime_get_real()); } static inline void ocfs2_track_lock_refresh(struct ocfs2_lock_res *lockres) { lockres->l_lock_refresh++; } static inline void ocfs2_track_lock_wait(struct ocfs2_lock_res *lockres) { struct ocfs2_mask_waiter *mw; if (list_empty(&lockres->l_mask_waiters)) { lockres->l_lock_wait = 0; return; } mw = list_first_entry(&lockres->l_mask_waiters, struct ocfs2_mask_waiter, mw_item); lockres->l_lock_wait = ktime_to_us(ktime_mono_to_real(mw->mw_lock_start)); } static inline void ocfs2_init_start_time(struct ocfs2_mask_waiter *mw) { mw->mw_lock_start = ktime_get(); } #else static inline void ocfs2_init_lock_stats(struct ocfs2_lock_res *res) { } static inline void ocfs2_update_lock_stats(struct ocfs2_lock_res *res, int level, struct ocfs2_mask_waiter *mw, int ret) { } static inline void ocfs2_track_lock_refresh(struct ocfs2_lock_res *lockres) { } static inline void ocfs2_track_lock_wait(struct ocfs2_lock_res *lockres) { } static inline void ocfs2_init_start_time(struct ocfs2_mask_waiter *mw) { } #endif static void ocfs2_lock_res_init_common(struct ocfs2_super *osb, struct ocfs2_lock_res *res, enum ocfs2_lock_type type, struct ocfs2_lock_res_ops *ops, void *priv) { res->l_type = type; res->l_ops = ops; res->l_priv = priv; res->l_level = DLM_LOCK_IV; res->l_requested = DLM_LOCK_IV; res->l_blocking = DLM_LOCK_IV; res->l_action = OCFS2_AST_INVALID; res->l_unlock_action = OCFS2_UNLOCK_INVALID; res->l_flags = OCFS2_LOCK_INITIALIZED; ocfs2_add_lockres_tracking(res, osb->osb_dlm_debug); ocfs2_init_lock_stats(res); #ifdef CONFIG_DEBUG_LOCK_ALLOC if (type != OCFS2_LOCK_TYPE_OPEN) lockdep_init_map(&res->l_lockdep_map, ocfs2_lock_type_strings[type], &lockdep_keys[type], 0); else res->l_lockdep_map.key = NULL; #endif } void ocfs2_lock_res_init_once(struct ocfs2_lock_res *res) { /* This also clears out the lock status block */ memset(res, 0, sizeof(struct ocfs2_lock_res)); spin_lock_init(&res->l_lock); init_waitqueue_head(&res->l_event); INIT_LIST_HEAD(&res->l_blocked_list); INIT_LIST_HEAD(&res->l_mask_waiters); INIT_LIST_HEAD(&res->l_holders); } void ocfs2_inode_lock_res_init(struct ocfs2_lock_res *res, enum ocfs2_lock_type type, unsigned int generation, struct inode *inode) { struct ocfs2_lock_res_ops *ops; switch(type) { case OCFS2_LOCK_TYPE_RW: ops = &ocfs2_inode_rw_lops; break; case OCFS2_LOCK_TYPE_META: ops = &ocfs2_inode_inode_lops; break; case OCFS2_LOCK_TYPE_OPEN: ops = &ocfs2_inode_open_lops; break; default: mlog_bug_on_msg(1, "type: %d\n", type); ops = NULL; /* thanks, gcc */ break; } ocfs2_build_lock_name(type, OCFS2_I(inode)->ip_blkno, generation, res->l_name); ocfs2_lock_res_init_common(OCFS2_SB(inode->i_sb), res, type, ops, inode); } static struct ocfs2_super *ocfs2_get_inode_osb(struct ocfs2_lock_res *lockres) { struct inode *inode = ocfs2_lock_res_inode(lockres); return OCFS2_SB(inode->i_sb); } static struct ocfs2_super *ocfs2_get_qinfo_osb(struct ocfs2_lock_res *lockres) { struct ocfs2_mem_dqinfo *info = lockres->l_priv; return OCFS2_SB(info->dqi_gi.dqi_sb); } static struct ocfs2_super *ocfs2_get_file_osb(struct ocfs2_lock_res *lockres) { struct ocfs2_file_private *fp = lockres->l_priv; return OCFS2_SB(fp->fp_file->f_mapping->host->i_sb); } static __u64 ocfs2_get_dentry_lock_ino(struct ocfs2_lock_res *lockres) { __be64 inode_blkno_be; memcpy(&inode_blkno_be, &lockres->l_name[OCFS2_DENTRY_LOCK_INO_START], sizeof(__be64)); return be64_to_cpu(inode_blkno_be); } static struct ocfs2_super *ocfs2_get_dentry_osb(struct ocfs2_lock_res *lockres) { struct ocfs2_dentry_lock *dl = lockres->l_priv; return OCFS2_SB(dl->dl_inode->i_sb); } void ocfs2_dentry_lock_res_init(struct ocfs2_dentry_lock *dl, u64 parent, struct inode *inode) { int len; u64 inode_blkno = OCFS2_I(inode)->ip_blkno; __be64 inode_blkno_be = cpu_to_be64(inode_blkno); struct ocfs2_lock_res *lockres = &dl->dl_lockres; ocfs2_lock_res_init_once(lockres); /* * Unfortunately, the standard lock naming scheme won't work * here because we have two 16 byte values to use. Instead, * we'll stuff the inode number as a binary value. We still * want error prints to show something without garbling the * display, so drop a null byte in there before the inode * number. A future version of OCFS2 will likely use all * binary lock names. The stringified names have been a * tremendous aid in debugging, but now that the debugfs * interface exists, we can mangle things there if need be. * * NOTE: We also drop the standard "pad" value (the total lock * name size stays the same though - the last part is all * zeros due to the memset in ocfs2_lock_res_init_once() */ len = snprintf(lockres->l_name, OCFS2_DENTRY_LOCK_INO_START, "%c%016llx", ocfs2_lock_type_char(OCFS2_LOCK_TYPE_DENTRY), (long long)parent); BUG_ON(len != (OCFS2_DENTRY_LOCK_INO_START - 1)); memcpy(&lockres->l_name[OCFS2_DENTRY_LOCK_INO_START], &inode_blkno_be, sizeof(__be64)); ocfs2_lock_res_init_common(OCFS2_SB(inode->i_sb), lockres, OCFS2_LOCK_TYPE_DENTRY, &ocfs2_dentry_lops, dl); } static void ocfs2_super_lock_res_init(struct ocfs2_lock_res *res, struct ocfs2_super *osb) { /* Superblock lockres doesn't come from a slab so we call init * once on it manually. */ ocfs2_lock_res_init_once(res); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_SUPER, OCFS2_SUPER_BLOCK_BLKNO, 0, res->l_name); ocfs2_lock_res_init_common(osb, res, OCFS2_LOCK_TYPE_SUPER, &ocfs2_super_lops, osb); } static void ocfs2_rename_lock_res_init(struct ocfs2_lock_res *res, struct ocfs2_super *osb) { /* Rename lockres doesn't come from a slab so we call init * once on it manually. */ ocfs2_lock_res_init_once(res); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_RENAME, 0, 0, res->l_name); ocfs2_lock_res_init_common(osb, res, OCFS2_LOCK_TYPE_RENAME, &ocfs2_rename_lops, osb); } static void ocfs2_nfs_sync_lock_res_init(struct ocfs2_lock_res *res, struct ocfs2_super *osb) { /* nfs_sync lockres doesn't come from a slab so we call init * once on it manually. */ ocfs2_lock_res_init_once(res); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_NFS_SYNC, 0, 0, res->l_name); ocfs2_lock_res_init_common(osb, res, OCFS2_LOCK_TYPE_NFS_SYNC, &ocfs2_nfs_sync_lops, osb); } static void ocfs2_nfs_sync_lock_init(struct ocfs2_super *osb) { ocfs2_nfs_sync_lock_res_init(&osb->osb_nfs_sync_lockres, osb); init_rwsem(&osb->nfs_sync_rwlock); } void ocfs2_trim_fs_lock_res_init(struct ocfs2_super *osb) { struct ocfs2_lock_res *lockres = &osb->osb_trim_fs_lockres; /* Only one trimfs thread are allowed to work at the same time. */ mutex_lock(&osb->obs_trim_fs_mutex); ocfs2_lock_res_init_once(lockres); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_TRIM_FS, 0, 0, lockres->l_name); ocfs2_lock_res_init_common(osb, lockres, OCFS2_LOCK_TYPE_TRIM_FS, &ocfs2_trim_fs_lops, osb); } void ocfs2_trim_fs_lock_res_uninit(struct ocfs2_super *osb) { struct ocfs2_lock_res *lockres = &osb->osb_trim_fs_lockres; ocfs2_simple_drop_lockres(osb, lockres); ocfs2_lock_res_free(lockres); mutex_unlock(&osb->obs_trim_fs_mutex); } static void ocfs2_orphan_scan_lock_res_init(struct ocfs2_lock_res *res, struct ocfs2_super *osb) { ocfs2_lock_res_init_once(res); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_ORPHAN_SCAN, 0, 0, res->l_name); ocfs2_lock_res_init_common(osb, res, OCFS2_LOCK_TYPE_ORPHAN_SCAN, &ocfs2_orphan_scan_lops, osb); } void ocfs2_file_lock_res_init(struct ocfs2_lock_res *lockres, struct ocfs2_file_private *fp) { struct inode *inode = fp->fp_file->f_mapping->host; struct ocfs2_inode_info *oi = OCFS2_I(inode); ocfs2_lock_res_init_once(lockres); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_FLOCK, oi->ip_blkno, inode->i_generation, lockres->l_name); ocfs2_lock_res_init_common(OCFS2_SB(inode->i_sb), lockres, OCFS2_LOCK_TYPE_FLOCK, &ocfs2_flock_lops, fp); lockres->l_flags |= OCFS2_LOCK_NOCACHE; } void ocfs2_qinfo_lock_res_init(struct ocfs2_lock_res *lockres, struct ocfs2_mem_dqinfo *info) { ocfs2_lock_res_init_once(lockres); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_QINFO, info->dqi_gi.dqi_type, 0, lockres->l_name); ocfs2_lock_res_init_common(OCFS2_SB(info->dqi_gi.dqi_sb), lockres, OCFS2_LOCK_TYPE_QINFO, &ocfs2_qinfo_lops, info); } void ocfs2_refcount_lock_res_init(struct ocfs2_lock_res *lockres, struct ocfs2_super *osb, u64 ref_blkno, unsigned int generation) { ocfs2_lock_res_init_once(lockres); ocfs2_build_lock_name(OCFS2_LOCK_TYPE_REFCOUNT, ref_blkno, generation, lockres->l_name); ocfs2_lock_res_init_common(osb, lockres, OCFS2_LOCK_TYPE_REFCOUNT, &ocfs2_refcount_block_lops, osb); } void ocfs2_lock_res_free(struct ocfs2_lock_res *res) { if (!(res->l_flags & OCFS2_LOCK_INITIALIZED)) return; ocfs2_remove_lockres_tracking(res); mlog_bug_on_msg(!list_empty(&res->l_blocked_list), "Lockres %s is on the blocked list\n", res->l_name); mlog_bug_on_msg(!list_empty(&res->l_mask_waiters), "Lockres %s has mask waiters pending\n", res->l_name); mlog_bug_on_msg(spin_is_locked(&res->l_lock), "Lockres %s is locked\n", res->l_name); mlog_bug_on_msg(res->l_ro_holders, "Lockres %s has %u ro holders\n", res->l_name, res->l_ro_holders); mlog_bug_on_msg(res->l_ex_holders, "Lockres %s has %u ex holders\n", res->l_name, res->l_ex_holders); /* Need to clear out the lock status block for the dlm */ memset(&res->l_lksb, 0, sizeof(res->l_lksb)); res->l_flags = 0UL; } /* * Keep a list of processes who have interest in a lockres. * Note: this is now only uesed for check recursive cluster locking. */ static inline void ocfs2_add_holder(struct ocfs2_lock_res *lockres, struct ocfs2_lock_holder *oh) { INIT_LIST_HEAD(&oh->oh_list); oh->oh_owner_pid = get_pid(task_pid(current)); spin_lock(&lockres->l_lock); list_add_tail(&oh->oh_list, &lockres->l_holders); spin_unlock(&lockres->l_lock); } static struct ocfs2_lock_holder * ocfs2_pid_holder(struct ocfs2_lock_res *lockres, struct pid *pid) { struct ocfs2_lock_holder *oh; spin_lock(&lockres->l_lock); list_for_each_entry(oh, &lockres->l_holders, oh_list) { if (oh->oh_owner_pid == pid) { spin_unlock(&lockres->l_lock); return oh; } } spin_unlock(&lockres->l_lock); return NULL; } static inline void ocfs2_remove_holder(struct ocfs2_lock_res *lockres, struct ocfs2_lock_holder *oh) { spin_lock(&lockres->l_lock); list_del(&oh->oh_list); spin_unlock(&lockres->l_lock); put_pid(oh->oh_owner_pid); } static inline void ocfs2_inc_holders(struct ocfs2_lock_res *lockres, int level) { BUG_ON(!lockres); switch(level) { case DLM_LOCK_EX: lockres->l_ex_holders++; break; case DLM_LOCK_PR: lockres->l_ro_holders++; break; default: BUG(); } } static inline void ocfs2_dec_holders(struct ocfs2_lock_res *lockres, int level) { BUG_ON(!lockres); switch(level) { case DLM_LOCK_EX: BUG_ON(!lockres->l_ex_holders); lockres->l_ex_holders--; break; case DLM_LOCK_PR: BUG_ON(!lockres->l_ro_holders); lockres->l_ro_holders--; break; default: BUG(); } } /* WARNING: This function lives in a world where the only three lock * levels are EX, PR, and NL. It *will* have to be adjusted when more * lock types are added. */ static inline int ocfs2_highest_compat_lock_level(int level) { int new_level = DLM_LOCK_EX; if (level == DLM_LOCK_EX) new_level = DLM_LOCK_NL; else if (level == DLM_LOCK_PR) new_level = DLM_LOCK_PR; return new_level; } static void lockres_set_flags(struct ocfs2_lock_res *lockres, unsigned long newflags) { struct ocfs2_mask_waiter *mw, *tmp; assert_spin_locked(&lockres->l_lock); lockres->l_flags = newflags; list_for_each_entry_safe(mw, tmp, &lockres->l_mask_waiters, mw_item) { if ((lockres->l_flags & mw->mw_mask) != mw->mw_goal) continue; list_del_init(&mw->mw_item); mw->mw_status = 0; complete(&mw->mw_complete); ocfs2_track_lock_wait(lockres); } } static void lockres_or_flags(struct ocfs2_lock_res *lockres, unsigned long or) { lockres_set_flags(lockres, lockres->l_flags | or); } static void lockres_clear_flags(struct ocfs2_lock_res *lockres, unsigned long clear) { lockres_set_flags(lockres, lockres->l_flags & ~clear); } static inline void ocfs2_generic_handle_downconvert_action(struct ocfs2_lock_res *lockres) { BUG_ON(!(lockres->l_flags & OCFS2_LOCK_BUSY)); BUG_ON(!(lockres->l_flags & OCFS2_LOCK_ATTACHED)); BUG_ON(!(lockres->l_flags & OCFS2_LOCK_BLOCKED)); BUG_ON(lockres->l_blocking <= DLM_LOCK_NL); lockres->l_level = lockres->l_requested; if (lockres->l_level <= ocfs2_highest_compat_lock_level(lockres->l_blocking)) { lockres->l_blocking = DLM_LOCK_NL; lockres_clear_flags(lockres, OCFS2_LOCK_BLOCKED); } lockres_clear_flags(lockres, OCFS2_LOCK_BUSY); } static inline void ocfs2_generic_handle_convert_action(struct ocfs2_lock_res *lockres) { BUG_ON(!(lockres->l_flags & OCFS2_LOCK_BUSY)); BUG_ON(!(lockres->l_flags & OCFS2_LOCK_ATTACHED)); /* Convert from RO to EX doesn't really need anything as our * information is already up to data. Convert from NL to * *anything* however should mark ourselves as needing an * update */ if (lockres->l_level == DLM_LOCK_NL && lockres->l_ops->flags & LOCK_TYPE_REQUIRES_REFRESH) lockres_or_flags(lockres, OCFS2_LOCK_NEEDS_REFRESH); lockres->l_level = lockres->l_requested; /* * We set the OCFS2_LOCK_UPCONVERT_FINISHING flag before clearing * the OCFS2_LOCK_BUSY flag to prevent the dc thread from * downconverting the lock before the upconvert has fully completed. * Do not prevent the dc thread from downconverting if NONBLOCK lock * had already returned. */ if (!(lockres->l_flags & OCFS2_LOCK_NONBLOCK_FINISHED)) lockres_or_flags(lockres, OCFS2_LOCK_UPCONVERT_FINISHING); else lockres_clear_flags(lockres, OCFS2_LOCK_NONBLOCK_FINISHED); lockres_clear_flags(lockres, OCFS2_LOCK_BUSY); } static inline void ocfs2_generic_handle_attach_action(struct ocfs2_lock_res *lockres) { BUG_ON((!(lockres->l_flags & OCFS2_LOCK_BUSY))); BUG_ON(lockres->l_flags & OCFS2_LOCK_ATTACHED); if (lockres->l_requested > DLM_LOCK_NL && !(lockres->l_flags & OCFS2_LOCK_LOCAL) && lockres->l_ops->flags & LOCK_TYPE_REQUIRES_REFRESH) lockres_or_flags(lockres, OCFS2_LOCK_NEEDS_REFRESH); lockres->l_level = lockres->l_requested; lockres_or_flags(lockres, OCFS2_LOCK_ATTACHED); lockres_clear_flags(lockres, OCFS2_LOCK_BUSY); } static int ocfs2_generic_handle_bast(struct ocfs2_lock_res *lockres, int level) { int needs_downconvert = 0; assert_spin_locked(&lockres->l_lock); if (level > lockres->l_blocking) { /* only schedule a downconvert if we haven't already scheduled * one that goes low enough to satisfy the level we're * blocking. this also catches the case where we get * duplicate BASTs */ if (ocfs2_highest_compat_lock_level(level) < ocfs2_highest_compat_lock_level(lockres->l_blocking)) needs_downconvert = 1; lockres->l_blocking = level; } mlog(ML_BASTS, "lockres %s, block %d, level %d, l_block %d, dwn %d\n", lockres->l_name, level, lockres->l_level, lockres->l_blocking, needs_downconvert); if (needs_downconvert) lockres_or_flags(lockres, OCFS2_LOCK_BLOCKED); mlog(0, "needs_downconvert = %d\n", needs_downconvert); return needs_downconvert; } /* * OCFS2_LOCK_PENDING and l_pending_gen. * * Why does OCFS2_LOCK_PENDING exist? To close a race between setting * OCFS2_LOCK_BUSY and calling ocfs2_dlm_lock(). See ocfs2_unblock_lock() * for more details on the race. * * OCFS2_LOCK_PENDING closes the race quite nicely. However, it introduces * a race on itself. In o2dlm, we can get the ast before ocfs2_dlm_lock() * returns. The ast clears OCFS2_LOCK_BUSY, and must therefore clear * OCFS2_LOCK_PENDING at the same time. When ocfs2_dlm_lock() returns, * the caller is going to try to clear PENDING again. If nothing else is * happening, __lockres_clear_pending() sees PENDING is unset and does * nothing. * * But what if another path (eg downconvert thread) has just started a * new locking action? The other path has re-set PENDING. Our path * cannot clear PENDING, because that will re-open the original race * window. * * [Example] * * ocfs2_meta_lock() * ocfs2_cluster_lock() * set BUSY * set PENDING * drop l_lock * ocfs2_dlm_lock() * ocfs2_locking_ast() ocfs2_downconvert_thread() * clear PENDING ocfs2_unblock_lock() * take_l_lock * !BUSY * ocfs2_prepare_downconvert() * set BUSY * set PENDING * drop l_lock * take l_lock * clear PENDING * drop l_lock * <window> * ocfs2_dlm_lock() * * So as you can see, we now have a window where l_lock is not held, * PENDING is not set, and ocfs2_dlm_lock() has not been called. * * The core problem is that ocfs2_cluster_lock() has cleared the PENDING * set by ocfs2_prepare_downconvert(). That wasn't nice. * * To solve this we introduce l_pending_gen. A call to * lockres_clear_pending() will only do so when it is passed a generation * number that matches the lockres. lockres_set_pending() will return the * current generation number. When ocfs2_cluster_lock() goes to clear * PENDING, it passes the generation it got from set_pending(). In our * example above, the generation numbers will *not* match. Thus, * ocfs2_cluster_lock() will not clear the PENDING set by * ocfs2_prepare_downconvert(). */ /* Unlocked version for ocfs2_locking_ast() */ static void __lockres_clear_pending(struct ocfs2_lock_res *lockres, unsigned int generation, struct ocfs2_super *osb) { assert_spin_locked(&lockres->l_lock); /* * The ast and locking functions can race us here. The winner * will clear pending, the loser will not. */ if (!(lockres->l_flags & OCFS2_LOCK_PENDING) || (lockres->l_pending_gen != generation)) return; lockres_clear_flags(lockres, OCFS2_LOCK_PENDING); lockres->l_pending_gen++; /* * The downconvert thread may have skipped us because we * were PENDING. Wake it up. */ if (lockres->l_flags & OCFS2_LOCK_BLOCKED) ocfs2_wake_downconvert_thread(osb); } /* Locked version for callers of ocfs2_dlm_lock() */ static void lockres_clear_pending(struct ocfs2_lock_res *lockres, unsigned int generation, struct ocfs2_super *osb) { unsigned long flags; spin_lock_irqsave(&lockres->l_lock, flags); __lockres_clear_pending(lockres, generation, osb); spin_unlock_irqrestore(&lockres->l_lock, flags); } static unsigned int lockres_set_pending(struct ocfs2_lock_res *lockres) { assert_spin_locked(&lockres->l_lock); BUG_ON(!(lockres->l_flags & OCFS2_LOCK_BUSY)); lockres_or_flags(lockres, OCFS2_LOCK_PENDING); return lockres->l_pending_gen; } static void ocfs2_blocking_ast(struct ocfs2_dlm_lksb *lksb, int level) { struct ocfs2_lock_res *lockres = ocfs2_lksb_to_lock_res(lksb); struct ocfs2_super *osb = ocfs2_get_lockres_osb(lockres); int needs_downconvert; unsigned long flags; BUG_ON(level <= DLM_LOCK_NL); mlog(ML_BASTS, "BAST fired for lockres %s, blocking %d, level %d, " "type %s\n", lockres->l_name, level, lockres->l_level, ocfs2_lock_type_string(lockres->l_type)); /* * We can skip the bast for locks which don't enable caching - * they'll be dropped at the earliest possible time anyway. */ if (lockres->l_flags & OCFS2_LOCK_NOCACHE) return; spin_lock_irqsave(&lockres->l_lock, flags); needs_downconvert = ocfs2_generic_handle_bast(lockres, level); if (needs_downconvert) ocfs2_schedule_blocked_lock(osb, lockres); spin_unlock_irqrestore(&lockres->l_lock, flags); wake_up(&lockres->l_event); ocfs2_wake_downconvert_thread(osb); } static void ocfs2_locking_ast(struct ocfs2_dlm_lksb *lksb) { struct ocfs2_lock_res *lockres = ocfs2_lksb_to_lock_res(lksb); struct ocfs2_super *osb = ocfs2_get_lockres_osb(lockres); unsigned long flags; int status; spin_lock_irqsave(&lockres->l_lock, flags); status = ocfs2_dlm_lock_status(&lockres->l_lksb); if (status == -EAGAIN) { lockres_clear_flags(lockres, OCFS2_LOCK_BUSY); goto out; } if (status) { mlog(ML_ERROR, "lockres %s: lksb status value of %d!\n", lockres->l_name, status); spin_unlock_irqrestore(&lockres->l_lock, flags); return; } mlog(ML_BASTS, "AST fired for lockres %s, action %d, unlock %d, " "level %d => %d\n", lockres->l_name, lockres->l_action, lockres->l_unlock_action, lockres->l_level, lockres->l_requested); switch(lockres->l_action) { case OCFS2_AST_ATTACH: ocfs2_generic_handle_attach_action(lockres); lockres_clear_flags(lockres, OCFS2_LOCK_LOCAL); break; case OCFS2_AST_CONVERT: ocfs2_generic_handle_convert_action(lockres); break; case OCFS2_AST_DOWNCONVERT: ocfs2_generic_handle_downconvert_action(lockres); break; default: mlog(ML_ERROR, "lockres %s: AST fired with invalid action: %u, " "flags 0x%lx, unlock: %u\n", lockres->l_name, lockres->l_action, lockres->l_flags, lockres->l_unlock_action); BUG(); } out: /* set it to something invalid so if we get called again we * can catch it. */ lockres->l_action = OCFS2_AST_INVALID; /* Did we try to cancel this lock? Clear that state */ if (lockres->l_unlock_action == OCFS2_UNLOCK_CANCEL_CONVERT) lockres->l_unlock_action = OCFS2_UNLOCK_INVALID; /* * We may have beaten the locking functions here. We certainly * know that dlm_lock() has been called :-) * Because we can't have two lock calls in flight at once, we * can use lockres->l_pending_gen. */ __lockres_clear_pending(lockres, lockres->l_pending_gen, osb); wake_up(&lockres->l_event); spin_unlock_irqrestore(&lockres->l_lock, flags); } static void ocfs2_unlock_ast(struct ocfs2_dlm_lksb *lksb, int error) { struct ocfs2_lock_res *lockres = ocfs2_lksb_to_lock_res(lksb); unsigned long flags; mlog(ML_BASTS, "UNLOCK AST fired for lockres %s, action = %d\n", lockres->l_name, lockres->l_unlock_action); spin_lock_irqsave(&lockres->l_lock, flags); if (error) { mlog(ML_ERROR, "Dlm passes error %d for lock %s, " "unlock_action %d\n", error, lockres->l_name, lockres->l_unlock_action); spin_unlock_irqrestore(&lockres->l_lock, flags); return; } switch(lockres->l_unlock_action) { case OCFS2_UNLOCK_CANCEL_CONVERT: mlog(0, "Cancel convert success for %s\n", lockres->l_name); lockres->l_action = OCFS2_AST_INVALID; /* Downconvert thread may have requeued this lock, we * need to wake it. */ if (lockres->l_flags & OCFS2_LOCK_BLOCKED) ocfs2_wake_downconvert_thread(ocfs2_get_lockres_osb(lockres)); break; case OCFS2_UNLOCK_DROP_LOCK: lockres->l_level = DLM_LOCK_IV; break; default: BUG(); } lockres_clear_flags(lockres, OCFS2_LOCK_BUSY); lockres->l_unlock_action = OCFS2_UNLOCK_INVALID; wake_up(&lockres->l_event); spin_unlock_irqrestore(&lockres->l_lock, flags); } /* * This is the filesystem locking protocol. It provides the lock handling * hooks for the underlying DLM. It has a maximum version number. * The version number allows interoperability with systems running at * the same major number and an equal or smaller minor number. * * Whenever the filesystem does new things with locks (adds or removes a * lock, orders them differently, does different things underneath a lock), * the version must be changed. The protocol is negotiated when joining * the dlm domain. A node may join the domain if its major version is * identical to all other nodes and its minor version is greater than * or equal to all other nodes. When its minor version is greater than * the other nodes, it will run at the minor version specified by the * other nodes. * * If a locking change is made that will not be compatible with older * versions, the major number must be increased and the minor version set * to zero. If a change merely adds a behavior that can be disabled when * speaking to older versions, the minor version must be increased. If a * change adds a fully backwards compatible change (eg, LVB changes that * are just ignored by older versions), the version does not need to be * updated. */ static struct ocfs2_locking_protocol lproto = { .lp_max_version = { .pv_major = OCFS2_LOCKING_PROTOCOL_MAJOR, .pv_minor = OCFS2_LOCKING_PROTOCOL_MINOR, }, .lp_lock_ast = ocfs2_locking_ast, .lp_blocking_ast = ocfs2_blocking_ast, .lp_unlock_ast = ocfs2_unlock_ast, }; void ocfs2_set_locking_protocol(void) { ocfs2_stack_glue_set_max_proto_version(&lproto.lp_max_version); } static inline void ocfs2_recover_from_dlm_error(struct ocfs2_lock_res *lockres, int convert) { unsigned long flags; spin_lock_irqsave(&lockres->l_lock, flags); lockres_clear_flags(lockres, OCFS2_LOCK_BUSY); lockres_clear_flags(lockres, OCFS2_LOCK_UPCONVERT_FINISHING); if (convert) lockres->l_action = OCFS2_AST_INVALID; else lockres->l_unlock_action = OCFS2_UNLOCK_INVALID; spin_unlock_irqrestore(&lockres->l_lock, flags); wake_up(&lockres->l_event); } /* Note: If we detect another process working on the lock (i.e., * OCFS2_LOCK_BUSY), we'll bail out returning 0. It's up to the caller * to do the right thing in that case. */ static int ocfs2_lock_create(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level, u32 dlm_flags) { int ret = 0; unsigned long flags; unsigned int gen; mlog(0, "lock %s, level = %d, flags = %u\n", lockres->l_name, level, dlm_flags); spin_lock_irqsave(&lockres->l_lock, flags); if ((lockres->l_flags & OCFS2_LOCK_ATTACHED) || (lockres->l_flags & OCFS2_LOCK_BUSY)) { spin_unlock_irqrestore(&lockres->l_lock, flags); goto bail; } lockres->l_action = OCFS2_AST_ATTACH; lockres->l_requested = level; lockres_or_flags(lockres, OCFS2_LOCK_BUSY); gen = lockres_set_pending(lockres); spin_unlock_irqrestore(&lockres->l_lock, flags); ret = ocfs2_dlm_lock(osb->cconn, level, &lockres->l_lksb, dlm_flags, lockres->l_name, OCFS2_LOCK_ID_MAX_LEN - 1); lockres_clear_pending(lockres, gen, osb); if (ret) { ocfs2_log_dlm_error("ocfs2_dlm_lock", ret, lockres); ocfs2_recover_from_dlm_error(lockres, 1); } mlog(0, "lock %s, return from ocfs2_dlm_lock\n", lockres->l_name); bail: return ret; } static inline int ocfs2_check_wait_flag(struct ocfs2_lock_res *lockres, int flag) { unsigned long flags; int ret; spin_lock_irqsave(&lockres->l_lock, flags); ret = lockres->l_flags & flag; spin_unlock_irqrestore(&lockres->l_lock, flags); return ret; } static inline void ocfs2_wait_on_busy_lock(struct ocfs2_lock_res *lockres) { wait_event(lockres->l_event, !ocfs2_check_wait_flag(lockres, OCFS2_LOCK_BUSY)); } static inline void ocfs2_wait_on_refreshing_lock(struct ocfs2_lock_res *lockres) { wait_event(lockres->l_event, !ocfs2_check_wait_flag(lockres, OCFS2_LOCK_REFRESHING)); } /* predict what lock level we'll be dropping down to on behalf * of another node, and return true if the currently wanted * level will be compatible with it. */ static inline int ocfs2_may_continue_on_blocked_lock(struct ocfs2_lock_res *lockres, int wanted) { BUG_ON(!(lockres->l_flags & OCFS2_LOCK_BLOCKED)); return wanted <= ocfs2_highest_compat_lock_level(lockres->l_blocking); } static void ocfs2_init_mask_waiter(struct ocfs2_mask_waiter *mw) { INIT_LIST_HEAD(&mw->mw_item); init_completion(&mw->mw_complete); ocfs2_init_start_time(mw); } static int ocfs2_wait_for_mask(struct ocfs2_mask_waiter *mw) { wait_for_completion(&mw->mw_complete); /* Re-arm the completion in case we want to wait on it again */ reinit_completion(&mw->mw_complete); return mw->mw_status; } static void lockres_add_mask_waiter(struct ocfs2_lock_res *lockres, struct ocfs2_mask_waiter *mw, unsigned long mask, unsigned long goal) { BUG_ON(!list_empty(&mw->mw_item)); assert_spin_locked(&lockres->l_lock); list_add_tail(&mw->mw_item, &lockres->l_mask_waiters); mw->mw_mask = mask; mw->mw_goal = goal; ocfs2_track_lock_wait(lockres); } /* returns 0 if the mw that was removed was already satisfied, -EBUSY * if the mask still hadn't reached its goal */ static int __lockres_remove_mask_waiter(struct ocfs2_lock_res *lockres, struct ocfs2_mask_waiter *mw) { int ret = 0; assert_spin_locked(&lockres->l_lock); if (!list_empty(&mw->mw_item)) { if ((lockres->l_flags & mw->mw_mask) != mw->mw_goal) ret = -EBUSY; list_del_init(&mw->mw_item); init_completion(&mw->mw_complete); ocfs2_track_lock_wait(lockres); } return ret; } static int lockres_remove_mask_waiter(struct ocfs2_lock_res *lockres, struct ocfs2_mask_waiter *mw) { unsigned long flags; int ret = 0; spin_lock_irqsave(&lockres->l_lock, flags); ret = __lockres_remove_mask_waiter(lockres, mw); spin_unlock_irqrestore(&lockres->l_lock, flags); return ret; } static int ocfs2_wait_for_mask_interruptible(struct ocfs2_mask_waiter *mw, struct ocfs2_lock_res *lockres) { int ret; ret = wait_for_completion_interruptible(&mw->mw_complete); if (ret) lockres_remove_mask_waiter(lockres, mw); else ret = mw->mw_status; /* Re-arm the completion in case we want to wait on it again */ reinit_completion(&mw->mw_complete); return ret; } static int __ocfs2_cluster_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level, u32 lkm_flags, int arg_flags, int l_subclass, unsigned long caller_ip) { struct ocfs2_mask_waiter mw; int wait, catch_signals = !(osb->s_mount_opt & OCFS2_MOUNT_NOINTR); int ret = 0; /* gcc doesn't realize wait = 1 guarantees ret is set */ unsigned long flags; unsigned int gen; int noqueue_attempted = 0; int dlm_locked = 0; int kick_dc = 0; if (!(lockres->l_flags & OCFS2_LOCK_INITIALIZED)) { mlog_errno(-EINVAL); return -EINVAL; } ocfs2_init_mask_waiter(&mw); if (lockres->l_ops->flags & LOCK_TYPE_USES_LVB) lkm_flags |= DLM_LKF_VALBLK; again: wait = 0; spin_lock_irqsave(&lockres->l_lock, flags); if (catch_signals && signal_pending(current)) { ret = -ERESTARTSYS; goto unlock; } mlog_bug_on_msg(lockres->l_flags & OCFS2_LOCK_FREEING, "Cluster lock called on freeing lockres %s! flags " "0x%lx\n", lockres->l_name, lockres->l_flags); /* We only compare against the currently granted level * here. If the lock is blocked waiting on a downconvert, * we'll get caught below. */ if (lockres->l_flags & OCFS2_LOCK_BUSY && level > lockres->l_level) { /* is someone sitting in dlm_lock? If so, wait on * them. */ lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_BUSY, 0); wait = 1; goto unlock; } if (lockres->l_flags & OCFS2_LOCK_UPCONVERT_FINISHING) { /* * We've upconverted. If the lock now has a level we can * work with, we take it. If, however, the lock is not at the * required level, we go thru the full cycle. One way this could * happen is if a process requesting an upconvert to PR is * closely followed by another requesting upconvert to an EX. * If the process requesting EX lands here, we want it to * continue attempting to upconvert and let the process * requesting PR take the lock. * If multiple processes request upconvert to PR, the first one * here will take the lock. The others will have to go thru the * OCFS2_LOCK_BLOCKED check to ensure that there is no pending * downconvert request. */ if (level <= lockres->l_level) goto update_holders; } if (lockres->l_flags & OCFS2_LOCK_BLOCKED && !ocfs2_may_continue_on_blocked_lock(lockres, level)) { /* is the lock is currently blocked on behalf of * another node */ lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_BLOCKED, 0); wait = 1; goto unlock; } if (level > lockres->l_level) { if (noqueue_attempted > 0) { ret = -EAGAIN; goto unlock; } if (lkm_flags & DLM_LKF_NOQUEUE) noqueue_attempted = 1; if (lockres->l_action != OCFS2_AST_INVALID) mlog(ML_ERROR, "lockres %s has action %u pending\n", lockres->l_name, lockres->l_action); if (!(lockres->l_flags & OCFS2_LOCK_ATTACHED)) { lockres->l_action = OCFS2_AST_ATTACH; lkm_flags &= ~DLM_LKF_CONVERT; } else { lockres->l_action = OCFS2_AST_CONVERT; lkm_flags |= DLM_LKF_CONVERT; } lockres->l_requested = level; lockres_or_flags(lockres, OCFS2_LOCK_BUSY); gen = lockres_set_pending(lockres); spin_unlock_irqrestore(&lockres->l_lock, flags); BUG_ON(level == DLM_LOCK_IV); BUG_ON(level == DLM_LOCK_NL); mlog(ML_BASTS, "lockres %s, convert from %d to %d\n", lockres->l_name, lockres->l_level, level); /* call dlm_lock to upgrade lock now */ ret = ocfs2_dlm_lock(osb->cconn, level, &lockres->l_lksb, lkm_flags, lockres->l_name, OCFS2_LOCK_ID_MAX_LEN - 1); lockres_clear_pending(lockres, gen, osb); if (ret) { if (!(lkm_flags & DLM_LKF_NOQUEUE) || (ret != -EAGAIN)) { ocfs2_log_dlm_error("ocfs2_dlm_lock", ret, lockres); } ocfs2_recover_from_dlm_error(lockres, 1); goto out; } dlm_locked = 1; mlog(0, "lock %s, successful return from ocfs2_dlm_lock\n", lockres->l_name); /* At this point we've gone inside the dlm and need to * complete our work regardless. */ catch_signals = 0; /* wait for busy to clear and carry on */ goto again; } update_holders: /* Ok, if we get here then we're good to go. */ ocfs2_inc_holders(lockres, level); ret = 0; unlock: lockres_clear_flags(lockres, OCFS2_LOCK_UPCONVERT_FINISHING); /* ocfs2_unblock_lock reques on seeing OCFS2_LOCK_UPCONVERT_FINISHING */ kick_dc = (lockres->l_flags & OCFS2_LOCK_BLOCKED); spin_unlock_irqrestore(&lockres->l_lock, flags); if (kick_dc) ocfs2_wake_downconvert_thread(osb); out: /* * This is helping work around a lock inversion between the page lock * and dlm locks. One path holds the page lock while calling aops * which block acquiring dlm locks. The voting thread holds dlm * locks while acquiring page locks while down converting data locks. * This block is helping an aop path notice the inversion and back * off to unlock its page lock before trying the dlm lock again. */ if (wait && arg_flags & OCFS2_LOCK_NONBLOCK && mw.mw_mask & (OCFS2_LOCK_BUSY|OCFS2_LOCK_BLOCKED)) { wait = 0; spin_lock_irqsave(&lockres->l_lock, flags); if (__lockres_remove_mask_waiter(lockres, &mw)) { if (dlm_locked) lockres_or_flags(lockres, OCFS2_LOCK_NONBLOCK_FINISHED); spin_unlock_irqrestore(&lockres->l_lock, flags); ret = -EAGAIN; } else { spin_unlock_irqrestore(&lockres->l_lock, flags); goto again; } } if (wait) { ret = ocfs2_wait_for_mask(&mw); if (ret == 0) goto again; mlog_errno(ret); } ocfs2_update_lock_stats(lockres, level, &mw, ret); #ifdef CONFIG_DEBUG_LOCK_ALLOC if (!ret && lockres->l_lockdep_map.key != NULL) { if (level == DLM_LOCK_PR) rwsem_acquire_read(&lockres->l_lockdep_map, l_subclass, !!(arg_flags & OCFS2_META_LOCK_NOQUEUE), caller_ip); else rwsem_acquire(&lockres->l_lockdep_map, l_subclass, !!(arg_flags & OCFS2_META_LOCK_NOQUEUE), caller_ip); } #endif return ret; } static inline int ocfs2_cluster_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level, u32 lkm_flags, int arg_flags) { return __ocfs2_cluster_lock(osb, lockres, level, lkm_flags, arg_flags, 0, _RET_IP_); } static void __ocfs2_cluster_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int level, unsigned long caller_ip) { unsigned long flags; spin_lock_irqsave(&lockres->l_lock, flags); ocfs2_dec_holders(lockres, level); ocfs2_downconvert_on_unlock(osb, lockres); spin_unlock_irqrestore(&lockres->l_lock, flags); #ifdef CONFIG_DEBUG_LOCK_ALLOC if (lockres->l_lockdep_map.key != NULL) rwsem_release(&lockres->l_lockdep_map, caller_ip); #endif } static int ocfs2_create_new_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int ex, int local) { int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; unsigned long flags; u32 lkm_flags = local ? DLM_LKF_LOCAL : 0; spin_lock_irqsave(&lockres->l_lock, flags); BUG_ON(lockres->l_flags & OCFS2_LOCK_ATTACHED); lockres_or_flags(lockres, OCFS2_LOCK_LOCAL); spin_unlock_irqrestore(&lockres->l_lock, flags); return ocfs2_lock_create(osb, lockres, level, lkm_flags); } /* Grants us an EX lock on the data and metadata resources, skipping * the normal cluster directory lookup. Use this ONLY on newly created * inodes which other nodes can't possibly see, and which haven't been * hashed in the inode hash yet. This can give us a good performance * increase as it'll skip the network broadcast normally associated * with creating a new lock resource. */ int ocfs2_create_new_inode_locks(struct inode *inode) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); BUG_ON(!ocfs2_inode_is_new(inode)); mlog(0, "Inode %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); /* NOTE: That we don't increment any of the holder counts, nor * do we add anything to a journal handle. Since this is * supposed to be a new inode which the cluster doesn't know * about yet, there is no need to. As far as the LVB handling * is concerned, this is basically like acquiring an EX lock * on a resource which has an invalid one -- we'll set it * valid when we release the EX. */ ret = ocfs2_create_new_lock(osb, &OCFS2_I(inode)->ip_rw_lockres, 1, 1); if (ret) { mlog_errno(ret); goto bail; } /* * We don't want to use DLM_LKF_LOCAL on a meta data lock as they * don't use a generation in their lock names. */ ret = ocfs2_create_new_lock(osb, &OCFS2_I(inode)->ip_inode_lockres, 1, 0); if (ret) { mlog_errno(ret); goto bail; } ret = ocfs2_create_new_lock(osb, &OCFS2_I(inode)->ip_open_lockres, 0, 0); if (ret) mlog_errno(ret); bail: return ret; } int ocfs2_rw_lock(struct inode *inode, int write) { int status, level; struct ocfs2_lock_res *lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu take %s RW lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, write ? "EXMODE" : "PRMODE"); if (ocfs2_mount_local(osb)) return 0; lockres = &OCFS2_I(inode)->ip_rw_lockres; level = write ? DLM_LOCK_EX : DLM_LOCK_PR; status = ocfs2_cluster_lock(osb, lockres, level, 0, 0); if (status < 0) mlog_errno(status); return status; } int ocfs2_try_rw_lock(struct inode *inode, int write) { int status, level; struct ocfs2_lock_res *lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu try to take %s RW lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, write ? "EXMODE" : "PRMODE"); if (ocfs2_mount_local(osb)) return 0; lockres = &OCFS2_I(inode)->ip_rw_lockres; level = write ? DLM_LOCK_EX : DLM_LOCK_PR; status = ocfs2_cluster_lock(osb, lockres, level, DLM_LKF_NOQUEUE, 0); return status; } void ocfs2_rw_unlock(struct inode *inode, int write) { int level = write ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_lock_res *lockres = &OCFS2_I(inode)->ip_rw_lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu drop %s RW lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, write ? "EXMODE" : "PRMODE"); if (!ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, level); } /* * ocfs2_open_lock always get PR mode lock. */ int ocfs2_open_lock(struct inode *inode) { int status = 0; struct ocfs2_lock_res *lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu take PRMODE open lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) goto out; lockres = &OCFS2_I(inode)->ip_open_lockres; status = ocfs2_cluster_lock(osb, lockres, DLM_LOCK_PR, 0, 0); if (status < 0) mlog_errno(status); out: return status; } int ocfs2_try_open_lock(struct inode *inode, int write) { int status = 0, level; struct ocfs2_lock_res *lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu try to take %s open lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, write ? "EXMODE" : "PRMODE"); if (ocfs2_is_hard_readonly(osb)) { if (write) status = -EROFS; goto out; } if (ocfs2_mount_local(osb)) goto out; lockres = &OCFS2_I(inode)->ip_open_lockres; level = write ? DLM_LOCK_EX : DLM_LOCK_PR; /* * The file system may already holding a PRMODE/EXMODE open lock. * Since we pass DLM_LKF_NOQUEUE, the request won't block waiting on * other nodes and the -EAGAIN will indicate to the caller that * this inode is still in use. */ status = ocfs2_cluster_lock(osb, lockres, level, DLM_LKF_NOQUEUE, 0); out: return status; } /* * ocfs2_open_unlock unlock PR and EX mode open locks. */ void ocfs2_open_unlock(struct inode *inode) { struct ocfs2_lock_res *lockres = &OCFS2_I(inode)->ip_open_lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu drop open lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno); if (ocfs2_mount_local(osb)) goto out; if(lockres->l_ro_holders) ocfs2_cluster_unlock(osb, lockres, DLM_LOCK_PR); if(lockres->l_ex_holders) ocfs2_cluster_unlock(osb, lockres, DLM_LOCK_EX); out: return; } static int ocfs2_flock_handle_signal(struct ocfs2_lock_res *lockres, int level) { int ret; struct ocfs2_super *osb = ocfs2_get_lockres_osb(lockres); unsigned long flags; struct ocfs2_mask_waiter mw; ocfs2_init_mask_waiter(&mw); retry_cancel: spin_lock_irqsave(&lockres->l_lock, flags); if (lockres->l_flags & OCFS2_LOCK_BUSY) { ret = ocfs2_prepare_cancel_convert(osb, lockres); if (ret) { spin_unlock_irqrestore(&lockres->l_lock, flags); ret = ocfs2_cancel_convert(osb, lockres); if (ret < 0) { mlog_errno(ret); goto out; } goto retry_cancel; } lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_BUSY, 0); spin_unlock_irqrestore(&lockres->l_lock, flags); ocfs2_wait_for_mask(&mw); goto retry_cancel; } ret = -ERESTARTSYS; /* * We may still have gotten the lock, in which case there's no * point to restarting the syscall. */ if (lockres->l_level == level) ret = 0; mlog(0, "Cancel returning %d. flags: 0x%lx, level: %d, act: %d\n", ret, lockres->l_flags, lockres->l_level, lockres->l_action); spin_unlock_irqrestore(&lockres->l_lock, flags); out: return ret; } /* * ocfs2_file_lock() and ocfs2_file_unlock() map to a single pair of * flock() calls. The locking approach this requires is sufficiently * different from all other cluster lock types that we implement a * separate path to the "low-level" dlm calls. In particular: * * - No optimization of lock levels is done - we take at exactly * what's been requested. * * - No lock caching is employed. We immediately downconvert to * no-lock at unlock time. This also means flock locks never go on * the blocking list). * * - Since userspace can trivially deadlock itself with flock, we make * sure to allow cancellation of a misbehaving applications flock() * request. * * - Access to any flock lockres doesn't require concurrency, so we * can simplify the code by requiring the caller to guarantee * serialization of dlmglue flock calls. */ int ocfs2_file_lock(struct file *file, int ex, int trylock) { int ret, level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; unsigned int lkm_flags = trylock ? DLM_LKF_NOQUEUE : 0; unsigned long flags; struct ocfs2_file_private *fp = file->private_data; struct ocfs2_lock_res *lockres = &fp->fp_flock; struct ocfs2_super *osb = OCFS2_SB(file->f_mapping->host->i_sb); struct ocfs2_mask_waiter mw; ocfs2_init_mask_waiter(&mw); if ((lockres->l_flags & OCFS2_LOCK_BUSY) || (lockres->l_level > DLM_LOCK_NL)) { mlog(ML_ERROR, "File lock \"%s\" has busy or locked state: flags: 0x%lx, " "level: %u\n", lockres->l_name, lockres->l_flags, lockres->l_level); return -EINVAL; } spin_lock_irqsave(&lockres->l_lock, flags); if (!(lockres->l_flags & OCFS2_LOCK_ATTACHED)) { lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_BUSY, 0); spin_unlock_irqrestore(&lockres->l_lock, flags); /* * Get the lock at NLMODE to start - that way we * can cancel the upconvert request if need be. */ ret = ocfs2_lock_create(osb, lockres, DLM_LOCK_NL, 0); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_wait_for_mask(&mw); if (ret) { mlog_errno(ret); goto out; } spin_lock_irqsave(&lockres->l_lock, flags); } lockres->l_action = OCFS2_AST_CONVERT; lkm_flags |= DLM_LKF_CONVERT; lockres->l_requested = level; lockres_or_flags(lockres, OCFS2_LOCK_BUSY); lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_BUSY, 0); spin_unlock_irqrestore(&lockres->l_lock, flags); ret = ocfs2_dlm_lock(osb->cconn, level, &lockres->l_lksb, lkm_flags, lockres->l_name, OCFS2_LOCK_ID_MAX_LEN - 1); if (ret) { if (!trylock || (ret != -EAGAIN)) { ocfs2_log_dlm_error("ocfs2_dlm_lock", ret, lockres); ret = -EINVAL; } ocfs2_recover_from_dlm_error(lockres, 1); lockres_remove_mask_waiter(lockres, &mw); goto out; } ret = ocfs2_wait_for_mask_interruptible(&mw, lockres); if (ret == -ERESTARTSYS) { /* * Userspace can cause deadlock itself with * flock(). Current behavior locally is to allow the * deadlock, but abort the system call if a signal is * received. We follow this example, otherwise a * poorly written program could sit in kernel until * reboot. * * Handling this is a bit more complicated for Ocfs2 * though. We can't exit this function with an * outstanding lock request, so a cancel convert is * required. We intentionally overwrite 'ret' - if the * cancel fails and the lock was granted, it's easier * to just bubble success back up to the user. */ ret = ocfs2_flock_handle_signal(lockres, level); } else if (!ret && (level > lockres->l_level)) { /* Trylock failed asynchronously */ BUG_ON(!trylock); ret = -EAGAIN; } out: mlog(0, "Lock: \"%s\" ex: %d, trylock: %d, returns: %d\n", lockres->l_name, ex, trylock, ret); return ret; } void ocfs2_file_unlock(struct file *file) { int ret; unsigned int gen; unsigned long flags; struct ocfs2_file_private *fp = file->private_data; struct ocfs2_lock_res *lockres = &fp->fp_flock; struct ocfs2_super *osb = OCFS2_SB(file->f_mapping->host->i_sb); struct ocfs2_mask_waiter mw; ocfs2_init_mask_waiter(&mw); if (!(lockres->l_flags & OCFS2_LOCK_ATTACHED)) return; if (lockres->l_level == DLM_LOCK_NL) return; mlog(0, "Unlock: \"%s\" flags: 0x%lx, level: %d, act: %d\n", lockres->l_name, lockres->l_flags, lockres->l_level, lockres->l_action); spin_lock_irqsave(&lockres->l_lock, flags); /* * Fake a blocking ast for the downconvert code. */ lockres_or_flags(lockres, OCFS2_LOCK_BLOCKED); lockres->l_blocking = DLM_LOCK_EX; gen = ocfs2_prepare_downconvert(lockres, DLM_LOCK_NL); lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_BUSY, 0); spin_unlock_irqrestore(&lockres->l_lock, flags); ret = ocfs2_downconvert_lock(osb, lockres, DLM_LOCK_NL, 0, gen); if (ret) { mlog_errno(ret); return; } ret = ocfs2_wait_for_mask(&mw); if (ret) mlog_errno(ret); } static void ocfs2_downconvert_on_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { int kick = 0; /* If we know that another node is waiting on our lock, kick * the downconvert thread * pre-emptively when we reach a release * condition. */ if (lockres->l_flags & OCFS2_LOCK_BLOCKED) { switch(lockres->l_blocking) { case DLM_LOCK_EX: if (!lockres->l_ex_holders && !lockres->l_ro_holders) kick = 1; break; case DLM_LOCK_PR: if (!lockres->l_ex_holders) kick = 1; break; default: BUG(); } } if (kick) ocfs2_wake_downconvert_thread(osb); } #define OCFS2_SEC_BITS 34 #define OCFS2_SEC_SHIFT (64 - OCFS2_SEC_BITS) #define OCFS2_NSEC_MASK ((1ULL << OCFS2_SEC_SHIFT) - 1) /* LVB only has room for 64 bits of time here so we pack it for * now. */ static u64 ocfs2_pack_timespec(struct timespec64 *spec) { u64 res; u64 sec = clamp_t(time64_t, spec->tv_sec, 0, 0x3ffffffffull); u32 nsec = spec->tv_nsec; res = (sec << OCFS2_SEC_SHIFT) | (nsec & OCFS2_NSEC_MASK); return res; } /* Call this with the lockres locked. I am reasonably sure we don't * need ip_lock in this function as anyone who would be changing those * values is supposed to be blocked in ocfs2_inode_lock right now. */ static void __ocfs2_stuff_meta_lvb(struct inode *inode) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_lock_res *lockres = &oi->ip_inode_lockres; struct ocfs2_meta_lvb *lvb; struct timespec64 ctime = inode_get_ctime(inode); lvb = ocfs2_dlm_lvb(&lockres->l_lksb); /* * Invalidate the LVB of a deleted inode - this way other * nodes are forced to go to disk and discover the new inode * status. */ if (oi->ip_flags & OCFS2_INODE_DELETED) { lvb->lvb_version = 0; goto out; } lvb->lvb_version = OCFS2_LVB_VERSION; lvb->lvb_isize = cpu_to_be64(i_size_read(inode)); lvb->lvb_iclusters = cpu_to_be32(oi->ip_clusters); lvb->lvb_iuid = cpu_to_be32(i_uid_read(inode)); lvb->lvb_igid = cpu_to_be32(i_gid_read(inode)); lvb->lvb_imode = cpu_to_be16(inode->i_mode); lvb->lvb_inlink = cpu_to_be16(inode->i_nlink); lvb->lvb_iatime_packed = cpu_to_be64(ocfs2_pack_timespec(&inode->i_atime)); lvb->lvb_ictime_packed = cpu_to_be64(ocfs2_pack_timespec(&ctime)); lvb->lvb_imtime_packed = cpu_to_be64(ocfs2_pack_timespec(&inode->i_mtime)); lvb->lvb_iattr = cpu_to_be32(oi->ip_attr); lvb->lvb_idynfeatures = cpu_to_be16(oi->ip_dyn_features); lvb->lvb_igeneration = cpu_to_be32(inode->i_generation); out: mlog_meta_lvb(0, lockres); } static void ocfs2_unpack_timespec(struct timespec64 *spec, u64 packed_time) { spec->tv_sec = packed_time >> OCFS2_SEC_SHIFT; spec->tv_nsec = packed_time & OCFS2_NSEC_MASK; } static int ocfs2_refresh_inode_from_lvb(struct inode *inode) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_lock_res *lockres = &oi->ip_inode_lockres; struct ocfs2_meta_lvb *lvb; struct timespec64 ctime; mlog_meta_lvb(0, lockres); lvb = ocfs2_dlm_lvb(&lockres->l_lksb); if (inode_wrong_type(inode, be16_to_cpu(lvb->lvb_imode))) return -ESTALE; /* We're safe here without the lockres lock... */ spin_lock(&oi->ip_lock); oi->ip_clusters = be32_to_cpu(lvb->lvb_iclusters); i_size_write(inode, be64_to_cpu(lvb->lvb_isize)); oi->ip_attr = be32_to_cpu(lvb->lvb_iattr); oi->ip_dyn_features = be16_to_cpu(lvb->lvb_idynfeatures); ocfs2_set_inode_flags(inode); /* fast-symlinks are a special case */ if (S_ISLNK(inode->i_mode) && !oi->ip_clusters) inode->i_blocks = 0; else inode->i_blocks = ocfs2_inode_sector_count(inode); i_uid_write(inode, be32_to_cpu(lvb->lvb_iuid)); i_gid_write(inode, be32_to_cpu(lvb->lvb_igid)); inode->i_mode = be16_to_cpu(lvb->lvb_imode); set_nlink(inode, be16_to_cpu(lvb->lvb_inlink)); ocfs2_unpack_timespec(&inode->i_atime, be64_to_cpu(lvb->lvb_iatime_packed)); ocfs2_unpack_timespec(&inode->i_mtime, be64_to_cpu(lvb->lvb_imtime_packed)); ocfs2_unpack_timespec(&ctime, be64_to_cpu(lvb->lvb_ictime_packed)); inode_set_ctime_to_ts(inode, ctime); spin_unlock(&oi->ip_lock); return 0; } static inline int ocfs2_meta_lvb_is_trustable(struct inode *inode, struct ocfs2_lock_res *lockres) { struct ocfs2_meta_lvb *lvb = ocfs2_dlm_lvb(&lockres->l_lksb); if (ocfs2_dlm_lvb_valid(&lockres->l_lksb) && lvb->lvb_version == OCFS2_LVB_VERSION && be32_to_cpu(lvb->lvb_igeneration) == inode->i_generation) return 1; return 0; } /* Determine whether a lock resource needs to be refreshed, and * arbitrate who gets to refresh it. * * 0 means no refresh needed. * * > 0 means you need to refresh this and you MUST call * ocfs2_complete_lock_res_refresh afterwards. */ static int ocfs2_should_refresh_lock_res(struct ocfs2_lock_res *lockres) { unsigned long flags; int status = 0; refresh_check: spin_lock_irqsave(&lockres->l_lock, flags); if (!(lockres->l_flags & OCFS2_LOCK_NEEDS_REFRESH)) { spin_unlock_irqrestore(&lockres->l_lock, flags); goto bail; } if (lockres->l_flags & OCFS2_LOCK_REFRESHING) { spin_unlock_irqrestore(&lockres->l_lock, flags); ocfs2_wait_on_refreshing_lock(lockres); goto refresh_check; } /* Ok, I'll be the one to refresh this lock. */ lockres_or_flags(lockres, OCFS2_LOCK_REFRESHING); spin_unlock_irqrestore(&lockres->l_lock, flags); status = 1; bail: mlog(0, "status %d\n", status); return status; } /* If status is non zero, I'll mark it as not being in refresh * anymroe, but i won't clear the needs refresh flag. */ static inline void ocfs2_complete_lock_res_refresh(struct ocfs2_lock_res *lockres, int status) { unsigned long flags; spin_lock_irqsave(&lockres->l_lock, flags); lockres_clear_flags(lockres, OCFS2_LOCK_REFRESHING); if (!status) lockres_clear_flags(lockres, OCFS2_LOCK_NEEDS_REFRESH); spin_unlock_irqrestore(&lockres->l_lock, flags); wake_up(&lockres->l_event); } /* may or may not return a bh if it went to disk. */ static int ocfs2_inode_lock_update(struct inode *inode, struct buffer_head **bh) { int status = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_lock_res *lockres = &oi->ip_inode_lockres; struct ocfs2_dinode *fe; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (ocfs2_mount_local(osb)) goto bail; spin_lock(&oi->ip_lock); if (oi->ip_flags & OCFS2_INODE_DELETED) { mlog(0, "Orphaned inode %llu was deleted while we " "were waiting on a lock. ip_flags = 0x%x\n", (unsigned long long)oi->ip_blkno, oi->ip_flags); spin_unlock(&oi->ip_lock); status = -ENOENT; goto bail; } spin_unlock(&oi->ip_lock); if (!ocfs2_should_refresh_lock_res(lockres)) goto bail; /* This will discard any caching information we might have had * for the inode metadata. */ ocfs2_metadata_cache_purge(INODE_CACHE(inode)); ocfs2_extent_map_trunc(inode, 0); if (ocfs2_meta_lvb_is_trustable(inode, lockres)) { mlog(0, "Trusting LVB on inode %llu\n", (unsigned long long)oi->ip_blkno); status = ocfs2_refresh_inode_from_lvb(inode); goto bail_refresh; } else { /* Boo, we have to go to disk. */ /* read bh, cast, ocfs2_refresh_inode */ status = ocfs2_read_inode_block(inode, bh); if (status < 0) { mlog_errno(status); goto bail_refresh; } fe = (struct ocfs2_dinode *) (*bh)->b_data; if (inode_wrong_type(inode, le16_to_cpu(fe->i_mode))) { status = -ESTALE; goto bail_refresh; } /* This is a good chance to make sure we're not * locking an invalid object. ocfs2_read_inode_block() * already checked that the inode block is sane. * * We bug on a stale inode here because we checked * above whether it was wiped from disk. The wiping * node provides a guarantee that we receive that * message and can mark the inode before dropping any * locks associated with it. */ mlog_bug_on_msg(inode->i_generation != le32_to_cpu(fe->i_generation), "Invalid dinode %llu disk generation: %u " "inode->i_generation: %u\n", (unsigned long long)oi->ip_blkno, le32_to_cpu(fe->i_generation), inode->i_generation); mlog_bug_on_msg(le64_to_cpu(fe->i_dtime) || !(fe->i_flags & cpu_to_le32(OCFS2_VALID_FL)), "Stale dinode %llu dtime: %llu flags: 0x%x\n", (unsigned long long)oi->ip_blkno, (unsigned long long)le64_to_cpu(fe->i_dtime), le32_to_cpu(fe->i_flags)); ocfs2_refresh_inode(inode, fe); ocfs2_track_lock_refresh(lockres); } status = 0; bail_refresh: ocfs2_complete_lock_res_refresh(lockres, status); bail: return status; } static int ocfs2_assign_bh(struct inode *inode, struct buffer_head **ret_bh, struct buffer_head *passed_bh) { int status; if (passed_bh) { /* Ok, the update went to disk for us, use the * returned bh. */ *ret_bh = passed_bh; get_bh(*ret_bh); return 0; } status = ocfs2_read_inode_block(inode, ret_bh); if (status < 0) mlog_errno(status); return status; } /* * returns < 0 error if the callback will never be called, otherwise * the result of the lock will be communicated via the callback. */ int ocfs2_inode_lock_full_nested(struct inode *inode, struct buffer_head **ret_bh, int ex, int arg_flags, int subclass) { int status, level, acquired; u32 dlm_flags; struct ocfs2_lock_res *lockres = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *local_bh = NULL; mlog(0, "inode %llu, take %s META lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, ex ? "EXMODE" : "PRMODE"); status = 0; acquired = 0; /* We'll allow faking a readonly metadata lock for * rodevices. */ if (ocfs2_is_hard_readonly(osb)) { if (ex) status = -EROFS; goto getbh; } if ((arg_flags & OCFS2_META_LOCK_GETBH) || ocfs2_mount_local(osb)) goto update; if (!(arg_flags & OCFS2_META_LOCK_RECOVERY)) ocfs2_wait_for_recovery(osb); lockres = &OCFS2_I(inode)->ip_inode_lockres; level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; dlm_flags = 0; if (arg_flags & OCFS2_META_LOCK_NOQUEUE) dlm_flags |= DLM_LKF_NOQUEUE; status = __ocfs2_cluster_lock(osb, lockres, level, dlm_flags, arg_flags, subclass, _RET_IP_); if (status < 0) { if (status != -EAGAIN) mlog_errno(status); goto bail; } /* Notify the error cleanup path to drop the cluster lock. */ acquired = 1; /* We wait twice because a node may have died while we were in * the lower dlm layers. The second time though, we've * committed to owning this lock so we don't allow signals to * abort the operation. */ if (!(arg_flags & OCFS2_META_LOCK_RECOVERY)) ocfs2_wait_for_recovery(osb); update: /* * We only see this flag if we're being called from * ocfs2_read_locked_inode(). It means we're locking an inode * which hasn't been populated yet, so clear the refresh flag * and let the caller handle it. */ if (inode->i_state & I_NEW) { status = 0; if (lockres) ocfs2_complete_lock_res_refresh(lockres, 0); goto bail; } /* This is fun. The caller may want a bh back, or it may * not. ocfs2_inode_lock_update definitely wants one in, but * may or may not read one, depending on what's in the * LVB. The result of all of this is that we've *only* gone to * disk if we have to, so the complexity is worthwhile. */ status = ocfs2_inode_lock_update(inode, &local_bh); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail; } getbh: if (ret_bh) { status = ocfs2_assign_bh(inode, ret_bh, local_bh); if (status < 0) { mlog_errno(status); goto bail; } } bail: if (status < 0) { if (ret_bh && (*ret_bh)) { brelse(*ret_bh); *ret_bh = NULL; } if (acquired) ocfs2_inode_unlock(inode, ex); } brelse(local_bh); return status; } /* * This is working around a lock inversion between tasks acquiring DLM * locks while holding a page lock and the downconvert thread which * blocks dlm lock acquiry while acquiring page locks. * * ** These _with_page variantes are only intended to be called from aop * methods that hold page locks and return a very specific *positive* error * code that aop methods pass up to the VFS -- test for errors with != 0. ** * * The DLM is called such that it returns -EAGAIN if it would have * blocked waiting for the downconvert thread. In that case we unlock * our page so the downconvert thread can make progress. Once we've * done this we have to return AOP_TRUNCATED_PAGE so the aop method * that called us can bubble that back up into the VFS who will then * immediately retry the aop call. */ int ocfs2_inode_lock_with_page(struct inode *inode, struct buffer_head **ret_bh, int ex, struct page *page) { int ret; ret = ocfs2_inode_lock_full(inode, ret_bh, ex, OCFS2_LOCK_NONBLOCK); if (ret == -EAGAIN) { unlock_page(page); /* * If we can't get inode lock immediately, we should not return * directly here, since this will lead to a softlockup problem. * The method is to get a blocking lock and immediately unlock * before returning, this can avoid CPU resource waste due to * lots of retries, and benefits fairness in getting lock. */ if (ocfs2_inode_lock(inode, ret_bh, ex) == 0) ocfs2_inode_unlock(inode, ex); ret = AOP_TRUNCATED_PAGE; } return ret; } int ocfs2_inode_lock_atime(struct inode *inode, struct vfsmount *vfsmnt, int *level, int wait) { int ret; if (wait) ret = ocfs2_inode_lock(inode, NULL, 0); else ret = ocfs2_try_inode_lock(inode, NULL, 0); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); return ret; } /* * If we should update atime, we will get EX lock, * otherwise we just get PR lock. */ if (ocfs2_should_update_atime(inode, vfsmnt)) { struct buffer_head *bh = NULL; ocfs2_inode_unlock(inode, 0); if (wait) ret = ocfs2_inode_lock(inode, &bh, 1); else ret = ocfs2_try_inode_lock(inode, &bh, 1); if (ret < 0) { if (ret != -EAGAIN) mlog_errno(ret); return ret; } *level = 1; if (ocfs2_should_update_atime(inode, vfsmnt)) ocfs2_update_inode_atime(inode, bh); brelse(bh); } else *level = 0; return ret; } void ocfs2_inode_unlock(struct inode *inode, int ex) { int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_lock_res *lockres = &OCFS2_I(inode)->ip_inode_lockres; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog(0, "inode %llu drop %s META lock\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, ex ? "EXMODE" : "PRMODE"); if (!ocfs2_is_hard_readonly(osb) && !ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, level); } /* * This _tracker variantes are introduced to deal with the recursive cluster * locking issue. The idea is to keep track of a lock holder on the stack of * the current process. If there's a lock holder on the stack, we know the * task context is already protected by cluster locking. Currently, they're * used in some VFS entry routines. * * return < 0 on error, return == 0 if there's no lock holder on the stack * before this call, return == 1 if this call would be a recursive locking. * return == -1 if this lock attempt will cause an upgrade which is forbidden. * * When taking lock levels into account,we face some different situations. * * 1. no lock is held * In this case, just lock the inode as requested and return 0 * * 2. We are holding a lock * For this situation, things diverges into several cases * * wanted holding what to do * ex ex see 2.1 below * ex pr see 2.2 below * pr ex see 2.1 below * pr pr see 2.1 below * * 2.1 lock level that is been held is compatible * with the wanted level, so no lock action will be tacken. * * 2.2 Otherwise, an upgrade is needed, but it is forbidden. * * Reason why upgrade within a process is forbidden is that * lock upgrade may cause dead lock. The following illustrates * how it happens. * * thread on node1 thread on node2 * ocfs2_inode_lock_tracker(ex=0) * * <====== ocfs2_inode_lock_tracker(ex=1) * * ocfs2_inode_lock_tracker(ex=1) */ int ocfs2_inode_lock_tracker(struct inode *inode, struct buffer_head **ret_bh, int ex, struct ocfs2_lock_holder *oh) { int status = 0; struct ocfs2_lock_res *lockres; struct ocfs2_lock_holder *tmp_oh; struct pid *pid = task_pid(current); lockres = &OCFS2_I(inode)->ip_inode_lockres; tmp_oh = ocfs2_pid_holder(lockres, pid); if (!tmp_oh) { /* * This corresponds to the case 1. * We haven't got any lock before. */ status = ocfs2_inode_lock_full(inode, ret_bh, ex, 0); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } oh->oh_ex = ex; ocfs2_add_holder(lockres, oh); return 0; } if (unlikely(ex && !tmp_oh->oh_ex)) { /* * case 2.2 upgrade may cause dead lock, forbid it. */ mlog(ML_ERROR, "Recursive locking is not permitted to " "upgrade to EX level from PR level.\n"); dump_stack(); return -EINVAL; } /* * case 2.1 OCFS2_META_LOCK_GETBH flag make ocfs2_inode_lock_full. * ignore the lock level and just update it. */ if (ret_bh) { status = ocfs2_inode_lock_full(inode, ret_bh, ex, OCFS2_META_LOCK_GETBH); if (status < 0) { if (status != -ENOENT) mlog_errno(status); return status; } } return 1; } void ocfs2_inode_unlock_tracker(struct inode *inode, int ex, struct ocfs2_lock_holder *oh, int had_lock) { struct ocfs2_lock_res *lockres; lockres = &OCFS2_I(inode)->ip_inode_lockres; /* had_lock means that the currect process already takes the cluster * lock previously. * If had_lock is 1, we have nothing to do here. * If had_lock is 0, we will release the lock. */ if (!had_lock) { ocfs2_inode_unlock(inode, oh->oh_ex); ocfs2_remove_holder(lockres, oh); } } int ocfs2_orphan_scan_lock(struct ocfs2_super *osb, u32 *seqno) { struct ocfs2_lock_res *lockres; struct ocfs2_orphan_scan_lvb *lvb; int status = 0; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (ocfs2_mount_local(osb)) return 0; lockres = &osb->osb_orphan_scan.os_lockres; status = ocfs2_cluster_lock(osb, lockres, DLM_LOCK_EX, 0, 0); if (status < 0) return status; lvb = ocfs2_dlm_lvb(&lockres->l_lksb); if (ocfs2_dlm_lvb_valid(&lockres->l_lksb) && lvb->lvb_version == OCFS2_ORPHAN_LVB_VERSION) *seqno = be32_to_cpu(lvb->lvb_os_seqno); else *seqno = osb->osb_orphan_scan.os_seqno + 1; return status; } void ocfs2_orphan_scan_unlock(struct ocfs2_super *osb, u32 seqno) { struct ocfs2_lock_res *lockres; struct ocfs2_orphan_scan_lvb *lvb; if (!ocfs2_is_hard_readonly(osb) && !ocfs2_mount_local(osb)) { lockres = &osb->osb_orphan_scan.os_lockres; lvb = ocfs2_dlm_lvb(&lockres->l_lksb); lvb->lvb_version = OCFS2_ORPHAN_LVB_VERSION; lvb->lvb_os_seqno = cpu_to_be32(seqno); ocfs2_cluster_unlock(osb, lockres, DLM_LOCK_EX); } } int ocfs2_super_lock(struct ocfs2_super *osb, int ex) { int status = 0; int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_lock_res *lockres = &osb->osb_super_lockres; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (ocfs2_mount_local(osb)) goto bail; status = ocfs2_cluster_lock(osb, lockres, level, 0, 0); if (status < 0) { mlog_errno(status); goto bail; } /* The super block lock path is really in the best position to * know when resources covered by the lock need to be * refreshed, so we do it here. Of course, making sense of * everything is up to the caller :) */ status = ocfs2_should_refresh_lock_res(lockres); if (status) { status = ocfs2_refresh_slot_info(osb); ocfs2_complete_lock_res_refresh(lockres, status); if (status < 0) { ocfs2_cluster_unlock(osb, lockres, level); mlog_errno(status); } ocfs2_track_lock_refresh(lockres); } bail: return status; } void ocfs2_super_unlock(struct ocfs2_super *osb, int ex) { int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_lock_res *lockres = &osb->osb_super_lockres; if (!ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, level); } int ocfs2_rename_lock(struct ocfs2_super *osb) { int status; struct ocfs2_lock_res *lockres = &osb->osb_rename_lockres; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (ocfs2_mount_local(osb)) return 0; status = ocfs2_cluster_lock(osb, lockres, DLM_LOCK_EX, 0, 0); if (status < 0) mlog_errno(status); return status; } void ocfs2_rename_unlock(struct ocfs2_super *osb) { struct ocfs2_lock_res *lockres = &osb->osb_rename_lockres; if (!ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, DLM_LOCK_EX); } int ocfs2_nfs_sync_lock(struct ocfs2_super *osb, int ex) { int status; struct ocfs2_lock_res *lockres = &osb->osb_nfs_sync_lockres; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (ex) down_write(&osb->nfs_sync_rwlock); else down_read(&osb->nfs_sync_rwlock); if (ocfs2_mount_local(osb)) return 0; status = ocfs2_cluster_lock(osb, lockres, ex ? LKM_EXMODE : LKM_PRMODE, 0, 0); if (status < 0) { mlog(ML_ERROR, "lock on nfs sync lock failed %d\n", status); if (ex) up_write(&osb->nfs_sync_rwlock); else up_read(&osb->nfs_sync_rwlock); } return status; } void ocfs2_nfs_sync_unlock(struct ocfs2_super *osb, int ex) { struct ocfs2_lock_res *lockres = &osb->osb_nfs_sync_lockres; if (!ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, ex ? LKM_EXMODE : LKM_PRMODE); if (ex) up_write(&osb->nfs_sync_rwlock); else up_read(&osb->nfs_sync_rwlock); } int ocfs2_trim_fs_lock(struct ocfs2_super *osb, struct ocfs2_trim_fs_info *info, int trylock) { int status; struct ocfs2_trim_fs_lvb *lvb; struct ocfs2_lock_res *lockres = &osb->osb_trim_fs_lockres; if (info) info->tf_valid = 0; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (ocfs2_mount_local(osb)) return 0; status = ocfs2_cluster_lock(osb, lockres, DLM_LOCK_EX, trylock ? DLM_LKF_NOQUEUE : 0, 0); if (status < 0) { if (status != -EAGAIN) mlog_errno(status); return status; } if (info) { lvb = ocfs2_dlm_lvb(&lockres->l_lksb); if (ocfs2_dlm_lvb_valid(&lockres->l_lksb) && lvb->lvb_version == OCFS2_TRIMFS_LVB_VERSION) { info->tf_valid = 1; info->tf_success = lvb->lvb_success; info->tf_nodenum = be32_to_cpu(lvb->lvb_nodenum); info->tf_start = be64_to_cpu(lvb->lvb_start); info->tf_len = be64_to_cpu(lvb->lvb_len); info->tf_minlen = be64_to_cpu(lvb->lvb_minlen); info->tf_trimlen = be64_to_cpu(lvb->lvb_trimlen); } } return status; } void ocfs2_trim_fs_unlock(struct ocfs2_super *osb, struct ocfs2_trim_fs_info *info) { struct ocfs2_trim_fs_lvb *lvb; struct ocfs2_lock_res *lockres = &osb->osb_trim_fs_lockres; if (ocfs2_mount_local(osb)) return; if (info) { lvb = ocfs2_dlm_lvb(&lockres->l_lksb); lvb->lvb_version = OCFS2_TRIMFS_LVB_VERSION; lvb->lvb_success = info->tf_success; lvb->lvb_nodenum = cpu_to_be32(info->tf_nodenum); lvb->lvb_start = cpu_to_be64(info->tf_start); lvb->lvb_len = cpu_to_be64(info->tf_len); lvb->lvb_minlen = cpu_to_be64(info->tf_minlen); lvb->lvb_trimlen = cpu_to_be64(info->tf_trimlen); } ocfs2_cluster_unlock(osb, lockres, DLM_LOCK_EX); } int ocfs2_dentry_lock(struct dentry *dentry, int ex) { int ret; int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_dentry_lock *dl = dentry->d_fsdata; struct ocfs2_super *osb = OCFS2_SB(dentry->d_sb); BUG_ON(!dl); if (ocfs2_is_hard_readonly(osb)) { if (ex) return -EROFS; return 0; } if (ocfs2_mount_local(osb)) return 0; ret = ocfs2_cluster_lock(osb, &dl->dl_lockres, level, 0, 0); if (ret < 0) mlog_errno(ret); return ret; } void ocfs2_dentry_unlock(struct dentry *dentry, int ex) { int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_dentry_lock *dl = dentry->d_fsdata; struct ocfs2_super *osb = OCFS2_SB(dentry->d_sb); if (!ocfs2_is_hard_readonly(osb) && !ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, &dl->dl_lockres, level); } /* Reference counting of the dlm debug structure. We want this because * open references on the debug inodes can live on after a mount, so * we can't rely on the ocfs2_super to always exist. */ static void ocfs2_dlm_debug_free(struct kref *kref) { struct ocfs2_dlm_debug *dlm_debug; dlm_debug = container_of(kref, struct ocfs2_dlm_debug, d_refcnt); kfree(dlm_debug); } void ocfs2_put_dlm_debug(struct ocfs2_dlm_debug *dlm_debug) { if (dlm_debug) kref_put(&dlm_debug->d_refcnt, ocfs2_dlm_debug_free); } static void ocfs2_get_dlm_debug(struct ocfs2_dlm_debug *debug) { kref_get(&debug->d_refcnt); } struct ocfs2_dlm_debug *ocfs2_new_dlm_debug(void) { struct ocfs2_dlm_debug *dlm_debug; dlm_debug = kmalloc(sizeof(struct ocfs2_dlm_debug), GFP_KERNEL); if (!dlm_debug) { mlog_errno(-ENOMEM); goto out; } kref_init(&dlm_debug->d_refcnt); INIT_LIST_HEAD(&dlm_debug->d_lockres_tracking); dlm_debug->d_filter_secs = 0; out: return dlm_debug; } /* Access to this is arbitrated for us via seq_file->sem. */ struct ocfs2_dlm_seq_priv { struct ocfs2_dlm_debug *p_dlm_debug; struct ocfs2_lock_res p_iter_res; struct ocfs2_lock_res p_tmp_res; }; static struct ocfs2_lock_res *ocfs2_dlm_next_res(struct ocfs2_lock_res *start, struct ocfs2_dlm_seq_priv *priv) { struct ocfs2_lock_res *iter, *ret = NULL; struct ocfs2_dlm_debug *dlm_debug = priv->p_dlm_debug; assert_spin_locked(&ocfs2_dlm_tracking_lock); list_for_each_entry(iter, &start->l_debug_list, l_debug_list) { /* discover the head of the list */ if (&iter->l_debug_list == &dlm_debug->d_lockres_tracking) { mlog(0, "End of list found, %p\n", ret); break; } /* We track our "dummy" iteration lockres' by a NULL * l_ops field. */ if (iter->l_ops != NULL) { ret = iter; break; } } return ret; } static void *ocfs2_dlm_seq_start(struct seq_file *m, loff_t *pos) { struct ocfs2_dlm_seq_priv *priv = m->private; struct ocfs2_lock_res *iter; spin_lock(&ocfs2_dlm_tracking_lock); iter = ocfs2_dlm_next_res(&priv->p_iter_res, priv); if (iter) { /* Since lockres' have the lifetime of their container * (which can be inodes, ocfs2_supers, etc) we want to * copy this out to a temporary lockres while still * under the spinlock. Obviously after this we can't * trust any pointers on the copy returned, but that's * ok as the information we want isn't typically held * in them. */ priv->p_tmp_res = *iter; iter = &priv->p_tmp_res; } spin_unlock(&ocfs2_dlm_tracking_lock); return iter; } static void ocfs2_dlm_seq_stop(struct seq_file *m, void *v) { } static void *ocfs2_dlm_seq_next(struct seq_file *m, void *v, loff_t *pos) { struct ocfs2_dlm_seq_priv *priv = m->private; struct ocfs2_lock_res *iter = v; struct ocfs2_lock_res *dummy = &priv->p_iter_res; spin_lock(&ocfs2_dlm_tracking_lock); iter = ocfs2_dlm_next_res(iter, priv); list_del_init(&dummy->l_debug_list); if (iter) { list_add(&dummy->l_debug_list, &iter->l_debug_list); priv->p_tmp_res = *iter; iter = &priv->p_tmp_res; } spin_unlock(&ocfs2_dlm_tracking_lock); return iter; } /* * Version is used by debugfs.ocfs2 to determine the format being used * * New in version 2 * - Lock stats printed * New in version 3 * - Max time in lock stats is in usecs (instead of nsecs) * New in version 4 * - Add last pr/ex unlock times and first lock wait time in usecs */ #define OCFS2_DLM_DEBUG_STR_VERSION 4 static int ocfs2_dlm_seq_show(struct seq_file *m, void *v) { int i; char *lvb; struct ocfs2_lock_res *lockres = v; #ifdef CONFIG_OCFS2_FS_STATS u64 now, last; struct ocfs2_dlm_debug *dlm_debug = ((struct ocfs2_dlm_seq_priv *)m->private)->p_dlm_debug; #endif if (!lockres) return -EINVAL; #ifdef CONFIG_OCFS2_FS_STATS if (!lockres->l_lock_wait && dlm_debug->d_filter_secs) { now = ktime_to_us(ktime_get_real()); if (lockres->l_lock_prmode.ls_last > lockres->l_lock_exmode.ls_last) last = lockres->l_lock_prmode.ls_last; else last = lockres->l_lock_exmode.ls_last; /* * Use d_filter_secs field to filter lock resources dump, * the default d_filter_secs(0) value filters nothing, * otherwise, only dump the last N seconds active lock * resources. */ if (div_u64(now - last, 1000000) > dlm_debug->d_filter_secs) return 0; } #endif seq_printf(m, "0x%x\t", OCFS2_DLM_DEBUG_STR_VERSION); if (lockres->l_type == OCFS2_LOCK_TYPE_DENTRY) seq_printf(m, "%.*s%08x\t", OCFS2_DENTRY_LOCK_INO_START - 1, lockres->l_name, (unsigned int)ocfs2_get_dentry_lock_ino(lockres)); else seq_printf(m, "%.*s\t", OCFS2_LOCK_ID_MAX_LEN, lockres->l_name); seq_printf(m, "%d\t" "0x%lx\t" "0x%x\t" "0x%x\t" "%u\t" "%u\t" "%d\t" "%d\t", lockres->l_level, lockres->l_flags, lockres->l_action, lockres->l_unlock_action, lockres->l_ro_holders, lockres->l_ex_holders, lockres->l_requested, lockres->l_blocking); /* Dump the raw LVB */ lvb = ocfs2_dlm_lvb(&lockres->l_lksb); for(i = 0; i < DLM_LVB_LEN; i++) seq_printf(m, "0x%x\t", lvb[i]); #ifdef CONFIG_OCFS2_FS_STATS # define lock_num_prmode(_l) ((_l)->l_lock_prmode.ls_gets) # define lock_num_exmode(_l) ((_l)->l_lock_exmode.ls_gets) # define lock_num_prmode_failed(_l) ((_l)->l_lock_prmode.ls_fail) # define lock_num_exmode_failed(_l) ((_l)->l_lock_exmode.ls_fail) # define lock_total_prmode(_l) ((_l)->l_lock_prmode.ls_total) # define lock_total_exmode(_l) ((_l)->l_lock_exmode.ls_total) # define lock_max_prmode(_l) ((_l)->l_lock_prmode.ls_max) # define lock_max_exmode(_l) ((_l)->l_lock_exmode.ls_max) # define lock_refresh(_l) ((_l)->l_lock_refresh) # define lock_last_prmode(_l) ((_l)->l_lock_prmode.ls_last) # define lock_last_exmode(_l) ((_l)->l_lock_exmode.ls_last) # define lock_wait(_l) ((_l)->l_lock_wait) #else # define lock_num_prmode(_l) (0) # define lock_num_exmode(_l) (0) # define lock_num_prmode_failed(_l) (0) # define lock_num_exmode_failed(_l) (0) # define lock_total_prmode(_l) (0ULL) # define lock_total_exmode(_l) (0ULL) # define lock_max_prmode(_l) (0) # define lock_max_exmode(_l) (0) # define lock_refresh(_l) (0) # define lock_last_prmode(_l) (0ULL) # define lock_last_exmode(_l) (0ULL) # define lock_wait(_l) (0ULL) #endif /* The following seq_print was added in version 2 of this output */ seq_printf(m, "%u\t" "%u\t" "%u\t" "%u\t" "%llu\t" "%llu\t" "%u\t" "%u\t" "%u\t" "%llu\t" "%llu\t" "%llu\t", lock_num_prmode(lockres), lock_num_exmode(lockres), lock_num_prmode_failed(lockres), lock_num_exmode_failed(lockres), lock_total_prmode(lockres), lock_total_exmode(lockres), lock_max_prmode(lockres), lock_max_exmode(lockres), lock_refresh(lockres), lock_last_prmode(lockres), lock_last_exmode(lockres), lock_wait(lockres)); /* End the line */ seq_printf(m, "\n"); return 0; } static const struct seq_operations ocfs2_dlm_seq_ops = { .start = ocfs2_dlm_seq_start, .stop = ocfs2_dlm_seq_stop, .next = ocfs2_dlm_seq_next, .show = ocfs2_dlm_seq_show, }; static int ocfs2_dlm_debug_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct ocfs2_dlm_seq_priv *priv = seq->private; struct ocfs2_lock_res *res = &priv->p_iter_res; ocfs2_remove_lockres_tracking(res); ocfs2_put_dlm_debug(priv->p_dlm_debug); return seq_release_private(inode, file); } static int ocfs2_dlm_debug_open(struct inode *inode, struct file *file) { struct ocfs2_dlm_seq_priv *priv; struct ocfs2_super *osb; priv = __seq_open_private(file, &ocfs2_dlm_seq_ops, sizeof(*priv)); if (!priv) { mlog_errno(-ENOMEM); return -ENOMEM; } osb = inode->i_private; ocfs2_get_dlm_debug(osb->osb_dlm_debug); priv->p_dlm_debug = osb->osb_dlm_debug; INIT_LIST_HEAD(&priv->p_iter_res.l_debug_list); ocfs2_add_lockres_tracking(&priv->p_iter_res, priv->p_dlm_debug); return 0; } static const struct file_operations ocfs2_dlm_debug_fops = { .open = ocfs2_dlm_debug_open, .release = ocfs2_dlm_debug_release, .read = seq_read, .llseek = seq_lseek, }; static void ocfs2_dlm_init_debug(struct ocfs2_super *osb) { struct ocfs2_dlm_debug *dlm_debug = osb->osb_dlm_debug; debugfs_create_file("locking_state", S_IFREG|S_IRUSR, osb->osb_debug_root, osb, &ocfs2_dlm_debug_fops); debugfs_create_u32("locking_filter", 0600, osb->osb_debug_root, &dlm_debug->d_filter_secs); ocfs2_get_dlm_debug(dlm_debug); } static void ocfs2_dlm_shutdown_debug(struct ocfs2_super *osb) { struct ocfs2_dlm_debug *dlm_debug = osb->osb_dlm_debug; if (dlm_debug) ocfs2_put_dlm_debug(dlm_debug); } int ocfs2_dlm_init(struct ocfs2_super *osb) { int status = 0; struct ocfs2_cluster_connection *conn = NULL; if (ocfs2_mount_local(osb)) { osb->node_num = 0; goto local; } ocfs2_dlm_init_debug(osb); /* launch downconvert thread */ osb->dc_task = kthread_run(ocfs2_downconvert_thread, osb, "ocfs2dc-%s", osb->uuid_str); if (IS_ERR(osb->dc_task)) { status = PTR_ERR(osb->dc_task); osb->dc_task = NULL; mlog_errno(status); goto bail; } /* for now, uuid == domain */ status = ocfs2_cluster_connect(osb->osb_cluster_stack, osb->osb_cluster_name, strlen(osb->osb_cluster_name), osb->uuid_str, strlen(osb->uuid_str), &lproto, ocfs2_do_node_down, osb, &conn); if (status) { mlog_errno(status); goto bail; } status = ocfs2_cluster_this_node(conn, &osb->node_num); if (status < 0) { mlog_errno(status); mlog(ML_ERROR, "could not find this host's node number\n"); ocfs2_cluster_disconnect(conn, 0); goto bail; } local: ocfs2_super_lock_res_init(&osb->osb_super_lockres, osb); ocfs2_rename_lock_res_init(&osb->osb_rename_lockres, osb); ocfs2_nfs_sync_lock_init(osb); ocfs2_orphan_scan_lock_res_init(&osb->osb_orphan_scan.os_lockres, osb); osb->cconn = conn; bail: if (status < 0) { ocfs2_dlm_shutdown_debug(osb); if (osb->dc_task) kthread_stop(osb->dc_task); } return status; } void ocfs2_dlm_shutdown(struct ocfs2_super *osb, int hangup_pending) { ocfs2_drop_osb_locks(osb); /* * Now that we have dropped all locks and ocfs2_dismount_volume() * has disabled recovery, the DLM won't be talking to us. It's * safe to tear things down before disconnecting the cluster. */ if (osb->dc_task) { kthread_stop(osb->dc_task); osb->dc_task = NULL; } ocfs2_lock_res_free(&osb->osb_super_lockres); ocfs2_lock_res_free(&osb->osb_rename_lockres); ocfs2_lock_res_free(&osb->osb_nfs_sync_lockres); ocfs2_lock_res_free(&osb->osb_orphan_scan.os_lockres); if (osb->cconn) { ocfs2_cluster_disconnect(osb->cconn, hangup_pending); osb->cconn = NULL; ocfs2_dlm_shutdown_debug(osb); } } static int ocfs2_drop_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { int ret; unsigned long flags; u32 lkm_flags = 0; /* We didn't get anywhere near actually using this lockres. */ if (!(lockres->l_flags & OCFS2_LOCK_INITIALIZED)) goto out; if (lockres->l_ops->flags & LOCK_TYPE_USES_LVB) lkm_flags |= DLM_LKF_VALBLK; spin_lock_irqsave(&lockres->l_lock, flags); mlog_bug_on_msg(!(lockres->l_flags & OCFS2_LOCK_FREEING), "lockres %s, flags 0x%lx\n", lockres->l_name, lockres->l_flags); while (lockres->l_flags & OCFS2_LOCK_BUSY) { mlog(0, "waiting on busy lock \"%s\": flags = %lx, action = " "%u, unlock_action = %u\n", lockres->l_name, lockres->l_flags, lockres->l_action, lockres->l_unlock_action); spin_unlock_irqrestore(&lockres->l_lock, flags); /* XXX: Today we just wait on any busy * locks... Perhaps we need to cancel converts in the * future? */ ocfs2_wait_on_busy_lock(lockres); spin_lock_irqsave(&lockres->l_lock, flags); } if (lockres->l_ops->flags & LOCK_TYPE_USES_LVB) { if (lockres->l_flags & OCFS2_LOCK_ATTACHED && lockres->l_level == DLM_LOCK_EX && !(lockres->l_flags & OCFS2_LOCK_NEEDS_REFRESH)) lockres->l_ops->set_lvb(lockres); } if (lockres->l_flags & OCFS2_LOCK_BUSY) mlog(ML_ERROR, "destroying busy lock: \"%s\"\n", lockres->l_name); if (lockres->l_flags & OCFS2_LOCK_BLOCKED) mlog(0, "destroying blocked lock: \"%s\"\n", lockres->l_name); if (!(lockres->l_flags & OCFS2_LOCK_ATTACHED)) { spin_unlock_irqrestore(&lockres->l_lock, flags); goto out; } lockres_clear_flags(lockres, OCFS2_LOCK_ATTACHED); /* make sure we never get here while waiting for an ast to * fire. */ BUG_ON(lockres->l_action != OCFS2_AST_INVALID); /* is this necessary? */ lockres_or_flags(lockres, OCFS2_LOCK_BUSY); lockres->l_unlock_action = OCFS2_UNLOCK_DROP_LOCK; spin_unlock_irqrestore(&lockres->l_lock, flags); mlog(0, "lock %s\n", lockres->l_name); ret = ocfs2_dlm_unlock(osb->cconn, &lockres->l_lksb, lkm_flags); if (ret) { ocfs2_log_dlm_error("ocfs2_dlm_unlock", ret, lockres); mlog(ML_ERROR, "lockres flags: %lu\n", lockres->l_flags); ocfs2_dlm_dump_lksb(&lockres->l_lksb); BUG(); } mlog(0, "lock %s, successful return from ocfs2_dlm_unlock\n", lockres->l_name); ocfs2_wait_on_busy_lock(lockres); out: return 0; } static void ocfs2_process_blocked_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres); /* Mark the lockres as being dropped. It will no longer be * queued if blocking, but we still may have to wait on it * being dequeued from the downconvert thread before we can consider * it safe to drop. * * You can *not* attempt to call cluster_lock on this lockres anymore. */ void ocfs2_mark_lockres_freeing(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { int status; struct ocfs2_mask_waiter mw; unsigned long flags, flags2; ocfs2_init_mask_waiter(&mw); spin_lock_irqsave(&lockres->l_lock, flags); lockres->l_flags |= OCFS2_LOCK_FREEING; if (lockres->l_flags & OCFS2_LOCK_QUEUED && current == osb->dc_task) { /* * We know the downconvert is queued but not in progress * because we are the downconvert thread and processing * different lock. So we can just remove the lock from the * queue. This is not only an optimization but also a way * to avoid the following deadlock: * ocfs2_dentry_post_unlock() * ocfs2_dentry_lock_put() * ocfs2_drop_dentry_lock() * iput() * ocfs2_evict_inode() * ocfs2_clear_inode() * ocfs2_mark_lockres_freeing() * ... blocks waiting for OCFS2_LOCK_QUEUED * since we are the downconvert thread which * should clear the flag. */ spin_unlock_irqrestore(&lockres->l_lock, flags); spin_lock_irqsave(&osb->dc_task_lock, flags2); list_del_init(&lockres->l_blocked_list); osb->blocked_lock_count--; spin_unlock_irqrestore(&osb->dc_task_lock, flags2); /* * Warn if we recurse into another post_unlock call. Strictly * speaking it isn't a problem but we need to be careful if * that happens (stack overflow, deadlocks, ...) so warn if * ocfs2 grows a path for which this can happen. */ WARN_ON_ONCE(lockres->l_ops->post_unlock); /* Since the lock is freeing we don't do much in the fn below */ ocfs2_process_blocked_lock(osb, lockres); return; } while (lockres->l_flags & OCFS2_LOCK_QUEUED) { lockres_add_mask_waiter(lockres, &mw, OCFS2_LOCK_QUEUED, 0); spin_unlock_irqrestore(&lockres->l_lock, flags); mlog(0, "Waiting on lockres %s\n", lockres->l_name); status = ocfs2_wait_for_mask(&mw); if (status) mlog_errno(status); spin_lock_irqsave(&lockres->l_lock, flags); } spin_unlock_irqrestore(&lockres->l_lock, flags); } void ocfs2_simple_drop_lockres(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { int ret; ocfs2_mark_lockres_freeing(osb, lockres); ret = ocfs2_drop_lock(osb, lockres); if (ret) mlog_errno(ret); } static void ocfs2_drop_osb_locks(struct ocfs2_super *osb) { ocfs2_simple_drop_lockres(osb, &osb->osb_super_lockres); ocfs2_simple_drop_lockres(osb, &osb->osb_rename_lockres); ocfs2_simple_drop_lockres(osb, &osb->osb_nfs_sync_lockres); ocfs2_simple_drop_lockres(osb, &osb->osb_orphan_scan.os_lockres); } int ocfs2_drop_inode_locks(struct inode *inode) { int status, err; /* No need to call ocfs2_mark_lockres_freeing here - * ocfs2_clear_inode has done it for us. */ err = ocfs2_drop_lock(OCFS2_SB(inode->i_sb), &OCFS2_I(inode)->ip_open_lockres); if (err < 0) mlog_errno(err); status = err; err = ocfs2_drop_lock(OCFS2_SB(inode->i_sb), &OCFS2_I(inode)->ip_inode_lockres); if (err < 0) mlog_errno(err); if (err < 0 && !status) status = err; err = ocfs2_drop_lock(OCFS2_SB(inode->i_sb), &OCFS2_I(inode)->ip_rw_lockres); if (err < 0) mlog_errno(err); if (err < 0 && !status) status = err; return status; } static unsigned int ocfs2_prepare_downconvert(struct ocfs2_lock_res *lockres, int new_level) { assert_spin_locked(&lockres->l_lock); BUG_ON(lockres->l_blocking <= DLM_LOCK_NL); if (lockres->l_level <= new_level) { mlog(ML_ERROR, "lockres %s, lvl %d <= %d, blcklst %d, mask %d, " "type %d, flags 0x%lx, hold %d %d, act %d %d, req %d, " "block %d, pgen %d\n", lockres->l_name, lockres->l_level, new_level, list_empty(&lockres->l_blocked_list), list_empty(&lockres->l_mask_waiters), lockres->l_type, lockres->l_flags, lockres->l_ro_holders, lockres->l_ex_holders, lockres->l_action, lockres->l_unlock_action, lockres->l_requested, lockres->l_blocking, lockres->l_pending_gen); BUG(); } mlog(ML_BASTS, "lockres %s, level %d => %d, blocking %d\n", lockres->l_name, lockres->l_level, new_level, lockres->l_blocking); lockres->l_action = OCFS2_AST_DOWNCONVERT; lockres->l_requested = new_level; lockres_or_flags(lockres, OCFS2_LOCK_BUSY); return lockres_set_pending(lockres); } static int ocfs2_downconvert_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, int new_level, int lvb, unsigned int generation) { int ret; u32 dlm_flags = DLM_LKF_CONVERT; mlog(ML_BASTS, "lockres %s, level %d => %d\n", lockres->l_name, lockres->l_level, new_level); /* * On DLM_LKF_VALBLK, fsdlm behaves differently with o2cb. It always * expects DLM_LKF_VALBLK being set if the LKB has LVB, so that * we can recover correctly from node failure. Otherwise, we may get * invalid LVB in LKB, but without DLM_SBF_VALNOTVALID being set. */ if (ocfs2_userspace_stack(osb) && lockres->l_ops->flags & LOCK_TYPE_USES_LVB) lvb = 1; if (lvb) dlm_flags |= DLM_LKF_VALBLK; ret = ocfs2_dlm_lock(osb->cconn, new_level, &lockres->l_lksb, dlm_flags, lockres->l_name, OCFS2_LOCK_ID_MAX_LEN - 1); lockres_clear_pending(lockres, generation, osb); if (ret) { ocfs2_log_dlm_error("ocfs2_dlm_lock", ret, lockres); ocfs2_recover_from_dlm_error(lockres, 1); goto bail; } ret = 0; bail: return ret; } /* returns 1 when the caller should unlock and call ocfs2_dlm_unlock */ static int ocfs2_prepare_cancel_convert(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { assert_spin_locked(&lockres->l_lock); if (lockres->l_unlock_action == OCFS2_UNLOCK_CANCEL_CONVERT) { /* If we're already trying to cancel a lock conversion * then just drop the spinlock and allow the caller to * requeue this lock. */ mlog(ML_BASTS, "lockres %s, skip convert\n", lockres->l_name); return 0; } /* were we in a convert when we got the bast fire? */ BUG_ON(lockres->l_action != OCFS2_AST_CONVERT && lockres->l_action != OCFS2_AST_DOWNCONVERT); /* set things up for the unlockast to know to just * clear out the ast_action and unset busy, etc. */ lockres->l_unlock_action = OCFS2_UNLOCK_CANCEL_CONVERT; mlog_bug_on_msg(!(lockres->l_flags & OCFS2_LOCK_BUSY), "lock %s, invalid flags: 0x%lx\n", lockres->l_name, lockres->l_flags); mlog(ML_BASTS, "lockres %s\n", lockres->l_name); return 1; } static int ocfs2_cancel_convert(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { int ret; ret = ocfs2_dlm_unlock(osb->cconn, &lockres->l_lksb, DLM_LKF_CANCEL); if (ret) { ocfs2_log_dlm_error("ocfs2_dlm_unlock", ret, lockres); ocfs2_recover_from_dlm_error(lockres, 0); } mlog(ML_BASTS, "lockres %s\n", lockres->l_name); return ret; } static int ocfs2_unblock_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres, struct ocfs2_unblock_ctl *ctl) { unsigned long flags; int blocking; int new_level; int level; int ret = 0; int set_lvb = 0; unsigned int gen; spin_lock_irqsave(&lockres->l_lock, flags); recheck: /* * Is it still blocking? If not, we have no more work to do. */ if (!(lockres->l_flags & OCFS2_LOCK_BLOCKED)) { BUG_ON(lockres->l_blocking != DLM_LOCK_NL); spin_unlock_irqrestore(&lockres->l_lock, flags); ret = 0; goto leave; } if (lockres->l_flags & OCFS2_LOCK_BUSY) { /* XXX * This is a *big* race. The OCFS2_LOCK_PENDING flag * exists entirely for one reason - another thread has set * OCFS2_LOCK_BUSY, but has *NOT* yet called dlm_lock(). * * If we do ocfs2_cancel_convert() before the other thread * calls dlm_lock(), our cancel will do nothing. We will * get no ast, and we will have no way of knowing the * cancel failed. Meanwhile, the other thread will call * into dlm_lock() and wait...forever. * * Why forever? Because another node has asked for the * lock first; that's why we're here in unblock_lock(). * * The solution is OCFS2_LOCK_PENDING. When PENDING is * set, we just requeue the unblock. Only when the other * thread has called dlm_lock() and cleared PENDING will * we then cancel their request. * * All callers of dlm_lock() must set OCFS2_DLM_PENDING * at the same time they set OCFS2_DLM_BUSY. They must * clear OCFS2_DLM_PENDING after dlm_lock() returns. */ if (lockres->l_flags & OCFS2_LOCK_PENDING) { mlog(ML_BASTS, "lockres %s, ReQ: Pending\n", lockres->l_name); goto leave_requeue; } ctl->requeue = 1; ret = ocfs2_prepare_cancel_convert(osb, lockres); spin_unlock_irqrestore(&lockres->l_lock, flags); if (ret) { ret = ocfs2_cancel_convert(osb, lockres); if (ret < 0) mlog_errno(ret); } goto leave; } /* * This prevents livelocks. OCFS2_LOCK_UPCONVERT_FINISHING flag is * set when the ast is received for an upconvert just before the * OCFS2_LOCK_BUSY flag is cleared. Now if the fs received a bast * on the heels of the ast, we want to delay the downconvert just * enough to allow the up requestor to do its task. Because this * lock is in the blocked queue, the lock will be downconverted * as soon as the requestor is done with the lock. */ if (lockres->l_flags & OCFS2_LOCK_UPCONVERT_FINISHING) goto leave_requeue; /* * How can we block and yet be at NL? We were trying to upconvert * from NL and got canceled. The code comes back here, and now * we notice and clear BLOCKING. */ if (lockres->l_level == DLM_LOCK_NL) { BUG_ON(lockres->l_ex_holders || lockres->l_ro_holders); mlog(ML_BASTS, "lockres %s, Aborting dc\n", lockres->l_name); lockres->l_blocking = DLM_LOCK_NL; lockres_clear_flags(lockres, OCFS2_LOCK_BLOCKED); spin_unlock_irqrestore(&lockres->l_lock, flags); goto leave; } /* if we're blocking an exclusive and we have *any* holders, * then requeue. */ if ((lockres->l_blocking == DLM_LOCK_EX) && (lockres->l_ex_holders || lockres->l_ro_holders)) { mlog(ML_BASTS, "lockres %s, ReQ: EX/PR Holders %u,%u\n", lockres->l_name, lockres->l_ex_holders, lockres->l_ro_holders); goto leave_requeue; } /* If it's a PR we're blocking, then only * requeue if we've got any EX holders */ if (lockres->l_blocking == DLM_LOCK_PR && lockres->l_ex_holders) { mlog(ML_BASTS, "lockres %s, ReQ: EX Holders %u\n", lockres->l_name, lockres->l_ex_holders); goto leave_requeue; } /* * Can we get a lock in this state if the holder counts are * zero? The meta data unblock code used to check this. */ if ((lockres->l_ops->flags & LOCK_TYPE_REQUIRES_REFRESH) && (lockres->l_flags & OCFS2_LOCK_REFRESHING)) { mlog(ML_BASTS, "lockres %s, ReQ: Lock Refreshing\n", lockres->l_name); goto leave_requeue; } new_level = ocfs2_highest_compat_lock_level(lockres->l_blocking); if (lockres->l_ops->check_downconvert && !lockres->l_ops->check_downconvert(lockres, new_level)) { mlog(ML_BASTS, "lockres %s, ReQ: Checkpointing\n", lockres->l_name); goto leave_requeue; } /* If we get here, then we know that there are no more * incompatible holders (and anyone asking for an incompatible * lock is blocked). We can now downconvert the lock */ if (!lockres->l_ops->downconvert_worker) goto downconvert; /* Some lockres types want to do a bit of work before * downconverting a lock. Allow that here. The worker function * may sleep, so we save off a copy of what we're blocking as * it may change while we're not holding the spin lock. */ blocking = lockres->l_blocking; level = lockres->l_level; spin_unlock_irqrestore(&lockres->l_lock, flags); ctl->unblock_action = lockres->l_ops->downconvert_worker(lockres, blocking); if (ctl->unblock_action == UNBLOCK_STOP_POST) { mlog(ML_BASTS, "lockres %s, UNBLOCK_STOP_POST\n", lockres->l_name); goto leave; } spin_lock_irqsave(&lockres->l_lock, flags); if ((blocking != lockres->l_blocking) || (level != lockres->l_level)) { /* If this changed underneath us, then we can't drop * it just yet. */ mlog(ML_BASTS, "lockres %s, block=%d:%d, level=%d:%d, " "Recheck\n", lockres->l_name, blocking, lockres->l_blocking, level, lockres->l_level); goto recheck; } downconvert: ctl->requeue = 0; if (lockres->l_ops->flags & LOCK_TYPE_USES_LVB) { if (lockres->l_level == DLM_LOCK_EX) set_lvb = 1; /* * We only set the lvb if the lock has been fully * refreshed - otherwise we risk setting stale * data. Otherwise, there's no need to actually clear * out the lvb here as it's value is still valid. */ if (set_lvb && !(lockres->l_flags & OCFS2_LOCK_NEEDS_REFRESH)) lockres->l_ops->set_lvb(lockres); } gen = ocfs2_prepare_downconvert(lockres, new_level); spin_unlock_irqrestore(&lockres->l_lock, flags); ret = ocfs2_downconvert_lock(osb, lockres, new_level, set_lvb, gen); /* The dlm lock convert is being cancelled in background, * ocfs2_cancel_convert() is asynchronous in fs/dlm, * requeue it, try again later. */ if (ret == -EBUSY) { ctl->requeue = 1; mlog(ML_BASTS, "lockres %s, ReQ: Downconvert busy\n", lockres->l_name); ret = 0; msleep(20); } leave: if (ret) mlog_errno(ret); return ret; leave_requeue: spin_unlock_irqrestore(&lockres->l_lock, flags); ctl->requeue = 1; return 0; } static int ocfs2_data_convert_worker(struct ocfs2_lock_res *lockres, int blocking) { struct inode *inode; struct address_space *mapping; struct ocfs2_inode_info *oi; inode = ocfs2_lock_res_inode(lockres); mapping = inode->i_mapping; if (S_ISDIR(inode->i_mode)) { oi = OCFS2_I(inode); oi->ip_dir_lock_gen++; mlog(0, "generation: %u\n", oi->ip_dir_lock_gen); goto out_forget; } if (!S_ISREG(inode->i_mode)) goto out; /* * We need this before the filemap_fdatawrite() so that it can * transfer the dirty bit from the PTE to the * page. Unfortunately this means that even for EX->PR * downconverts, we'll lose our mappings and have to build * them up again. */ unmap_mapping_range(mapping, 0, 0, 0); if (filemap_fdatawrite(mapping)) { mlog(ML_ERROR, "Could not sync inode %llu for downconvert!", (unsigned long long)OCFS2_I(inode)->ip_blkno); } sync_mapping_buffers(mapping); if (blocking == DLM_LOCK_EX) { truncate_inode_pages(mapping, 0); } else { /* We only need to wait on the I/O if we're not also * truncating pages because truncate_inode_pages waits * for us above. We don't truncate pages if we're * blocking anything < EXMODE because we want to keep * them around in that case. */ filemap_fdatawait(mapping); } out_forget: forget_all_cached_acls(inode); out: return UNBLOCK_CONTINUE; } static int ocfs2_ci_checkpointed(struct ocfs2_caching_info *ci, struct ocfs2_lock_res *lockres, int new_level) { int checkpointed = ocfs2_ci_fully_checkpointed(ci); BUG_ON(new_level != DLM_LOCK_NL && new_level != DLM_LOCK_PR); BUG_ON(lockres->l_level != DLM_LOCK_EX && !checkpointed); if (checkpointed) return 1; ocfs2_start_checkpoint(OCFS2_SB(ocfs2_metadata_cache_get_super(ci))); return 0; } static int ocfs2_check_meta_downconvert(struct ocfs2_lock_res *lockres, int new_level) { struct inode *inode = ocfs2_lock_res_inode(lockres); return ocfs2_ci_checkpointed(INODE_CACHE(inode), lockres, new_level); } static void ocfs2_set_meta_lvb(struct ocfs2_lock_res *lockres) { struct inode *inode = ocfs2_lock_res_inode(lockres); __ocfs2_stuff_meta_lvb(inode); } /* * Does the final reference drop on our dentry lock. Right now this * happens in the downconvert thread, but we could choose to simplify the * dlmglue API and push these off to the ocfs2_wq in the future. */ static void ocfs2_dentry_post_unlock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { struct ocfs2_dentry_lock *dl = ocfs2_lock_res_dl(lockres); ocfs2_dentry_lock_put(osb, dl); } /* * d_delete() matching dentries before the lock downconvert. * * At this point, any process waiting to destroy the * dentry_lock due to last ref count is stopped by the * OCFS2_LOCK_QUEUED flag. * * We have two potential problems * * 1) If we do the last reference drop on our dentry_lock (via dput) * we'll wind up in ocfs2_release_dentry_lock(), waiting on * the downconvert to finish. Instead we take an elevated * reference and push the drop until after we've completed our * unblock processing. * * 2) There might be another process with a final reference, * waiting on us to finish processing. If this is the case, we * detect it and exit out - there's no more dentries anyway. */ static int ocfs2_dentry_convert_worker(struct ocfs2_lock_res *lockres, int blocking) { struct ocfs2_dentry_lock *dl = ocfs2_lock_res_dl(lockres); struct ocfs2_inode_info *oi = OCFS2_I(dl->dl_inode); struct dentry *dentry; unsigned long flags; int extra_ref = 0; /* * This node is blocking another node from getting a read * lock. This happens when we've renamed within a * directory. We've forced the other nodes to d_delete(), but * we never actually dropped our lock because it's still * valid. The downconvert code will retain a PR for this node, * so there's no further work to do. */ if (blocking == DLM_LOCK_PR) return UNBLOCK_CONTINUE; /* * Mark this inode as potentially orphaned. The code in * ocfs2_delete_inode() will figure out whether it actually * needs to be freed or not. */ spin_lock(&oi->ip_lock); oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; spin_unlock(&oi->ip_lock); /* * Yuck. We need to make sure however that the check of * OCFS2_LOCK_FREEING and the extra reference are atomic with * respect to a reference decrement or the setting of that * flag. */ spin_lock_irqsave(&lockres->l_lock, flags); spin_lock(&dentry_attach_lock); if (!(lockres->l_flags & OCFS2_LOCK_FREEING) && dl->dl_count) { dl->dl_count++; extra_ref = 1; } spin_unlock(&dentry_attach_lock); spin_unlock_irqrestore(&lockres->l_lock, flags); mlog(0, "extra_ref = %d\n", extra_ref); /* * We have a process waiting on us in ocfs2_dentry_iput(), * which means we can't have any more outstanding * aliases. There's no need to do any more work. */ if (!extra_ref) return UNBLOCK_CONTINUE; spin_lock(&dentry_attach_lock); while (1) { dentry = ocfs2_find_local_alias(dl->dl_inode, dl->dl_parent_blkno, 1); if (!dentry) break; spin_unlock(&dentry_attach_lock); if (S_ISDIR(dl->dl_inode->i_mode)) shrink_dcache_parent(dentry); mlog(0, "d_delete(%pd);\n", dentry); /* * The following dcache calls may do an * iput(). Normally we don't want that from the * downconverting thread, but in this case it's ok * because the requesting node already has an * exclusive lock on the inode, so it can't be queued * for a downconvert. */ d_delete(dentry); dput(dentry); spin_lock(&dentry_attach_lock); } spin_unlock(&dentry_attach_lock); /* * If we are the last holder of this dentry lock, there is no * reason to downconvert so skip straight to the unlock. */ if (dl->dl_count == 1) return UNBLOCK_STOP_POST; return UNBLOCK_CONTINUE_POST; } static int ocfs2_check_refcount_downconvert(struct ocfs2_lock_res *lockres, int new_level) { struct ocfs2_refcount_tree *tree = ocfs2_lock_res_refcount_tree(lockres); return ocfs2_ci_checkpointed(&tree->rf_ci, lockres, new_level); } static int ocfs2_refcount_convert_worker(struct ocfs2_lock_res *lockres, int blocking) { struct ocfs2_refcount_tree *tree = ocfs2_lock_res_refcount_tree(lockres); ocfs2_metadata_cache_purge(&tree->rf_ci); return UNBLOCK_CONTINUE; } static void ocfs2_set_qinfo_lvb(struct ocfs2_lock_res *lockres) { struct ocfs2_qinfo_lvb *lvb; struct ocfs2_mem_dqinfo *oinfo = ocfs2_lock_res_qinfo(lockres); struct mem_dqinfo *info = sb_dqinfo(oinfo->dqi_gi.dqi_sb, oinfo->dqi_gi.dqi_type); lvb = ocfs2_dlm_lvb(&lockres->l_lksb); lvb->lvb_version = OCFS2_QINFO_LVB_VERSION; lvb->lvb_bgrace = cpu_to_be32(info->dqi_bgrace); lvb->lvb_igrace = cpu_to_be32(info->dqi_igrace); lvb->lvb_syncms = cpu_to_be32(oinfo->dqi_syncms); lvb->lvb_blocks = cpu_to_be32(oinfo->dqi_gi.dqi_blocks); lvb->lvb_free_blk = cpu_to_be32(oinfo->dqi_gi.dqi_free_blk); lvb->lvb_free_entry = cpu_to_be32(oinfo->dqi_gi.dqi_free_entry); } void ocfs2_qinfo_unlock(struct ocfs2_mem_dqinfo *oinfo, int ex) { struct ocfs2_lock_res *lockres = &oinfo->dqi_gqlock; struct ocfs2_super *osb = OCFS2_SB(oinfo->dqi_gi.dqi_sb); int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; if (!ocfs2_is_hard_readonly(osb) && !ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, level); } static int ocfs2_refresh_qinfo(struct ocfs2_mem_dqinfo *oinfo) { struct mem_dqinfo *info = sb_dqinfo(oinfo->dqi_gi.dqi_sb, oinfo->dqi_gi.dqi_type); struct ocfs2_lock_res *lockres = &oinfo->dqi_gqlock; struct ocfs2_qinfo_lvb *lvb = ocfs2_dlm_lvb(&lockres->l_lksb); struct buffer_head *bh = NULL; struct ocfs2_global_disk_dqinfo *gdinfo; int status = 0; if (ocfs2_dlm_lvb_valid(&lockres->l_lksb) && lvb->lvb_version == OCFS2_QINFO_LVB_VERSION) { info->dqi_bgrace = be32_to_cpu(lvb->lvb_bgrace); info->dqi_igrace = be32_to_cpu(lvb->lvb_igrace); oinfo->dqi_syncms = be32_to_cpu(lvb->lvb_syncms); oinfo->dqi_gi.dqi_blocks = be32_to_cpu(lvb->lvb_blocks); oinfo->dqi_gi.dqi_free_blk = be32_to_cpu(lvb->lvb_free_blk); oinfo->dqi_gi.dqi_free_entry = be32_to_cpu(lvb->lvb_free_entry); } else { status = ocfs2_read_quota_phys_block(oinfo->dqi_gqinode, oinfo->dqi_giblk, &bh); if (status) { mlog_errno(status); goto bail; } gdinfo = (struct ocfs2_global_disk_dqinfo *) (bh->b_data + OCFS2_GLOBAL_INFO_OFF); info->dqi_bgrace = le32_to_cpu(gdinfo->dqi_bgrace); info->dqi_igrace = le32_to_cpu(gdinfo->dqi_igrace); oinfo->dqi_syncms = le32_to_cpu(gdinfo->dqi_syncms); oinfo->dqi_gi.dqi_blocks = le32_to_cpu(gdinfo->dqi_blocks); oinfo->dqi_gi.dqi_free_blk = le32_to_cpu(gdinfo->dqi_free_blk); oinfo->dqi_gi.dqi_free_entry = le32_to_cpu(gdinfo->dqi_free_entry); brelse(bh); ocfs2_track_lock_refresh(lockres); } bail: return status; } /* Lock quota info, this function expects at least shared lock on the quota file * so that we can safely refresh quota info from disk. */ int ocfs2_qinfo_lock(struct ocfs2_mem_dqinfo *oinfo, int ex) { struct ocfs2_lock_res *lockres = &oinfo->dqi_gqlock; struct ocfs2_super *osb = OCFS2_SB(oinfo->dqi_gi.dqi_sb); int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; int status = 0; /* On RO devices, locking really isn't needed... */ if (ocfs2_is_hard_readonly(osb)) { if (ex) status = -EROFS; goto bail; } if (ocfs2_mount_local(osb)) goto bail; status = ocfs2_cluster_lock(osb, lockres, level, 0, 0); if (status < 0) { mlog_errno(status); goto bail; } if (!ocfs2_should_refresh_lock_res(lockres)) goto bail; /* OK, we have the lock but we need to refresh the quota info */ status = ocfs2_refresh_qinfo(oinfo); if (status) ocfs2_qinfo_unlock(oinfo, ex); ocfs2_complete_lock_res_refresh(lockres, status); bail: return status; } int ocfs2_refcount_lock(struct ocfs2_refcount_tree *ref_tree, int ex) { int status; int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_lock_res *lockres = &ref_tree->rf_lockres; struct ocfs2_super *osb = lockres->l_priv; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (ocfs2_mount_local(osb)) return 0; status = ocfs2_cluster_lock(osb, lockres, level, 0, 0); if (status < 0) mlog_errno(status); return status; } void ocfs2_refcount_unlock(struct ocfs2_refcount_tree *ref_tree, int ex) { int level = ex ? DLM_LOCK_EX : DLM_LOCK_PR; struct ocfs2_lock_res *lockres = &ref_tree->rf_lockres; struct ocfs2_super *osb = lockres->l_priv; if (!ocfs2_mount_local(osb)) ocfs2_cluster_unlock(osb, lockres, level); } static void ocfs2_process_blocked_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { int status; struct ocfs2_unblock_ctl ctl = {0, 0,}; unsigned long flags; /* Our reference to the lockres in this function can be * considered valid until we remove the OCFS2_LOCK_QUEUED * flag. */ BUG_ON(!lockres); BUG_ON(!lockres->l_ops); mlog(ML_BASTS, "lockres %s blocked\n", lockres->l_name); /* Detect whether a lock has been marked as going away while * the downconvert thread was processing other things. A lock can * still be marked with OCFS2_LOCK_FREEING after this check, * but short circuiting here will still save us some * performance. */ spin_lock_irqsave(&lockres->l_lock, flags); if (lockres->l_flags & OCFS2_LOCK_FREEING) goto unqueue; spin_unlock_irqrestore(&lockres->l_lock, flags); status = ocfs2_unblock_lock(osb, lockres, &ctl); if (status < 0) mlog_errno(status); spin_lock_irqsave(&lockres->l_lock, flags); unqueue: if (lockres->l_flags & OCFS2_LOCK_FREEING || !ctl.requeue) { lockres_clear_flags(lockres, OCFS2_LOCK_QUEUED); } else ocfs2_schedule_blocked_lock(osb, lockres); mlog(ML_BASTS, "lockres %s, requeue = %s.\n", lockres->l_name, ctl.requeue ? "yes" : "no"); spin_unlock_irqrestore(&lockres->l_lock, flags); if (ctl.unblock_action != UNBLOCK_CONTINUE && lockres->l_ops->post_unlock) lockres->l_ops->post_unlock(osb, lockres); } static void ocfs2_schedule_blocked_lock(struct ocfs2_super *osb, struct ocfs2_lock_res *lockres) { unsigned long flags; assert_spin_locked(&lockres->l_lock); if (lockres->l_flags & OCFS2_LOCK_FREEING) { /* Do not schedule a lock for downconvert when it's on * the way to destruction - any nodes wanting access * to the resource will get it soon. */ mlog(ML_BASTS, "lockres %s won't be scheduled: flags 0x%lx\n", lockres->l_name, lockres->l_flags); return; } lockres_or_flags(lockres, OCFS2_LOCK_QUEUED); spin_lock_irqsave(&osb->dc_task_lock, flags); if (list_empty(&lockres->l_blocked_list)) { list_add_tail(&lockres->l_blocked_list, &osb->blocked_lock_list); osb->blocked_lock_count++; } spin_unlock_irqrestore(&osb->dc_task_lock, flags); } static void ocfs2_downconvert_thread_do_work(struct ocfs2_super *osb) { unsigned long processed; unsigned long flags; struct ocfs2_lock_res *lockres; spin_lock_irqsave(&osb->dc_task_lock, flags); /* grab this early so we know to try again if a state change and * wake happens part-way through our work */ osb->dc_work_sequence = osb->dc_wake_sequence; processed = osb->blocked_lock_count; /* * blocked lock processing in this loop might call iput which can * remove items off osb->blocked_lock_list. Downconvert up to * 'processed' number of locks, but stop short if we had some * removed in ocfs2_mark_lockres_freeing when downconverting. */ while (processed && !list_empty(&osb->blocked_lock_list)) { lockres = list_entry(osb->blocked_lock_list.next, struct ocfs2_lock_res, l_blocked_list); list_del_init(&lockres->l_blocked_list); osb->blocked_lock_count--; spin_unlock_irqrestore(&osb->dc_task_lock, flags); BUG_ON(!processed); processed--; ocfs2_process_blocked_lock(osb, lockres); spin_lock_irqsave(&osb->dc_task_lock, flags); } spin_unlock_irqrestore(&osb->dc_task_lock, flags); } static int ocfs2_downconvert_thread_lists_empty(struct ocfs2_super *osb) { int empty = 0; unsigned long flags; spin_lock_irqsave(&osb->dc_task_lock, flags); if (list_empty(&osb->blocked_lock_list)) empty = 1; spin_unlock_irqrestore(&osb->dc_task_lock, flags); return empty; } static int ocfs2_downconvert_thread_should_wake(struct ocfs2_super *osb) { int should_wake = 0; unsigned long flags; spin_lock_irqsave(&osb->dc_task_lock, flags); if (osb->dc_work_sequence != osb->dc_wake_sequence) should_wake = 1; spin_unlock_irqrestore(&osb->dc_task_lock, flags); return should_wake; } static int ocfs2_downconvert_thread(void *arg) { struct ocfs2_super *osb = arg; /* only quit once we've been asked to stop and there is no more * work available */ while (!(kthread_should_stop() && ocfs2_downconvert_thread_lists_empty(osb))) { wait_event_interruptible(osb->dc_event, ocfs2_downconvert_thread_should_wake(osb) || kthread_should_stop()); mlog(0, "downconvert_thread: awoken\n"); ocfs2_downconvert_thread_do_work(osb); } osb->dc_task = NULL; return 0; } void ocfs2_wake_downconvert_thread(struct ocfs2_super *osb) { unsigned long flags; spin_lock_irqsave(&osb->dc_task_lock, flags); /* make sure the voting thread gets a swipe at whatever changes * the caller may have made to the voting state */ osb->dc_wake_sequence++; spin_unlock_irqrestore(&osb->dc_task_lock, flags); wake_up(&osb->dc_event); }
linux-master
fs/ocfs2/dlmglue.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dcache.c * * dentry cache handling code * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/namei.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dcache.h" #include "dlmglue.h" #include "file.h" #include "inode.h" #include "ocfs2_trace.h" void ocfs2_dentry_attach_gen(struct dentry *dentry) { unsigned long gen = OCFS2_I(d_inode(dentry->d_parent))->ip_dir_lock_gen; BUG_ON(d_inode(dentry)); dentry->d_fsdata = (void *)gen; } static int ocfs2_dentry_revalidate(struct dentry *dentry, unsigned int flags) { struct inode *inode; int ret = 0; /* if all else fails, just return false */ struct ocfs2_super *osb; if (flags & LOOKUP_RCU) return -ECHILD; inode = d_inode(dentry); osb = OCFS2_SB(dentry->d_sb); trace_ocfs2_dentry_revalidate(dentry, dentry->d_name.len, dentry->d_name.name); /* For a negative dentry - * check the generation number of the parent and compare with the * one stored in the inode. */ if (inode == NULL) { unsigned long gen = (unsigned long) dentry->d_fsdata; unsigned long pgen; spin_lock(&dentry->d_lock); pgen = OCFS2_I(d_inode(dentry->d_parent))->ip_dir_lock_gen; spin_unlock(&dentry->d_lock); trace_ocfs2_dentry_revalidate_negative(dentry->d_name.len, dentry->d_name.name, pgen, gen); if (gen != pgen) goto bail; goto valid; } BUG_ON(!osb); if (inode == osb->root_inode || is_bad_inode(inode)) goto bail; spin_lock(&OCFS2_I(inode)->ip_lock); /* did we or someone else delete this inode? */ if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { spin_unlock(&OCFS2_I(inode)->ip_lock); trace_ocfs2_dentry_revalidate_delete( (unsigned long long)OCFS2_I(inode)->ip_blkno); goto bail; } spin_unlock(&OCFS2_I(inode)->ip_lock); /* * We don't need a cluster lock to test this because once an * inode nlink hits zero, it never goes back. */ if (inode->i_nlink == 0) { trace_ocfs2_dentry_revalidate_orphaned( (unsigned long long)OCFS2_I(inode)->ip_blkno, S_ISDIR(inode->i_mode)); goto bail; } /* * If the last lookup failed to create dentry lock, let us * redo it. */ if (!dentry->d_fsdata) { trace_ocfs2_dentry_revalidate_nofsdata( (unsigned long long)OCFS2_I(inode)->ip_blkno); goto bail; } valid: ret = 1; bail: trace_ocfs2_dentry_revalidate_ret(ret); return ret; } static int ocfs2_match_dentry(struct dentry *dentry, u64 parent_blkno, int skip_unhashed) { struct inode *parent; /* * ocfs2_lookup() does a d_splice_alias() _before_ attaching * to the lock data, so we skip those here, otherwise * ocfs2_dentry_attach_lock() will get its original dentry * back. */ if (!dentry->d_fsdata) return 0; if (!dentry->d_parent) return 0; if (skip_unhashed && d_unhashed(dentry)) return 0; parent = d_inode(dentry->d_parent); /* Negative parent dentry? */ if (!parent) return 0; /* Name is in a different directory. */ if (OCFS2_I(parent)->ip_blkno != parent_blkno) return 0; return 1; } /* * Walk the inode alias list, and find a dentry which has a given * parent. ocfs2_dentry_attach_lock() wants to find _any_ alias as it * is looking for a dentry_lock reference. The downconvert thread is * looking to unhash aliases, so we allow it to skip any that already * have that property. */ struct dentry *ocfs2_find_local_alias(struct inode *inode, u64 parent_blkno, int skip_unhashed) { struct dentry *dentry; spin_lock(&inode->i_lock); hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { spin_lock(&dentry->d_lock); if (ocfs2_match_dentry(dentry, parent_blkno, skip_unhashed)) { trace_ocfs2_find_local_alias(dentry->d_name.len, dentry->d_name.name); dget_dlock(dentry); spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); return dentry; } spin_unlock(&dentry->d_lock); } spin_unlock(&inode->i_lock); return NULL; } DEFINE_SPINLOCK(dentry_attach_lock); /* * Attach this dentry to a cluster lock. * * Dentry locks cover all links in a given directory to a particular * inode. We do this so that ocfs2 can build a lock name which all * nodes in the cluster can agree on at all times. Shoving full names * in the cluster lock won't work due to size restrictions. Covering * links inside of a directory is a good compromise because it still * allows us to use the parent directory lock to synchronize * operations. * * Call this function with the parent dir semaphore and the parent dir * cluster lock held. * * The dir semaphore will protect us from having to worry about * concurrent processes on our node trying to attach a lock at the * same time. * * The dir cluster lock (held at either PR or EX mode) protects us * from unlink and rename on other nodes. * * A dput() can happen asynchronously due to pruning, so we cover * attaching and detaching the dentry lock with a * dentry_attach_lock. * * A node which has done lookup on a name retains a protected read * lock until final dput. If the user requests and unlink or rename, * the protected read is upgraded to an exclusive lock. Other nodes * who have seen the dentry will then be informed that they need to * downgrade their lock, which will involve d_delete on the * dentry. This happens in ocfs2_dentry_convert_worker(). */ int ocfs2_dentry_attach_lock(struct dentry *dentry, struct inode *inode, u64 parent_blkno) { int ret; struct dentry *alias; struct ocfs2_dentry_lock *dl = dentry->d_fsdata; trace_ocfs2_dentry_attach_lock(dentry->d_name.len, dentry->d_name.name, (unsigned long long)parent_blkno, dl); /* * Negative dentry. We ignore these for now. * * XXX: Could we can improve ocfs2_dentry_revalidate() by * tracking these? */ if (!inode) return 0; if (d_really_is_negative(dentry) && dentry->d_fsdata) { /* Converting a negative dentry to positive Clear dentry->d_fsdata */ dentry->d_fsdata = dl = NULL; } if (dl) { mlog_bug_on_msg(dl->dl_parent_blkno != parent_blkno, " \"%pd\": old parent: %llu, new: %llu\n", dentry, (unsigned long long)parent_blkno, (unsigned long long)dl->dl_parent_blkno); return 0; } alias = ocfs2_find_local_alias(inode, parent_blkno, 0); if (alias) { /* * Great, an alias exists, which means we must have a * dentry lock already. We can just grab the lock off * the alias and add it to the list. * * We're depending here on the fact that this dentry * was found and exists in the dcache and so must have * a reference to the dentry_lock because we can't * race creates. Final dput() cannot happen on it * since we have it pinned, so our reference is safe. */ dl = alias->d_fsdata; mlog_bug_on_msg(!dl, "parent %llu, ino %llu\n", (unsigned long long)parent_blkno, (unsigned long long)OCFS2_I(inode)->ip_blkno); mlog_bug_on_msg(dl->dl_parent_blkno != parent_blkno, " \"%pd\": old parent: %llu, new: %llu\n", dentry, (unsigned long long)parent_blkno, (unsigned long long)dl->dl_parent_blkno); trace_ocfs2_dentry_attach_lock_found(dl->dl_lockres.l_name, (unsigned long long)parent_blkno, (unsigned long long)OCFS2_I(inode)->ip_blkno); goto out_attach; } /* * There are no other aliases */ dl = kmalloc(sizeof(*dl), GFP_NOFS); if (!dl) { ret = -ENOMEM; mlog_errno(ret); return ret; } dl->dl_count = 0; /* * Does this have to happen below, for all attaches, in case * the struct inode gets blown away by the downconvert thread? */ dl->dl_inode = igrab(inode); dl->dl_parent_blkno = parent_blkno; ocfs2_dentry_lock_res_init(dl, parent_blkno, inode); out_attach: spin_lock(&dentry_attach_lock); if (unlikely(dentry->d_fsdata && !alias)) { /* d_fsdata is set by a racing thread which is doing * the same thing as this thread is doing. Leave the racing * thread going ahead and we return here. */ spin_unlock(&dentry_attach_lock); iput(dl->dl_inode); ocfs2_lock_res_free(&dl->dl_lockres); kfree(dl); return 0; } dentry->d_fsdata = dl; dl->dl_count++; spin_unlock(&dentry_attach_lock); /* * This actually gets us our PRMODE level lock. From now on, * we'll have a notification if one of these names is * destroyed on another node. */ ret = ocfs2_dentry_lock(dentry, 0); if (!ret) ocfs2_dentry_unlock(dentry, 0); else mlog_errno(ret); /* * In case of error, manually free the allocation and do the iput(). * We need to do this because error here means no d_instantiate(), * which means iput() will not be called during dput(dentry). */ if (ret < 0 && !alias) { ocfs2_lock_res_free(&dl->dl_lockres); BUG_ON(dl->dl_count != 1); spin_lock(&dentry_attach_lock); dentry->d_fsdata = NULL; spin_unlock(&dentry_attach_lock); kfree(dl); iput(inode); } dput(alias); return ret; } /* * ocfs2_dentry_iput() and friends. * * At this point, our particular dentry is detached from the inodes * alias list, so there's no way that the locking code can find it. * * The interesting stuff happens when we determine that our lock needs * to go away because this is the last subdir alias in the * system. This function needs to handle a couple things: * * 1) Synchronizing lock shutdown with the downconvert threads. This * is already handled for us via the lockres release drop function * called in ocfs2_release_dentry_lock() * * 2) A race may occur when we're doing our lock shutdown and * another process wants to create a new dentry lock. Right now we * let them race, which means that for a very short while, this * node might have two locks on a lock resource. This should be a * problem though because one of them is in the process of being * thrown out. */ static void ocfs2_drop_dentry_lock(struct ocfs2_super *osb, struct ocfs2_dentry_lock *dl) { iput(dl->dl_inode); ocfs2_simple_drop_lockres(osb, &dl->dl_lockres); ocfs2_lock_res_free(&dl->dl_lockres); kfree(dl); } void ocfs2_dentry_lock_put(struct ocfs2_super *osb, struct ocfs2_dentry_lock *dl) { int unlock = 0; BUG_ON(dl->dl_count == 0); spin_lock(&dentry_attach_lock); dl->dl_count--; unlock = !dl->dl_count; spin_unlock(&dentry_attach_lock); if (unlock) ocfs2_drop_dentry_lock(osb, dl); } static void ocfs2_dentry_iput(struct dentry *dentry, struct inode *inode) { struct ocfs2_dentry_lock *dl = dentry->d_fsdata; if (!dl) { /* * No dentry lock is ok if we're disconnected or * unhashed. */ if (!(dentry->d_flags & DCACHE_DISCONNECTED) && !d_unhashed(dentry)) { unsigned long long ino = 0ULL; if (inode) ino = (unsigned long long)OCFS2_I(inode)->ip_blkno; mlog(ML_ERROR, "Dentry is missing cluster lock. " "inode: %llu, d_flags: 0x%x, d_name: %pd\n", ino, dentry->d_flags, dentry); } goto out; } mlog_bug_on_msg(dl->dl_count == 0, "dentry: %pd, count: %u\n", dentry, dl->dl_count); ocfs2_dentry_lock_put(OCFS2_SB(dentry->d_sb), dl); out: iput(inode); } /* * d_move(), but keep the locks in sync. * * When we are done, "dentry" will have the parent dir and name of * "target", which will be thrown away. * * We manually update the lock of "dentry" if need be. * * "target" doesn't have it's dentry lock touched - we allow the later * dput() to handle this for us. * * This is called during ocfs2_rename(), while holding parent * directory locks. The dentries have already been deleted on other * nodes via ocfs2_remote_dentry_delete(). * * Normally, the VFS handles the d_move() for the file system, after * the ->rename() callback. OCFS2 wants to handle this internally, so * the new lock can be created atomically with respect to the cluster. */ void ocfs2_dentry_move(struct dentry *dentry, struct dentry *target, struct inode *old_dir, struct inode *new_dir) { int ret; struct ocfs2_super *osb = OCFS2_SB(old_dir->i_sb); struct inode *inode = d_inode(dentry); /* * Move within the same directory, so the actual lock info won't * change. * * XXX: Is there any advantage to dropping the lock here? */ if (old_dir == new_dir) goto out_move; ocfs2_dentry_lock_put(osb, dentry->d_fsdata); dentry->d_fsdata = NULL; ret = ocfs2_dentry_attach_lock(dentry, inode, OCFS2_I(new_dir)->ip_blkno); if (ret) mlog_errno(ret); out_move: d_move(dentry, target); } const struct dentry_operations ocfs2_dentry_ops = { .d_revalidate = ocfs2_dentry_revalidate, .d_iput = ocfs2_dentry_iput, };
linux-master
fs/ocfs2/dcache.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004, 2005 Oracle. All rights reserved. */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/configfs.h> #include "tcp.h" #include "nodemanager.h" #include "heartbeat.h" #include "masklog.h" #include "sys.h" /* for now we operate under the assertion that there can be only one * cluster active at a time. Changing this will require trickling * cluster references throughout where nodes are looked up */ struct o2nm_cluster *o2nm_single_cluster = NULL; static const char *o2nm_fence_method_desc[O2NM_FENCE_METHODS] = { "reset", /* O2NM_FENCE_RESET */ "panic", /* O2NM_FENCE_PANIC */ }; static inline void o2nm_lock_subsystem(void); static inline void o2nm_unlock_subsystem(void); struct o2nm_node *o2nm_get_node_by_num(u8 node_num) { struct o2nm_node *node = NULL; if (node_num >= O2NM_MAX_NODES || o2nm_single_cluster == NULL) goto out; read_lock(&o2nm_single_cluster->cl_nodes_lock); node = o2nm_single_cluster->cl_nodes[node_num]; if (node) config_item_get(&node->nd_item); read_unlock(&o2nm_single_cluster->cl_nodes_lock); out: return node; } EXPORT_SYMBOL_GPL(o2nm_get_node_by_num); int o2nm_configured_node_map(unsigned long *map, unsigned bytes) { struct o2nm_cluster *cluster = o2nm_single_cluster; BUG_ON(bytes < (sizeof(cluster->cl_nodes_bitmap))); if (cluster == NULL) return -EINVAL; read_lock(&cluster->cl_nodes_lock); bitmap_copy(map, cluster->cl_nodes_bitmap, O2NM_MAX_NODES); read_unlock(&cluster->cl_nodes_lock); return 0; } EXPORT_SYMBOL_GPL(o2nm_configured_node_map); static struct o2nm_node *o2nm_node_ip_tree_lookup(struct o2nm_cluster *cluster, __be32 ip_needle, struct rb_node ***ret_p, struct rb_node **ret_parent) { struct rb_node **p = &cluster->cl_node_ip_tree.rb_node; struct rb_node *parent = NULL; struct o2nm_node *node, *ret = NULL; while (*p) { int cmp; parent = *p; node = rb_entry(parent, struct o2nm_node, nd_ip_node); cmp = memcmp(&ip_needle, &node->nd_ipv4_address, sizeof(ip_needle)); if (cmp < 0) p = &(*p)->rb_left; else if (cmp > 0) p = &(*p)->rb_right; else { ret = node; break; } } if (ret_p != NULL) *ret_p = p; if (ret_parent != NULL) *ret_parent = parent; return ret; } struct o2nm_node *o2nm_get_node_by_ip(__be32 addr) { struct o2nm_node *node = NULL; struct o2nm_cluster *cluster = o2nm_single_cluster; if (cluster == NULL) goto out; read_lock(&cluster->cl_nodes_lock); node = o2nm_node_ip_tree_lookup(cluster, addr, NULL, NULL); if (node) config_item_get(&node->nd_item); read_unlock(&cluster->cl_nodes_lock); out: return node; } EXPORT_SYMBOL_GPL(o2nm_get_node_by_ip); void o2nm_node_put(struct o2nm_node *node) { config_item_put(&node->nd_item); } EXPORT_SYMBOL_GPL(o2nm_node_put); void o2nm_node_get(struct o2nm_node *node) { config_item_get(&node->nd_item); } EXPORT_SYMBOL_GPL(o2nm_node_get); u8 o2nm_this_node(void) { u8 node_num = O2NM_MAX_NODES; if (o2nm_single_cluster && o2nm_single_cluster->cl_has_local) node_num = o2nm_single_cluster->cl_local_node; return node_num; } EXPORT_SYMBOL_GPL(o2nm_this_node); /* node configfs bits */ static struct o2nm_cluster *to_o2nm_cluster(struct config_item *item) { return item ? container_of(to_config_group(item), struct o2nm_cluster, cl_group) : NULL; } static struct o2nm_node *to_o2nm_node(struct config_item *item) { return item ? container_of(item, struct o2nm_node, nd_item) : NULL; } static void o2nm_node_release(struct config_item *item) { struct o2nm_node *node = to_o2nm_node(item); kfree(node); } static ssize_t o2nm_node_num_show(struct config_item *item, char *page) { return sprintf(page, "%d\n", to_o2nm_node(item)->nd_num); } static struct o2nm_cluster *to_o2nm_cluster_from_node(struct o2nm_node *node) { /* through the first node_set .parent * mycluster/nodes/mynode == o2nm_cluster->o2nm_node_group->o2nm_node */ if (node->nd_item.ci_parent) return to_o2nm_cluster(node->nd_item.ci_parent->ci_parent); else return NULL; } enum { O2NM_NODE_ATTR_NUM = 0, O2NM_NODE_ATTR_PORT, O2NM_NODE_ATTR_ADDRESS, }; static ssize_t o2nm_node_num_store(struct config_item *item, const char *page, size_t count) { struct o2nm_node *node = to_o2nm_node(item); struct o2nm_cluster *cluster; unsigned long tmp; char *p = (char *)page; int ret = 0; tmp = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; if (tmp >= O2NM_MAX_NODES) return -ERANGE; /* once we're in the cl_nodes tree networking can look us up by * node number and try to use our address and port attributes * to connect to this node.. make sure that they've been set * before writing the node attribute? */ if (!test_bit(O2NM_NODE_ATTR_ADDRESS, &node->nd_set_attributes) || !test_bit(O2NM_NODE_ATTR_PORT, &node->nd_set_attributes)) return -EINVAL; /* XXX */ o2nm_lock_subsystem(); cluster = to_o2nm_cluster_from_node(node); if (!cluster) { o2nm_unlock_subsystem(); return -EINVAL; } write_lock(&cluster->cl_nodes_lock); if (cluster->cl_nodes[tmp]) ret = -EEXIST; else if (test_and_set_bit(O2NM_NODE_ATTR_NUM, &node->nd_set_attributes)) ret = -EBUSY; else { cluster->cl_nodes[tmp] = node; node->nd_num = tmp; set_bit(tmp, cluster->cl_nodes_bitmap); } write_unlock(&cluster->cl_nodes_lock); o2nm_unlock_subsystem(); if (ret) return ret; return count; } static ssize_t o2nm_node_ipv4_port_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", ntohs(to_o2nm_node(item)->nd_ipv4_port)); } static ssize_t o2nm_node_ipv4_port_store(struct config_item *item, const char *page, size_t count) { struct o2nm_node *node = to_o2nm_node(item); unsigned long tmp; char *p = (char *)page; tmp = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; if (tmp == 0) return -EINVAL; if (tmp >= (u16)-1) return -ERANGE; if (test_and_set_bit(O2NM_NODE_ATTR_PORT, &node->nd_set_attributes)) return -EBUSY; node->nd_ipv4_port = htons(tmp); return count; } static ssize_t o2nm_node_ipv4_address_show(struct config_item *item, char *page) { return sprintf(page, "%pI4\n", &to_o2nm_node(item)->nd_ipv4_address); } static ssize_t o2nm_node_ipv4_address_store(struct config_item *item, const char *page, size_t count) { struct o2nm_node *node = to_o2nm_node(item); struct o2nm_cluster *cluster; int ret, i; struct rb_node **p, *parent; unsigned int octets[4]; __be32 ipv4_addr = 0; ret = sscanf(page, "%3u.%3u.%3u.%3u", &octets[3], &octets[2], &octets[1], &octets[0]); if (ret != 4) return -EINVAL; for (i = 0; i < ARRAY_SIZE(octets); i++) { if (octets[i] > 255) return -ERANGE; be32_add_cpu(&ipv4_addr, octets[i] << (i * 8)); } o2nm_lock_subsystem(); cluster = to_o2nm_cluster_from_node(node); if (!cluster) { o2nm_unlock_subsystem(); return -EINVAL; } ret = 0; write_lock(&cluster->cl_nodes_lock); if (o2nm_node_ip_tree_lookup(cluster, ipv4_addr, &p, &parent)) ret = -EEXIST; else if (test_and_set_bit(O2NM_NODE_ATTR_ADDRESS, &node->nd_set_attributes)) ret = -EBUSY; else { rb_link_node(&node->nd_ip_node, parent, p); rb_insert_color(&node->nd_ip_node, &cluster->cl_node_ip_tree); } write_unlock(&cluster->cl_nodes_lock); o2nm_unlock_subsystem(); if (ret) return ret; memcpy(&node->nd_ipv4_address, &ipv4_addr, sizeof(ipv4_addr)); return count; } static ssize_t o2nm_node_local_show(struct config_item *item, char *page) { return sprintf(page, "%d\n", to_o2nm_node(item)->nd_local); } static ssize_t o2nm_node_local_store(struct config_item *item, const char *page, size_t count) { struct o2nm_node *node = to_o2nm_node(item); struct o2nm_cluster *cluster; unsigned long tmp; char *p = (char *)page; ssize_t ret; tmp = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; tmp = !!tmp; /* boolean of whether this node wants to be local */ /* setting local turns on networking rx for now so we require having * set everything else first */ if (!test_bit(O2NM_NODE_ATTR_ADDRESS, &node->nd_set_attributes) || !test_bit(O2NM_NODE_ATTR_NUM, &node->nd_set_attributes) || !test_bit(O2NM_NODE_ATTR_PORT, &node->nd_set_attributes)) return -EINVAL; /* XXX */ o2nm_lock_subsystem(); cluster = to_o2nm_cluster_from_node(node); if (!cluster) { ret = -EINVAL; goto out; } /* the only failure case is trying to set a new local node * when a different one is already set */ if (tmp && tmp == cluster->cl_has_local && cluster->cl_local_node != node->nd_num) { ret = -EBUSY; goto out; } /* bring up the rx thread if we're setting the new local node. */ if (tmp && !cluster->cl_has_local) { ret = o2net_start_listening(node); if (ret) goto out; } if (!tmp && cluster->cl_has_local && cluster->cl_local_node == node->nd_num) { o2net_stop_listening(node); cluster->cl_local_node = O2NM_INVALID_NODE_NUM; } node->nd_local = tmp; if (node->nd_local) { cluster->cl_has_local = tmp; cluster->cl_local_node = node->nd_num; } ret = count; out: o2nm_unlock_subsystem(); return ret; } CONFIGFS_ATTR(o2nm_node_, num); CONFIGFS_ATTR(o2nm_node_, ipv4_port); CONFIGFS_ATTR(o2nm_node_, ipv4_address); CONFIGFS_ATTR(o2nm_node_, local); static struct configfs_attribute *o2nm_node_attrs[] = { &o2nm_node_attr_num, &o2nm_node_attr_ipv4_port, &o2nm_node_attr_ipv4_address, &o2nm_node_attr_local, NULL, }; static struct configfs_item_operations o2nm_node_item_ops = { .release = o2nm_node_release, }; static const struct config_item_type o2nm_node_type = { .ct_item_ops = &o2nm_node_item_ops, .ct_attrs = o2nm_node_attrs, .ct_owner = THIS_MODULE, }; /* node set */ struct o2nm_node_group { struct config_group ns_group; /* some stuff? */ }; #if 0 static struct o2nm_node_group *to_o2nm_node_group(struct config_group *group) { return group ? container_of(group, struct o2nm_node_group, ns_group) : NULL; } #endif static ssize_t o2nm_cluster_attr_write(const char *page, ssize_t count, unsigned int *val) { unsigned long tmp; char *p = (char *)page; tmp = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; if (tmp == 0) return -EINVAL; if (tmp >= (u32)-1) return -ERANGE; *val = tmp; return count; } static ssize_t o2nm_cluster_idle_timeout_ms_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_o2nm_cluster(item)->cl_idle_timeout_ms); } static ssize_t o2nm_cluster_idle_timeout_ms_store(struct config_item *item, const char *page, size_t count) { struct o2nm_cluster *cluster = to_o2nm_cluster(item); ssize_t ret; unsigned int val; ret = o2nm_cluster_attr_write(page, count, &val); if (ret > 0) { if (cluster->cl_idle_timeout_ms != val && o2net_num_connected_peers()) { mlog(ML_NOTICE, "o2net: cannot change idle timeout after " "the first peer has agreed to it." " %d connected peers\n", o2net_num_connected_peers()); ret = -EINVAL; } else if (val <= cluster->cl_keepalive_delay_ms) { mlog(ML_NOTICE, "o2net: idle timeout must be larger " "than keepalive delay\n"); ret = -EINVAL; } else { cluster->cl_idle_timeout_ms = val; } } return ret; } static ssize_t o2nm_cluster_keepalive_delay_ms_show( struct config_item *item, char *page) { return sprintf(page, "%u\n", to_o2nm_cluster(item)->cl_keepalive_delay_ms); } static ssize_t o2nm_cluster_keepalive_delay_ms_store( struct config_item *item, const char *page, size_t count) { struct o2nm_cluster *cluster = to_o2nm_cluster(item); ssize_t ret; unsigned int val; ret = o2nm_cluster_attr_write(page, count, &val); if (ret > 0) { if (cluster->cl_keepalive_delay_ms != val && o2net_num_connected_peers()) { mlog(ML_NOTICE, "o2net: cannot change keepalive delay after" " the first peer has agreed to it." " %d connected peers\n", o2net_num_connected_peers()); ret = -EINVAL; } else if (val >= cluster->cl_idle_timeout_ms) { mlog(ML_NOTICE, "o2net: keepalive delay must be " "smaller than idle timeout\n"); ret = -EINVAL; } else { cluster->cl_keepalive_delay_ms = val; } } return ret; } static ssize_t o2nm_cluster_reconnect_delay_ms_show( struct config_item *item, char *page) { return sprintf(page, "%u\n", to_o2nm_cluster(item)->cl_reconnect_delay_ms); } static ssize_t o2nm_cluster_reconnect_delay_ms_store( struct config_item *item, const char *page, size_t count) { return o2nm_cluster_attr_write(page, count, &to_o2nm_cluster(item)->cl_reconnect_delay_ms); } static ssize_t o2nm_cluster_fence_method_show( struct config_item *item, char *page) { struct o2nm_cluster *cluster = to_o2nm_cluster(item); ssize_t ret = 0; if (cluster) ret = sprintf(page, "%s\n", o2nm_fence_method_desc[cluster->cl_fence_method]); return ret; } static ssize_t o2nm_cluster_fence_method_store( struct config_item *item, const char *page, size_t count) { unsigned int i; if (page[count - 1] != '\n') goto bail; for (i = 0; i < O2NM_FENCE_METHODS; ++i) { if (count != strlen(o2nm_fence_method_desc[i]) + 1) continue; if (strncasecmp(page, o2nm_fence_method_desc[i], count - 1)) continue; if (to_o2nm_cluster(item)->cl_fence_method != i) { printk(KERN_INFO "ocfs2: Changing fence method to %s\n", o2nm_fence_method_desc[i]); to_o2nm_cluster(item)->cl_fence_method = i; } return count; } bail: return -EINVAL; } CONFIGFS_ATTR(o2nm_cluster_, idle_timeout_ms); CONFIGFS_ATTR(o2nm_cluster_, keepalive_delay_ms); CONFIGFS_ATTR(o2nm_cluster_, reconnect_delay_ms); CONFIGFS_ATTR(o2nm_cluster_, fence_method); static struct configfs_attribute *o2nm_cluster_attrs[] = { &o2nm_cluster_attr_idle_timeout_ms, &o2nm_cluster_attr_keepalive_delay_ms, &o2nm_cluster_attr_reconnect_delay_ms, &o2nm_cluster_attr_fence_method, NULL, }; static struct config_item *o2nm_node_group_make_item(struct config_group *group, const char *name) { struct o2nm_node *node = NULL; if (strlen(name) > O2NM_MAX_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); node = kzalloc(sizeof(struct o2nm_node), GFP_KERNEL); if (node == NULL) return ERR_PTR(-ENOMEM); strcpy(node->nd_name, name); /* use item.ci_namebuf instead? */ config_item_init_type_name(&node->nd_item, name, &o2nm_node_type); spin_lock_init(&node->nd_lock); mlog(ML_CLUSTER, "o2nm: Registering node %s\n", name); return &node->nd_item; } static void o2nm_node_group_drop_item(struct config_group *group, struct config_item *item) { struct o2nm_node *node = to_o2nm_node(item); struct o2nm_cluster *cluster = to_o2nm_cluster(group->cg_item.ci_parent); if (cluster->cl_nodes[node->nd_num] == node) { o2net_disconnect_node(node); if (cluster->cl_has_local && (cluster->cl_local_node == node->nd_num)) { cluster->cl_has_local = 0; cluster->cl_local_node = O2NM_INVALID_NODE_NUM; o2net_stop_listening(node); } } /* XXX call into net to stop this node from trading messages */ write_lock(&cluster->cl_nodes_lock); /* XXX sloppy */ if (node->nd_ipv4_address) rb_erase(&node->nd_ip_node, &cluster->cl_node_ip_tree); /* nd_num might be 0 if the node number hasn't been set.. */ if (cluster->cl_nodes[node->nd_num] == node) { cluster->cl_nodes[node->nd_num] = NULL; clear_bit(node->nd_num, cluster->cl_nodes_bitmap); } write_unlock(&cluster->cl_nodes_lock); mlog(ML_CLUSTER, "o2nm: Unregistered node %s\n", config_item_name(&node->nd_item)); config_item_put(item); } static struct configfs_group_operations o2nm_node_group_group_ops = { .make_item = o2nm_node_group_make_item, .drop_item = o2nm_node_group_drop_item, }; static const struct config_item_type o2nm_node_group_type = { .ct_group_ops = &o2nm_node_group_group_ops, .ct_owner = THIS_MODULE, }; /* cluster */ static void o2nm_cluster_release(struct config_item *item) { struct o2nm_cluster *cluster = to_o2nm_cluster(item); kfree(cluster); } static struct configfs_item_operations o2nm_cluster_item_ops = { .release = o2nm_cluster_release, }; static const struct config_item_type o2nm_cluster_type = { .ct_item_ops = &o2nm_cluster_item_ops, .ct_attrs = o2nm_cluster_attrs, .ct_owner = THIS_MODULE, }; /* cluster set */ struct o2nm_cluster_group { struct configfs_subsystem cs_subsys; /* some stuff? */ }; #if 0 static struct o2nm_cluster_group *to_o2nm_cluster_group(struct config_group *group) { return group ? container_of(to_configfs_subsystem(group), struct o2nm_cluster_group, cs_subsys) : NULL; } #endif static struct config_group *o2nm_cluster_group_make_group(struct config_group *group, const char *name) { struct o2nm_cluster *cluster = NULL; struct o2nm_node_group *ns = NULL; struct config_group *o2hb_group = NULL, *ret = NULL; /* this runs under the parent dir's i_rwsem; there can be only * one caller in here at a time */ if (o2nm_single_cluster) return ERR_PTR(-ENOSPC); cluster = kzalloc(sizeof(struct o2nm_cluster), GFP_KERNEL); ns = kzalloc(sizeof(struct o2nm_node_group), GFP_KERNEL); o2hb_group = o2hb_alloc_hb_set(); if (cluster == NULL || ns == NULL || o2hb_group == NULL) goto out; config_group_init_type_name(&cluster->cl_group, name, &o2nm_cluster_type); configfs_add_default_group(&ns->ns_group, &cluster->cl_group); config_group_init_type_name(&ns->ns_group, "node", &o2nm_node_group_type); configfs_add_default_group(o2hb_group, &cluster->cl_group); rwlock_init(&cluster->cl_nodes_lock); cluster->cl_node_ip_tree = RB_ROOT; cluster->cl_reconnect_delay_ms = O2NET_RECONNECT_DELAY_MS_DEFAULT; cluster->cl_idle_timeout_ms = O2NET_IDLE_TIMEOUT_MS_DEFAULT; cluster->cl_keepalive_delay_ms = O2NET_KEEPALIVE_DELAY_MS_DEFAULT; cluster->cl_fence_method = O2NM_FENCE_RESET; ret = &cluster->cl_group; o2nm_single_cluster = cluster; out: if (ret == NULL) { kfree(cluster); kfree(ns); o2hb_free_hb_set(o2hb_group); ret = ERR_PTR(-ENOMEM); } return ret; } static void o2nm_cluster_group_drop_item(struct config_group *group, struct config_item *item) { struct o2nm_cluster *cluster = to_o2nm_cluster(item); BUG_ON(o2nm_single_cluster != cluster); o2nm_single_cluster = NULL; configfs_remove_default_groups(&cluster->cl_group); config_item_put(item); } static struct configfs_group_operations o2nm_cluster_group_group_ops = { .make_group = o2nm_cluster_group_make_group, .drop_item = o2nm_cluster_group_drop_item, }; static const struct config_item_type o2nm_cluster_group_type = { .ct_group_ops = &o2nm_cluster_group_group_ops, .ct_owner = THIS_MODULE, }; static struct o2nm_cluster_group o2nm_cluster_group = { .cs_subsys = { .su_group = { .cg_item = { .ci_namebuf = "cluster", .ci_type = &o2nm_cluster_group_type, }, }, }, }; static inline void o2nm_lock_subsystem(void) { mutex_lock(&o2nm_cluster_group.cs_subsys.su_mutex); } static inline void o2nm_unlock_subsystem(void) { mutex_unlock(&o2nm_cluster_group.cs_subsys.su_mutex); } int o2nm_depend_item(struct config_item *item) { return configfs_depend_item(&o2nm_cluster_group.cs_subsys, item); } void o2nm_undepend_item(struct config_item *item) { configfs_undepend_item(item); } int o2nm_depend_this_node(void) { int ret = 0; struct o2nm_node *local_node; local_node = o2nm_get_node_by_num(o2nm_this_node()); if (!local_node) { ret = -EINVAL; goto out; } ret = o2nm_depend_item(&local_node->nd_item); o2nm_node_put(local_node); out: return ret; } void o2nm_undepend_this_node(void) { struct o2nm_node *local_node; local_node = o2nm_get_node_by_num(o2nm_this_node()); BUG_ON(!local_node); o2nm_undepend_item(&local_node->nd_item); o2nm_node_put(local_node); } static void __exit exit_o2nm(void) { /* XXX sync with hb callbacks and shut down hb? */ o2net_unregister_hb_callbacks(); configfs_unregister_subsystem(&o2nm_cluster_group.cs_subsys); o2cb_sys_shutdown(); o2net_exit(); o2hb_exit(); } static int __init init_o2nm(void) { int ret; o2hb_init(); ret = o2net_init(); if (ret) goto out_o2hb; ret = o2net_register_hb_callbacks(); if (ret) goto out_o2net; config_group_init(&o2nm_cluster_group.cs_subsys.su_group); mutex_init(&o2nm_cluster_group.cs_subsys.su_mutex); ret = configfs_register_subsystem(&o2nm_cluster_group.cs_subsys); if (ret) { printk(KERN_ERR "nodemanager: Registration returned %d\n", ret); goto out_callbacks; } ret = o2cb_sys_init(); if (!ret) goto out; configfs_unregister_subsystem(&o2nm_cluster_group.cs_subsys); out_callbacks: o2net_unregister_hb_callbacks(); out_o2net: o2net_exit(); out_o2hb: o2hb_exit(); out: return ret; } MODULE_AUTHOR("Oracle"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("OCFS2 cluster management"); module_init(init_o2nm) module_exit(exit_o2nm)
linux-master
fs/ocfs2/cluster/nodemanager.c
// SPDX-License-Identifier: GPL-2.0-only /* * sys.c * * OCFS2 cluster sysfs interface * * Copyright (C) 2005 Oracle. All rights reserved. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <linux/fs.h> #include "ocfs2_nodemanager.h" #include "masklog.h" #include "sys.h" static ssize_t version_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%u\n", O2NM_API_VERSION); } static struct kobj_attribute attr_version = __ATTR(interface_revision, S_IRUGO, version_show, NULL); static struct attribute *o2cb_attrs[] = { &attr_version.attr, NULL, }; static struct attribute_group o2cb_attr_group = { .attrs = o2cb_attrs, }; static struct kset *o2cb_kset; void o2cb_sys_shutdown(void) { mlog_sys_shutdown(); kset_unregister(o2cb_kset); } int o2cb_sys_init(void) { int ret; o2cb_kset = kset_create_and_add("o2cb", NULL, fs_kobj); if (!o2cb_kset) return -ENOMEM; ret = sysfs_create_group(&o2cb_kset->kobj, &o2cb_attr_group); if (ret) goto error; ret = mlog_sys_init(o2cb_kset); if (ret) goto error; return 0; error: kset_unregister(o2cb_kset); return ret; }
linux-master
fs/ocfs2/cluster/sys.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004, 2005 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/uaccess.h> #include "masklog.h" struct mlog_bits mlog_and_bits = MLOG_BITS_RHS(MLOG_INITIAL_AND_MASK); EXPORT_SYMBOL_GPL(mlog_and_bits); struct mlog_bits mlog_not_bits = MLOG_BITS_RHS(0); EXPORT_SYMBOL_GPL(mlog_not_bits); static ssize_t mlog_mask_show(u64 mask, char *buf) { char *state; if (__mlog_test_u64(mask, mlog_and_bits)) state = "allow"; else if (__mlog_test_u64(mask, mlog_not_bits)) state = "deny"; else state = "off"; return snprintf(buf, PAGE_SIZE, "%s\n", state); } static ssize_t mlog_mask_store(u64 mask, const char *buf, size_t count) { if (!strncasecmp(buf, "allow", 5)) { __mlog_set_u64(mask, mlog_and_bits); __mlog_clear_u64(mask, mlog_not_bits); } else if (!strncasecmp(buf, "deny", 4)) { __mlog_set_u64(mask, mlog_not_bits); __mlog_clear_u64(mask, mlog_and_bits); } else if (!strncasecmp(buf, "off", 3)) { __mlog_clear_u64(mask, mlog_not_bits); __mlog_clear_u64(mask, mlog_and_bits); } else return -EINVAL; return count; } void __mlog_printk(const u64 *mask, const char *func, int line, const char *fmt, ...) { struct va_format vaf; va_list args; const char *level; const char *prefix = ""; if (!__mlog_test_u64(*mask, mlog_and_bits) || __mlog_test_u64(*mask, mlog_not_bits)) return; if (*mask & ML_ERROR) { level = KERN_ERR; prefix = "ERROR: "; } else if (*mask & ML_NOTICE) { level = KERN_NOTICE; } else { level = KERN_INFO; } va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%s(%s,%u,%u):%s:%d %s%pV", level, current->comm, task_pid_nr(current), raw_smp_processor_id(), func, line, prefix, &vaf); va_end(args); } EXPORT_SYMBOL_GPL(__mlog_printk); struct mlog_attribute { struct attribute attr; u64 mask; }; #define to_mlog_attr(_attr) container_of(_attr, struct mlog_attribute, attr) #define define_mask(_name) { \ .attr = { \ .name = #_name, \ .mode = S_IRUGO | S_IWUSR, \ }, \ .mask = ML_##_name, \ } static struct mlog_attribute mlog_attrs[MLOG_MAX_BITS] = { define_mask(TCP), define_mask(MSG), define_mask(SOCKET), define_mask(HEARTBEAT), define_mask(HB_BIO), define_mask(DLMFS), define_mask(DLM), define_mask(DLM_DOMAIN), define_mask(DLM_THREAD), define_mask(DLM_MASTER), define_mask(DLM_RECOVERY), define_mask(DLM_GLUE), define_mask(VOTE), define_mask(CONN), define_mask(QUORUM), define_mask(BASTS), define_mask(CLUSTER), define_mask(ERROR), define_mask(NOTICE), define_mask(KTHREAD), }; static struct attribute *mlog_default_attrs[MLOG_MAX_BITS] = {NULL, }; ATTRIBUTE_GROUPS(mlog_default); static ssize_t mlog_show(struct kobject *obj, struct attribute *attr, char *buf) { struct mlog_attribute *mlog_attr = to_mlog_attr(attr); return mlog_mask_show(mlog_attr->mask, buf); } static ssize_t mlog_store(struct kobject *obj, struct attribute *attr, const char *buf, size_t count) { struct mlog_attribute *mlog_attr = to_mlog_attr(attr); return mlog_mask_store(mlog_attr->mask, buf, count); } static const struct sysfs_ops mlog_attr_ops = { .show = mlog_show, .store = mlog_store, }; static struct kobj_type mlog_ktype = { .default_groups = mlog_default_groups, .sysfs_ops = &mlog_attr_ops, }; static struct kset mlog_kset = { .kobj = {.ktype = &mlog_ktype}, }; int mlog_sys_init(struct kset *o2cb_kset) { int i = 0; while (mlog_attrs[i].attr.mode) { mlog_default_attrs[i] = &mlog_attrs[i].attr; i++; } mlog_default_attrs[i] = NULL; kobject_set_name(&mlog_kset.kobj, "logmask"); mlog_kset.kobj.kset = o2cb_kset; return kset_register(&mlog_kset); } void mlog_sys_shutdown(void) { kset_unregister(&mlog_kset); }
linux-master
fs/ocfs2/cluster/masklog.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2004 Oracle. All rights reserved. * * ---- * * Callers for this were originally written against a very simple synchronus * API. This implementation reflects those simple callers. Some day I'm sure * we'll need to move to a more robust posting/callback mechanism. * * Transmit calls pass in kernel virtual addresses and block copying this into * the socket's tx buffers via a usual blocking sendmsg. They'll block waiting * for a failed socket to timeout. TX callers can also pass in a poniter to an * 'int' which gets filled with an errno off the wire in response to the * message they send. * * Handlers for unsolicited messages are registered. Each socket has a page * that incoming data is copied into. First the header, then the data. * Handlers are called from only one thread with a reference to this per-socket * page. This page is destroyed after the handler call, so it can't be * referenced beyond the call. Handlers may block but are discouraged from * doing so. * * Any framing errors (bad magic, large payload lengths) close a connection. * * Our sock_container holds the state we associate with a socket. It's current * framing state is held there as well as the refcounting we do around when it * is safe to tear down the socket. The socket is only finally torn down from * the container when the container loses all of its references -- so as long * as you hold a ref on the container you can trust that the socket is valid * for use with kernel socket APIs. * * Connections are initiated between a pair of nodes when the node with the * higher node number gets a heartbeat callback which indicates that the lower * numbered node has started heartbeating. The lower numbered node is passive * and only accepts the connection if the higher numbered node is heartbeating. */ #include <linux/kernel.h> #include <linux/sched/mm.h> #include <linux/jiffies.h> #include <linux/slab.h> #include <linux/idr.h> #include <linux/kref.h> #include <linux/net.h> #include <linux/export.h> #include <net/tcp.h> #include <trace/events/sock.h> #include <linux/uaccess.h> #include "heartbeat.h" #include "tcp.h" #include "nodemanager.h" #define MLOG_MASK_PREFIX ML_TCP #include "masklog.h" #include "quorum.h" #include "tcp_internal.h" #define SC_NODEF_FMT "node %s (num %u) at %pI4:%u" #define SC_NODEF_ARGS(sc) sc->sc_node->nd_name, sc->sc_node->nd_num, \ &sc->sc_node->nd_ipv4_address, \ ntohs(sc->sc_node->nd_ipv4_port) /* * In the following two log macros, the whitespace after the ',' just * before ##args is intentional. Otherwise, gcc 2.95 will eat the * previous token if args expands to nothing. */ #define msglog(hdr, fmt, args...) do { \ typeof(hdr) __hdr = (hdr); \ mlog(ML_MSG, "[mag %u len %u typ %u stat %d sys_stat %d " \ "key %08x num %u] " fmt, \ be16_to_cpu(__hdr->magic), be16_to_cpu(__hdr->data_len), \ be16_to_cpu(__hdr->msg_type), be32_to_cpu(__hdr->status), \ be32_to_cpu(__hdr->sys_status), be32_to_cpu(__hdr->key), \ be32_to_cpu(__hdr->msg_num) , ##args); \ } while (0) #define sclog(sc, fmt, args...) do { \ typeof(sc) __sc = (sc); \ mlog(ML_SOCKET, "[sc %p refs %d sock %p node %u page %p " \ "pg_off %zu] " fmt, __sc, \ kref_read(&__sc->sc_kref), __sc->sc_sock, \ __sc->sc_node->nd_num, __sc->sc_page, __sc->sc_page_off , \ ##args); \ } while (0) static DEFINE_RWLOCK(o2net_handler_lock); static struct rb_root o2net_handler_tree = RB_ROOT; static struct o2net_node o2net_nodes[O2NM_MAX_NODES]; /* XXX someday we'll need better accounting */ static struct socket *o2net_listen_sock; /* * listen work is only queued by the listening socket callbacks on the * o2net_wq. teardown detaches the callbacks before destroying the workqueue. * quorum work is queued as sock containers are shutdown.. stop_listening * tears down all the node's sock containers, preventing future shutdowns * and queued quroum work, before canceling delayed quorum work and * destroying the work queue. */ static struct workqueue_struct *o2net_wq; static struct work_struct o2net_listen_work; static struct o2hb_callback_func o2net_hb_up, o2net_hb_down; #define O2NET_HB_PRI 0x1 static struct o2net_handshake *o2net_hand; static struct o2net_msg *o2net_keep_req, *o2net_keep_resp; static int o2net_sys_err_translations[O2NET_ERR_MAX] = {[O2NET_ERR_NONE] = 0, [O2NET_ERR_NO_HNDLR] = -ENOPROTOOPT, [O2NET_ERR_OVERFLOW] = -EOVERFLOW, [O2NET_ERR_DIED] = -EHOSTDOWN,}; /* can't quite avoid *all* internal declarations :/ */ static void o2net_sc_connect_completed(struct work_struct *work); static void o2net_rx_until_empty(struct work_struct *work); static void o2net_shutdown_sc(struct work_struct *work); static void o2net_listen_data_ready(struct sock *sk); static void o2net_sc_send_keep_req(struct work_struct *work); static void o2net_idle_timer(struct timer_list *t); static void o2net_sc_postpone_idle(struct o2net_sock_container *sc); static void o2net_sc_reset_idle_timer(struct o2net_sock_container *sc); #ifdef CONFIG_DEBUG_FS static void o2net_init_nst(struct o2net_send_tracking *nst, u32 msgtype, u32 msgkey, struct task_struct *task, u8 node) { INIT_LIST_HEAD(&nst->st_net_debug_item); nst->st_task = task; nst->st_msg_type = msgtype; nst->st_msg_key = msgkey; nst->st_node = node; } static inline void o2net_set_nst_sock_time(struct o2net_send_tracking *nst) { nst->st_sock_time = ktime_get(); } static inline void o2net_set_nst_send_time(struct o2net_send_tracking *nst) { nst->st_send_time = ktime_get(); } static inline void o2net_set_nst_status_time(struct o2net_send_tracking *nst) { nst->st_status_time = ktime_get(); } static inline void o2net_set_nst_sock_container(struct o2net_send_tracking *nst, struct o2net_sock_container *sc) { nst->st_sc = sc; } static inline void o2net_set_nst_msg_id(struct o2net_send_tracking *nst, u32 msg_id) { nst->st_id = msg_id; } static inline void o2net_set_sock_timer(struct o2net_sock_container *sc) { sc->sc_tv_timer = ktime_get(); } static inline void o2net_set_data_ready_time(struct o2net_sock_container *sc) { sc->sc_tv_data_ready = ktime_get(); } static inline void o2net_set_advance_start_time(struct o2net_sock_container *sc) { sc->sc_tv_advance_start = ktime_get(); } static inline void o2net_set_advance_stop_time(struct o2net_sock_container *sc) { sc->sc_tv_advance_stop = ktime_get(); } static inline void o2net_set_func_start_time(struct o2net_sock_container *sc) { sc->sc_tv_func_start = ktime_get(); } static inline void o2net_set_func_stop_time(struct o2net_sock_container *sc) { sc->sc_tv_func_stop = ktime_get(); } #else /* CONFIG_DEBUG_FS */ # define o2net_init_nst(a, b, c, d, e) # define o2net_set_nst_sock_time(a) # define o2net_set_nst_send_time(a) # define o2net_set_nst_status_time(a) # define o2net_set_nst_sock_container(a, b) # define o2net_set_nst_msg_id(a, b) # define o2net_set_sock_timer(a) # define o2net_set_data_ready_time(a) # define o2net_set_advance_start_time(a) # define o2net_set_advance_stop_time(a) # define o2net_set_func_start_time(a) # define o2net_set_func_stop_time(a) #endif /* CONFIG_DEBUG_FS */ #ifdef CONFIG_OCFS2_FS_STATS static ktime_t o2net_get_func_run_time(struct o2net_sock_container *sc) { return ktime_sub(sc->sc_tv_func_stop, sc->sc_tv_func_start); } static void o2net_update_send_stats(struct o2net_send_tracking *nst, struct o2net_sock_container *sc) { sc->sc_tv_status_total = ktime_add(sc->sc_tv_status_total, ktime_sub(ktime_get(), nst->st_status_time)); sc->sc_tv_send_total = ktime_add(sc->sc_tv_send_total, ktime_sub(nst->st_status_time, nst->st_send_time)); sc->sc_tv_acquiry_total = ktime_add(sc->sc_tv_acquiry_total, ktime_sub(nst->st_send_time, nst->st_sock_time)); sc->sc_send_count++; } static void o2net_update_recv_stats(struct o2net_sock_container *sc) { sc->sc_tv_process_total = ktime_add(sc->sc_tv_process_total, o2net_get_func_run_time(sc)); sc->sc_recv_count++; } #else # define o2net_update_send_stats(a, b) # define o2net_update_recv_stats(sc) #endif /* CONFIG_OCFS2_FS_STATS */ static inline unsigned int o2net_reconnect_delay(void) { return o2nm_single_cluster->cl_reconnect_delay_ms; } static inline unsigned int o2net_keepalive_delay(void) { return o2nm_single_cluster->cl_keepalive_delay_ms; } static inline unsigned int o2net_idle_timeout(void) { return o2nm_single_cluster->cl_idle_timeout_ms; } static inline int o2net_sys_err_to_errno(enum o2net_system_error err) { int trans; BUG_ON(err >= O2NET_ERR_MAX); trans = o2net_sys_err_translations[err]; /* Just in case we mess up the translation table above */ BUG_ON(err != O2NET_ERR_NONE && trans == 0); return trans; } static struct o2net_node * o2net_nn_from_num(u8 node_num) { BUG_ON(node_num >= ARRAY_SIZE(o2net_nodes)); return &o2net_nodes[node_num]; } static u8 o2net_num_from_nn(struct o2net_node *nn) { BUG_ON(nn == NULL); return nn - o2net_nodes; } /* ------------------------------------------------------------ */ static int o2net_prep_nsw(struct o2net_node *nn, struct o2net_status_wait *nsw) { int ret; spin_lock(&nn->nn_lock); ret = idr_alloc(&nn->nn_status_idr, nsw, 0, 0, GFP_ATOMIC); if (ret >= 0) { nsw->ns_id = ret; list_add_tail(&nsw->ns_node_item, &nn->nn_status_list); } spin_unlock(&nn->nn_lock); if (ret < 0) return ret; init_waitqueue_head(&nsw->ns_wq); nsw->ns_sys_status = O2NET_ERR_NONE; nsw->ns_status = 0; return 0; } static void o2net_complete_nsw_locked(struct o2net_node *nn, struct o2net_status_wait *nsw, enum o2net_system_error sys_status, s32 status) { assert_spin_locked(&nn->nn_lock); if (!list_empty(&nsw->ns_node_item)) { list_del_init(&nsw->ns_node_item); nsw->ns_sys_status = sys_status; nsw->ns_status = status; idr_remove(&nn->nn_status_idr, nsw->ns_id); wake_up(&nsw->ns_wq); } } static void o2net_complete_nsw(struct o2net_node *nn, struct o2net_status_wait *nsw, u64 id, enum o2net_system_error sys_status, s32 status) { spin_lock(&nn->nn_lock); if (nsw == NULL) { if (id > INT_MAX) goto out; nsw = idr_find(&nn->nn_status_idr, id); if (nsw == NULL) goto out; } o2net_complete_nsw_locked(nn, nsw, sys_status, status); out: spin_unlock(&nn->nn_lock); return; } static void o2net_complete_nodes_nsw(struct o2net_node *nn) { struct o2net_status_wait *nsw, *tmp; unsigned int num_kills = 0; assert_spin_locked(&nn->nn_lock); list_for_each_entry_safe(nsw, tmp, &nn->nn_status_list, ns_node_item) { o2net_complete_nsw_locked(nn, nsw, O2NET_ERR_DIED, 0); num_kills++; } mlog(0, "completed %d messages for node %u\n", num_kills, o2net_num_from_nn(nn)); } static int o2net_nsw_completed(struct o2net_node *nn, struct o2net_status_wait *nsw) { int completed; spin_lock(&nn->nn_lock); completed = list_empty(&nsw->ns_node_item); spin_unlock(&nn->nn_lock); return completed; } /* ------------------------------------------------------------ */ static void sc_kref_release(struct kref *kref) { struct o2net_sock_container *sc = container_of(kref, struct o2net_sock_container, sc_kref); BUG_ON(timer_pending(&sc->sc_idle_timeout)); sclog(sc, "releasing\n"); if (sc->sc_sock) { sock_release(sc->sc_sock); sc->sc_sock = NULL; } o2nm_undepend_item(&sc->sc_node->nd_item); o2nm_node_put(sc->sc_node); sc->sc_node = NULL; o2net_debug_del_sc(sc); if (sc->sc_page) __free_page(sc->sc_page); kfree(sc); } static void sc_put(struct o2net_sock_container *sc) { sclog(sc, "put\n"); kref_put(&sc->sc_kref, sc_kref_release); } static void sc_get(struct o2net_sock_container *sc) { sclog(sc, "get\n"); kref_get(&sc->sc_kref); } static struct o2net_sock_container *sc_alloc(struct o2nm_node *node) { struct o2net_sock_container *sc, *ret = NULL; struct page *page = NULL; int status = 0; page = alloc_page(GFP_NOFS); sc = kzalloc(sizeof(*sc), GFP_NOFS); if (sc == NULL || page == NULL) goto out; kref_init(&sc->sc_kref); o2nm_node_get(node); sc->sc_node = node; /* pin the node item of the remote node */ status = o2nm_depend_item(&node->nd_item); if (status) { mlog_errno(status); o2nm_node_put(node); goto out; } INIT_WORK(&sc->sc_connect_work, o2net_sc_connect_completed); INIT_WORK(&sc->sc_rx_work, o2net_rx_until_empty); INIT_WORK(&sc->sc_shutdown_work, o2net_shutdown_sc); INIT_DELAYED_WORK(&sc->sc_keepalive_work, o2net_sc_send_keep_req); timer_setup(&sc->sc_idle_timeout, o2net_idle_timer, 0); sclog(sc, "alloced\n"); ret = sc; sc->sc_page = page; o2net_debug_add_sc(sc); sc = NULL; page = NULL; out: if (page) __free_page(page); kfree(sc); return ret; } /* ------------------------------------------------------------ */ static void o2net_sc_queue_work(struct o2net_sock_container *sc, struct work_struct *work) { sc_get(sc); if (!queue_work(o2net_wq, work)) sc_put(sc); } static void o2net_sc_queue_delayed_work(struct o2net_sock_container *sc, struct delayed_work *work, int delay) { sc_get(sc); if (!queue_delayed_work(o2net_wq, work, delay)) sc_put(sc); } static void o2net_sc_cancel_delayed_work(struct o2net_sock_container *sc, struct delayed_work *work) { if (cancel_delayed_work(work)) sc_put(sc); } static atomic_t o2net_connected_peers = ATOMIC_INIT(0); int o2net_num_connected_peers(void) { return atomic_read(&o2net_connected_peers); } static void o2net_set_nn_state(struct o2net_node *nn, struct o2net_sock_container *sc, unsigned valid, int err) { int was_valid = nn->nn_sc_valid; int was_err = nn->nn_persistent_error; struct o2net_sock_container *old_sc = nn->nn_sc; assert_spin_locked(&nn->nn_lock); if (old_sc && !sc) atomic_dec(&o2net_connected_peers); else if (!old_sc && sc) atomic_inc(&o2net_connected_peers); /* the node num comparison and single connect/accept path should stop * an non-null sc from being overwritten with another */ BUG_ON(sc && nn->nn_sc && nn->nn_sc != sc); mlog_bug_on_msg(err && valid, "err %d valid %u\n", err, valid); mlog_bug_on_msg(valid && !sc, "valid %u sc %p\n", valid, sc); if (was_valid && !valid && err == 0) err = -ENOTCONN; mlog(ML_CONN, "node %u sc: %p -> %p, valid %u -> %u, err %d -> %d\n", o2net_num_from_nn(nn), nn->nn_sc, sc, nn->nn_sc_valid, valid, nn->nn_persistent_error, err); nn->nn_sc = sc; nn->nn_sc_valid = valid ? 1 : 0; nn->nn_persistent_error = err; /* mirrors o2net_tx_can_proceed() */ if (nn->nn_persistent_error || nn->nn_sc_valid) wake_up(&nn->nn_sc_wq); if (was_valid && !was_err && nn->nn_persistent_error) { o2quo_conn_err(o2net_num_from_nn(nn)); queue_delayed_work(o2net_wq, &nn->nn_still_up, msecs_to_jiffies(O2NET_QUORUM_DELAY_MS)); } if (was_valid && !valid) { if (old_sc) printk(KERN_NOTICE "o2net: No longer connected to " SC_NODEF_FMT "\n", SC_NODEF_ARGS(old_sc)); o2net_complete_nodes_nsw(nn); } if (!was_valid && valid) { o2quo_conn_up(o2net_num_from_nn(nn)); cancel_delayed_work(&nn->nn_connect_expired); printk(KERN_NOTICE "o2net: %s " SC_NODEF_FMT "\n", o2nm_this_node() > sc->sc_node->nd_num ? "Connected to" : "Accepted connection from", SC_NODEF_ARGS(sc)); } /* trigger the connecting worker func as long as we're not valid, * it will back off if it shouldn't connect. This can be called * from node config teardown and so needs to be careful about * the work queue actually being up. */ if (!valid && o2net_wq) { unsigned long delay; /* delay if we're within a RECONNECT_DELAY of the * last attempt */ delay = (nn->nn_last_connect_attempt + msecs_to_jiffies(o2net_reconnect_delay())) - jiffies; if (delay > msecs_to_jiffies(o2net_reconnect_delay())) delay = 0; mlog(ML_CONN, "queueing conn attempt in %lu jiffies\n", delay); queue_delayed_work(o2net_wq, &nn->nn_connect_work, delay); /* * Delay the expired work after idle timeout. * * We might have lots of failed connection attempts that run * through here but we only cancel the connect_expired work when * a connection attempt succeeds. So only the first enqueue of * the connect_expired work will do anything. The rest will see * that it's already queued and do nothing. */ delay += msecs_to_jiffies(o2net_idle_timeout()); queue_delayed_work(o2net_wq, &nn->nn_connect_expired, delay); } /* keep track of the nn's sc ref for the caller */ if ((old_sc == NULL) && sc) sc_get(sc); if (old_sc && (old_sc != sc)) { o2net_sc_queue_work(old_sc, &old_sc->sc_shutdown_work); sc_put(old_sc); } } /* see o2net_register_callbacks() */ static void o2net_data_ready(struct sock *sk) { void (*ready)(struct sock *sk); struct o2net_sock_container *sc; trace_sk_data_ready(sk); read_lock_bh(&sk->sk_callback_lock); sc = sk->sk_user_data; if (sc) { sclog(sc, "data_ready hit\n"); o2net_set_data_ready_time(sc); o2net_sc_queue_work(sc, &sc->sc_rx_work); ready = sc->sc_data_ready; } else { ready = sk->sk_data_ready; } read_unlock_bh(&sk->sk_callback_lock); ready(sk); } /* see o2net_register_callbacks() */ static void o2net_state_change(struct sock *sk) { void (*state_change)(struct sock *sk); struct o2net_sock_container *sc; read_lock_bh(&sk->sk_callback_lock); sc = sk->sk_user_data; if (sc == NULL) { state_change = sk->sk_state_change; goto out; } sclog(sc, "state_change to %d\n", sk->sk_state); state_change = sc->sc_state_change; switch(sk->sk_state) { /* ignore connecting sockets as they make progress */ case TCP_SYN_SENT: case TCP_SYN_RECV: break; case TCP_ESTABLISHED: o2net_sc_queue_work(sc, &sc->sc_connect_work); break; default: printk(KERN_INFO "o2net: Connection to " SC_NODEF_FMT " shutdown, state %d\n", SC_NODEF_ARGS(sc), sk->sk_state); o2net_sc_queue_work(sc, &sc->sc_shutdown_work); break; } out: read_unlock_bh(&sk->sk_callback_lock); state_change(sk); } /* * we register callbacks so we can queue work on events before calling * the original callbacks. our callbacks our careful to test user_data * to discover when they've reaced with o2net_unregister_callbacks(). */ static void o2net_register_callbacks(struct sock *sk, struct o2net_sock_container *sc) { write_lock_bh(&sk->sk_callback_lock); /* accepted sockets inherit the old listen socket data ready */ if (sk->sk_data_ready == o2net_listen_data_ready) { sk->sk_data_ready = sk->sk_user_data; sk->sk_user_data = NULL; } BUG_ON(sk->sk_user_data != NULL); sk->sk_user_data = sc; sc_get(sc); sc->sc_data_ready = sk->sk_data_ready; sc->sc_state_change = sk->sk_state_change; sk->sk_data_ready = o2net_data_ready; sk->sk_state_change = o2net_state_change; mutex_init(&sc->sc_send_lock); write_unlock_bh(&sk->sk_callback_lock); } static int o2net_unregister_callbacks(struct sock *sk, struct o2net_sock_container *sc) { int ret = 0; write_lock_bh(&sk->sk_callback_lock); if (sk->sk_user_data == sc) { ret = 1; sk->sk_user_data = NULL; sk->sk_data_ready = sc->sc_data_ready; sk->sk_state_change = sc->sc_state_change; } write_unlock_bh(&sk->sk_callback_lock); return ret; } /* * this is a little helper that is called by callers who have seen a problem * with an sc and want to detach it from the nn if someone already hasn't beat * them to it. if an error is given then the shutdown will be persistent * and pending transmits will be canceled. */ static void o2net_ensure_shutdown(struct o2net_node *nn, struct o2net_sock_container *sc, int err) { spin_lock(&nn->nn_lock); if (nn->nn_sc == sc) o2net_set_nn_state(nn, NULL, 0, err); spin_unlock(&nn->nn_lock); } /* * This work queue function performs the blocking parts of socket shutdown. A * few paths lead here. set_nn_state will trigger this callback if it sees an * sc detached from the nn. state_change will also trigger this callback * directly when it sees errors. In that case we need to call set_nn_state * ourselves as state_change couldn't get the nn_lock and call set_nn_state * itself. */ static void o2net_shutdown_sc(struct work_struct *work) { struct o2net_sock_container *sc = container_of(work, struct o2net_sock_container, sc_shutdown_work); struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); sclog(sc, "shutting down\n"); /* drop the callbacks ref and call shutdown only once */ if (o2net_unregister_callbacks(sc->sc_sock->sk, sc)) { /* we shouldn't flush as we're in the thread, the * races with pending sc work structs are harmless */ del_timer_sync(&sc->sc_idle_timeout); o2net_sc_cancel_delayed_work(sc, &sc->sc_keepalive_work); sc_put(sc); kernel_sock_shutdown(sc->sc_sock, SHUT_RDWR); } /* not fatal so failed connects before the other guy has our * heartbeat can be retried */ o2net_ensure_shutdown(nn, sc, 0); sc_put(sc); } /* ------------------------------------------------------------ */ static int o2net_handler_cmp(struct o2net_msg_handler *nmh, u32 msg_type, u32 key) { int ret = memcmp(&nmh->nh_key, &key, sizeof(key)); if (ret == 0) ret = memcmp(&nmh->nh_msg_type, &msg_type, sizeof(msg_type)); return ret; } static struct o2net_msg_handler * o2net_handler_tree_lookup(u32 msg_type, u32 key, struct rb_node ***ret_p, struct rb_node **ret_parent) { struct rb_node **p = &o2net_handler_tree.rb_node; struct rb_node *parent = NULL; struct o2net_msg_handler *nmh, *ret = NULL; int cmp; while (*p) { parent = *p; nmh = rb_entry(parent, struct o2net_msg_handler, nh_node); cmp = o2net_handler_cmp(nmh, msg_type, key); if (cmp < 0) p = &(*p)->rb_left; else if (cmp > 0) p = &(*p)->rb_right; else { ret = nmh; break; } } if (ret_p != NULL) *ret_p = p; if (ret_parent != NULL) *ret_parent = parent; return ret; } static void o2net_handler_kref_release(struct kref *kref) { struct o2net_msg_handler *nmh; nmh = container_of(kref, struct o2net_msg_handler, nh_kref); kfree(nmh); } static void o2net_handler_put(struct o2net_msg_handler *nmh) { kref_put(&nmh->nh_kref, o2net_handler_kref_release); } /* max_len is protection for the handler func. incoming messages won't * be given to the handler if their payload is longer than the max. */ int o2net_register_handler(u32 msg_type, u32 key, u32 max_len, o2net_msg_handler_func *func, void *data, o2net_post_msg_handler_func *post_func, struct list_head *unreg_list) { struct o2net_msg_handler *nmh = NULL; struct rb_node **p, *parent; int ret = 0; if (max_len > O2NET_MAX_PAYLOAD_BYTES) { mlog(0, "max_len for message handler out of range: %u\n", max_len); ret = -EINVAL; goto out; } if (!msg_type) { mlog(0, "no message type provided: %u, %p\n", msg_type, func); ret = -EINVAL; goto out; } if (!func) { mlog(0, "no message handler provided: %u, %p\n", msg_type, func); ret = -EINVAL; goto out; } nmh = kzalloc(sizeof(struct o2net_msg_handler), GFP_NOFS); if (nmh == NULL) { ret = -ENOMEM; goto out; } nmh->nh_func = func; nmh->nh_func_data = data; nmh->nh_post_func = post_func; nmh->nh_msg_type = msg_type; nmh->nh_max_len = max_len; nmh->nh_key = key; /* the tree and list get this ref.. they're both removed in * unregister when this ref is dropped */ kref_init(&nmh->nh_kref); INIT_LIST_HEAD(&nmh->nh_unregister_item); write_lock(&o2net_handler_lock); if (o2net_handler_tree_lookup(msg_type, key, &p, &parent)) ret = -EEXIST; else { rb_link_node(&nmh->nh_node, parent, p); rb_insert_color(&nmh->nh_node, &o2net_handler_tree); list_add_tail(&nmh->nh_unregister_item, unreg_list); mlog(ML_TCP, "registered handler func %p type %u key %08x\n", func, msg_type, key); /* we've had some trouble with handlers seemingly vanishing. */ mlog_bug_on_msg(o2net_handler_tree_lookup(msg_type, key, &p, &parent) == NULL, "couldn't find handler we *just* registered " "for type %u key %08x\n", msg_type, key); } write_unlock(&o2net_handler_lock); out: if (ret) kfree(nmh); return ret; } EXPORT_SYMBOL_GPL(o2net_register_handler); void o2net_unregister_handler_list(struct list_head *list) { struct o2net_msg_handler *nmh, *n; write_lock(&o2net_handler_lock); list_for_each_entry_safe(nmh, n, list, nh_unregister_item) { mlog(ML_TCP, "unregistering handler func %p type %u key %08x\n", nmh->nh_func, nmh->nh_msg_type, nmh->nh_key); rb_erase(&nmh->nh_node, &o2net_handler_tree); list_del_init(&nmh->nh_unregister_item); kref_put(&nmh->nh_kref, o2net_handler_kref_release); } write_unlock(&o2net_handler_lock); } EXPORT_SYMBOL_GPL(o2net_unregister_handler_list); static struct o2net_msg_handler *o2net_handler_get(u32 msg_type, u32 key) { struct o2net_msg_handler *nmh; read_lock(&o2net_handler_lock); nmh = o2net_handler_tree_lookup(msg_type, key, NULL, NULL); if (nmh) kref_get(&nmh->nh_kref); read_unlock(&o2net_handler_lock); return nmh; } /* ------------------------------------------------------------ */ static int o2net_recv_tcp_msg(struct socket *sock, void *data, size_t len) { struct kvec vec = { .iov_len = len, .iov_base = data, }; struct msghdr msg = { .msg_flags = MSG_DONTWAIT, }; iov_iter_kvec(&msg.msg_iter, ITER_DEST, &vec, 1, len); return sock_recvmsg(sock, &msg, MSG_DONTWAIT); } static int o2net_send_tcp_msg(struct socket *sock, struct kvec *vec, size_t veclen, size_t total) { int ret; struct msghdr msg = {.msg_flags = 0,}; if (sock == NULL) { ret = -EINVAL; goto out; } ret = kernel_sendmsg(sock, &msg, vec, veclen, total); if (likely(ret == total)) return 0; mlog(ML_ERROR, "sendmsg returned %d instead of %zu\n", ret, total); if (ret >= 0) ret = -EPIPE; /* should be smarter, I bet */ out: mlog(0, "returning error: %d\n", ret); return ret; } static void o2net_sendpage(struct o2net_sock_container *sc, void *virt, size_t size) { struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); struct msghdr msg = {}; struct bio_vec bv; ssize_t ret; bvec_set_virt(&bv, virt, size); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, size); while (1) { msg.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES; mutex_lock(&sc->sc_send_lock); ret = sock_sendmsg(sc->sc_sock, &msg); mutex_unlock(&sc->sc_send_lock); if (ret == size) break; if (ret == (ssize_t)-EAGAIN) { mlog(0, "sendpage of size %zu to " SC_NODEF_FMT " returned EAGAIN\n", size, SC_NODEF_ARGS(sc)); cond_resched(); continue; } mlog(ML_ERROR, "sendpage of size %zu to " SC_NODEF_FMT " failed with %zd\n", size, SC_NODEF_ARGS(sc), ret); o2net_ensure_shutdown(nn, sc, 0); break; } } static void o2net_init_msg(struct o2net_msg *msg, u16 data_len, u16 msg_type, u32 key) { memset(msg, 0, sizeof(struct o2net_msg)); msg->magic = cpu_to_be16(O2NET_MSG_MAGIC); msg->data_len = cpu_to_be16(data_len); msg->msg_type = cpu_to_be16(msg_type); msg->sys_status = cpu_to_be32(O2NET_ERR_NONE); msg->status = 0; msg->key = cpu_to_be32(key); } static int o2net_tx_can_proceed(struct o2net_node *nn, struct o2net_sock_container **sc_ret, int *error) { int ret = 0; spin_lock(&nn->nn_lock); if (nn->nn_persistent_error) { ret = 1; *sc_ret = NULL; *error = nn->nn_persistent_error; } else if (nn->nn_sc_valid) { kref_get(&nn->nn_sc->sc_kref); ret = 1; *sc_ret = nn->nn_sc; *error = 0; } spin_unlock(&nn->nn_lock); return ret; } /* Get a map of all nodes to which this node is currently connected to */ void o2net_fill_node_map(unsigned long *map, unsigned int bits) { struct o2net_sock_container *sc; int node, ret; bitmap_zero(map, bits); for (node = 0; node < O2NM_MAX_NODES; ++node) { if (!o2net_tx_can_proceed(o2net_nn_from_num(node), &sc, &ret)) continue; if (!ret) { set_bit(node, map); sc_put(sc); } } } EXPORT_SYMBOL_GPL(o2net_fill_node_map); int o2net_send_message_vec(u32 msg_type, u32 key, struct kvec *caller_vec, size_t caller_veclen, u8 target_node, int *status) { int ret = 0; struct o2net_msg *msg = NULL; size_t veclen, caller_bytes = 0; struct kvec *vec = NULL; struct o2net_sock_container *sc = NULL; struct o2net_node *nn = o2net_nn_from_num(target_node); struct o2net_status_wait nsw = { .ns_node_item = LIST_HEAD_INIT(nsw.ns_node_item), }; struct o2net_send_tracking nst; o2net_init_nst(&nst, msg_type, key, current, target_node); if (o2net_wq == NULL) { mlog(0, "attempt to tx without o2netd running\n"); ret = -ESRCH; goto out; } if (caller_veclen == 0) { mlog(0, "bad kvec array length\n"); ret = -EINVAL; goto out; } caller_bytes = iov_length((struct iovec *)caller_vec, caller_veclen); if (caller_bytes > O2NET_MAX_PAYLOAD_BYTES) { mlog(0, "total payload len %zu too large\n", caller_bytes); ret = -EINVAL; goto out; } if (target_node == o2nm_this_node()) { ret = -ELOOP; goto out; } o2net_debug_add_nst(&nst); o2net_set_nst_sock_time(&nst); wait_event(nn->nn_sc_wq, o2net_tx_can_proceed(nn, &sc, &ret)); if (ret) goto out; o2net_set_nst_sock_container(&nst, sc); veclen = caller_veclen + 1; vec = kmalloc_array(veclen, sizeof(struct kvec), GFP_ATOMIC); if (vec == NULL) { mlog(0, "failed to %zu element kvec!\n", veclen); ret = -ENOMEM; goto out; } msg = kmalloc(sizeof(struct o2net_msg), GFP_ATOMIC); if (!msg) { mlog(0, "failed to allocate a o2net_msg!\n"); ret = -ENOMEM; goto out; } o2net_init_msg(msg, caller_bytes, msg_type, key); vec[0].iov_len = sizeof(struct o2net_msg); vec[0].iov_base = msg; memcpy(&vec[1], caller_vec, caller_veclen * sizeof(struct kvec)); ret = o2net_prep_nsw(nn, &nsw); if (ret) goto out; msg->msg_num = cpu_to_be32(nsw.ns_id); o2net_set_nst_msg_id(&nst, nsw.ns_id); o2net_set_nst_send_time(&nst); /* finally, convert the message header to network byte-order * and send */ mutex_lock(&sc->sc_send_lock); ret = o2net_send_tcp_msg(sc->sc_sock, vec, veclen, sizeof(struct o2net_msg) + caller_bytes); mutex_unlock(&sc->sc_send_lock); msglog(msg, "sending returned %d\n", ret); if (ret < 0) { mlog(0, "error returned from o2net_send_tcp_msg=%d\n", ret); goto out; } /* wait on other node's handler */ o2net_set_nst_status_time(&nst); wait_event(nsw.ns_wq, o2net_nsw_completed(nn, &nsw)); o2net_update_send_stats(&nst, sc); /* Note that we avoid overwriting the callers status return * variable if a system error was reported on the other * side. Callers beware. */ ret = o2net_sys_err_to_errno(nsw.ns_sys_status); if (status && !ret) *status = nsw.ns_status; mlog(0, "woken, returning system status %d, user status %d\n", ret, nsw.ns_status); out: o2net_debug_del_nst(&nst); /* must be before dropping sc and node */ if (sc) sc_put(sc); kfree(vec); kfree(msg); o2net_complete_nsw(nn, &nsw, 0, 0, 0); return ret; } EXPORT_SYMBOL_GPL(o2net_send_message_vec); int o2net_send_message(u32 msg_type, u32 key, void *data, u32 len, u8 target_node, int *status) { struct kvec vec = { .iov_base = data, .iov_len = len, }; return o2net_send_message_vec(msg_type, key, &vec, 1, target_node, status); } EXPORT_SYMBOL_GPL(o2net_send_message); static int o2net_send_status_magic(struct socket *sock, struct o2net_msg *hdr, enum o2net_system_error syserr, int err) { struct kvec vec = { .iov_base = hdr, .iov_len = sizeof(struct o2net_msg), }; BUG_ON(syserr >= O2NET_ERR_MAX); /* leave other fields intact from the incoming message, msg_num * in particular */ hdr->sys_status = cpu_to_be32(syserr); hdr->status = cpu_to_be32(err); hdr->magic = cpu_to_be16(O2NET_MSG_STATUS_MAGIC); // twiddle the magic hdr->data_len = 0; msglog(hdr, "about to send status magic %d\n", err); /* hdr has been in host byteorder this whole time */ return o2net_send_tcp_msg(sock, &vec, 1, sizeof(struct o2net_msg)); } /* this returns -errno if the header was unknown or too large, etc. * after this is called the buffer us reused for the next message */ static int o2net_process_message(struct o2net_sock_container *sc, struct o2net_msg *hdr) { struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); int ret = 0, handler_status; enum o2net_system_error syserr; struct o2net_msg_handler *nmh = NULL; void *ret_data = NULL; msglog(hdr, "processing message\n"); o2net_sc_postpone_idle(sc); switch(be16_to_cpu(hdr->magic)) { case O2NET_MSG_STATUS_MAGIC: /* special type for returning message status */ o2net_complete_nsw(nn, NULL, be32_to_cpu(hdr->msg_num), be32_to_cpu(hdr->sys_status), be32_to_cpu(hdr->status)); goto out; case O2NET_MSG_KEEP_REQ_MAGIC: o2net_sendpage(sc, o2net_keep_resp, sizeof(*o2net_keep_resp)); goto out; case O2NET_MSG_KEEP_RESP_MAGIC: goto out; case O2NET_MSG_MAGIC: break; default: msglog(hdr, "bad magic\n"); ret = -EINVAL; goto out; } /* find a handler for it */ handler_status = 0; nmh = o2net_handler_get(be16_to_cpu(hdr->msg_type), be32_to_cpu(hdr->key)); if (!nmh) { mlog(ML_TCP, "couldn't find handler for type %u key %08x\n", be16_to_cpu(hdr->msg_type), be32_to_cpu(hdr->key)); syserr = O2NET_ERR_NO_HNDLR; goto out_respond; } syserr = O2NET_ERR_NONE; if (be16_to_cpu(hdr->data_len) > nmh->nh_max_len) syserr = O2NET_ERR_OVERFLOW; if (syserr != O2NET_ERR_NONE) goto out_respond; o2net_set_func_start_time(sc); sc->sc_msg_key = be32_to_cpu(hdr->key); sc->sc_msg_type = be16_to_cpu(hdr->msg_type); handler_status = (nmh->nh_func)(hdr, sizeof(struct o2net_msg) + be16_to_cpu(hdr->data_len), nmh->nh_func_data, &ret_data); o2net_set_func_stop_time(sc); o2net_update_recv_stats(sc); out_respond: /* this destroys the hdr, so don't use it after this */ mutex_lock(&sc->sc_send_lock); ret = o2net_send_status_magic(sc->sc_sock, hdr, syserr, handler_status); mutex_unlock(&sc->sc_send_lock); hdr = NULL; mlog(0, "sending handler status %d, syserr %d returned %d\n", handler_status, syserr, ret); if (nmh) { BUG_ON(ret_data != NULL && nmh->nh_post_func == NULL); if (nmh->nh_post_func) (nmh->nh_post_func)(handler_status, nmh->nh_func_data, ret_data); } out: if (nmh) o2net_handler_put(nmh); return ret; } static int o2net_check_handshake(struct o2net_sock_container *sc) { struct o2net_handshake *hand = page_address(sc->sc_page); struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); if (hand->protocol_version != cpu_to_be64(O2NET_PROTOCOL_VERSION)) { printk(KERN_NOTICE "o2net: " SC_NODEF_FMT " Advertised net " "protocol version %llu but %llu is required. " "Disconnecting.\n", SC_NODEF_ARGS(sc), (unsigned long long)be64_to_cpu(hand->protocol_version), O2NET_PROTOCOL_VERSION); /* don't bother reconnecting if its the wrong version. */ o2net_ensure_shutdown(nn, sc, -ENOTCONN); return -1; } /* * Ensure timeouts are consistent with other nodes, otherwise * we can end up with one node thinking that the other must be down, * but isn't. This can ultimately cause corruption. */ if (be32_to_cpu(hand->o2net_idle_timeout_ms) != o2net_idle_timeout()) { printk(KERN_NOTICE "o2net: " SC_NODEF_FMT " uses a network " "idle timeout of %u ms, but we use %u ms locally. " "Disconnecting.\n", SC_NODEF_ARGS(sc), be32_to_cpu(hand->o2net_idle_timeout_ms), o2net_idle_timeout()); o2net_ensure_shutdown(nn, sc, -ENOTCONN); return -1; } if (be32_to_cpu(hand->o2net_keepalive_delay_ms) != o2net_keepalive_delay()) { printk(KERN_NOTICE "o2net: " SC_NODEF_FMT " uses a keepalive " "delay of %u ms, but we use %u ms locally. " "Disconnecting.\n", SC_NODEF_ARGS(sc), be32_to_cpu(hand->o2net_keepalive_delay_ms), o2net_keepalive_delay()); o2net_ensure_shutdown(nn, sc, -ENOTCONN); return -1; } if (be32_to_cpu(hand->o2hb_heartbeat_timeout_ms) != O2HB_MAX_WRITE_TIMEOUT_MS) { printk(KERN_NOTICE "o2net: " SC_NODEF_FMT " uses a heartbeat " "timeout of %u ms, but we use %u ms locally. " "Disconnecting.\n", SC_NODEF_ARGS(sc), be32_to_cpu(hand->o2hb_heartbeat_timeout_ms), O2HB_MAX_WRITE_TIMEOUT_MS); o2net_ensure_shutdown(nn, sc, -ENOTCONN); return -1; } sc->sc_handshake_ok = 1; spin_lock(&nn->nn_lock); /* set valid and queue the idle timers only if it hasn't been * shut down already */ if (nn->nn_sc == sc) { o2net_sc_reset_idle_timer(sc); atomic_set(&nn->nn_timeout, 0); o2net_set_nn_state(nn, sc, 1, 0); } spin_unlock(&nn->nn_lock); /* shift everything up as though it wasn't there */ sc->sc_page_off -= sizeof(struct o2net_handshake); if (sc->sc_page_off) memmove(hand, hand + 1, sc->sc_page_off); return 0; } /* this demuxes the queued rx bytes into header or payload bits and calls * handlers as each full message is read off the socket. it returns -error, * == 0 eof, or > 0 for progress made.*/ static int o2net_advance_rx(struct o2net_sock_container *sc) { struct o2net_msg *hdr; int ret = 0; void *data; size_t datalen; sclog(sc, "receiving\n"); o2net_set_advance_start_time(sc); if (unlikely(sc->sc_handshake_ok == 0)) { if(sc->sc_page_off < sizeof(struct o2net_handshake)) { data = page_address(sc->sc_page) + sc->sc_page_off; datalen = sizeof(struct o2net_handshake) - sc->sc_page_off; ret = o2net_recv_tcp_msg(sc->sc_sock, data, datalen); if (ret > 0) sc->sc_page_off += ret; } if (sc->sc_page_off == sizeof(struct o2net_handshake)) { o2net_check_handshake(sc); if (unlikely(sc->sc_handshake_ok == 0)) ret = -EPROTO; } goto out; } /* do we need more header? */ if (sc->sc_page_off < sizeof(struct o2net_msg)) { data = page_address(sc->sc_page) + sc->sc_page_off; datalen = sizeof(struct o2net_msg) - sc->sc_page_off; ret = o2net_recv_tcp_msg(sc->sc_sock, data, datalen); if (ret > 0) { sc->sc_page_off += ret; /* only swab incoming here.. we can * only get here once as we cross from * being under to over */ if (sc->sc_page_off == sizeof(struct o2net_msg)) { hdr = page_address(sc->sc_page); if (be16_to_cpu(hdr->data_len) > O2NET_MAX_PAYLOAD_BYTES) ret = -EOVERFLOW; } } if (ret <= 0) goto out; } if (sc->sc_page_off < sizeof(struct o2net_msg)) { /* oof, still don't have a header */ goto out; } /* this was swabbed above when we first read it */ hdr = page_address(sc->sc_page); msglog(hdr, "at page_off %zu\n", sc->sc_page_off); /* do we need more payload? */ if (sc->sc_page_off - sizeof(struct o2net_msg) < be16_to_cpu(hdr->data_len)) { /* need more payload */ data = page_address(sc->sc_page) + sc->sc_page_off; datalen = (sizeof(struct o2net_msg) + be16_to_cpu(hdr->data_len)) - sc->sc_page_off; ret = o2net_recv_tcp_msg(sc->sc_sock, data, datalen); if (ret > 0) sc->sc_page_off += ret; if (ret <= 0) goto out; } if (sc->sc_page_off - sizeof(struct o2net_msg) == be16_to_cpu(hdr->data_len)) { /* we can only get here once, the first time we read * the payload.. so set ret to progress if the handler * works out. after calling this the message is toast */ ret = o2net_process_message(sc, hdr); if (ret == 0) ret = 1; sc->sc_page_off = 0; } out: sclog(sc, "ret = %d\n", ret); o2net_set_advance_stop_time(sc); return ret; } /* this work func is triggerd by data ready. it reads until it can read no * more. it interprets 0, eof, as fatal. if data_ready hits while we're doing * our work the work struct will be marked and we'll be called again. */ static void o2net_rx_until_empty(struct work_struct *work) { struct o2net_sock_container *sc = container_of(work, struct o2net_sock_container, sc_rx_work); int ret; do { ret = o2net_advance_rx(sc); } while (ret > 0); if (ret <= 0 && ret != -EAGAIN) { struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); sclog(sc, "saw error %d, closing\n", ret); /* not permanent so read failed handshake can retry */ o2net_ensure_shutdown(nn, sc, 0); } sc_put(sc); } static void o2net_initialize_handshake(void) { o2net_hand->o2hb_heartbeat_timeout_ms = cpu_to_be32( O2HB_MAX_WRITE_TIMEOUT_MS); o2net_hand->o2net_idle_timeout_ms = cpu_to_be32(o2net_idle_timeout()); o2net_hand->o2net_keepalive_delay_ms = cpu_to_be32( o2net_keepalive_delay()); o2net_hand->o2net_reconnect_delay_ms = cpu_to_be32( o2net_reconnect_delay()); } /* ------------------------------------------------------------ */ /* called when a connect completes and after a sock is accepted. the * rx path will see the response and mark the sc valid */ static void o2net_sc_connect_completed(struct work_struct *work) { struct o2net_sock_container *sc = container_of(work, struct o2net_sock_container, sc_connect_work); mlog(ML_MSG, "sc sending handshake with ver %llu id %llx\n", (unsigned long long)O2NET_PROTOCOL_VERSION, (unsigned long long)be64_to_cpu(o2net_hand->connector_id)); o2net_initialize_handshake(); o2net_sendpage(sc, o2net_hand, sizeof(*o2net_hand)); sc_put(sc); } /* this is called as a work_struct func. */ static void o2net_sc_send_keep_req(struct work_struct *work) { struct o2net_sock_container *sc = container_of(work, struct o2net_sock_container, sc_keepalive_work.work); o2net_sendpage(sc, o2net_keep_req, sizeof(*o2net_keep_req)); sc_put(sc); } /* socket shutdown does a del_timer_sync against this as it tears down. * we can't start this timer until we've got to the point in sc buildup * where shutdown is going to be involved */ static void o2net_idle_timer(struct timer_list *t) { struct o2net_sock_container *sc = from_timer(sc, t, sc_idle_timeout); struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); #ifdef CONFIG_DEBUG_FS unsigned long msecs = ktime_to_ms(ktime_get()) - ktime_to_ms(sc->sc_tv_timer); #else unsigned long msecs = o2net_idle_timeout(); #endif printk(KERN_NOTICE "o2net: Connection to " SC_NODEF_FMT " has been " "idle for %lu.%lu secs.\n", SC_NODEF_ARGS(sc), msecs / 1000, msecs % 1000); /* idle timerout happen, don't shutdown the connection, but * make fence decision. Maybe the connection can recover before * the decision is made. */ atomic_set(&nn->nn_timeout, 1); o2quo_conn_err(o2net_num_from_nn(nn)); queue_delayed_work(o2net_wq, &nn->nn_still_up, msecs_to_jiffies(O2NET_QUORUM_DELAY_MS)); o2net_sc_reset_idle_timer(sc); } static void o2net_sc_reset_idle_timer(struct o2net_sock_container *sc) { o2net_sc_cancel_delayed_work(sc, &sc->sc_keepalive_work); o2net_sc_queue_delayed_work(sc, &sc->sc_keepalive_work, msecs_to_jiffies(o2net_keepalive_delay())); o2net_set_sock_timer(sc); mod_timer(&sc->sc_idle_timeout, jiffies + msecs_to_jiffies(o2net_idle_timeout())); } static void o2net_sc_postpone_idle(struct o2net_sock_container *sc) { struct o2net_node *nn = o2net_nn_from_num(sc->sc_node->nd_num); /* clear fence decision since the connection recover from timeout*/ if (atomic_read(&nn->nn_timeout)) { o2quo_conn_up(o2net_num_from_nn(nn)); cancel_delayed_work(&nn->nn_still_up); atomic_set(&nn->nn_timeout, 0); } /* Only push out an existing timer */ if (timer_pending(&sc->sc_idle_timeout)) o2net_sc_reset_idle_timer(sc); } /* this work func is kicked whenever a path sets the nn state which doesn't * have valid set. This includes seeing hb come up, losing a connection, * having a connect attempt fail, etc. This centralizes the logic which decides * if a connect attempt should be made or if we should give up and all future * transmit attempts should fail */ static void o2net_start_connect(struct work_struct *work) { struct o2net_node *nn = container_of(work, struct o2net_node, nn_connect_work.work); struct o2net_sock_container *sc = NULL; struct o2nm_node *node = NULL, *mynode = NULL; struct socket *sock = NULL; struct sockaddr_in myaddr = {0, }, remoteaddr = {0, }; int ret = 0, stop; unsigned int timeout; unsigned int nofs_flag; /* * sock_create allocates the sock with GFP_KERNEL. We must * prevent the filesystem from being reentered by memory reclaim. */ nofs_flag = memalloc_nofs_save(); /* if we're greater we initiate tx, otherwise we accept */ if (o2nm_this_node() <= o2net_num_from_nn(nn)) goto out; /* watch for racing with tearing a node down */ node = o2nm_get_node_by_num(o2net_num_from_nn(nn)); if (node == NULL) goto out; mynode = o2nm_get_node_by_num(o2nm_this_node()); if (mynode == NULL) goto out; spin_lock(&nn->nn_lock); /* * see if we already have one pending or have given up. * For nn_timeout, it is set when we close the connection * because of the idle time out. So it means that we have * at least connected to that node successfully once, * now try to connect to it again. */ timeout = atomic_read(&nn->nn_timeout); stop = (nn->nn_sc || (nn->nn_persistent_error && (nn->nn_persistent_error != -ENOTCONN || timeout == 0))); spin_unlock(&nn->nn_lock); if (stop) goto out; nn->nn_last_connect_attempt = jiffies; sc = sc_alloc(node); if (sc == NULL) { mlog(0, "couldn't allocate sc\n"); ret = -ENOMEM; goto out; } ret = sock_create(PF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret < 0) { mlog(0, "can't create socket: %d\n", ret); goto out; } sc->sc_sock = sock; /* freed by sc_kref_release */ sock->sk->sk_allocation = GFP_ATOMIC; sock->sk->sk_use_task_frag = false; myaddr.sin_family = AF_INET; myaddr.sin_addr.s_addr = mynode->nd_ipv4_address; myaddr.sin_port = htons(0); /* any port */ ret = sock->ops->bind(sock, (struct sockaddr *)&myaddr, sizeof(myaddr)); if (ret) { mlog(ML_ERROR, "bind failed with %d at address %pI4\n", ret, &mynode->nd_ipv4_address); goto out; } tcp_sock_set_nodelay(sc->sc_sock->sk); tcp_sock_set_user_timeout(sock->sk, O2NET_TCP_USER_TIMEOUT); o2net_register_callbacks(sc->sc_sock->sk, sc); spin_lock(&nn->nn_lock); /* handshake completion will set nn->nn_sc_valid */ o2net_set_nn_state(nn, sc, 0, 0); spin_unlock(&nn->nn_lock); remoteaddr.sin_family = AF_INET; remoteaddr.sin_addr.s_addr = node->nd_ipv4_address; remoteaddr.sin_port = node->nd_ipv4_port; ret = sc->sc_sock->ops->connect(sc->sc_sock, (struct sockaddr *)&remoteaddr, sizeof(remoteaddr), O_NONBLOCK); if (ret == -EINPROGRESS) ret = 0; out: if (ret && sc) { printk(KERN_NOTICE "o2net: Connect attempt to " SC_NODEF_FMT " failed with errno %d\n", SC_NODEF_ARGS(sc), ret); /* 0 err so that another will be queued and attempted * from set_nn_state */ o2net_ensure_shutdown(nn, sc, 0); } if (sc) sc_put(sc); if (node) o2nm_node_put(node); if (mynode) o2nm_node_put(mynode); memalloc_nofs_restore(nofs_flag); return; } static void o2net_connect_expired(struct work_struct *work) { struct o2net_node *nn = container_of(work, struct o2net_node, nn_connect_expired.work); spin_lock(&nn->nn_lock); if (!nn->nn_sc_valid) { printk(KERN_NOTICE "o2net: No connection established with " "node %u after %u.%u seconds, check network and" " cluster configuration.\n", o2net_num_from_nn(nn), o2net_idle_timeout() / 1000, o2net_idle_timeout() % 1000); o2net_set_nn_state(nn, NULL, 0, 0); } spin_unlock(&nn->nn_lock); } static void o2net_still_up(struct work_struct *work) { struct o2net_node *nn = container_of(work, struct o2net_node, nn_still_up.work); o2quo_hb_still_up(o2net_num_from_nn(nn)); } /* ------------------------------------------------------------ */ void o2net_disconnect_node(struct o2nm_node *node) { struct o2net_node *nn = o2net_nn_from_num(node->nd_num); /* don't reconnect until it's heartbeating again */ spin_lock(&nn->nn_lock); atomic_set(&nn->nn_timeout, 0); o2net_set_nn_state(nn, NULL, 0, -ENOTCONN); spin_unlock(&nn->nn_lock); if (o2net_wq) { cancel_delayed_work(&nn->nn_connect_expired); cancel_delayed_work(&nn->nn_connect_work); cancel_delayed_work(&nn->nn_still_up); flush_workqueue(o2net_wq); } } static void o2net_hb_node_down_cb(struct o2nm_node *node, int node_num, void *data) { o2quo_hb_down(node_num); if (!node) return; if (node_num != o2nm_this_node()) o2net_disconnect_node(node); BUG_ON(atomic_read(&o2net_connected_peers) < 0); } static void o2net_hb_node_up_cb(struct o2nm_node *node, int node_num, void *data) { struct o2net_node *nn = o2net_nn_from_num(node_num); o2quo_hb_up(node_num); BUG_ON(!node); /* ensure an immediate connect attempt */ nn->nn_last_connect_attempt = jiffies - (msecs_to_jiffies(o2net_reconnect_delay()) + 1); if (node_num != o2nm_this_node()) { /* believe it or not, accept and node heartbeating testing * can succeed for this node before we got here.. so * only use set_nn_state to clear the persistent error * if that hasn't already happened */ spin_lock(&nn->nn_lock); atomic_set(&nn->nn_timeout, 0); if (nn->nn_persistent_error) o2net_set_nn_state(nn, NULL, 0, 0); spin_unlock(&nn->nn_lock); } } void o2net_unregister_hb_callbacks(void) { o2hb_unregister_callback(NULL, &o2net_hb_up); o2hb_unregister_callback(NULL, &o2net_hb_down); } int o2net_register_hb_callbacks(void) { int ret; o2hb_setup_callback(&o2net_hb_down, O2HB_NODE_DOWN_CB, o2net_hb_node_down_cb, NULL, O2NET_HB_PRI); o2hb_setup_callback(&o2net_hb_up, O2HB_NODE_UP_CB, o2net_hb_node_up_cb, NULL, O2NET_HB_PRI); ret = o2hb_register_callback(NULL, &o2net_hb_up); if (ret == 0) ret = o2hb_register_callback(NULL, &o2net_hb_down); if (ret) o2net_unregister_hb_callbacks(); return ret; } /* ------------------------------------------------------------ */ static int o2net_accept_one(struct socket *sock, int *more) { int ret; struct sockaddr_in sin; struct socket *new_sock = NULL; struct o2nm_node *node = NULL; struct o2nm_node *local_node = NULL; struct o2net_sock_container *sc = NULL; struct o2net_node *nn; unsigned int nofs_flag; /* * sock_create_lite allocates the sock with GFP_KERNEL. We must * prevent the filesystem from being reentered by memory reclaim. */ nofs_flag = memalloc_nofs_save(); BUG_ON(sock == NULL); *more = 0; ret = sock_create_lite(sock->sk->sk_family, sock->sk->sk_type, sock->sk->sk_protocol, &new_sock); if (ret) goto out; new_sock->type = sock->type; new_sock->ops = sock->ops; ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, false); if (ret < 0) goto out; *more = 1; new_sock->sk->sk_allocation = GFP_ATOMIC; tcp_sock_set_nodelay(new_sock->sk); tcp_sock_set_user_timeout(new_sock->sk, O2NET_TCP_USER_TIMEOUT); ret = new_sock->ops->getname(new_sock, (struct sockaddr *) &sin, 1); if (ret < 0) goto out; node = o2nm_get_node_by_ip(sin.sin_addr.s_addr); if (node == NULL) { printk(KERN_NOTICE "o2net: Attempt to connect from unknown " "node at %pI4:%d\n", &sin.sin_addr.s_addr, ntohs(sin.sin_port)); ret = -EINVAL; goto out; } if (o2nm_this_node() >= node->nd_num) { local_node = o2nm_get_node_by_num(o2nm_this_node()); if (local_node) printk(KERN_NOTICE "o2net: Unexpected connect attempt " "seen at node '%s' (%u, %pI4:%d) from " "node '%s' (%u, %pI4:%d)\n", local_node->nd_name, local_node->nd_num, &(local_node->nd_ipv4_address), ntohs(local_node->nd_ipv4_port), node->nd_name, node->nd_num, &sin.sin_addr.s_addr, ntohs(sin.sin_port)); ret = -EINVAL; goto out; } /* this happens all the time when the other node sees our heartbeat * and tries to connect before we see their heartbeat */ if (!o2hb_check_node_heartbeating_from_callback(node->nd_num)) { mlog(ML_CONN, "attempt to connect from node '%s' at " "%pI4:%d but it isn't heartbeating\n", node->nd_name, &sin.sin_addr.s_addr, ntohs(sin.sin_port)); ret = -EINVAL; goto out; } nn = o2net_nn_from_num(node->nd_num); spin_lock(&nn->nn_lock); if (nn->nn_sc) ret = -EBUSY; else ret = 0; spin_unlock(&nn->nn_lock); if (ret) { printk(KERN_NOTICE "o2net: Attempt to connect from node '%s' " "at %pI4:%d but it already has an open connection\n", node->nd_name, &sin.sin_addr.s_addr, ntohs(sin.sin_port)); goto out; } sc = sc_alloc(node); if (sc == NULL) { ret = -ENOMEM; goto out; } sc->sc_sock = new_sock; new_sock = NULL; spin_lock(&nn->nn_lock); atomic_set(&nn->nn_timeout, 0); o2net_set_nn_state(nn, sc, 0, 0); spin_unlock(&nn->nn_lock); o2net_register_callbacks(sc->sc_sock->sk, sc); o2net_sc_queue_work(sc, &sc->sc_rx_work); o2net_initialize_handshake(); o2net_sendpage(sc, o2net_hand, sizeof(*o2net_hand)); out: if (new_sock) sock_release(new_sock); if (node) o2nm_node_put(node); if (local_node) o2nm_node_put(local_node); if (sc) sc_put(sc); memalloc_nofs_restore(nofs_flag); return ret; } /* * This function is invoked in response to one or more * pending accepts at softIRQ level. We must drain the * entire que before returning. */ static void o2net_accept_many(struct work_struct *work) { struct socket *sock = o2net_listen_sock; int more; /* * It is critical to note that due to interrupt moderation * at the network driver level, we can't assume to get a * softIRQ for every single conn since tcp SYN packets * can arrive back-to-back, and therefore many pending * accepts may result in just 1 softIRQ. If we terminate * the o2net_accept_one() loop upon seeing an err, what happens * to the rest of the conns in the queue? If no new SYN * arrives for hours, no softIRQ will be delivered, * and the connections will just sit in the queue. */ for (;;) { o2net_accept_one(sock, &more); if (!more) break; cond_resched(); } } static void o2net_listen_data_ready(struct sock *sk) { void (*ready)(struct sock *sk); trace_sk_data_ready(sk); read_lock_bh(&sk->sk_callback_lock); ready = sk->sk_user_data; if (ready == NULL) { /* check for teardown race */ ready = sk->sk_data_ready; goto out; } /* This callback may called twice when a new connection * is being established as a child socket inherits everything * from a parent LISTEN socket, including the data_ready cb of * the parent. This leads to a hazard. In o2net_accept_one() * we are still initializing the child socket but have not * changed the inherited data_ready callback yet when * data starts arriving. * We avoid this hazard by checking the state. * For the listening socket, the state will be TCP_LISTEN; for the new * socket, will be TCP_ESTABLISHED. Also, in this case, * sk->sk_user_data is not a valid function pointer. */ if (sk->sk_state == TCP_LISTEN) { queue_work(o2net_wq, &o2net_listen_work); } else { ready = NULL; } out: read_unlock_bh(&sk->sk_callback_lock); if (ready != NULL) ready(sk); } static int o2net_open_listening_sock(__be32 addr, __be16 port) { struct socket *sock = NULL; int ret; struct sockaddr_in sin = { .sin_family = PF_INET, .sin_addr = { .s_addr = addr }, .sin_port = port, }; ret = sock_create(PF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret < 0) { printk(KERN_ERR "o2net: Error %d while creating socket\n", ret); goto out; } sock->sk->sk_allocation = GFP_ATOMIC; write_lock_bh(&sock->sk->sk_callback_lock); sock->sk->sk_user_data = sock->sk->sk_data_ready; sock->sk->sk_data_ready = o2net_listen_data_ready; write_unlock_bh(&sock->sk->sk_callback_lock); o2net_listen_sock = sock; INIT_WORK(&o2net_listen_work, o2net_accept_many); sock->sk->sk_reuse = SK_CAN_REUSE; ret = sock->ops->bind(sock, (struct sockaddr *)&sin, sizeof(sin)); if (ret < 0) { printk(KERN_ERR "o2net: Error %d while binding socket at " "%pI4:%u\n", ret, &addr, ntohs(port)); goto out; } ret = sock->ops->listen(sock, 64); if (ret < 0) printk(KERN_ERR "o2net: Error %d while listening on %pI4:%u\n", ret, &addr, ntohs(port)); out: if (ret) { o2net_listen_sock = NULL; if (sock) sock_release(sock); } return ret; } /* * called from node manager when we should bring up our network listening * socket. node manager handles all the serialization to only call this * once and to match it with o2net_stop_listening(). note, * o2nm_this_node() doesn't work yet as we're being called while it * is being set up. */ int o2net_start_listening(struct o2nm_node *node) { int ret = 0; BUG_ON(o2net_wq != NULL); BUG_ON(o2net_listen_sock != NULL); mlog(ML_KTHREAD, "starting o2net thread...\n"); o2net_wq = alloc_ordered_workqueue("o2net", WQ_MEM_RECLAIM); if (o2net_wq == NULL) { mlog(ML_ERROR, "unable to launch o2net thread\n"); return -ENOMEM; /* ? */ } ret = o2net_open_listening_sock(node->nd_ipv4_address, node->nd_ipv4_port); if (ret) { destroy_workqueue(o2net_wq); o2net_wq = NULL; } else o2quo_conn_up(node->nd_num); return ret; } /* again, o2nm_this_node() doesn't work here as we're involved in * tearing it down */ void o2net_stop_listening(struct o2nm_node *node) { struct socket *sock = o2net_listen_sock; size_t i; BUG_ON(o2net_wq == NULL); BUG_ON(o2net_listen_sock == NULL); /* stop the listening socket from generating work */ write_lock_bh(&sock->sk->sk_callback_lock); sock->sk->sk_data_ready = sock->sk->sk_user_data; sock->sk->sk_user_data = NULL; write_unlock_bh(&sock->sk->sk_callback_lock); for (i = 0; i < ARRAY_SIZE(o2net_nodes); i++) { struct o2nm_node *node = o2nm_get_node_by_num(i); if (node) { o2net_disconnect_node(node); o2nm_node_put(node); } } /* finish all work and tear down the work queue */ mlog(ML_KTHREAD, "waiting for o2net thread to exit....\n"); destroy_workqueue(o2net_wq); o2net_wq = NULL; sock_release(o2net_listen_sock); o2net_listen_sock = NULL; o2quo_conn_err(node->nd_num); } /* ------------------------------------------------------------ */ int o2net_init(void) { struct folio *folio; void *p; unsigned long i; o2quo_init(); o2net_debugfs_init(); folio = folio_alloc(GFP_KERNEL | __GFP_ZERO, 0); if (!folio) goto out; p = folio_address(folio); o2net_hand = p; p += sizeof(struct o2net_handshake); o2net_keep_req = p; p += sizeof(struct o2net_msg); o2net_keep_resp = p; o2net_hand->protocol_version = cpu_to_be64(O2NET_PROTOCOL_VERSION); o2net_hand->connector_id = cpu_to_be64(1); o2net_keep_req->magic = cpu_to_be16(O2NET_MSG_KEEP_REQ_MAGIC); o2net_keep_resp->magic = cpu_to_be16(O2NET_MSG_KEEP_RESP_MAGIC); for (i = 0; i < ARRAY_SIZE(o2net_nodes); i++) { struct o2net_node *nn = o2net_nn_from_num(i); atomic_set(&nn->nn_timeout, 0); spin_lock_init(&nn->nn_lock); INIT_DELAYED_WORK(&nn->nn_connect_work, o2net_start_connect); INIT_DELAYED_WORK(&nn->nn_connect_expired, o2net_connect_expired); INIT_DELAYED_WORK(&nn->nn_still_up, o2net_still_up); /* until we see hb from a node we'll return einval */ nn->nn_persistent_error = -ENOTCONN; init_waitqueue_head(&nn->nn_sc_wq); idr_init(&nn->nn_status_idr); INIT_LIST_HEAD(&nn->nn_status_list); } return 0; out: o2net_debugfs_exit(); o2quo_exit(); return -ENOMEM; } void o2net_exit(void) { o2quo_exit(); o2net_debugfs_exit(); folio_put(virt_to_folio(o2net_hand)); }
linux-master
fs/ocfs2/cluster/tcp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2005 Oracle. All rights reserved. */ /* This quorum hack is only here until we transition to some more rational * approach that is driven from userspace. Honest. No foolin'. * * Imagine two nodes lose network connectivity to each other but they're still * up and operating in every other way. Presumably a network timeout indicates * that a node is broken and should be recovered. They can't both recover each * other and both carry on without serialising their access to the file system. * They need to decide who is authoritative. Now extend that problem to * arbitrary groups of nodes losing connectivity between each other. * * So we declare that a node which has given up on connecting to a majority * of nodes who are still heartbeating will fence itself. * * There are huge opportunities for races here. After we give up on a node's * connection we need to wait long enough to give heartbeat an opportunity * to declare the node as truly dead. We also need to be careful with the * race between when we see a node start heartbeating and when we connect * to it. * * So nodes that are in this transtion put a hold on the quorum decision * with a counter. As they fall out of this transition they drop the count * and if they're the last, they fire off the decision. */ #include <linux/kernel.h> #include <linux/workqueue.h> #include <linux/reboot.h> #include "heartbeat.h" #include "nodemanager.h" #define MLOG_MASK_PREFIX ML_QUORUM #include "masklog.h" #include "quorum.h" static struct o2quo_state { spinlock_t qs_lock; struct work_struct qs_work; int qs_pending; int qs_heartbeating; unsigned long qs_hb_bm[BITS_TO_LONGS(O2NM_MAX_NODES)]; int qs_connected; unsigned long qs_conn_bm[BITS_TO_LONGS(O2NM_MAX_NODES)]; int qs_holds; unsigned long qs_hold_bm[BITS_TO_LONGS(O2NM_MAX_NODES)]; } o2quo_state; /* this is horribly heavy-handed. It should instead flip the file * system RO and call some userspace script. */ static void o2quo_fence_self(void) { /* panic spins with interrupts enabled. with preempt * threads can still schedule, etc, etc */ o2hb_stop_all_regions(); switch (o2nm_single_cluster->cl_fence_method) { case O2NM_FENCE_PANIC: panic("*** ocfs2 is very sorry to be fencing this system by " "panicing ***\n"); break; default: WARN_ON(o2nm_single_cluster->cl_fence_method >= O2NM_FENCE_METHODS); fallthrough; case O2NM_FENCE_RESET: printk(KERN_ERR "*** ocfs2 is very sorry to be fencing this " "system by restarting ***\n"); emergency_restart(); break; } } /* Indicate that a timeout occurred on a heartbeat region write. The * other nodes in the cluster may consider us dead at that time so we * want to "fence" ourselves so that we don't scribble on the disk * after they think they've recovered us. This can't solve all * problems related to writeout after recovery but this hack can at * least close some of those gaps. When we have real fencing, this can * go away as our node would be fenced externally before other nodes * begin recovery. */ void o2quo_disk_timeout(void) { o2quo_fence_self(); } static void o2quo_make_decision(struct work_struct *work) { int quorum; int lowest_hb, lowest_reachable = 0, fence = 0; struct o2quo_state *qs = &o2quo_state; spin_lock_bh(&qs->qs_lock); lowest_hb = find_first_bit(qs->qs_hb_bm, O2NM_MAX_NODES); if (lowest_hb != O2NM_MAX_NODES) lowest_reachable = test_bit(lowest_hb, qs->qs_conn_bm); mlog(0, "heartbeating: %d, connected: %d, " "lowest: %d (%sreachable)\n", qs->qs_heartbeating, qs->qs_connected, lowest_hb, lowest_reachable ? "" : "un"); if (!test_bit(o2nm_this_node(), qs->qs_hb_bm) || qs->qs_heartbeating == 1) goto out; if (qs->qs_heartbeating & 1) { /* the odd numbered cluster case is straight forward -- * if we can't talk to the majority we're hosed */ quorum = (qs->qs_heartbeating + 1)/2; if (qs->qs_connected < quorum) { mlog(ML_ERROR, "fencing this node because it is " "only connected to %u nodes and %u is needed " "to make a quorum out of %u heartbeating nodes\n", qs->qs_connected, quorum, qs->qs_heartbeating); fence = 1; } } else { /* the even numbered cluster adds the possibility of each half * of the cluster being able to talk amongst themselves.. in * that case we're hosed if we can't talk to the group that has * the lowest numbered node */ quorum = qs->qs_heartbeating / 2; if (qs->qs_connected < quorum) { mlog(ML_ERROR, "fencing this node because it is " "only connected to %u nodes and %u is needed " "to make a quorum out of %u heartbeating nodes\n", qs->qs_connected, quorum, qs->qs_heartbeating); fence = 1; } else if ((qs->qs_connected == quorum) && !lowest_reachable) { mlog(ML_ERROR, "fencing this node because it is " "connected to a half-quorum of %u out of %u " "nodes which doesn't include the lowest active " "node %u\n", quorum, qs->qs_heartbeating, lowest_hb); fence = 1; } } out: if (fence) { spin_unlock_bh(&qs->qs_lock); o2quo_fence_self(); } else { mlog(ML_NOTICE, "not fencing this node, heartbeating: %d, " "connected: %d, lowest: %d (%sreachable)\n", qs->qs_heartbeating, qs->qs_connected, lowest_hb, lowest_reachable ? "" : "un"); spin_unlock_bh(&qs->qs_lock); } } static void o2quo_set_hold(struct o2quo_state *qs, u8 node) { assert_spin_locked(&qs->qs_lock); if (!test_and_set_bit(node, qs->qs_hold_bm)) { qs->qs_holds++; mlog_bug_on_msg(qs->qs_holds == O2NM_MAX_NODES, "node %u\n", node); mlog(0, "node %u, %d total\n", node, qs->qs_holds); } } static void o2quo_clear_hold(struct o2quo_state *qs, u8 node) { assert_spin_locked(&qs->qs_lock); if (test_and_clear_bit(node, qs->qs_hold_bm)) { mlog(0, "node %u, %d total\n", node, qs->qs_holds - 1); if (--qs->qs_holds == 0) { if (qs->qs_pending) { qs->qs_pending = 0; schedule_work(&qs->qs_work); } } mlog_bug_on_msg(qs->qs_holds < 0, "node %u, holds %d\n", node, qs->qs_holds); } } /* as a node comes up we delay the quorum decision until we know the fate of * the connection. the hold will be droped in conn_up or hb_down. it might be * perpetuated by con_err until hb_down. if we already have a conn, we might * be dropping a hold that conn_up got. */ void o2quo_hb_up(u8 node) { struct o2quo_state *qs = &o2quo_state; spin_lock_bh(&qs->qs_lock); qs->qs_heartbeating++; mlog_bug_on_msg(qs->qs_heartbeating == O2NM_MAX_NODES, "node %u\n", node); mlog_bug_on_msg(test_bit(node, qs->qs_hb_bm), "node %u\n", node); set_bit(node, qs->qs_hb_bm); mlog(0, "node %u, %d total\n", node, qs->qs_heartbeating); if (!test_bit(node, qs->qs_conn_bm)) o2quo_set_hold(qs, node); else o2quo_clear_hold(qs, node); spin_unlock_bh(&qs->qs_lock); } /* hb going down releases any holds we might have had due to this node from * conn_up, conn_err, or hb_up */ void o2quo_hb_down(u8 node) { struct o2quo_state *qs = &o2quo_state; spin_lock_bh(&qs->qs_lock); qs->qs_heartbeating--; mlog_bug_on_msg(qs->qs_heartbeating < 0, "node %u, %d heartbeating\n", node, qs->qs_heartbeating); mlog_bug_on_msg(!test_bit(node, qs->qs_hb_bm), "node %u\n", node); clear_bit(node, qs->qs_hb_bm); mlog(0, "node %u, %d total\n", node, qs->qs_heartbeating); o2quo_clear_hold(qs, node); spin_unlock_bh(&qs->qs_lock); } /* this tells us that we've decided that the node is still heartbeating * even though we've lost it's conn. it must only be called after conn_err * and indicates that we must now make a quorum decision in the future, * though we might be doing so after waiting for holds to drain. Here * we'll be dropping the hold from conn_err. */ void o2quo_hb_still_up(u8 node) { struct o2quo_state *qs = &o2quo_state; spin_lock_bh(&qs->qs_lock); mlog(0, "node %u\n", node); qs->qs_pending = 1; o2quo_clear_hold(qs, node); spin_unlock_bh(&qs->qs_lock); } /* This is analogous to hb_up. as a node's connection comes up we delay the * quorum decision until we see it heartbeating. the hold will be droped in * hb_up or hb_down. it might be perpetuated by con_err until hb_down. if * it's already heartbeating we might be dropping a hold that conn_up got. * */ void o2quo_conn_up(u8 node) { struct o2quo_state *qs = &o2quo_state; spin_lock_bh(&qs->qs_lock); qs->qs_connected++; mlog_bug_on_msg(qs->qs_connected == O2NM_MAX_NODES, "node %u\n", node); mlog_bug_on_msg(test_bit(node, qs->qs_conn_bm), "node %u\n", node); set_bit(node, qs->qs_conn_bm); mlog(0, "node %u, %d total\n", node, qs->qs_connected); if (!test_bit(node, qs->qs_hb_bm)) o2quo_set_hold(qs, node); else o2quo_clear_hold(qs, node); spin_unlock_bh(&qs->qs_lock); } /* we've decided that we won't ever be connecting to the node again. if it's * still heartbeating we grab a hold that will delay decisions until either the * node stops heartbeating from hb_down or the caller decides that the node is * still up and calls still_up */ void o2quo_conn_err(u8 node) { struct o2quo_state *qs = &o2quo_state; spin_lock_bh(&qs->qs_lock); if (test_bit(node, qs->qs_conn_bm)) { qs->qs_connected--; mlog_bug_on_msg(qs->qs_connected < 0, "node %u, connected %d\n", node, qs->qs_connected); clear_bit(node, qs->qs_conn_bm); if (test_bit(node, qs->qs_hb_bm)) o2quo_set_hold(qs, node); } mlog(0, "node %u, %d total\n", node, qs->qs_connected); spin_unlock_bh(&qs->qs_lock); } void o2quo_init(void) { struct o2quo_state *qs = &o2quo_state; spin_lock_init(&qs->qs_lock); INIT_WORK(&qs->qs_work, o2quo_make_decision); } void o2quo_exit(void) { struct o2quo_state *qs = &o2quo_state; flush_work(&qs->qs_work); }
linux-master
fs/ocfs2/cluster/quorum.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * netdebug.c * * debug functionality for o2net * * Copyright (C) 2005, 2008 Oracle. All rights reserved. */ #ifdef CONFIG_DEBUG_FS #include <linux/module.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/idr.h> #include <linux/kref.h> #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/uaccess.h> #include "tcp.h" #include "nodemanager.h" #define MLOG_MASK_PREFIX ML_TCP #include "masklog.h" #include "tcp_internal.h" #define O2NET_DEBUG_DIR "o2net" #define SC_DEBUG_NAME "sock_containers" #define NST_DEBUG_NAME "send_tracking" #define STATS_DEBUG_NAME "stats" #define NODES_DEBUG_NAME "connected_nodes" #define SHOW_SOCK_CONTAINERS 0 #define SHOW_SOCK_STATS 1 static struct dentry *o2net_dentry; static DEFINE_SPINLOCK(o2net_debug_lock); static LIST_HEAD(sock_containers); static LIST_HEAD(send_tracking); void o2net_debug_add_nst(struct o2net_send_tracking *nst) { spin_lock_bh(&o2net_debug_lock); list_add(&nst->st_net_debug_item, &send_tracking); spin_unlock_bh(&o2net_debug_lock); } void o2net_debug_del_nst(struct o2net_send_tracking *nst) { spin_lock_bh(&o2net_debug_lock); if (!list_empty(&nst->st_net_debug_item)) list_del_init(&nst->st_net_debug_item); spin_unlock_bh(&o2net_debug_lock); } static struct o2net_send_tracking *next_nst(struct o2net_send_tracking *nst_start) { struct o2net_send_tracking *nst, *ret = NULL; assert_spin_locked(&o2net_debug_lock); list_for_each_entry(nst, &nst_start->st_net_debug_item, st_net_debug_item) { /* discover the head of the list */ if (&nst->st_net_debug_item == &send_tracking) break; /* use st_task to detect real nsts in the list */ if (nst->st_task != NULL) { ret = nst; break; } } return ret; } static void *nst_seq_start(struct seq_file *seq, loff_t *pos) { struct o2net_send_tracking *nst, *dummy_nst = seq->private; spin_lock_bh(&o2net_debug_lock); nst = next_nst(dummy_nst); spin_unlock_bh(&o2net_debug_lock); return nst; } static void *nst_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct o2net_send_tracking *nst, *dummy_nst = seq->private; spin_lock_bh(&o2net_debug_lock); nst = next_nst(dummy_nst); list_del_init(&dummy_nst->st_net_debug_item); if (nst) list_add(&dummy_nst->st_net_debug_item, &nst->st_net_debug_item); spin_unlock_bh(&o2net_debug_lock); return nst; /* unused, just needs to be null when done */ } static int nst_seq_show(struct seq_file *seq, void *v) { struct o2net_send_tracking *nst, *dummy_nst = seq->private; ktime_t now; s64 sock, send, status; spin_lock_bh(&o2net_debug_lock); nst = next_nst(dummy_nst); if (!nst) goto out; now = ktime_get(); sock = ktime_to_us(ktime_sub(now, nst->st_sock_time)); send = ktime_to_us(ktime_sub(now, nst->st_send_time)); status = ktime_to_us(ktime_sub(now, nst->st_status_time)); /* get_task_comm isn't exported. oh well. */ seq_printf(seq, "%p:\n" " pid: %lu\n" " tgid: %lu\n" " process name: %s\n" " node: %u\n" " sc: %p\n" " message id: %d\n" " message type: %u\n" " message key: 0x%08x\n" " sock acquiry: %lld usecs ago\n" " send start: %lld usecs ago\n" " wait start: %lld usecs ago\n", nst, (unsigned long)task_pid_nr(nst->st_task), (unsigned long)nst->st_task->tgid, nst->st_task->comm, nst->st_node, nst->st_sc, nst->st_id, nst->st_msg_type, nst->st_msg_key, (long long)sock, (long long)send, (long long)status); out: spin_unlock_bh(&o2net_debug_lock); return 0; } static void nst_seq_stop(struct seq_file *seq, void *v) { } static const struct seq_operations nst_seq_ops = { .start = nst_seq_start, .next = nst_seq_next, .stop = nst_seq_stop, .show = nst_seq_show, }; static int nst_fop_open(struct inode *inode, struct file *file) { struct o2net_send_tracking *dummy_nst; dummy_nst = __seq_open_private(file, &nst_seq_ops, sizeof(*dummy_nst)); if (!dummy_nst) return -ENOMEM; o2net_debug_add_nst(dummy_nst); return 0; } static int nst_fop_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct o2net_send_tracking *dummy_nst = seq->private; o2net_debug_del_nst(dummy_nst); return seq_release_private(inode, file); } static const struct file_operations nst_seq_fops = { .open = nst_fop_open, .read = seq_read, .llseek = seq_lseek, .release = nst_fop_release, }; void o2net_debug_add_sc(struct o2net_sock_container *sc) { spin_lock_bh(&o2net_debug_lock); list_add(&sc->sc_net_debug_item, &sock_containers); spin_unlock_bh(&o2net_debug_lock); } void o2net_debug_del_sc(struct o2net_sock_container *sc) { spin_lock_bh(&o2net_debug_lock); list_del_init(&sc->sc_net_debug_item); spin_unlock_bh(&o2net_debug_lock); } struct o2net_sock_debug { int dbg_ctxt; struct o2net_sock_container *dbg_sock; }; static struct o2net_sock_container *next_sc(struct o2net_sock_container *sc_start) { struct o2net_sock_container *sc, *ret = NULL; assert_spin_locked(&o2net_debug_lock); list_for_each_entry(sc, &sc_start->sc_net_debug_item, sc_net_debug_item) { /* discover the head of the list miscast as a sc */ if (&sc->sc_net_debug_item == &sock_containers) break; /* use sc_page to detect real scs in the list */ if (sc->sc_page != NULL) { ret = sc; break; } } return ret; } static void *sc_seq_start(struct seq_file *seq, loff_t *pos) { struct o2net_sock_debug *sd = seq->private; struct o2net_sock_container *sc, *dummy_sc = sd->dbg_sock; spin_lock_bh(&o2net_debug_lock); sc = next_sc(dummy_sc); spin_unlock_bh(&o2net_debug_lock); return sc; } static void *sc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct o2net_sock_debug *sd = seq->private; struct o2net_sock_container *sc, *dummy_sc = sd->dbg_sock; spin_lock_bh(&o2net_debug_lock); sc = next_sc(dummy_sc); list_del_init(&dummy_sc->sc_net_debug_item); if (sc) list_add(&dummy_sc->sc_net_debug_item, &sc->sc_net_debug_item); spin_unlock_bh(&o2net_debug_lock); return sc; /* unused, just needs to be null when done */ } #ifdef CONFIG_OCFS2_FS_STATS # define sc_send_count(_s) ((_s)->sc_send_count) # define sc_recv_count(_s) ((_s)->sc_recv_count) # define sc_tv_acquiry_total_ns(_s) (ktime_to_ns((_s)->sc_tv_acquiry_total)) # define sc_tv_send_total_ns(_s) (ktime_to_ns((_s)->sc_tv_send_total)) # define sc_tv_status_total_ns(_s) (ktime_to_ns((_s)->sc_tv_status_total)) # define sc_tv_process_total_ns(_s) (ktime_to_ns((_s)->sc_tv_process_total)) #else # define sc_send_count(_s) (0U) # define sc_recv_count(_s) (0U) # define sc_tv_acquiry_total_ns(_s) (0LL) # define sc_tv_send_total_ns(_s) (0LL) # define sc_tv_status_total_ns(_s) (0LL) # define sc_tv_process_total_ns(_s) (0LL) #endif /* So that debugfs.ocfs2 can determine which format is being used */ #define O2NET_STATS_STR_VERSION 1 static void sc_show_sock_stats(struct seq_file *seq, struct o2net_sock_container *sc) { if (!sc) return; seq_printf(seq, "%d,%u,%lu,%lld,%lld,%lld,%lu,%lld\n", O2NET_STATS_STR_VERSION, sc->sc_node->nd_num, (unsigned long)sc_send_count(sc), (long long)sc_tv_acquiry_total_ns(sc), (long long)sc_tv_send_total_ns(sc), (long long)sc_tv_status_total_ns(sc), (unsigned long)sc_recv_count(sc), (long long)sc_tv_process_total_ns(sc)); } static void sc_show_sock_container(struct seq_file *seq, struct o2net_sock_container *sc) { struct inet_sock *inet = NULL; __be32 saddr = 0, daddr = 0; __be16 sport = 0, dport = 0; if (!sc) return; if (sc->sc_sock) { inet = inet_sk(sc->sc_sock->sk); /* the stack's structs aren't sparse endian clean */ saddr = (__force __be32)inet->inet_saddr; daddr = (__force __be32)inet->inet_daddr; sport = (__force __be16)inet->inet_sport; dport = (__force __be16)inet->inet_dport; } /* XXX sigh, inet-> doesn't have sparse annotation so any * use of it here generates a warning with -Wbitwise */ seq_printf(seq, "%p:\n" " krefs: %d\n" " sock: %pI4:%u -> " "%pI4:%u\n" " remote node: %s\n" " page off: %zu\n" " handshake ok: %u\n" " timer: %lld usecs\n" " data ready: %lld usecs\n" " advance start: %lld usecs\n" " advance stop: %lld usecs\n" " func start: %lld usecs\n" " func stop: %lld usecs\n" " func key: 0x%08x\n" " func type: %u\n", sc, kref_read(&sc->sc_kref), &saddr, inet ? ntohs(sport) : 0, &daddr, inet ? ntohs(dport) : 0, sc->sc_node->nd_name, sc->sc_page_off, sc->sc_handshake_ok, (long long)ktime_to_us(sc->sc_tv_timer), (long long)ktime_to_us(sc->sc_tv_data_ready), (long long)ktime_to_us(sc->sc_tv_advance_start), (long long)ktime_to_us(sc->sc_tv_advance_stop), (long long)ktime_to_us(sc->sc_tv_func_start), (long long)ktime_to_us(sc->sc_tv_func_stop), sc->sc_msg_key, sc->sc_msg_type); } static int sc_seq_show(struct seq_file *seq, void *v) { struct o2net_sock_debug *sd = seq->private; struct o2net_sock_container *sc, *dummy_sc = sd->dbg_sock; spin_lock_bh(&o2net_debug_lock); sc = next_sc(dummy_sc); if (sc) { if (sd->dbg_ctxt == SHOW_SOCK_CONTAINERS) sc_show_sock_container(seq, sc); else sc_show_sock_stats(seq, sc); } spin_unlock_bh(&o2net_debug_lock); return 0; } static void sc_seq_stop(struct seq_file *seq, void *v) { } static const struct seq_operations sc_seq_ops = { .start = sc_seq_start, .next = sc_seq_next, .stop = sc_seq_stop, .show = sc_seq_show, }; static int sc_common_open(struct file *file, int ctxt) { struct o2net_sock_debug *sd; struct o2net_sock_container *dummy_sc; dummy_sc = kzalloc(sizeof(*dummy_sc), GFP_KERNEL); if (!dummy_sc) return -ENOMEM; sd = __seq_open_private(file, &sc_seq_ops, sizeof(*sd)); if (!sd) { kfree(dummy_sc); return -ENOMEM; } sd->dbg_ctxt = ctxt; sd->dbg_sock = dummy_sc; o2net_debug_add_sc(dummy_sc); return 0; } static int sc_fop_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct o2net_sock_debug *sd = seq->private; struct o2net_sock_container *dummy_sc = sd->dbg_sock; o2net_debug_del_sc(dummy_sc); kfree(dummy_sc); return seq_release_private(inode, file); } static int stats_fop_open(struct inode *inode, struct file *file) { return sc_common_open(file, SHOW_SOCK_STATS); } static const struct file_operations stats_seq_fops = { .open = stats_fop_open, .read = seq_read, .llseek = seq_lseek, .release = sc_fop_release, }; static int sc_fop_open(struct inode *inode, struct file *file) { return sc_common_open(file, SHOW_SOCK_CONTAINERS); } static const struct file_operations sc_seq_fops = { .open = sc_fop_open, .read = seq_read, .llseek = seq_lseek, .release = sc_fop_release, }; static int o2net_fill_bitmap(char *buf, int len) { unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)]; int i = -1, out = 0; o2net_fill_node_map(map, O2NM_MAX_NODES); while ((i = find_next_bit(map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) out += scnprintf(buf + out, PAGE_SIZE - out, "%d ", i); out += scnprintf(buf + out, PAGE_SIZE - out, "\n"); return out; } static int nodes_fop_open(struct inode *inode, struct file *file) { char *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; i_size_write(inode, o2net_fill_bitmap(buf, PAGE_SIZE)); file->private_data = buf; return 0; } static int o2net_debug_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static ssize_t o2net_debug_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { return simple_read_from_buffer(buf, nbytes, ppos, file->private_data, i_size_read(file->f_mapping->host)); } static const struct file_operations nodes_fops = { .open = nodes_fop_open, .release = o2net_debug_release, .read = o2net_debug_read, .llseek = generic_file_llseek, }; void o2net_debugfs_exit(void) { debugfs_remove_recursive(o2net_dentry); } void o2net_debugfs_init(void) { umode_t mode = S_IFREG|S_IRUSR; o2net_dentry = debugfs_create_dir(O2NET_DEBUG_DIR, NULL); debugfs_create_file(NST_DEBUG_NAME, mode, o2net_dentry, NULL, &nst_seq_fops); debugfs_create_file(SC_DEBUG_NAME, mode, o2net_dentry, NULL, &sc_seq_fops); debugfs_create_file(STATS_DEBUG_NAME, mode, o2net_dentry, NULL, &stats_seq_fops); debugfs_create_file(NODES_DEBUG_NAME, mode, o2net_dentry, NULL, &nodes_fops); } #endif /* CONFIG_DEBUG_FS */
linux-master
fs/ocfs2/cluster/netdebug.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004, 2005 Oracle. All rights reserved. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/file.h> #include <linux/kthread.h> #include <linux/configfs.h> #include <linux/random.h> #include <linux/crc32.h> #include <linux/time.h> #include <linux/debugfs.h> #include <linux/slab.h> #include <linux/bitmap.h> #include <linux/ktime.h> #include "heartbeat.h" #include "tcp.h" #include "nodemanager.h" #include "quorum.h" #include "masklog.h" /* * The first heartbeat pass had one global thread that would serialize all hb * callback calls. This global serializing sem should only be removed once * we've made sure that all callees can deal with being called concurrently * from multiple hb region threads. */ static DECLARE_RWSEM(o2hb_callback_sem); /* * multiple hb threads are watching multiple regions. A node is live * whenever any of the threads sees activity from the node in its region. */ static DEFINE_SPINLOCK(o2hb_live_lock); static struct list_head o2hb_live_slots[O2NM_MAX_NODES]; static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; static LIST_HEAD(o2hb_node_events); static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue); /* * In global heartbeat, we maintain a series of region bitmaps. * - o2hb_region_bitmap allows us to limit the region number to max region. * - o2hb_live_region_bitmap tracks live regions (seen steady iterations). * - o2hb_quorum_region_bitmap tracks live regions that have seen all nodes * heartbeat on it. * - o2hb_failed_region_bitmap tracks the regions that have seen io timeouts. */ static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)]; #define O2HB_DB_TYPE_LIVENODES 0 #define O2HB_DB_TYPE_LIVEREGIONS 1 #define O2HB_DB_TYPE_QUORUMREGIONS 2 #define O2HB_DB_TYPE_FAILEDREGIONS 3 #define O2HB_DB_TYPE_REGION_LIVENODES 4 #define O2HB_DB_TYPE_REGION_NUMBER 5 #define O2HB_DB_TYPE_REGION_ELAPSED_TIME 6 #define O2HB_DB_TYPE_REGION_PINNED 7 struct o2hb_debug_buf { int db_type; int db_size; int db_len; void *db_data; }; static struct o2hb_debug_buf *o2hb_db_livenodes; static struct o2hb_debug_buf *o2hb_db_liveregions; static struct o2hb_debug_buf *o2hb_db_quorumregions; static struct o2hb_debug_buf *o2hb_db_failedregions; #define O2HB_DEBUG_DIR "o2hb" #define O2HB_DEBUG_LIVENODES "livenodes" #define O2HB_DEBUG_LIVEREGIONS "live_regions" #define O2HB_DEBUG_QUORUMREGIONS "quorum_regions" #define O2HB_DEBUG_FAILEDREGIONS "failed_regions" #define O2HB_DEBUG_REGION_NUMBER "num" #define O2HB_DEBUG_REGION_ELAPSED_TIME "elapsed_time_in_ms" #define O2HB_DEBUG_REGION_PINNED "pinned" static struct dentry *o2hb_debug_dir; static LIST_HEAD(o2hb_all_regions); static struct o2hb_callback { struct list_head list; } o2hb_callbacks[O2HB_NUM_CB]; static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type); enum o2hb_heartbeat_modes { O2HB_HEARTBEAT_LOCAL = 0, O2HB_HEARTBEAT_GLOBAL, O2HB_HEARTBEAT_NUM_MODES, }; static const char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = { "local", /* O2HB_HEARTBEAT_LOCAL */ "global", /* O2HB_HEARTBEAT_GLOBAL */ }; unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD; static unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL; /* * o2hb_dependent_users tracks the number of registered callbacks that depend * on heartbeat. o2net and o2dlm are two entities that register this callback. * However only o2dlm depends on the heartbeat. It does not want the heartbeat * to stop while a dlm domain is still active. */ static unsigned int o2hb_dependent_users; /* * In global heartbeat mode, all regions are pinned if there are one or more * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All * regions are unpinned if the region count exceeds the cut off or the number * of dependent users falls to zero. */ #define O2HB_PIN_CUT_OFF 3 /* * In local heartbeat mode, we assume the dlm domain name to be the same as * region uuid. This is true for domains created for the file system but not * necessarily true for userdlm domains. This is a known limitation. * * In global heartbeat mode, we pin/unpin all o2hb regions. This solution * works for both file system and userdlm domains. */ static int o2hb_region_pin(const char *region_uuid); static void o2hb_region_unpin(const char *region_uuid); /* Only sets a new threshold if there are no active regions. * * No locking or otherwise interesting code is required for reading * o2hb_dead_threshold as it can't change once regions are active and * it's not interesting to anyone until then anyway. */ static void o2hb_dead_threshold_set(unsigned int threshold) { if (threshold > O2HB_MIN_DEAD_THRESHOLD) { spin_lock(&o2hb_live_lock); if (list_empty(&o2hb_all_regions)) o2hb_dead_threshold = threshold; spin_unlock(&o2hb_live_lock); } } static int o2hb_global_heartbeat_mode_set(unsigned int hb_mode) { int ret = -1; if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) { spin_lock(&o2hb_live_lock); if (list_empty(&o2hb_all_regions)) { o2hb_heartbeat_mode = hb_mode; ret = 0; } spin_unlock(&o2hb_live_lock); } return ret; } struct o2hb_node_event { struct list_head hn_item; enum o2hb_callback_type hn_event_type; struct o2nm_node *hn_node; int hn_node_num; }; struct o2hb_disk_slot { struct o2hb_disk_heartbeat_block *ds_raw_block; u8 ds_node_num; u64 ds_last_time; u64 ds_last_generation; u16 ds_equal_samples; u16 ds_changed_samples; struct list_head ds_live_item; }; /* each thread owns a region.. when we're asked to tear down the region * we ask the thread to stop, who cleans up the region */ struct o2hb_region { struct config_item hr_item; struct list_head hr_all_item; unsigned hr_unclean_stop:1, hr_aborted_start:1, hr_item_pinned:1, hr_item_dropped:1, hr_node_deleted:1; /* protected by the hr_callback_sem */ struct task_struct *hr_task; unsigned int hr_blocks; unsigned long long hr_start_block; unsigned int hr_block_bits; unsigned int hr_block_bytes; unsigned int hr_slots_per_page; unsigned int hr_num_pages; struct page **hr_slot_data; struct block_device *hr_bdev; struct o2hb_disk_slot *hr_slots; /* live node map of this region */ unsigned long hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; unsigned int hr_region_num; struct dentry *hr_debug_dir; struct o2hb_debug_buf *hr_db_livenodes; struct o2hb_debug_buf *hr_db_regnum; struct o2hb_debug_buf *hr_db_elapsed_time; struct o2hb_debug_buf *hr_db_pinned; /* let the person setting up hb wait for it to return until it * has reached a 'steady' state. This will be fixed when we have * a more complete api that doesn't lead to this sort of fragility. */ atomic_t hr_steady_iterations; /* terminate o2hb thread if it does not reach steady state * (hr_steady_iterations == 0) within hr_unsteady_iterations */ atomic_t hr_unsteady_iterations; unsigned int hr_timeout_ms; /* randomized as the region goes up and down so that a node * recognizes a node going up and down in one iteration */ u64 hr_generation; struct delayed_work hr_write_timeout_work; unsigned long hr_last_timeout_start; /* negotiate timer, used to negotiate extending hb timeout. */ struct delayed_work hr_nego_timeout_work; unsigned long hr_nego_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; /* Used during o2hb_check_slot to hold a copy of the block * being checked because we temporarily have to zero out the * crc field. */ struct o2hb_disk_heartbeat_block *hr_tmp_block; /* Message key for negotiate timeout message. */ unsigned int hr_key; struct list_head hr_handler_list; /* last hb status, 0 for success, other value for error. */ int hr_last_hb_status; }; struct o2hb_bio_wait_ctxt { atomic_t wc_num_reqs; struct completion wc_io_complete; int wc_error; }; #define O2HB_NEGO_TIMEOUT_MS (O2HB_MAX_WRITE_TIMEOUT_MS/2) enum { O2HB_NEGO_TIMEOUT_MSG = 1, O2HB_NEGO_APPROVE_MSG = 2, }; struct o2hb_nego_msg { u8 node_num; }; static void o2hb_write_timeout(struct work_struct *work) { int failed, quorum; struct o2hb_region *reg = container_of(work, struct o2hb_region, hr_write_timeout_work.work); mlog(ML_ERROR, "Heartbeat write timeout to device %pg after %u " "milliseconds\n", reg->hr_bdev, jiffies_to_msecs(jiffies - reg->hr_last_timeout_start)); if (o2hb_global_heartbeat_active()) { spin_lock(&o2hb_live_lock); if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) set_bit(reg->hr_region_num, o2hb_failed_region_bitmap); failed = bitmap_weight(o2hb_failed_region_bitmap, O2NM_MAX_REGIONS); quorum = bitmap_weight(o2hb_quorum_region_bitmap, O2NM_MAX_REGIONS); spin_unlock(&o2hb_live_lock); mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n", quorum, failed); /* * Fence if the number of failed regions >= half the number * of quorum regions */ if ((failed << 1) < quorum) return; } o2quo_disk_timeout(); } static void o2hb_arm_timeout(struct o2hb_region *reg) { /* Arm writeout only after thread reaches steady state */ if (atomic_read(&reg->hr_steady_iterations) != 0) return; mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS); if (o2hb_global_heartbeat_active()) { spin_lock(&o2hb_live_lock); clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap); spin_unlock(&o2hb_live_lock); } cancel_delayed_work(&reg->hr_write_timeout_work); schedule_delayed_work(&reg->hr_write_timeout_work, msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS)); cancel_delayed_work(&reg->hr_nego_timeout_work); /* negotiate timeout must be less than write timeout. */ schedule_delayed_work(&reg->hr_nego_timeout_work, msecs_to_jiffies(O2HB_NEGO_TIMEOUT_MS)); bitmap_zero(reg->hr_nego_node_bitmap, O2NM_MAX_NODES); } static void o2hb_disarm_timeout(struct o2hb_region *reg) { cancel_delayed_work_sync(&reg->hr_write_timeout_work); cancel_delayed_work_sync(&reg->hr_nego_timeout_work); } static int o2hb_send_nego_msg(int key, int type, u8 target) { struct o2hb_nego_msg msg; int status, ret; msg.node_num = o2nm_this_node(); again: ret = o2net_send_message(type, key, &msg, sizeof(msg), target, &status); if (ret == -EAGAIN || ret == -ENOMEM) { msleep(100); goto again; } return ret; } static void o2hb_nego_timeout(struct work_struct *work) { unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; int master_node, i, ret; struct o2hb_region *reg; reg = container_of(work, struct o2hb_region, hr_nego_timeout_work.work); /* don't negotiate timeout if last hb failed since it is very * possible io failed. Should let write timeout fence self. */ if (reg->hr_last_hb_status) return; o2hb_fill_node_map(live_node_bitmap, O2NM_MAX_NODES); /* lowest node as master node to make negotiate decision. */ master_node = find_first_bit(live_node_bitmap, O2NM_MAX_NODES); if (master_node == o2nm_this_node()) { if (!test_bit(master_node, reg->hr_nego_node_bitmap)) { printk(KERN_NOTICE "o2hb: node %d hb write hung for %ds on region %s (%pg).\n", o2nm_this_node(), O2HB_NEGO_TIMEOUT_MS/1000, config_item_name(&reg->hr_item), reg->hr_bdev); set_bit(master_node, reg->hr_nego_node_bitmap); } if (!bitmap_equal(reg->hr_nego_node_bitmap, live_node_bitmap, O2NM_MAX_NODES)) { /* check negotiate bitmap every second to do timeout * approve decision. */ schedule_delayed_work(&reg->hr_nego_timeout_work, msecs_to_jiffies(1000)); return; } printk(KERN_NOTICE "o2hb: all nodes hb write hung, maybe region %s (%pg) is down.\n", config_item_name(&reg->hr_item), reg->hr_bdev); /* approve negotiate timeout request. */ o2hb_arm_timeout(reg); i = -1; while ((i = find_next_bit(live_node_bitmap, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { if (i == master_node) continue; mlog(ML_HEARTBEAT, "send NEGO_APPROVE msg to node %d\n", i); ret = o2hb_send_nego_msg(reg->hr_key, O2HB_NEGO_APPROVE_MSG, i); if (ret) mlog(ML_ERROR, "send NEGO_APPROVE msg to node %d fail %d\n", i, ret); } } else { /* negotiate timeout with master node. */ printk(KERN_NOTICE "o2hb: node %d hb write hung for %ds on region %s (%pg), negotiate timeout with node %d.\n", o2nm_this_node(), O2HB_NEGO_TIMEOUT_MS/1000, config_item_name(&reg->hr_item), reg->hr_bdev, master_node); ret = o2hb_send_nego_msg(reg->hr_key, O2HB_NEGO_TIMEOUT_MSG, master_node); if (ret) mlog(ML_ERROR, "send NEGO_TIMEOUT msg to node %d fail %d\n", master_node, ret); } } static int o2hb_nego_timeout_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct o2hb_region *reg = data; struct o2hb_nego_msg *nego_msg; nego_msg = (struct o2hb_nego_msg *)msg->buf; printk(KERN_NOTICE "o2hb: receive negotiate timeout message from node %d on region %s (%pg).\n", nego_msg->node_num, config_item_name(&reg->hr_item), reg->hr_bdev); if (nego_msg->node_num < O2NM_MAX_NODES) set_bit(nego_msg->node_num, reg->hr_nego_node_bitmap); else mlog(ML_ERROR, "got nego timeout message from bad node.\n"); return 0; } static int o2hb_nego_approve_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct o2hb_region *reg = data; printk(KERN_NOTICE "o2hb: negotiate timeout approved by master node on region %s (%pg).\n", config_item_name(&reg->hr_item), reg->hr_bdev); o2hb_arm_timeout(reg); return 0; } static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc) { atomic_set(&wc->wc_num_reqs, 1); init_completion(&wc->wc_io_complete); wc->wc_error = 0; } /* Used in error paths too */ static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc, unsigned int num) { /* sadly atomic_sub_and_test() isn't available on all platforms. The * good news is that the fast path only completes one at a time */ while(num--) { if (atomic_dec_and_test(&wc->wc_num_reqs)) { BUG_ON(num > 0); complete(&wc->wc_io_complete); } } } static void o2hb_wait_on_io(struct o2hb_bio_wait_ctxt *wc) { o2hb_bio_wait_dec(wc, 1); wait_for_completion(&wc->wc_io_complete); } static void o2hb_bio_end_io(struct bio *bio) { struct o2hb_bio_wait_ctxt *wc = bio->bi_private; if (bio->bi_status) { mlog(ML_ERROR, "IO Error %d\n", bio->bi_status); wc->wc_error = blk_status_to_errno(bio->bi_status); } o2hb_bio_wait_dec(wc, 1); bio_put(bio); } /* Setup a Bio to cover I/O against num_slots slots starting at * start_slot. */ static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg, struct o2hb_bio_wait_ctxt *wc, unsigned int *current_slot, unsigned int max_slots, blk_opf_t opf) { int len, current_page; unsigned int vec_len, vec_start; unsigned int bits = reg->hr_block_bits; unsigned int spp = reg->hr_slots_per_page; unsigned int cs = *current_slot; struct bio *bio; struct page *page; /* Testing has shown this allocation to take long enough under * GFP_KERNEL that the local node can get fenced. It would be * nicest if we could pre-allocate these bios and avoid this * all together. */ bio = bio_alloc(reg->hr_bdev, 16, opf, GFP_ATOMIC); if (!bio) { mlog(ML_ERROR, "Could not alloc slots BIO!\n"); bio = ERR_PTR(-ENOMEM); goto bail; } /* Must put everything in 512 byte sectors for the bio... */ bio->bi_iter.bi_sector = (reg->hr_start_block + cs) << (bits - 9); bio->bi_private = wc; bio->bi_end_io = o2hb_bio_end_io; vec_start = (cs << bits) % PAGE_SIZE; while(cs < max_slots) { current_page = cs / spp; page = reg->hr_slot_data[current_page]; vec_len = min(PAGE_SIZE - vec_start, (max_slots-cs) * (PAGE_SIZE/spp) ); mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n", current_page, vec_len, vec_start); len = bio_add_page(bio, page, vec_len, vec_start); if (len != vec_len) break; cs += vec_len / (PAGE_SIZE/spp); vec_start = 0; } bail: *current_slot = cs; return bio; } static int o2hb_read_slots(struct o2hb_region *reg, unsigned int begin_slot, unsigned int max_slots) { unsigned int current_slot = begin_slot; int status; struct o2hb_bio_wait_ctxt wc; struct bio *bio; o2hb_bio_wait_init(&wc); while(current_slot < max_slots) { bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots, REQ_OP_READ); if (IS_ERR(bio)) { status = PTR_ERR(bio); mlog_errno(status); goto bail_and_wait; } atomic_inc(&wc.wc_num_reqs); submit_bio(bio); } status = 0; bail_and_wait: o2hb_wait_on_io(&wc); if (wc.wc_error && !status) status = wc.wc_error; return status; } static int o2hb_issue_node_write(struct o2hb_region *reg, struct o2hb_bio_wait_ctxt *write_wc) { int status; unsigned int slot; struct bio *bio; o2hb_bio_wait_init(write_wc); slot = o2nm_this_node(); bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1, REQ_OP_WRITE | REQ_SYNC); if (IS_ERR(bio)) { status = PTR_ERR(bio); mlog_errno(status); goto bail; } atomic_inc(&write_wc->wc_num_reqs); submit_bio(bio); status = 0; bail: return status; } static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg, struct o2hb_disk_heartbeat_block *hb_block) { __le32 old_cksum; u32 ret; /* We want to compute the block crc with a 0 value in the * hb_cksum field. Save it off here and replace after the * crc. */ old_cksum = hb_block->hb_cksum; hb_block->hb_cksum = 0; ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes); hb_block->hb_cksum = old_cksum; return ret; } static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block) { mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, " "cksum = 0x%x, generation 0x%llx\n", (long long)le64_to_cpu(hb_block->hb_seq), hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum), (long long)le64_to_cpu(hb_block->hb_generation)); } static int o2hb_verify_crc(struct o2hb_region *reg, struct o2hb_disk_heartbeat_block *hb_block) { u32 read, computed; read = le32_to_cpu(hb_block->hb_cksum); computed = o2hb_compute_block_crc_le(reg, hb_block); return read == computed; } /* * Compare the slot data with what we wrote in the last iteration. * If the match fails, print an appropriate error message. This is to * detect errors like... another node hearting on the same slot, * flaky device that is losing writes, etc. * Returns 1 if check succeeds, 0 otherwise. */ static int o2hb_check_own_slot(struct o2hb_region *reg) { struct o2hb_disk_slot *slot; struct o2hb_disk_heartbeat_block *hb_block; char *errstr; slot = &reg->hr_slots[o2nm_this_node()]; /* Don't check on our 1st timestamp */ if (!slot->ds_last_time) return 0; hb_block = slot->ds_raw_block; if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time && le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation && hb_block->hb_node == slot->ds_node_num) return 1; #define ERRSTR1 "Another node is heartbeating on device" #define ERRSTR2 "Heartbeat generation mismatch on device" #define ERRSTR3 "Heartbeat sequence mismatch on device" if (hb_block->hb_node != slot->ds_node_num) errstr = ERRSTR1; else if (le64_to_cpu(hb_block->hb_generation) != slot->ds_last_generation) errstr = ERRSTR2; else errstr = ERRSTR3; mlog(ML_ERROR, "%s (%pg): expected(%u:0x%llx, 0x%llx), " "ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_bdev, slot->ds_node_num, (unsigned long long)slot->ds_last_generation, (unsigned long long)slot->ds_last_time, hb_block->hb_node, (unsigned long long)le64_to_cpu(hb_block->hb_generation), (unsigned long long)le64_to_cpu(hb_block->hb_seq)); return 0; } static inline void o2hb_prepare_block(struct o2hb_region *reg, u64 generation) { int node_num; u64 cputime; struct o2hb_disk_slot *slot; struct o2hb_disk_heartbeat_block *hb_block; node_num = o2nm_this_node(); slot = &reg->hr_slots[node_num]; hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block; memset(hb_block, 0, reg->hr_block_bytes); /* TODO: time stuff */ cputime = ktime_get_real_seconds(); if (!cputime) cputime = 1; hb_block->hb_seq = cpu_to_le64(cputime); hb_block->hb_node = node_num; hb_block->hb_generation = cpu_to_le64(generation); hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS); /* This step must always happen last! */ hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg, hb_block)); mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n", (long long)generation, le32_to_cpu(hb_block->hb_cksum)); } static void o2hb_fire_callbacks(struct o2hb_callback *hbcall, struct o2nm_node *node, int idx) { struct o2hb_callback_func *f; list_for_each_entry(f, &hbcall->list, hc_item) { mlog(ML_HEARTBEAT, "calling funcs %p\n", f); (f->hc_func)(node, idx, f->hc_data); } } /* Will run the list in order until we process the passed event */ static void o2hb_run_event_list(struct o2hb_node_event *queued_event) { struct o2hb_callback *hbcall; struct o2hb_node_event *event; /* Holding callback sem assures we don't alter the callback * lists when doing this, and serializes ourselves with other * processes wanting callbacks. */ down_write(&o2hb_callback_sem); spin_lock(&o2hb_live_lock); while (!list_empty(&o2hb_node_events) && !list_empty(&queued_event->hn_item)) { event = list_entry(o2hb_node_events.next, struct o2hb_node_event, hn_item); list_del_init(&event->hn_item); spin_unlock(&o2hb_live_lock); mlog(ML_HEARTBEAT, "Node %s event for %d\n", event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN", event->hn_node_num); hbcall = hbcall_from_type(event->hn_event_type); /* We should *never* have gotten on to the list with a * bad type... This isn't something that we should try * to recover from. */ BUG_ON(IS_ERR(hbcall)); o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num); spin_lock(&o2hb_live_lock); } spin_unlock(&o2hb_live_lock); up_write(&o2hb_callback_sem); } static void o2hb_queue_node_event(struct o2hb_node_event *event, enum o2hb_callback_type type, struct o2nm_node *node, int node_num) { assert_spin_locked(&o2hb_live_lock); BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB)); event->hn_event_type = type; event->hn_node = node; event->hn_node_num = node_num; mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n", type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num); list_add_tail(&event->hn_item, &o2hb_node_events); } static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot) { struct o2hb_node_event event = { .hn_item = LIST_HEAD_INIT(event.hn_item), }; struct o2nm_node *node; int queued = 0; node = o2nm_get_node_by_num(slot->ds_node_num); if (!node) return; spin_lock(&o2hb_live_lock); if (!list_empty(&slot->ds_live_item)) { mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n", slot->ds_node_num); list_del_init(&slot->ds_live_item); if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node, slot->ds_node_num); queued = 1; } } spin_unlock(&o2hb_live_lock); if (queued) o2hb_run_event_list(&event); o2nm_node_put(node); } static void o2hb_set_quorum_device(struct o2hb_region *reg) { if (!o2hb_global_heartbeat_active()) return; /* Prevent race with o2hb_heartbeat_group_drop_item() */ if (kthread_should_stop()) return; /* Tag region as quorum only after thread reaches steady state */ if (atomic_read(&reg->hr_steady_iterations) != 0) return; spin_lock(&o2hb_live_lock); if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) goto unlock; /* * A region can be added to the quorum only when it sees all * live nodes heartbeat on it. In other words, the region has been * added to all nodes. */ if (!bitmap_equal(reg->hr_live_node_bitmap, o2hb_live_node_bitmap, O2NM_MAX_NODES)) goto unlock; printk(KERN_NOTICE "o2hb: Region %s (%pg) is now a quorum device\n", config_item_name(&reg->hr_item), reg->hr_bdev); set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap); /* * If global heartbeat active, unpin all regions if the * region count > CUT_OFF */ if (bitmap_weight(o2hb_quorum_region_bitmap, O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF) o2hb_region_unpin(NULL); unlock: spin_unlock(&o2hb_live_lock); } static int o2hb_check_slot(struct o2hb_region *reg, struct o2hb_disk_slot *slot) { int changed = 0, gen_changed = 0; struct o2hb_node_event event = { .hn_item = LIST_HEAD_INIT(event.hn_item), }; struct o2nm_node *node; struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block; u64 cputime; unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS; unsigned int slot_dead_ms; int tmp; int queued = 0; memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes); /* * If a node is no longer configured but is still in the livemap, we * may need to clear that bit from the livemap. */ node = o2nm_get_node_by_num(slot->ds_node_num); if (!node) { spin_lock(&o2hb_live_lock); tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap); spin_unlock(&o2hb_live_lock); if (!tmp) return 0; } if (!o2hb_verify_crc(reg, hb_block)) { /* all paths from here will drop o2hb_live_lock for * us. */ spin_lock(&o2hb_live_lock); /* Don't print an error on the console in this case - * a freshly formatted heartbeat area will not have a * crc set on it. */ if (list_empty(&slot->ds_live_item)) goto out; /* The node is live but pushed out a bad crc. We * consider it a transient miss but don't populate any * other values as they may be junk. */ mlog(ML_ERROR, "Node %d has written a bad crc to %pg\n", slot->ds_node_num, reg->hr_bdev); o2hb_dump_slot(hb_block); slot->ds_equal_samples++; goto fire_callbacks; } /* we don't care if these wrap.. the state transitions below * clear at the right places */ cputime = le64_to_cpu(hb_block->hb_seq); if (slot->ds_last_time != cputime) slot->ds_changed_samples++; else slot->ds_equal_samples++; slot->ds_last_time = cputime; /* The node changed heartbeat generations. We assume this to * mean it dropped off but came back before we timed out. We * want to consider it down for the time being but don't want * to lose any changed_samples state we might build up to * considering it live again. */ if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) { gen_changed = 1; slot->ds_equal_samples = 0; mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx " "to 0x%llx)\n", slot->ds_node_num, (long long)slot->ds_last_generation, (long long)le64_to_cpu(hb_block->hb_generation)); } slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x " "seq %llu last %llu changed %u equal %u\n", slot->ds_node_num, (long long)slot->ds_last_generation, le32_to_cpu(hb_block->hb_cksum), (unsigned long long)le64_to_cpu(hb_block->hb_seq), (unsigned long long)slot->ds_last_time, slot->ds_changed_samples, slot->ds_equal_samples); spin_lock(&o2hb_live_lock); fire_callbacks: /* dead nodes only come to life after some number of * changes at any time during their dead time */ if (list_empty(&slot->ds_live_item) && slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) { mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n", slot->ds_node_num, (long long)slot->ds_last_generation); set_bit(slot->ds_node_num, reg->hr_live_node_bitmap); /* first on the list generates a callback */ if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes " "bitmap\n", slot->ds_node_num); set_bit(slot->ds_node_num, o2hb_live_node_bitmap); o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node, slot->ds_node_num); changed = 1; queued = 1; } list_add_tail(&slot->ds_live_item, &o2hb_live_slots[slot->ds_node_num]); slot->ds_equal_samples = 0; /* We want to be sure that all nodes agree on the * number of milliseconds before a node will be * considered dead. The self-fencing timeout is * computed from this value, and a discrepancy might * result in heartbeat calling a node dead when it * hasn't self-fenced yet. */ slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms); if (slot_dead_ms && slot_dead_ms != dead_ms) { /* TODO: Perhaps we can fail the region here. */ mlog(ML_ERROR, "Node %d on device %pg has a dead count " "of %u ms, but our count is %u ms.\n" "Please double check your configuration values " "for 'O2CB_HEARTBEAT_THRESHOLD'\n", slot->ds_node_num, reg->hr_bdev, slot_dead_ms, dead_ms); } goto out; } /* if the list is dead, we're done.. */ if (list_empty(&slot->ds_live_item)) goto out; /* live nodes only go dead after enough consequtive missed * samples.. reset the missed counter whenever we see * activity */ if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) { mlog(ML_HEARTBEAT, "Node %d left my region\n", slot->ds_node_num); clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap); /* last off the live_slot generates a callback */ list_del_init(&slot->ds_live_item); if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live " "nodes bitmap\n", slot->ds_node_num); clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); /* node can be null */ o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node, slot->ds_node_num); changed = 1; queued = 1; } /* We don't clear this because the node is still * actually writing new blocks. */ if (!gen_changed) slot->ds_changed_samples = 0; goto out; } if (slot->ds_changed_samples) { slot->ds_changed_samples = 0; slot->ds_equal_samples = 0; } out: spin_unlock(&o2hb_live_lock); if (queued) o2hb_run_event_list(&event); if (node) o2nm_node_put(node); return changed; } static int o2hb_highest_node(unsigned long *nodes, int numbits) { return find_last_bit(nodes, numbits); } static int o2hb_lowest_node(unsigned long *nodes, int numbits) { return find_first_bit(nodes, numbits); } static int o2hb_do_disk_heartbeat(struct o2hb_region *reg) { int i, ret, highest_node, lowest_node; int membership_change = 0, own_slot_ok = 0; unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)]; unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; struct o2hb_bio_wait_ctxt write_wc; ret = o2nm_configured_node_map(configured_nodes, sizeof(configured_nodes)); if (ret) { mlog_errno(ret); goto bail; } /* * If a node is not configured but is in the livemap, we still need * to read the slot so as to be able to remove it from the livemap. */ o2hb_fill_node_map(live_node_bitmap, O2NM_MAX_NODES); i = -1; while ((i = find_next_bit(live_node_bitmap, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { set_bit(i, configured_nodes); } highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES); lowest_node = o2hb_lowest_node(configured_nodes, O2NM_MAX_NODES); if (highest_node >= O2NM_MAX_NODES || lowest_node >= O2NM_MAX_NODES) { mlog(ML_NOTICE, "o2hb: No configured nodes found!\n"); ret = -EINVAL; goto bail; } /* No sense in reading the slots of nodes that don't exist * yet. Of course, if the node definitions have holes in them * then we're reading an empty slot anyway... Consider this * best-effort. */ ret = o2hb_read_slots(reg, lowest_node, highest_node + 1); if (ret < 0) { mlog_errno(ret); goto bail; } /* With an up to date view of the slots, we can check that no * other node has been improperly configured to heartbeat in * our slot. */ own_slot_ok = o2hb_check_own_slot(reg); /* fill in the proper info for our next heartbeat */ o2hb_prepare_block(reg, reg->hr_generation); ret = o2hb_issue_node_write(reg, &write_wc); if (ret < 0) { mlog_errno(ret); goto bail; } i = -1; while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { membership_change |= o2hb_check_slot(reg, &reg->hr_slots[i]); } /* * We have to be sure we've advertised ourselves on disk * before we can go to steady state. This ensures that * people we find in our steady state have seen us. */ o2hb_wait_on_io(&write_wc); if (write_wc.wc_error) { /* Do not re-arm the write timeout on I/O error - we * can't be sure that the new block ever made it to * disk */ mlog(ML_ERROR, "Write error %d on device \"%pg\"\n", write_wc.wc_error, reg->hr_bdev); ret = write_wc.wc_error; goto bail; } /* Skip disarming the timeout if own slot has stale/bad data */ if (own_slot_ok) { o2hb_set_quorum_device(reg); o2hb_arm_timeout(reg); reg->hr_last_timeout_start = jiffies; } bail: /* let the person who launched us know when things are steady */ if (atomic_read(&reg->hr_steady_iterations) != 0) { if (!ret && own_slot_ok && !membership_change) { if (atomic_dec_and_test(&reg->hr_steady_iterations)) wake_up(&o2hb_steady_queue); } } if (atomic_read(&reg->hr_steady_iterations) != 0) { if (atomic_dec_and_test(&reg->hr_unsteady_iterations)) { printk(KERN_NOTICE "o2hb: Unable to stabilize " "heartbeat on region %s (%pg)\n", config_item_name(&reg->hr_item), reg->hr_bdev); atomic_set(&reg->hr_steady_iterations, 0); reg->hr_aborted_start = 1; wake_up(&o2hb_steady_queue); ret = -EIO; } } return ret; } /* * we ride the region ref that the region dir holds. before the region * dir is removed and drops it ref it will wait to tear down this * thread. */ static int o2hb_thread(void *data) { int i, ret; struct o2hb_region *reg = data; struct o2hb_bio_wait_ctxt write_wc; ktime_t before_hb, after_hb; unsigned int elapsed_msec; mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n"); set_user_nice(current, MIN_NICE); /* Pin node */ ret = o2nm_depend_this_node(); if (ret) { mlog(ML_ERROR, "Node has been deleted, ret = %d\n", ret); reg->hr_node_deleted = 1; wake_up(&o2hb_steady_queue); return 0; } while (!kthread_should_stop() && !reg->hr_unclean_stop && !reg->hr_aborted_start) { /* We track the time spent inside * o2hb_do_disk_heartbeat so that we avoid more than * hr_timeout_ms between disk writes. On busy systems * this should result in a heartbeat which is less * likely to time itself out. */ before_hb = ktime_get_real(); ret = o2hb_do_disk_heartbeat(reg); reg->hr_last_hb_status = ret; after_hb = ktime_get_real(); elapsed_msec = (unsigned int) ktime_ms_delta(after_hb, before_hb); mlog(ML_HEARTBEAT, "start = %lld, end = %lld, msec = %u, ret = %d\n", before_hb, after_hb, elapsed_msec, ret); if (!kthread_should_stop() && elapsed_msec < reg->hr_timeout_ms) { /* the kthread api has blocked signals for us so no * need to record the return value. */ msleep_interruptible(reg->hr_timeout_ms - elapsed_msec); } } o2hb_disarm_timeout(reg); /* unclean stop is only used in very bad situation */ for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++) o2hb_shutdown_slot(&reg->hr_slots[i]); /* Explicit down notification - avoid forcing the other nodes * to timeout on this region when we could just as easily * write a clear generation - thus indicating to them that * this node has left this region. */ if (!reg->hr_unclean_stop && !reg->hr_aborted_start) { o2hb_prepare_block(reg, 0); ret = o2hb_issue_node_write(reg, &write_wc); if (ret == 0) o2hb_wait_on_io(&write_wc); else mlog_errno(ret); } /* Unpin node */ o2nm_undepend_this_node(); mlog(ML_HEARTBEAT|ML_KTHREAD, "o2hb thread exiting\n"); return 0; } #ifdef CONFIG_DEBUG_FS static int o2hb_debug_open(struct inode *inode, struct file *file) { struct o2hb_debug_buf *db = inode->i_private; struct o2hb_region *reg; unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)]; unsigned long lts; char *buf = NULL; int i = -1; int out = 0; /* max_nodes should be the largest bitmap we pass here */ BUG_ON(sizeof(map) < db->db_size); buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) goto bail; switch (db->db_type) { case O2HB_DB_TYPE_LIVENODES: case O2HB_DB_TYPE_LIVEREGIONS: case O2HB_DB_TYPE_QUORUMREGIONS: case O2HB_DB_TYPE_FAILEDREGIONS: spin_lock(&o2hb_live_lock); memcpy(map, db->db_data, db->db_size); spin_unlock(&o2hb_live_lock); break; case O2HB_DB_TYPE_REGION_LIVENODES: spin_lock(&o2hb_live_lock); reg = (struct o2hb_region *)db->db_data; memcpy(map, reg->hr_live_node_bitmap, db->db_size); spin_unlock(&o2hb_live_lock); break; case O2HB_DB_TYPE_REGION_NUMBER: reg = (struct o2hb_region *)db->db_data; out += scnprintf(buf + out, PAGE_SIZE - out, "%d\n", reg->hr_region_num); goto done; case O2HB_DB_TYPE_REGION_ELAPSED_TIME: reg = (struct o2hb_region *)db->db_data; lts = reg->hr_last_timeout_start; /* If 0, it has never been set before */ if (lts) lts = jiffies_to_msecs(jiffies - lts); out += scnprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts); goto done; case O2HB_DB_TYPE_REGION_PINNED: reg = (struct o2hb_region *)db->db_data; out += scnprintf(buf + out, PAGE_SIZE - out, "%u\n", !!reg->hr_item_pinned); goto done; default: goto done; } while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len) out += scnprintf(buf + out, PAGE_SIZE - out, "%d ", i); out += scnprintf(buf + out, PAGE_SIZE - out, "\n"); done: i_size_write(inode, out); file->private_data = buf; return 0; bail: return -ENOMEM; } static int o2hb_debug_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static ssize_t o2hb_debug_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { return simple_read_from_buffer(buf, nbytes, ppos, file->private_data, i_size_read(file->f_mapping->host)); } #else static int o2hb_debug_open(struct inode *inode, struct file *file) { return 0; } static int o2hb_debug_release(struct inode *inode, struct file *file) { return 0; } static ssize_t o2hb_debug_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { return 0; } #endif /* CONFIG_DEBUG_FS */ static const struct file_operations o2hb_debug_fops = { .open = o2hb_debug_open, .release = o2hb_debug_release, .read = o2hb_debug_read, .llseek = generic_file_llseek, }; void o2hb_exit(void) { debugfs_remove_recursive(o2hb_debug_dir); kfree(o2hb_db_livenodes); kfree(o2hb_db_liveregions); kfree(o2hb_db_quorumregions); kfree(o2hb_db_failedregions); } static void o2hb_debug_create(const char *name, struct dentry *dir, struct o2hb_debug_buf **db, int db_len, int type, int size, int len, void *data) { *db = kmalloc(db_len, GFP_KERNEL); if (!*db) return; (*db)->db_type = type; (*db)->db_size = size; (*db)->db_len = len; (*db)->db_data = data; debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db, &o2hb_debug_fops); } static void o2hb_debug_init(void) { o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL); o2hb_debug_create(O2HB_DEBUG_LIVENODES, o2hb_debug_dir, &o2hb_db_livenodes, sizeof(*o2hb_db_livenodes), O2HB_DB_TYPE_LIVENODES, sizeof(o2hb_live_node_bitmap), O2NM_MAX_NODES, o2hb_live_node_bitmap); o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS, o2hb_debug_dir, &o2hb_db_liveregions, sizeof(*o2hb_db_liveregions), O2HB_DB_TYPE_LIVEREGIONS, sizeof(o2hb_live_region_bitmap), O2NM_MAX_REGIONS, o2hb_live_region_bitmap); o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS, o2hb_debug_dir, &o2hb_db_quorumregions, sizeof(*o2hb_db_quorumregions), O2HB_DB_TYPE_QUORUMREGIONS, sizeof(o2hb_quorum_region_bitmap), O2NM_MAX_REGIONS, o2hb_quorum_region_bitmap); o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS, o2hb_debug_dir, &o2hb_db_failedregions, sizeof(*o2hb_db_failedregions), O2HB_DB_TYPE_FAILEDREGIONS, sizeof(o2hb_failed_region_bitmap), O2NM_MAX_REGIONS, o2hb_failed_region_bitmap); } void o2hb_init(void) { int i; for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++) INIT_LIST_HEAD(&o2hb_callbacks[i].list); for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++) INIT_LIST_HEAD(&o2hb_live_slots[i]); bitmap_zero(o2hb_live_node_bitmap, O2NM_MAX_NODES); bitmap_zero(o2hb_region_bitmap, O2NM_MAX_REGIONS); bitmap_zero(o2hb_live_region_bitmap, O2NM_MAX_REGIONS); bitmap_zero(o2hb_quorum_region_bitmap, O2NM_MAX_REGIONS); bitmap_zero(o2hb_failed_region_bitmap, O2NM_MAX_REGIONS); o2hb_dependent_users = 0; o2hb_debug_init(); } /* if we're already in a callback then we're already serialized by the sem */ static void o2hb_fill_node_map_from_callback(unsigned long *map, unsigned int bits) { bitmap_copy(map, o2hb_live_node_bitmap, bits); } /* * get a map of all nodes that are heartbeating in any regions */ void o2hb_fill_node_map(unsigned long *map, unsigned int bits) { /* callers want to serialize this map and callbacks so that they * can trust that they don't miss nodes coming to the party */ down_read(&o2hb_callback_sem); spin_lock(&o2hb_live_lock); o2hb_fill_node_map_from_callback(map, bits); spin_unlock(&o2hb_live_lock); up_read(&o2hb_callback_sem); } EXPORT_SYMBOL_GPL(o2hb_fill_node_map); /* * heartbeat configfs bits. The heartbeat set is a default set under * the cluster set in nodemanager.c. */ static struct o2hb_region *to_o2hb_region(struct config_item *item) { return item ? container_of(item, struct o2hb_region, hr_item) : NULL; } /* drop_item only drops its ref after killing the thread, nothing should * be using the region anymore. this has to clean up any state that * attributes might have built up. */ static void o2hb_region_release(struct config_item *item) { int i; struct page *page; struct o2hb_region *reg = to_o2hb_region(item); mlog(ML_HEARTBEAT, "hb region release (%pg)\n", reg->hr_bdev); kfree(reg->hr_tmp_block); if (reg->hr_slot_data) { for (i = 0; i < reg->hr_num_pages; i++) { page = reg->hr_slot_data[i]; if (page) __free_page(page); } kfree(reg->hr_slot_data); } if (reg->hr_bdev) blkdev_put(reg->hr_bdev, NULL); kfree(reg->hr_slots); debugfs_remove_recursive(reg->hr_debug_dir); kfree(reg->hr_db_livenodes); kfree(reg->hr_db_regnum); kfree(reg->hr_db_elapsed_time); kfree(reg->hr_db_pinned); spin_lock(&o2hb_live_lock); list_del(&reg->hr_all_item); spin_unlock(&o2hb_live_lock); o2net_unregister_handler_list(&reg->hr_handler_list); kfree(reg); } static int o2hb_read_block_input(struct o2hb_region *reg, const char *page, unsigned long *ret_bytes, unsigned int *ret_bits) { unsigned long bytes; char *p = (char *)page; bytes = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; /* Heartbeat and fs min / max block sizes are the same. */ if (bytes > 4096 || bytes < 512) return -ERANGE; if (hweight16(bytes) != 1) return -EINVAL; if (ret_bytes) *ret_bytes = bytes; if (ret_bits) *ret_bits = ffs(bytes) - 1; return 0; } static ssize_t o2hb_region_block_bytes_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_o2hb_region(item)->hr_block_bytes); } static ssize_t o2hb_region_block_bytes_store(struct config_item *item, const char *page, size_t count) { struct o2hb_region *reg = to_o2hb_region(item); int status; unsigned long block_bytes; unsigned int block_bits; if (reg->hr_bdev) return -EINVAL; status = o2hb_read_block_input(reg, page, &block_bytes, &block_bits); if (status) return status; reg->hr_block_bytes = (unsigned int)block_bytes; reg->hr_block_bits = block_bits; return count; } static ssize_t o2hb_region_start_block_show(struct config_item *item, char *page) { return sprintf(page, "%llu\n", to_o2hb_region(item)->hr_start_block); } static ssize_t o2hb_region_start_block_store(struct config_item *item, const char *page, size_t count) { struct o2hb_region *reg = to_o2hb_region(item); unsigned long long tmp; char *p = (char *)page; ssize_t ret; if (reg->hr_bdev) return -EINVAL; ret = kstrtoull(p, 0, &tmp); if (ret) return -EINVAL; reg->hr_start_block = tmp; return count; } static ssize_t o2hb_region_blocks_show(struct config_item *item, char *page) { return sprintf(page, "%d\n", to_o2hb_region(item)->hr_blocks); } static ssize_t o2hb_region_blocks_store(struct config_item *item, const char *page, size_t count) { struct o2hb_region *reg = to_o2hb_region(item); unsigned long tmp; char *p = (char *)page; if (reg->hr_bdev) return -EINVAL; tmp = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; if (tmp > O2NM_MAX_NODES || tmp == 0) return -ERANGE; reg->hr_blocks = (unsigned int)tmp; return count; } static ssize_t o2hb_region_dev_show(struct config_item *item, char *page) { unsigned int ret = 0; if (to_o2hb_region(item)->hr_bdev) ret = sprintf(page, "%pg\n", to_o2hb_region(item)->hr_bdev); return ret; } static void o2hb_init_region_params(struct o2hb_region *reg) { reg->hr_slots_per_page = PAGE_SIZE >> reg->hr_block_bits; reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS; mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n", reg->hr_start_block, reg->hr_blocks); mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n", reg->hr_block_bytes, reg->hr_block_bits); mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms); mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold); } static int o2hb_map_slot_data(struct o2hb_region *reg) { int i, j; unsigned int last_slot; unsigned int spp = reg->hr_slots_per_page; struct page *page; char *raw; struct o2hb_disk_slot *slot; reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL); if (reg->hr_tmp_block == NULL) return -ENOMEM; reg->hr_slots = kcalloc(reg->hr_blocks, sizeof(struct o2hb_disk_slot), GFP_KERNEL); if (reg->hr_slots == NULL) return -ENOMEM; for(i = 0; i < reg->hr_blocks; i++) { slot = &reg->hr_slots[i]; slot->ds_node_num = i; INIT_LIST_HEAD(&slot->ds_live_item); slot->ds_raw_block = NULL; } reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp; mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks " "at %u blocks per page\n", reg->hr_num_pages, reg->hr_blocks, spp); reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *), GFP_KERNEL); if (!reg->hr_slot_data) return -ENOMEM; for(i = 0; i < reg->hr_num_pages; i++) { page = alloc_page(GFP_KERNEL); if (!page) return -ENOMEM; reg->hr_slot_data[i] = page; last_slot = i * spp; raw = page_address(page); for (j = 0; (j < spp) && ((j + last_slot) < reg->hr_blocks); j++) { BUG_ON((j + last_slot) >= reg->hr_blocks); slot = &reg->hr_slots[j + last_slot]; slot->ds_raw_block = (struct o2hb_disk_heartbeat_block *) raw; raw += reg->hr_block_bytes; } } return 0; } /* Read in all the slots available and populate the tracking * structures so that we can start with a baseline idea of what's * there. */ static int o2hb_populate_slot_data(struct o2hb_region *reg) { int ret, i; struct o2hb_disk_slot *slot; struct o2hb_disk_heartbeat_block *hb_block; ret = o2hb_read_slots(reg, 0, reg->hr_blocks); if (ret) goto out; /* We only want to get an idea of the values initially in each * slot, so we do no verification - o2hb_check_slot will * actually determine if each configured slot is valid and * whether any values have changed. */ for(i = 0; i < reg->hr_blocks; i++) { slot = &reg->hr_slots[i]; hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block; /* Only fill the values that o2hb_check_slot uses to * determine changing slots */ slot->ds_last_time = le64_to_cpu(hb_block->hb_seq); slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); } out: return ret; } /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */ static ssize_t o2hb_region_dev_store(struct config_item *item, const char *page, size_t count) { struct o2hb_region *reg = to_o2hb_region(item); struct task_struct *hb_task; long fd; int sectsize; char *p = (char *)page; struct fd f; ssize_t ret = -EINVAL; int live_threshold; if (reg->hr_bdev) goto out; /* We can't heartbeat without having had our node number * configured yet. */ if (o2nm_this_node() == O2NM_MAX_NODES) goto out; fd = simple_strtol(p, &p, 0); if (!p || (*p && (*p != '\n'))) goto out; if (fd < 0 || fd >= INT_MAX) goto out; f = fdget(fd); if (f.file == NULL) goto out; if (reg->hr_blocks == 0 || reg->hr_start_block == 0 || reg->hr_block_bytes == 0) goto out2; if (!S_ISBLK(f.file->f_mapping->host->i_mode)) goto out2; reg->hr_bdev = blkdev_get_by_dev(f.file->f_mapping->host->i_rdev, BLK_OPEN_WRITE | BLK_OPEN_READ, NULL, NULL); if (IS_ERR(reg->hr_bdev)) { ret = PTR_ERR(reg->hr_bdev); reg->hr_bdev = NULL; goto out2; } sectsize = bdev_logical_block_size(reg->hr_bdev); if (sectsize != reg->hr_block_bytes) { mlog(ML_ERROR, "blocksize %u incorrect for device, expected %d", reg->hr_block_bytes, sectsize); ret = -EINVAL; goto out3; } o2hb_init_region_params(reg); /* Generation of zero is invalid */ do { get_random_bytes(&reg->hr_generation, sizeof(reg->hr_generation)); } while (reg->hr_generation == 0); ret = o2hb_map_slot_data(reg); if (ret) { mlog_errno(ret); goto out3; } ret = o2hb_populate_slot_data(reg); if (ret) { mlog_errno(ret); goto out3; } INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout); INIT_DELAYED_WORK(&reg->hr_nego_timeout_work, o2hb_nego_timeout); /* * A node is considered live after it has beat LIVE_THRESHOLD * times. We're not steady until we've given them a chance * _after_ our first read. * The default threshold is bare minimum so as to limit the delay * during mounts. For global heartbeat, the threshold doubled for the * first region. */ live_threshold = O2HB_LIVE_THRESHOLD; if (o2hb_global_heartbeat_active()) { spin_lock(&o2hb_live_lock); if (bitmap_weight(o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1) live_threshold <<= 1; spin_unlock(&o2hb_live_lock); } ++live_threshold; atomic_set(&reg->hr_steady_iterations, live_threshold); /* unsteady_iterations is triple the steady_iterations */ atomic_set(&reg->hr_unsteady_iterations, (live_threshold * 3)); hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s", reg->hr_item.ci_name); if (IS_ERR(hb_task)) { ret = PTR_ERR(hb_task); mlog_errno(ret); goto out3; } spin_lock(&o2hb_live_lock); reg->hr_task = hb_task; spin_unlock(&o2hb_live_lock); ret = wait_event_interruptible(o2hb_steady_queue, atomic_read(&reg->hr_steady_iterations) == 0 || reg->hr_node_deleted); if (ret) { atomic_set(&reg->hr_steady_iterations, 0); reg->hr_aborted_start = 1; } if (reg->hr_aborted_start) { ret = -EIO; goto out3; } if (reg->hr_node_deleted) { ret = -EINVAL; goto out3; } /* Ok, we were woken. Make sure it wasn't by drop_item() */ spin_lock(&o2hb_live_lock); hb_task = reg->hr_task; if (o2hb_global_heartbeat_active()) set_bit(reg->hr_region_num, o2hb_live_region_bitmap); spin_unlock(&o2hb_live_lock); if (hb_task) ret = count; else ret = -EIO; if (hb_task && o2hb_global_heartbeat_active()) printk(KERN_NOTICE "o2hb: Heartbeat started on region %s (%pg)\n", config_item_name(&reg->hr_item), reg->hr_bdev); out3: if (ret < 0) { blkdev_put(reg->hr_bdev, NULL); reg->hr_bdev = NULL; } out2: fdput(f); out: return ret; } static ssize_t o2hb_region_pid_show(struct config_item *item, char *page) { struct o2hb_region *reg = to_o2hb_region(item); pid_t pid = 0; spin_lock(&o2hb_live_lock); if (reg->hr_task) pid = task_pid_nr(reg->hr_task); spin_unlock(&o2hb_live_lock); if (!pid) return 0; return sprintf(page, "%u\n", pid); } CONFIGFS_ATTR(o2hb_region_, block_bytes); CONFIGFS_ATTR(o2hb_region_, start_block); CONFIGFS_ATTR(o2hb_region_, blocks); CONFIGFS_ATTR(o2hb_region_, dev); CONFIGFS_ATTR_RO(o2hb_region_, pid); static struct configfs_attribute *o2hb_region_attrs[] = { &o2hb_region_attr_block_bytes, &o2hb_region_attr_start_block, &o2hb_region_attr_blocks, &o2hb_region_attr_dev, &o2hb_region_attr_pid, NULL, }; static struct configfs_item_operations o2hb_region_item_ops = { .release = o2hb_region_release, }; static const struct config_item_type o2hb_region_type = { .ct_item_ops = &o2hb_region_item_ops, .ct_attrs = o2hb_region_attrs, .ct_owner = THIS_MODULE, }; /* heartbeat set */ struct o2hb_heartbeat_group { struct config_group hs_group; /* some stuff? */ }; static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group) { return group ? container_of(group, struct o2hb_heartbeat_group, hs_group) : NULL; } static void o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *parent) { struct dentry *dir; dir = debugfs_create_dir(config_item_name(&reg->hr_item), parent); reg->hr_debug_dir = dir; o2hb_debug_create(O2HB_DEBUG_LIVENODES, dir, &(reg->hr_db_livenodes), sizeof(*(reg->hr_db_livenodes)), O2HB_DB_TYPE_REGION_LIVENODES, sizeof(reg->hr_live_node_bitmap), O2NM_MAX_NODES, reg); o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER, dir, &(reg->hr_db_regnum), sizeof(*(reg->hr_db_regnum)), O2HB_DB_TYPE_REGION_NUMBER, 0, O2NM_MAX_NODES, reg); o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME, dir, &(reg->hr_db_elapsed_time), sizeof(*(reg->hr_db_elapsed_time)), O2HB_DB_TYPE_REGION_ELAPSED_TIME, 0, 0, reg); o2hb_debug_create(O2HB_DEBUG_REGION_PINNED, dir, &(reg->hr_db_pinned), sizeof(*(reg->hr_db_pinned)), O2HB_DB_TYPE_REGION_PINNED, 0, 0, reg); } static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group, const char *name) { struct o2hb_region *reg = NULL; int ret; reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL); if (reg == NULL) return ERR_PTR(-ENOMEM); if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) { ret = -ENAMETOOLONG; goto free; } spin_lock(&o2hb_live_lock); reg->hr_region_num = 0; if (o2hb_global_heartbeat_active()) { reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap, O2NM_MAX_REGIONS); if (reg->hr_region_num >= O2NM_MAX_REGIONS) { spin_unlock(&o2hb_live_lock); ret = -EFBIG; goto free; } set_bit(reg->hr_region_num, o2hb_region_bitmap); } list_add_tail(&reg->hr_all_item, &o2hb_all_regions); spin_unlock(&o2hb_live_lock); config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type); /* this is the same way to generate msg key as dlm, for local heartbeat, * name is also the same, so make initial crc value different to avoid * message key conflict. */ reg->hr_key = crc32_le(reg->hr_region_num + O2NM_MAX_REGIONS, name, strlen(name)); INIT_LIST_HEAD(&reg->hr_handler_list); ret = o2net_register_handler(O2HB_NEGO_TIMEOUT_MSG, reg->hr_key, sizeof(struct o2hb_nego_msg), o2hb_nego_timeout_handler, reg, NULL, &reg->hr_handler_list); if (ret) goto remove_item; ret = o2net_register_handler(O2HB_NEGO_APPROVE_MSG, reg->hr_key, sizeof(struct o2hb_nego_msg), o2hb_nego_approve_handler, reg, NULL, &reg->hr_handler_list); if (ret) goto unregister_handler; o2hb_debug_region_init(reg, o2hb_debug_dir); return &reg->hr_item; unregister_handler: o2net_unregister_handler_list(&reg->hr_handler_list); remove_item: spin_lock(&o2hb_live_lock); list_del(&reg->hr_all_item); if (o2hb_global_heartbeat_active()) clear_bit(reg->hr_region_num, o2hb_region_bitmap); spin_unlock(&o2hb_live_lock); free: kfree(reg); return ERR_PTR(ret); } static void o2hb_heartbeat_group_drop_item(struct config_group *group, struct config_item *item) { struct task_struct *hb_task; struct o2hb_region *reg = to_o2hb_region(item); int quorum_region = 0; /* stop the thread when the user removes the region dir */ spin_lock(&o2hb_live_lock); hb_task = reg->hr_task; reg->hr_task = NULL; reg->hr_item_dropped = 1; spin_unlock(&o2hb_live_lock); if (hb_task) kthread_stop(hb_task); if (o2hb_global_heartbeat_active()) { spin_lock(&o2hb_live_lock); clear_bit(reg->hr_region_num, o2hb_region_bitmap); clear_bit(reg->hr_region_num, o2hb_live_region_bitmap); if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap)) quorum_region = 1; clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap); spin_unlock(&o2hb_live_lock); printk(KERN_NOTICE "o2hb: Heartbeat %s on region %s (%pg)\n", ((atomic_read(&reg->hr_steady_iterations) == 0) ? "stopped" : "start aborted"), config_item_name(item), reg->hr_bdev); } /* * If we're racing a dev_write(), we need to wake them. They will * check reg->hr_task */ if (atomic_read(&reg->hr_steady_iterations) != 0) { reg->hr_aborted_start = 1; atomic_set(&reg->hr_steady_iterations, 0); wake_up(&o2hb_steady_queue); } config_item_put(item); if (!o2hb_global_heartbeat_active() || !quorum_region) return; /* * If global heartbeat active and there are dependent users, * pin all regions if quorum region count <= CUT_OFF */ spin_lock(&o2hb_live_lock); if (!o2hb_dependent_users) goto unlock; if (bitmap_weight(o2hb_quorum_region_bitmap, O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF) o2hb_region_pin(NULL); unlock: spin_unlock(&o2hb_live_lock); } static ssize_t o2hb_heartbeat_group_dead_threshold_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", o2hb_dead_threshold); } static ssize_t o2hb_heartbeat_group_dead_threshold_store(struct config_item *item, const char *page, size_t count) { unsigned long tmp; char *p = (char *)page; tmp = simple_strtoul(p, &p, 10); if (!p || (*p && (*p != '\n'))) return -EINVAL; /* this will validate ranges for us. */ o2hb_dead_threshold_set((unsigned int) tmp); return count; } static ssize_t o2hb_heartbeat_group_mode_show(struct config_item *item, char *page) { return sprintf(page, "%s\n", o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]); } static ssize_t o2hb_heartbeat_group_mode_store(struct config_item *item, const char *page, size_t count) { unsigned int i; int ret; size_t len; len = (page[count - 1] == '\n') ? count - 1 : count; if (!len) return -EINVAL; for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) { if (strncasecmp(page, o2hb_heartbeat_mode_desc[i], len)) continue; ret = o2hb_global_heartbeat_mode_set(i); if (!ret) printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n", o2hb_heartbeat_mode_desc[i]); return count; } return -EINVAL; } CONFIGFS_ATTR(o2hb_heartbeat_group_, dead_threshold); CONFIGFS_ATTR(o2hb_heartbeat_group_, mode); static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = { &o2hb_heartbeat_group_attr_dead_threshold, &o2hb_heartbeat_group_attr_mode, NULL, }; static struct configfs_group_operations o2hb_heartbeat_group_group_ops = { .make_item = o2hb_heartbeat_group_make_item, .drop_item = o2hb_heartbeat_group_drop_item, }; static const struct config_item_type o2hb_heartbeat_group_type = { .ct_group_ops = &o2hb_heartbeat_group_group_ops, .ct_attrs = o2hb_heartbeat_group_attrs, .ct_owner = THIS_MODULE, }; /* this is just here to avoid touching group in heartbeat.h which the * entire damn world #includes */ struct config_group *o2hb_alloc_hb_set(void) { struct o2hb_heartbeat_group *hs = NULL; struct config_group *ret = NULL; hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL); if (hs == NULL) goto out; config_group_init_type_name(&hs->hs_group, "heartbeat", &o2hb_heartbeat_group_type); ret = &hs->hs_group; out: if (ret == NULL) kfree(hs); return ret; } void o2hb_free_hb_set(struct config_group *group) { struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group); kfree(hs); } /* hb callback registration and issuing */ static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type) { if (type == O2HB_NUM_CB) return ERR_PTR(-EINVAL); return &o2hb_callbacks[type]; } void o2hb_setup_callback(struct o2hb_callback_func *hc, enum o2hb_callback_type type, o2hb_cb_func *func, void *data, int priority) { INIT_LIST_HEAD(&hc->hc_item); hc->hc_func = func; hc->hc_data = data; hc->hc_priority = priority; hc->hc_type = type; hc->hc_magic = O2HB_CB_MAGIC; } EXPORT_SYMBOL_GPL(o2hb_setup_callback); /* * In local heartbeat mode, region_uuid passed matches the dlm domain name. * In global heartbeat mode, region_uuid passed is NULL. * * In local, we only pin the matching region. In global we pin all the active * regions. */ static int o2hb_region_pin(const char *region_uuid) { int ret = 0, found = 0; struct o2hb_region *reg; char *uuid; assert_spin_locked(&o2hb_live_lock); list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { if (reg->hr_item_dropped) continue; uuid = config_item_name(&reg->hr_item); /* local heartbeat */ if (region_uuid) { if (strcmp(region_uuid, uuid)) continue; found = 1; } if (reg->hr_item_pinned || reg->hr_item_dropped) goto skip_pin; /* Ignore ENOENT only for local hb (userdlm domain) */ ret = o2nm_depend_item(&reg->hr_item); if (!ret) { mlog(ML_CLUSTER, "Pin region %s\n", uuid); reg->hr_item_pinned = 1; } else { if (ret == -ENOENT && found) ret = 0; else { mlog(ML_ERROR, "Pin region %s fails with %d\n", uuid, ret); break; } } skip_pin: if (found) break; } return ret; } /* * In local heartbeat mode, region_uuid passed matches the dlm domain name. * In global heartbeat mode, region_uuid passed is NULL. * * In local, we only unpin the matching region. In global we unpin all the * active regions. */ static void o2hb_region_unpin(const char *region_uuid) { struct o2hb_region *reg; char *uuid; int found = 0; assert_spin_locked(&o2hb_live_lock); list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { if (reg->hr_item_dropped) continue; uuid = config_item_name(&reg->hr_item); if (region_uuid) { if (strcmp(region_uuid, uuid)) continue; found = 1; } if (reg->hr_item_pinned) { mlog(ML_CLUSTER, "Unpin region %s\n", uuid); o2nm_undepend_item(&reg->hr_item); reg->hr_item_pinned = 0; } if (found) break; } } static int o2hb_region_inc_user(const char *region_uuid) { int ret = 0; spin_lock(&o2hb_live_lock); /* local heartbeat */ if (!o2hb_global_heartbeat_active()) { ret = o2hb_region_pin(region_uuid); goto unlock; } /* * if global heartbeat active and this is the first dependent user, * pin all regions if quorum region count <= CUT_OFF */ o2hb_dependent_users++; if (o2hb_dependent_users > 1) goto unlock; if (bitmap_weight(o2hb_quorum_region_bitmap, O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF) ret = o2hb_region_pin(NULL); unlock: spin_unlock(&o2hb_live_lock); return ret; } static void o2hb_region_dec_user(const char *region_uuid) { spin_lock(&o2hb_live_lock); /* local heartbeat */ if (!o2hb_global_heartbeat_active()) { o2hb_region_unpin(region_uuid); goto unlock; } /* * if global heartbeat active and there are no dependent users, * unpin all quorum regions */ o2hb_dependent_users--; if (!o2hb_dependent_users) o2hb_region_unpin(NULL); unlock: spin_unlock(&o2hb_live_lock); } int o2hb_register_callback(const char *region_uuid, struct o2hb_callback_func *hc) { struct o2hb_callback_func *f; struct o2hb_callback *hbcall; int ret; BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); BUG_ON(!list_empty(&hc->hc_item)); hbcall = hbcall_from_type(hc->hc_type); if (IS_ERR(hbcall)) { ret = PTR_ERR(hbcall); goto out; } if (region_uuid) { ret = o2hb_region_inc_user(region_uuid); if (ret) { mlog_errno(ret); goto out; } } down_write(&o2hb_callback_sem); list_for_each_entry(f, &hbcall->list, hc_item) { if (hc->hc_priority < f->hc_priority) { list_add_tail(&hc->hc_item, &f->hc_item); break; } } if (list_empty(&hc->hc_item)) list_add_tail(&hc->hc_item, &hbcall->list); up_write(&o2hb_callback_sem); ret = 0; out: mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n", ret, __builtin_return_address(0), hc); return ret; } EXPORT_SYMBOL_GPL(o2hb_register_callback); void o2hb_unregister_callback(const char *region_uuid, struct o2hb_callback_func *hc) { BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n", __builtin_return_address(0), hc); /* XXX Can this happen _with_ a region reference? */ if (list_empty(&hc->hc_item)) return; if (region_uuid) o2hb_region_dec_user(region_uuid); down_write(&o2hb_callback_sem); list_del_init(&hc->hc_item); up_write(&o2hb_callback_sem); } EXPORT_SYMBOL_GPL(o2hb_unregister_callback); int o2hb_check_node_heartbeating_no_sem(u8 node_num) { unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; spin_lock(&o2hb_live_lock); o2hb_fill_node_map_from_callback(testing_map, O2NM_MAX_NODES); spin_unlock(&o2hb_live_lock); if (!test_bit(node_num, testing_map)) { mlog(ML_HEARTBEAT, "node (%u) does not have heartbeating enabled.\n", node_num); return 0; } return 1; } EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_no_sem); int o2hb_check_node_heartbeating_from_callback(u8 node_num) { unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; o2hb_fill_node_map_from_callback(testing_map, O2NM_MAX_NODES); if (!test_bit(node_num, testing_map)) { mlog(ML_HEARTBEAT, "node (%u) does not have heartbeating enabled.\n", node_num); return 0; } return 1; } EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback); /* * this is just a hack until we get the plumbing which flips file systems * read only and drops the hb ref instead of killing the node dead. */ void o2hb_stop_all_regions(void) { struct o2hb_region *reg; mlog(ML_ERROR, "stopping heartbeat on all active regions.\n"); spin_lock(&o2hb_live_lock); list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) reg->hr_unclean_stop = 1; spin_unlock(&o2hb_live_lock); } EXPORT_SYMBOL_GPL(o2hb_stop_all_regions); int o2hb_get_all_regions(char *region_uuids, u8 max_regions) { struct o2hb_region *reg; int numregs = 0; char *p; spin_lock(&o2hb_live_lock); p = region_uuids; list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) { if (reg->hr_item_dropped) continue; mlog(0, "Region: %s\n", config_item_name(&reg->hr_item)); if (numregs < max_regions) { memcpy(p, config_item_name(&reg->hr_item), O2HB_MAX_REGION_NAME_LEN); p += O2HB_MAX_REGION_NAME_LEN; } numregs++; } spin_unlock(&o2hb_live_lock); return numregs; } EXPORT_SYMBOL_GPL(o2hb_get_all_regions); int o2hb_global_heartbeat_active(void) { return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL); } EXPORT_SYMBOL(o2hb_global_heartbeat_active);
linux-master
fs/ocfs2/cluster/heartbeat.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmfs.c * * Code which implements the kernel side of a minimal userspace * interface to our DLM. This file handles the virtual file system * used for communication with userspace. Credit should go to ramfs, * which was a template for the fs side of this module. * * Copyright (C) 2003, 2004 Oracle. All rights reserved. */ /* Simple VFS hooks based on: */ /* * Resizable simple ram filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/string.h> #include <linux/backing-dev.h> #include <linux/poll.h> #include <linux/uaccess.h> #include "../stackglue.h" #include "userdlm.h" #define MLOG_MASK_PREFIX ML_DLMFS #include "../cluster/masklog.h" static const struct super_operations dlmfs_ops; static const struct file_operations dlmfs_file_operations; static const struct inode_operations dlmfs_dir_inode_operations; static const struct inode_operations dlmfs_root_inode_operations; static const struct inode_operations dlmfs_file_inode_operations; static struct kmem_cache *dlmfs_inode_cache; struct workqueue_struct *user_dlm_worker; /* * These are the ABI capabilities of dlmfs. * * Over time, dlmfs has added some features that were not part of the * initial ABI. Unfortunately, some of these features are not detectable * via standard usage. For example, Linux's default poll always returns * EPOLLIN, so there is no way for a caller of poll(2) to know when dlmfs * added poll support. Instead, we provide this list of new capabilities. * * Capabilities is a read-only attribute. We do it as a module parameter * so we can discover it whether dlmfs is built in, loaded, or even not * loaded. * * The ABI features are local to this machine's dlmfs mount. This is * distinct from the locking protocol, which is concerned with inter-node * interaction. * * Capabilities: * - bast : EPOLLIN against the file descriptor of a held lock * signifies a bast fired on the lock. */ #define DLMFS_CAPABILITIES "bast stackglue" static int param_set_dlmfs_capabilities(const char *val, const struct kernel_param *kp) { printk(KERN_ERR "%s: readonly parameter\n", kp->name); return -EINVAL; } static int param_get_dlmfs_capabilities(char *buffer, const struct kernel_param *kp) { return strlcpy(buffer, DLMFS_CAPABILITIES, strlen(DLMFS_CAPABILITIES) + 1); } module_param_call(capabilities, param_set_dlmfs_capabilities, param_get_dlmfs_capabilities, NULL, 0444); MODULE_PARM_DESC(capabilities, DLMFS_CAPABILITIES); /* * decodes a set of open flags into a valid lock level and a set of flags. * returns < 0 if we have invalid flags * flags which mean something to us: * O_RDONLY -> PRMODE level * O_WRONLY -> EXMODE level * * O_NONBLOCK -> NOQUEUE */ static int dlmfs_decode_open_flags(int open_flags, int *level, int *flags) { if (open_flags & (O_WRONLY|O_RDWR)) *level = DLM_LOCK_EX; else *level = DLM_LOCK_PR; *flags = 0; if (open_flags & O_NONBLOCK) *flags |= DLM_LKF_NOQUEUE; return 0; } static int dlmfs_file_open(struct inode *inode, struct file *file) { int status, level, flags; struct dlmfs_filp_private *fp = NULL; struct dlmfs_inode_private *ip; if (S_ISDIR(inode->i_mode)) BUG(); mlog(0, "open called on inode %lu, flags 0x%x\n", inode->i_ino, file->f_flags); status = dlmfs_decode_open_flags(file->f_flags, &level, &flags); if (status < 0) goto bail; /* We don't want to honor O_APPEND at read/write time as it * doesn't make sense for LVB writes. */ file->f_flags &= ~O_APPEND; fp = kmalloc(sizeof(*fp), GFP_NOFS); if (!fp) { status = -ENOMEM; goto bail; } fp->fp_lock_level = level; ip = DLMFS_I(inode); status = user_dlm_cluster_lock(&ip->ip_lockres, level, flags); if (status < 0) { /* this is a strange error to return here but I want * to be able userspace to be able to distinguish a * valid lock request from one that simply couldn't be * granted. */ if (flags & DLM_LKF_NOQUEUE && status == -EAGAIN) status = -ETXTBSY; kfree(fp); goto bail; } file->private_data = fp; bail: return status; } static int dlmfs_file_release(struct inode *inode, struct file *file) { int level; struct dlmfs_inode_private *ip = DLMFS_I(inode); struct dlmfs_filp_private *fp = file->private_data; if (S_ISDIR(inode->i_mode)) BUG(); mlog(0, "close called on inode %lu\n", inode->i_ino); if (fp) { level = fp->fp_lock_level; if (level != DLM_LOCK_IV) user_dlm_cluster_unlock(&ip->ip_lockres, level); kfree(fp); file->private_data = NULL; } return 0; } /* * We do ->setattr() just to override size changes. Our size is the size * of the LVB and nothing else. */ static int dlmfs_file_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { int error; struct inode *inode = d_inode(dentry); attr->ia_valid &= ~ATTR_SIZE; error = setattr_prepare(&nop_mnt_idmap, dentry, attr); if (error) return error; setattr_copy(&nop_mnt_idmap, inode, attr); mark_inode_dirty(inode); return 0; } static __poll_t dlmfs_file_poll(struct file *file, poll_table *wait) { __poll_t event = 0; struct inode *inode = file_inode(file); struct dlmfs_inode_private *ip = DLMFS_I(inode); poll_wait(file, &ip->ip_lockres.l_event, wait); spin_lock(&ip->ip_lockres.l_lock); if (ip->ip_lockres.l_flags & USER_LOCK_BLOCKED) event = EPOLLIN | EPOLLRDNORM; spin_unlock(&ip->ip_lockres.l_lock); return event; } static ssize_t dlmfs_file_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { char lvb[DLM_LVB_LEN]; if (!user_dlm_read_lvb(file_inode(file), lvb)) return 0; return simple_read_from_buffer(buf, count, ppos, lvb, sizeof(lvb)); } static ssize_t dlmfs_file_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { char lvb_buf[DLM_LVB_LEN]; int bytes_left; struct inode *inode = file_inode(filp); mlog(0, "inode %lu, count = %zu, *ppos = %llu\n", inode->i_ino, count, *ppos); if (*ppos >= DLM_LVB_LEN) return -ENOSPC; /* don't write past the lvb */ if (count > DLM_LVB_LEN - *ppos) count = DLM_LVB_LEN - *ppos; if (!count) return 0; bytes_left = copy_from_user(lvb_buf, buf, count); count -= bytes_left; if (count) user_dlm_write_lvb(inode, lvb_buf, count); *ppos = *ppos + count; mlog(0, "wrote %zu bytes\n", count); return count; } static void dlmfs_init_once(void *foo) { struct dlmfs_inode_private *ip = (struct dlmfs_inode_private *) foo; ip->ip_conn = NULL; ip->ip_parent = NULL; inode_init_once(&ip->ip_vfs_inode); } static struct inode *dlmfs_alloc_inode(struct super_block *sb) { struct dlmfs_inode_private *ip; ip = alloc_inode_sb(sb, dlmfs_inode_cache, GFP_NOFS); if (!ip) return NULL; return &ip->ip_vfs_inode; } static void dlmfs_free_inode(struct inode *inode) { kmem_cache_free(dlmfs_inode_cache, DLMFS_I(inode)); } static void dlmfs_evict_inode(struct inode *inode) { int status; struct dlmfs_inode_private *ip; struct user_lock_res *lockres; int teardown; clear_inode(inode); mlog(0, "inode %lu\n", inode->i_ino); ip = DLMFS_I(inode); lockres = &ip->ip_lockres; if (S_ISREG(inode->i_mode)) { spin_lock(&lockres->l_lock); teardown = !!(lockres->l_flags & USER_LOCK_IN_TEARDOWN); spin_unlock(&lockres->l_lock); if (!teardown) { status = user_dlm_destroy_lock(lockres); if (status < 0) mlog_errno(status); } iput(ip->ip_parent); goto clear_fields; } mlog(0, "we're a directory, ip->ip_conn = 0x%p\n", ip->ip_conn); /* we must be a directory. If required, lets unregister the * dlm context now. */ if (ip->ip_conn) user_dlm_unregister(ip->ip_conn); clear_fields: ip->ip_parent = NULL; ip->ip_conn = NULL; } static struct inode *dlmfs_get_root_inode(struct super_block *sb) { struct inode *inode = new_inode(sb); umode_t mode = S_IFDIR | 0755; if (inode) { inode->i_ino = get_next_ino(); inode_init_owner(&nop_mnt_idmap, inode, NULL, mode); inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); inc_nlink(inode); inode->i_fop = &simple_dir_operations; inode->i_op = &dlmfs_root_inode_operations; } return inode; } static struct inode *dlmfs_get_inode(struct inode *parent, struct dentry *dentry, umode_t mode) { struct super_block *sb = parent->i_sb; struct inode * inode = new_inode(sb); struct dlmfs_inode_private *ip; if (!inode) return NULL; inode->i_ino = get_next_ino(); inode_init_owner(&nop_mnt_idmap, inode, parent, mode); inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); ip = DLMFS_I(inode); ip->ip_conn = DLMFS_I(parent)->ip_conn; switch (mode & S_IFMT) { default: /* for now we don't support anything other than * directories and regular files. */ BUG(); break; case S_IFREG: inode->i_op = &dlmfs_file_inode_operations; inode->i_fop = &dlmfs_file_operations; i_size_write(inode, DLM_LVB_LEN); user_dlm_lock_res_init(&ip->ip_lockres, dentry); /* released at clear_inode time, this insures that we * get to drop the dlm reference on each lock *before* * we call the unregister code for releasing parent * directories. */ ip->ip_parent = igrab(parent); BUG_ON(!ip->ip_parent); break; case S_IFDIR: inode->i_op = &dlmfs_dir_inode_operations; inode->i_fop = &simple_dir_operations; /* directory inodes start off with i_nlink == * 2 (for "." entry) */ inc_nlink(inode); break; } return inode; } /* * File creation. Allocate an inode, and we're done.. */ /* SMP-safe */ static int dlmfs_mkdir(struct mnt_idmap * idmap, struct inode * dir, struct dentry * dentry, umode_t mode) { int status; struct inode *inode = NULL; const struct qstr *domain = &dentry->d_name; struct dlmfs_inode_private *ip; struct ocfs2_cluster_connection *conn; mlog(0, "mkdir %.*s\n", domain->len, domain->name); /* verify that we have a proper domain */ if (domain->len >= GROUP_NAME_MAX) { status = -EINVAL; mlog(ML_ERROR, "invalid domain name for directory.\n"); goto bail; } inode = dlmfs_get_inode(dir, dentry, mode | S_IFDIR); if (!inode) { status = -ENOMEM; mlog_errno(status); goto bail; } ip = DLMFS_I(inode); conn = user_dlm_register(domain); if (IS_ERR(conn)) { status = PTR_ERR(conn); mlog(ML_ERROR, "Error %d could not register domain \"%.*s\"\n", status, domain->len, domain->name); goto bail; } ip->ip_conn = conn; inc_nlink(dir); d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ status = 0; bail: if (status < 0) iput(inode); return status; } static int dlmfs_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { int status = 0; struct inode *inode; const struct qstr *name = &dentry->d_name; mlog(0, "create %.*s\n", name->len, name->name); /* verify name is valid and doesn't contain any dlm reserved * characters */ if (name->len >= USER_DLM_LOCK_ID_MAX_LEN || name->name[0] == '$') { status = -EINVAL; mlog(ML_ERROR, "invalid lock name, %.*s\n", name->len, name->name); goto bail; } inode = dlmfs_get_inode(dir, dentry, mode | S_IFREG); if (!inode) { status = -ENOMEM; mlog_errno(status); goto bail; } d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ bail: return status; } static int dlmfs_unlink(struct inode *dir, struct dentry *dentry) { int status; struct inode *inode = d_inode(dentry); mlog(0, "unlink inode %lu\n", inode->i_ino); /* if there are no current holders, or none that are waiting * to acquire a lock, this basically destroys our lockres. */ status = user_dlm_destroy_lock(&DLMFS_I(inode)->ip_lockres); if (status < 0) { mlog(ML_ERROR, "unlink %pd, error %d from destroy\n", dentry, status); goto bail; } status = simple_unlink(dir, dentry); bail: return status; } static int dlmfs_fill_super(struct super_block * sb, void * data, int silent) { sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = DLMFS_MAGIC; sb->s_op = &dlmfs_ops; sb->s_root = d_make_root(dlmfs_get_root_inode(sb)); if (!sb->s_root) return -ENOMEM; return 0; } static const struct file_operations dlmfs_file_operations = { .open = dlmfs_file_open, .release = dlmfs_file_release, .poll = dlmfs_file_poll, .read = dlmfs_file_read, .write = dlmfs_file_write, .llseek = default_llseek, }; static const struct inode_operations dlmfs_dir_inode_operations = { .create = dlmfs_create, .lookup = simple_lookup, .unlink = dlmfs_unlink, }; /* this way we can restrict mkdir to only the toplevel of the fs. */ static const struct inode_operations dlmfs_root_inode_operations = { .lookup = simple_lookup, .mkdir = dlmfs_mkdir, .rmdir = simple_rmdir, }; static const struct super_operations dlmfs_ops = { .statfs = simple_statfs, .alloc_inode = dlmfs_alloc_inode, .free_inode = dlmfs_free_inode, .evict_inode = dlmfs_evict_inode, .drop_inode = generic_delete_inode, }; static const struct inode_operations dlmfs_file_inode_operations = { .getattr = simple_getattr, .setattr = dlmfs_file_setattr, }; static struct dentry *dlmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_nodev(fs_type, flags, data, dlmfs_fill_super); } static struct file_system_type dlmfs_fs_type = { .owner = THIS_MODULE, .name = "ocfs2_dlmfs", .mount = dlmfs_mount, .kill_sb = kill_litter_super, }; MODULE_ALIAS_FS("ocfs2_dlmfs"); static int __init init_dlmfs_fs(void) { int status; int cleanup_inode = 0, cleanup_worker = 0; dlmfs_inode_cache = kmem_cache_create("dlmfs_inode_cache", sizeof(struct dlmfs_inode_private), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_ACCOUNT), dlmfs_init_once); if (!dlmfs_inode_cache) { status = -ENOMEM; goto bail; } cleanup_inode = 1; user_dlm_worker = alloc_workqueue("user_dlm", WQ_MEM_RECLAIM, 0); if (!user_dlm_worker) { status = -ENOMEM; goto bail; } cleanup_worker = 1; user_dlm_set_locking_protocol(); status = register_filesystem(&dlmfs_fs_type); bail: if (status) { if (cleanup_inode) kmem_cache_destroy(dlmfs_inode_cache); if (cleanup_worker) destroy_workqueue(user_dlm_worker); } else printk("OCFS2 User DLM kernel interface loaded\n"); return status; } static void __exit exit_dlmfs_fs(void) { unregister_filesystem(&dlmfs_fs_type); destroy_workqueue(user_dlm_worker); /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(dlmfs_inode_cache); } MODULE_AUTHOR("Oracle"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("OCFS2 DLM-Filesystem"); module_init(init_dlmfs_fs) module_exit(exit_dlmfs_fs)
linux-master
fs/ocfs2/dlmfs/dlmfs.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * userdlm.c * * Code which implements the kernel side of a minimal userspace * interface to our DLM. * * Many of the functions here are pared down versions of dlmglue.c * functions. * * Copyright (C) 2003, 2004 Oracle. All rights reserved. */ #include <linux/signal.h> #include <linux/sched/signal.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/crc32.h> #include "../ocfs2_lockingver.h" #include "../stackglue.h" #include "userdlm.h" #define MLOG_MASK_PREFIX ML_DLMFS #include "../cluster/masklog.h" static inline struct user_lock_res *user_lksb_to_lock_res(struct ocfs2_dlm_lksb *lksb) { return container_of(lksb, struct user_lock_res, l_lksb); } static inline int user_check_wait_flag(struct user_lock_res *lockres, int flag) { int ret; spin_lock(&lockres->l_lock); ret = lockres->l_flags & flag; spin_unlock(&lockres->l_lock); return ret; } static inline void user_wait_on_busy_lock(struct user_lock_res *lockres) { wait_event(lockres->l_event, !user_check_wait_flag(lockres, USER_LOCK_BUSY)); } static inline void user_wait_on_blocked_lock(struct user_lock_res *lockres) { wait_event(lockres->l_event, !user_check_wait_flag(lockres, USER_LOCK_BLOCKED)); } /* I heart container_of... */ static inline struct ocfs2_cluster_connection * cluster_connection_from_user_lockres(struct user_lock_res *lockres) { struct dlmfs_inode_private *ip; ip = container_of(lockres, struct dlmfs_inode_private, ip_lockres); return ip->ip_conn; } static struct inode * user_dlm_inode_from_user_lockres(struct user_lock_res *lockres) { struct dlmfs_inode_private *ip; ip = container_of(lockres, struct dlmfs_inode_private, ip_lockres); return &ip->ip_vfs_inode; } static inline void user_recover_from_dlm_error(struct user_lock_res *lockres) { spin_lock(&lockres->l_lock); lockres->l_flags &= ~USER_LOCK_BUSY; spin_unlock(&lockres->l_lock); } #define user_log_dlm_error(_func, _stat, _lockres) do { \ mlog(ML_ERROR, "Dlm error %d while calling %s on " \ "resource %.*s\n", _stat, _func, \ _lockres->l_namelen, _lockres->l_name); \ } while (0) /* WARNING: This function lives in a world where the only three lock * levels are EX, PR, and NL. It *will* have to be adjusted when more * lock types are added. */ static inline int user_highest_compat_lock_level(int level) { int new_level = DLM_LOCK_EX; if (level == DLM_LOCK_EX) new_level = DLM_LOCK_NL; else if (level == DLM_LOCK_PR) new_level = DLM_LOCK_PR; return new_level; } static void user_ast(struct ocfs2_dlm_lksb *lksb) { struct user_lock_res *lockres = user_lksb_to_lock_res(lksb); int status; mlog(ML_BASTS, "AST fired for lockres %.*s, level %d => %d\n", lockres->l_namelen, lockres->l_name, lockres->l_level, lockres->l_requested); spin_lock(&lockres->l_lock); status = ocfs2_dlm_lock_status(&lockres->l_lksb); if (status) { mlog(ML_ERROR, "lksb status value of %u on lockres %.*s\n", status, lockres->l_namelen, lockres->l_name); spin_unlock(&lockres->l_lock); return; } mlog_bug_on_msg(lockres->l_requested == DLM_LOCK_IV, "Lockres %.*s, requested ivmode. flags 0x%x\n", lockres->l_namelen, lockres->l_name, lockres->l_flags); /* we're downconverting. */ if (lockres->l_requested < lockres->l_level) { if (lockres->l_requested <= user_highest_compat_lock_level(lockres->l_blocking)) { lockres->l_blocking = DLM_LOCK_NL; lockres->l_flags &= ~USER_LOCK_BLOCKED; } } lockres->l_level = lockres->l_requested; lockres->l_requested = DLM_LOCK_IV; lockres->l_flags |= USER_LOCK_ATTACHED; lockres->l_flags &= ~USER_LOCK_BUSY; spin_unlock(&lockres->l_lock); wake_up(&lockres->l_event); } static inline void user_dlm_grab_inode_ref(struct user_lock_res *lockres) { struct inode *inode; inode = user_dlm_inode_from_user_lockres(lockres); if (!igrab(inode)) BUG(); } static void user_dlm_unblock_lock(struct work_struct *work); static void __user_dlm_queue_lockres(struct user_lock_res *lockres) { if (!(lockres->l_flags & USER_LOCK_QUEUED)) { user_dlm_grab_inode_ref(lockres); INIT_WORK(&lockres->l_work, user_dlm_unblock_lock); queue_work(user_dlm_worker, &lockres->l_work); lockres->l_flags |= USER_LOCK_QUEUED; } } static void __user_dlm_cond_queue_lockres(struct user_lock_res *lockres) { int queue = 0; if (!(lockres->l_flags & USER_LOCK_BLOCKED)) return; switch (lockres->l_blocking) { case DLM_LOCK_EX: if (!lockres->l_ex_holders && !lockres->l_ro_holders) queue = 1; break; case DLM_LOCK_PR: if (!lockres->l_ex_holders) queue = 1; break; default: BUG(); } if (queue) __user_dlm_queue_lockres(lockres); } static void user_bast(struct ocfs2_dlm_lksb *lksb, int level) { struct user_lock_res *lockres = user_lksb_to_lock_res(lksb); mlog(ML_BASTS, "BAST fired for lockres %.*s, blocking %d, level %d\n", lockres->l_namelen, lockres->l_name, level, lockres->l_level); spin_lock(&lockres->l_lock); lockres->l_flags |= USER_LOCK_BLOCKED; if (level > lockres->l_blocking) lockres->l_blocking = level; __user_dlm_queue_lockres(lockres); spin_unlock(&lockres->l_lock); wake_up(&lockres->l_event); } static void user_unlock_ast(struct ocfs2_dlm_lksb *lksb, int status) { struct user_lock_res *lockres = user_lksb_to_lock_res(lksb); mlog(ML_BASTS, "UNLOCK AST fired for lockres %.*s, flags 0x%x\n", lockres->l_namelen, lockres->l_name, lockres->l_flags); if (status) mlog(ML_ERROR, "dlm returns status %d\n", status); spin_lock(&lockres->l_lock); /* The teardown flag gets set early during the unlock process, * so test the cancel flag to make sure that this ast isn't * for a concurrent cancel. */ if (lockres->l_flags & USER_LOCK_IN_TEARDOWN && !(lockres->l_flags & USER_LOCK_IN_CANCEL)) { lockres->l_level = DLM_LOCK_IV; } else if (status == DLM_CANCELGRANT) { /* We tried to cancel a convert request, but it was * already granted. Don't clear the busy flag - the * ast should've done this already. */ BUG_ON(!(lockres->l_flags & USER_LOCK_IN_CANCEL)); lockres->l_flags &= ~USER_LOCK_IN_CANCEL; goto out_noclear; } else { BUG_ON(!(lockres->l_flags & USER_LOCK_IN_CANCEL)); /* Cancel succeeded, we want to re-queue */ lockres->l_requested = DLM_LOCK_IV; /* cancel an * upconvert * request. */ lockres->l_flags &= ~USER_LOCK_IN_CANCEL; /* we want the unblock thread to look at it again * now. */ if (lockres->l_flags & USER_LOCK_BLOCKED) __user_dlm_queue_lockres(lockres); } lockres->l_flags &= ~USER_LOCK_BUSY; out_noclear: spin_unlock(&lockres->l_lock); wake_up(&lockres->l_event); } /* * This is the userdlmfs locking protocol version. * * See fs/ocfs2/dlmglue.c for more details on locking versions. */ static struct ocfs2_locking_protocol user_dlm_lproto = { .lp_max_version = { .pv_major = OCFS2_LOCKING_PROTOCOL_MAJOR, .pv_minor = OCFS2_LOCKING_PROTOCOL_MINOR, }, .lp_lock_ast = user_ast, .lp_blocking_ast = user_bast, .lp_unlock_ast = user_unlock_ast, }; static inline void user_dlm_drop_inode_ref(struct user_lock_res *lockres) { struct inode *inode; inode = user_dlm_inode_from_user_lockres(lockres); iput(inode); } static void user_dlm_unblock_lock(struct work_struct *work) { int new_level, status; struct user_lock_res *lockres = container_of(work, struct user_lock_res, l_work); struct ocfs2_cluster_connection *conn = cluster_connection_from_user_lockres(lockres); mlog(0, "lockres %.*s\n", lockres->l_namelen, lockres->l_name); spin_lock(&lockres->l_lock); mlog_bug_on_msg(!(lockres->l_flags & USER_LOCK_QUEUED), "Lockres %.*s, flags 0x%x\n", lockres->l_namelen, lockres->l_name, lockres->l_flags); /* notice that we don't clear USER_LOCK_BLOCKED here. If it's * set, we want user_ast clear it. */ lockres->l_flags &= ~USER_LOCK_QUEUED; /* It's valid to get here and no longer be blocked - if we get * several basts in a row, we might be queued by the first * one, the unblock thread might run and clear the queued * flag, and finally we might get another bast which re-queues * us before our ast for the downconvert is called. */ if (!(lockres->l_flags & USER_LOCK_BLOCKED)) { mlog(ML_BASTS, "lockres %.*s USER_LOCK_BLOCKED\n", lockres->l_namelen, lockres->l_name); spin_unlock(&lockres->l_lock); goto drop_ref; } if (lockres->l_flags & USER_LOCK_IN_TEARDOWN) { mlog(ML_BASTS, "lockres %.*s USER_LOCK_IN_TEARDOWN\n", lockres->l_namelen, lockres->l_name); spin_unlock(&lockres->l_lock); goto drop_ref; } if (lockres->l_flags & USER_LOCK_BUSY) { if (lockres->l_flags & USER_LOCK_IN_CANCEL) { mlog(ML_BASTS, "lockres %.*s USER_LOCK_IN_CANCEL\n", lockres->l_namelen, lockres->l_name); spin_unlock(&lockres->l_lock); goto drop_ref; } lockres->l_flags |= USER_LOCK_IN_CANCEL; spin_unlock(&lockres->l_lock); status = ocfs2_dlm_unlock(conn, &lockres->l_lksb, DLM_LKF_CANCEL); if (status) user_log_dlm_error("ocfs2_dlm_unlock", status, lockres); goto drop_ref; } /* If there are still incompat holders, we can exit safely * without worrying about re-queueing this lock as that will * happen on the last call to user_cluster_unlock. */ if ((lockres->l_blocking == DLM_LOCK_EX) && (lockres->l_ex_holders || lockres->l_ro_holders)) { spin_unlock(&lockres->l_lock); mlog(ML_BASTS, "lockres %.*s, EX/PR Holders %u,%u\n", lockres->l_namelen, lockres->l_name, lockres->l_ex_holders, lockres->l_ro_holders); goto drop_ref; } if ((lockres->l_blocking == DLM_LOCK_PR) && lockres->l_ex_holders) { spin_unlock(&lockres->l_lock); mlog(ML_BASTS, "lockres %.*s, EX Holders %u\n", lockres->l_namelen, lockres->l_name, lockres->l_ex_holders); goto drop_ref; } /* yay, we can downconvert now. */ new_level = user_highest_compat_lock_level(lockres->l_blocking); lockres->l_requested = new_level; lockres->l_flags |= USER_LOCK_BUSY; mlog(ML_BASTS, "lockres %.*s, downconvert %d => %d\n", lockres->l_namelen, lockres->l_name, lockres->l_level, new_level); spin_unlock(&lockres->l_lock); /* need lock downconvert request now... */ status = ocfs2_dlm_lock(conn, new_level, &lockres->l_lksb, DLM_LKF_CONVERT|DLM_LKF_VALBLK, lockres->l_name, lockres->l_namelen); if (status) { user_log_dlm_error("ocfs2_dlm_lock", status, lockres); user_recover_from_dlm_error(lockres); } drop_ref: user_dlm_drop_inode_ref(lockres); } static inline void user_dlm_inc_holders(struct user_lock_res *lockres, int level) { switch(level) { case DLM_LOCK_EX: lockres->l_ex_holders++; break; case DLM_LOCK_PR: lockres->l_ro_holders++; break; default: BUG(); } } /* predict what lock level we'll be dropping down to on behalf * of another node, and return true if the currently wanted * level will be compatible with it. */ static inline int user_may_continue_on_blocked_lock(struct user_lock_res *lockres, int wanted) { BUG_ON(!(lockres->l_flags & USER_LOCK_BLOCKED)); return wanted <= user_highest_compat_lock_level(lockres->l_blocking); } int user_dlm_cluster_lock(struct user_lock_res *lockres, int level, int lkm_flags) { int status, local_flags; struct ocfs2_cluster_connection *conn = cluster_connection_from_user_lockres(lockres); if (level != DLM_LOCK_EX && level != DLM_LOCK_PR) { mlog(ML_ERROR, "lockres %.*s: invalid request!\n", lockres->l_namelen, lockres->l_name); status = -EINVAL; goto bail; } mlog(ML_BASTS, "lockres %.*s, level %d, flags = 0x%x\n", lockres->l_namelen, lockres->l_name, level, lkm_flags); again: if (signal_pending(current)) { status = -ERESTARTSYS; goto bail; } spin_lock(&lockres->l_lock); if (lockres->l_flags & USER_LOCK_IN_TEARDOWN) { spin_unlock(&lockres->l_lock); status = -EAGAIN; goto bail; } /* We only compare against the currently granted level * here. If the lock is blocked waiting on a downconvert, * we'll get caught below. */ if ((lockres->l_flags & USER_LOCK_BUSY) && (level > lockres->l_level)) { /* is someone sitting in dlm_lock? If so, wait on * them. */ spin_unlock(&lockres->l_lock); user_wait_on_busy_lock(lockres); goto again; } if ((lockres->l_flags & USER_LOCK_BLOCKED) && (!user_may_continue_on_blocked_lock(lockres, level))) { /* is the lock is currently blocked on behalf of * another node */ spin_unlock(&lockres->l_lock); user_wait_on_blocked_lock(lockres); goto again; } if (level > lockres->l_level) { local_flags = lkm_flags | DLM_LKF_VALBLK; if (lockres->l_level != DLM_LOCK_IV) local_flags |= DLM_LKF_CONVERT; lockres->l_requested = level; lockres->l_flags |= USER_LOCK_BUSY; spin_unlock(&lockres->l_lock); BUG_ON(level == DLM_LOCK_IV); BUG_ON(level == DLM_LOCK_NL); /* call dlm_lock to upgrade lock now */ status = ocfs2_dlm_lock(conn, level, &lockres->l_lksb, local_flags, lockres->l_name, lockres->l_namelen); if (status) { if ((lkm_flags & DLM_LKF_NOQUEUE) && (status != -EAGAIN)) user_log_dlm_error("ocfs2_dlm_lock", status, lockres); user_recover_from_dlm_error(lockres); goto bail; } user_wait_on_busy_lock(lockres); goto again; } user_dlm_inc_holders(lockres, level); spin_unlock(&lockres->l_lock); status = 0; bail: return status; } static inline void user_dlm_dec_holders(struct user_lock_res *lockres, int level) { switch(level) { case DLM_LOCK_EX: BUG_ON(!lockres->l_ex_holders); lockres->l_ex_holders--; break; case DLM_LOCK_PR: BUG_ON(!lockres->l_ro_holders); lockres->l_ro_holders--; break; default: BUG(); } } void user_dlm_cluster_unlock(struct user_lock_res *lockres, int level) { if (level != DLM_LOCK_EX && level != DLM_LOCK_PR) { mlog(ML_ERROR, "lockres %.*s: invalid request!\n", lockres->l_namelen, lockres->l_name); return; } spin_lock(&lockres->l_lock); user_dlm_dec_holders(lockres, level); __user_dlm_cond_queue_lockres(lockres); spin_unlock(&lockres->l_lock); } void user_dlm_write_lvb(struct inode *inode, const char *val, unsigned int len) { struct user_lock_res *lockres = &DLMFS_I(inode)->ip_lockres; char *lvb; BUG_ON(len > DLM_LVB_LEN); spin_lock(&lockres->l_lock); BUG_ON(lockres->l_level < DLM_LOCK_EX); lvb = ocfs2_dlm_lvb(&lockres->l_lksb); memcpy(lvb, val, len); spin_unlock(&lockres->l_lock); } bool user_dlm_read_lvb(struct inode *inode, char *val) { struct user_lock_res *lockres = &DLMFS_I(inode)->ip_lockres; char *lvb; bool ret = true; spin_lock(&lockres->l_lock); BUG_ON(lockres->l_level < DLM_LOCK_PR); if (ocfs2_dlm_lvb_valid(&lockres->l_lksb)) { lvb = ocfs2_dlm_lvb(&lockres->l_lksb); memcpy(val, lvb, DLM_LVB_LEN); } else ret = false; spin_unlock(&lockres->l_lock); return ret; } void user_dlm_lock_res_init(struct user_lock_res *lockres, struct dentry *dentry) { memset(lockres, 0, sizeof(*lockres)); spin_lock_init(&lockres->l_lock); init_waitqueue_head(&lockres->l_event); lockres->l_level = DLM_LOCK_IV; lockres->l_requested = DLM_LOCK_IV; lockres->l_blocking = DLM_LOCK_IV; /* should have been checked before getting here. */ BUG_ON(dentry->d_name.len >= USER_DLM_LOCK_ID_MAX_LEN); memcpy(lockres->l_name, dentry->d_name.name, dentry->d_name.len); lockres->l_namelen = dentry->d_name.len; } int user_dlm_destroy_lock(struct user_lock_res *lockres) { int status = -EBUSY; struct ocfs2_cluster_connection *conn = cluster_connection_from_user_lockres(lockres); mlog(ML_BASTS, "lockres %.*s\n", lockres->l_namelen, lockres->l_name); spin_lock(&lockres->l_lock); if (lockres->l_flags & USER_LOCK_IN_TEARDOWN) { spin_unlock(&lockres->l_lock); goto bail; } lockres->l_flags |= USER_LOCK_IN_TEARDOWN; while (lockres->l_flags & USER_LOCK_BUSY) { spin_unlock(&lockres->l_lock); user_wait_on_busy_lock(lockres); spin_lock(&lockres->l_lock); } if (lockres->l_ro_holders || lockres->l_ex_holders) { lockres->l_flags &= ~USER_LOCK_IN_TEARDOWN; spin_unlock(&lockres->l_lock); goto bail; } status = 0; if (!(lockres->l_flags & USER_LOCK_ATTACHED)) { /* * lock is never requested, leave USER_LOCK_IN_TEARDOWN set * to avoid new lock request coming in. */ spin_unlock(&lockres->l_lock); goto bail; } lockres->l_flags |= USER_LOCK_BUSY; spin_unlock(&lockres->l_lock); status = ocfs2_dlm_unlock(conn, &lockres->l_lksb, DLM_LKF_VALBLK); if (status) { spin_lock(&lockres->l_lock); lockres->l_flags &= ~USER_LOCK_IN_TEARDOWN; lockres->l_flags &= ~USER_LOCK_BUSY; spin_unlock(&lockres->l_lock); user_log_dlm_error("ocfs2_dlm_unlock", status, lockres); goto bail; } user_wait_on_busy_lock(lockres); status = 0; bail: return status; } static void user_dlm_recovery_handler_noop(int node_num, void *recovery_data) { /* We ignore recovery events */ return; } void user_dlm_set_locking_protocol(void) { ocfs2_stack_glue_set_max_proto_version(&user_dlm_lproto.lp_max_version); } struct ocfs2_cluster_connection *user_dlm_register(const struct qstr *name) { int rc; struct ocfs2_cluster_connection *conn; rc = ocfs2_cluster_connect_agnostic(name->name, name->len, &user_dlm_lproto, user_dlm_recovery_handler_noop, NULL, &conn); if (rc) mlog_errno(rc); return rc ? ERR_PTR(rc) : conn; } void user_dlm_unregister(struct ocfs2_cluster_connection *conn) { ocfs2_cluster_disconnect(conn, 0); }
linux-master
fs/ocfs2/dlmfs/userdlm.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmconvert.c * * underlying calls for lock conversion * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/spinlock.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmconvert.h" #define MLOG_MASK_PREFIX ML_DLM #include "../cluster/masklog.h" /* NOTE: __dlmconvert_master is the only function in here that * needs a spinlock held on entry (res->spinlock) and it is the * only one that holds a lock on exit (res->spinlock). * All other functions in here need no locks and drop all of * the locks that they acquire. */ static enum dlm_status __dlmconvert_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags, int type, int *call_ast, int *kick_thread); static enum dlm_status dlm_send_remote_convert_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags, int type); /* * this is only called directly by dlmlock(), and only when the * local node is the owner of the lockres * locking: * caller needs: none * taken: takes and drops res->spinlock * held on exit: none * returns: see __dlmconvert_master */ enum dlm_status dlmconvert_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags, int type) { int call_ast = 0, kick_thread = 0; enum dlm_status status; spin_lock(&res->spinlock); /* we are not in a network handler, this is fine */ __dlm_wait_on_lockres(res); __dlm_lockres_reserve_ast(res); res->state |= DLM_LOCK_RES_IN_PROGRESS; status = __dlmconvert_master(dlm, res, lock, flags, type, &call_ast, &kick_thread); res->state &= ~DLM_LOCK_RES_IN_PROGRESS; spin_unlock(&res->spinlock); wake_up(&res->wq); if (status != DLM_NORMAL && status != DLM_NOTQUEUED) dlm_error(status); /* either queue the ast or release it */ if (call_ast) dlm_queue_ast(dlm, lock); else dlm_lockres_release_ast(dlm, res); if (kick_thread) dlm_kick_thread(dlm, res); return status; } /* performs lock conversion at the lockres master site * locking: * caller needs: res->spinlock * taken: takes and drops lock->spinlock * held on exit: res->spinlock * returns: DLM_NORMAL, DLM_NOTQUEUED, DLM_DENIED * call_ast: whether ast should be called for this lock * kick_thread: whether dlm_kick_thread should be called */ static enum dlm_status __dlmconvert_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags, int type, int *call_ast, int *kick_thread) { enum dlm_status status = DLM_NORMAL; struct dlm_lock *tmplock=NULL; assert_spin_locked(&res->spinlock); mlog(0, "type=%d, convert_type=%d, new convert_type=%d\n", lock->ml.type, lock->ml.convert_type, type); spin_lock(&lock->spinlock); /* already converting? */ if (lock->ml.convert_type != LKM_IVMODE) { mlog(ML_ERROR, "attempted to convert a lock with a lock " "conversion pending\n"); status = DLM_DENIED; goto unlock_exit; } /* must be on grant queue to convert */ if (!dlm_lock_on_list(&res->granted, lock)) { mlog(ML_ERROR, "attempted to convert a lock not on grant " "queue\n"); status = DLM_DENIED; goto unlock_exit; } if (flags & LKM_VALBLK) { switch (lock->ml.type) { case LKM_EXMODE: /* EX + LKM_VALBLK + convert == set lvb */ mlog(0, "will set lvb: converting %s->%s\n", dlm_lock_mode_name(lock->ml.type), dlm_lock_mode_name(type)); lock->lksb->flags |= DLM_LKSB_PUT_LVB; break; case LKM_PRMODE: case LKM_NLMODE: /* refetch if new level is not NL */ if (type > LKM_NLMODE) { mlog(0, "will fetch new value into " "lvb: converting %s->%s\n", dlm_lock_mode_name(lock->ml.type), dlm_lock_mode_name(type)); lock->lksb->flags |= DLM_LKSB_GET_LVB; } else { mlog(0, "will NOT fetch new value " "into lvb: converting %s->%s\n", dlm_lock_mode_name(lock->ml.type), dlm_lock_mode_name(type)); flags &= ~(LKM_VALBLK); } break; } } /* in-place downconvert? */ if (type <= lock->ml.type) goto grant; /* upconvert from here on */ status = DLM_NORMAL; list_for_each_entry(tmplock, &res->granted, list) { if (tmplock == lock) continue; if (!dlm_lock_compatible(tmplock->ml.type, type)) goto switch_queues; } list_for_each_entry(tmplock, &res->converting, list) { if (!dlm_lock_compatible(tmplock->ml.type, type)) goto switch_queues; /* existing conversion requests take precedence */ if (!dlm_lock_compatible(tmplock->ml.convert_type, type)) goto switch_queues; } /* fall thru to grant */ grant: mlog(0, "res %.*s, granting %s lock\n", res->lockname.len, res->lockname.name, dlm_lock_mode_name(type)); /* immediately grant the new lock type */ lock->lksb->status = DLM_NORMAL; if (lock->ml.node == dlm->node_num) mlog(0, "doing in-place convert for nonlocal lock\n"); lock->ml.type = type; if (lock->lksb->flags & DLM_LKSB_PUT_LVB) memcpy(res->lvb, lock->lksb->lvb, DLM_LVB_LEN); /* * Move the lock to the tail because it may be the only lock which has * an invalid lvb. */ list_move_tail(&lock->list, &res->granted); status = DLM_NORMAL; *call_ast = 1; goto unlock_exit; switch_queues: if (flags & LKM_NOQUEUE) { mlog(0, "failed to convert NOQUEUE lock %.*s from " "%d to %d...\n", res->lockname.len, res->lockname.name, lock->ml.type, type); status = DLM_NOTQUEUED; goto unlock_exit; } mlog(0, "res %.*s, queueing...\n", res->lockname.len, res->lockname.name); lock->ml.convert_type = type; /* do not alter lock refcount. switching lists. */ list_move_tail(&lock->list, &res->converting); unlock_exit: spin_unlock(&lock->spinlock); if (status == DLM_DENIED) { __dlm_print_one_lock_resource(res); } if (status == DLM_NORMAL) *kick_thread = 1; return status; } void dlm_revert_pending_convert(struct dlm_lock_resource *res, struct dlm_lock *lock) { /* do not alter lock refcount. switching lists. */ list_move_tail(&lock->list, &res->granted); lock->ml.convert_type = LKM_IVMODE; lock->lksb->flags &= ~(DLM_LKSB_GET_LVB|DLM_LKSB_PUT_LVB); } /* messages the master site to do lock conversion * locking: * caller needs: none * taken: takes and drops res->spinlock, uses DLM_LOCK_RES_IN_PROGRESS * held on exit: none * returns: DLM_NORMAL, DLM_RECOVERING, status from remote node */ enum dlm_status dlmconvert_remote(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags, int type) { enum dlm_status status; mlog(0, "type=%d, convert_type=%d, busy=%d\n", lock->ml.type, lock->ml.convert_type, res->state & DLM_LOCK_RES_IN_PROGRESS); spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { mlog(0, "bailing out early since res is RECOVERING " "on secondary queue\n"); /* __dlm_print_one_lock_resource(res); */ status = DLM_RECOVERING; goto bail; } /* will exit this call with spinlock held */ __dlm_wait_on_lockres(res); if (lock->ml.convert_type != LKM_IVMODE) { __dlm_print_one_lock_resource(res); mlog(ML_ERROR, "converting a remote lock that is already " "converting! (cookie=%u:%llu, conv=%d)\n", dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), lock->ml.convert_type); status = DLM_DENIED; goto bail; } if (lock->ml.type == type && lock->ml.convert_type == LKM_IVMODE) { mlog(0, "last convert request returned DLM_RECOVERING, but " "owner has already queued and sent ast to me. res %.*s, " "(cookie=%u:%llu, type=%d, conv=%d)\n", res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), lock->ml.type, lock->ml.convert_type); status = DLM_NORMAL; goto bail; } res->state |= DLM_LOCK_RES_IN_PROGRESS; /* move lock to local convert queue */ /* do not alter lock refcount. switching lists. */ list_move_tail(&lock->list, &res->converting); lock->convert_pending = 1; lock->ml.convert_type = type; if (flags & LKM_VALBLK) { if (lock->ml.type == LKM_EXMODE) { flags |= LKM_PUT_LVB; lock->lksb->flags |= DLM_LKSB_PUT_LVB; } else { if (lock->ml.convert_type == LKM_NLMODE) flags &= ~LKM_VALBLK; else { flags |= LKM_GET_LVB; lock->lksb->flags |= DLM_LKSB_GET_LVB; } } } spin_unlock(&res->spinlock); /* no locks held here. * need to wait for a reply as to whether it got queued or not. */ status = dlm_send_remote_convert_request(dlm, res, lock, flags, type); spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_IN_PROGRESS; /* if it failed, move it back to granted queue. * if master returns DLM_NORMAL and then down before sending ast, * it may have already been moved to granted queue, reset to * DLM_RECOVERING and retry convert */ if (status != DLM_NORMAL) { if (status != DLM_NOTQUEUED) dlm_error(status); dlm_revert_pending_convert(res, lock); } else if (!lock->convert_pending) { mlog(0, "%s: res %.*s, owner died and lock has been moved back " "to granted list, retry convert.\n", dlm->name, res->lockname.len, res->lockname.name); status = DLM_RECOVERING; } lock->convert_pending = 0; bail: spin_unlock(&res->spinlock); /* TODO: should this be a wake_one? */ /* wake up any IN_PROGRESS waiters */ wake_up(&res->wq); return status; } /* sends DLM_CONVERT_LOCK_MSG to master site * locking: * caller needs: none * taken: none * held on exit: none * returns: DLM_NOLOCKMGR, status from remote node */ static enum dlm_status dlm_send_remote_convert_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags, int type) { struct dlm_convert_lock convert; int tmpret; enum dlm_status ret; int status = 0; struct kvec vec[2]; size_t veclen = 1; mlog(0, "%.*s\n", res->lockname.len, res->lockname.name); memset(&convert, 0, sizeof(struct dlm_convert_lock)); convert.node_idx = dlm->node_num; convert.requested_type = type; convert.cookie = lock->ml.cookie; convert.namelen = res->lockname.len; convert.flags = cpu_to_be32(flags); memcpy(convert.name, res->lockname.name, convert.namelen); vec[0].iov_len = sizeof(struct dlm_convert_lock); vec[0].iov_base = &convert; if (flags & LKM_PUT_LVB) { /* extra data to send if we are updating lvb */ vec[1].iov_len = DLM_LVB_LEN; vec[1].iov_base = lock->lksb->lvb; veclen++; } tmpret = o2net_send_message_vec(DLM_CONVERT_LOCK_MSG, dlm->key, vec, veclen, res->owner, &status); if (tmpret >= 0) { // successfully sent and received ret = status; // this is already a dlm_status if (ret == DLM_RECOVERING) { mlog(0, "node %u returned DLM_RECOVERING from convert " "message!\n", res->owner); } else if (ret == DLM_MIGRATING) { mlog(0, "node %u returned DLM_MIGRATING from convert " "message!\n", res->owner); } else if (ret == DLM_FORWARD) { mlog(0, "node %u returned DLM_FORWARD from convert " "message!\n", res->owner); } else if (ret != DLM_NORMAL && ret != DLM_NOTQUEUED) dlm_error(ret); } else { mlog(ML_ERROR, "Error %d when sending message %u (key 0x%x) to " "node %u\n", tmpret, DLM_CONVERT_LOCK_MSG, dlm->key, res->owner); if (dlm_is_host_down(tmpret)) { /* instead of logging the same network error over * and over, sleep here and wait for the heartbeat * to notice the node is dead. times out after 5s. */ dlm_wait_for_node_death(dlm, res->owner, DLM_NODE_DEATH_WAIT_MAX); ret = DLM_RECOVERING; mlog(0, "node %u died so returning DLM_RECOVERING " "from convert message!\n", res->owner); } else { ret = dlm_err_to_dlm_status(tmpret); } } return ret; } /* handler for DLM_CONVERT_LOCK_MSG on master site * locking: * caller needs: none * taken: takes and drop res->spinlock * held on exit: none * returns: DLM_NORMAL, DLM_IVLOCKID, DLM_BADARGS, * status from __dlmconvert_master */ int dlm_convert_lock_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_convert_lock *cnv = (struct dlm_convert_lock *)msg->buf; struct dlm_lock_resource *res = NULL; struct dlm_lock *lock = NULL; struct dlm_lock *tmp_lock; struct dlm_lockstatus *lksb; enum dlm_status status = DLM_NORMAL; u32 flags; int call_ast = 0, kick_thread = 0, ast_reserved = 0, wake = 0; if (!dlm_grab(dlm)) { dlm_error(DLM_REJECTED); return DLM_REJECTED; } mlog_bug_on_msg(!dlm_domain_fully_joined(dlm), "Domain %s not fully joined!\n", dlm->name); if (cnv->namelen > DLM_LOCKID_NAME_MAX) { status = DLM_IVBUFLEN; dlm_error(status); goto leave; } flags = be32_to_cpu(cnv->flags); if ((flags & (LKM_PUT_LVB|LKM_GET_LVB)) == (LKM_PUT_LVB|LKM_GET_LVB)) { mlog(ML_ERROR, "both PUT and GET lvb specified\n"); status = DLM_BADARGS; goto leave; } mlog(0, "lvb: %s\n", flags & LKM_PUT_LVB ? "put lvb" : (flags & LKM_GET_LVB ? "get lvb" : "none")); status = DLM_IVLOCKID; res = dlm_lookup_lockres(dlm, cnv->name, cnv->namelen); if (!res) { dlm_error(status); goto leave; } spin_lock(&res->spinlock); status = __dlm_lockres_state_to_status(res); if (status != DLM_NORMAL) { spin_unlock(&res->spinlock); dlm_error(status); goto leave; } list_for_each_entry(tmp_lock, &res->granted, list) { if (tmp_lock->ml.cookie == cnv->cookie && tmp_lock->ml.node == cnv->node_idx) { lock = tmp_lock; dlm_lock_get(lock); break; } } spin_unlock(&res->spinlock); if (!lock) { status = DLM_IVLOCKID; mlog(ML_ERROR, "did not find lock to convert on grant queue! " "cookie=%u:%llu\n", dlm_get_lock_cookie_node(be64_to_cpu(cnv->cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(cnv->cookie))); dlm_print_one_lock_resource(res); goto leave; } /* found the lock */ lksb = lock->lksb; /* see if caller needed to get/put lvb */ if (flags & LKM_PUT_LVB) { BUG_ON(lksb->flags & (DLM_LKSB_PUT_LVB|DLM_LKSB_GET_LVB)); lksb->flags |= DLM_LKSB_PUT_LVB; memcpy(&lksb->lvb[0], &cnv->lvb[0], DLM_LVB_LEN); } else if (flags & LKM_GET_LVB) { BUG_ON(lksb->flags & (DLM_LKSB_PUT_LVB|DLM_LKSB_GET_LVB)); lksb->flags |= DLM_LKSB_GET_LVB; } spin_lock(&res->spinlock); status = __dlm_lockres_state_to_status(res); if (status == DLM_NORMAL) { __dlm_lockres_reserve_ast(res); ast_reserved = 1; res->state |= DLM_LOCK_RES_IN_PROGRESS; status = __dlmconvert_master(dlm, res, lock, flags, cnv->requested_type, &call_ast, &kick_thread); res->state &= ~DLM_LOCK_RES_IN_PROGRESS; wake = 1; } spin_unlock(&res->spinlock); if (wake) wake_up(&res->wq); if (status != DLM_NORMAL) { if (status != DLM_NOTQUEUED) dlm_error(status); lksb->flags &= ~(DLM_LKSB_GET_LVB|DLM_LKSB_PUT_LVB); } leave: if (lock) dlm_lock_put(lock); /* either queue the ast or release it, if reserved */ if (call_ast) dlm_queue_ast(dlm, lock); else if (ast_reserved) dlm_lockres_release_ast(dlm, res); if (kick_thread) dlm_kick_thread(dlm, res); if (res) dlm_lockres_put(res); dlm_put(dlm); return status; }
linux-master
fs/ocfs2/dlm/dlmconvert.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmdomain.c * * defines domain join / leave apis * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/debugfs.h> #include <linux/sched/signal.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmdomain.h" #include "dlmdebug.h" #define MLOG_MASK_PREFIX (ML_DLM|ML_DLM_DOMAIN) #include "../cluster/masklog.h" /* * ocfs2 node maps are array of long int, which limits to send them freely * across the wire due to endianness issues. To workaround this, we convert * long ints to byte arrays. Following 3 routines are helper functions to * set/test/copy bits within those array of bytes */ static inline void byte_set_bit(u8 nr, u8 map[]) { map[nr >> 3] |= (1UL << (nr & 7)); } static inline int byte_test_bit(u8 nr, u8 map[]) { return ((1UL << (nr & 7)) & (map[nr >> 3])) != 0; } static inline void byte_copymap(u8 dmap[], unsigned long smap[], unsigned int sz) { unsigned int nn; if (!sz) return; memset(dmap, 0, ((sz + 7) >> 3)); for (nn = 0 ; nn < sz; nn++) if (test_bit(nn, smap)) byte_set_bit(nn, dmap); } static void dlm_free_pagevec(void **vec, int pages) { while (pages--) free_page((unsigned long)vec[pages]); kfree(vec); } static void **dlm_alloc_pagevec(int pages) { void **vec = kmalloc_array(pages, sizeof(void *), GFP_KERNEL); int i; if (!vec) return NULL; for (i = 0; i < pages; i++) if (!(vec[i] = (void *)__get_free_page(GFP_KERNEL))) goto out_free; mlog(0, "Allocated DLM hash pagevec; %d pages (%lu expected), %lu buckets per page\n", pages, (unsigned long)DLM_HASH_PAGES, (unsigned long)DLM_BUCKETS_PER_PAGE); return vec; out_free: dlm_free_pagevec(vec, i); return NULL; } /* * * spinlock lock ordering: if multiple locks are needed, obey this ordering: * dlm_domain_lock * struct dlm_ctxt->spinlock * struct dlm_lock_resource->spinlock * struct dlm_ctxt->master_lock * struct dlm_ctxt->ast_lock * dlm_master_list_entry->spinlock * dlm_lock->spinlock * */ DEFINE_SPINLOCK(dlm_domain_lock); LIST_HEAD(dlm_domains); static DECLARE_WAIT_QUEUE_HEAD(dlm_domain_events); /* * The supported protocol version for DLM communication. Running domains * will have a negotiated version with the same major number and a minor * number equal or smaller. The dlm_ctxt->dlm_locking_proto field should * be used to determine what a running domain is actually using. * * New in version 1.1: * - Message DLM_QUERY_REGION added to support global heartbeat * - Message DLM_QUERY_NODEINFO added to allow online node removes * New in version 1.2: * - Message DLM_BEGIN_EXIT_DOMAIN_MSG added to mark start of exit domain * New in version 1.3: * - Message DLM_DEREF_LOCKRES_DONE added to inform non-master that the * refmap is cleared */ static const struct dlm_protocol_version dlm_protocol = { .pv_major = 1, .pv_minor = 3, }; #define DLM_DOMAIN_BACKOFF_MS 200 static int dlm_query_join_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data); static int dlm_assert_joined_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data); static int dlm_cancel_join_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data); static int dlm_query_region_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data); static int dlm_exit_domain_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data); static int dlm_protocol_compare(struct dlm_protocol_version *existing, struct dlm_protocol_version *request); static void dlm_unregister_domain_handlers(struct dlm_ctxt *dlm); void __dlm_unhash_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { if (hlist_unhashed(&res->hash_node)) return; mlog(0, "%s: Unhash res %.*s\n", dlm->name, res->lockname.len, res->lockname.name); hlist_del_init(&res->hash_node); dlm_lockres_put(res); } void __dlm_insert_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { struct hlist_head *bucket; assert_spin_locked(&dlm->spinlock); bucket = dlm_lockres_hash(dlm, res->lockname.hash); /* get a reference for our hashtable */ dlm_lockres_get(res); hlist_add_head(&res->hash_node, bucket); mlog(0, "%s: Hash res %.*s\n", dlm->name, res->lockname.len, res->lockname.name); } struct dlm_lock_resource * __dlm_lookup_lockres_full(struct dlm_ctxt *dlm, const char *name, unsigned int len, unsigned int hash) { struct hlist_head *bucket; struct dlm_lock_resource *res; mlog(0, "%.*s\n", len, name); assert_spin_locked(&dlm->spinlock); bucket = dlm_lockres_hash(dlm, hash); hlist_for_each_entry(res, bucket, hash_node) { if (res->lockname.name[0] != name[0]) continue; if (unlikely(res->lockname.len != len)) continue; if (memcmp(res->lockname.name + 1, name + 1, len - 1)) continue; dlm_lockres_get(res); return res; } return NULL; } /* intended to be called by functions which do not care about lock * resources which are being purged (most net _handler functions). * this will return NULL for any lock resource which is found but * currently in the process of dropping its mastery reference. * use __dlm_lookup_lockres_full when you need the lock resource * regardless (e.g. dlm_get_lock_resource) */ struct dlm_lock_resource * __dlm_lookup_lockres(struct dlm_ctxt *dlm, const char *name, unsigned int len, unsigned int hash) { struct dlm_lock_resource *res = NULL; mlog(0, "%.*s\n", len, name); assert_spin_locked(&dlm->spinlock); res = __dlm_lookup_lockres_full(dlm, name, len, hash); if (res) { spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_DROPPING_REF) { spin_unlock(&res->spinlock); dlm_lockres_put(res); return NULL; } spin_unlock(&res->spinlock); } return res; } struct dlm_lock_resource * dlm_lookup_lockres(struct dlm_ctxt *dlm, const char *name, unsigned int len) { struct dlm_lock_resource *res; unsigned int hash = dlm_lockid_hash(name, len); spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres(dlm, name, len, hash); spin_unlock(&dlm->spinlock); return res; } static struct dlm_ctxt * __dlm_lookup_domain_full(const char *domain, int len) { struct dlm_ctxt *tmp; assert_spin_locked(&dlm_domain_lock); /* tmp->name here is always NULL terminated, * but domain may not be! */ list_for_each_entry(tmp, &dlm_domains, list) { if (strlen(tmp->name) == len && memcmp(tmp->name, domain, len)==0) return tmp; } return NULL; } /* For null terminated domain strings ONLY */ static struct dlm_ctxt * __dlm_lookup_domain(const char *domain) { assert_spin_locked(&dlm_domain_lock); return __dlm_lookup_domain_full(domain, strlen(domain)); } /* returns true on one of two conditions: * 1) the domain does not exist * 2) the domain exists and it's state is "joined" */ static int dlm_wait_on_domain_helper(const char *domain) { int ret = 0; struct dlm_ctxt *tmp = NULL; spin_lock(&dlm_domain_lock); tmp = __dlm_lookup_domain(domain); if (!tmp) ret = 1; else if (tmp->dlm_state == DLM_CTXT_JOINED) ret = 1; spin_unlock(&dlm_domain_lock); return ret; } static void dlm_free_ctxt_mem(struct dlm_ctxt *dlm) { dlm_destroy_debugfs_subroot(dlm); if (dlm->lockres_hash) dlm_free_pagevec((void **)dlm->lockres_hash, DLM_HASH_PAGES); if (dlm->master_hash) dlm_free_pagevec((void **)dlm->master_hash, DLM_HASH_PAGES); kfree(dlm->name); kfree(dlm); } /* A little strange - this function will be called while holding * dlm_domain_lock and is expected to be holding it on the way out. We * will however drop and reacquire it multiple times */ static void dlm_ctxt_release(struct kref *kref) { struct dlm_ctxt *dlm; dlm = container_of(kref, struct dlm_ctxt, dlm_refs); BUG_ON(dlm->num_joins); BUG_ON(dlm->dlm_state == DLM_CTXT_JOINED); /* we may still be in the list if we hit an error during join. */ list_del_init(&dlm->list); spin_unlock(&dlm_domain_lock); mlog(0, "freeing memory from domain %s\n", dlm->name); wake_up(&dlm_domain_events); dlm_free_ctxt_mem(dlm); spin_lock(&dlm_domain_lock); } void dlm_put(struct dlm_ctxt *dlm) { spin_lock(&dlm_domain_lock); kref_put(&dlm->dlm_refs, dlm_ctxt_release); spin_unlock(&dlm_domain_lock); } static void __dlm_get(struct dlm_ctxt *dlm) { kref_get(&dlm->dlm_refs); } /* given a questionable reference to a dlm object, gets a reference if * it can find it in the list, otherwise returns NULL in which case * you shouldn't trust your pointer. */ struct dlm_ctxt *dlm_grab(struct dlm_ctxt *dlm) { struct dlm_ctxt *target; struct dlm_ctxt *ret = NULL; spin_lock(&dlm_domain_lock); list_for_each_entry(target, &dlm_domains, list) { if (target == dlm) { __dlm_get(target); ret = target; break; } } spin_unlock(&dlm_domain_lock); return ret; } int dlm_domain_fully_joined(struct dlm_ctxt *dlm) { int ret; spin_lock(&dlm_domain_lock); ret = (dlm->dlm_state == DLM_CTXT_JOINED) || (dlm->dlm_state == DLM_CTXT_IN_SHUTDOWN); spin_unlock(&dlm_domain_lock); return ret; } static void dlm_destroy_dlm_worker(struct dlm_ctxt *dlm) { if (dlm->dlm_worker) { destroy_workqueue(dlm->dlm_worker); dlm->dlm_worker = NULL; } } static void dlm_complete_dlm_shutdown(struct dlm_ctxt *dlm) { dlm_unregister_domain_handlers(dlm); dlm_complete_thread(dlm); dlm_complete_recovery_thread(dlm); dlm_destroy_dlm_worker(dlm); /* We've left the domain. Now we can take ourselves out of the * list and allow the kref stuff to help us free the * memory. */ spin_lock(&dlm_domain_lock); list_del_init(&dlm->list); spin_unlock(&dlm_domain_lock); /* Wake up anyone waiting for us to remove this domain */ wake_up(&dlm_domain_events); } static int dlm_migrate_all_locks(struct dlm_ctxt *dlm) { int i, num, n, ret = 0; struct dlm_lock_resource *res; struct hlist_node *iter; struct hlist_head *bucket; int dropped; mlog(0, "Migrating locks from domain %s\n", dlm->name); num = 0; spin_lock(&dlm->spinlock); for (i = 0; i < DLM_HASH_BUCKETS; i++) { redo_bucket: n = 0; bucket = dlm_lockres_hash(dlm, i); iter = bucket->first; while (iter) { n++; res = hlist_entry(iter, struct dlm_lock_resource, hash_node); dlm_lockres_get(res); /* migrate, if necessary. this will drop the dlm * spinlock and retake it if it does migration. */ dropped = dlm_empty_lockres(dlm, res); spin_lock(&res->spinlock); if (dropped) __dlm_lockres_calc_usage(dlm, res); else iter = res->hash_node.next; spin_unlock(&res->spinlock); dlm_lockres_put(res); if (dropped) { cond_resched_lock(&dlm->spinlock); goto redo_bucket; } } cond_resched_lock(&dlm->spinlock); num += n; } if (!num) { if (dlm->reco.state & DLM_RECO_STATE_ACTIVE) { mlog(0, "%s: perhaps there are more lock resources " "need to be migrated after dlm recovery\n", dlm->name); ret = -EAGAIN; } else { mlog(0, "%s: we won't do dlm recovery after migrating " "all lock resources\n", dlm->name); dlm->migrate_done = 1; } } spin_unlock(&dlm->spinlock); wake_up(&dlm->dlm_thread_wq); /* let the dlm thread take care of purging, keep scanning until * nothing remains in the hash */ if (num) { mlog(0, "%s: %d lock resources in hash last pass\n", dlm->name, num); ret = -EAGAIN; } mlog(0, "DONE Migrating locks from domain %s\n", dlm->name); return ret; } static int dlm_no_joining_node(struct dlm_ctxt *dlm) { int ret; spin_lock(&dlm->spinlock); ret = dlm->joining_node == DLM_LOCK_RES_OWNER_UNKNOWN; spin_unlock(&dlm->spinlock); return ret; } static int dlm_begin_exit_domain_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; unsigned int node; struct dlm_exit_domain *exit_msg = (struct dlm_exit_domain *) msg->buf; if (!dlm_grab(dlm)) return 0; node = exit_msg->node_idx; mlog(0, "%s: Node %u sent a begin exit domain message\n", dlm->name, node); spin_lock(&dlm->spinlock); set_bit(node, dlm->exit_domain_map); spin_unlock(&dlm->spinlock); dlm_put(dlm); return 0; } static void dlm_mark_domain_leaving(struct dlm_ctxt *dlm) { /* Yikes, a double spinlock! I need domain_lock for the dlm * state and the dlm spinlock for join state... Sorry! */ again: spin_lock(&dlm_domain_lock); spin_lock(&dlm->spinlock); if (dlm->joining_node != DLM_LOCK_RES_OWNER_UNKNOWN) { mlog(0, "Node %d is joining, we wait on it.\n", dlm->joining_node); spin_unlock(&dlm->spinlock); spin_unlock(&dlm_domain_lock); wait_event(dlm->dlm_join_events, dlm_no_joining_node(dlm)); goto again; } dlm->dlm_state = DLM_CTXT_LEAVING; spin_unlock(&dlm->spinlock); spin_unlock(&dlm_domain_lock); } static void __dlm_print_nodes(struct dlm_ctxt *dlm) { int node = -1, num = 0; assert_spin_locked(&dlm->spinlock); printk("( "); while ((node = find_next_bit(dlm->domain_map, O2NM_MAX_NODES, node + 1)) < O2NM_MAX_NODES) { printk("%d ", node); ++num; } printk(") %u nodes\n", num); } static int dlm_exit_domain_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; unsigned int node; struct dlm_exit_domain *exit_msg = (struct dlm_exit_domain *) msg->buf; mlog(0, "%p %u %p", msg, len, data); if (!dlm_grab(dlm)) return 0; node = exit_msg->node_idx; spin_lock(&dlm->spinlock); clear_bit(node, dlm->domain_map); clear_bit(node, dlm->exit_domain_map); printk(KERN_NOTICE "o2dlm: Node %u leaves domain %s ", node, dlm->name); __dlm_print_nodes(dlm); /* notify anything attached to the heartbeat events */ dlm_hb_event_notify_attached(dlm, node, 0); spin_unlock(&dlm->spinlock); dlm_put(dlm); return 0; } static int dlm_send_one_domain_exit(struct dlm_ctxt *dlm, u32 msg_type, unsigned int node) { int status; struct dlm_exit_domain leave_msg; mlog(0, "%s: Sending domain exit message %u to node %u\n", dlm->name, msg_type, node); memset(&leave_msg, 0, sizeof(leave_msg)); leave_msg.node_idx = dlm->node_num; status = o2net_send_message(msg_type, dlm->key, &leave_msg, sizeof(leave_msg), node, NULL); if (status < 0) mlog(ML_ERROR, "Error %d sending domain exit message %u " "to node %u on domain %s\n", status, msg_type, node, dlm->name); return status; } static void dlm_begin_exit_domain(struct dlm_ctxt *dlm) { int node = -1; /* Support for begin exit domain was added in 1.2 */ if (dlm->dlm_locking_proto.pv_major == 1 && dlm->dlm_locking_proto.pv_minor < 2) return; /* * Unlike DLM_EXIT_DOMAIN_MSG, DLM_BEGIN_EXIT_DOMAIN_MSG is purely * informational. Meaning if a node does not receive the message, * so be it. */ spin_lock(&dlm->spinlock); while (1) { node = find_next_bit(dlm->domain_map, O2NM_MAX_NODES, node + 1); if (node >= O2NM_MAX_NODES) break; if (node == dlm->node_num) continue; spin_unlock(&dlm->spinlock); dlm_send_one_domain_exit(dlm, DLM_BEGIN_EXIT_DOMAIN_MSG, node); spin_lock(&dlm->spinlock); } spin_unlock(&dlm->spinlock); } static void dlm_leave_domain(struct dlm_ctxt *dlm) { int node, clear_node, status; /* At this point we've migrated away all our locks and won't * accept mastership of new ones. The dlm is responsible for * almost nothing now. We make sure not to confuse any joining * nodes and then commence shutdown procedure. */ spin_lock(&dlm->spinlock); /* Clear ourselves from the domain map */ clear_bit(dlm->node_num, dlm->domain_map); while ((node = find_next_bit(dlm->domain_map, O2NM_MAX_NODES, 0)) < O2NM_MAX_NODES) { /* Drop the dlm spinlock. This is safe wrt the domain_map. * -nodes cannot be added now as the * query_join_handlers knows to respond with OK_NO_MAP * -we catch the right network errors if a node is * removed from the map while we're sending him the * exit message. */ spin_unlock(&dlm->spinlock); clear_node = 1; status = dlm_send_one_domain_exit(dlm, DLM_EXIT_DOMAIN_MSG, node); if (status < 0 && status != -ENOPROTOOPT && status != -ENOTCONN) { mlog(ML_NOTICE, "Error %d sending domain exit message " "to node %d\n", status, node); /* Not sure what to do here but lets sleep for * a bit in case this was a transient * error... */ msleep(DLM_DOMAIN_BACKOFF_MS); clear_node = 0; } spin_lock(&dlm->spinlock); /* If we're not clearing the node bit then we intend * to loop back around to try again. */ if (clear_node) clear_bit(node, dlm->domain_map); } spin_unlock(&dlm->spinlock); } void dlm_unregister_domain(struct dlm_ctxt *dlm) { int leave = 0; struct dlm_lock_resource *res; spin_lock(&dlm_domain_lock); BUG_ON(dlm->dlm_state != DLM_CTXT_JOINED); BUG_ON(!dlm->num_joins); dlm->num_joins--; if (!dlm->num_joins) { /* We mark it "in shutdown" now so new register * requests wait until we've completely left the * domain. Don't use DLM_CTXT_LEAVING yet as we still * want new domain joins to communicate with us at * least until we've completed migration of our * resources. */ dlm->dlm_state = DLM_CTXT_IN_SHUTDOWN; leave = 1; } spin_unlock(&dlm_domain_lock); if (leave) { mlog(0, "shutting down domain %s\n", dlm->name); dlm_begin_exit_domain(dlm); /* We changed dlm state, notify the thread */ dlm_kick_thread(dlm, NULL); while (dlm_migrate_all_locks(dlm)) { /* Give dlm_thread time to purge the lockres' */ msleep(500); mlog(0, "%s: more migration to do\n", dlm->name); } /* This list should be empty. If not, print remaining lockres */ if (!list_empty(&dlm->tracking_list)) { mlog(ML_ERROR, "Following lockres' are still on the " "tracking list:\n"); list_for_each_entry(res, &dlm->tracking_list, tracking) dlm_print_one_lock_resource(res); } dlm_mark_domain_leaving(dlm); dlm_leave_domain(dlm); printk(KERN_NOTICE "o2dlm: Leaving domain %s\n", dlm->name); dlm_force_free_mles(dlm); dlm_complete_dlm_shutdown(dlm); } dlm_put(dlm); } EXPORT_SYMBOL_GPL(dlm_unregister_domain); static int dlm_query_join_proto_check(char *proto_type, int node, struct dlm_protocol_version *ours, struct dlm_protocol_version *request) { int rc; struct dlm_protocol_version proto = *request; if (!dlm_protocol_compare(ours, &proto)) { mlog(0, "node %u wanted to join with %s locking protocol " "%u.%u, we respond with %u.%u\n", node, proto_type, request->pv_major, request->pv_minor, proto.pv_major, proto.pv_minor); request->pv_minor = proto.pv_minor; rc = 0; } else { mlog(ML_NOTICE, "Node %u wanted to join with %s locking " "protocol %u.%u, but we have %u.%u, disallowing\n", node, proto_type, request->pv_major, request->pv_minor, ours->pv_major, ours->pv_minor); rc = 1; } return rc; } /* * struct dlm_query_join_packet is made up of four one-byte fields. They * are effectively in big-endian order already. However, little-endian * machines swap them before putting the packet on the wire (because * query_join's response is a status, and that status is treated as a u32 * on the wire). Thus, a big-endian and little-endian machines will treat * this structure differently. * * The solution is to have little-endian machines swap the structure when * converting from the structure to the u32 representation. This will * result in the structure having the correct format on the wire no matter * the host endian format. */ static void dlm_query_join_packet_to_wire(struct dlm_query_join_packet *packet, u32 *wire) { union dlm_query_join_response response; response.packet = *packet; *wire = be32_to_cpu(response.intval); } static void dlm_query_join_wire_to_packet(u32 wire, struct dlm_query_join_packet *packet) { union dlm_query_join_response response; response.intval = cpu_to_be32(wire); *packet = response.packet; } static int dlm_query_join_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_query_join_request *query; struct dlm_query_join_packet packet = { .code = JOIN_DISALLOW, }; struct dlm_ctxt *dlm = NULL; u32 response; u8 nodenum; query = (struct dlm_query_join_request *) msg->buf; mlog(0, "node %u wants to join domain %s\n", query->node_idx, query->domain); /* * If heartbeat doesn't consider the node live, tell it * to back off and try again. This gives heartbeat a chance * to catch up. */ if (!o2hb_check_node_heartbeating_no_sem(query->node_idx)) { mlog(0, "node %u is not in our live map yet\n", query->node_idx); packet.code = JOIN_DISALLOW; goto respond; } packet.code = JOIN_OK_NO_MAP; spin_lock(&dlm_domain_lock); dlm = __dlm_lookup_domain_full(query->domain, query->name_len); if (!dlm) goto unlock_respond; /* * There is a small window where the joining node may not see the * node(s) that just left but still part of the cluster. DISALLOW * join request if joining node has different node map. */ nodenum=0; while (nodenum < O2NM_MAX_NODES) { if (test_bit(nodenum, dlm->domain_map)) { if (!byte_test_bit(nodenum, query->node_map)) { mlog(0, "disallow join as node %u does not " "have node %u in its nodemap\n", query->node_idx, nodenum); packet.code = JOIN_DISALLOW; goto unlock_respond; } } nodenum++; } /* Once the dlm ctxt is marked as leaving then we don't want * to be put in someone's domain map. * Also, explicitly disallow joining at certain troublesome * times (ie. during recovery). */ if (dlm->dlm_state != DLM_CTXT_LEAVING) { int bit = query->node_idx; spin_lock(&dlm->spinlock); if (dlm->dlm_state == DLM_CTXT_NEW && dlm->joining_node == DLM_LOCK_RES_OWNER_UNKNOWN) { /*If this is a brand new context and we * haven't started our join process yet, then * the other node won the race. */ packet.code = JOIN_OK_NO_MAP; } else if (dlm->joining_node != DLM_LOCK_RES_OWNER_UNKNOWN) { /* Disallow parallel joins. */ packet.code = JOIN_DISALLOW; } else if (dlm->reco.state & DLM_RECO_STATE_ACTIVE) { mlog(0, "node %u trying to join, but recovery " "is ongoing.\n", bit); packet.code = JOIN_DISALLOW; } else if (test_bit(bit, dlm->recovery_map)) { mlog(0, "node %u trying to join, but it " "still needs recovery.\n", bit); packet.code = JOIN_DISALLOW; } else if (test_bit(bit, dlm->domain_map)) { mlog(0, "node %u trying to join, but it " "is still in the domain! needs recovery?\n", bit); packet.code = JOIN_DISALLOW; } else { /* Alright we're fully a part of this domain * so we keep some state as to who's joining * and indicate to him that needs to be fixed * up. */ /* Make sure we speak compatible locking protocols. */ if (dlm_query_join_proto_check("DLM", bit, &dlm->dlm_locking_proto, &query->dlm_proto)) { packet.code = JOIN_PROTOCOL_MISMATCH; } else if (dlm_query_join_proto_check("fs", bit, &dlm->fs_locking_proto, &query->fs_proto)) { packet.code = JOIN_PROTOCOL_MISMATCH; } else { packet.dlm_minor = query->dlm_proto.pv_minor; packet.fs_minor = query->fs_proto.pv_minor; packet.code = JOIN_OK; __dlm_set_joining_node(dlm, query->node_idx); } } spin_unlock(&dlm->spinlock); } unlock_respond: spin_unlock(&dlm_domain_lock); respond: mlog(0, "We respond with %u\n", packet.code); dlm_query_join_packet_to_wire(&packet, &response); return response; } static int dlm_assert_joined_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_assert_joined *assert; struct dlm_ctxt *dlm = NULL; assert = (struct dlm_assert_joined *) msg->buf; mlog(0, "node %u asserts join on domain %s\n", assert->node_idx, assert->domain); spin_lock(&dlm_domain_lock); dlm = __dlm_lookup_domain_full(assert->domain, assert->name_len); /* XXX should we consider no dlm ctxt an error? */ if (dlm) { spin_lock(&dlm->spinlock); /* Alright, this node has officially joined our * domain. Set him in the map and clean up our * leftover join state. */ BUG_ON(dlm->joining_node != assert->node_idx); if (dlm->reco.state & DLM_RECO_STATE_ACTIVE) { mlog(0, "dlm recovery is ongoing, disallow join\n"); spin_unlock(&dlm->spinlock); spin_unlock(&dlm_domain_lock); return -EAGAIN; } set_bit(assert->node_idx, dlm->domain_map); clear_bit(assert->node_idx, dlm->exit_domain_map); __dlm_set_joining_node(dlm, DLM_LOCK_RES_OWNER_UNKNOWN); printk(KERN_NOTICE "o2dlm: Node %u joins domain %s ", assert->node_idx, dlm->name); __dlm_print_nodes(dlm); /* notify anything attached to the heartbeat events */ dlm_hb_event_notify_attached(dlm, assert->node_idx, 1); spin_unlock(&dlm->spinlock); } spin_unlock(&dlm_domain_lock); return 0; } static int dlm_match_regions(struct dlm_ctxt *dlm, struct dlm_query_region *qr, char *local, int locallen) { char *remote = qr->qr_regions; char *l, *r; int localnr, i, j, foundit; int status = 0; if (!o2hb_global_heartbeat_active()) { if (qr->qr_numregions) { mlog(ML_ERROR, "Domain %s: Joining node %d has global " "heartbeat enabled but local node %d does not\n", qr->qr_domain, qr->qr_node, dlm->node_num); status = -EINVAL; } goto bail; } if (o2hb_global_heartbeat_active() && !qr->qr_numregions) { mlog(ML_ERROR, "Domain %s: Local node %d has global " "heartbeat enabled but joining node %d does not\n", qr->qr_domain, dlm->node_num, qr->qr_node); status = -EINVAL; goto bail; } r = remote; for (i = 0; i < qr->qr_numregions; ++i) { mlog(0, "Region %.*s\n", O2HB_MAX_REGION_NAME_LEN, r); r += O2HB_MAX_REGION_NAME_LEN; } localnr = min(O2NM_MAX_REGIONS, locallen/O2HB_MAX_REGION_NAME_LEN); localnr = o2hb_get_all_regions(local, (u8)localnr); /* compare local regions with remote */ l = local; for (i = 0; i < localnr; ++i) { foundit = 0; r = remote; for (j = 0; j <= qr->qr_numregions; ++j) { if (!memcmp(l, r, O2HB_MAX_REGION_NAME_LEN)) { foundit = 1; break; } r += O2HB_MAX_REGION_NAME_LEN; } if (!foundit) { status = -EINVAL; mlog(ML_ERROR, "Domain %s: Region '%.*s' registered " "in local node %d but not in joining node %d\n", qr->qr_domain, O2HB_MAX_REGION_NAME_LEN, l, dlm->node_num, qr->qr_node); goto bail; } l += O2HB_MAX_REGION_NAME_LEN; } /* compare remote with local regions */ r = remote; for (i = 0; i < qr->qr_numregions; ++i) { foundit = 0; l = local; for (j = 0; j < localnr; ++j) { if (!memcmp(r, l, O2HB_MAX_REGION_NAME_LEN)) { foundit = 1; break; } l += O2HB_MAX_REGION_NAME_LEN; } if (!foundit) { status = -EINVAL; mlog(ML_ERROR, "Domain %s: Region '%.*s' registered " "in joining node %d but not in local node %d\n", qr->qr_domain, O2HB_MAX_REGION_NAME_LEN, r, qr->qr_node, dlm->node_num); goto bail; } r += O2HB_MAX_REGION_NAME_LEN; } bail: return status; } static int dlm_send_regions(struct dlm_ctxt *dlm, unsigned long *node_map) { struct dlm_query_region *qr = NULL; int status, ret = 0, i; char *p; if (find_first_bit(node_map, O2NM_MAX_NODES) >= O2NM_MAX_NODES) goto bail; qr = kzalloc(sizeof(struct dlm_query_region), GFP_KERNEL); if (!qr) { ret = -ENOMEM; mlog_errno(ret); goto bail; } qr->qr_node = dlm->node_num; qr->qr_namelen = strlen(dlm->name); memcpy(qr->qr_domain, dlm->name, qr->qr_namelen); /* if local hb, the numregions will be zero */ if (o2hb_global_heartbeat_active()) qr->qr_numregions = o2hb_get_all_regions(qr->qr_regions, O2NM_MAX_REGIONS); p = qr->qr_regions; for (i = 0; i < qr->qr_numregions; ++i, p += O2HB_MAX_REGION_NAME_LEN) mlog(0, "Region %.*s\n", O2HB_MAX_REGION_NAME_LEN, p); i = -1; while ((i = find_next_bit(node_map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { if (i == dlm->node_num) continue; mlog(0, "Sending regions to node %d\n", i); ret = o2net_send_message(DLM_QUERY_REGION, DLM_MOD_KEY, qr, sizeof(struct dlm_query_region), i, &status); if (ret >= 0) ret = status; if (ret) { mlog(ML_ERROR, "Region mismatch %d, node %d\n", ret, i); break; } } bail: kfree(qr); return ret; } static int dlm_query_region_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_query_region *qr; struct dlm_ctxt *dlm = NULL; char *local = NULL; int status = 0; qr = (struct dlm_query_region *) msg->buf; mlog(0, "Node %u queries hb regions on domain %s\n", qr->qr_node, qr->qr_domain); /* buffer used in dlm_mast_regions() */ local = kmalloc(sizeof(qr->qr_regions), GFP_KERNEL); if (!local) return -ENOMEM; status = -EINVAL; spin_lock(&dlm_domain_lock); dlm = __dlm_lookup_domain_full(qr->qr_domain, qr->qr_namelen); if (!dlm) { mlog(ML_ERROR, "Node %d queried hb regions on domain %s " "before join domain\n", qr->qr_node, qr->qr_domain); goto out_domain_lock; } spin_lock(&dlm->spinlock); if (dlm->joining_node != qr->qr_node) { mlog(ML_ERROR, "Node %d queried hb regions on domain %s " "but joining node is %d\n", qr->qr_node, qr->qr_domain, dlm->joining_node); goto out_dlm_lock; } /* Support for global heartbeat was added in 1.1 */ if (dlm->dlm_locking_proto.pv_major == 1 && dlm->dlm_locking_proto.pv_minor == 0) { mlog(ML_ERROR, "Node %d queried hb regions on domain %s " "but active dlm protocol is %d.%d\n", qr->qr_node, qr->qr_domain, dlm->dlm_locking_proto.pv_major, dlm->dlm_locking_proto.pv_minor); goto out_dlm_lock; } status = dlm_match_regions(dlm, qr, local, sizeof(qr->qr_regions)); out_dlm_lock: spin_unlock(&dlm->spinlock); out_domain_lock: spin_unlock(&dlm_domain_lock); kfree(local); return status; } static int dlm_match_nodes(struct dlm_ctxt *dlm, struct dlm_query_nodeinfo *qn) { struct o2nm_node *local; struct dlm_node_info *remote; int i, j; int status = 0; for (j = 0; j < qn->qn_numnodes; ++j) mlog(0, "Node %3d, %pI4:%u\n", qn->qn_nodes[j].ni_nodenum, &(qn->qn_nodes[j].ni_ipv4_address), ntohs(qn->qn_nodes[j].ni_ipv4_port)); for (i = 0; i < O2NM_MAX_NODES && !status; ++i) { local = o2nm_get_node_by_num(i); remote = NULL; for (j = 0; j < qn->qn_numnodes; ++j) { if (qn->qn_nodes[j].ni_nodenum == i) { remote = &(qn->qn_nodes[j]); break; } } if (!local && !remote) continue; if ((local && !remote) || (!local && remote)) status = -EINVAL; if (!status && ((remote->ni_nodenum != local->nd_num) || (remote->ni_ipv4_port != local->nd_ipv4_port) || (remote->ni_ipv4_address != local->nd_ipv4_address))) status = -EINVAL; if (status) { if (remote && !local) mlog(ML_ERROR, "Domain %s: Node %d (%pI4:%u) " "registered in joining node %d but not in " "local node %d\n", qn->qn_domain, remote->ni_nodenum, &(remote->ni_ipv4_address), ntohs(remote->ni_ipv4_port), qn->qn_nodenum, dlm->node_num); if (local && !remote) mlog(ML_ERROR, "Domain %s: Node %d (%pI4:%u) " "registered in local node %d but not in " "joining node %d\n", qn->qn_domain, local->nd_num, &(local->nd_ipv4_address), ntohs(local->nd_ipv4_port), dlm->node_num, qn->qn_nodenum); BUG_ON((!local && !remote)); } if (local) o2nm_node_put(local); } return status; } static int dlm_send_nodeinfo(struct dlm_ctxt *dlm, unsigned long *node_map) { struct dlm_query_nodeinfo *qn = NULL; struct o2nm_node *node; int ret = 0, status, count, i; if (find_first_bit(node_map, O2NM_MAX_NODES) >= O2NM_MAX_NODES) goto bail; qn = kzalloc(sizeof(struct dlm_query_nodeinfo), GFP_KERNEL); if (!qn) { ret = -ENOMEM; mlog_errno(ret); goto bail; } for (i = 0, count = 0; i < O2NM_MAX_NODES; ++i) { node = o2nm_get_node_by_num(i); if (!node) continue; qn->qn_nodes[count].ni_nodenum = node->nd_num; qn->qn_nodes[count].ni_ipv4_port = node->nd_ipv4_port; qn->qn_nodes[count].ni_ipv4_address = node->nd_ipv4_address; mlog(0, "Node %3d, %pI4:%u\n", node->nd_num, &(node->nd_ipv4_address), ntohs(node->nd_ipv4_port)); ++count; o2nm_node_put(node); } qn->qn_nodenum = dlm->node_num; qn->qn_numnodes = count; qn->qn_namelen = strlen(dlm->name); memcpy(qn->qn_domain, dlm->name, qn->qn_namelen); i = -1; while ((i = find_next_bit(node_map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { if (i == dlm->node_num) continue; mlog(0, "Sending nodeinfo to node %d\n", i); ret = o2net_send_message(DLM_QUERY_NODEINFO, DLM_MOD_KEY, qn, sizeof(struct dlm_query_nodeinfo), i, &status); if (ret >= 0) ret = status; if (ret) { mlog(ML_ERROR, "node mismatch %d, node %d\n", ret, i); break; } } bail: kfree(qn); return ret; } static int dlm_query_nodeinfo_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_query_nodeinfo *qn; struct dlm_ctxt *dlm = NULL; int locked = 0, status = -EINVAL; qn = (struct dlm_query_nodeinfo *) msg->buf; mlog(0, "Node %u queries nodes on domain %s\n", qn->qn_nodenum, qn->qn_domain); spin_lock(&dlm_domain_lock); dlm = __dlm_lookup_domain_full(qn->qn_domain, qn->qn_namelen); if (!dlm) { mlog(ML_ERROR, "Node %d queried nodes on domain %s before " "join domain\n", qn->qn_nodenum, qn->qn_domain); goto bail; } spin_lock(&dlm->spinlock); locked = 1; if (dlm->joining_node != qn->qn_nodenum) { mlog(ML_ERROR, "Node %d queried nodes on domain %s but " "joining node is %d\n", qn->qn_nodenum, qn->qn_domain, dlm->joining_node); goto bail; } /* Support for node query was added in 1.1 */ if (dlm->dlm_locking_proto.pv_major == 1 && dlm->dlm_locking_proto.pv_minor == 0) { mlog(ML_ERROR, "Node %d queried nodes on domain %s " "but active dlm protocol is %d.%d\n", qn->qn_nodenum, qn->qn_domain, dlm->dlm_locking_proto.pv_major, dlm->dlm_locking_proto.pv_minor); goto bail; } status = dlm_match_nodes(dlm, qn); bail: if (locked) spin_unlock(&dlm->spinlock); spin_unlock(&dlm_domain_lock); return status; } static int dlm_cancel_join_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_cancel_join *cancel; struct dlm_ctxt *dlm = NULL; cancel = (struct dlm_cancel_join *) msg->buf; mlog(0, "node %u cancels join on domain %s\n", cancel->node_idx, cancel->domain); spin_lock(&dlm_domain_lock); dlm = __dlm_lookup_domain_full(cancel->domain, cancel->name_len); if (dlm) { spin_lock(&dlm->spinlock); /* Yikes, this guy wants to cancel his join. No * problem, we simply cleanup our join state. */ BUG_ON(dlm->joining_node != cancel->node_idx); __dlm_set_joining_node(dlm, DLM_LOCK_RES_OWNER_UNKNOWN); spin_unlock(&dlm->spinlock); } spin_unlock(&dlm_domain_lock); return 0; } static int dlm_send_one_join_cancel(struct dlm_ctxt *dlm, unsigned int node) { int status; struct dlm_cancel_join cancel_msg; memset(&cancel_msg, 0, sizeof(cancel_msg)); cancel_msg.node_idx = dlm->node_num; cancel_msg.name_len = strlen(dlm->name); memcpy(cancel_msg.domain, dlm->name, cancel_msg.name_len); status = o2net_send_message(DLM_CANCEL_JOIN_MSG, DLM_MOD_KEY, &cancel_msg, sizeof(cancel_msg), node, NULL); if (status < 0) { mlog(ML_ERROR, "Error %d when sending message %u (key 0x%x) to " "node %u\n", status, DLM_CANCEL_JOIN_MSG, DLM_MOD_KEY, node); goto bail; } bail: return status; } /* map_size should be in bytes. */ static int dlm_send_join_cancels(struct dlm_ctxt *dlm, unsigned long *node_map, unsigned int map_size) { int status, tmpstat; int node; if (map_size != (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long))) { mlog(ML_ERROR, "map_size %u != BITS_TO_LONGS(O2NM_MAX_NODES) %u\n", map_size, (unsigned)BITS_TO_LONGS(O2NM_MAX_NODES)); return -EINVAL; } status = 0; node = -1; while ((node = find_next_bit(node_map, O2NM_MAX_NODES, node + 1)) < O2NM_MAX_NODES) { if (node == dlm->node_num) continue; tmpstat = dlm_send_one_join_cancel(dlm, node); if (tmpstat) { mlog(ML_ERROR, "Error return %d cancelling join on " "node %d\n", tmpstat, node); if (!status) status = tmpstat; } } if (status) mlog_errno(status); return status; } static int dlm_request_join(struct dlm_ctxt *dlm, int node, enum dlm_query_join_response_code *response) { int status; struct dlm_query_join_request join_msg; struct dlm_query_join_packet packet; u32 join_resp; mlog(0, "querying node %d\n", node); memset(&join_msg, 0, sizeof(join_msg)); join_msg.node_idx = dlm->node_num; join_msg.name_len = strlen(dlm->name); memcpy(join_msg.domain, dlm->name, join_msg.name_len); join_msg.dlm_proto = dlm->dlm_locking_proto; join_msg.fs_proto = dlm->fs_locking_proto; /* copy live node map to join message */ byte_copymap(join_msg.node_map, dlm->live_nodes_map, O2NM_MAX_NODES); status = o2net_send_message(DLM_QUERY_JOIN_MSG, DLM_MOD_KEY, &join_msg, sizeof(join_msg), node, &join_resp); if (status < 0 && status != -ENOPROTOOPT) { mlog(ML_ERROR, "Error %d when sending message %u (key 0x%x) to " "node %u\n", status, DLM_QUERY_JOIN_MSG, DLM_MOD_KEY, node); goto bail; } dlm_query_join_wire_to_packet(join_resp, &packet); /* -ENOPROTOOPT from the net code means the other side isn't listening for our message type -- that's fine, it means his dlm isn't up, so we can consider him a 'yes' but not joined into the domain. */ if (status == -ENOPROTOOPT) { status = 0; *response = JOIN_OK_NO_MAP; } else { *response = packet.code; switch (packet.code) { case JOIN_DISALLOW: case JOIN_OK_NO_MAP: break; case JOIN_PROTOCOL_MISMATCH: mlog(ML_NOTICE, "This node requested DLM locking protocol %u.%u and " "filesystem locking protocol %u.%u. At least one of " "the protocol versions on node %d is not compatible, " "disconnecting\n", dlm->dlm_locking_proto.pv_major, dlm->dlm_locking_proto.pv_minor, dlm->fs_locking_proto.pv_major, dlm->fs_locking_proto.pv_minor, node); status = -EPROTO; break; case JOIN_OK: /* Use the same locking protocol as the remote node */ dlm->dlm_locking_proto.pv_minor = packet.dlm_minor; dlm->fs_locking_proto.pv_minor = packet.fs_minor; mlog(0, "Node %d responds JOIN_OK with DLM locking protocol " "%u.%u and fs locking protocol %u.%u\n", node, dlm->dlm_locking_proto.pv_major, dlm->dlm_locking_proto.pv_minor, dlm->fs_locking_proto.pv_major, dlm->fs_locking_proto.pv_minor); break; default: status = -EINVAL; mlog(ML_ERROR, "invalid response %d from node %u\n", packet.code, node); /* Reset response to JOIN_DISALLOW */ *response = JOIN_DISALLOW; break; } } mlog(0, "status %d, node %d response is %d\n", status, node, *response); bail: return status; } static int dlm_send_one_join_assert(struct dlm_ctxt *dlm, unsigned int node) { int status; int ret; struct dlm_assert_joined assert_msg; mlog(0, "Sending join assert to node %u\n", node); memset(&assert_msg, 0, sizeof(assert_msg)); assert_msg.node_idx = dlm->node_num; assert_msg.name_len = strlen(dlm->name); memcpy(assert_msg.domain, dlm->name, assert_msg.name_len); status = o2net_send_message(DLM_ASSERT_JOINED_MSG, DLM_MOD_KEY, &assert_msg, sizeof(assert_msg), node, &ret); if (status < 0) mlog(ML_ERROR, "Error %d when sending message %u (key 0x%x) to " "node %u\n", status, DLM_ASSERT_JOINED_MSG, DLM_MOD_KEY, node); else status = ret; return status; } static void dlm_send_join_asserts(struct dlm_ctxt *dlm, unsigned long *node_map) { int status, node, live; status = 0; node = -1; while ((node = find_next_bit(node_map, O2NM_MAX_NODES, node + 1)) < O2NM_MAX_NODES) { if (node == dlm->node_num) continue; do { /* It is very important that this message be * received so we spin until either the node * has died or it gets the message. */ status = dlm_send_one_join_assert(dlm, node); spin_lock(&dlm->spinlock); live = test_bit(node, dlm->live_nodes_map); spin_unlock(&dlm->spinlock); if (status) { mlog(ML_ERROR, "Error return %d asserting " "join on node %d\n", status, node); /* give us some time between errors... */ if (live) msleep(DLM_DOMAIN_BACKOFF_MS); } } while (status && live); } } struct domain_join_ctxt { unsigned long live_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; unsigned long yes_resp_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; }; static int dlm_should_restart_join(struct dlm_ctxt *dlm, struct domain_join_ctxt *ctxt, enum dlm_query_join_response_code response) { int ret; if (response == JOIN_DISALLOW) { mlog(0, "Latest response of disallow -- should restart\n"); return 1; } spin_lock(&dlm->spinlock); /* For now, we restart the process if the node maps have * changed at all */ ret = !bitmap_equal(ctxt->live_map, dlm->live_nodes_map, O2NM_MAX_NODES); spin_unlock(&dlm->spinlock); if (ret) mlog(0, "Node maps changed -- should restart\n"); return ret; } static int dlm_try_to_join_domain(struct dlm_ctxt *dlm) { int status = 0, tmpstat, node; struct domain_join_ctxt *ctxt; enum dlm_query_join_response_code response = JOIN_DISALLOW; mlog(0, "%p", dlm); ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) { status = -ENOMEM; mlog_errno(status); goto bail; } /* group sem locking should work for us here -- we're already * registered for heartbeat events so filling this should be * atomic wrt getting those handlers called. */ o2hb_fill_node_map(dlm->live_nodes_map, O2NM_MAX_NODES); spin_lock(&dlm->spinlock); bitmap_copy(ctxt->live_map, dlm->live_nodes_map, O2NM_MAX_NODES); __dlm_set_joining_node(dlm, dlm->node_num); spin_unlock(&dlm->spinlock); node = -1; while ((node = find_next_bit(ctxt->live_map, O2NM_MAX_NODES, node + 1)) < O2NM_MAX_NODES) { if (node == dlm->node_num) continue; status = dlm_request_join(dlm, node, &response); if (status < 0) { mlog_errno(status); goto bail; } /* Ok, either we got a response or the node doesn't have a * dlm up. */ if (response == JOIN_OK) set_bit(node, ctxt->yes_resp_map); if (dlm_should_restart_join(dlm, ctxt, response)) { status = -EAGAIN; goto bail; } } mlog(0, "Yay, done querying nodes!\n"); /* Yay, everyone agree's we can join the domain. My domain is * comprised of all nodes who were put in the * yes_resp_map. Copy that into our domain map and send a join * assert message to clean up everyone elses state. */ spin_lock(&dlm->spinlock); bitmap_copy(dlm->domain_map, ctxt->yes_resp_map, O2NM_MAX_NODES); set_bit(dlm->node_num, dlm->domain_map); spin_unlock(&dlm->spinlock); /* Support for global heartbeat and node info was added in 1.1 */ if (dlm->dlm_locking_proto.pv_major > 1 || dlm->dlm_locking_proto.pv_minor > 0) { status = dlm_send_nodeinfo(dlm, ctxt->yes_resp_map); if (status) { mlog_errno(status); goto bail; } status = dlm_send_regions(dlm, ctxt->yes_resp_map); if (status) { mlog_errno(status); goto bail; } } dlm_send_join_asserts(dlm, ctxt->yes_resp_map); /* Joined state *must* be set before the joining node * information, otherwise the query_join handler may read no * current joiner but a state of NEW and tell joining nodes * we're not in the domain. */ spin_lock(&dlm_domain_lock); dlm->dlm_state = DLM_CTXT_JOINED; dlm->num_joins++; spin_unlock(&dlm_domain_lock); bail: spin_lock(&dlm->spinlock); __dlm_set_joining_node(dlm, DLM_LOCK_RES_OWNER_UNKNOWN); if (!status) { printk(KERN_NOTICE "o2dlm: Joining domain %s ", dlm->name); __dlm_print_nodes(dlm); } spin_unlock(&dlm->spinlock); if (ctxt) { /* Do we need to send a cancel message to any nodes? */ if (status < 0) { tmpstat = dlm_send_join_cancels(dlm, ctxt->yes_resp_map, sizeof(ctxt->yes_resp_map)); if (tmpstat < 0) mlog_errno(tmpstat); } kfree(ctxt); } mlog(0, "returning %d\n", status); return status; } static void dlm_unregister_domain_handlers(struct dlm_ctxt *dlm) { o2hb_unregister_callback(dlm->name, &dlm->dlm_hb_up); o2hb_unregister_callback(dlm->name, &dlm->dlm_hb_down); o2net_unregister_handler_list(&dlm->dlm_domain_handlers); } static int dlm_register_domain_handlers(struct dlm_ctxt *dlm) { int status; mlog(0, "registering handlers.\n"); o2hb_setup_callback(&dlm->dlm_hb_down, O2HB_NODE_DOWN_CB, dlm_hb_node_down_cb, dlm, DLM_HB_NODE_DOWN_PRI); o2hb_setup_callback(&dlm->dlm_hb_up, O2HB_NODE_UP_CB, dlm_hb_node_up_cb, dlm, DLM_HB_NODE_UP_PRI); status = o2hb_register_callback(dlm->name, &dlm->dlm_hb_down); if (status) goto bail; status = o2hb_register_callback(dlm->name, &dlm->dlm_hb_up); if (status) goto bail; status = o2net_register_handler(DLM_MASTER_REQUEST_MSG, dlm->key, sizeof(struct dlm_master_request), dlm_master_request_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_ASSERT_MASTER_MSG, dlm->key, sizeof(struct dlm_assert_master), dlm_assert_master_handler, dlm, dlm_assert_master_post_handler, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_CREATE_LOCK_MSG, dlm->key, sizeof(struct dlm_create_lock), dlm_create_lock_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_CONVERT_LOCK_MSG, dlm->key, DLM_CONVERT_LOCK_MAX_LEN, dlm_convert_lock_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_UNLOCK_LOCK_MSG, dlm->key, DLM_UNLOCK_LOCK_MAX_LEN, dlm_unlock_lock_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_PROXY_AST_MSG, dlm->key, DLM_PROXY_AST_MAX_LEN, dlm_proxy_ast_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_EXIT_DOMAIN_MSG, dlm->key, sizeof(struct dlm_exit_domain), dlm_exit_domain_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_DEREF_LOCKRES_MSG, dlm->key, sizeof(struct dlm_deref_lockres), dlm_deref_lockres_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_MIGRATE_REQUEST_MSG, dlm->key, sizeof(struct dlm_migrate_request), dlm_migrate_request_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_MIG_LOCKRES_MSG, dlm->key, DLM_MIG_LOCKRES_MAX_LEN, dlm_mig_lockres_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_MASTER_REQUERY_MSG, dlm->key, sizeof(struct dlm_master_requery), dlm_master_requery_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_LOCK_REQUEST_MSG, dlm->key, sizeof(struct dlm_lock_request), dlm_request_all_locks_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_RECO_DATA_DONE_MSG, dlm->key, sizeof(struct dlm_reco_data_done), dlm_reco_data_done_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_BEGIN_RECO_MSG, dlm->key, sizeof(struct dlm_begin_reco), dlm_begin_reco_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_FINALIZE_RECO_MSG, dlm->key, sizeof(struct dlm_finalize_reco), dlm_finalize_reco_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_BEGIN_EXIT_DOMAIN_MSG, dlm->key, sizeof(struct dlm_exit_domain), dlm_begin_exit_domain_handler, dlm, NULL, &dlm->dlm_domain_handlers); if (status) goto bail; status = o2net_register_handler(DLM_DEREF_LOCKRES_DONE, dlm->key, sizeof(struct dlm_deref_lockres_done), dlm_deref_lockres_done_handler, dlm, NULL, &dlm->dlm_domain_handlers); bail: if (status) dlm_unregister_domain_handlers(dlm); return status; } static int dlm_join_domain(struct dlm_ctxt *dlm) { int status; unsigned int backoff; unsigned int total_backoff = 0; char wq_name[O2NM_MAX_NAME_LEN]; BUG_ON(!dlm); mlog(0, "Join domain %s\n", dlm->name); status = dlm_register_domain_handlers(dlm); if (status) { mlog_errno(status); goto bail; } status = dlm_launch_thread(dlm); if (status < 0) { mlog_errno(status); goto bail; } status = dlm_launch_recovery_thread(dlm); if (status < 0) { mlog_errno(status); goto bail; } dlm_debug_init(dlm); snprintf(wq_name, O2NM_MAX_NAME_LEN, "dlm_wq-%s", dlm->name); dlm->dlm_worker = alloc_workqueue(wq_name, WQ_MEM_RECLAIM, 0); if (!dlm->dlm_worker) { status = -ENOMEM; mlog_errno(status); goto bail; } do { status = dlm_try_to_join_domain(dlm); /* If we're racing another node to the join, then we * need to back off temporarily and let them * complete. */ #define DLM_JOIN_TIMEOUT_MSECS 90000 if (status == -EAGAIN) { if (signal_pending(current)) { status = -ERESTARTSYS; goto bail; } if (total_backoff > DLM_JOIN_TIMEOUT_MSECS) { status = -ERESTARTSYS; mlog(ML_NOTICE, "Timed out joining dlm domain " "%s after %u msecs\n", dlm->name, total_backoff); goto bail; } /* * <chip> After you! * <dale> No, after you! * <chip> I insist! * <dale> But you first! * ... */ backoff = (unsigned int)(jiffies & 0x3); backoff *= DLM_DOMAIN_BACKOFF_MS; total_backoff += backoff; mlog(0, "backoff %d\n", backoff); msleep(backoff); } } while (status == -EAGAIN); if (status < 0) { mlog_errno(status); goto bail; } status = 0; bail: wake_up(&dlm_domain_events); if (status) { dlm_unregister_domain_handlers(dlm); dlm_complete_thread(dlm); dlm_complete_recovery_thread(dlm); dlm_destroy_dlm_worker(dlm); } return status; } static struct dlm_ctxt *dlm_alloc_ctxt(const char *domain, u32 key) { int i; int ret; struct dlm_ctxt *dlm = NULL; dlm = kzalloc(sizeof(*dlm), GFP_KERNEL); if (!dlm) { ret = -ENOMEM; mlog_errno(ret); goto leave; } dlm->name = kstrdup(domain, GFP_KERNEL); if (dlm->name == NULL) { ret = -ENOMEM; mlog_errno(ret); goto leave; } dlm->lockres_hash = (struct hlist_head **)dlm_alloc_pagevec(DLM_HASH_PAGES); if (!dlm->lockres_hash) { ret = -ENOMEM; mlog_errno(ret); goto leave; } for (i = 0; i < DLM_HASH_BUCKETS; i++) INIT_HLIST_HEAD(dlm_lockres_hash(dlm, i)); dlm->master_hash = (struct hlist_head **) dlm_alloc_pagevec(DLM_HASH_PAGES); if (!dlm->master_hash) { ret = -ENOMEM; mlog_errno(ret); goto leave; } for (i = 0; i < DLM_HASH_BUCKETS; i++) INIT_HLIST_HEAD(dlm_master_hash(dlm, i)); dlm->key = key; dlm->node_num = o2nm_this_node(); dlm_create_debugfs_subroot(dlm); spin_lock_init(&dlm->spinlock); spin_lock_init(&dlm->master_lock); spin_lock_init(&dlm->ast_lock); spin_lock_init(&dlm->track_lock); INIT_LIST_HEAD(&dlm->list); INIT_LIST_HEAD(&dlm->dirty_list); INIT_LIST_HEAD(&dlm->reco.resources); INIT_LIST_HEAD(&dlm->reco.node_data); INIT_LIST_HEAD(&dlm->purge_list); INIT_LIST_HEAD(&dlm->dlm_domain_handlers); INIT_LIST_HEAD(&dlm->tracking_list); dlm->reco.state = 0; INIT_LIST_HEAD(&dlm->pending_asts); INIT_LIST_HEAD(&dlm->pending_basts); mlog(0, "dlm->recovery_map=%p, &(dlm->recovery_map[0])=%p\n", dlm->recovery_map, &(dlm->recovery_map[0])); bitmap_zero(dlm->recovery_map, O2NM_MAX_NODES); bitmap_zero(dlm->live_nodes_map, O2NM_MAX_NODES); bitmap_zero(dlm->domain_map, O2NM_MAX_NODES); dlm->dlm_thread_task = NULL; dlm->dlm_reco_thread_task = NULL; dlm->dlm_worker = NULL; init_waitqueue_head(&dlm->dlm_thread_wq); init_waitqueue_head(&dlm->dlm_reco_thread_wq); init_waitqueue_head(&dlm->reco.event); init_waitqueue_head(&dlm->ast_wq); init_waitqueue_head(&dlm->migration_wq); INIT_LIST_HEAD(&dlm->mle_hb_events); dlm->joining_node = DLM_LOCK_RES_OWNER_UNKNOWN; init_waitqueue_head(&dlm->dlm_join_events); dlm->migrate_done = 0; dlm->reco.new_master = O2NM_INVALID_NODE_NUM; dlm->reco.dead_node = O2NM_INVALID_NODE_NUM; atomic_set(&dlm->res_tot_count, 0); atomic_set(&dlm->res_cur_count, 0); for (i = 0; i < DLM_MLE_NUM_TYPES; ++i) { atomic_set(&dlm->mle_tot_count[i], 0); atomic_set(&dlm->mle_cur_count[i], 0); } spin_lock_init(&dlm->work_lock); INIT_LIST_HEAD(&dlm->work_list); INIT_WORK(&dlm->dispatched_work, dlm_dispatch_work); kref_init(&dlm->dlm_refs); dlm->dlm_state = DLM_CTXT_NEW; INIT_LIST_HEAD(&dlm->dlm_eviction_callbacks); mlog(0, "context init: refcount %u\n", kref_read(&dlm->dlm_refs)); ret = 0; leave: if (ret < 0 && dlm) { if (dlm->master_hash) dlm_free_pagevec((void **)dlm->master_hash, DLM_HASH_PAGES); if (dlm->lockres_hash) dlm_free_pagevec((void **)dlm->lockres_hash, DLM_HASH_PAGES); kfree(dlm->name); kfree(dlm); dlm = NULL; } return dlm; } /* * Compare a requested locking protocol version against the current one. * * If the major numbers are different, they are incompatible. * If the current minor is greater than the request, they are incompatible. * If the current minor is less than or equal to the request, they are * compatible, and the requester should run at the current minor version. */ static int dlm_protocol_compare(struct dlm_protocol_version *existing, struct dlm_protocol_version *request) { if (existing->pv_major != request->pv_major) return 1; if (existing->pv_minor > request->pv_minor) return 1; if (existing->pv_minor < request->pv_minor) request->pv_minor = existing->pv_minor; return 0; } /* * dlm_register_domain: one-time setup per "domain". * * The filesystem passes in the requested locking version via proto. * If registration was successful, proto will contain the negotiated * locking protocol. */ struct dlm_ctxt * dlm_register_domain(const char *domain, u32 key, struct dlm_protocol_version *fs_proto) { int ret; struct dlm_ctxt *dlm = NULL; struct dlm_ctxt *new_ctxt = NULL; if (strlen(domain) >= O2NM_MAX_NAME_LEN) { ret = -ENAMETOOLONG; mlog(ML_ERROR, "domain name length too long\n"); goto leave; } mlog(0, "register called for domain \"%s\"\n", domain); retry: dlm = NULL; if (signal_pending(current)) { ret = -ERESTARTSYS; mlog_errno(ret); goto leave; } spin_lock(&dlm_domain_lock); dlm = __dlm_lookup_domain(domain); if (dlm) { if (dlm->dlm_state != DLM_CTXT_JOINED) { spin_unlock(&dlm_domain_lock); mlog(0, "This ctxt is not joined yet!\n"); wait_event_interruptible(dlm_domain_events, dlm_wait_on_domain_helper( domain)); goto retry; } if (dlm_protocol_compare(&dlm->fs_locking_proto, fs_proto)) { spin_unlock(&dlm_domain_lock); mlog(ML_ERROR, "Requested locking protocol version is not " "compatible with already registered domain " "\"%s\"\n", domain); ret = -EPROTO; goto leave; } __dlm_get(dlm); dlm->num_joins++; spin_unlock(&dlm_domain_lock); ret = 0; goto leave; } /* doesn't exist */ if (!new_ctxt) { spin_unlock(&dlm_domain_lock); new_ctxt = dlm_alloc_ctxt(domain, key); if (new_ctxt) goto retry; ret = -ENOMEM; mlog_errno(ret); goto leave; } /* a little variable switch-a-roo here... */ dlm = new_ctxt; new_ctxt = NULL; /* add the new domain */ list_add_tail(&dlm->list, &dlm_domains); spin_unlock(&dlm_domain_lock); /* * Pass the locking protocol version into the join. If the join * succeeds, it will have the negotiated protocol set. */ dlm->dlm_locking_proto = dlm_protocol; dlm->fs_locking_proto = *fs_proto; ret = dlm_join_domain(dlm); if (ret) { mlog_errno(ret); dlm_put(dlm); goto leave; } /* Tell the caller what locking protocol we negotiated */ *fs_proto = dlm->fs_locking_proto; ret = 0; leave: if (new_ctxt) dlm_free_ctxt_mem(new_ctxt); if (ret < 0) dlm = ERR_PTR(ret); return dlm; } EXPORT_SYMBOL_GPL(dlm_register_domain); static LIST_HEAD(dlm_join_handlers); static void dlm_unregister_net_handlers(void) { o2net_unregister_handler_list(&dlm_join_handlers); } static int dlm_register_net_handlers(void) { int status = 0; status = o2net_register_handler(DLM_QUERY_JOIN_MSG, DLM_MOD_KEY, sizeof(struct dlm_query_join_request), dlm_query_join_handler, NULL, NULL, &dlm_join_handlers); if (status) goto bail; status = o2net_register_handler(DLM_ASSERT_JOINED_MSG, DLM_MOD_KEY, sizeof(struct dlm_assert_joined), dlm_assert_joined_handler, NULL, NULL, &dlm_join_handlers); if (status) goto bail; status = o2net_register_handler(DLM_CANCEL_JOIN_MSG, DLM_MOD_KEY, sizeof(struct dlm_cancel_join), dlm_cancel_join_handler, NULL, NULL, &dlm_join_handlers); if (status) goto bail; status = o2net_register_handler(DLM_QUERY_REGION, DLM_MOD_KEY, sizeof(struct dlm_query_region), dlm_query_region_handler, NULL, NULL, &dlm_join_handlers); if (status) goto bail; status = o2net_register_handler(DLM_QUERY_NODEINFO, DLM_MOD_KEY, sizeof(struct dlm_query_nodeinfo), dlm_query_nodeinfo_handler, NULL, NULL, &dlm_join_handlers); bail: if (status < 0) dlm_unregister_net_handlers(); return status; } /* Domain eviction callback handling. * * The file system requires notification of node death *before* the * dlm completes it's recovery work, otherwise it may be able to * acquire locks on resources requiring recovery. Since the dlm can * evict a node from it's domain *before* heartbeat fires, a similar * mechanism is required. */ /* Eviction is not expected to happen often, so a per-domain lock is * not necessary. Eviction callbacks are allowed to sleep for short * periods of time. */ static DECLARE_RWSEM(dlm_callback_sem); void dlm_fire_domain_eviction_callbacks(struct dlm_ctxt *dlm, int node_num) { struct dlm_eviction_cb *cb; down_read(&dlm_callback_sem); list_for_each_entry(cb, &dlm->dlm_eviction_callbacks, ec_item) { cb->ec_func(node_num, cb->ec_data); } up_read(&dlm_callback_sem); } void dlm_setup_eviction_cb(struct dlm_eviction_cb *cb, dlm_eviction_func *f, void *data) { INIT_LIST_HEAD(&cb->ec_item); cb->ec_func = f; cb->ec_data = data; } EXPORT_SYMBOL_GPL(dlm_setup_eviction_cb); void dlm_register_eviction_cb(struct dlm_ctxt *dlm, struct dlm_eviction_cb *cb) { down_write(&dlm_callback_sem); list_add_tail(&cb->ec_item, &dlm->dlm_eviction_callbacks); up_write(&dlm_callback_sem); } EXPORT_SYMBOL_GPL(dlm_register_eviction_cb); void dlm_unregister_eviction_cb(struct dlm_eviction_cb *cb) { down_write(&dlm_callback_sem); list_del_init(&cb->ec_item); up_write(&dlm_callback_sem); } EXPORT_SYMBOL_GPL(dlm_unregister_eviction_cb); static int __init dlm_init(void) { int status; status = dlm_init_mle_cache(); if (status) { mlog(ML_ERROR, "Could not create o2dlm_mle slabcache\n"); goto error; } status = dlm_init_master_caches(); if (status) { mlog(ML_ERROR, "Could not create o2dlm_lockres and " "o2dlm_lockname slabcaches\n"); goto error; } status = dlm_init_lock_cache(); if (status) { mlog(ML_ERROR, "Count not create o2dlm_lock slabcache\n"); goto error; } status = dlm_register_net_handlers(); if (status) { mlog(ML_ERROR, "Unable to register network handlers\n"); goto error; } dlm_create_debugfs_root(); return 0; error: dlm_unregister_net_handlers(); dlm_destroy_lock_cache(); dlm_destroy_master_caches(); dlm_destroy_mle_cache(); return -1; } static void __exit dlm_exit (void) { dlm_destroy_debugfs_root(); dlm_unregister_net_handlers(); dlm_destroy_lock_cache(); dlm_destroy_master_caches(); dlm_destroy_mle_cache(); } MODULE_AUTHOR("Oracle"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("OCFS2 Distributed Lock Management"); module_init(dlm_init); module_exit(dlm_exit);
linux-master
fs/ocfs2/dlm/dlmdomain.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmdebug.c * * debug functionality for the dlm * * Copyright (C) 2004, 2008 Oracle. All rights reserved. */ #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/sysctl.h> #include <linux/spinlock.h> #include <linux/debugfs.h> #include <linux/export.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmdomain.h" #include "dlmdebug.h" #define MLOG_MASK_PREFIX ML_DLM #include "../cluster/masklog.h" static int stringify_lockname(const char *lockname, int locklen, char *buf, int len); void dlm_print_one_lock_resource(struct dlm_lock_resource *res) { spin_lock(&res->spinlock); __dlm_print_one_lock_resource(res); spin_unlock(&res->spinlock); } static void dlm_print_lockres_refmap(struct dlm_lock_resource *res) { int bit; assert_spin_locked(&res->spinlock); printk(" refmap nodes: [ "); bit = 0; while (1) { bit = find_next_bit(res->refmap, O2NM_MAX_NODES, bit); if (bit >= O2NM_MAX_NODES) break; printk("%u ", bit); bit++; } printk("], inflight=%u\n", res->inflight_locks); } static void __dlm_print_lock(struct dlm_lock *lock) { spin_lock(&lock->spinlock); printk(" type=%d, conv=%d, node=%u, cookie=%u:%llu, " "ref=%u, ast=(empty=%c,pend=%c), bast=(empty=%c,pend=%c), " "pending=(conv=%c,lock=%c,cancel=%c,unlock=%c)\n", lock->ml.type, lock->ml.convert_type, lock->ml.node, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), kref_read(&lock->lock_refs), (list_empty(&lock->ast_list) ? 'y' : 'n'), (lock->ast_pending ? 'y' : 'n'), (list_empty(&lock->bast_list) ? 'y' : 'n'), (lock->bast_pending ? 'y' : 'n'), (lock->convert_pending ? 'y' : 'n'), (lock->lock_pending ? 'y' : 'n'), (lock->cancel_pending ? 'y' : 'n'), (lock->unlock_pending ? 'y' : 'n')); spin_unlock(&lock->spinlock); } void __dlm_print_one_lock_resource(struct dlm_lock_resource *res) { struct dlm_lock *lock; char buf[DLM_LOCKID_NAME_MAX]; assert_spin_locked(&res->spinlock); stringify_lockname(res->lockname.name, res->lockname.len, buf, sizeof(buf)); printk("lockres: %s, owner=%u, state=%u\n", buf, res->owner, res->state); printk(" last used: %lu, refcnt: %u, on purge list: %s\n", res->last_used, kref_read(&res->refs), list_empty(&res->purge) ? "no" : "yes"); printk(" on dirty list: %s, on reco list: %s, " "migrating pending: %s\n", list_empty(&res->dirty) ? "no" : "yes", list_empty(&res->recovering) ? "no" : "yes", res->migration_pending ? "yes" : "no"); printk(" inflight locks: %d, asts reserved: %d\n", res->inflight_locks, atomic_read(&res->asts_reserved)); dlm_print_lockres_refmap(res); printk(" granted queue:\n"); list_for_each_entry(lock, &res->granted, list) { __dlm_print_lock(lock); } printk(" converting queue:\n"); list_for_each_entry(lock, &res->converting, list) { __dlm_print_lock(lock); } printk(" blocked queue:\n"); list_for_each_entry(lock, &res->blocked, list) { __dlm_print_lock(lock); } } void dlm_print_one_lock(struct dlm_lock *lockid) { dlm_print_one_lock_resource(lockid->lockres); } EXPORT_SYMBOL_GPL(dlm_print_one_lock); static const char *dlm_errnames[] = { [DLM_NORMAL] = "DLM_NORMAL", [DLM_GRANTED] = "DLM_GRANTED", [DLM_DENIED] = "DLM_DENIED", [DLM_DENIED_NOLOCKS] = "DLM_DENIED_NOLOCKS", [DLM_WORKING] = "DLM_WORKING", [DLM_BLOCKED] = "DLM_BLOCKED", [DLM_BLOCKED_ORPHAN] = "DLM_BLOCKED_ORPHAN", [DLM_DENIED_GRACE_PERIOD] = "DLM_DENIED_GRACE_PERIOD", [DLM_SYSERR] = "DLM_SYSERR", [DLM_NOSUPPORT] = "DLM_NOSUPPORT", [DLM_CANCELGRANT] = "DLM_CANCELGRANT", [DLM_IVLOCKID] = "DLM_IVLOCKID", [DLM_SYNC] = "DLM_SYNC", [DLM_BADTYPE] = "DLM_BADTYPE", [DLM_BADRESOURCE] = "DLM_BADRESOURCE", [DLM_MAXHANDLES] = "DLM_MAXHANDLES", [DLM_NOCLINFO] = "DLM_NOCLINFO", [DLM_NOLOCKMGR] = "DLM_NOLOCKMGR", [DLM_NOPURGED] = "DLM_NOPURGED", [DLM_BADARGS] = "DLM_BADARGS", [DLM_VOID] = "DLM_VOID", [DLM_NOTQUEUED] = "DLM_NOTQUEUED", [DLM_IVBUFLEN] = "DLM_IVBUFLEN", [DLM_CVTUNGRANT] = "DLM_CVTUNGRANT", [DLM_BADPARAM] = "DLM_BADPARAM", [DLM_VALNOTVALID] = "DLM_VALNOTVALID", [DLM_REJECTED] = "DLM_REJECTED", [DLM_ABORT] = "DLM_ABORT", [DLM_CANCEL] = "DLM_CANCEL", [DLM_IVRESHANDLE] = "DLM_IVRESHANDLE", [DLM_DEADLOCK] = "DLM_DEADLOCK", [DLM_DENIED_NOASTS] = "DLM_DENIED_NOASTS", [DLM_FORWARD] = "DLM_FORWARD", [DLM_TIMEOUT] = "DLM_TIMEOUT", [DLM_IVGROUPID] = "DLM_IVGROUPID", [DLM_VERS_CONFLICT] = "DLM_VERS_CONFLICT", [DLM_BAD_DEVICE_PATH] = "DLM_BAD_DEVICE_PATH", [DLM_NO_DEVICE_PERMISSION] = "DLM_NO_DEVICE_PERMISSION", [DLM_NO_CONTROL_DEVICE ] = "DLM_NO_CONTROL_DEVICE ", [DLM_RECOVERING] = "DLM_RECOVERING", [DLM_MIGRATING] = "DLM_MIGRATING", [DLM_MAXSTATS] = "DLM_MAXSTATS", }; static const char *dlm_errmsgs[] = { [DLM_NORMAL] = "request in progress", [DLM_GRANTED] = "request granted", [DLM_DENIED] = "request denied", [DLM_DENIED_NOLOCKS] = "request denied, out of system resources", [DLM_WORKING] = "async request in progress", [DLM_BLOCKED] = "lock request blocked", [DLM_BLOCKED_ORPHAN] = "lock request blocked by a orphan lock", [DLM_DENIED_GRACE_PERIOD] = "topological change in progress", [DLM_SYSERR] = "system error", [DLM_NOSUPPORT] = "unsupported", [DLM_CANCELGRANT] = "can't cancel convert: already granted", [DLM_IVLOCKID] = "bad lockid", [DLM_SYNC] = "synchronous request granted", [DLM_BADTYPE] = "bad resource type", [DLM_BADRESOURCE] = "bad resource handle", [DLM_MAXHANDLES] = "no more resource handles", [DLM_NOCLINFO] = "can't contact cluster manager", [DLM_NOLOCKMGR] = "can't contact lock manager", [DLM_NOPURGED] = "can't contact purge daemon", [DLM_BADARGS] = "bad api args", [DLM_VOID] = "no status", [DLM_NOTQUEUED] = "NOQUEUE was specified and request failed", [DLM_IVBUFLEN] = "invalid resource name length", [DLM_CVTUNGRANT] = "attempted to convert ungranted lock", [DLM_BADPARAM] = "invalid lock mode specified", [DLM_VALNOTVALID] = "value block has been invalidated", [DLM_REJECTED] = "request rejected, unrecognized client", [DLM_ABORT] = "blocked lock request cancelled", [DLM_CANCEL] = "conversion request cancelled", [DLM_IVRESHANDLE] = "invalid resource handle", [DLM_DEADLOCK] = "deadlock recovery refused this request", [DLM_DENIED_NOASTS] = "failed to allocate AST", [DLM_FORWARD] = "request must wait for primary's response", [DLM_TIMEOUT] = "timeout value for lock has expired", [DLM_IVGROUPID] = "invalid group specification", [DLM_VERS_CONFLICT] = "version conflicts prevent request handling", [DLM_BAD_DEVICE_PATH] = "Locks device does not exist or path wrong", [DLM_NO_DEVICE_PERMISSION] = "Client has insufficient perms for device", [DLM_NO_CONTROL_DEVICE] = "Cannot set options on opened device ", [DLM_RECOVERING] = "lock resource being recovered", [DLM_MIGRATING] = "lock resource being migrated", [DLM_MAXSTATS] = "invalid error number", }; const char *dlm_errmsg(enum dlm_status err) { if (err >= DLM_MAXSTATS || err < 0) return dlm_errmsgs[DLM_MAXSTATS]; return dlm_errmsgs[err]; } EXPORT_SYMBOL_GPL(dlm_errmsg); const char *dlm_errname(enum dlm_status err) { if (err >= DLM_MAXSTATS || err < 0) return dlm_errnames[DLM_MAXSTATS]; return dlm_errnames[err]; } EXPORT_SYMBOL_GPL(dlm_errname); /* NOTE: This function converts a lockname into a string. It uses knowledge * of the format of the lockname that should be outside the purview of the dlm. * We are adding only to make dlm debugging slightly easier. * * For more on lockname formats, please refer to dlmglue.c and ocfs2_lockid.h. */ static int stringify_lockname(const char *lockname, int locklen, char *buf, int len) { int out = 0; __be64 inode_blkno_be; #define OCFS2_DENTRY_LOCK_INO_START 18 if (*lockname == 'N') { memcpy((__be64 *)&inode_blkno_be, (char *)&lockname[OCFS2_DENTRY_LOCK_INO_START], sizeof(__be64)); out += scnprintf(buf + out, len - out, "%.*s%08x", OCFS2_DENTRY_LOCK_INO_START - 1, lockname, (unsigned int)be64_to_cpu(inode_blkno_be)); } else out += scnprintf(buf + out, len - out, "%.*s", locklen, lockname); return out; } static int stringify_nodemap(unsigned long *nodemap, int maxnodes, char *buf, int len) { int out = 0; int i = -1; while ((i = find_next_bit(nodemap, maxnodes, i + 1)) < maxnodes) out += scnprintf(buf + out, len - out, "%d ", i); return out; } static int dump_mle(struct dlm_master_list_entry *mle, char *buf, int len) { int out = 0; char *mle_type; if (mle->type == DLM_MLE_BLOCK) mle_type = "BLK"; else if (mle->type == DLM_MLE_MASTER) mle_type = "MAS"; else mle_type = "MIG"; out += stringify_lockname(mle->mname, mle->mnamelen, buf + out, len - out); out += scnprintf(buf + out, len - out, "\t%3s\tmas=%3u\tnew=%3u\tevt=%1d\tuse=%1d\tref=%3d\n", mle_type, mle->master, mle->new_master, !list_empty(&mle->hb_events), !!mle->inuse, kref_read(&mle->mle_refs)); out += scnprintf(buf + out, len - out, "Maybe="); out += stringify_nodemap(mle->maybe_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); out += scnprintf(buf + out, len - out, "Vote="); out += stringify_nodemap(mle->vote_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); out += scnprintf(buf + out, len - out, "Response="); out += stringify_nodemap(mle->response_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); out += scnprintf(buf + out, len - out, "Node="); out += stringify_nodemap(mle->node_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); out += scnprintf(buf + out, len - out, "\n"); return out; } void dlm_print_one_mle(struct dlm_master_list_entry *mle) { char *buf; buf = (char *) get_zeroed_page(GFP_ATOMIC); if (buf) { dump_mle(mle, buf, PAGE_SIZE - 1); free_page((unsigned long)buf); } } #ifdef CONFIG_DEBUG_FS static struct dentry *dlm_debugfs_root; #define DLM_DEBUGFS_DIR "o2dlm" #define DLM_DEBUGFS_DLM_STATE "dlm_state" #define DLM_DEBUGFS_LOCKING_STATE "locking_state" #define DLM_DEBUGFS_MLE_STATE "mle_state" #define DLM_DEBUGFS_PURGE_LIST "purge_list" /* begin - utils funcs */ static int debug_release(struct inode *inode, struct file *file) { free_page((unsigned long)file->private_data); return 0; } static ssize_t debug_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { return simple_read_from_buffer(buf, nbytes, ppos, file->private_data, i_size_read(file->f_mapping->host)); } /* end - util funcs */ /* begin - purge list funcs */ static int debug_purgelist_print(struct dlm_ctxt *dlm, char *buf, int len) { struct dlm_lock_resource *res; int out = 0; unsigned long total = 0; out += scnprintf(buf + out, len - out, "Dumping Purgelist for Domain: %s\n", dlm->name); spin_lock(&dlm->spinlock); list_for_each_entry(res, &dlm->purge_list, purge) { ++total; if (len - out < 100) continue; spin_lock(&res->spinlock); out += stringify_lockname(res->lockname.name, res->lockname.len, buf + out, len - out); out += scnprintf(buf + out, len - out, "\t%ld\n", (jiffies - res->last_used)/HZ); spin_unlock(&res->spinlock); } spin_unlock(&dlm->spinlock); out += scnprintf(buf + out, len - out, "Total on list: %lu\n", total); return out; } static int debug_purgelist_open(struct inode *inode, struct file *file) { struct dlm_ctxt *dlm = inode->i_private; char *buf = NULL; buf = (char *) get_zeroed_page(GFP_NOFS); if (!buf) goto bail; i_size_write(inode, debug_purgelist_print(dlm, buf, PAGE_SIZE - 1)); file->private_data = buf; return 0; bail: return -ENOMEM; } static const struct file_operations debug_purgelist_fops = { .open = debug_purgelist_open, .release = debug_release, .read = debug_read, .llseek = generic_file_llseek, }; /* end - purge list funcs */ /* begin - debug mle funcs */ static int debug_mle_print(struct dlm_ctxt *dlm, char *buf, int len) { struct dlm_master_list_entry *mle; struct hlist_head *bucket; int i, out = 0; unsigned long total = 0, longest = 0, bucket_count = 0; out += scnprintf(buf + out, len - out, "Dumping MLEs for Domain: %s\n", dlm->name); spin_lock(&dlm->master_lock); for (i = 0; i < DLM_HASH_BUCKETS; i++) { bucket = dlm_master_hash(dlm, i); hlist_for_each_entry(mle, bucket, master_hash_node) { ++total; ++bucket_count; if (len - out < 200) continue; out += dump_mle(mle, buf + out, len - out); } longest = max(longest, bucket_count); bucket_count = 0; } spin_unlock(&dlm->master_lock); out += scnprintf(buf + out, len - out, "Total: %lu, Longest: %lu\n", total, longest); return out; } static int debug_mle_open(struct inode *inode, struct file *file) { struct dlm_ctxt *dlm = inode->i_private; char *buf = NULL; buf = (char *) get_zeroed_page(GFP_NOFS); if (!buf) goto bail; i_size_write(inode, debug_mle_print(dlm, buf, PAGE_SIZE - 1)); file->private_data = buf; return 0; bail: return -ENOMEM; } static const struct file_operations debug_mle_fops = { .open = debug_mle_open, .release = debug_release, .read = debug_read, .llseek = generic_file_llseek, }; /* end - debug mle funcs */ /* begin - debug lockres funcs */ static int dump_lock(struct dlm_lock *lock, int list_type, char *buf, int len) { int out; #define DEBUG_LOCK_VERSION 1 spin_lock(&lock->spinlock); out = scnprintf(buf, len, "LOCK:%d,%d,%d,%d,%d,%d:%lld,%d,%d,%d,%d,%d," "%d,%d,%d,%d\n", DEBUG_LOCK_VERSION, list_type, lock->ml.type, lock->ml.convert_type, lock->ml.node, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), !list_empty(&lock->ast_list), !list_empty(&lock->bast_list), lock->ast_pending, lock->bast_pending, lock->convert_pending, lock->lock_pending, lock->cancel_pending, lock->unlock_pending, kref_read(&lock->lock_refs)); spin_unlock(&lock->spinlock); return out; } static int dump_lockres(struct dlm_lock_resource *res, char *buf, int len) { struct dlm_lock *lock; int i; int out = 0; out += scnprintf(buf + out, len - out, "NAME:"); out += stringify_lockname(res->lockname.name, res->lockname.len, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); #define DEBUG_LRES_VERSION 1 out += scnprintf(buf + out, len - out, "LRES:%d,%d,%d,%ld,%d,%d,%d,%d,%d,%d,%d\n", DEBUG_LRES_VERSION, res->owner, res->state, res->last_used, !list_empty(&res->purge), !list_empty(&res->dirty), !list_empty(&res->recovering), res->inflight_locks, res->migration_pending, atomic_read(&res->asts_reserved), kref_read(&res->refs)); /* refmap */ out += scnprintf(buf + out, len - out, "RMAP:"); out += stringify_nodemap(res->refmap, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); /* lvb */ out += scnprintf(buf + out, len - out, "LVBX:"); for (i = 0; i < DLM_LVB_LEN; i++) out += scnprintf(buf + out, len - out, "%02x", (unsigned char)res->lvb[i]); out += scnprintf(buf + out, len - out, "\n"); /* granted */ list_for_each_entry(lock, &res->granted, list) out += dump_lock(lock, 0, buf + out, len - out); /* converting */ list_for_each_entry(lock, &res->converting, list) out += dump_lock(lock, 1, buf + out, len - out); /* blocked */ list_for_each_entry(lock, &res->blocked, list) out += dump_lock(lock, 2, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); return out; } static void *lockres_seq_start(struct seq_file *m, loff_t *pos) { struct debug_lockres *dl = m->private; struct dlm_ctxt *dlm = dl->dl_ctxt; struct dlm_lock_resource *oldres = dl->dl_res; struct dlm_lock_resource *res = NULL, *iter; struct list_head *track_list; spin_lock(&dlm->track_lock); if (oldres) track_list = &oldres->tracking; else { track_list = &dlm->tracking_list; if (list_empty(track_list)) { dl = NULL; spin_unlock(&dlm->track_lock); goto bail; } } list_for_each_entry(iter, track_list, tracking) { if (&iter->tracking != &dlm->tracking_list) { dlm_lockres_get(iter); res = iter; } break; } spin_unlock(&dlm->track_lock); if (oldres) dlm_lockres_put(oldres); dl->dl_res = res; if (res) { spin_lock(&res->spinlock); dump_lockres(res, dl->dl_buf, dl->dl_len - 1); spin_unlock(&res->spinlock); } else dl = NULL; bail: /* passed to seq_show */ return dl; } static void lockres_seq_stop(struct seq_file *m, void *v) { } static void *lockres_seq_next(struct seq_file *m, void *v, loff_t *pos) { return NULL; } static int lockres_seq_show(struct seq_file *s, void *v) { struct debug_lockres *dl = (struct debug_lockres *)v; seq_printf(s, "%s", dl->dl_buf); return 0; } static const struct seq_operations debug_lockres_ops = { .start = lockres_seq_start, .stop = lockres_seq_stop, .next = lockres_seq_next, .show = lockres_seq_show, }; static int debug_lockres_open(struct inode *inode, struct file *file) { struct dlm_ctxt *dlm = inode->i_private; struct debug_lockres *dl; void *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) goto bail; dl = __seq_open_private(file, &debug_lockres_ops, sizeof(*dl)); if (!dl) goto bailfree; dl->dl_len = PAGE_SIZE; dl->dl_buf = buf; dlm_grab(dlm); dl->dl_ctxt = dlm; return 0; bailfree: kfree(buf); bail: mlog_errno(-ENOMEM); return -ENOMEM; } static int debug_lockres_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct debug_lockres *dl = (struct debug_lockres *)seq->private; if (dl->dl_res) dlm_lockres_put(dl->dl_res); dlm_put(dl->dl_ctxt); kfree(dl->dl_buf); return seq_release_private(inode, file); } static const struct file_operations debug_lockres_fops = { .open = debug_lockres_open, .release = debug_lockres_release, .read = seq_read, .llseek = seq_lseek, }; /* end - debug lockres funcs */ /* begin - debug state funcs */ static int debug_state_print(struct dlm_ctxt *dlm, char *buf, int len) { int out = 0; struct dlm_reco_node_data *node; char *state; int cur_mles = 0, tot_mles = 0; int i; spin_lock(&dlm->spinlock); switch (dlm->dlm_state) { case DLM_CTXT_NEW: state = "NEW"; break; case DLM_CTXT_JOINED: state = "JOINED"; break; case DLM_CTXT_IN_SHUTDOWN: state = "SHUTDOWN"; break; case DLM_CTXT_LEAVING: state = "LEAVING"; break; default: state = "UNKNOWN"; break; } /* Domain: xxxxxxxxxx Key: 0xdfbac769 */ out += scnprintf(buf + out, len - out, "Domain: %s Key: 0x%08x Protocol: %d.%d\n", dlm->name, dlm->key, dlm->dlm_locking_proto.pv_major, dlm->dlm_locking_proto.pv_minor); /* Thread Pid: xxx Node: xxx State: xxxxx */ out += scnprintf(buf + out, len - out, "Thread Pid: %d Node: %d State: %s\n", task_pid_nr(dlm->dlm_thread_task), dlm->node_num, state); /* Number of Joins: xxx Joining Node: xxx */ out += scnprintf(buf + out, len - out, "Number of Joins: %d Joining Node: %d\n", dlm->num_joins, dlm->joining_node); /* Domain Map: xx xx xx */ out += scnprintf(buf + out, len - out, "Domain Map: "); out += stringify_nodemap(dlm->domain_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); /* Exit Domain Map: xx xx xx */ out += scnprintf(buf + out, len - out, "Exit Domain Map: "); out += stringify_nodemap(dlm->exit_domain_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); /* Live Map: xx xx xx */ out += scnprintf(buf + out, len - out, "Live Map: "); out += stringify_nodemap(dlm->live_nodes_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); /* Lock Resources: xxx (xxx) */ out += scnprintf(buf + out, len - out, "Lock Resources: %d (%d)\n", atomic_read(&dlm->res_cur_count), atomic_read(&dlm->res_tot_count)); for (i = 0; i < DLM_MLE_NUM_TYPES; ++i) tot_mles += atomic_read(&dlm->mle_tot_count[i]); for (i = 0; i < DLM_MLE_NUM_TYPES; ++i) cur_mles += atomic_read(&dlm->mle_cur_count[i]); /* MLEs: xxx (xxx) */ out += scnprintf(buf + out, len - out, "MLEs: %d (%d)\n", cur_mles, tot_mles); /* Blocking: xxx (xxx) */ out += scnprintf(buf + out, len - out, " Blocking: %d (%d)\n", atomic_read(&dlm->mle_cur_count[DLM_MLE_BLOCK]), atomic_read(&dlm->mle_tot_count[DLM_MLE_BLOCK])); /* Mastery: xxx (xxx) */ out += scnprintf(buf + out, len - out, " Mastery: %d (%d)\n", atomic_read(&dlm->mle_cur_count[DLM_MLE_MASTER]), atomic_read(&dlm->mle_tot_count[DLM_MLE_MASTER])); /* Migration: xxx (xxx) */ out += scnprintf(buf + out, len - out, " Migration: %d (%d)\n", atomic_read(&dlm->mle_cur_count[DLM_MLE_MIGRATION]), atomic_read(&dlm->mle_tot_count[DLM_MLE_MIGRATION])); /* Lists: Dirty=Empty Purge=InUse PendingASTs=Empty ... */ out += scnprintf(buf + out, len - out, "Lists: Dirty=%s Purge=%s PendingASTs=%s " "PendingBASTs=%s\n", (list_empty(&dlm->dirty_list) ? "Empty" : "InUse"), (list_empty(&dlm->purge_list) ? "Empty" : "InUse"), (list_empty(&dlm->pending_asts) ? "Empty" : "InUse"), (list_empty(&dlm->pending_basts) ? "Empty" : "InUse")); /* Purge Count: xxx Refs: xxx */ out += scnprintf(buf + out, len - out, "Purge Count: %d Refs: %d\n", dlm->purge_count, kref_read(&dlm->dlm_refs)); /* Dead Node: xxx */ out += scnprintf(buf + out, len - out, "Dead Node: %d\n", dlm->reco.dead_node); /* What about DLM_RECO_STATE_FINALIZE? */ if (dlm->reco.state == DLM_RECO_STATE_ACTIVE) state = "ACTIVE"; else state = "INACTIVE"; /* Recovery Pid: xxxx Master: xxx State: xxxx */ out += scnprintf(buf + out, len - out, "Recovery Pid: %d Master: %d State: %s\n", task_pid_nr(dlm->dlm_reco_thread_task), dlm->reco.new_master, state); /* Recovery Map: xx xx */ out += scnprintf(buf + out, len - out, "Recovery Map: "); out += stringify_nodemap(dlm->recovery_map, O2NM_MAX_NODES, buf + out, len - out); out += scnprintf(buf + out, len - out, "\n"); /* Recovery Node State: */ out += scnprintf(buf + out, len - out, "Recovery Node State:\n"); list_for_each_entry(node, &dlm->reco.node_data, list) { switch (node->state) { case DLM_RECO_NODE_DATA_INIT: state = "INIT"; break; case DLM_RECO_NODE_DATA_REQUESTING: state = "REQUESTING"; break; case DLM_RECO_NODE_DATA_DEAD: state = "DEAD"; break; case DLM_RECO_NODE_DATA_RECEIVING: state = "RECEIVING"; break; case DLM_RECO_NODE_DATA_REQUESTED: state = "REQUESTED"; break; case DLM_RECO_NODE_DATA_DONE: state = "DONE"; break; case DLM_RECO_NODE_DATA_FINALIZE_SENT: state = "FINALIZE-SENT"; break; default: state = "BAD"; break; } out += scnprintf(buf + out, len - out, "\t%u - %s\n", node->node_num, state); } spin_unlock(&dlm->spinlock); return out; } static int debug_state_open(struct inode *inode, struct file *file) { struct dlm_ctxt *dlm = inode->i_private; char *buf = NULL; buf = (char *) get_zeroed_page(GFP_NOFS); if (!buf) goto bail; i_size_write(inode, debug_state_print(dlm, buf, PAGE_SIZE - 1)); file->private_data = buf; return 0; bail: return -ENOMEM; } static const struct file_operations debug_state_fops = { .open = debug_state_open, .release = debug_release, .read = debug_read, .llseek = generic_file_llseek, }; /* end - debug state funcs */ /* files in subroot */ void dlm_debug_init(struct dlm_ctxt *dlm) { /* for dumping dlm_ctxt */ debugfs_create_file(DLM_DEBUGFS_DLM_STATE, S_IFREG|S_IRUSR, dlm->dlm_debugfs_subroot, dlm, &debug_state_fops); /* for dumping lockres */ debugfs_create_file(DLM_DEBUGFS_LOCKING_STATE, S_IFREG|S_IRUSR, dlm->dlm_debugfs_subroot, dlm, &debug_lockres_fops); /* for dumping mles */ debugfs_create_file(DLM_DEBUGFS_MLE_STATE, S_IFREG|S_IRUSR, dlm->dlm_debugfs_subroot, dlm, &debug_mle_fops); /* for dumping lockres on the purge list */ debugfs_create_file(DLM_DEBUGFS_PURGE_LIST, S_IFREG|S_IRUSR, dlm->dlm_debugfs_subroot, dlm, &debug_purgelist_fops); } /* subroot - domain dir */ void dlm_create_debugfs_subroot(struct dlm_ctxt *dlm) { dlm->dlm_debugfs_subroot = debugfs_create_dir(dlm->name, dlm_debugfs_root); } void dlm_destroy_debugfs_subroot(struct dlm_ctxt *dlm) { debugfs_remove_recursive(dlm->dlm_debugfs_subroot); } /* debugfs root */ void dlm_create_debugfs_root(void) { dlm_debugfs_root = debugfs_create_dir(DLM_DEBUGFS_DIR, NULL); } void dlm_destroy_debugfs_root(void) { debugfs_remove(dlm_debugfs_root); } #endif /* CONFIG_DEBUG_FS */
linux-master
fs/ocfs2/dlm/dlmdebug.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmrecovery.c * * recovery stuff * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/timer.h> #include <linux/kthread.h> #include <linux/delay.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmdomain.h" #define MLOG_MASK_PREFIX (ML_DLM|ML_DLM_RECOVERY) #include "../cluster/masklog.h" static void dlm_do_local_recovery_cleanup(struct dlm_ctxt *dlm, u8 dead_node); static int dlm_recovery_thread(void *data); static int dlm_do_recovery(struct dlm_ctxt *dlm); static int dlm_pick_recovery_master(struct dlm_ctxt *dlm); static int dlm_remaster_locks(struct dlm_ctxt *dlm, u8 dead_node); static int dlm_init_recovery_area(struct dlm_ctxt *dlm, u8 dead_node); static int dlm_request_all_locks(struct dlm_ctxt *dlm, u8 request_from, u8 dead_node); static void dlm_destroy_recovery_area(struct dlm_ctxt *dlm); static inline int dlm_num_locks_in_lockres(struct dlm_lock_resource *res); static void dlm_init_migratable_lockres(struct dlm_migratable_lockres *mres, const char *lockname, int namelen, int total_locks, u64 cookie, u8 flags, u8 master); static int dlm_send_mig_lockres_msg(struct dlm_ctxt *dlm, struct dlm_migratable_lockres *mres, u8 send_to, struct dlm_lock_resource *res, int total_locks); static int dlm_process_recovery_data(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_migratable_lockres *mres); static int dlm_send_finalize_reco_message(struct dlm_ctxt *dlm); static int dlm_send_all_done_msg(struct dlm_ctxt *dlm, u8 dead_node, u8 send_to); static int dlm_send_begin_reco_message(struct dlm_ctxt *dlm, u8 dead_node); static void dlm_move_reco_locks_to_list(struct dlm_ctxt *dlm, struct list_head *list, u8 dead_node); static void dlm_finish_local_lockres_recovery(struct dlm_ctxt *dlm, u8 dead_node, u8 new_master); static void dlm_reco_ast(void *astdata); static void dlm_reco_bast(void *astdata, int blocked_type); static void dlm_reco_unlock_ast(void *astdata, enum dlm_status st); static void dlm_request_all_locks_worker(struct dlm_work_item *item, void *data); static void dlm_mig_lockres_worker(struct dlm_work_item *item, void *data); static int dlm_lockres_master_requery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 *real_master); static u64 dlm_get_next_mig_cookie(void); static DEFINE_SPINLOCK(dlm_reco_state_lock); static DEFINE_SPINLOCK(dlm_mig_cookie_lock); static u64 dlm_mig_cookie = 1; static u64 dlm_get_next_mig_cookie(void) { u64 c; spin_lock(&dlm_mig_cookie_lock); c = dlm_mig_cookie; if (dlm_mig_cookie == (~0ULL)) dlm_mig_cookie = 1; else dlm_mig_cookie++; spin_unlock(&dlm_mig_cookie_lock); return c; } static inline void dlm_set_reco_dead_node(struct dlm_ctxt *dlm, u8 dead_node) { assert_spin_locked(&dlm->spinlock); if (dlm->reco.dead_node != dead_node) mlog(0, "%s: changing dead_node from %u to %u\n", dlm->name, dlm->reco.dead_node, dead_node); dlm->reco.dead_node = dead_node; } static inline void dlm_set_reco_master(struct dlm_ctxt *dlm, u8 master) { assert_spin_locked(&dlm->spinlock); mlog(0, "%s: changing new_master from %u to %u\n", dlm->name, dlm->reco.new_master, master); dlm->reco.new_master = master; } static inline void __dlm_reset_recovery(struct dlm_ctxt *dlm) { assert_spin_locked(&dlm->spinlock); clear_bit(dlm->reco.dead_node, dlm->recovery_map); dlm_set_reco_dead_node(dlm, O2NM_INVALID_NODE_NUM); dlm_set_reco_master(dlm, O2NM_INVALID_NODE_NUM); } /* Worker function used during recovery. */ void dlm_dispatch_work(struct work_struct *work) { struct dlm_ctxt *dlm = container_of(work, struct dlm_ctxt, dispatched_work); LIST_HEAD(tmp_list); struct dlm_work_item *item, *next; dlm_workfunc_t *workfunc; int tot=0; spin_lock(&dlm->work_lock); list_splice_init(&dlm->work_list, &tmp_list); spin_unlock(&dlm->work_lock); list_for_each_entry(item, &tmp_list, list) { tot++; } mlog(0, "%s: work thread has %d work items\n", dlm->name, tot); list_for_each_entry_safe(item, next, &tmp_list, list) { workfunc = item->func; list_del_init(&item->list); /* already have ref on dlm to avoid having * it disappear. just double-check. */ BUG_ON(item->dlm != dlm); /* this is allowed to sleep and * call network stuff */ workfunc(item, item->data); dlm_put(dlm); kfree(item); } } /* * RECOVERY THREAD */ void dlm_kick_recovery_thread(struct dlm_ctxt *dlm) { /* wake the recovery thread * this will wake the reco thread in one of three places * 1) sleeping with no recovery happening * 2) sleeping with recovery mastered elsewhere * 3) recovery mastered here, waiting on reco data */ wake_up(&dlm->dlm_reco_thread_wq); } /* Launch the recovery thread */ int dlm_launch_recovery_thread(struct dlm_ctxt *dlm) { mlog(0, "starting dlm recovery thread...\n"); dlm->dlm_reco_thread_task = kthread_run(dlm_recovery_thread, dlm, "dlm_reco-%s", dlm->name); if (IS_ERR(dlm->dlm_reco_thread_task)) { mlog_errno(PTR_ERR(dlm->dlm_reco_thread_task)); dlm->dlm_reco_thread_task = NULL; return -EINVAL; } return 0; } void dlm_complete_recovery_thread(struct dlm_ctxt *dlm) { if (dlm->dlm_reco_thread_task) { mlog(0, "waiting for dlm recovery thread to exit\n"); kthread_stop(dlm->dlm_reco_thread_task); dlm->dlm_reco_thread_task = NULL; } } /* * this is lame, but here's how recovery works... * 1) all recovery threads cluster wide will work on recovering * ONE node at a time * 2) negotiate who will take over all the locks for the dead node. * thats right... ALL the locks. * 3) once a new master is chosen, everyone scans all locks * and moves aside those mastered by the dead guy * 4) each of these locks should be locked until recovery is done * 5) the new master collects up all of secondary lock queue info * one lock at a time, forcing each node to communicate back * before continuing * 6) each secondary lock queue responds with the full known lock info * 7) once the new master has run all its locks, it sends a ALLDONE! * message to everyone * 8) upon receiving this message, the secondary queue node unlocks * and responds to the ALLDONE * 9) once the new master gets responses from everyone, he unlocks * everything and recovery for this dead node is done *10) go back to 2) while there are still dead nodes * */ static void dlm_print_reco_node_status(struct dlm_ctxt *dlm) { struct dlm_reco_node_data *ndata; struct dlm_lock_resource *res; mlog(ML_NOTICE, "%s(%d): recovery info, state=%s, dead=%u, master=%u\n", dlm->name, task_pid_nr(dlm->dlm_reco_thread_task), dlm->reco.state & DLM_RECO_STATE_ACTIVE ? "ACTIVE" : "inactive", dlm->reco.dead_node, dlm->reco.new_master); list_for_each_entry(ndata, &dlm->reco.node_data, list) { char *st = "unknown"; switch (ndata->state) { case DLM_RECO_NODE_DATA_INIT: st = "init"; break; case DLM_RECO_NODE_DATA_REQUESTING: st = "requesting"; break; case DLM_RECO_NODE_DATA_DEAD: st = "dead"; break; case DLM_RECO_NODE_DATA_RECEIVING: st = "receiving"; break; case DLM_RECO_NODE_DATA_REQUESTED: st = "requested"; break; case DLM_RECO_NODE_DATA_DONE: st = "done"; break; case DLM_RECO_NODE_DATA_FINALIZE_SENT: st = "finalize-sent"; break; default: st = "bad"; break; } mlog(ML_NOTICE, "%s: reco state, node %u, state=%s\n", dlm->name, ndata->node_num, st); } list_for_each_entry(res, &dlm->reco.resources, recovering) { mlog(ML_NOTICE, "%s: lockres %.*s on recovering list\n", dlm->name, res->lockname.len, res->lockname.name); } } #define DLM_RECO_THREAD_TIMEOUT_MS (5 * 1000) static int dlm_recovery_thread(void *data) { int status; struct dlm_ctxt *dlm = data; unsigned long timeout = msecs_to_jiffies(DLM_RECO_THREAD_TIMEOUT_MS); mlog(0, "dlm thread running for %s...\n", dlm->name); while (!kthread_should_stop()) { if (dlm_domain_fully_joined(dlm)) { status = dlm_do_recovery(dlm); if (status == -EAGAIN) { /* do not sleep, recheck immediately. */ continue; } if (status < 0) mlog_errno(status); } wait_event_interruptible_timeout(dlm->dlm_reco_thread_wq, kthread_should_stop(), timeout); } mlog(0, "quitting DLM recovery thread\n"); return 0; } /* returns true when the recovery master has contacted us */ static int dlm_reco_master_ready(struct dlm_ctxt *dlm) { int ready; spin_lock(&dlm->spinlock); ready = (dlm->reco.new_master != O2NM_INVALID_NODE_NUM); spin_unlock(&dlm->spinlock); return ready; } /* returns true if node is no longer in the domain * could be dead or just not joined */ int dlm_is_node_dead(struct dlm_ctxt *dlm, u8 node) { int dead; spin_lock(&dlm->spinlock); dead = !test_bit(node, dlm->domain_map); spin_unlock(&dlm->spinlock); return dead; } /* returns true if node is no longer in the domain * could be dead or just not joined */ static int dlm_is_node_recovered(struct dlm_ctxt *dlm, u8 node) { int recovered; spin_lock(&dlm->spinlock); recovered = !test_bit(node, dlm->recovery_map); spin_unlock(&dlm->spinlock); return recovered; } void dlm_wait_for_node_death(struct dlm_ctxt *dlm, u8 node, int timeout) { if (dlm_is_node_dead(dlm, node)) return; printk(KERN_NOTICE "o2dlm: Waiting on the death of node %u in " "domain %s\n", node, dlm->name); if (timeout) wait_event_timeout(dlm->dlm_reco_thread_wq, dlm_is_node_dead(dlm, node), msecs_to_jiffies(timeout)); else wait_event(dlm->dlm_reco_thread_wq, dlm_is_node_dead(dlm, node)); } void dlm_wait_for_node_recovery(struct dlm_ctxt *dlm, u8 node, int timeout) { if (dlm_is_node_recovered(dlm, node)) return; printk(KERN_NOTICE "o2dlm: Waiting on the recovery of node %u in " "domain %s\n", node, dlm->name); if (timeout) wait_event_timeout(dlm->dlm_reco_thread_wq, dlm_is_node_recovered(dlm, node), msecs_to_jiffies(timeout)); else wait_event(dlm->dlm_reco_thread_wq, dlm_is_node_recovered(dlm, node)); } /* callers of the top-level api calls (dlmlock/dlmunlock) should * block on the dlm->reco.event when recovery is in progress. * the dlm recovery thread will set this state when it begins * recovering a dead node (as the new master or not) and clear * the state and wake as soon as all affected lock resources have * been marked with the RECOVERY flag */ static int dlm_in_recovery(struct dlm_ctxt *dlm) { int in_recovery; spin_lock(&dlm->spinlock); in_recovery = !!(dlm->reco.state & DLM_RECO_STATE_ACTIVE); spin_unlock(&dlm->spinlock); return in_recovery; } void dlm_wait_for_recovery(struct dlm_ctxt *dlm) { if (dlm_in_recovery(dlm)) { mlog(0, "%s: reco thread %d in recovery: " "state=%d, master=%u, dead=%u\n", dlm->name, task_pid_nr(dlm->dlm_reco_thread_task), dlm->reco.state, dlm->reco.new_master, dlm->reco.dead_node); } wait_event(dlm->reco.event, !dlm_in_recovery(dlm)); } static void dlm_begin_recovery(struct dlm_ctxt *dlm) { assert_spin_locked(&dlm->spinlock); BUG_ON(dlm->reco.state & DLM_RECO_STATE_ACTIVE); printk(KERN_NOTICE "o2dlm: Begin recovery on domain %s for node %u\n", dlm->name, dlm->reco.dead_node); dlm->reco.state |= DLM_RECO_STATE_ACTIVE; } static void dlm_end_recovery(struct dlm_ctxt *dlm) { spin_lock(&dlm->spinlock); BUG_ON(!(dlm->reco.state & DLM_RECO_STATE_ACTIVE)); dlm->reco.state &= ~DLM_RECO_STATE_ACTIVE; spin_unlock(&dlm->spinlock); printk(KERN_NOTICE "o2dlm: End recovery on domain %s\n", dlm->name); wake_up(&dlm->reco.event); } static void dlm_print_recovery_master(struct dlm_ctxt *dlm) { printk(KERN_NOTICE "o2dlm: Node %u (%s) is the Recovery Master for the " "dead node %u in domain %s\n", dlm->reco.new_master, (dlm->node_num == dlm->reco.new_master ? "me" : "he"), dlm->reco.dead_node, dlm->name); } static int dlm_do_recovery(struct dlm_ctxt *dlm) { int status = 0; int ret; spin_lock(&dlm->spinlock); if (dlm->migrate_done) { mlog(0, "%s: no need do recovery after migrating all " "lock resources\n", dlm->name); spin_unlock(&dlm->spinlock); return 0; } /* check to see if the new master has died */ if (dlm->reco.new_master != O2NM_INVALID_NODE_NUM && test_bit(dlm->reco.new_master, dlm->recovery_map)) { mlog(0, "new master %u died while recovering %u!\n", dlm->reco.new_master, dlm->reco.dead_node); /* unset the new_master, leave dead_node */ dlm_set_reco_master(dlm, O2NM_INVALID_NODE_NUM); } /* select a target to recover */ if (dlm->reco.dead_node == O2NM_INVALID_NODE_NUM) { int bit; bit = find_first_bit(dlm->recovery_map, O2NM_MAX_NODES); if (bit >= O2NM_MAX_NODES || bit < 0) dlm_set_reco_dead_node(dlm, O2NM_INVALID_NODE_NUM); else dlm_set_reco_dead_node(dlm, bit); } else if (!test_bit(dlm->reco.dead_node, dlm->recovery_map)) { /* BUG? */ mlog(ML_ERROR, "dead_node %u no longer in recovery map!\n", dlm->reco.dead_node); dlm_set_reco_dead_node(dlm, O2NM_INVALID_NODE_NUM); } if (dlm->reco.dead_node == O2NM_INVALID_NODE_NUM) { // mlog(0, "nothing to recover! sleeping now!\n"); spin_unlock(&dlm->spinlock); /* return to main thread loop and sleep. */ return 0; } mlog(0, "%s(%d):recovery thread found node %u in the recovery map!\n", dlm->name, task_pid_nr(dlm->dlm_reco_thread_task), dlm->reco.dead_node); /* take write barrier */ /* (stops the list reshuffling thread, proxy ast handling) */ dlm_begin_recovery(dlm); spin_unlock(&dlm->spinlock); if (dlm->reco.new_master == dlm->node_num) goto master_here; if (dlm->reco.new_master == O2NM_INVALID_NODE_NUM) { /* choose a new master, returns 0 if this node * is the master, -EEXIST if it's another node. * this does not return until a new master is chosen * or recovery completes entirely. */ ret = dlm_pick_recovery_master(dlm); if (!ret) { /* already notified everyone. go. */ goto master_here; } mlog(0, "another node will master this recovery session.\n"); } dlm_print_recovery_master(dlm); /* it is safe to start everything back up here * because all of the dead node's lock resources * have been marked as in-recovery */ dlm_end_recovery(dlm); /* sleep out in main dlm_recovery_thread loop. */ return 0; master_here: dlm_print_recovery_master(dlm); status = dlm_remaster_locks(dlm, dlm->reco.dead_node); if (status < 0) { /* we should never hit this anymore */ mlog(ML_ERROR, "%s: Error %d remastering locks for node %u, " "retrying.\n", dlm->name, status, dlm->reco.dead_node); /* yield a bit to allow any final network messages * to get handled on remaining nodes */ msleep(100); } else { /* success! see if any other nodes need recovery */ mlog(0, "DONE mastering recovery of %s:%u here(this=%u)!\n", dlm->name, dlm->reco.dead_node, dlm->node_num); spin_lock(&dlm->spinlock); __dlm_reset_recovery(dlm); dlm->reco.state &= ~DLM_RECO_STATE_FINALIZE; spin_unlock(&dlm->spinlock); } dlm_end_recovery(dlm); /* continue and look for another dead node */ return -EAGAIN; } static int dlm_remaster_locks(struct dlm_ctxt *dlm, u8 dead_node) { int status = 0; struct dlm_reco_node_data *ndata; int all_nodes_done; int destroy = 0; int pass = 0; do { /* we have become recovery master. there is no escaping * this, so just keep trying until we get it. */ status = dlm_init_recovery_area(dlm, dead_node); if (status < 0) { mlog(ML_ERROR, "%s: failed to alloc recovery area, " "retrying\n", dlm->name); msleep(1000); } } while (status != 0); /* safe to access the node data list without a lock, since this * process is the only one to change the list */ list_for_each_entry(ndata, &dlm->reco.node_data, list) { BUG_ON(ndata->state != DLM_RECO_NODE_DATA_INIT); ndata->state = DLM_RECO_NODE_DATA_REQUESTING; mlog(0, "%s: Requesting lock info from node %u\n", dlm->name, ndata->node_num); if (ndata->node_num == dlm->node_num) { ndata->state = DLM_RECO_NODE_DATA_DONE; continue; } do { status = dlm_request_all_locks(dlm, ndata->node_num, dead_node); if (status < 0) { mlog_errno(status); if (dlm_is_host_down(status)) { /* node died, ignore it for recovery */ status = 0; ndata->state = DLM_RECO_NODE_DATA_DEAD; /* wait for the domain map to catch up * with the network state. */ wait_event_timeout(dlm->dlm_reco_thread_wq, dlm_is_node_dead(dlm, ndata->node_num), msecs_to_jiffies(1000)); mlog(0, "waited 1 sec for %u, " "dead? %s\n", ndata->node_num, dlm_is_node_dead(dlm, ndata->node_num) ? "yes" : "no"); } else { /* -ENOMEM on the other node */ mlog(0, "%s: node %u returned " "%d during recovery, retrying " "after a short wait\n", dlm->name, ndata->node_num, status); msleep(100); } } } while (status != 0); spin_lock(&dlm_reco_state_lock); switch (ndata->state) { case DLM_RECO_NODE_DATA_INIT: case DLM_RECO_NODE_DATA_FINALIZE_SENT: case DLM_RECO_NODE_DATA_REQUESTED: BUG(); break; case DLM_RECO_NODE_DATA_DEAD: mlog(0, "node %u died after requesting " "recovery info for node %u\n", ndata->node_num, dead_node); /* fine. don't need this node's info. * continue without it. */ break; case DLM_RECO_NODE_DATA_REQUESTING: ndata->state = DLM_RECO_NODE_DATA_REQUESTED; mlog(0, "now receiving recovery data from " "node %u for dead node %u\n", ndata->node_num, dead_node); break; case DLM_RECO_NODE_DATA_RECEIVING: mlog(0, "already receiving recovery data from " "node %u for dead node %u\n", ndata->node_num, dead_node); break; case DLM_RECO_NODE_DATA_DONE: mlog(0, "already DONE receiving recovery data " "from node %u for dead node %u\n", ndata->node_num, dead_node); break; } spin_unlock(&dlm_reco_state_lock); } mlog(0, "%s: Done requesting all lock info\n", dlm->name); /* nodes should be sending reco data now * just need to wait */ while (1) { /* check all the nodes now to see if we are * done, or if anyone died */ all_nodes_done = 1; spin_lock(&dlm_reco_state_lock); list_for_each_entry(ndata, &dlm->reco.node_data, list) { mlog(0, "checking recovery state of node %u\n", ndata->node_num); switch (ndata->state) { case DLM_RECO_NODE_DATA_INIT: case DLM_RECO_NODE_DATA_REQUESTING: mlog(ML_ERROR, "bad ndata state for " "node %u: state=%d\n", ndata->node_num, ndata->state); BUG(); break; case DLM_RECO_NODE_DATA_DEAD: mlog(0, "node %u died after " "requesting recovery info for " "node %u\n", ndata->node_num, dead_node); break; case DLM_RECO_NODE_DATA_RECEIVING: case DLM_RECO_NODE_DATA_REQUESTED: mlog(0, "%s: node %u still in state %s\n", dlm->name, ndata->node_num, ndata->state==DLM_RECO_NODE_DATA_RECEIVING ? "receiving" : "requested"); all_nodes_done = 0; break; case DLM_RECO_NODE_DATA_DONE: mlog(0, "%s: node %u state is done\n", dlm->name, ndata->node_num); break; case DLM_RECO_NODE_DATA_FINALIZE_SENT: mlog(0, "%s: node %u state is finalize\n", dlm->name, ndata->node_num); break; } } spin_unlock(&dlm_reco_state_lock); mlog(0, "pass #%d, all_nodes_done?: %s\n", ++pass, all_nodes_done?"yes":"no"); if (all_nodes_done) { int ret; /* Set this flag on recovery master to avoid * a new recovery for another dead node start * before the recovery is not done. That may * cause recovery hung.*/ spin_lock(&dlm->spinlock); dlm->reco.state |= DLM_RECO_STATE_FINALIZE; spin_unlock(&dlm->spinlock); /* all nodes are now in DLM_RECO_NODE_DATA_DONE state * just send a finalize message to everyone and * clean up */ mlog(0, "all nodes are done! send finalize\n"); ret = dlm_send_finalize_reco_message(dlm); if (ret < 0) mlog_errno(ret); spin_lock(&dlm->spinlock); dlm_finish_local_lockres_recovery(dlm, dead_node, dlm->node_num); spin_unlock(&dlm->spinlock); mlog(0, "should be done with recovery!\n"); mlog(0, "finishing recovery of %s at %lu, " "dead=%u, this=%u, new=%u\n", dlm->name, jiffies, dlm->reco.dead_node, dlm->node_num, dlm->reco.new_master); destroy = 1; status = 0; /* rescan everything marked dirty along the way */ dlm_kick_thread(dlm, NULL); break; } /* wait to be signalled, with periodic timeout * to check for node death */ wait_event_interruptible_timeout(dlm->dlm_reco_thread_wq, kthread_should_stop(), msecs_to_jiffies(DLM_RECO_THREAD_TIMEOUT_MS)); } if (destroy) dlm_destroy_recovery_area(dlm); return status; } static int dlm_init_recovery_area(struct dlm_ctxt *dlm, u8 dead_node) { int num=0; struct dlm_reco_node_data *ndata; spin_lock(&dlm->spinlock); bitmap_copy(dlm->reco.node_map, dlm->domain_map, O2NM_MAX_NODES); /* nodes can only be removed (by dying) after dropping * this lock, and death will be trapped later, so this should do */ spin_unlock(&dlm->spinlock); while (1) { num = find_next_bit (dlm->reco.node_map, O2NM_MAX_NODES, num); if (num >= O2NM_MAX_NODES) { break; } BUG_ON(num == dead_node); ndata = kzalloc(sizeof(*ndata), GFP_NOFS); if (!ndata) { dlm_destroy_recovery_area(dlm); return -ENOMEM; } ndata->node_num = num; ndata->state = DLM_RECO_NODE_DATA_INIT; spin_lock(&dlm_reco_state_lock); list_add_tail(&ndata->list, &dlm->reco.node_data); spin_unlock(&dlm_reco_state_lock); num++; } return 0; } static void dlm_destroy_recovery_area(struct dlm_ctxt *dlm) { struct dlm_reco_node_data *ndata, *next; LIST_HEAD(tmplist); spin_lock(&dlm_reco_state_lock); list_splice_init(&dlm->reco.node_data, &tmplist); spin_unlock(&dlm_reco_state_lock); list_for_each_entry_safe(ndata, next, &tmplist, list) { list_del_init(&ndata->list); kfree(ndata); } } static int dlm_request_all_locks(struct dlm_ctxt *dlm, u8 request_from, u8 dead_node) { struct dlm_lock_request lr; int ret; int status; mlog(0, "\n"); mlog(0, "dlm_request_all_locks: dead node is %u, sending request " "to %u\n", dead_node, request_from); memset(&lr, 0, sizeof(lr)); lr.node_idx = dlm->node_num; lr.dead_node = dead_node; // send message ret = o2net_send_message(DLM_LOCK_REQUEST_MSG, dlm->key, &lr, sizeof(lr), request_from, &status); /* negative status is handled by caller */ if (ret < 0) mlog(ML_ERROR, "%s: Error %d send LOCK_REQUEST to node %u " "to recover dead node %u\n", dlm->name, ret, request_from, dead_node); else ret = status; // return from here, then // sleep until all received or error return ret; } int dlm_request_all_locks_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_lock_request *lr = (struct dlm_lock_request *)msg->buf; char *buf = NULL; struct dlm_work_item *item = NULL; if (!dlm_grab(dlm)) return -EINVAL; if (lr->dead_node != dlm->reco.dead_node) { mlog(ML_ERROR, "%s: node %u sent dead_node=%u, but local " "dead_node is %u\n", dlm->name, lr->node_idx, lr->dead_node, dlm->reco.dead_node); dlm_print_reco_node_status(dlm); /* this is a hack */ dlm_put(dlm); return -ENOMEM; } BUG_ON(lr->dead_node != dlm->reco.dead_node); item = kzalloc(sizeof(*item), GFP_NOFS); if (!item) { dlm_put(dlm); return -ENOMEM; } /* this will get freed by dlm_request_all_locks_worker */ buf = (char *) __get_free_page(GFP_NOFS); if (!buf) { kfree(item); dlm_put(dlm); return -ENOMEM; } /* queue up work for dlm_request_all_locks_worker */ dlm_grab(dlm); /* get an extra ref for the work item */ dlm_init_work_item(dlm, item, dlm_request_all_locks_worker, buf); item->u.ral.reco_master = lr->node_idx; item->u.ral.dead_node = lr->dead_node; spin_lock(&dlm->work_lock); list_add_tail(&item->list, &dlm->work_list); spin_unlock(&dlm->work_lock); queue_work(dlm->dlm_worker, &dlm->dispatched_work); dlm_put(dlm); return 0; } static void dlm_request_all_locks_worker(struct dlm_work_item *item, void *data) { struct dlm_migratable_lockres *mres; struct dlm_lock_resource *res; struct dlm_ctxt *dlm; LIST_HEAD(resources); int ret; u8 dead_node, reco_master; int skip_all_done = 0; dlm = item->dlm; dead_node = item->u.ral.dead_node; reco_master = item->u.ral.reco_master; mres = (struct dlm_migratable_lockres *)data; mlog(0, "%s: recovery worker started, dead=%u, master=%u\n", dlm->name, dead_node, reco_master); if (dead_node != dlm->reco.dead_node || reco_master != dlm->reco.new_master) { /* worker could have been created before the recovery master * died. if so, do not continue, but do not error. */ if (dlm->reco.new_master == O2NM_INVALID_NODE_NUM) { mlog(ML_NOTICE, "%s: will not send recovery state, " "recovery master %u died, thread=(dead=%u,mas=%u)" " current=(dead=%u,mas=%u)\n", dlm->name, reco_master, dead_node, reco_master, dlm->reco.dead_node, dlm->reco.new_master); } else { mlog(ML_NOTICE, "%s: reco state invalid: reco(dead=%u, " "master=%u), request(dead=%u, master=%u)\n", dlm->name, dlm->reco.dead_node, dlm->reco.new_master, dead_node, reco_master); } goto leave; } /* lock resources should have already been moved to the * dlm->reco.resources list. now move items from that list * to a temp list if the dead owner matches. note that the * whole cluster recovers only one node at a time, so we * can safely move UNKNOWN lock resources for each recovery * session. */ dlm_move_reco_locks_to_list(dlm, &resources, dead_node); /* now we can begin blasting lockreses without the dlm lock */ /* any errors returned will be due to the new_master dying, * the dlm_reco_thread should detect this */ list_for_each_entry(res, &resources, recovering) { ret = dlm_send_one_lockres(dlm, res, mres, reco_master, DLM_MRES_RECOVERY); if (ret < 0) { mlog(ML_ERROR, "%s: node %u went down while sending " "recovery state for dead node %u, ret=%d\n", dlm->name, reco_master, dead_node, ret); skip_all_done = 1; break; } } /* move the resources back to the list */ spin_lock(&dlm->spinlock); list_splice_init(&resources, &dlm->reco.resources); spin_unlock(&dlm->spinlock); if (!skip_all_done) { ret = dlm_send_all_done_msg(dlm, dead_node, reco_master); if (ret < 0) { mlog(ML_ERROR, "%s: node %u went down while sending " "recovery all-done for dead node %u, ret=%d\n", dlm->name, reco_master, dead_node, ret); } } leave: free_page((unsigned long)data); } static int dlm_send_all_done_msg(struct dlm_ctxt *dlm, u8 dead_node, u8 send_to) { int ret, tmpret; struct dlm_reco_data_done done_msg; memset(&done_msg, 0, sizeof(done_msg)); done_msg.node_idx = dlm->node_num; done_msg.dead_node = dead_node; mlog(0, "sending DATA DONE message to %u, " "my node=%u, dead node=%u\n", send_to, done_msg.node_idx, done_msg.dead_node); ret = o2net_send_message(DLM_RECO_DATA_DONE_MSG, dlm->key, &done_msg, sizeof(done_msg), send_to, &tmpret); if (ret < 0) { mlog(ML_ERROR, "%s: Error %d send RECO_DATA_DONE to node %u " "to recover dead node %u\n", dlm->name, ret, send_to, dead_node); if (!dlm_is_host_down(ret)) { BUG(); } } else ret = tmpret; return ret; } int dlm_reco_data_done_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_reco_data_done *done = (struct dlm_reco_data_done *)msg->buf; struct dlm_reco_node_data *ndata = NULL; int ret = -EINVAL; if (!dlm_grab(dlm)) return -EINVAL; mlog(0, "got DATA DONE: dead_node=%u, reco.dead_node=%u, " "node_idx=%u, this node=%u\n", done->dead_node, dlm->reco.dead_node, done->node_idx, dlm->node_num); mlog_bug_on_msg((done->dead_node != dlm->reco.dead_node), "Got DATA DONE: dead_node=%u, reco.dead_node=%u, " "node_idx=%u, this node=%u\n", done->dead_node, dlm->reco.dead_node, done->node_idx, dlm->node_num); spin_lock(&dlm_reco_state_lock); list_for_each_entry(ndata, &dlm->reco.node_data, list) { if (ndata->node_num != done->node_idx) continue; switch (ndata->state) { /* should have moved beyond INIT but not to FINALIZE yet */ case DLM_RECO_NODE_DATA_INIT: case DLM_RECO_NODE_DATA_DEAD: case DLM_RECO_NODE_DATA_FINALIZE_SENT: mlog(ML_ERROR, "bad ndata state for node %u:" " state=%d\n", ndata->node_num, ndata->state); BUG(); break; /* these states are possible at this point, anywhere along * the line of recovery */ case DLM_RECO_NODE_DATA_DONE: case DLM_RECO_NODE_DATA_RECEIVING: case DLM_RECO_NODE_DATA_REQUESTED: case DLM_RECO_NODE_DATA_REQUESTING: mlog(0, "node %u is DONE sending " "recovery data!\n", ndata->node_num); ndata->state = DLM_RECO_NODE_DATA_DONE; ret = 0; break; } } spin_unlock(&dlm_reco_state_lock); /* wake the recovery thread, some node is done */ if (!ret) dlm_kick_recovery_thread(dlm); if (ret < 0) mlog(ML_ERROR, "failed to find recovery node data for node " "%u\n", done->node_idx); dlm_put(dlm); mlog(0, "leaving reco data done handler, ret=%d\n", ret); return ret; } static void dlm_move_reco_locks_to_list(struct dlm_ctxt *dlm, struct list_head *list, u8 dead_node) { struct dlm_lock_resource *res, *next; struct dlm_lock *lock; spin_lock(&dlm->spinlock); list_for_each_entry_safe(res, next, &dlm->reco.resources, recovering) { /* always prune any $RECOVERY entries for dead nodes, * otherwise hangs can occur during later recovery */ if (dlm_is_recovery_lock(res->lockname.name, res->lockname.len)) { spin_lock(&res->spinlock); list_for_each_entry(lock, &res->granted, list) { if (lock->ml.node == dead_node) { mlog(0, "AHA! there was " "a $RECOVERY lock for dead " "node %u (%s)!\n", dead_node, dlm->name); list_del_init(&lock->list); dlm_lock_put(lock); /* Can't schedule DLM_UNLOCK_FREE_LOCK * - do manually */ dlm_lock_put(lock); break; } } spin_unlock(&res->spinlock); continue; } if (res->owner == dead_node) { mlog(0, "found lockres owned by dead node while " "doing recovery for node %u. sending it.\n", dead_node); list_move_tail(&res->recovering, list); } else if (res->owner == DLM_LOCK_RES_OWNER_UNKNOWN) { mlog(0, "found UNKNOWN owner while doing recovery " "for node %u. sending it.\n", dead_node); list_move_tail(&res->recovering, list); } } spin_unlock(&dlm->spinlock); } static inline int dlm_num_locks_in_lockres(struct dlm_lock_resource *res) { int total_locks = 0; struct list_head *iter, *queue = &res->granted; int i; for (i=0; i<3; i++) { list_for_each(iter, queue) total_locks++; queue++; } return total_locks; } static int dlm_send_mig_lockres_msg(struct dlm_ctxt *dlm, struct dlm_migratable_lockres *mres, u8 send_to, struct dlm_lock_resource *res, int total_locks) { u64 mig_cookie = be64_to_cpu(mres->mig_cookie); int mres_total_locks = be32_to_cpu(mres->total_locks); int ret = 0, status = 0; u8 orig_flags = mres->flags, orig_master = mres->master; BUG_ON(mres->num_locks > DLM_MAX_MIGRATABLE_LOCKS); if (!mres->num_locks) return 0; /* add an all-done flag if we reached the last lock */ orig_flags = mres->flags; BUG_ON(total_locks > mres_total_locks); if (total_locks == mres_total_locks) mres->flags |= DLM_MRES_ALL_DONE; mlog(0, "%s:%.*s: sending mig lockres (%s) to %u\n", dlm->name, res->lockname.len, res->lockname.name, orig_flags & DLM_MRES_MIGRATION ? "migration" : "recovery", send_to); /* send it */ ret = o2net_send_message(DLM_MIG_LOCKRES_MSG, dlm->key, mres, struct_size(mres, ml, mres->num_locks), send_to, &status); if (ret < 0) { /* XXX: negative status is not handled. * this will end up killing this node. */ mlog(ML_ERROR, "%s: res %.*s, Error %d send MIG_LOCKRES to " "node %u (%s)\n", dlm->name, mres->lockname_len, mres->lockname, ret, send_to, (orig_flags & DLM_MRES_MIGRATION ? "migration" : "recovery")); } else { /* might get an -ENOMEM back here */ ret = status; if (ret < 0) { mlog_errno(ret); if (ret == -EFAULT) { mlog(ML_ERROR, "node %u told me to kill " "myself!\n", send_to); BUG(); } } } /* zero and reinit the message buffer */ dlm_init_migratable_lockres(mres, res->lockname.name, res->lockname.len, mres_total_locks, mig_cookie, orig_flags, orig_master); return ret; } static void dlm_init_migratable_lockres(struct dlm_migratable_lockres *mres, const char *lockname, int namelen, int total_locks, u64 cookie, u8 flags, u8 master) { /* mres here is one full page */ clear_page(mres); mres->lockname_len = namelen; memcpy(mres->lockname, lockname, namelen); mres->num_locks = 0; mres->total_locks = cpu_to_be32(total_locks); mres->mig_cookie = cpu_to_be64(cookie); mres->flags = flags; mres->master = master; } static void dlm_prepare_lvb_for_migration(struct dlm_lock *lock, struct dlm_migratable_lockres *mres, int queue) { if (!lock->lksb) return; /* Ignore lvb in all locks in the blocked list */ if (queue == DLM_BLOCKED_LIST) return; /* Only consider lvbs in locks with granted EX or PR lock levels */ if (lock->ml.type != LKM_EXMODE && lock->ml.type != LKM_PRMODE) return; if (dlm_lvb_is_empty(mres->lvb)) { memcpy(mres->lvb, lock->lksb->lvb, DLM_LVB_LEN); return; } /* Ensure the lvb copied for migration matches in other valid locks */ if (!memcmp(mres->lvb, lock->lksb->lvb, DLM_LVB_LEN)) return; mlog(ML_ERROR, "Mismatched lvb in lock cookie=%u:%llu, name=%.*s, " "node=%u\n", dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), lock->lockres->lockname.len, lock->lockres->lockname.name, lock->ml.node); dlm_print_one_lock_resource(lock->lockres); BUG(); } /* returns 1 if this lock fills the network structure, * 0 otherwise */ static int dlm_add_lock_to_array(struct dlm_lock *lock, struct dlm_migratable_lockres *mres, int queue) { struct dlm_migratable_lock *ml; int lock_num = mres->num_locks; ml = &(mres->ml[lock_num]); ml->cookie = lock->ml.cookie; ml->type = lock->ml.type; ml->convert_type = lock->ml.convert_type; ml->highest_blocked = lock->ml.highest_blocked; ml->list = queue; if (lock->lksb) { ml->flags = lock->lksb->flags; dlm_prepare_lvb_for_migration(lock, mres, queue); } ml->node = lock->ml.node; mres->num_locks++; /* we reached the max, send this network message */ if (mres->num_locks == DLM_MAX_MIGRATABLE_LOCKS) return 1; return 0; } static void dlm_add_dummy_lock(struct dlm_ctxt *dlm, struct dlm_migratable_lockres *mres) { struct dlm_lock dummy; memset(&dummy, 0, sizeof(dummy)); dummy.ml.cookie = 0; dummy.ml.type = LKM_IVMODE; dummy.ml.convert_type = LKM_IVMODE; dummy.ml.highest_blocked = LKM_IVMODE; dummy.lksb = NULL; dummy.ml.node = dlm->node_num; dlm_add_lock_to_array(&dummy, mres, DLM_BLOCKED_LIST); } static inline int dlm_is_dummy_lock(struct dlm_ctxt *dlm, struct dlm_migratable_lock *ml, u8 *nodenum) { if (unlikely(ml->cookie == 0 && ml->type == LKM_IVMODE && ml->convert_type == LKM_IVMODE && ml->highest_blocked == LKM_IVMODE && ml->list == DLM_BLOCKED_LIST)) { *nodenum = ml->node; return 1; } return 0; } int dlm_send_one_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_migratable_lockres *mres, u8 send_to, u8 flags) { struct list_head *queue; int total_locks, i; u64 mig_cookie = 0; struct dlm_lock *lock; int ret = 0; BUG_ON(!(flags & (DLM_MRES_RECOVERY|DLM_MRES_MIGRATION))); mlog(0, "sending to %u\n", send_to); total_locks = dlm_num_locks_in_lockres(res); if (total_locks > DLM_MAX_MIGRATABLE_LOCKS) { /* rare, but possible */ mlog(0, "argh. lockres has %d locks. this will " "require more than one network packet to " "migrate\n", total_locks); mig_cookie = dlm_get_next_mig_cookie(); } dlm_init_migratable_lockres(mres, res->lockname.name, res->lockname.len, total_locks, mig_cookie, flags, res->owner); total_locks = 0; for (i=DLM_GRANTED_LIST; i<=DLM_BLOCKED_LIST; i++) { queue = dlm_list_idx_to_ptr(res, i); list_for_each_entry(lock, queue, list) { /* add another lock. */ total_locks++; if (!dlm_add_lock_to_array(lock, mres, i)) continue; /* this filled the lock message, * we must send it immediately. */ ret = dlm_send_mig_lockres_msg(dlm, mres, send_to, res, total_locks); if (ret < 0) goto error; } } if (total_locks == 0) { /* send a dummy lock to indicate a mastery reference only */ mlog(0, "%s:%.*s: sending dummy lock to %u, %s\n", dlm->name, res->lockname.len, res->lockname.name, send_to, flags & DLM_MRES_RECOVERY ? "recovery" : "migration"); dlm_add_dummy_lock(dlm, mres); } /* flush any remaining locks */ ret = dlm_send_mig_lockres_msg(dlm, mres, send_to, res, total_locks); if (ret < 0) goto error; return ret; error: mlog(ML_ERROR, "%s: dlm_send_mig_lockres_msg returned %d\n", dlm->name, ret); if (!dlm_is_host_down(ret)) BUG(); mlog(0, "%s: node %u went down while sending %s " "lockres %.*s\n", dlm->name, send_to, flags & DLM_MRES_RECOVERY ? "recovery" : "migration", res->lockname.len, res->lockname.name); return ret; } /* * this message will contain no more than one page worth of * recovery data, and it will work on only one lockres. * there may be many locks in this page, and we may need to wait * for additional packets to complete all the locks (rare, but * possible). */ /* * NOTE: the allocation error cases here are scary * we really cannot afford to fail an alloc in recovery * do we spin? returning an error only delays the problem really */ int dlm_mig_lockres_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_migratable_lockres *mres = (struct dlm_migratable_lockres *)msg->buf; int ret = 0; u8 real_master; u8 extra_refs = 0; char *buf = NULL; struct dlm_work_item *item = NULL; struct dlm_lock_resource *res = NULL; unsigned int hash; if (!dlm_grab(dlm)) return -EINVAL; if (!dlm_joined(dlm)) { mlog(ML_ERROR, "Domain %s not joined! " "lockres %.*s, master %u\n", dlm->name, mres->lockname_len, mres->lockname, mres->master); dlm_put(dlm); return -EINVAL; } BUG_ON(!(mres->flags & (DLM_MRES_RECOVERY|DLM_MRES_MIGRATION))); real_master = mres->master; if (real_master == DLM_LOCK_RES_OWNER_UNKNOWN) { /* cannot migrate a lockres with no master */ BUG_ON(!(mres->flags & DLM_MRES_RECOVERY)); } mlog(0, "%s message received from node %u\n", (mres->flags & DLM_MRES_RECOVERY) ? "recovery" : "migration", mres->master); if (mres->flags & DLM_MRES_ALL_DONE) mlog(0, "all done flag. all lockres data received!\n"); ret = -ENOMEM; buf = kmalloc(be16_to_cpu(msg->data_len), GFP_NOFS); item = kzalloc(sizeof(*item), GFP_NOFS); if (!buf || !item) goto leave; /* lookup the lock to see if we have a secondary queue for this * already... just add the locks in and this will have its owner * and RECOVERY flag changed when it completes. */ hash = dlm_lockid_hash(mres->lockname, mres->lockname_len); spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres_full(dlm, mres->lockname, mres->lockname_len, hash); if (res) { /* this will get a ref on res */ /* mark it as recovering/migrating and hash it */ spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_DROPPING_REF) { mlog(0, "%s: node is attempting to migrate " "lockres %.*s, but marked as dropping " " ref!\n", dlm->name, mres->lockname_len, mres->lockname); ret = -EINVAL; spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); dlm_lockres_put(res); goto leave; } if (mres->flags & DLM_MRES_RECOVERY) { res->state |= DLM_LOCK_RES_RECOVERING; } else { if (res->state & DLM_LOCK_RES_MIGRATING) { /* this is at least the second * lockres message */ mlog(0, "lock %.*s is already migrating\n", mres->lockname_len, mres->lockname); } else if (res->state & DLM_LOCK_RES_RECOVERING) { /* caller should BUG */ mlog(ML_ERROR, "node is attempting to migrate " "lock %.*s, but marked as recovering!\n", mres->lockname_len, mres->lockname); ret = -EFAULT; spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); dlm_lockres_put(res); goto leave; } res->state |= DLM_LOCK_RES_MIGRATING; } spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); } else { spin_unlock(&dlm->spinlock); /* need to allocate, just like if it was * mastered here normally */ res = dlm_new_lockres(dlm, mres->lockname, mres->lockname_len); if (!res) goto leave; /* to match the ref that we would have gotten if * dlm_lookup_lockres had succeeded */ dlm_lockres_get(res); /* mark it as recovering/migrating and hash it */ if (mres->flags & DLM_MRES_RECOVERY) res->state |= DLM_LOCK_RES_RECOVERING; else res->state |= DLM_LOCK_RES_MIGRATING; spin_lock(&dlm->spinlock); __dlm_insert_lockres(dlm, res); spin_unlock(&dlm->spinlock); /* Add an extra ref for this lock-less lockres lest the * dlm_thread purges it before we get the chance to add * locks to it */ dlm_lockres_get(res); /* There are three refs that need to be put. * 1. Taken above. * 2. kref_init in dlm_new_lockres()->dlm_init_lockres(). * 3. dlm_lookup_lockres() * The first one is handled at the end of this function. The * other two are handled in the worker thread after locks have * been attached. Yes, we don't wait for purge time to match * kref_init. The lockres will still have atleast one ref * added because it is in the hash __dlm_insert_lockres() */ extra_refs++; /* now that the new lockres is inserted, * make it usable by other processes */ spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_IN_PROGRESS; spin_unlock(&res->spinlock); wake_up(&res->wq); } /* at this point we have allocated everything we need, * and we have a hashed lockres with an extra ref and * the proper res->state flags. */ ret = 0; spin_lock(&res->spinlock); /* drop this either when master requery finds a different master * or when a lock is added by the recovery worker */ dlm_lockres_grab_inflight_ref(dlm, res); if (mres->master == DLM_LOCK_RES_OWNER_UNKNOWN) { /* migration cannot have an unknown master */ BUG_ON(!(mres->flags & DLM_MRES_RECOVERY)); mlog(0, "recovery has passed me a lockres with an " "unknown owner.. will need to requery: " "%.*s\n", mres->lockname_len, mres->lockname); } else { /* take a reference now to pin the lockres, drop it * when locks are added in the worker */ dlm_change_lockres_owner(dlm, res, dlm->node_num); } spin_unlock(&res->spinlock); /* queue up work for dlm_mig_lockres_worker */ dlm_grab(dlm); /* get an extra ref for the work item */ memcpy(buf, msg->buf, be16_to_cpu(msg->data_len)); /* copy the whole message */ dlm_init_work_item(dlm, item, dlm_mig_lockres_worker, buf); item->u.ml.lockres = res; /* already have a ref */ item->u.ml.real_master = real_master; item->u.ml.extra_ref = extra_refs; spin_lock(&dlm->work_lock); list_add_tail(&item->list, &dlm->work_list); spin_unlock(&dlm->work_lock); queue_work(dlm->dlm_worker, &dlm->dispatched_work); leave: /* One extra ref taken needs to be put here */ if (extra_refs) dlm_lockres_put(res); dlm_put(dlm); if (ret < 0) { kfree(buf); kfree(item); mlog_errno(ret); } return ret; } static void dlm_mig_lockres_worker(struct dlm_work_item *item, void *data) { struct dlm_ctxt *dlm; struct dlm_migratable_lockres *mres; int ret = 0; struct dlm_lock_resource *res; u8 real_master; u8 extra_ref; dlm = item->dlm; mres = (struct dlm_migratable_lockres *)data; res = item->u.ml.lockres; real_master = item->u.ml.real_master; extra_ref = item->u.ml.extra_ref; if (real_master == DLM_LOCK_RES_OWNER_UNKNOWN) { /* this case is super-rare. only occurs if * node death happens during migration. */ again: ret = dlm_lockres_master_requery(dlm, res, &real_master); if (ret < 0) { mlog(0, "dlm_lockres_master_requery ret=%d\n", ret); goto again; } if (real_master == DLM_LOCK_RES_OWNER_UNKNOWN) { mlog(0, "lockres %.*s not claimed. " "this node will take it.\n", res->lockname.len, res->lockname.name); } else { spin_lock(&res->spinlock); dlm_lockres_drop_inflight_ref(dlm, res); spin_unlock(&res->spinlock); mlog(0, "master needs to respond to sender " "that node %u still owns %.*s\n", real_master, res->lockname.len, res->lockname.name); /* cannot touch this lockres */ goto leave; } } ret = dlm_process_recovery_data(dlm, res, mres); if (ret < 0) mlog(0, "dlm_process_recovery_data returned %d\n", ret); else mlog(0, "dlm_process_recovery_data succeeded\n"); if ((mres->flags & (DLM_MRES_MIGRATION|DLM_MRES_ALL_DONE)) == (DLM_MRES_MIGRATION|DLM_MRES_ALL_DONE)) { ret = dlm_finish_migration(dlm, res, mres->master); if (ret < 0) mlog_errno(ret); } leave: /* See comment in dlm_mig_lockres_handler() */ if (res) { if (extra_ref) dlm_lockres_put(res); dlm_lockres_put(res); } kfree(data); } static int dlm_lockres_master_requery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 *real_master) { struct dlm_node_iter iter; int nodenum; int ret = 0; *real_master = DLM_LOCK_RES_OWNER_UNKNOWN; /* we only reach here if one of the two nodes in a * migration died while the migration was in progress. * at this point we need to requery the master. we * know that the new_master got as far as creating * an mle on at least one node, but we do not know * if any nodes had actually cleared the mle and set * the master to the new_master. the old master * is supposed to set the owner to UNKNOWN in the * event of a new_master death, so the only possible * responses that we can get from nodes here are * that the master is new_master, or that the master * is UNKNOWN. * if all nodes come back with UNKNOWN then we know * the lock needs remastering here. * if any node comes back with a valid master, check * to see if that master is the one that we are * recovering. if so, then the new_master died and * we need to remaster this lock. if not, then the * new_master survived and that node will respond to * other nodes about the owner. * if there is an owner, this node needs to dump this * lockres and alert the sender that this lockres * was rejected. */ spin_lock(&dlm->spinlock); dlm_node_iter_init(dlm->domain_map, &iter); spin_unlock(&dlm->spinlock); while ((nodenum = dlm_node_iter_next(&iter)) >= 0) { /* do not send to self */ if (nodenum == dlm->node_num) continue; ret = dlm_do_master_requery(dlm, res, nodenum, real_master); if (ret < 0) { mlog_errno(ret); if (!dlm_is_host_down(ret)) BUG(); /* host is down, so answer for that node would be * DLM_LOCK_RES_OWNER_UNKNOWN. continue. */ } if (*real_master != DLM_LOCK_RES_OWNER_UNKNOWN) { mlog(0, "lock master is %u\n", *real_master); break; } } return ret; } int dlm_do_master_requery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 nodenum, u8 *real_master) { int ret; struct dlm_master_requery req; int status = DLM_LOCK_RES_OWNER_UNKNOWN; memset(&req, 0, sizeof(req)); req.node_idx = dlm->node_num; req.namelen = res->lockname.len; memcpy(req.name, res->lockname.name, res->lockname.len); resend: ret = o2net_send_message(DLM_MASTER_REQUERY_MSG, dlm->key, &req, sizeof(req), nodenum, &status); if (ret < 0) mlog(ML_ERROR, "Error %d when sending message %u (key " "0x%x) to node %u\n", ret, DLM_MASTER_REQUERY_MSG, dlm->key, nodenum); else if (status == -ENOMEM) { mlog_errno(status); msleep(50); goto resend; } else { BUG_ON(status < 0); BUG_ON(status > DLM_LOCK_RES_OWNER_UNKNOWN); *real_master = (u8) (status & 0xff); mlog(0, "node %u responded to master requery with %u\n", nodenum, *real_master); ret = 0; } return ret; } /* this function cannot error, so unless the sending * or receiving of the message failed, the owner can * be trusted */ int dlm_master_requery_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_master_requery *req = (struct dlm_master_requery *)msg->buf; struct dlm_lock_resource *res = NULL; unsigned int hash; int master = DLM_LOCK_RES_OWNER_UNKNOWN; u32 flags = DLM_ASSERT_MASTER_REQUERY; int dispatched = 0; if (!dlm_grab(dlm)) { /* since the domain has gone away on this * node, the proper response is UNKNOWN */ return master; } hash = dlm_lockid_hash(req->name, req->namelen); spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres(dlm, req->name, req->namelen, hash); if (res) { spin_lock(&res->spinlock); master = res->owner; if (master == dlm->node_num) { int ret = dlm_dispatch_assert_master(dlm, res, 0, 0, flags); if (ret < 0) { mlog_errno(ret); spin_unlock(&res->spinlock); dlm_lockres_put(res); spin_unlock(&dlm->spinlock); dlm_put(dlm); /* sender will take care of this and retry */ return ret; } else { dispatched = 1; __dlm_lockres_grab_inflight_worker(dlm, res); spin_unlock(&res->spinlock); } } else { /* put.. incase we are not the master */ spin_unlock(&res->spinlock); dlm_lockres_put(res); } } spin_unlock(&dlm->spinlock); if (!dispatched) dlm_put(dlm); return master; } static inline struct list_head * dlm_list_num_to_pointer(struct dlm_lock_resource *res, int list_num) { struct list_head *ret; BUG_ON(list_num < 0); BUG_ON(list_num > 2); ret = &(res->granted); ret += list_num; return ret; } /* TODO: do ast flush business * TODO: do MIGRATING and RECOVERING spinning */ /* * NOTE about in-flight requests during migration: * * Before attempting the migrate, the master has marked the lockres as * MIGRATING and then flushed all of its pending ASTS. So any in-flight * requests either got queued before the MIGRATING flag got set, in which * case the lock data will reflect the change and a return message is on * the way, or the request failed to get in before MIGRATING got set. In * this case, the caller will be told to spin and wait for the MIGRATING * flag to be dropped, then recheck the master. * This holds true for the convert, cancel and unlock cases, and since lvb * updates are tied to these same messages, it applies to lvb updates as * well. For the lock case, there is no way a lock can be on the master * queue and not be on the secondary queue since the lock is always added * locally first. This means that the new target node will never be sent * a lock that he doesn't already have on the list. * In total, this means that the local lock is correct and should not be * updated to match the one sent by the master. Any messages sent back * from the master before the MIGRATING flag will bring the lock properly * up-to-date, and the change will be ordered properly for the waiter. * We will *not* attempt to modify the lock underneath the waiter. */ static int dlm_process_recovery_data(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_migratable_lockres *mres) { struct dlm_migratable_lock *ml; struct list_head *queue, *iter; struct list_head *tmpq = NULL; struct dlm_lock *newlock = NULL; struct dlm_lockstatus *lksb = NULL; int ret = 0; int i, j, bad; struct dlm_lock *lock; u8 from = O2NM_MAX_NODES; __be64 c; mlog(0, "running %d locks for this lockres\n", mres->num_locks); for (i=0; i<mres->num_locks; i++) { ml = &(mres->ml[i]); if (dlm_is_dummy_lock(dlm, ml, &from)) { /* placeholder, just need to set the refmap bit */ BUG_ON(mres->num_locks != 1); mlog(0, "%s:%.*s: dummy lock for %u\n", dlm->name, mres->lockname_len, mres->lockname, from); spin_lock(&res->spinlock); dlm_lockres_set_refmap_bit(dlm, res, from); spin_unlock(&res->spinlock); break; } BUG_ON(ml->highest_blocked != LKM_IVMODE); newlock = NULL; lksb = NULL; queue = dlm_list_num_to_pointer(res, ml->list); tmpq = NULL; /* if the lock is for the local node it needs to * be moved to the proper location within the queue. * do not allocate a new lock structure. */ if (ml->node == dlm->node_num) { /* MIGRATION ONLY! */ BUG_ON(!(mres->flags & DLM_MRES_MIGRATION)); lock = NULL; spin_lock(&res->spinlock); for (j = DLM_GRANTED_LIST; j <= DLM_BLOCKED_LIST; j++) { tmpq = dlm_list_idx_to_ptr(res, j); list_for_each(iter, tmpq) { lock = list_entry(iter, struct dlm_lock, list); if (lock->ml.cookie == ml->cookie) break; lock = NULL; } if (lock) break; } /* lock is always created locally first, and * destroyed locally last. it must be on the list */ if (!lock) { c = ml->cookie; mlog(ML_ERROR, "Could not find local lock " "with cookie %u:%llu, node %u, " "list %u, flags 0x%x, type %d, " "conv %d, highest blocked %d\n", dlm_get_lock_cookie_node(be64_to_cpu(c)), dlm_get_lock_cookie_seq(be64_to_cpu(c)), ml->node, ml->list, ml->flags, ml->type, ml->convert_type, ml->highest_blocked); __dlm_print_one_lock_resource(res); BUG(); } if (lock->ml.node != ml->node) { c = lock->ml.cookie; mlog(ML_ERROR, "Mismatched node# in lock " "cookie %u:%llu, name %.*s, node %u\n", dlm_get_lock_cookie_node(be64_to_cpu(c)), dlm_get_lock_cookie_seq(be64_to_cpu(c)), res->lockname.len, res->lockname.name, lock->ml.node); c = ml->cookie; mlog(ML_ERROR, "Migrate lock cookie %u:%llu, " "node %u, list %u, flags 0x%x, type %d, " "conv %d, highest blocked %d\n", dlm_get_lock_cookie_node(be64_to_cpu(c)), dlm_get_lock_cookie_seq(be64_to_cpu(c)), ml->node, ml->list, ml->flags, ml->type, ml->convert_type, ml->highest_blocked); __dlm_print_one_lock_resource(res); BUG(); } if (tmpq != queue) { c = ml->cookie; mlog(0, "Lock cookie %u:%llu was on list %u " "instead of list %u for %.*s\n", dlm_get_lock_cookie_node(be64_to_cpu(c)), dlm_get_lock_cookie_seq(be64_to_cpu(c)), j, ml->list, res->lockname.len, res->lockname.name); __dlm_print_one_lock_resource(res); spin_unlock(&res->spinlock); continue; } /* see NOTE above about why we do not update * to match the master here */ /* move the lock to its proper place */ /* do not alter lock refcount. switching lists. */ list_move_tail(&lock->list, queue); spin_unlock(&res->spinlock); mlog(0, "just reordered a local lock!\n"); continue; } /* lock is for another node. */ newlock = dlm_new_lock(ml->type, ml->node, be64_to_cpu(ml->cookie), NULL); if (!newlock) { ret = -ENOMEM; goto leave; } lksb = newlock->lksb; dlm_lock_attach_lockres(newlock, res); if (ml->convert_type != LKM_IVMODE) { BUG_ON(queue != &res->converting); newlock->ml.convert_type = ml->convert_type; } lksb->flags |= (ml->flags & (DLM_LKSB_PUT_LVB|DLM_LKSB_GET_LVB)); if (ml->type == LKM_NLMODE) goto skip_lvb; /* * If the lock is in the blocked list it can't have a valid lvb, * so skip it */ if (ml->list == DLM_BLOCKED_LIST) goto skip_lvb; if (!dlm_lvb_is_empty(mres->lvb)) { if (lksb->flags & DLM_LKSB_PUT_LVB) { /* other node was trying to update * lvb when node died. recreate the * lksb with the updated lvb. */ memcpy(lksb->lvb, mres->lvb, DLM_LVB_LEN); /* the lock resource lvb update must happen * NOW, before the spinlock is dropped. * we no longer wait for the AST to update * the lvb. */ memcpy(res->lvb, mres->lvb, DLM_LVB_LEN); } else { /* otherwise, the node is sending its * most recent valid lvb info */ BUG_ON(ml->type != LKM_EXMODE && ml->type != LKM_PRMODE); if (!dlm_lvb_is_empty(res->lvb) && (ml->type == LKM_EXMODE || memcmp(res->lvb, mres->lvb, DLM_LVB_LEN))) { int i; mlog(ML_ERROR, "%s:%.*s: received bad " "lvb! type=%d\n", dlm->name, res->lockname.len, res->lockname.name, ml->type); printk("lockres lvb=["); for (i=0; i<DLM_LVB_LEN; i++) printk("%02x", res->lvb[i]); printk("]\nmigrated lvb=["); for (i=0; i<DLM_LVB_LEN; i++) printk("%02x", mres->lvb[i]); printk("]\n"); dlm_print_one_lock_resource(res); BUG(); } memcpy(res->lvb, mres->lvb, DLM_LVB_LEN); } } skip_lvb: /* NOTE: * wrt lock queue ordering and recovery: * 1. order of locks on granted queue is * meaningless. * 2. order of locks on converting queue is * LOST with the node death. sorry charlie. * 3. order of locks on the blocked queue is * also LOST. * order of locks does not affect integrity, it * just means that a lock request may get pushed * back in line as a result of the node death. * also note that for a given node the lock order * for its secondary queue locks is preserved * relative to each other, but clearly *not* * preserved relative to locks from other nodes. */ bad = 0; spin_lock(&res->spinlock); list_for_each_entry(lock, queue, list) { if (lock->ml.cookie == ml->cookie) { c = lock->ml.cookie; mlog(ML_ERROR, "%s:%.*s: %u:%llu: lock already " "exists on this lockres!\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(c)), dlm_get_lock_cookie_seq(be64_to_cpu(c))); mlog(ML_NOTICE, "sent lock: type=%d, conv=%d, " "node=%u, cookie=%u:%llu, queue=%d\n", ml->type, ml->convert_type, ml->node, dlm_get_lock_cookie_node(be64_to_cpu(ml->cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(ml->cookie)), ml->list); __dlm_print_one_lock_resource(res); bad = 1; break; } } if (!bad) { dlm_lock_get(newlock); if (mres->flags & DLM_MRES_RECOVERY && ml->list == DLM_CONVERTING_LIST && newlock->ml.type > newlock->ml.convert_type) { /* newlock is doing downconvert, add it to the * head of converting list */ list_add(&newlock->list, queue); } else list_add_tail(&newlock->list, queue); mlog(0, "%s:%.*s: added lock for node %u, " "setting refmap bit\n", dlm->name, res->lockname.len, res->lockname.name, ml->node); dlm_lockres_set_refmap_bit(dlm, res, ml->node); } spin_unlock(&res->spinlock); } mlog(0, "done running all the locks\n"); leave: /* balance the ref taken when the work was queued */ spin_lock(&res->spinlock); dlm_lockres_drop_inflight_ref(dlm, res); spin_unlock(&res->spinlock); if (ret < 0) mlog_errno(ret); return ret; } void dlm_move_lockres_to_recovery_list(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { int i; struct list_head *queue; struct dlm_lock *lock, *next; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); res->state |= DLM_LOCK_RES_RECOVERING; if (!list_empty(&res->recovering)) { mlog(0, "Recovering res %s:%.*s, is already on recovery list!\n", dlm->name, res->lockname.len, res->lockname.name); list_del_init(&res->recovering); dlm_lockres_put(res); } /* We need to hold a reference while on the recovery list */ dlm_lockres_get(res); list_add_tail(&res->recovering, &dlm->reco.resources); /* find any pending locks and put them back on proper list */ for (i=DLM_BLOCKED_LIST; i>=DLM_GRANTED_LIST; i--) { queue = dlm_list_idx_to_ptr(res, i); list_for_each_entry_safe(lock, next, queue, list) { dlm_lock_get(lock); if (lock->convert_pending) { /* move converting lock back to granted */ mlog(0, "node died with convert pending " "on %.*s. move back to granted list.\n", res->lockname.len, res->lockname.name); dlm_revert_pending_convert(res, lock); lock->convert_pending = 0; } else if (lock->lock_pending) { /* remove pending lock requests completely */ BUG_ON(i != DLM_BLOCKED_LIST); mlog(0, "node died with lock pending " "on %.*s. remove from blocked list and skip.\n", res->lockname.len, res->lockname.name); /* lock will be floating until ref in * dlmlock_remote is freed after the network * call returns. ok for it to not be on any * list since no ast can be called * (the master is dead). */ dlm_revert_pending_lock(res, lock); lock->lock_pending = 0; } else if (lock->unlock_pending) { /* if an unlock was in progress, treat as * if this had completed successfully * before sending this lock state to the * new master. note that the dlm_unlock * call is still responsible for calling * the unlockast. that will happen after * the network call times out. for now, * just move lists to prepare the new * recovery master. */ BUG_ON(i != DLM_GRANTED_LIST); mlog(0, "node died with unlock pending " "on %.*s. remove from blocked list and skip.\n", res->lockname.len, res->lockname.name); dlm_commit_pending_unlock(res, lock); lock->unlock_pending = 0; } else if (lock->cancel_pending) { /* if a cancel was in progress, treat as * if this had completed successfully * before sending this lock state to the * new master */ BUG_ON(i != DLM_CONVERTING_LIST); mlog(0, "node died with cancel pending " "on %.*s. move back to granted list.\n", res->lockname.len, res->lockname.name); dlm_commit_pending_cancel(res, lock); lock->cancel_pending = 0; } dlm_lock_put(lock); } } } /* removes all recovered locks from the recovery list. * sets the res->owner to the new master. * unsets the RECOVERY flag and wakes waiters. */ static void dlm_finish_local_lockres_recovery(struct dlm_ctxt *dlm, u8 dead_node, u8 new_master) { int i; struct hlist_head *bucket; struct dlm_lock_resource *res, *next; assert_spin_locked(&dlm->spinlock); list_for_each_entry_safe(res, next, &dlm->reco.resources, recovering) { if (res->owner == dead_node) { mlog(0, "%s: res %.*s, Changing owner from %u to %u\n", dlm->name, res->lockname.len, res->lockname.name, res->owner, new_master); list_del_init(&res->recovering); spin_lock(&res->spinlock); /* new_master has our reference from * the lock state sent during recovery */ dlm_change_lockres_owner(dlm, res, new_master); res->state &= ~DLM_LOCK_RES_RECOVERING; if (__dlm_lockres_has_locks(res)) __dlm_dirty_lockres(dlm, res); spin_unlock(&res->spinlock); wake_up(&res->wq); dlm_lockres_put(res); } } /* this will become unnecessary eventually, but * for now we need to run the whole hash, clear * the RECOVERING state and set the owner * if necessary */ for (i = 0; i < DLM_HASH_BUCKETS; i++) { bucket = dlm_lockres_hash(dlm, i); hlist_for_each_entry(res, bucket, hash_node) { if (res->state & DLM_LOCK_RES_RECOVERY_WAITING) { spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_RECOVERY_WAITING; spin_unlock(&res->spinlock); wake_up(&res->wq); } if (!(res->state & DLM_LOCK_RES_RECOVERING)) continue; if (res->owner != dead_node && res->owner != dlm->node_num) continue; if (!list_empty(&res->recovering)) { list_del_init(&res->recovering); dlm_lockres_put(res); } /* new_master has our reference from * the lock state sent during recovery */ mlog(0, "%s: res %.*s, Changing owner from %u to %u\n", dlm->name, res->lockname.len, res->lockname.name, res->owner, new_master); spin_lock(&res->spinlock); dlm_change_lockres_owner(dlm, res, new_master); res->state &= ~DLM_LOCK_RES_RECOVERING; if (__dlm_lockres_has_locks(res)) __dlm_dirty_lockres(dlm, res); spin_unlock(&res->spinlock); wake_up(&res->wq); } } } static inline int dlm_lvb_needs_invalidation(struct dlm_lock *lock, int local) { if (local) { if (lock->ml.type != LKM_EXMODE && lock->ml.type != LKM_PRMODE) return 1; } else if (lock->ml.type == LKM_EXMODE) return 1; return 0; } static void dlm_revalidate_lvb(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 dead_node) { struct list_head *queue; struct dlm_lock *lock; int blank_lvb = 0, local = 0; int i; u8 search_node; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); if (res->owner == dlm->node_num) /* if this node owned the lockres, and if the dead node * had an EX when he died, blank out the lvb */ search_node = dead_node; else { /* if this is a secondary lockres, and we had no EX or PR * locks granted, we can no longer trust the lvb */ search_node = dlm->node_num; local = 1; /* check local state for valid lvb */ } for (i=DLM_GRANTED_LIST; i<=DLM_CONVERTING_LIST; i++) { queue = dlm_list_idx_to_ptr(res, i); list_for_each_entry(lock, queue, list) { if (lock->ml.node == search_node) { if (dlm_lvb_needs_invalidation(lock, local)) { /* zero the lksb lvb and lockres lvb */ blank_lvb = 1; memset(lock->lksb->lvb, 0, DLM_LVB_LEN); } } } } if (blank_lvb) { mlog(0, "clearing %.*s lvb, dead node %u had EX\n", res->lockname.len, res->lockname.name, dead_node); memset(res->lvb, 0, DLM_LVB_LEN); } } static void dlm_free_dead_locks(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 dead_node) { struct dlm_lock *lock, *next; unsigned int freed = 0; /* this node is the lockres master: * 1) remove any stale locks for the dead node * 2) if the dead node had an EX when he died, blank out the lvb */ assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); /* We do two dlm_lock_put(). One for removing from list and the other is * to force the DLM_UNLOCK_FREE_LOCK action so as to free the locks */ /* TODO: check pending_asts, pending_basts here */ list_for_each_entry_safe(lock, next, &res->granted, list) { if (lock->ml.node == dead_node) { list_del_init(&lock->list); dlm_lock_put(lock); /* Can't schedule DLM_UNLOCK_FREE_LOCK - do manually */ dlm_lock_put(lock); freed++; } } list_for_each_entry_safe(lock, next, &res->converting, list) { if (lock->ml.node == dead_node) { list_del_init(&lock->list); dlm_lock_put(lock); /* Can't schedule DLM_UNLOCK_FREE_LOCK - do manually */ dlm_lock_put(lock); freed++; } } list_for_each_entry_safe(lock, next, &res->blocked, list) { if (lock->ml.node == dead_node) { list_del_init(&lock->list); dlm_lock_put(lock); /* Can't schedule DLM_UNLOCK_FREE_LOCK - do manually */ dlm_lock_put(lock); freed++; } } if (freed) { mlog(0, "%s:%.*s: freed %u locks for dead node %u, " "dropping ref from lockres\n", dlm->name, res->lockname.len, res->lockname.name, freed, dead_node); if(!test_bit(dead_node, res->refmap)) { mlog(ML_ERROR, "%s:%.*s: freed %u locks for dead node %u, " "but ref was not set\n", dlm->name, res->lockname.len, res->lockname.name, freed, dead_node); __dlm_print_one_lock_resource(res); } res->state |= DLM_LOCK_RES_RECOVERY_WAITING; dlm_lockres_clear_refmap_bit(dlm, res, dead_node); } else if (test_bit(dead_node, res->refmap)) { mlog(0, "%s:%.*s: dead node %u had a ref, but had " "no locks and had not purged before dying\n", dlm->name, res->lockname.len, res->lockname.name, dead_node); dlm_lockres_clear_refmap_bit(dlm, res, dead_node); } /* do not kick thread yet */ __dlm_dirty_lockres(dlm, res); } static void dlm_do_local_recovery_cleanup(struct dlm_ctxt *dlm, u8 dead_node) { struct dlm_lock_resource *res; int i; struct hlist_head *bucket; struct hlist_node *tmp; struct dlm_lock *lock; /* purge any stale mles */ dlm_clean_master_list(dlm, dead_node); /* * now clean up all lock resources. there are two rules: * * 1) if the dead node was the master, move the lockres * to the recovering list. set the RECOVERING flag. * this lockres needs to be cleaned up before it can * be used further. * * 2) if this node was the master, remove all locks from * each of the lockres queues that were owned by the * dead node. once recovery finishes, the dlm thread * can be kicked again to see if any ASTs or BASTs * need to be fired as a result. */ for (i = 0; i < DLM_HASH_BUCKETS; i++) { bucket = dlm_lockres_hash(dlm, i); hlist_for_each_entry_safe(res, tmp, bucket, hash_node) { /* always prune any $RECOVERY entries for dead nodes, * otherwise hangs can occur during later recovery */ if (dlm_is_recovery_lock(res->lockname.name, res->lockname.len)) { spin_lock(&res->spinlock); list_for_each_entry(lock, &res->granted, list) { if (lock->ml.node == dead_node) { mlog(0, "AHA! there was " "a $RECOVERY lock for dead " "node %u (%s)!\n", dead_node, dlm->name); list_del_init(&lock->list); dlm_lock_put(lock); /* Can't schedule * DLM_UNLOCK_FREE_LOCK * - do manually */ dlm_lock_put(lock); break; } } if ((res->owner == dead_node) && (res->state & DLM_LOCK_RES_DROPPING_REF)) { dlm_lockres_get(res); __dlm_do_purge_lockres(dlm, res); spin_unlock(&res->spinlock); wake_up(&res->wq); dlm_lockres_put(res); continue; } else if (res->owner == dlm->node_num) dlm_lockres_clear_refmap_bit(dlm, res, dead_node); spin_unlock(&res->spinlock); continue; } spin_lock(&res->spinlock); /* zero the lvb if necessary */ dlm_revalidate_lvb(dlm, res, dead_node); if (res->owner == dead_node) { if (res->state & DLM_LOCK_RES_DROPPING_REF) { mlog(0, "%s:%.*s: owned by " "dead node %u, this node was " "dropping its ref when master died. " "continue, purging the lockres.\n", dlm->name, res->lockname.len, res->lockname.name, dead_node); dlm_lockres_get(res); __dlm_do_purge_lockres(dlm, res); spin_unlock(&res->spinlock); wake_up(&res->wq); dlm_lockres_put(res); continue; } dlm_move_lockres_to_recovery_list(dlm, res); } else if (res->owner == dlm->node_num) { dlm_free_dead_locks(dlm, res, dead_node); __dlm_lockres_calc_usage(dlm, res); } else if (res->owner == DLM_LOCK_RES_OWNER_UNKNOWN) { if (test_bit(dead_node, res->refmap)) { mlog(0, "%s:%.*s: dead node %u had a ref, but had " "no locks and had not purged before dying\n", dlm->name, res->lockname.len, res->lockname.name, dead_node); dlm_lockres_clear_refmap_bit(dlm, res, dead_node); } } spin_unlock(&res->spinlock); } } } static void __dlm_hb_node_down(struct dlm_ctxt *dlm, int idx) { assert_spin_locked(&dlm->spinlock); if (dlm->reco.new_master == idx) { mlog(0, "%s: recovery master %d just died\n", dlm->name, idx); if (dlm->reco.state & DLM_RECO_STATE_FINALIZE) { /* finalize1 was reached, so it is safe to clear * the new_master and dead_node. that recovery * is complete. */ mlog(0, "%s: dead master %d had reached " "finalize1 state, clearing\n", dlm->name, idx); dlm->reco.state &= ~DLM_RECO_STATE_FINALIZE; __dlm_reset_recovery(dlm); } } /* Clean up join state on node death. */ if (dlm->joining_node == idx) { mlog(0, "Clearing join state for node %u\n", idx); __dlm_set_joining_node(dlm, DLM_LOCK_RES_OWNER_UNKNOWN); } /* check to see if the node is already considered dead */ if (!test_bit(idx, dlm->live_nodes_map)) { mlog(0, "for domain %s, node %d is already dead. " "another node likely did recovery already.\n", dlm->name, idx); return; } /* check to see if we do not care about this node */ if (!test_bit(idx, dlm->domain_map)) { /* This also catches the case that we get a node down * but haven't joined the domain yet. */ mlog(0, "node %u already removed from domain!\n", idx); return; } clear_bit(idx, dlm->live_nodes_map); /* make sure local cleanup occurs before the heartbeat events */ if (!test_bit(idx, dlm->recovery_map)) dlm_do_local_recovery_cleanup(dlm, idx); /* notify anything attached to the heartbeat events */ dlm_hb_event_notify_attached(dlm, idx, 0); mlog(0, "node %u being removed from domain map!\n", idx); clear_bit(idx, dlm->domain_map); clear_bit(idx, dlm->exit_domain_map); /* wake up migration waiters if a node goes down. * perhaps later we can genericize this for other waiters. */ wake_up(&dlm->migration_wq); set_bit(idx, dlm->recovery_map); } void dlm_hb_node_down_cb(struct o2nm_node *node, int idx, void *data) { struct dlm_ctxt *dlm = data; if (!dlm_grab(dlm)) return; /* * This will notify any dlm users that a node in our domain * went away without notifying us first. */ if (test_bit(idx, dlm->domain_map)) dlm_fire_domain_eviction_callbacks(dlm, idx); spin_lock(&dlm->spinlock); __dlm_hb_node_down(dlm, idx); spin_unlock(&dlm->spinlock); dlm_put(dlm); } void dlm_hb_node_up_cb(struct o2nm_node *node, int idx, void *data) { struct dlm_ctxt *dlm = data; if (!dlm_grab(dlm)) return; spin_lock(&dlm->spinlock); set_bit(idx, dlm->live_nodes_map); /* do NOT notify mle attached to the heartbeat events. * new nodes are not interesting in mastery until joined. */ spin_unlock(&dlm->spinlock); dlm_put(dlm); } static void dlm_reco_ast(void *astdata) { struct dlm_ctxt *dlm = astdata; mlog(0, "ast for recovery lock fired!, this=%u, dlm=%s\n", dlm->node_num, dlm->name); } static void dlm_reco_bast(void *astdata, int blocked_type) { struct dlm_ctxt *dlm = astdata; mlog(0, "bast for recovery lock fired!, this=%u, dlm=%s\n", dlm->node_num, dlm->name); } static void dlm_reco_unlock_ast(void *astdata, enum dlm_status st) { mlog(0, "unlockast for recovery lock fired!\n"); } /* * dlm_pick_recovery_master will continually attempt to use * dlmlock() on the special "$RECOVERY" lockres with the * LKM_NOQUEUE flag to get an EX. every thread that enters * this function on each node racing to become the recovery * master will not stop attempting this until either: * a) this node gets the EX (and becomes the recovery master), * or b) dlm->reco.new_master gets set to some nodenum * != O2NM_INVALID_NODE_NUM (another node will do the reco). * so each time a recovery master is needed, the entire cluster * will sync at this point. if the new master dies, that will * be detected in dlm_do_recovery */ static int dlm_pick_recovery_master(struct dlm_ctxt *dlm) { enum dlm_status ret; struct dlm_lockstatus lksb; int status = -EINVAL; mlog(0, "starting recovery of %s at %lu, dead=%u, this=%u\n", dlm->name, jiffies, dlm->reco.dead_node, dlm->node_num); again: memset(&lksb, 0, sizeof(lksb)); ret = dlmlock(dlm, LKM_EXMODE, &lksb, LKM_NOQUEUE|LKM_RECOVERY, DLM_RECOVERY_LOCK_NAME, DLM_RECOVERY_LOCK_NAME_LEN, dlm_reco_ast, dlm, dlm_reco_bast); mlog(0, "%s: dlmlock($RECOVERY) returned %d, lksb=%d\n", dlm->name, ret, lksb.status); if (ret == DLM_NORMAL) { mlog(0, "dlm=%s dlmlock says I got it (this=%u)\n", dlm->name, dlm->node_num); /* got the EX lock. check to see if another node * just became the reco master */ if (dlm_reco_master_ready(dlm)) { mlog(0, "%s: got reco EX lock, but %u will " "do the recovery\n", dlm->name, dlm->reco.new_master); status = -EEXIST; } else { status = 0; /* see if recovery was already finished elsewhere */ spin_lock(&dlm->spinlock); if (dlm->reco.dead_node == O2NM_INVALID_NODE_NUM) { status = -EINVAL; mlog(0, "%s: got reco EX lock, but " "node got recovered already\n", dlm->name); if (dlm->reco.new_master != O2NM_INVALID_NODE_NUM) { mlog(ML_ERROR, "%s: new master is %u " "but no dead node!\n", dlm->name, dlm->reco.new_master); BUG(); } } spin_unlock(&dlm->spinlock); } /* if this node has actually become the recovery master, * set the master and send the messages to begin recovery */ if (!status) { mlog(0, "%s: dead=%u, this=%u, sending " "begin_reco now\n", dlm->name, dlm->reco.dead_node, dlm->node_num); status = dlm_send_begin_reco_message(dlm, dlm->reco.dead_node); /* this always succeeds */ BUG_ON(status); /* set the new_master to this node */ spin_lock(&dlm->spinlock); dlm_set_reco_master(dlm, dlm->node_num); spin_unlock(&dlm->spinlock); } /* recovery lock is a special case. ast will not get fired, * so just go ahead and unlock it. */ ret = dlmunlock(dlm, &lksb, 0, dlm_reco_unlock_ast, dlm); if (ret == DLM_DENIED) { mlog(0, "got DLM_DENIED, trying LKM_CANCEL\n"); ret = dlmunlock(dlm, &lksb, LKM_CANCEL, dlm_reco_unlock_ast, dlm); } if (ret != DLM_NORMAL) { /* this would really suck. this could only happen * if there was a network error during the unlock * because of node death. this means the unlock * is actually "done" and the lock structure is * even freed. we can continue, but only * because this specific lock name is special. */ mlog(ML_ERROR, "dlmunlock returned %d\n", ret); } } else if (ret == DLM_NOTQUEUED) { mlog(0, "dlm=%s dlmlock says another node got it (this=%u)\n", dlm->name, dlm->node_num); /* another node is master. wait on * reco.new_master != O2NM_INVALID_NODE_NUM * for at most one second */ wait_event_timeout(dlm->dlm_reco_thread_wq, dlm_reco_master_ready(dlm), msecs_to_jiffies(1000)); if (!dlm_reco_master_ready(dlm)) { mlog(0, "%s: reco master taking awhile\n", dlm->name); goto again; } /* another node has informed this one that it is reco master */ mlog(0, "%s: reco master %u is ready to recover %u\n", dlm->name, dlm->reco.new_master, dlm->reco.dead_node); status = -EEXIST; } else if (ret == DLM_RECOVERING) { mlog(0, "dlm=%s dlmlock says master node died (this=%u)\n", dlm->name, dlm->node_num); goto again; } else { struct dlm_lock_resource *res; /* dlmlock returned something other than NOTQUEUED or NORMAL */ mlog(ML_ERROR, "%s: got %s from dlmlock($RECOVERY), " "lksb.status=%s\n", dlm->name, dlm_errname(ret), dlm_errname(lksb.status)); res = dlm_lookup_lockres(dlm, DLM_RECOVERY_LOCK_NAME, DLM_RECOVERY_LOCK_NAME_LEN); if (res) { dlm_print_one_lock_resource(res); dlm_lockres_put(res); } else { mlog(ML_ERROR, "recovery lock not found\n"); } BUG(); } return status; } static int dlm_send_begin_reco_message(struct dlm_ctxt *dlm, u8 dead_node) { struct dlm_begin_reco br; int ret = 0; struct dlm_node_iter iter; int nodenum; int status; mlog(0, "%s: dead node is %u\n", dlm->name, dead_node); spin_lock(&dlm->spinlock); dlm_node_iter_init(dlm->domain_map, &iter); spin_unlock(&dlm->spinlock); clear_bit(dead_node, iter.node_map); memset(&br, 0, sizeof(br)); br.node_idx = dlm->node_num; br.dead_node = dead_node; while ((nodenum = dlm_node_iter_next(&iter)) >= 0) { ret = 0; if (nodenum == dead_node) { mlog(0, "not sending begin reco to dead node " "%u\n", dead_node); continue; } if (nodenum == dlm->node_num) { mlog(0, "not sending begin reco to self\n"); continue; } retry: mlog(0, "attempting to send begin reco msg to %d\n", nodenum); ret = o2net_send_message(DLM_BEGIN_RECO_MSG, dlm->key, &br, sizeof(br), nodenum, &status); /* negative status is handled ok by caller here */ if (ret >= 0) ret = status; if (dlm_is_host_down(ret)) { /* node is down. not involved in recovery * so just keep going */ mlog(ML_NOTICE, "%s: node %u was down when sending " "begin reco msg (%d)\n", dlm->name, nodenum, ret); ret = 0; } /* * Prior to commit aad1b15310b9bcd59fa81ab8f2b1513b59553ea8, * dlm_begin_reco_handler() returned EAGAIN and not -EAGAIN. * We are handling both for compatibility reasons. */ if (ret == -EAGAIN || ret == EAGAIN) { mlog(0, "%s: trying to start recovery of node " "%u, but node %u is waiting for last recovery " "to complete, backoff for a bit\n", dlm->name, dead_node, nodenum); msleep(100); goto retry; } if (ret < 0) { struct dlm_lock_resource *res; /* this is now a serious problem, possibly ENOMEM * in the network stack. must retry */ mlog_errno(ret); mlog(ML_ERROR, "begin reco of dlm %s to node %u " "returned %d\n", dlm->name, nodenum, ret); res = dlm_lookup_lockres(dlm, DLM_RECOVERY_LOCK_NAME, DLM_RECOVERY_LOCK_NAME_LEN); if (res) { dlm_print_one_lock_resource(res); dlm_lockres_put(res); } else { mlog(ML_ERROR, "recovery lock not found\n"); } /* sleep for a bit in hopes that we can avoid * another ENOMEM */ msleep(100); goto retry; } } return ret; } int dlm_begin_reco_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_begin_reco *br = (struct dlm_begin_reco *)msg->buf; /* ok to return 0, domain has gone away */ if (!dlm_grab(dlm)) return 0; spin_lock(&dlm->spinlock); if (dlm->reco.state & DLM_RECO_STATE_FINALIZE) { mlog(0, "%s: node %u wants to recover node %u (%u:%u) " "but this node is in finalize state, waiting on finalize2\n", dlm->name, br->node_idx, br->dead_node, dlm->reco.dead_node, dlm->reco.new_master); spin_unlock(&dlm->spinlock); dlm_put(dlm); return -EAGAIN; } spin_unlock(&dlm->spinlock); mlog(0, "%s: node %u wants to recover node %u (%u:%u)\n", dlm->name, br->node_idx, br->dead_node, dlm->reco.dead_node, dlm->reco.new_master); dlm_fire_domain_eviction_callbacks(dlm, br->dead_node); spin_lock(&dlm->spinlock); if (dlm->reco.new_master != O2NM_INVALID_NODE_NUM) { if (test_bit(dlm->reco.new_master, dlm->recovery_map)) { mlog(0, "%s: new_master %u died, changing " "to %u\n", dlm->name, dlm->reco.new_master, br->node_idx); } else { mlog(0, "%s: new_master %u NOT DEAD, changing " "to %u\n", dlm->name, dlm->reco.new_master, br->node_idx); /* may not have seen the new master as dead yet */ } } if (dlm->reco.dead_node != O2NM_INVALID_NODE_NUM) { mlog(ML_NOTICE, "%s: dead_node previously set to %u, " "node %u changing it to %u\n", dlm->name, dlm->reco.dead_node, br->node_idx, br->dead_node); } dlm_set_reco_master(dlm, br->node_idx); dlm_set_reco_dead_node(dlm, br->dead_node); if (!test_bit(br->dead_node, dlm->recovery_map)) { mlog(0, "recovery master %u sees %u as dead, but this " "node has not yet. marking %u as dead\n", br->node_idx, br->dead_node, br->dead_node); if (!test_bit(br->dead_node, dlm->domain_map) || !test_bit(br->dead_node, dlm->live_nodes_map)) mlog(0, "%u not in domain/live_nodes map " "so setting it in reco map manually\n", br->dead_node); /* force the recovery cleanup in __dlm_hb_node_down * both of these will be cleared in a moment */ set_bit(br->dead_node, dlm->domain_map); set_bit(br->dead_node, dlm->live_nodes_map); __dlm_hb_node_down(dlm, br->dead_node); } spin_unlock(&dlm->spinlock); dlm_kick_recovery_thread(dlm); mlog(0, "%s: recovery started by node %u, for %u (%u:%u)\n", dlm->name, br->node_idx, br->dead_node, dlm->reco.dead_node, dlm->reco.new_master); dlm_put(dlm); return 0; } #define DLM_FINALIZE_STAGE2 0x01 static int dlm_send_finalize_reco_message(struct dlm_ctxt *dlm) { int ret = 0; struct dlm_finalize_reco fr; struct dlm_node_iter iter; int nodenum; int status; int stage = 1; mlog(0, "finishing recovery for node %s:%u, " "stage %d\n", dlm->name, dlm->reco.dead_node, stage); spin_lock(&dlm->spinlock); dlm_node_iter_init(dlm->domain_map, &iter); spin_unlock(&dlm->spinlock); stage2: memset(&fr, 0, sizeof(fr)); fr.node_idx = dlm->node_num; fr.dead_node = dlm->reco.dead_node; if (stage == 2) fr.flags |= DLM_FINALIZE_STAGE2; while ((nodenum = dlm_node_iter_next(&iter)) >= 0) { if (nodenum == dlm->node_num) continue; ret = o2net_send_message(DLM_FINALIZE_RECO_MSG, dlm->key, &fr, sizeof(fr), nodenum, &status); if (ret >= 0) ret = status; if (ret < 0) { mlog(ML_ERROR, "Error %d when sending message %u (key " "0x%x) to node %u\n", ret, DLM_FINALIZE_RECO_MSG, dlm->key, nodenum); if (dlm_is_host_down(ret)) { /* this has no effect on this recovery * session, so set the status to zero to * finish out the last recovery */ mlog(ML_ERROR, "node %u went down after this " "node finished recovery.\n", nodenum); ret = 0; continue; } break; } } if (stage == 1) { /* reset the node_iter back to the top and send finalize2 */ iter.curnode = -1; stage = 2; goto stage2; } return ret; } int dlm_finalize_reco_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_finalize_reco *fr = (struct dlm_finalize_reco *)msg->buf; int stage = 1; /* ok to return 0, domain has gone away */ if (!dlm_grab(dlm)) return 0; if (fr->flags & DLM_FINALIZE_STAGE2) stage = 2; mlog(0, "%s: node %u finalizing recovery stage%d of " "node %u (%u:%u)\n", dlm->name, fr->node_idx, stage, fr->dead_node, dlm->reco.dead_node, dlm->reco.new_master); spin_lock(&dlm->spinlock); if (dlm->reco.new_master != fr->node_idx) { mlog(ML_ERROR, "node %u sent recovery finalize msg, but node " "%u is supposed to be the new master, dead=%u\n", fr->node_idx, dlm->reco.new_master, fr->dead_node); BUG(); } if (dlm->reco.dead_node != fr->dead_node) { mlog(ML_ERROR, "node %u sent recovery finalize msg for dead " "node %u, but node %u is supposed to be dead\n", fr->node_idx, fr->dead_node, dlm->reco.dead_node); BUG(); } switch (stage) { case 1: dlm_finish_local_lockres_recovery(dlm, fr->dead_node, fr->node_idx); if (dlm->reco.state & DLM_RECO_STATE_FINALIZE) { mlog(ML_ERROR, "%s: received finalize1 from " "new master %u for dead node %u, but " "this node has already received it!\n", dlm->name, fr->node_idx, fr->dead_node); dlm_print_reco_node_status(dlm); BUG(); } dlm->reco.state |= DLM_RECO_STATE_FINALIZE; spin_unlock(&dlm->spinlock); break; case 2: if (!(dlm->reco.state & DLM_RECO_STATE_FINALIZE)) { mlog(ML_ERROR, "%s: received finalize2 from " "new master %u for dead node %u, but " "this node did not have finalize1!\n", dlm->name, fr->node_idx, fr->dead_node); dlm_print_reco_node_status(dlm); BUG(); } dlm->reco.state &= ~DLM_RECO_STATE_FINALIZE; __dlm_reset_recovery(dlm); spin_unlock(&dlm->spinlock); dlm_kick_recovery_thread(dlm); break; } mlog(0, "%s: recovery done, reco master was %u, dead now %u, master now %u\n", dlm->name, fr->node_idx, dlm->reco.dead_node, dlm->reco.new_master); dlm_put(dlm); return 0; }
linux-master
fs/ocfs2/dlm/dlmrecovery.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmast.c * * AST and BAST functionality for local and remote nodes * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/spinlock.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #define MLOG_MASK_PREFIX ML_DLM #include "../cluster/masklog.h" static void dlm_update_lvb(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock); static int dlm_should_cancel_bast(struct dlm_ctxt *dlm, struct dlm_lock *lock); /* Should be called as an ast gets queued to see if the new * lock level will obsolete a pending bast. * For example, if dlm_thread queued a bast for an EX lock that * was blocking another EX, but before sending the bast the * lock owner downconverted to NL, the bast is now obsolete. * Only the ast should be sent. * This is needed because the lock and convert paths can queue * asts out-of-band (not waiting for dlm_thread) in order to * allow for LKM_NOQUEUE to get immediate responses. */ static int dlm_should_cancel_bast(struct dlm_ctxt *dlm, struct dlm_lock *lock) { assert_spin_locked(&dlm->ast_lock); assert_spin_locked(&lock->spinlock); if (lock->ml.highest_blocked == LKM_IVMODE) return 0; BUG_ON(lock->ml.highest_blocked == LKM_NLMODE); if (lock->bast_pending && list_empty(&lock->bast_list)) /* old bast already sent, ok */ return 0; if (lock->ml.type == LKM_EXMODE) /* EX blocks anything left, any bast still valid */ return 0; else if (lock->ml.type == LKM_NLMODE) /* NL blocks nothing, no reason to send any bast, cancel it */ return 1; else if (lock->ml.highest_blocked != LKM_EXMODE) /* PR only blocks EX */ return 1; return 0; } void __dlm_queue_ast(struct dlm_ctxt *dlm, struct dlm_lock *lock) { struct dlm_lock_resource *res; BUG_ON(!dlm); BUG_ON(!lock); res = lock->lockres; assert_spin_locked(&dlm->ast_lock); if (!list_empty(&lock->ast_list)) { mlog(ML_ERROR, "%s: res %.*s, lock %u:%llu, " "AST list not empty, pending %d, newlevel %d\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), lock->ast_pending, lock->ml.type); BUG(); } if (lock->ast_pending) mlog(0, "%s: res %.*s, lock %u:%llu, AST getting flushed\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie))); /* putting lock on list, add a ref */ dlm_lock_get(lock); spin_lock(&lock->spinlock); /* check to see if this ast obsoletes the bast */ if (dlm_should_cancel_bast(dlm, lock)) { mlog(0, "%s: res %.*s, lock %u:%llu, Cancelling BAST\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie))); lock->bast_pending = 0; list_del_init(&lock->bast_list); lock->ml.highest_blocked = LKM_IVMODE; /* removing lock from list, remove a ref. guaranteed * this won't be the last ref because of the get above, * so res->spinlock will not be taken here */ dlm_lock_put(lock); /* free up the reserved bast that we are cancelling. * guaranteed that this will not be the last reserved * ast because *both* an ast and a bast were reserved * to get to this point. the res->spinlock will not be * taken here */ dlm_lockres_release_ast(dlm, res); } list_add_tail(&lock->ast_list, &dlm->pending_asts); lock->ast_pending = 1; spin_unlock(&lock->spinlock); } void dlm_queue_ast(struct dlm_ctxt *dlm, struct dlm_lock *lock) { BUG_ON(!dlm); BUG_ON(!lock); spin_lock(&dlm->ast_lock); __dlm_queue_ast(dlm, lock); spin_unlock(&dlm->ast_lock); } void __dlm_queue_bast(struct dlm_ctxt *dlm, struct dlm_lock *lock) { struct dlm_lock_resource *res; BUG_ON(!dlm); BUG_ON(!lock); assert_spin_locked(&dlm->ast_lock); res = lock->lockres; BUG_ON(!list_empty(&lock->bast_list)); if (lock->bast_pending) mlog(0, "%s: res %.*s, lock %u:%llu, BAST getting flushed\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie))); /* putting lock on list, add a ref */ dlm_lock_get(lock); spin_lock(&lock->spinlock); list_add_tail(&lock->bast_list, &dlm->pending_basts); lock->bast_pending = 1; spin_unlock(&lock->spinlock); } static void dlm_update_lvb(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock) { struct dlm_lockstatus *lksb = lock->lksb; BUG_ON(!lksb); /* only updates if this node masters the lockres */ spin_lock(&res->spinlock); if (res->owner == dlm->node_num) { /* check the lksb flags for the direction */ if (lksb->flags & DLM_LKSB_GET_LVB) { mlog(0, "getting lvb from lockres for %s node\n", lock->ml.node == dlm->node_num ? "master" : "remote"); memcpy(lksb->lvb, res->lvb, DLM_LVB_LEN); } /* Do nothing for lvb put requests - they should be done in * place when the lock is downconverted - otherwise we risk * racing gets and puts which could result in old lvb data * being propagated. We leave the put flag set and clear it * here. In the future we might want to clear it at the time * the put is actually done. */ } spin_unlock(&res->spinlock); /* reset any lvb flags on the lksb */ lksb->flags &= ~(DLM_LKSB_PUT_LVB|DLM_LKSB_GET_LVB); } void dlm_do_local_ast(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock) { dlm_astlockfunc_t *fn; mlog(0, "%s: res %.*s, lock %u:%llu, Local AST\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie))); fn = lock->ast; BUG_ON(lock->ml.node != dlm->node_num); dlm_update_lvb(dlm, res, lock); (*fn)(lock->astdata); } int dlm_do_remote_ast(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock) { int ret; struct dlm_lockstatus *lksb; int lksbflags; mlog(0, "%s: res %.*s, lock %u:%llu, Remote AST\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie))); lksb = lock->lksb; BUG_ON(lock->ml.node == dlm->node_num); lksbflags = lksb->flags; dlm_update_lvb(dlm, res, lock); /* lock request came from another node * go do the ast over there */ ret = dlm_send_proxy_ast(dlm, res, lock, lksbflags); return ret; } void dlm_do_local_bast(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int blocked_type) { dlm_bastlockfunc_t *fn = lock->bast; BUG_ON(lock->ml.node != dlm->node_num); mlog(0, "%s: res %.*s, lock %u:%llu, Local BAST, blocked %d\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), blocked_type); (*fn)(lock->astdata, blocked_type); } int dlm_proxy_ast_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { int ret; unsigned int locklen; struct dlm_ctxt *dlm = data; struct dlm_lock_resource *res = NULL; struct dlm_lock *lock = NULL; struct dlm_proxy_ast *past = (struct dlm_proxy_ast *) msg->buf; char *name; struct list_head *head = NULL; __be64 cookie; u32 flags; u8 node; if (!dlm_grab(dlm)) { dlm_error(DLM_REJECTED); return DLM_REJECTED; } mlog_bug_on_msg(!dlm_domain_fully_joined(dlm), "Domain %s not fully joined!\n", dlm->name); name = past->name; locklen = past->namelen; cookie = past->cookie; flags = be32_to_cpu(past->flags); node = past->node_idx; if (locklen > DLM_LOCKID_NAME_MAX) { ret = DLM_IVBUFLEN; mlog(ML_ERROR, "Invalid name length (%d) in proxy ast " "handler!\n", locklen); goto leave; } if ((flags & (LKM_PUT_LVB|LKM_GET_LVB)) == (LKM_PUT_LVB|LKM_GET_LVB)) { mlog(ML_ERROR, "Both PUT and GET lvb specified, (0x%x)\n", flags); ret = DLM_BADARGS; goto leave; } mlog(0, "lvb: %s\n", flags & LKM_PUT_LVB ? "put lvb" : (flags & LKM_GET_LVB ? "get lvb" : "none")); mlog(0, "type=%d, blocked_type=%d\n", past->type, past->blocked_type); if (past->type != DLM_AST && past->type != DLM_BAST) { mlog(ML_ERROR, "Unknown ast type! %d, cookie=%u:%llu" "name=%.*s, node=%u\n", past->type, dlm_get_lock_cookie_node(be64_to_cpu(cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(cookie)), locklen, name, node); ret = DLM_IVLOCKID; goto leave; } res = dlm_lookup_lockres(dlm, name, locklen); if (!res) { mlog(0, "Got %sast for unknown lockres! cookie=%u:%llu, " "name=%.*s, node=%u\n", (past->type == DLM_AST ? "" : "b"), dlm_get_lock_cookie_node(be64_to_cpu(cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(cookie)), locklen, name, node); ret = DLM_IVLOCKID; goto leave; } /* cannot get a proxy ast message if this node owns it */ BUG_ON(res->owner == dlm->node_num); mlog(0, "%s: res %.*s\n", dlm->name, res->lockname.len, res->lockname.name); spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { mlog(0, "Responding with DLM_RECOVERING!\n"); ret = DLM_RECOVERING; goto unlock_out; } if (res->state & DLM_LOCK_RES_MIGRATING) { mlog(0, "Responding with DLM_MIGRATING!\n"); ret = DLM_MIGRATING; goto unlock_out; } /* try convert queue for both ast/bast */ head = &res->converting; lock = NULL; list_for_each_entry(lock, head, list) { if (lock->ml.cookie == cookie) goto do_ast; } /* if not on convert, try blocked for ast, granted for bast */ if (past->type == DLM_AST) head = &res->blocked; else head = &res->granted; list_for_each_entry(lock, head, list) { /* if lock is found but unlock is pending ignore the bast */ if (lock->ml.cookie == cookie) { if (lock->unlock_pending) break; goto do_ast; } } mlog(0, "Got %sast for unknown lock! cookie=%u:%llu, name=%.*s, " "node=%u\n", past->type == DLM_AST ? "" : "b", dlm_get_lock_cookie_node(be64_to_cpu(cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(cookie)), locklen, name, node); ret = DLM_NORMAL; unlock_out: spin_unlock(&res->spinlock); goto leave; do_ast: ret = DLM_NORMAL; if (past->type == DLM_AST) { /* do not alter lock refcount. switching lists. */ list_move_tail(&lock->list, &res->granted); mlog(0, "%s: res %.*s, lock %u:%llu, Granted type %d => %d\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(cookie)), lock->ml.type, lock->ml.convert_type); if (lock->ml.convert_type != LKM_IVMODE) { lock->ml.type = lock->ml.convert_type; lock->ml.convert_type = LKM_IVMODE; } else { // should already be there.... } lock->lksb->status = DLM_NORMAL; /* if we requested the lvb, fetch it into our lksb now */ if (flags & LKM_GET_LVB) { BUG_ON(!(lock->lksb->flags & DLM_LKSB_GET_LVB)); memcpy(lock->lksb->lvb, past->lvb, DLM_LVB_LEN); } } spin_unlock(&res->spinlock); if (past->type == DLM_AST) dlm_do_local_ast(dlm, res, lock); else dlm_do_local_bast(dlm, res, lock, past->blocked_type); leave: if (res) dlm_lockres_put(res); dlm_put(dlm); return ret; } int dlm_send_proxy_ast_msg(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int msg_type, int blocked_type, int flags) { int ret = 0; struct dlm_proxy_ast past; struct kvec vec[2]; size_t veclen = 1; int status; mlog(0, "%s: res %.*s, to %u, type %d, blocked_type %d\n", dlm->name, res->lockname.len, res->lockname.name, lock->ml.node, msg_type, blocked_type); memset(&past, 0, sizeof(struct dlm_proxy_ast)); past.node_idx = dlm->node_num; past.type = msg_type; past.blocked_type = blocked_type; past.namelen = res->lockname.len; memcpy(past.name, res->lockname.name, past.namelen); past.cookie = lock->ml.cookie; vec[0].iov_len = sizeof(struct dlm_proxy_ast); vec[0].iov_base = &past; if (flags & DLM_LKSB_GET_LVB) { be32_add_cpu(&past.flags, LKM_GET_LVB); vec[1].iov_len = DLM_LVB_LEN; vec[1].iov_base = lock->lksb->lvb; veclen++; } ret = o2net_send_message_vec(DLM_PROXY_AST_MSG, dlm->key, vec, veclen, lock->ml.node, &status); if (ret < 0) mlog(ML_ERROR, "%s: res %.*s, error %d send AST to node %u\n", dlm->name, res->lockname.len, res->lockname.name, ret, lock->ml.node); else { if (status == DLM_RECOVERING) { mlog(ML_ERROR, "sent AST to node %u, it thinks this " "node is dead!\n", lock->ml.node); BUG(); } else if (status == DLM_MIGRATING) { mlog(ML_ERROR, "sent AST to node %u, it returned " "DLM_MIGRATING!\n", lock->ml.node); BUG(); } else if (status != DLM_NORMAL && status != DLM_IVLOCKID) { mlog(ML_ERROR, "AST to node %u returned %d!\n", lock->ml.node, status); /* ignore it */ } ret = 0; } return ret; }
linux-master
fs/ocfs2/dlm/dlmast.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmlock.c * * underlying calls for lock creation * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/spinlock.h> #include <linux/delay.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmconvert.h" #define MLOG_MASK_PREFIX ML_DLM #include "../cluster/masklog.h" static struct kmem_cache *dlm_lock_cache; static DEFINE_SPINLOCK(dlm_cookie_lock); static u64 dlm_next_cookie = 1; static enum dlm_status dlm_send_remote_lock_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags); static void dlm_init_lock(struct dlm_lock *newlock, int type, u8 node, u64 cookie); static void dlm_lock_release(struct kref *kref); static void dlm_lock_detach_lockres(struct dlm_lock *lock); int dlm_init_lock_cache(void) { dlm_lock_cache = kmem_cache_create("o2dlm_lock", sizeof(struct dlm_lock), 0, SLAB_HWCACHE_ALIGN, NULL); if (dlm_lock_cache == NULL) return -ENOMEM; return 0; } void dlm_destroy_lock_cache(void) { kmem_cache_destroy(dlm_lock_cache); } /* Tell us whether we can grant a new lock request. * locking: * caller needs: res->spinlock * taken: none * held on exit: none * returns: 1 if the lock can be granted, 0 otherwise. */ static int dlm_can_grant_new_lock(struct dlm_lock_resource *res, struct dlm_lock *lock) { struct dlm_lock *tmplock; list_for_each_entry(tmplock, &res->granted, list) { if (!dlm_lock_compatible(tmplock->ml.type, lock->ml.type)) return 0; } list_for_each_entry(tmplock, &res->converting, list) { if (!dlm_lock_compatible(tmplock->ml.type, lock->ml.type)) return 0; if (!dlm_lock_compatible(tmplock->ml.convert_type, lock->ml.type)) return 0; } return 1; } /* performs lock creation at the lockres master site * locking: * caller needs: none * taken: takes and drops res->spinlock * held on exit: none * returns: DLM_NORMAL, DLM_NOTQUEUED */ static enum dlm_status dlmlock_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags) { int call_ast = 0, kick_thread = 0; enum dlm_status status = DLM_NORMAL; mlog(0, "type=%d\n", lock->ml.type); spin_lock(&res->spinlock); /* if called from dlm_create_lock_handler, need to * ensure it will not sleep in dlm_wait_on_lockres */ status = __dlm_lockres_state_to_status(res); if (status != DLM_NORMAL && lock->ml.node != dlm->node_num) { /* erf. state changed after lock was dropped. */ spin_unlock(&res->spinlock); dlm_error(status); return status; } __dlm_wait_on_lockres(res); __dlm_lockres_reserve_ast(res); if (dlm_can_grant_new_lock(res, lock)) { mlog(0, "I can grant this lock right away\n"); /* got it right away */ lock->lksb->status = DLM_NORMAL; status = DLM_NORMAL; dlm_lock_get(lock); list_add_tail(&lock->list, &res->granted); /* for the recovery lock, we can't allow the ast * to be queued since the dlmthread is already * frozen. but the recovery lock is always locked * with LKM_NOQUEUE so we do not need the ast in * this special case */ if (!dlm_is_recovery_lock(res->lockname.name, res->lockname.len)) { kick_thread = 1; call_ast = 1; } else { mlog(0, "%s: returning DLM_NORMAL to " "node %u for reco lock\n", dlm->name, lock->ml.node); } } else { /* for NOQUEUE request, unless we get the * lock right away, return DLM_NOTQUEUED */ if (flags & LKM_NOQUEUE) { status = DLM_NOTQUEUED; if (dlm_is_recovery_lock(res->lockname.name, res->lockname.len)) { mlog(0, "%s: returning NOTQUEUED to " "node %u for reco lock\n", dlm->name, lock->ml.node); } } else { status = DLM_NORMAL; dlm_lock_get(lock); list_add_tail(&lock->list, &res->blocked); kick_thread = 1; } } spin_unlock(&res->spinlock); wake_up(&res->wq); /* either queue the ast or release it */ if (call_ast) dlm_queue_ast(dlm, lock); else dlm_lockres_release_ast(dlm, res); dlm_lockres_calc_usage(dlm, res); if (kick_thread) dlm_kick_thread(dlm, res); return status; } void dlm_revert_pending_lock(struct dlm_lock_resource *res, struct dlm_lock *lock) { /* remove from local queue if it failed */ list_del_init(&lock->list); lock->lksb->flags &= ~DLM_LKSB_GET_LVB; } /* * locking: * caller needs: none * taken: takes and drops res->spinlock * held on exit: none * returns: DLM_DENIED, DLM_RECOVERING, or net status */ static enum dlm_status dlmlock_remote(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags) { enum dlm_status status = DLM_DENIED; int lockres_changed = 1; mlog(0, "type=%d, lockres %.*s, flags = 0x%x\n", lock->ml.type, res->lockname.len, res->lockname.name, flags); /* * Wait if resource is getting recovered, remastered, etc. * If the resource was remastered and new owner is self, then exit. */ spin_lock(&res->spinlock); __dlm_wait_on_lockres(res); if (res->owner == dlm->node_num) { spin_unlock(&res->spinlock); return DLM_RECOVERING; } res->state |= DLM_LOCK_RES_IN_PROGRESS; /* add lock to local (secondary) queue */ dlm_lock_get(lock); list_add_tail(&lock->list, &res->blocked); lock->lock_pending = 1; spin_unlock(&res->spinlock); /* spec seems to say that you will get DLM_NORMAL when the lock * has been queued, meaning we need to wait for a reply here. */ status = dlm_send_remote_lock_request(dlm, res, lock, flags); spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_IN_PROGRESS; lock->lock_pending = 0; if (status != DLM_NORMAL) { if (status == DLM_RECOVERING && dlm_is_recovery_lock(res->lockname.name, res->lockname.len)) { /* recovery lock was mastered by dead node. * we need to have calc_usage shoot down this * lockres and completely remaster it. */ mlog(0, "%s: recovery lock was owned by " "dead node %u, remaster it now.\n", dlm->name, res->owner); } else if (status != DLM_NOTQUEUED) { /* * DO NOT call calc_usage, as this would unhash * the remote lockres before we ever get to use * it. treat as if we never made any change to * the lockres. */ lockres_changed = 0; dlm_error(status); } dlm_revert_pending_lock(res, lock); dlm_lock_put(lock); } else if (dlm_is_recovery_lock(res->lockname.name, res->lockname.len)) { /* special case for the $RECOVERY lock. * there will never be an AST delivered to put * this lock on the proper secondary queue * (granted), so do it manually. */ mlog(0, "%s: $RECOVERY lock for this node (%u) is " "mastered by %u; got lock, manually granting (no ast)\n", dlm->name, dlm->node_num, res->owner); list_move_tail(&lock->list, &res->granted); } spin_unlock(&res->spinlock); if (lockres_changed) dlm_lockres_calc_usage(dlm, res); wake_up(&res->wq); return status; } /* for remote lock creation. * locking: * caller needs: none, but need res->state & DLM_LOCK_RES_IN_PROGRESS * taken: none * held on exit: none * returns: DLM_NOLOCKMGR, or net status */ static enum dlm_status dlm_send_remote_lock_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, int flags) { struct dlm_create_lock create; int tmpret, status = 0; enum dlm_status ret; memset(&create, 0, sizeof(create)); create.node_idx = dlm->node_num; create.requested_type = lock->ml.type; create.cookie = lock->ml.cookie; create.namelen = res->lockname.len; create.flags = cpu_to_be32(flags); memcpy(create.name, res->lockname.name, create.namelen); tmpret = o2net_send_message(DLM_CREATE_LOCK_MSG, dlm->key, &create, sizeof(create), res->owner, &status); if (tmpret >= 0) { ret = status; if (ret == DLM_REJECTED) { mlog(ML_ERROR, "%s: res %.*s, Stale lockres no longer " "owned by node %u. That node is coming back up " "currently.\n", dlm->name, create.namelen, create.name, res->owner); dlm_print_one_lock_resource(res); BUG(); } } else { mlog(ML_ERROR, "%s: res %.*s, Error %d send CREATE LOCK to " "node %u\n", dlm->name, create.namelen, create.name, tmpret, res->owner); if (dlm_is_host_down(tmpret)) ret = DLM_RECOVERING; else ret = dlm_err_to_dlm_status(tmpret); } return ret; } void dlm_lock_get(struct dlm_lock *lock) { kref_get(&lock->lock_refs); } void dlm_lock_put(struct dlm_lock *lock) { kref_put(&lock->lock_refs, dlm_lock_release); } static void dlm_lock_release(struct kref *kref) { struct dlm_lock *lock; lock = container_of(kref, struct dlm_lock, lock_refs); BUG_ON(!list_empty(&lock->list)); BUG_ON(!list_empty(&lock->ast_list)); BUG_ON(!list_empty(&lock->bast_list)); BUG_ON(lock->ast_pending); BUG_ON(lock->bast_pending); dlm_lock_detach_lockres(lock); if (lock->lksb_kernel_allocated) { mlog(0, "freeing kernel-allocated lksb\n"); kfree(lock->lksb); } kmem_cache_free(dlm_lock_cache, lock); } /* associate a lock with it's lockres, getting a ref on the lockres */ void dlm_lock_attach_lockres(struct dlm_lock *lock, struct dlm_lock_resource *res) { dlm_lockres_get(res); lock->lockres = res; } /* drop ref on lockres, if there is still one associated with lock */ static void dlm_lock_detach_lockres(struct dlm_lock *lock) { struct dlm_lock_resource *res; res = lock->lockres; if (res) { lock->lockres = NULL; mlog(0, "removing lock's lockres reference\n"); dlm_lockres_put(res); } } static void dlm_init_lock(struct dlm_lock *newlock, int type, u8 node, u64 cookie) { INIT_LIST_HEAD(&newlock->list); INIT_LIST_HEAD(&newlock->ast_list); INIT_LIST_HEAD(&newlock->bast_list); spin_lock_init(&newlock->spinlock); newlock->ml.type = type; newlock->ml.convert_type = LKM_IVMODE; newlock->ml.highest_blocked = LKM_IVMODE; newlock->ml.node = node; newlock->ml.pad1 = 0; newlock->ml.list = 0; newlock->ml.flags = 0; newlock->ast = NULL; newlock->bast = NULL; newlock->astdata = NULL; newlock->ml.cookie = cpu_to_be64(cookie); newlock->ast_pending = 0; newlock->bast_pending = 0; newlock->convert_pending = 0; newlock->lock_pending = 0; newlock->unlock_pending = 0; newlock->cancel_pending = 0; newlock->lksb_kernel_allocated = 0; kref_init(&newlock->lock_refs); } struct dlm_lock * dlm_new_lock(int type, u8 node, u64 cookie, struct dlm_lockstatus *lksb) { struct dlm_lock *lock; int kernel_allocated = 0; lock = kmem_cache_zalloc(dlm_lock_cache, GFP_NOFS); if (!lock) return NULL; if (!lksb) { /* zero memory only if kernel-allocated */ lksb = kzalloc(sizeof(*lksb), GFP_NOFS); if (!lksb) { kmem_cache_free(dlm_lock_cache, lock); return NULL; } kernel_allocated = 1; } dlm_init_lock(lock, type, node, cookie); if (kernel_allocated) lock->lksb_kernel_allocated = 1; lock->lksb = lksb; lksb->lockid = lock; return lock; } /* handler for lock creation net message * locking: * caller needs: none * taken: takes and drops res->spinlock * held on exit: none * returns: DLM_NORMAL, DLM_SYSERR, DLM_IVLOCKID, DLM_NOTQUEUED */ int dlm_create_lock_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_create_lock *create = (struct dlm_create_lock *)msg->buf; struct dlm_lock_resource *res = NULL; struct dlm_lock *newlock = NULL; struct dlm_lockstatus *lksb = NULL; enum dlm_status status = DLM_NORMAL; char *name; unsigned int namelen; BUG_ON(!dlm); if (!dlm_grab(dlm)) return DLM_REJECTED; name = create->name; namelen = create->namelen; status = DLM_REJECTED; if (!dlm_domain_fully_joined(dlm)) { mlog(ML_ERROR, "Domain %s not fully joined, but node %u is " "sending a create_lock message for lock %.*s!\n", dlm->name, create->node_idx, namelen, name); dlm_error(status); goto leave; } status = DLM_IVBUFLEN; if (namelen > DLM_LOCKID_NAME_MAX) { dlm_error(status); goto leave; } status = DLM_SYSERR; newlock = dlm_new_lock(create->requested_type, create->node_idx, be64_to_cpu(create->cookie), NULL); if (!newlock) { dlm_error(status); goto leave; } lksb = newlock->lksb; if (be32_to_cpu(create->flags) & LKM_GET_LVB) { lksb->flags |= DLM_LKSB_GET_LVB; mlog(0, "set DLM_LKSB_GET_LVB flag\n"); } status = DLM_IVLOCKID; res = dlm_lookup_lockres(dlm, name, namelen); if (!res) { dlm_error(status); goto leave; } spin_lock(&res->spinlock); status = __dlm_lockres_state_to_status(res); spin_unlock(&res->spinlock); if (status != DLM_NORMAL) { mlog(0, "lockres recovering/migrating/in-progress\n"); goto leave; } dlm_lock_attach_lockres(newlock, res); status = dlmlock_master(dlm, res, newlock, be32_to_cpu(create->flags)); leave: if (status != DLM_NORMAL) if (newlock) dlm_lock_put(newlock); if (res) dlm_lockres_put(res); dlm_put(dlm); return status; } /* fetch next node-local (u8 nodenum + u56 cookie) into u64 */ static inline void dlm_get_next_cookie(u8 node_num, u64 *cookie) { u64 tmpnode = node_num; /* shift single byte of node num into top 8 bits */ tmpnode <<= 56; spin_lock(&dlm_cookie_lock); *cookie = (dlm_next_cookie | tmpnode); if (++dlm_next_cookie & 0xff00000000000000ull) { mlog(0, "This node's cookie will now wrap!\n"); dlm_next_cookie = 1; } spin_unlock(&dlm_cookie_lock); } enum dlm_status dlmlock(struct dlm_ctxt *dlm, int mode, struct dlm_lockstatus *lksb, int flags, const char *name, int namelen, dlm_astlockfunc_t *ast, void *data, dlm_bastlockfunc_t *bast) { enum dlm_status status; struct dlm_lock_resource *res = NULL; struct dlm_lock *lock = NULL; int convert = 0, recovery = 0; /* yes this function is a mess. * TODO: clean this up. lots of common code in the * lock and convert paths, especially in the retry blocks */ if (!lksb) { dlm_error(DLM_BADARGS); return DLM_BADARGS; } status = DLM_BADPARAM; if (mode != LKM_EXMODE && mode != LKM_PRMODE && mode != LKM_NLMODE) { dlm_error(status); goto error; } if (flags & ~LKM_VALID_FLAGS) { dlm_error(status); goto error; } convert = (flags & LKM_CONVERT); recovery = (flags & LKM_RECOVERY); if (recovery && (!dlm_is_recovery_lock(name, namelen) || convert) ) { dlm_error(status); goto error; } if (convert && (flags & LKM_LOCAL)) { mlog(ML_ERROR, "strange LOCAL convert request!\n"); goto error; } if (convert) { /* CONVERT request */ /* if converting, must pass in a valid dlm_lock */ lock = lksb->lockid; if (!lock) { mlog(ML_ERROR, "NULL lock pointer in convert " "request\n"); goto error; } res = lock->lockres; if (!res) { mlog(ML_ERROR, "NULL lockres pointer in convert " "request\n"); goto error; } dlm_lockres_get(res); /* XXX: for ocfs2 purposes, the ast/bast/astdata/lksb are * static after the original lock call. convert requests will * ensure that everything is the same, or return DLM_BADARGS. * this means that DLM_DENIED_NOASTS will never be returned. */ if (lock->lksb != lksb || lock->ast != ast || lock->bast != bast || lock->astdata != data) { status = DLM_BADARGS; mlog(ML_ERROR, "new args: lksb=%p, ast=%p, bast=%p, " "astdata=%p\n", lksb, ast, bast, data); mlog(ML_ERROR, "orig args: lksb=%p, ast=%p, bast=%p, " "astdata=%p\n", lock->lksb, lock->ast, lock->bast, lock->astdata); goto error; } retry_convert: dlm_wait_for_recovery(dlm); if (res->owner == dlm->node_num) status = dlmconvert_master(dlm, res, lock, flags, mode); else status = dlmconvert_remote(dlm, res, lock, flags, mode); if (status == DLM_RECOVERING || status == DLM_MIGRATING || status == DLM_FORWARD) { /* for now, see how this works without sleeping * and just retry right away. I suspect the reco * or migration will complete fast enough that * no waiting will be necessary */ mlog(0, "retrying convert with migration/recovery/" "in-progress\n"); msleep(100); goto retry_convert; } } else { u64 tmpcookie; /* LOCK request */ status = DLM_BADARGS; if (!name) { dlm_error(status); goto error; } status = DLM_IVBUFLEN; if (namelen > DLM_LOCKID_NAME_MAX || namelen < 1) { dlm_error(status); goto error; } dlm_get_next_cookie(dlm->node_num, &tmpcookie); lock = dlm_new_lock(mode, dlm->node_num, tmpcookie, lksb); if (!lock) { dlm_error(status); goto error; } if (!recovery) dlm_wait_for_recovery(dlm); /* find or create the lock resource */ res = dlm_get_lock_resource(dlm, name, namelen, flags); if (!res) { status = DLM_IVLOCKID; dlm_error(status); goto error; } mlog(0, "type=%d, flags = 0x%x\n", mode, flags); mlog(0, "creating lock: lock=%p res=%p\n", lock, res); dlm_lock_attach_lockres(lock, res); lock->ast = ast; lock->bast = bast; lock->astdata = data; retry_lock: if (flags & LKM_VALBLK) { mlog(0, "LKM_VALBLK passed by caller\n"); /* LVB requests for non PR, PW or EX locks are * ignored. */ if (mode < LKM_PRMODE) flags &= ~LKM_VALBLK; else { flags |= LKM_GET_LVB; lock->lksb->flags |= DLM_LKSB_GET_LVB; } } if (res->owner == dlm->node_num) status = dlmlock_master(dlm, res, lock, flags); else status = dlmlock_remote(dlm, res, lock, flags); if (status == DLM_RECOVERING || status == DLM_MIGRATING || status == DLM_FORWARD) { msleep(100); if (recovery) { if (status != DLM_RECOVERING) goto retry_lock; /* wait to see the node go down, then * drop down and allow the lockres to * get cleaned up. need to remaster. */ dlm_wait_for_node_death(dlm, res->owner, DLM_NODE_DEATH_WAIT_MAX); } else { dlm_wait_for_recovery(dlm); goto retry_lock; } } /* Inflight taken in dlm_get_lock_resource() is dropped here */ spin_lock(&res->spinlock); dlm_lockres_drop_inflight_ref(dlm, res); spin_unlock(&res->spinlock); dlm_lockres_calc_usage(dlm, res); dlm_kick_thread(dlm, res); if (status != DLM_NORMAL) { lock->lksb->flags &= ~DLM_LKSB_GET_LVB; if (status != DLM_NOTQUEUED) dlm_error(status); goto error; } } error: if (status != DLM_NORMAL) { if (lock && !convert) dlm_lock_put(lock); // this is kind of unnecessary lksb->status = status; } /* put lockres ref from the convert path * or from dlm_get_lock_resource */ if (res) dlm_lockres_put(res); return status; } EXPORT_SYMBOL_GPL(dlmlock);
linux-master
fs/ocfs2/dlm/dlmlock.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmmod.c * * standalone DLM module * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/spinlock.h> #include <linux/delay.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmdomain.h" #include "dlmdebug.h" #define MLOG_MASK_PREFIX (ML_DLM|ML_DLM_MASTER) #include "../cluster/masklog.h" static void dlm_mle_node_down(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle, struct o2nm_node *node, int idx); static void dlm_mle_node_up(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle, struct o2nm_node *node, int idx); static void dlm_assert_master_worker(struct dlm_work_item *item, void *data); static int dlm_do_assert_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, void *nodemap, u32 flags); static void dlm_deref_lockres_worker(struct dlm_work_item *item, void *data); static inline int dlm_mle_equal(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle, const char *name, unsigned int namelen) { if (dlm != mle->dlm) return 0; if (namelen != mle->mnamelen || memcmp(name, mle->mname, namelen) != 0) return 0; return 1; } static struct kmem_cache *dlm_lockres_cache; static struct kmem_cache *dlm_lockname_cache; static struct kmem_cache *dlm_mle_cache; static void dlm_mle_release(struct kref *kref); static void dlm_init_mle(struct dlm_master_list_entry *mle, enum dlm_mle_type type, struct dlm_ctxt *dlm, struct dlm_lock_resource *res, const char *name, unsigned int namelen); static void dlm_put_mle(struct dlm_master_list_entry *mle); static void __dlm_put_mle(struct dlm_master_list_entry *mle); static int dlm_find_mle(struct dlm_ctxt *dlm, struct dlm_master_list_entry **mle, char *name, unsigned int namelen); static int dlm_do_master_request(struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, int to); static int dlm_wait_for_lock_mastery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, int *blocked); static int dlm_restart_lock_mastery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, int blocked); static int dlm_add_migration_mle(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, struct dlm_master_list_entry **oldmle, const char *name, unsigned int namelen, u8 new_master, u8 master); static u8 dlm_pick_migration_target(struct dlm_ctxt *dlm, struct dlm_lock_resource *res); static void dlm_remove_nonlocal_locks(struct dlm_ctxt *dlm, struct dlm_lock_resource *res); static int dlm_mark_lockres_migrating(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 target); static int dlm_pre_master_reco_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res); int dlm_is_host_down(int errno) { switch (errno) { case -EBADF: case -ECONNREFUSED: case -ENOTCONN: case -ECONNRESET: case -EPIPE: case -EHOSTDOWN: case -EHOSTUNREACH: case -ETIMEDOUT: case -ECONNABORTED: case -ENETDOWN: case -ENETUNREACH: case -ENETRESET: case -ESHUTDOWN: case -ENOPROTOOPT: case -EINVAL: /* if returned from our tcp code, this means there is no socket */ return 1; } return 0; } /* * MASTER LIST FUNCTIONS */ /* * regarding master list entries and heartbeat callbacks: * * in order to avoid sleeping and allocation that occurs in * heartbeat, master list entries are simply attached to the * dlm's established heartbeat callbacks. the mle is attached * when it is created, and since the dlm->spinlock is held at * that time, any heartbeat event will be properly discovered * by the mle. the mle needs to be detached from the * dlm->mle_hb_events list as soon as heartbeat events are no * longer useful to the mle, and before the mle is freed. * * as a general rule, heartbeat events are no longer needed by * the mle once an "answer" regarding the lock master has been * received. */ static inline void __dlm_mle_attach_hb_events(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { assert_spin_locked(&dlm->spinlock); list_add_tail(&mle->hb_events, &dlm->mle_hb_events); } static inline void __dlm_mle_detach_hb_events(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { if (!list_empty(&mle->hb_events)) list_del_init(&mle->hb_events); } static inline void dlm_mle_detach_hb_events(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { spin_lock(&dlm->spinlock); __dlm_mle_detach_hb_events(dlm, mle); spin_unlock(&dlm->spinlock); } static void dlm_get_mle_inuse(struct dlm_master_list_entry *mle) { struct dlm_ctxt *dlm; dlm = mle->dlm; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&dlm->master_lock); mle->inuse++; kref_get(&mle->mle_refs); } static void dlm_put_mle_inuse(struct dlm_master_list_entry *mle) { struct dlm_ctxt *dlm; dlm = mle->dlm; spin_lock(&dlm->spinlock); spin_lock(&dlm->master_lock); mle->inuse--; __dlm_put_mle(mle); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); } /* remove from list and free */ static void __dlm_put_mle(struct dlm_master_list_entry *mle) { struct dlm_ctxt *dlm; dlm = mle->dlm; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&dlm->master_lock); if (!kref_read(&mle->mle_refs)) { /* this may or may not crash, but who cares. * it's a BUG. */ mlog(ML_ERROR, "bad mle: %p\n", mle); dlm_print_one_mle(mle); BUG(); } else kref_put(&mle->mle_refs, dlm_mle_release); } /* must not have any spinlocks coming in */ static void dlm_put_mle(struct dlm_master_list_entry *mle) { struct dlm_ctxt *dlm; dlm = mle->dlm; spin_lock(&dlm->spinlock); spin_lock(&dlm->master_lock); __dlm_put_mle(mle); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); } static inline void dlm_get_mle(struct dlm_master_list_entry *mle) { kref_get(&mle->mle_refs); } static void dlm_init_mle(struct dlm_master_list_entry *mle, enum dlm_mle_type type, struct dlm_ctxt *dlm, struct dlm_lock_resource *res, const char *name, unsigned int namelen) { assert_spin_locked(&dlm->spinlock); mle->dlm = dlm; mle->type = type; INIT_HLIST_NODE(&mle->master_hash_node); INIT_LIST_HEAD(&mle->hb_events); bitmap_zero(mle->maybe_map, O2NM_MAX_NODES); spin_lock_init(&mle->spinlock); init_waitqueue_head(&mle->wq); atomic_set(&mle->woken, 0); kref_init(&mle->mle_refs); bitmap_zero(mle->response_map, O2NM_MAX_NODES); mle->master = O2NM_MAX_NODES; mle->new_master = O2NM_MAX_NODES; mle->inuse = 0; BUG_ON(mle->type != DLM_MLE_BLOCK && mle->type != DLM_MLE_MASTER && mle->type != DLM_MLE_MIGRATION); if (mle->type == DLM_MLE_MASTER) { BUG_ON(!res); mle->mleres = res; memcpy(mle->mname, res->lockname.name, res->lockname.len); mle->mnamelen = res->lockname.len; mle->mnamehash = res->lockname.hash; } else { BUG_ON(!name); mle->mleres = NULL; memcpy(mle->mname, name, namelen); mle->mnamelen = namelen; mle->mnamehash = dlm_lockid_hash(name, namelen); } atomic_inc(&dlm->mle_tot_count[mle->type]); atomic_inc(&dlm->mle_cur_count[mle->type]); /* copy off the node_map and register hb callbacks on our copy */ bitmap_copy(mle->node_map, dlm->domain_map, O2NM_MAX_NODES); bitmap_copy(mle->vote_map, dlm->domain_map, O2NM_MAX_NODES); clear_bit(dlm->node_num, mle->vote_map); clear_bit(dlm->node_num, mle->node_map); /* attach the mle to the domain node up/down events */ __dlm_mle_attach_hb_events(dlm, mle); } void __dlm_unlink_mle(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { assert_spin_locked(&dlm->spinlock); assert_spin_locked(&dlm->master_lock); if (!hlist_unhashed(&mle->master_hash_node)) hlist_del_init(&mle->master_hash_node); } void __dlm_insert_mle(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { struct hlist_head *bucket; assert_spin_locked(&dlm->master_lock); bucket = dlm_master_hash(dlm, mle->mnamehash); hlist_add_head(&mle->master_hash_node, bucket); } /* returns 1 if found, 0 if not */ static int dlm_find_mle(struct dlm_ctxt *dlm, struct dlm_master_list_entry **mle, char *name, unsigned int namelen) { struct dlm_master_list_entry *tmpmle; struct hlist_head *bucket; unsigned int hash; assert_spin_locked(&dlm->master_lock); hash = dlm_lockid_hash(name, namelen); bucket = dlm_master_hash(dlm, hash); hlist_for_each_entry(tmpmle, bucket, master_hash_node) { if (!dlm_mle_equal(dlm, tmpmle, name, namelen)) continue; dlm_get_mle(tmpmle); *mle = tmpmle; return 1; } return 0; } void dlm_hb_event_notify_attached(struct dlm_ctxt *dlm, int idx, int node_up) { struct dlm_master_list_entry *mle; assert_spin_locked(&dlm->spinlock); list_for_each_entry(mle, &dlm->mle_hb_events, hb_events) { if (node_up) dlm_mle_node_up(dlm, mle, NULL, idx); else dlm_mle_node_down(dlm, mle, NULL, idx); } } static void dlm_mle_node_down(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle, struct o2nm_node *node, int idx) { spin_lock(&mle->spinlock); if (!test_bit(idx, mle->node_map)) mlog(0, "node %u already removed from nodemap!\n", idx); else clear_bit(idx, mle->node_map); spin_unlock(&mle->spinlock); } static void dlm_mle_node_up(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle, struct o2nm_node *node, int idx) { spin_lock(&mle->spinlock); if (test_bit(idx, mle->node_map)) mlog(0, "node %u already in node map!\n", idx); else set_bit(idx, mle->node_map); spin_unlock(&mle->spinlock); } int dlm_init_mle_cache(void) { dlm_mle_cache = kmem_cache_create("o2dlm_mle", sizeof(struct dlm_master_list_entry), 0, SLAB_HWCACHE_ALIGN, NULL); if (dlm_mle_cache == NULL) return -ENOMEM; return 0; } void dlm_destroy_mle_cache(void) { kmem_cache_destroy(dlm_mle_cache); } static void dlm_mle_release(struct kref *kref) { struct dlm_master_list_entry *mle; struct dlm_ctxt *dlm; mle = container_of(kref, struct dlm_master_list_entry, mle_refs); dlm = mle->dlm; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&dlm->master_lock); mlog(0, "Releasing mle for %.*s, type %d\n", mle->mnamelen, mle->mname, mle->type); /* remove from list if not already */ __dlm_unlink_mle(dlm, mle); /* detach the mle from the domain node up/down events */ __dlm_mle_detach_hb_events(dlm, mle); atomic_dec(&dlm->mle_cur_count[mle->type]); /* NOTE: kfree under spinlock here. * if this is bad, we can move this to a freelist. */ kmem_cache_free(dlm_mle_cache, mle); } /* * LOCK RESOURCE FUNCTIONS */ int dlm_init_master_caches(void) { dlm_lockres_cache = kmem_cache_create("o2dlm_lockres", sizeof(struct dlm_lock_resource), 0, SLAB_HWCACHE_ALIGN, NULL); if (!dlm_lockres_cache) goto bail; dlm_lockname_cache = kmem_cache_create("o2dlm_lockname", DLM_LOCKID_NAME_MAX, 0, SLAB_HWCACHE_ALIGN, NULL); if (!dlm_lockname_cache) goto bail; return 0; bail: dlm_destroy_master_caches(); return -ENOMEM; } void dlm_destroy_master_caches(void) { kmem_cache_destroy(dlm_lockname_cache); dlm_lockname_cache = NULL; kmem_cache_destroy(dlm_lockres_cache); dlm_lockres_cache = NULL; } static void dlm_lockres_release(struct kref *kref) { struct dlm_lock_resource *res; struct dlm_ctxt *dlm; res = container_of(kref, struct dlm_lock_resource, refs); dlm = res->dlm; /* This should not happen -- all lockres' have a name * associated with them at init time. */ BUG_ON(!res->lockname.name); mlog(0, "destroying lockres %.*s\n", res->lockname.len, res->lockname.name); atomic_dec(&dlm->res_cur_count); if (!hlist_unhashed(&res->hash_node) || !list_empty(&res->granted) || !list_empty(&res->converting) || !list_empty(&res->blocked) || !list_empty(&res->dirty) || !list_empty(&res->recovering) || !list_empty(&res->purge)) { mlog(ML_ERROR, "Going to BUG for resource %.*s." " We're on a list! [%c%c%c%c%c%c%c]\n", res->lockname.len, res->lockname.name, !hlist_unhashed(&res->hash_node) ? 'H' : ' ', !list_empty(&res->granted) ? 'G' : ' ', !list_empty(&res->converting) ? 'C' : ' ', !list_empty(&res->blocked) ? 'B' : ' ', !list_empty(&res->dirty) ? 'D' : ' ', !list_empty(&res->recovering) ? 'R' : ' ', !list_empty(&res->purge) ? 'P' : ' '); dlm_print_one_lock_resource(res); } /* By the time we're ready to blow this guy away, we shouldn't * be on any lists. */ BUG_ON(!hlist_unhashed(&res->hash_node)); BUG_ON(!list_empty(&res->granted)); BUG_ON(!list_empty(&res->converting)); BUG_ON(!list_empty(&res->blocked)); BUG_ON(!list_empty(&res->dirty)); BUG_ON(!list_empty(&res->recovering)); BUG_ON(!list_empty(&res->purge)); kmem_cache_free(dlm_lockname_cache, (void *)res->lockname.name); kmem_cache_free(dlm_lockres_cache, res); } void dlm_lockres_put(struct dlm_lock_resource *res) { kref_put(&res->refs, dlm_lockres_release); } static void dlm_init_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, const char *name, unsigned int namelen) { char *qname; /* If we memset here, we lose our reference to the kmalloc'd * res->lockname.name, so be sure to init every field * correctly! */ qname = (char *) res->lockname.name; memcpy(qname, name, namelen); res->lockname.len = namelen; res->lockname.hash = dlm_lockid_hash(name, namelen); init_waitqueue_head(&res->wq); spin_lock_init(&res->spinlock); INIT_HLIST_NODE(&res->hash_node); INIT_LIST_HEAD(&res->granted); INIT_LIST_HEAD(&res->converting); INIT_LIST_HEAD(&res->blocked); INIT_LIST_HEAD(&res->dirty); INIT_LIST_HEAD(&res->recovering); INIT_LIST_HEAD(&res->purge); INIT_LIST_HEAD(&res->tracking); atomic_set(&res->asts_reserved, 0); res->migration_pending = 0; res->inflight_locks = 0; res->inflight_assert_workers = 0; res->dlm = dlm; kref_init(&res->refs); atomic_inc(&dlm->res_tot_count); atomic_inc(&dlm->res_cur_count); /* just for consistency */ spin_lock(&res->spinlock); dlm_set_lockres_owner(dlm, res, DLM_LOCK_RES_OWNER_UNKNOWN); spin_unlock(&res->spinlock); res->state = DLM_LOCK_RES_IN_PROGRESS; res->last_used = 0; spin_lock(&dlm->track_lock); list_add_tail(&res->tracking, &dlm->tracking_list); spin_unlock(&dlm->track_lock); memset(res->lvb, 0, DLM_LVB_LEN); bitmap_zero(res->refmap, O2NM_MAX_NODES); } struct dlm_lock_resource *dlm_new_lockres(struct dlm_ctxt *dlm, const char *name, unsigned int namelen) { struct dlm_lock_resource *res = NULL; res = kmem_cache_zalloc(dlm_lockres_cache, GFP_NOFS); if (!res) goto error; res->lockname.name = kmem_cache_zalloc(dlm_lockname_cache, GFP_NOFS); if (!res->lockname.name) goto error; dlm_init_lockres(dlm, res, name, namelen); return res; error: if (res) kmem_cache_free(dlm_lockres_cache, res); return NULL; } void dlm_lockres_set_refmap_bit(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, int bit) { assert_spin_locked(&res->spinlock); mlog(0, "res %.*s, set node %u, %ps()\n", res->lockname.len, res->lockname.name, bit, __builtin_return_address(0)); set_bit(bit, res->refmap); } void dlm_lockres_clear_refmap_bit(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, int bit) { assert_spin_locked(&res->spinlock); mlog(0, "res %.*s, clr node %u, %ps()\n", res->lockname.len, res->lockname.name, bit, __builtin_return_address(0)); clear_bit(bit, res->refmap); } static void __dlm_lockres_grab_inflight_ref(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { res->inflight_locks++; mlog(0, "%s: res %.*s, inflight++: now %u, %ps()\n", dlm->name, res->lockname.len, res->lockname.name, res->inflight_locks, __builtin_return_address(0)); } void dlm_lockres_grab_inflight_ref(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&res->spinlock); __dlm_lockres_grab_inflight_ref(dlm, res); } void dlm_lockres_drop_inflight_ref(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&res->spinlock); BUG_ON(res->inflight_locks == 0); res->inflight_locks--; mlog(0, "%s: res %.*s, inflight--: now %u, %ps()\n", dlm->name, res->lockname.len, res->lockname.name, res->inflight_locks, __builtin_return_address(0)); wake_up(&res->wq); } void __dlm_lockres_grab_inflight_worker(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&res->spinlock); res->inflight_assert_workers++; mlog(0, "%s:%.*s: inflight assert worker++: now %u\n", dlm->name, res->lockname.len, res->lockname.name, res->inflight_assert_workers); } static void __dlm_lockres_drop_inflight_worker(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&res->spinlock); BUG_ON(res->inflight_assert_workers == 0); res->inflight_assert_workers--; mlog(0, "%s:%.*s: inflight assert worker--: now %u\n", dlm->name, res->lockname.len, res->lockname.name, res->inflight_assert_workers); } static void dlm_lockres_drop_inflight_worker(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { spin_lock(&res->spinlock); __dlm_lockres_drop_inflight_worker(dlm, res); spin_unlock(&res->spinlock); } /* * lookup a lock resource by name. * may already exist in the hashtable. * lockid is null terminated * * if not, allocate enough for the lockres and for * the temporary structure used in doing the mastering. * * also, do a lookup in the dlm->master_list to see * if another node has begun mastering the same lock. * if so, there should be a block entry in there * for this name, and we should *not* attempt to master * the lock here. need to wait around for that node * to assert_master (or die). * */ struct dlm_lock_resource * dlm_get_lock_resource(struct dlm_ctxt *dlm, const char *lockid, int namelen, int flags) { struct dlm_lock_resource *tmpres=NULL, *res=NULL; struct dlm_master_list_entry *mle = NULL; struct dlm_master_list_entry *alloc_mle = NULL; int blocked = 0; int ret, nodenum; struct dlm_node_iter iter; unsigned int hash; int tries = 0; int bit, wait_on_recovery = 0; BUG_ON(!lockid); hash = dlm_lockid_hash(lockid, namelen); mlog(0, "get lockres %s (len %d)\n", lockid, namelen); lookup: spin_lock(&dlm->spinlock); tmpres = __dlm_lookup_lockres_full(dlm, lockid, namelen, hash); if (tmpres) { spin_unlock(&dlm->spinlock); spin_lock(&tmpres->spinlock); /* * Right after dlm spinlock was released, dlm_thread could have * purged the lockres. Check if lockres got unhashed. If so * start over. */ if (hlist_unhashed(&tmpres->hash_node)) { spin_unlock(&tmpres->spinlock); dlm_lockres_put(tmpres); tmpres = NULL; goto lookup; } /* Wait on the thread that is mastering the resource */ if (tmpres->owner == DLM_LOCK_RES_OWNER_UNKNOWN) { __dlm_wait_on_lockres(tmpres); BUG_ON(tmpres->owner == DLM_LOCK_RES_OWNER_UNKNOWN); spin_unlock(&tmpres->spinlock); dlm_lockres_put(tmpres); tmpres = NULL; goto lookup; } /* Wait on the resource purge to complete before continuing */ if (tmpres->state & DLM_LOCK_RES_DROPPING_REF) { BUG_ON(tmpres->owner == dlm->node_num); __dlm_wait_on_lockres_flags(tmpres, DLM_LOCK_RES_DROPPING_REF); spin_unlock(&tmpres->spinlock); dlm_lockres_put(tmpres); tmpres = NULL; goto lookup; } /* Grab inflight ref to pin the resource */ dlm_lockres_grab_inflight_ref(dlm, tmpres); spin_unlock(&tmpres->spinlock); if (res) { spin_lock(&dlm->track_lock); if (!list_empty(&res->tracking)) list_del_init(&res->tracking); else mlog(ML_ERROR, "Resource %.*s not " "on the Tracking list\n", res->lockname.len, res->lockname.name); spin_unlock(&dlm->track_lock); dlm_lockres_put(res); } res = tmpres; goto leave; } if (!res) { spin_unlock(&dlm->spinlock); mlog(0, "allocating a new resource\n"); /* nothing found and we need to allocate one. */ alloc_mle = kmem_cache_alloc(dlm_mle_cache, GFP_NOFS); if (!alloc_mle) goto leave; res = dlm_new_lockres(dlm, lockid, namelen); if (!res) goto leave; goto lookup; } mlog(0, "no lockres found, allocated our own: %p\n", res); if (flags & LKM_LOCAL) { /* caller knows it's safe to assume it's not mastered elsewhere * DONE! return right away */ spin_lock(&res->spinlock); dlm_change_lockres_owner(dlm, res, dlm->node_num); __dlm_insert_lockres(dlm, res); dlm_lockres_grab_inflight_ref(dlm, res); spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); /* lockres still marked IN_PROGRESS */ goto wake_waiters; } /* check master list to see if another node has started mastering it */ spin_lock(&dlm->master_lock); /* if we found a block, wait for lock to be mastered by another node */ blocked = dlm_find_mle(dlm, &mle, (char *)lockid, namelen); if (blocked) { int mig; if (mle->type == DLM_MLE_MASTER) { mlog(ML_ERROR, "master entry for nonexistent lock!\n"); BUG(); } mig = (mle->type == DLM_MLE_MIGRATION); /* if there is a migration in progress, let the migration * finish before continuing. we can wait for the absence * of the MIGRATION mle: either the migrate finished or * one of the nodes died and the mle was cleaned up. * if there is a BLOCK here, but it already has a master * set, we are too late. the master does not have a ref * for us in the refmap. detach the mle and drop it. * either way, go back to the top and start over. */ if (mig || mle->master != O2NM_MAX_NODES) { BUG_ON(mig && mle->master == dlm->node_num); /* we arrived too late. the master does not * have a ref for us. retry. */ mlog(0, "%s:%.*s: late on %s\n", dlm->name, namelen, lockid, mig ? "MIGRATION" : "BLOCK"); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); /* master is known, detach */ if (!mig) dlm_mle_detach_hb_events(dlm, mle); dlm_put_mle(mle); mle = NULL; /* this is lame, but we can't wait on either * the mle or lockres waitqueue here */ if (mig) msleep(100); goto lookup; } } else { /* go ahead and try to master lock on this node */ mle = alloc_mle; /* make sure this does not get freed below */ alloc_mle = NULL; dlm_init_mle(mle, DLM_MLE_MASTER, dlm, res, NULL, 0); set_bit(dlm->node_num, mle->maybe_map); __dlm_insert_mle(dlm, mle); /* still holding the dlm spinlock, check the recovery map * to see if there are any nodes that still need to be * considered. these will not appear in the mle nodemap * but they might own this lockres. wait on them. */ bit = find_first_bit(dlm->recovery_map, O2NM_MAX_NODES); if (bit < O2NM_MAX_NODES) { mlog(0, "%s: res %.*s, At least one node (%d) " "to recover before lock mastery can begin\n", dlm->name, namelen, (char *)lockid, bit); wait_on_recovery = 1; } } /* at this point there is either a DLM_MLE_BLOCK or a * DLM_MLE_MASTER on the master list, so it's safe to add the * lockres to the hashtable. anyone who finds the lock will * still have to wait on the IN_PROGRESS. */ /* finally add the lockres to its hash bucket */ __dlm_insert_lockres(dlm, res); /* since this lockres is new it doesn't not require the spinlock */ __dlm_lockres_grab_inflight_ref(dlm, res); /* get an extra ref on the mle in case this is a BLOCK * if so, the creator of the BLOCK may try to put the last * ref at this time in the assert master handler, so we * need an extra one to keep from a bad ptr deref. */ dlm_get_mle_inuse(mle); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); redo_request: while (wait_on_recovery) { /* any cluster changes that occurred after dropping the * dlm spinlock would be detectable be a change on the mle, * so we only need to clear out the recovery map once. */ if (dlm_is_recovery_lock(lockid, namelen)) { mlog(0, "%s: Recovery map is not empty, but must " "master $RECOVERY lock now\n", dlm->name); if (!dlm_pre_master_reco_lockres(dlm, res)) wait_on_recovery = 0; else { mlog(0, "%s: waiting 500ms for heartbeat state " "change\n", dlm->name); msleep(500); } continue; } dlm_kick_recovery_thread(dlm); msleep(1000); dlm_wait_for_recovery(dlm); spin_lock(&dlm->spinlock); bit = find_first_bit(dlm->recovery_map, O2NM_MAX_NODES); if (bit < O2NM_MAX_NODES) { mlog(0, "%s: res %.*s, At least one node (%d) " "to recover before lock mastery can begin\n", dlm->name, namelen, (char *)lockid, bit); wait_on_recovery = 1; } else wait_on_recovery = 0; spin_unlock(&dlm->spinlock); if (wait_on_recovery) dlm_wait_for_node_recovery(dlm, bit, 10000); } /* must wait for lock to be mastered elsewhere */ if (blocked) goto wait; ret = -EINVAL; dlm_node_iter_init(mle->vote_map, &iter); while ((nodenum = dlm_node_iter_next(&iter)) >= 0) { ret = dlm_do_master_request(res, mle, nodenum); if (ret < 0) mlog_errno(ret); if (mle->master != O2NM_MAX_NODES) { /* found a master ! */ if (mle->master <= nodenum) break; /* if our master request has not reached the master * yet, keep going until it does. this is how the * master will know that asserts are needed back to * the lower nodes. */ mlog(0, "%s: res %.*s, Requests only up to %u but " "master is %u, keep going\n", dlm->name, namelen, lockid, nodenum, mle->master); } } wait: /* keep going until the response map includes all nodes */ ret = dlm_wait_for_lock_mastery(dlm, res, mle, &blocked); if (ret < 0) { wait_on_recovery = 1; mlog(0, "%s: res %.*s, Node map changed, redo the master " "request now, blocked=%d\n", dlm->name, res->lockname.len, res->lockname.name, blocked); if (++tries > 20) { mlog(ML_ERROR, "%s: res %.*s, Spinning on " "dlm_wait_for_lock_mastery, blocked = %d\n", dlm->name, res->lockname.len, res->lockname.name, blocked); dlm_print_one_lock_resource(res); dlm_print_one_mle(mle); tries = 0; } goto redo_request; } mlog(0, "%s: res %.*s, Mastered by %u\n", dlm->name, res->lockname.len, res->lockname.name, res->owner); /* make sure we never continue without this */ BUG_ON(res->owner == O2NM_MAX_NODES); /* master is known, detach if not already detached */ dlm_mle_detach_hb_events(dlm, mle); dlm_put_mle(mle); /* put the extra ref */ dlm_put_mle_inuse(mle); wake_waiters: spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_IN_PROGRESS; spin_unlock(&res->spinlock); wake_up(&res->wq); leave: /* need to free the unused mle */ if (alloc_mle) kmem_cache_free(dlm_mle_cache, alloc_mle); return res; } #define DLM_MASTERY_TIMEOUT_MS 5000 static int dlm_wait_for_lock_mastery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, int *blocked) { u8 m; int ret, bit; int map_changed, voting_done; int assert, sleep; recheck: ret = 0; assert = 0; /* check if another node has already become the owner */ spin_lock(&res->spinlock); if (res->owner != DLM_LOCK_RES_OWNER_UNKNOWN) { mlog(0, "%s:%.*s: owner is suddenly %u\n", dlm->name, res->lockname.len, res->lockname.name, res->owner); spin_unlock(&res->spinlock); /* this will cause the master to re-assert across * the whole cluster, freeing up mles */ if (res->owner != dlm->node_num) { ret = dlm_do_master_request(res, mle, res->owner); if (ret < 0) { /* give recovery a chance to run */ mlog(ML_ERROR, "link to %u went down?: %d\n", res->owner, ret); msleep(500); goto recheck; } } ret = 0; goto leave; } spin_unlock(&res->spinlock); spin_lock(&mle->spinlock); m = mle->master; map_changed = !bitmap_equal(mle->vote_map, mle->node_map, O2NM_MAX_NODES); voting_done = bitmap_equal(mle->vote_map, mle->response_map, O2NM_MAX_NODES); /* restart if we hit any errors */ if (map_changed) { int b; mlog(0, "%s: %.*s: node map changed, restarting\n", dlm->name, res->lockname.len, res->lockname.name); ret = dlm_restart_lock_mastery(dlm, res, mle, *blocked); b = (mle->type == DLM_MLE_BLOCK); if ((*blocked && !b) || (!*blocked && b)) { mlog(0, "%s:%.*s: status change: old=%d new=%d\n", dlm->name, res->lockname.len, res->lockname.name, *blocked, b); *blocked = b; } spin_unlock(&mle->spinlock); if (ret < 0) { mlog_errno(ret); goto leave; } mlog(0, "%s:%.*s: restart lock mastery succeeded, " "rechecking now\n", dlm->name, res->lockname.len, res->lockname.name); goto recheck; } else { if (!voting_done) { mlog(0, "map not changed and voting not done " "for %s:%.*s\n", dlm->name, res->lockname.len, res->lockname.name); } } if (m != O2NM_MAX_NODES) { /* another node has done an assert! * all done! */ sleep = 0; } else { sleep = 1; /* have all nodes responded? */ if (voting_done && !*blocked) { bit = find_first_bit(mle->maybe_map, O2NM_MAX_NODES); if (dlm->node_num <= bit) { /* my node number is lowest. * now tell other nodes that I am * mastering this. */ mle->master = dlm->node_num; /* ref was grabbed in get_lock_resource * will be dropped in dlmlock_master */ assert = 1; sleep = 0; } /* if voting is done, but we have not received * an assert master yet, we must sleep */ } } spin_unlock(&mle->spinlock); /* sleep if we haven't finished voting yet */ if (sleep) { unsigned long timeo = msecs_to_jiffies(DLM_MASTERY_TIMEOUT_MS); atomic_set(&mle->woken, 0); (void)wait_event_timeout(mle->wq, (atomic_read(&mle->woken) == 1), timeo); if (res->owner == O2NM_MAX_NODES) { mlog(0, "%s:%.*s: waiting again\n", dlm->name, res->lockname.len, res->lockname.name); goto recheck; } mlog(0, "done waiting, master is %u\n", res->owner); ret = 0; goto leave; } ret = 0; /* done */ if (assert) { m = dlm->node_num; mlog(0, "about to master %.*s here, this=%u\n", res->lockname.len, res->lockname.name, m); ret = dlm_do_assert_master(dlm, res, mle->vote_map, 0); if (ret) { /* This is a failure in the network path, * not in the response to the assert_master * (any nonzero response is a BUG on this node). * Most likely a socket just got disconnected * due to node death. */ mlog_errno(ret); } /* no longer need to restart lock mastery. * all living nodes have been contacted. */ ret = 0; } /* set the lockres owner */ spin_lock(&res->spinlock); /* mastery reference obtained either during * assert_master_handler or in get_lock_resource */ dlm_change_lockres_owner(dlm, res, m); spin_unlock(&res->spinlock); leave: return ret; } struct dlm_bitmap_diff_iter { int curnode; unsigned long *orig_bm; unsigned long *cur_bm; unsigned long diff_bm[BITS_TO_LONGS(O2NM_MAX_NODES)]; }; enum dlm_node_state_change { NODE_DOWN = -1, NODE_NO_CHANGE = 0, NODE_UP }; static void dlm_bitmap_diff_iter_init(struct dlm_bitmap_diff_iter *iter, unsigned long *orig_bm, unsigned long *cur_bm) { unsigned long p1, p2; int i; iter->curnode = -1; iter->orig_bm = orig_bm; iter->cur_bm = cur_bm; for (i = 0; i < BITS_TO_LONGS(O2NM_MAX_NODES); i++) { p1 = *(iter->orig_bm + i); p2 = *(iter->cur_bm + i); iter->diff_bm[i] = (p1 & ~p2) | (p2 & ~p1); } } static int dlm_bitmap_diff_iter_next(struct dlm_bitmap_diff_iter *iter, enum dlm_node_state_change *state) { int bit; if (iter->curnode >= O2NM_MAX_NODES) return -ENOENT; bit = find_next_bit(iter->diff_bm, O2NM_MAX_NODES, iter->curnode+1); if (bit >= O2NM_MAX_NODES) { iter->curnode = O2NM_MAX_NODES; return -ENOENT; } /* if it was there in the original then this node died */ if (test_bit(bit, iter->orig_bm)) *state = NODE_DOWN; else *state = NODE_UP; iter->curnode = bit; return bit; } static int dlm_restart_lock_mastery(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, int blocked) { struct dlm_bitmap_diff_iter bdi; enum dlm_node_state_change sc; int node; int ret = 0; mlog(0, "something happened such that the " "master process may need to be restarted!\n"); assert_spin_locked(&mle->spinlock); dlm_bitmap_diff_iter_init(&bdi, mle->vote_map, mle->node_map); node = dlm_bitmap_diff_iter_next(&bdi, &sc); while (node >= 0) { if (sc == NODE_UP) { /* a node came up. clear any old vote from * the response map and set it in the vote map * then restart the mastery. */ mlog(ML_NOTICE, "node %d up while restarting\n", node); /* redo the master request, but only for the new node */ mlog(0, "sending request to new node\n"); clear_bit(node, mle->response_map); set_bit(node, mle->vote_map); } else { mlog(ML_ERROR, "node down! %d\n", node); if (blocked) { int lowest = find_first_bit(mle->maybe_map, O2NM_MAX_NODES); /* act like it was never there */ clear_bit(node, mle->maybe_map); if (node == lowest) { mlog(0, "expected master %u died" " while this node was blocked " "waiting on it!\n", node); lowest = find_next_bit(mle->maybe_map, O2NM_MAX_NODES, lowest+1); if (lowest < O2NM_MAX_NODES) { mlog(0, "%s:%.*s:still " "blocked. waiting on %u " "now\n", dlm->name, res->lockname.len, res->lockname.name, lowest); } else { /* mle is an MLE_BLOCK, but * there is now nothing left to * block on. we need to return * all the way back out and try * again with an MLE_MASTER. * dlm_do_local_recovery_cleanup * has already run, so the mle * refcount is ok */ mlog(0, "%s:%.*s: no " "longer blocking. try to " "master this here\n", dlm->name, res->lockname.len, res->lockname.name); mle->type = DLM_MLE_MASTER; mle->mleres = res; } } } /* now blank out everything, as if we had never * contacted anyone */ bitmap_zero(mle->maybe_map, O2NM_MAX_NODES); bitmap_zero(mle->response_map, O2NM_MAX_NODES); /* reset the vote_map to the current node_map */ bitmap_copy(mle->vote_map, mle->node_map, O2NM_MAX_NODES); /* put myself into the maybe map */ if (mle->type != DLM_MLE_BLOCK) set_bit(dlm->node_num, mle->maybe_map); } ret = -EAGAIN; node = dlm_bitmap_diff_iter_next(&bdi, &sc); } return ret; } /* * DLM_MASTER_REQUEST_MSG * * returns: 0 on success, * -errno on a network error * * on error, the caller should assume the target node is "dead" * */ static int dlm_do_master_request(struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, int to) { struct dlm_ctxt *dlm = mle->dlm; struct dlm_master_request request; int ret, response=0, resend; memset(&request, 0, sizeof(request)); request.node_idx = dlm->node_num; BUG_ON(mle->type == DLM_MLE_MIGRATION); request.namelen = (u8)mle->mnamelen; memcpy(request.name, mle->mname, request.namelen); again: ret = o2net_send_message(DLM_MASTER_REQUEST_MSG, dlm->key, &request, sizeof(request), to, &response); if (ret < 0) { if (ret == -ESRCH) { /* should never happen */ mlog(ML_ERROR, "TCP stack not ready!\n"); BUG(); } else if (ret == -EINVAL) { mlog(ML_ERROR, "bad args passed to o2net!\n"); BUG(); } else if (ret == -ENOMEM) { mlog(ML_ERROR, "out of memory while trying to send " "network message! retrying\n"); /* this is totally crude */ msleep(50); goto again; } else if (!dlm_is_host_down(ret)) { /* not a network error. bad. */ mlog_errno(ret); mlog(ML_ERROR, "unhandled error!"); BUG(); } /* all other errors should be network errors, * and likely indicate node death */ mlog(ML_ERROR, "link to %d went down!\n", to); goto out; } ret = 0; resend = 0; spin_lock(&mle->spinlock); switch (response) { case DLM_MASTER_RESP_YES: set_bit(to, mle->response_map); mlog(0, "node %u is the master, response=YES\n", to); mlog(0, "%s:%.*s: master node %u now knows I have a " "reference\n", dlm->name, res->lockname.len, res->lockname.name, to); mle->master = to; break; case DLM_MASTER_RESP_NO: mlog(0, "node %u not master, response=NO\n", to); set_bit(to, mle->response_map); break; case DLM_MASTER_RESP_MAYBE: mlog(0, "node %u not master, response=MAYBE\n", to); set_bit(to, mle->response_map); set_bit(to, mle->maybe_map); break; case DLM_MASTER_RESP_ERROR: mlog(0, "node %u hit an error, resending\n", to); resend = 1; response = 0; break; default: mlog(ML_ERROR, "bad response! %u\n", response); BUG(); } spin_unlock(&mle->spinlock); if (resend) { /* this is also totally crude */ msleep(50); goto again; } out: return ret; } /* * locks that can be taken here: * dlm->spinlock * res->spinlock * mle->spinlock * dlm->master_list * * if possible, TRIM THIS DOWN!!! */ int dlm_master_request_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { u8 response = DLM_MASTER_RESP_MAYBE; struct dlm_ctxt *dlm = data; struct dlm_lock_resource *res = NULL; struct dlm_master_request *request = (struct dlm_master_request *) msg->buf; struct dlm_master_list_entry *mle = NULL, *tmpmle = NULL; char *name; unsigned int namelen, hash; int found, ret; int set_maybe; int dispatch_assert = 0; int dispatched = 0; if (!dlm_grab(dlm)) return DLM_MASTER_RESP_NO; if (!dlm_domain_fully_joined(dlm)) { response = DLM_MASTER_RESP_NO; goto send_response; } name = request->name; namelen = request->namelen; hash = dlm_lockid_hash(name, namelen); if (namelen > DLM_LOCKID_NAME_MAX) { response = DLM_IVBUFLEN; goto send_response; } way_up_top: spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres(dlm, name, namelen, hash); if (res) { spin_unlock(&dlm->spinlock); /* take care of the easy cases up front */ spin_lock(&res->spinlock); /* * Right after dlm spinlock was released, dlm_thread could have * purged the lockres. Check if lockres got unhashed. If so * start over. */ if (hlist_unhashed(&res->hash_node)) { spin_unlock(&res->spinlock); dlm_lockres_put(res); goto way_up_top; } if (res->state & (DLM_LOCK_RES_RECOVERING| DLM_LOCK_RES_MIGRATING)) { spin_unlock(&res->spinlock); mlog(0, "returning DLM_MASTER_RESP_ERROR since res is " "being recovered/migrated\n"); response = DLM_MASTER_RESP_ERROR; if (mle) kmem_cache_free(dlm_mle_cache, mle); goto send_response; } if (res->owner == dlm->node_num) { dlm_lockres_set_refmap_bit(dlm, res, request->node_idx); spin_unlock(&res->spinlock); response = DLM_MASTER_RESP_YES; if (mle) kmem_cache_free(dlm_mle_cache, mle); /* this node is the owner. * there is some extra work that needs to * happen now. the requesting node has * caused all nodes up to this one to * create mles. this node now needs to * go back and clean those up. */ dispatch_assert = 1; goto send_response; } else if (res->owner != DLM_LOCK_RES_OWNER_UNKNOWN) { spin_unlock(&res->spinlock); // mlog(0, "node %u is the master\n", res->owner); response = DLM_MASTER_RESP_NO; if (mle) kmem_cache_free(dlm_mle_cache, mle); goto send_response; } /* ok, there is no owner. either this node is * being blocked, or it is actively trying to * master this lock. */ if (!(res->state & DLM_LOCK_RES_IN_PROGRESS)) { mlog(ML_ERROR, "lock with no owner should be " "in-progress!\n"); BUG(); } // mlog(0, "lockres is in progress...\n"); spin_lock(&dlm->master_lock); found = dlm_find_mle(dlm, &tmpmle, name, namelen); if (!found) { mlog(ML_ERROR, "no mle found for this lock!\n"); BUG(); } set_maybe = 1; spin_lock(&tmpmle->spinlock); if (tmpmle->type == DLM_MLE_BLOCK) { // mlog(0, "this node is waiting for " // "lockres to be mastered\n"); response = DLM_MASTER_RESP_NO; } else if (tmpmle->type == DLM_MLE_MIGRATION) { mlog(0, "node %u is master, but trying to migrate to " "node %u.\n", tmpmle->master, tmpmle->new_master); if (tmpmle->master == dlm->node_num) { mlog(ML_ERROR, "no owner on lockres, but this " "node is trying to migrate it to %u?!\n", tmpmle->new_master); BUG(); } else { /* the real master can respond on its own */ response = DLM_MASTER_RESP_NO; } } else if (tmpmle->master != DLM_LOCK_RES_OWNER_UNKNOWN) { set_maybe = 0; if (tmpmle->master == dlm->node_num) { response = DLM_MASTER_RESP_YES; /* this node will be the owner. * go back and clean the mles on any * other nodes */ dispatch_assert = 1; dlm_lockres_set_refmap_bit(dlm, res, request->node_idx); } else response = DLM_MASTER_RESP_NO; } else { // mlog(0, "this node is attempting to " // "master lockres\n"); response = DLM_MASTER_RESP_MAYBE; } if (set_maybe) set_bit(request->node_idx, tmpmle->maybe_map); spin_unlock(&tmpmle->spinlock); spin_unlock(&dlm->master_lock); spin_unlock(&res->spinlock); /* keep the mle attached to heartbeat events */ dlm_put_mle(tmpmle); if (mle) kmem_cache_free(dlm_mle_cache, mle); goto send_response; } /* * lockres doesn't exist on this node * if there is an MLE_BLOCK, return NO * if there is an MLE_MASTER, return MAYBE * otherwise, add an MLE_BLOCK, return NO */ spin_lock(&dlm->master_lock); found = dlm_find_mle(dlm, &tmpmle, name, namelen); if (!found) { /* this lockid has never been seen on this node yet */ // mlog(0, "no mle found\n"); if (!mle) { spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); mle = kmem_cache_alloc(dlm_mle_cache, GFP_NOFS); if (!mle) { response = DLM_MASTER_RESP_ERROR; mlog_errno(-ENOMEM); goto send_response; } goto way_up_top; } // mlog(0, "this is second time thru, already allocated, " // "add the block.\n"); dlm_init_mle(mle, DLM_MLE_BLOCK, dlm, NULL, name, namelen); set_bit(request->node_idx, mle->maybe_map); __dlm_insert_mle(dlm, mle); response = DLM_MASTER_RESP_NO; } else { spin_lock(&tmpmle->spinlock); if (tmpmle->master == dlm->node_num) { mlog(ML_ERROR, "no lockres, but an mle with this node as master!\n"); BUG(); } if (tmpmle->type == DLM_MLE_BLOCK) response = DLM_MASTER_RESP_NO; else if (tmpmle->type == DLM_MLE_MIGRATION) { mlog(0, "migration mle was found (%u->%u)\n", tmpmle->master, tmpmle->new_master); /* real master can respond on its own */ response = DLM_MASTER_RESP_NO; } else response = DLM_MASTER_RESP_MAYBE; set_bit(request->node_idx, tmpmle->maybe_map); spin_unlock(&tmpmle->spinlock); } spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); if (found) { /* keep the mle attached to heartbeat events */ dlm_put_mle(tmpmle); } send_response: /* * __dlm_lookup_lockres() grabbed a reference to this lockres. * The reference is released by dlm_assert_master_worker() under * the call to dlm_dispatch_assert_master(). If * dlm_assert_master_worker() isn't called, we drop it here. */ if (dispatch_assert) { mlog(0, "%u is the owner of %.*s, cleaning everyone else\n", dlm->node_num, res->lockname.len, res->lockname.name); spin_lock(&res->spinlock); ret = dlm_dispatch_assert_master(dlm, res, 0, request->node_idx, DLM_ASSERT_MASTER_MLE_CLEANUP); if (ret < 0) { mlog(ML_ERROR, "failed to dispatch assert master work\n"); response = DLM_MASTER_RESP_ERROR; spin_unlock(&res->spinlock); dlm_lockres_put(res); } else { dispatched = 1; __dlm_lockres_grab_inflight_worker(dlm, res); spin_unlock(&res->spinlock); } } else { if (res) dlm_lockres_put(res); } if (!dispatched) dlm_put(dlm); return response; } /* * DLM_ASSERT_MASTER_MSG */ /* * NOTE: this can be used for debugging * can periodically run all locks owned by this node * and re-assert across the cluster... */ static int dlm_do_assert_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, void *nodemap, u32 flags) { struct dlm_assert_master assert; int to, tmpret; struct dlm_node_iter iter; int ret = 0; int reassert; const char *lockname = res->lockname.name; unsigned int namelen = res->lockname.len; BUG_ON(namelen > O2NM_MAX_NAME_LEN); spin_lock(&res->spinlock); res->state |= DLM_LOCK_RES_SETREF_INPROG; spin_unlock(&res->spinlock); again: reassert = 0; /* note that if this nodemap is empty, it returns 0 */ dlm_node_iter_init(nodemap, &iter); while ((to = dlm_node_iter_next(&iter)) >= 0) { int r = 0; struct dlm_master_list_entry *mle = NULL; mlog(0, "sending assert master to %d (%.*s)\n", to, namelen, lockname); memset(&assert, 0, sizeof(assert)); assert.node_idx = dlm->node_num; assert.namelen = namelen; memcpy(assert.name, lockname, namelen); assert.flags = cpu_to_be32(flags); tmpret = o2net_send_message(DLM_ASSERT_MASTER_MSG, dlm->key, &assert, sizeof(assert), to, &r); if (tmpret < 0) { mlog(ML_ERROR, "Error %d when sending message %u (key " "0x%x) to node %u\n", tmpret, DLM_ASSERT_MASTER_MSG, dlm->key, to); if (!dlm_is_host_down(tmpret)) { mlog(ML_ERROR, "unhandled error=%d!\n", tmpret); BUG(); } /* a node died. finish out the rest of the nodes. */ mlog(0, "link to %d went down!\n", to); /* any nonzero status return will do */ ret = tmpret; r = 0; } else if (r < 0) { /* ok, something horribly messed. kill thyself. */ mlog(ML_ERROR,"during assert master of %.*s to %u, " "got %d.\n", namelen, lockname, to, r); spin_lock(&dlm->spinlock); spin_lock(&dlm->master_lock); if (dlm_find_mle(dlm, &mle, (char *)lockname, namelen)) { dlm_print_one_mle(mle); __dlm_put_mle(mle); } spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); BUG(); } if (r & DLM_ASSERT_RESPONSE_REASSERT && !(r & DLM_ASSERT_RESPONSE_MASTERY_REF)) { mlog(ML_ERROR, "%.*s: very strange, " "master MLE but no lockres on %u\n", namelen, lockname, to); } if (r & DLM_ASSERT_RESPONSE_REASSERT) { mlog(0, "%.*s: node %u create mles on other " "nodes and requests a re-assert\n", namelen, lockname, to); reassert = 1; } if (r & DLM_ASSERT_RESPONSE_MASTERY_REF) { mlog(0, "%.*s: node %u has a reference to this " "lockres, set the bit in the refmap\n", namelen, lockname, to); spin_lock(&res->spinlock); dlm_lockres_set_refmap_bit(dlm, res, to); spin_unlock(&res->spinlock); } } if (reassert) goto again; spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_SETREF_INPROG; spin_unlock(&res->spinlock); wake_up(&res->wq); return ret; } /* * locks that can be taken here: * dlm->spinlock * res->spinlock * mle->spinlock * dlm->master_list * * if possible, TRIM THIS DOWN!!! */ int dlm_assert_master_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_master_list_entry *mle = NULL; struct dlm_assert_master *assert = (struct dlm_assert_master *)msg->buf; struct dlm_lock_resource *res = NULL; char *name; unsigned int namelen, hash; u32 flags; int master_request = 0, have_lockres_ref = 0; int ret = 0; if (!dlm_grab(dlm)) return 0; name = assert->name; namelen = assert->namelen; hash = dlm_lockid_hash(name, namelen); flags = be32_to_cpu(assert->flags); if (namelen > DLM_LOCKID_NAME_MAX) { mlog(ML_ERROR, "Invalid name length!"); goto done; } spin_lock(&dlm->spinlock); if (flags) mlog(0, "assert_master with flags: %u\n", flags); /* find the MLE */ spin_lock(&dlm->master_lock); if (!dlm_find_mle(dlm, &mle, name, namelen)) { /* not an error, could be master just re-asserting */ mlog(0, "just got an assert_master from %u, but no " "MLE for it! (%.*s)\n", assert->node_idx, namelen, name); } else { int bit = find_first_bit(mle->maybe_map, O2NM_MAX_NODES); if (bit >= O2NM_MAX_NODES) { /* not necessarily an error, though less likely. * could be master just re-asserting. */ mlog(0, "no bits set in the maybe_map, but %u " "is asserting! (%.*s)\n", assert->node_idx, namelen, name); } else if (bit != assert->node_idx) { if (flags & DLM_ASSERT_MASTER_MLE_CLEANUP) { mlog(0, "master %u was found, %u should " "back off\n", assert->node_idx, bit); } else { /* with the fix for bug 569, a higher node * number winning the mastery will respond * YES to mastery requests, but this node * had no way of knowing. let it pass. */ mlog(0, "%u is the lowest node, " "%u is asserting. (%.*s) %u must " "have begun after %u won.\n", bit, assert->node_idx, namelen, name, bit, assert->node_idx); } } if (mle->type == DLM_MLE_MIGRATION) { if (flags & DLM_ASSERT_MASTER_MLE_CLEANUP) { mlog(0, "%s:%.*s: got cleanup assert" " from %u for migration\n", dlm->name, namelen, name, assert->node_idx); } else if (!(flags & DLM_ASSERT_MASTER_FINISH_MIGRATION)) { mlog(0, "%s:%.*s: got unrelated assert" " from %u for migration, ignoring\n", dlm->name, namelen, name, assert->node_idx); __dlm_put_mle(mle); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); goto done; } } } spin_unlock(&dlm->master_lock); /* ok everything checks out with the MLE * now check to see if there is a lockres */ res = __dlm_lookup_lockres(dlm, name, namelen, hash); if (res) { spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { mlog(ML_ERROR, "%u asserting but %.*s is " "RECOVERING!\n", assert->node_idx, namelen, name); goto kill; } if (!mle) { if (res->owner != DLM_LOCK_RES_OWNER_UNKNOWN && res->owner != assert->node_idx) { mlog(ML_ERROR, "DIE! Mastery assert from %u, " "but current owner is %u! (%.*s)\n", assert->node_idx, res->owner, namelen, name); __dlm_print_one_lock_resource(res); BUG(); } } else if (mle->type != DLM_MLE_MIGRATION) { if (res->owner != DLM_LOCK_RES_OWNER_UNKNOWN) { /* owner is just re-asserting */ if (res->owner == assert->node_idx) { mlog(0, "owner %u re-asserting on " "lock %.*s\n", assert->node_idx, namelen, name); goto ok; } mlog(ML_ERROR, "got assert_master from " "node %u, but %u is the owner! " "(%.*s)\n", assert->node_idx, res->owner, namelen, name); goto kill; } if (!(res->state & DLM_LOCK_RES_IN_PROGRESS)) { mlog(ML_ERROR, "got assert from %u, but lock " "with no owner should be " "in-progress! (%.*s)\n", assert->node_idx, namelen, name); goto kill; } } else /* mle->type == DLM_MLE_MIGRATION */ { /* should only be getting an assert from new master */ if (assert->node_idx != mle->new_master) { mlog(ML_ERROR, "got assert from %u, but " "new master is %u, and old master " "was %u (%.*s)\n", assert->node_idx, mle->new_master, mle->master, namelen, name); goto kill; } } ok: spin_unlock(&res->spinlock); } // mlog(0, "woo! got an assert_master from node %u!\n", // assert->node_idx); if (mle) { int extra_ref = 0; int nn = -1; int rr, err = 0; spin_lock(&mle->spinlock); if (mle->type == DLM_MLE_BLOCK || mle->type == DLM_MLE_MIGRATION) extra_ref = 1; else { /* MASTER mle: if any bits set in the response map * then the calling node needs to re-assert to clear * up nodes that this node contacted */ while ((nn = find_next_bit (mle->response_map, O2NM_MAX_NODES, nn+1)) < O2NM_MAX_NODES) { if (nn != dlm->node_num && nn != assert->node_idx) { master_request = 1; break; } } } mle->master = assert->node_idx; atomic_set(&mle->woken, 1); wake_up(&mle->wq); spin_unlock(&mle->spinlock); if (res) { int wake = 0; spin_lock(&res->spinlock); if (mle->type == DLM_MLE_MIGRATION) { mlog(0, "finishing off migration of lockres %.*s, " "from %u to %u\n", res->lockname.len, res->lockname.name, dlm->node_num, mle->new_master); res->state &= ~DLM_LOCK_RES_MIGRATING; wake = 1; dlm_change_lockres_owner(dlm, res, mle->new_master); BUG_ON(res->state & DLM_LOCK_RES_DIRTY); } else { dlm_change_lockres_owner(dlm, res, mle->master); } spin_unlock(&res->spinlock); have_lockres_ref = 1; if (wake) wake_up(&res->wq); } /* master is known, detach if not already detached. * ensures that only one assert_master call will happen * on this mle. */ spin_lock(&dlm->master_lock); rr = kref_read(&mle->mle_refs); if (mle->inuse > 0) { if (extra_ref && rr < 3) err = 1; else if (!extra_ref && rr < 2) err = 1; } else { if (extra_ref && rr < 2) err = 1; else if (!extra_ref && rr < 1) err = 1; } if (err) { mlog(ML_ERROR, "%s:%.*s: got assert master from %u " "that will mess up this node, refs=%d, extra=%d, " "inuse=%d\n", dlm->name, namelen, name, assert->node_idx, rr, extra_ref, mle->inuse); dlm_print_one_mle(mle); } __dlm_unlink_mle(dlm, mle); __dlm_mle_detach_hb_events(dlm, mle); __dlm_put_mle(mle); if (extra_ref) { /* the assert master message now balances the extra * ref given by the master / migration request message. * if this is the last put, it will be removed * from the list. */ __dlm_put_mle(mle); } spin_unlock(&dlm->master_lock); } else if (res) { if (res->owner != assert->node_idx) { mlog(0, "assert_master from %u, but current " "owner is %u (%.*s), no mle\n", assert->node_idx, res->owner, namelen, name); } } spin_unlock(&dlm->spinlock); done: ret = 0; if (res) { spin_lock(&res->spinlock); res->state |= DLM_LOCK_RES_SETREF_INPROG; spin_unlock(&res->spinlock); *ret_data = (void *)res; } dlm_put(dlm); if (master_request) { mlog(0, "need to tell master to reassert\n"); /* positive. negative would shoot down the node. */ ret |= DLM_ASSERT_RESPONSE_REASSERT; if (!have_lockres_ref) { mlog(ML_ERROR, "strange, got assert from %u, MASTER " "mle present here for %s:%.*s, but no lockres!\n", assert->node_idx, dlm->name, namelen, name); } } if (have_lockres_ref) { /* let the master know we have a reference to the lockres */ ret |= DLM_ASSERT_RESPONSE_MASTERY_REF; mlog(0, "%s:%.*s: got assert from %u, need a ref\n", dlm->name, namelen, name, assert->node_idx); } return ret; kill: /* kill the caller! */ mlog(ML_ERROR, "Bad message received from another node. Dumping state " "and killing the other node now! This node is OK and can continue.\n"); __dlm_print_one_lock_resource(res); spin_unlock(&res->spinlock); spin_lock(&dlm->master_lock); if (mle) __dlm_put_mle(mle); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); *ret_data = (void *)res; dlm_put(dlm); return -EINVAL; } void dlm_assert_master_post_handler(int status, void *data, void *ret_data) { struct dlm_lock_resource *res = (struct dlm_lock_resource *)ret_data; if (ret_data) { spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_SETREF_INPROG; spin_unlock(&res->spinlock); wake_up(&res->wq); dlm_lockres_put(res); } return; } int dlm_dispatch_assert_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, int ignore_higher, u8 request_from, u32 flags) { struct dlm_work_item *item; item = kzalloc(sizeof(*item), GFP_ATOMIC); if (!item) return -ENOMEM; /* queue up work for dlm_assert_master_worker */ dlm_init_work_item(dlm, item, dlm_assert_master_worker, NULL); item->u.am.lockres = res; /* already have a ref */ /* can optionally ignore node numbers higher than this node */ item->u.am.ignore_higher = ignore_higher; item->u.am.request_from = request_from; item->u.am.flags = flags; if (ignore_higher) mlog(0, "IGNORE HIGHER: %.*s\n", res->lockname.len, res->lockname.name); spin_lock(&dlm->work_lock); list_add_tail(&item->list, &dlm->work_list); spin_unlock(&dlm->work_lock); queue_work(dlm->dlm_worker, &dlm->dispatched_work); return 0; } static void dlm_assert_master_worker(struct dlm_work_item *item, void *data) { struct dlm_ctxt *dlm = data; int ret = 0; struct dlm_lock_resource *res; unsigned long nodemap[BITS_TO_LONGS(O2NM_MAX_NODES)]; int ignore_higher; int bit; u8 request_from; u32 flags; dlm = item->dlm; res = item->u.am.lockres; ignore_higher = item->u.am.ignore_higher; request_from = item->u.am.request_from; flags = item->u.am.flags; spin_lock(&dlm->spinlock); bitmap_copy(nodemap, dlm->domain_map, O2NM_MAX_NODES); spin_unlock(&dlm->spinlock); clear_bit(dlm->node_num, nodemap); if (ignore_higher) { /* if is this just to clear up mles for nodes below * this node, do not send the message to the original * caller or any node number higher than this */ clear_bit(request_from, nodemap); bit = dlm->node_num; while (1) { bit = find_next_bit(nodemap, O2NM_MAX_NODES, bit+1); if (bit >= O2NM_MAX_NODES) break; clear_bit(bit, nodemap); } } /* * If we're migrating this lock to someone else, we are no * longer allowed to assert out own mastery. OTOH, we need to * prevent migration from starting while we're still asserting * our dominance. The reserved ast delays migration. */ spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_MIGRATING) { mlog(0, "Someone asked us to assert mastery, but we're " "in the middle of migration. Skipping assert, " "the new master will handle that.\n"); spin_unlock(&res->spinlock); goto put; } else __dlm_lockres_reserve_ast(res); spin_unlock(&res->spinlock); /* this call now finishes out the nodemap * even if one or more nodes die */ mlog(0, "worker about to master %.*s here, this=%u\n", res->lockname.len, res->lockname.name, dlm->node_num); ret = dlm_do_assert_master(dlm, res, nodemap, flags); if (ret < 0) { /* no need to restart, we are done */ if (!dlm_is_host_down(ret)) mlog_errno(ret); } /* Ok, we've asserted ourselves. Let's let migration start. */ dlm_lockres_release_ast(dlm, res); put: dlm_lockres_drop_inflight_worker(dlm, res); dlm_lockres_put(res); mlog(0, "finished with dlm_assert_master_worker\n"); } /* SPECIAL CASE for the $RECOVERY lock used by the recovery thread. * We cannot wait for node recovery to complete to begin mastering this * lockres because this lockres is used to kick off recovery! ;-) * So, do a pre-check on all living nodes to see if any of those nodes * think that $RECOVERY is currently mastered by a dead node. If so, * we wait a short time to allow that node to get notified by its own * heartbeat stack, then check again. All $RECOVERY lock resources * mastered by dead nodes are purged when the heartbeat callback is * fired, so we can know for sure that it is safe to continue once * the node returns a live node or no node. */ static int dlm_pre_master_reco_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { struct dlm_node_iter iter; int nodenum; int ret = 0; u8 master = DLM_LOCK_RES_OWNER_UNKNOWN; spin_lock(&dlm->spinlock); dlm_node_iter_init(dlm->domain_map, &iter); spin_unlock(&dlm->spinlock); while ((nodenum = dlm_node_iter_next(&iter)) >= 0) { /* do not send to self */ if (nodenum == dlm->node_num) continue; ret = dlm_do_master_requery(dlm, res, nodenum, &master); if (ret < 0) { mlog_errno(ret); if (!dlm_is_host_down(ret)) BUG(); /* host is down, so answer for that node would be * DLM_LOCK_RES_OWNER_UNKNOWN. continue. */ ret = 0; } if (master != DLM_LOCK_RES_OWNER_UNKNOWN) { /* check to see if this master is in the recovery map */ spin_lock(&dlm->spinlock); if (test_bit(master, dlm->recovery_map)) { mlog(ML_NOTICE, "%s: node %u has not seen " "node %u go down yet, and thinks the " "dead node is mastering the recovery " "lock. must wait.\n", dlm->name, nodenum, master); ret = -EAGAIN; } spin_unlock(&dlm->spinlock); mlog(0, "%s: reco lock master is %u\n", dlm->name, master); break; } } return ret; } /* * DLM_DEREF_LOCKRES_MSG */ int dlm_drop_lockres_ref(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { struct dlm_deref_lockres deref; int ret = 0, r; const char *lockname; unsigned int namelen; lockname = res->lockname.name; namelen = res->lockname.len; BUG_ON(namelen > O2NM_MAX_NAME_LEN); memset(&deref, 0, sizeof(deref)); deref.node_idx = dlm->node_num; deref.namelen = namelen; memcpy(deref.name, lockname, namelen); ret = o2net_send_message(DLM_DEREF_LOCKRES_MSG, dlm->key, &deref, sizeof(deref), res->owner, &r); if (ret < 0) mlog(ML_ERROR, "%s: res %.*s, error %d send DEREF to node %u\n", dlm->name, namelen, lockname, ret, res->owner); else if (r < 0) { /* BAD. other node says I did not have a ref. */ mlog(ML_ERROR, "%s: res %.*s, DEREF to node %u got %d\n", dlm->name, namelen, lockname, res->owner, r); dlm_print_one_lock_resource(res); if (r == -ENOMEM) BUG(); } else ret = r; return ret; } int dlm_deref_lockres_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_deref_lockres *deref = (struct dlm_deref_lockres *)msg->buf; struct dlm_lock_resource *res = NULL; char *name; unsigned int namelen; int ret = -EINVAL; u8 node; unsigned int hash; struct dlm_work_item *item; int cleared = 0; int dispatch = 0; if (!dlm_grab(dlm)) return 0; name = deref->name; namelen = deref->namelen; node = deref->node_idx; if (namelen > DLM_LOCKID_NAME_MAX) { mlog(ML_ERROR, "Invalid name length!"); goto done; } if (deref->node_idx >= O2NM_MAX_NODES) { mlog(ML_ERROR, "Invalid node number: %u\n", node); goto done; } hash = dlm_lockid_hash(name, namelen); spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres_full(dlm, name, namelen, hash); if (!res) { spin_unlock(&dlm->spinlock); mlog(ML_ERROR, "%s:%.*s: bad lockres name\n", dlm->name, namelen, name); goto done; } spin_unlock(&dlm->spinlock); spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_SETREF_INPROG) dispatch = 1; else { BUG_ON(res->state & DLM_LOCK_RES_DROPPING_REF); if (test_bit(node, res->refmap)) { dlm_lockres_clear_refmap_bit(dlm, res, node); cleared = 1; } } spin_unlock(&res->spinlock); if (!dispatch) { if (cleared) dlm_lockres_calc_usage(dlm, res); else { mlog(ML_ERROR, "%s:%.*s: node %u trying to drop ref " "but it is already dropped!\n", dlm->name, res->lockname.len, res->lockname.name, node); dlm_print_one_lock_resource(res); } ret = DLM_DEREF_RESPONSE_DONE; goto done; } item = kzalloc(sizeof(*item), GFP_NOFS); if (!item) { ret = -ENOMEM; mlog_errno(ret); goto done; } dlm_init_work_item(dlm, item, dlm_deref_lockres_worker, NULL); item->u.dl.deref_res = res; item->u.dl.deref_node = node; spin_lock(&dlm->work_lock); list_add_tail(&item->list, &dlm->work_list); spin_unlock(&dlm->work_lock); queue_work(dlm->dlm_worker, &dlm->dispatched_work); return DLM_DEREF_RESPONSE_INPROG; done: if (res) dlm_lockres_put(res); dlm_put(dlm); return ret; } int dlm_deref_lockres_done_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_deref_lockres_done *deref = (struct dlm_deref_lockres_done *)msg->buf; struct dlm_lock_resource *res = NULL; char *name; unsigned int namelen; int ret = -EINVAL; u8 node; unsigned int hash; if (!dlm_grab(dlm)) return 0; name = deref->name; namelen = deref->namelen; node = deref->node_idx; if (namelen > DLM_LOCKID_NAME_MAX) { mlog(ML_ERROR, "Invalid name length!"); goto done; } if (deref->node_idx >= O2NM_MAX_NODES) { mlog(ML_ERROR, "Invalid node number: %u\n", node); goto done; } hash = dlm_lockid_hash(name, namelen); spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres_full(dlm, name, namelen, hash); if (!res) { spin_unlock(&dlm->spinlock); mlog(ML_ERROR, "%s:%.*s: bad lockres name\n", dlm->name, namelen, name); goto done; } spin_lock(&res->spinlock); if (!(res->state & DLM_LOCK_RES_DROPPING_REF)) { spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); mlog(ML_NOTICE, "%s:%.*s: node %u sends deref done " "but it is already derefed!\n", dlm->name, res->lockname.len, res->lockname.name, node); ret = 0; goto done; } __dlm_do_purge_lockres(dlm, res); spin_unlock(&res->spinlock); wake_up(&res->wq); spin_unlock(&dlm->spinlock); ret = 0; done: if (res) dlm_lockres_put(res); dlm_put(dlm); return ret; } static void dlm_drop_lockres_ref_done(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 node) { struct dlm_deref_lockres_done deref; int ret = 0, r; const char *lockname; unsigned int namelen; lockname = res->lockname.name; namelen = res->lockname.len; BUG_ON(namelen > O2NM_MAX_NAME_LEN); memset(&deref, 0, sizeof(deref)); deref.node_idx = dlm->node_num; deref.namelen = namelen; memcpy(deref.name, lockname, namelen); ret = o2net_send_message(DLM_DEREF_LOCKRES_DONE, dlm->key, &deref, sizeof(deref), node, &r); if (ret < 0) { mlog(ML_ERROR, "%s: res %.*s, error %d send DEREF DONE " " to node %u\n", dlm->name, namelen, lockname, ret, node); } else if (r < 0) { /* ignore the error */ mlog(ML_ERROR, "%s: res %.*s, DEREF to node %u got %d\n", dlm->name, namelen, lockname, node, r); dlm_print_one_lock_resource(res); } } static void dlm_deref_lockres_worker(struct dlm_work_item *item, void *data) { struct dlm_ctxt *dlm; struct dlm_lock_resource *res; u8 node; u8 cleared = 0; dlm = item->dlm; res = item->u.dl.deref_res; node = item->u.dl.deref_node; spin_lock(&res->spinlock); BUG_ON(res->state & DLM_LOCK_RES_DROPPING_REF); __dlm_wait_on_lockres_flags(res, DLM_LOCK_RES_SETREF_INPROG); if (test_bit(node, res->refmap)) { dlm_lockres_clear_refmap_bit(dlm, res, node); cleared = 1; } spin_unlock(&res->spinlock); dlm_drop_lockres_ref_done(dlm, res, node); if (cleared) { mlog(0, "%s:%.*s node %u ref dropped in dispatch\n", dlm->name, res->lockname.len, res->lockname.name, node); dlm_lockres_calc_usage(dlm, res); } else { mlog(ML_ERROR, "%s:%.*s: node %u trying to drop ref " "but it is already dropped!\n", dlm->name, res->lockname.len, res->lockname.name, node); dlm_print_one_lock_resource(res); } dlm_lockres_put(res); } /* * A migratable resource is one that is : * 1. locally mastered, and, * 2. zero local locks, and, * 3. one or more non-local locks, or, one or more references * Returns 1 if yes, 0 if not. */ static int dlm_is_lockres_migratable(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { enum dlm_lockres_list idx; int nonlocal = 0, node_ref; struct list_head *queue; struct dlm_lock *lock; u64 cookie; assert_spin_locked(&res->spinlock); /* delay migration when the lockres is in MIGRATING state */ if (res->state & DLM_LOCK_RES_MIGRATING) return 0; /* delay migration when the lockres is in RECOCERING state */ if (res->state & (DLM_LOCK_RES_RECOVERING| DLM_LOCK_RES_RECOVERY_WAITING)) return 0; if (res->owner != dlm->node_num) return 0; for (idx = DLM_GRANTED_LIST; idx <= DLM_BLOCKED_LIST; idx++) { queue = dlm_list_idx_to_ptr(res, idx); list_for_each_entry(lock, queue, list) { if (lock->ml.node != dlm->node_num) { nonlocal++; continue; } cookie = be64_to_cpu(lock->ml.cookie); mlog(0, "%s: Not migratable res %.*s, lock %u:%llu on " "%s list\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(cookie), dlm_get_lock_cookie_seq(cookie), dlm_list_in_text(idx)); return 0; } } if (!nonlocal) { node_ref = find_first_bit(res->refmap, O2NM_MAX_NODES); if (node_ref >= O2NM_MAX_NODES) return 0; } mlog(0, "%s: res %.*s, Migratable\n", dlm->name, res->lockname.len, res->lockname.name); return 1; } /* * DLM_MIGRATE_LOCKRES */ static int dlm_migrate_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 target) { struct dlm_master_list_entry *mle = NULL; struct dlm_master_list_entry *oldmle = NULL; struct dlm_migratable_lockres *mres = NULL; int ret = 0; const char *name; unsigned int namelen; int mle_added = 0; int wake = 0; if (!dlm_grab(dlm)) return -EINVAL; name = res->lockname.name; namelen = res->lockname.len; mlog(0, "%s: Migrating %.*s to node %u\n", dlm->name, namelen, name, target); /* preallocate up front. if this fails, abort */ ret = -ENOMEM; mres = (struct dlm_migratable_lockres *) __get_free_page(GFP_NOFS); if (!mres) { mlog_errno(ret); goto leave; } mle = kmem_cache_alloc(dlm_mle_cache, GFP_NOFS); if (!mle) { mlog_errno(ret); goto leave; } ret = 0; /* * clear any existing master requests and * add the migration mle to the list */ spin_lock(&dlm->spinlock); spin_lock(&dlm->master_lock); ret = dlm_add_migration_mle(dlm, res, mle, &oldmle, name, namelen, target, dlm->node_num); /* get an extra reference on the mle. * otherwise the assert_master from the new * master will destroy this. */ if (ret != -EEXIST) dlm_get_mle_inuse(mle); spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); if (ret == -EEXIST) { mlog(0, "another process is already migrating it\n"); goto fail; } mle_added = 1; /* * set the MIGRATING flag and flush asts * if we fail after this we need to re-dirty the lockres */ if (dlm_mark_lockres_migrating(dlm, res, target) < 0) { mlog(ML_ERROR, "tried to migrate %.*s to %u, but " "the target went down.\n", res->lockname.len, res->lockname.name, target); spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_MIGRATING; wake = 1; spin_unlock(&res->spinlock); ret = -EINVAL; } fail: if (ret != -EEXIST && oldmle) { /* master is known, detach if not already detached */ dlm_mle_detach_hb_events(dlm, oldmle); dlm_put_mle(oldmle); } if (ret < 0) { if (mle_added) { dlm_mle_detach_hb_events(dlm, mle); dlm_put_mle(mle); dlm_put_mle_inuse(mle); } else if (mle) { kmem_cache_free(dlm_mle_cache, mle); mle = NULL; } goto leave; } /* * at this point, we have a migration target, an mle * in the master list, and the MIGRATING flag set on * the lockres */ /* now that remote nodes are spinning on the MIGRATING flag, * ensure that all assert_master work is flushed. */ flush_workqueue(dlm->dlm_worker); /* notify new node and send all lock state */ /* call send_one_lockres with migration flag. * this serves as notice to the target node that a * migration is starting. */ ret = dlm_send_one_lockres(dlm, res, mres, target, DLM_MRES_MIGRATION); if (ret < 0) { mlog(0, "migration to node %u failed with %d\n", target, ret); /* migration failed, detach and clean up mle */ dlm_mle_detach_hb_events(dlm, mle); dlm_put_mle(mle); dlm_put_mle_inuse(mle); spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_MIGRATING; wake = 1; spin_unlock(&res->spinlock); if (dlm_is_host_down(ret)) dlm_wait_for_node_death(dlm, target, DLM_NODE_DEATH_WAIT_MAX); goto leave; } /* at this point, the target sends a message to all nodes, * (using dlm_do_migrate_request). this node is skipped since * we had to put an mle in the list to begin the process. this * node now waits for target to do an assert master. this node * will be the last one notified, ensuring that the migration * is complete everywhere. if the target dies while this is * going on, some nodes could potentially see the target as the * master, so it is important that my recovery finds the migration * mle and sets the master to UNKNOWN. */ /* wait for new node to assert master */ while (1) { ret = wait_event_interruptible_timeout(mle->wq, (atomic_read(&mle->woken) == 1), msecs_to_jiffies(5000)); if (ret >= 0) { if (atomic_read(&mle->woken) == 1 || res->owner == target) break; mlog(0, "%s:%.*s: timed out during migration\n", dlm->name, res->lockname.len, res->lockname.name); /* avoid hang during shutdown when migrating lockres * to a node which also goes down */ if (dlm_is_node_dead(dlm, target)) { mlog(0, "%s:%.*s: expected migration " "target %u is no longer up, restarting\n", dlm->name, res->lockname.len, res->lockname.name, target); ret = -EINVAL; /* migration failed, detach and clean up mle */ dlm_mle_detach_hb_events(dlm, mle); dlm_put_mle(mle); dlm_put_mle_inuse(mle); spin_lock(&res->spinlock); res->state &= ~DLM_LOCK_RES_MIGRATING; wake = 1; spin_unlock(&res->spinlock); goto leave; } } else mlog(0, "%s:%.*s: caught signal during migration\n", dlm->name, res->lockname.len, res->lockname.name); } /* all done, set the owner, clear the flag */ spin_lock(&res->spinlock); dlm_set_lockres_owner(dlm, res, target); res->state &= ~DLM_LOCK_RES_MIGRATING; dlm_remove_nonlocal_locks(dlm, res); spin_unlock(&res->spinlock); wake_up(&res->wq); /* master is known, detach if not already detached */ dlm_mle_detach_hb_events(dlm, mle); dlm_put_mle_inuse(mle); ret = 0; dlm_lockres_calc_usage(dlm, res); leave: /* re-dirty the lockres if we failed */ if (ret < 0) dlm_kick_thread(dlm, res); /* wake up waiters if the MIGRATING flag got set * but migration failed */ if (wake) wake_up(&res->wq); if (mres) free_page((unsigned long)mres); dlm_put(dlm); mlog(0, "%s: Migrating %.*s to %u, returns %d\n", dlm->name, namelen, name, target, ret); return ret; } /* * Should be called only after beginning the domain leave process. * There should not be any remaining locks on nonlocal lock resources, * and there should be no local locks left on locally mastered resources. * * Called with the dlm spinlock held, may drop it to do migration, but * will re-acquire before exit. * * Returns: 1 if dlm->spinlock was dropped/retaken, 0 if never dropped */ int dlm_empty_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) __must_hold(&dlm->spinlock) { int ret; int lock_dropped = 0; u8 target = O2NM_MAX_NODES; assert_spin_locked(&dlm->spinlock); spin_lock(&res->spinlock); if (dlm_is_lockres_migratable(dlm, res)) target = dlm_pick_migration_target(dlm, res); spin_unlock(&res->spinlock); if (target == O2NM_MAX_NODES) goto leave; /* Wheee! Migrate lockres here! Will sleep so drop spinlock. */ spin_unlock(&dlm->spinlock); lock_dropped = 1; ret = dlm_migrate_lockres(dlm, res, target); if (ret) mlog(0, "%s: res %.*s, Migrate to node %u failed with %d\n", dlm->name, res->lockname.len, res->lockname.name, target, ret); spin_lock(&dlm->spinlock); leave: return lock_dropped; } int dlm_lock_basts_flushed(struct dlm_ctxt *dlm, struct dlm_lock *lock) { int ret; spin_lock(&dlm->ast_lock); spin_lock(&lock->spinlock); ret = (list_empty(&lock->bast_list) && !lock->bast_pending); spin_unlock(&lock->spinlock); spin_unlock(&dlm->ast_lock); return ret; } static int dlm_migration_can_proceed(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 mig_target) { int can_proceed; spin_lock(&res->spinlock); can_proceed = !!(res->state & DLM_LOCK_RES_MIGRATING); spin_unlock(&res->spinlock); /* target has died, so make the caller break out of the * wait_event, but caller must recheck the domain_map */ spin_lock(&dlm->spinlock); if (!test_bit(mig_target, dlm->domain_map)) can_proceed = 1; spin_unlock(&dlm->spinlock); return can_proceed; } static int dlm_lockres_is_dirty(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { int ret; spin_lock(&res->spinlock); ret = !!(res->state & DLM_LOCK_RES_DIRTY); spin_unlock(&res->spinlock); return ret; } static int dlm_mark_lockres_migrating(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 target) { int ret = 0; mlog(0, "dlm_mark_lockres_migrating: %.*s, from %u to %u\n", res->lockname.len, res->lockname.name, dlm->node_num, target); /* need to set MIGRATING flag on lockres. this is done by * ensuring that all asts have been flushed for this lockres. */ spin_lock(&res->spinlock); BUG_ON(res->migration_pending); res->migration_pending = 1; /* strategy is to reserve an extra ast then release * it below, letting the release do all of the work */ __dlm_lockres_reserve_ast(res); spin_unlock(&res->spinlock); /* now flush all the pending asts */ dlm_kick_thread(dlm, res); /* before waiting on DIRTY, block processes which may * try to dirty the lockres before MIGRATING is set */ spin_lock(&res->spinlock); BUG_ON(res->state & DLM_LOCK_RES_BLOCK_DIRTY); res->state |= DLM_LOCK_RES_BLOCK_DIRTY; spin_unlock(&res->spinlock); /* now wait on any pending asts and the DIRTY state */ wait_event(dlm->ast_wq, !dlm_lockres_is_dirty(dlm, res)); dlm_lockres_release_ast(dlm, res); mlog(0, "about to wait on migration_wq, dirty=%s\n", res->state & DLM_LOCK_RES_DIRTY ? "yes" : "no"); /* if the extra ref we just put was the final one, this * will pass thru immediately. otherwise, we need to wait * for the last ast to finish. */ again: ret = wait_event_interruptible_timeout(dlm->migration_wq, dlm_migration_can_proceed(dlm, res, target), msecs_to_jiffies(1000)); if (ret < 0) { mlog(0, "woken again: migrating? %s, dead? %s\n", res->state & DLM_LOCK_RES_MIGRATING ? "yes":"no", test_bit(target, dlm->domain_map) ? "no":"yes"); } else { mlog(0, "all is well: migrating? %s, dead? %s\n", res->state & DLM_LOCK_RES_MIGRATING ? "yes":"no", test_bit(target, dlm->domain_map) ? "no":"yes"); } if (!dlm_migration_can_proceed(dlm, res, target)) { mlog(0, "trying again...\n"); goto again; } ret = 0; /* did the target go down or die? */ spin_lock(&dlm->spinlock); if (!test_bit(target, dlm->domain_map)) { mlog(ML_ERROR, "aha. migration target %u just went down\n", target); ret = -EHOSTDOWN; } spin_unlock(&dlm->spinlock); /* * if target is down, we need to clear DLM_LOCK_RES_BLOCK_DIRTY for * another try; otherwise, we are sure the MIGRATING state is there, * drop the unneeded state which blocked threads trying to DIRTY */ spin_lock(&res->spinlock); BUG_ON(!(res->state & DLM_LOCK_RES_BLOCK_DIRTY)); res->state &= ~DLM_LOCK_RES_BLOCK_DIRTY; if (!ret) BUG_ON(!(res->state & DLM_LOCK_RES_MIGRATING)); else res->migration_pending = 0; spin_unlock(&res->spinlock); /* * at this point: * * o the DLM_LOCK_RES_MIGRATING flag is set if target not down * o there are no pending asts on this lockres * o all processes trying to reserve an ast on this * lockres must wait for the MIGRATING flag to clear */ return ret; } /* last step in the migration process. * original master calls this to free all of the dlm_lock * structures that used to be for other nodes. */ static void dlm_remove_nonlocal_locks(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { struct list_head *queue = &res->granted; int i, bit; struct dlm_lock *lock, *next; assert_spin_locked(&res->spinlock); BUG_ON(res->owner == dlm->node_num); for (i=0; i<3; i++) { list_for_each_entry_safe(lock, next, queue, list) { if (lock->ml.node != dlm->node_num) { mlog(0, "putting lock for node %u\n", lock->ml.node); /* be extra careful */ BUG_ON(!list_empty(&lock->ast_list)); BUG_ON(!list_empty(&lock->bast_list)); BUG_ON(lock->ast_pending); BUG_ON(lock->bast_pending); dlm_lockres_clear_refmap_bit(dlm, res, lock->ml.node); list_del_init(&lock->list); dlm_lock_put(lock); /* In a normal unlock, we would have added a * DLM_UNLOCK_FREE_LOCK action. Force it. */ dlm_lock_put(lock); } } queue++; } bit = 0; while (1) { bit = find_next_bit(res->refmap, O2NM_MAX_NODES, bit); if (bit >= O2NM_MAX_NODES) break; /* do not clear the local node reference, if there is a * process holding this, let it drop the ref itself */ if (bit != dlm->node_num) { mlog(0, "%s:%.*s: node %u had a ref to this " "migrating lockres, clearing\n", dlm->name, res->lockname.len, res->lockname.name, bit); dlm_lockres_clear_refmap_bit(dlm, res, bit); } bit++; } } /* * Pick a node to migrate the lock resource to. This function selects a * potential target based first on the locks and then on refmap. It skips * nodes that are in the process of exiting the domain. */ static u8 dlm_pick_migration_target(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { enum dlm_lockres_list idx; struct list_head *queue; struct dlm_lock *lock; int noderef; u8 nodenum = O2NM_MAX_NODES; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); /* Go through all the locks */ for (idx = DLM_GRANTED_LIST; idx <= DLM_BLOCKED_LIST; idx++) { queue = dlm_list_idx_to_ptr(res, idx); list_for_each_entry(lock, queue, list) { if (lock->ml.node == dlm->node_num) continue; if (test_bit(lock->ml.node, dlm->exit_domain_map)) continue; nodenum = lock->ml.node; goto bail; } } /* Go thru the refmap */ noderef = -1; while (1) { noderef = find_next_bit(res->refmap, O2NM_MAX_NODES, noderef + 1); if (noderef >= O2NM_MAX_NODES) break; if (noderef == dlm->node_num) continue; if (test_bit(noderef, dlm->exit_domain_map)) continue; nodenum = noderef; goto bail; } bail: return nodenum; } /* this is called by the new master once all lockres * data has been received */ static int dlm_do_migrate_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 master, u8 new_master, struct dlm_node_iter *iter) { struct dlm_migrate_request migrate; int ret, skip, status = 0; int nodenum; memset(&migrate, 0, sizeof(migrate)); migrate.namelen = res->lockname.len; memcpy(migrate.name, res->lockname.name, migrate.namelen); migrate.new_master = new_master; migrate.master = master; ret = 0; /* send message to all nodes, except the master and myself */ while ((nodenum = dlm_node_iter_next(iter)) >= 0) { if (nodenum == master || nodenum == new_master) continue; /* We could race exit domain. If exited, skip. */ spin_lock(&dlm->spinlock); skip = (!test_bit(nodenum, dlm->domain_map)); spin_unlock(&dlm->spinlock); if (skip) { clear_bit(nodenum, iter->node_map); continue; } ret = o2net_send_message(DLM_MIGRATE_REQUEST_MSG, dlm->key, &migrate, sizeof(migrate), nodenum, &status); if (ret < 0) { mlog(ML_ERROR, "%s: res %.*s, Error %d send " "MIGRATE_REQUEST to node %u\n", dlm->name, migrate.namelen, migrate.name, ret, nodenum); if (!dlm_is_host_down(ret)) { mlog(ML_ERROR, "unhandled error=%d!\n", ret); BUG(); } clear_bit(nodenum, iter->node_map); ret = 0; } else if (status < 0) { mlog(0, "migrate request (node %u) returned %d!\n", nodenum, status); ret = status; } else if (status == DLM_MIGRATE_RESPONSE_MASTERY_REF) { /* during the migration request we short-circuited * the mastery of the lockres. make sure we have * a mastery ref for nodenum */ mlog(0, "%s:%.*s: need ref for node %u\n", dlm->name, res->lockname.len, res->lockname.name, nodenum); spin_lock(&res->spinlock); dlm_lockres_set_refmap_bit(dlm, res, nodenum); spin_unlock(&res->spinlock); } } if (ret < 0) mlog_errno(ret); mlog(0, "returning ret=%d\n", ret); return ret; } /* if there is an existing mle for this lockres, we now know who the master is. * (the one who sent us *this* message) we can clear it up right away. * since the process that put the mle on the list still has a reference to it, * we can unhash it now, set the master and wake the process. as a result, * we will have no mle in the list to start with. now we can add an mle for * the migration and this should be the only one found for those scanning the * list. */ int dlm_migrate_request_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_lock_resource *res = NULL; struct dlm_migrate_request *migrate = (struct dlm_migrate_request *) msg->buf; struct dlm_master_list_entry *mle = NULL, *oldmle = NULL; const char *name; unsigned int namelen, hash; int ret = 0; if (!dlm_grab(dlm)) return 0; name = migrate->name; namelen = migrate->namelen; hash = dlm_lockid_hash(name, namelen); /* preallocate.. if this fails, abort */ mle = kmem_cache_alloc(dlm_mle_cache, GFP_NOFS); if (!mle) { ret = -ENOMEM; goto leave; } /* check for pre-existing lock */ spin_lock(&dlm->spinlock); res = __dlm_lookup_lockres(dlm, name, namelen, hash); if (res) { spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { /* if all is working ok, this can only mean that we got * a migrate request from a node that we now see as * dead. what can we do here? drop it to the floor? */ spin_unlock(&res->spinlock); mlog(ML_ERROR, "Got a migrate request, but the " "lockres is marked as recovering!"); kmem_cache_free(dlm_mle_cache, mle); ret = -EINVAL; /* need a better solution */ goto unlock; } res->state |= DLM_LOCK_RES_MIGRATING; spin_unlock(&res->spinlock); } spin_lock(&dlm->master_lock); /* ignore status. only nonzero status would BUG. */ ret = dlm_add_migration_mle(dlm, res, mle, &oldmle, name, namelen, migrate->new_master, migrate->master); if (ret < 0) kmem_cache_free(dlm_mle_cache, mle); spin_unlock(&dlm->master_lock); unlock: spin_unlock(&dlm->spinlock); if (oldmle) { /* master is known, detach if not already detached */ dlm_mle_detach_hb_events(dlm, oldmle); dlm_put_mle(oldmle); } if (res) dlm_lockres_put(res); leave: dlm_put(dlm); return ret; } /* must be holding dlm->spinlock and dlm->master_lock * when adding a migration mle, we can clear any other mles * in the master list because we know with certainty that * the master is "master". so we remove any old mle from * the list after setting it's master field, and then add * the new migration mle. this way we can hold with the rule * of having only one mle for a given lock name at all times. */ static int dlm_add_migration_mle(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_master_list_entry *mle, struct dlm_master_list_entry **oldmle, const char *name, unsigned int namelen, u8 new_master, u8 master) { int found; int ret = 0; *oldmle = NULL; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&dlm->master_lock); /* caller is responsible for any ref taken here on oldmle */ found = dlm_find_mle(dlm, oldmle, (char *)name, namelen); if (found) { struct dlm_master_list_entry *tmp = *oldmle; spin_lock(&tmp->spinlock); if (tmp->type == DLM_MLE_MIGRATION) { if (master == dlm->node_num) { /* ah another process raced me to it */ mlog(0, "tried to migrate %.*s, but some " "process beat me to it\n", namelen, name); spin_unlock(&tmp->spinlock); return -EEXIST; } else { /* bad. 2 NODES are trying to migrate! */ mlog(ML_ERROR, "migration error mle: " "master=%u new_master=%u // request: " "master=%u new_master=%u // " "lockres=%.*s\n", tmp->master, tmp->new_master, master, new_master, namelen, name); BUG(); } } else { /* this is essentially what assert_master does */ tmp->master = master; atomic_set(&tmp->woken, 1); wake_up(&tmp->wq); /* remove it so that only one mle will be found */ __dlm_unlink_mle(dlm, tmp); __dlm_mle_detach_hb_events(dlm, tmp); if (tmp->type == DLM_MLE_MASTER) { ret = DLM_MIGRATE_RESPONSE_MASTERY_REF; mlog(0, "%s:%.*s: master=%u, newmaster=%u, " "telling master to get ref " "for cleared out mle during " "migration\n", dlm->name, namelen, name, master, new_master); } } spin_unlock(&tmp->spinlock); } /* now add a migration mle to the tail of the list */ dlm_init_mle(mle, DLM_MLE_MIGRATION, dlm, res, name, namelen); mle->new_master = new_master; /* the new master will be sending an assert master for this. * at that point we will get the refmap reference */ mle->master = master; /* do this for consistency with other mle types */ set_bit(new_master, mle->maybe_map); __dlm_insert_mle(dlm, mle); return ret; } /* * Sets the owner of the lockres, associated to the mle, to UNKNOWN */ static struct dlm_lock_resource *dlm_reset_mleres_owner(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { struct dlm_lock_resource *res; /* Find the lockres associated to the mle and set its owner to UNK */ res = __dlm_lookup_lockres(dlm, mle->mname, mle->mnamelen, mle->mnamehash); if (res) { spin_unlock(&dlm->master_lock); /* move lockres onto recovery list */ spin_lock(&res->spinlock); dlm_set_lockres_owner(dlm, res, DLM_LOCK_RES_OWNER_UNKNOWN); dlm_move_lockres_to_recovery_list(dlm, res); spin_unlock(&res->spinlock); dlm_lockres_put(res); /* about to get rid of mle, detach from heartbeat */ __dlm_mle_detach_hb_events(dlm, mle); /* dump the mle */ spin_lock(&dlm->master_lock); __dlm_put_mle(mle); spin_unlock(&dlm->master_lock); } return res; } static void dlm_clean_migration_mle(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle) { __dlm_mle_detach_hb_events(dlm, mle); spin_lock(&mle->spinlock); __dlm_unlink_mle(dlm, mle); atomic_set(&mle->woken, 1); spin_unlock(&mle->spinlock); wake_up(&mle->wq); } static void dlm_clean_block_mle(struct dlm_ctxt *dlm, struct dlm_master_list_entry *mle, u8 dead_node) { int bit; BUG_ON(mle->type != DLM_MLE_BLOCK); spin_lock(&mle->spinlock); bit = find_first_bit(mle->maybe_map, O2NM_MAX_NODES); if (bit != dead_node) { mlog(0, "mle found, but dead node %u would not have been " "master\n", dead_node); spin_unlock(&mle->spinlock); } else { /* Must drop the refcount by one since the assert_master will * never arrive. This may result in the mle being unlinked and * freed, but there may still be a process waiting in the * dlmlock path which is fine. */ mlog(0, "node %u was expected master\n", dead_node); atomic_set(&mle->woken, 1); spin_unlock(&mle->spinlock); wake_up(&mle->wq); /* Do not need events any longer, so detach from heartbeat */ __dlm_mle_detach_hb_events(dlm, mle); __dlm_put_mle(mle); } } void dlm_clean_master_list(struct dlm_ctxt *dlm, u8 dead_node) { struct dlm_master_list_entry *mle; struct dlm_lock_resource *res; struct hlist_head *bucket; struct hlist_node *tmp; unsigned int i; mlog(0, "dlm=%s, dead node=%u\n", dlm->name, dead_node); top: assert_spin_locked(&dlm->spinlock); /* clean the master list */ spin_lock(&dlm->master_lock); for (i = 0; i < DLM_HASH_BUCKETS; i++) { bucket = dlm_master_hash(dlm, i); hlist_for_each_entry_safe(mle, tmp, bucket, master_hash_node) { BUG_ON(mle->type != DLM_MLE_BLOCK && mle->type != DLM_MLE_MASTER && mle->type != DLM_MLE_MIGRATION); /* MASTER mles are initiated locally. The waiting * process will notice the node map change shortly. * Let that happen as normal. */ if (mle->type == DLM_MLE_MASTER) continue; /* BLOCK mles are initiated by other nodes. Need to * clean up if the dead node would have been the * master. */ if (mle->type == DLM_MLE_BLOCK) { dlm_clean_block_mle(dlm, mle, dead_node); continue; } /* Everything else is a MIGRATION mle */ /* The rule for MIGRATION mles is that the master * becomes UNKNOWN if *either* the original or the new * master dies. All UNKNOWN lockres' are sent to * whichever node becomes the recovery master. The new * master is responsible for determining if there is * still a master for this lockres, or if he needs to * take over mastery. Either way, this node should * expect another message to resolve this. */ if (mle->master != dead_node && mle->new_master != dead_node) continue; if (mle->new_master == dead_node && mle->inuse) { mlog(ML_NOTICE, "%s: target %u died during " "migration from %u, the MLE is " "still keep used, ignore it!\n", dlm->name, dead_node, mle->master); continue; } /* If we have reached this point, this mle needs to be * removed from the list and freed. */ dlm_clean_migration_mle(dlm, mle); mlog(0, "%s: node %u died during migration from " "%u to %u!\n", dlm->name, dead_node, mle->master, mle->new_master); /* If we find a lockres associated with the mle, we've * hit this rare case that messes up our lock ordering. * If so, we need to drop the master lock so that we can * take the lockres lock, meaning that we will have to * restart from the head of list. */ res = dlm_reset_mleres_owner(dlm, mle); if (res) /* restart */ goto top; /* This may be the last reference */ __dlm_put_mle(mle); } } spin_unlock(&dlm->master_lock); } int dlm_finish_migration(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, u8 old_master) { struct dlm_node_iter iter; int ret = 0; spin_lock(&dlm->spinlock); dlm_node_iter_init(dlm->domain_map, &iter); clear_bit(old_master, iter.node_map); clear_bit(dlm->node_num, iter.node_map); spin_unlock(&dlm->spinlock); /* ownership of the lockres is changing. account for the * mastery reference here since old_master will briefly have * a reference after the migration completes */ spin_lock(&res->spinlock); dlm_lockres_set_refmap_bit(dlm, res, old_master); spin_unlock(&res->spinlock); mlog(0, "now time to do a migrate request to other nodes\n"); ret = dlm_do_migrate_request(dlm, res, old_master, dlm->node_num, &iter); if (ret < 0) { mlog_errno(ret); goto leave; } mlog(0, "doing assert master of %.*s to all except the original node\n", res->lockname.len, res->lockname.name); /* this call now finishes out the nodemap * even if one or more nodes die */ ret = dlm_do_assert_master(dlm, res, iter.node_map, DLM_ASSERT_MASTER_FINISH_MIGRATION); if (ret < 0) { /* no longer need to retry. all living nodes contacted. */ mlog_errno(ret); ret = 0; } bitmap_zero(iter.node_map, O2NM_MAX_NODES); set_bit(old_master, iter.node_map); mlog(0, "doing assert master of %.*s back to %u\n", res->lockname.len, res->lockname.name, old_master); ret = dlm_do_assert_master(dlm, res, iter.node_map, DLM_ASSERT_MASTER_FINISH_MIGRATION); if (ret < 0) { mlog(0, "assert master to original master failed " "with %d.\n", ret); /* the only nonzero status here would be because of * a dead original node. we're done. */ ret = 0; } /* all done, set the owner, clear the flag */ spin_lock(&res->spinlock); dlm_set_lockres_owner(dlm, res, dlm->node_num); res->state &= ~DLM_LOCK_RES_MIGRATING; spin_unlock(&res->spinlock); /* re-dirty it on the new master */ dlm_kick_thread(dlm, res); wake_up(&res->wq); leave: return ret; } /* * LOCKRES AST REFCOUNT * this is integral to migration */ /* for future intent to call an ast, reserve one ahead of time. * this should be called only after waiting on the lockres * with dlm_wait_on_lockres, and while still holding the * spinlock after the call. */ void __dlm_lockres_reserve_ast(struct dlm_lock_resource *res) { assert_spin_locked(&res->spinlock); if (res->state & DLM_LOCK_RES_MIGRATING) { __dlm_print_one_lock_resource(res); } BUG_ON(res->state & DLM_LOCK_RES_MIGRATING); atomic_inc(&res->asts_reserved); } /* * used to drop the reserved ast, either because it went unused, * or because the ast/bast was actually called. * * also, if there is a pending migration on this lockres, * and this was the last pending ast on the lockres, * atomically set the MIGRATING flag before we drop the lock. * this is how we ensure that migration can proceed with no * asts in progress. note that it is ok if the state of the * queues is such that a lock should be granted in the future * or that a bast should be fired, because the new master will * shuffle the lists on this lockres as soon as it is migrated. */ void dlm_lockres_release_ast(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { if (!atomic_dec_and_lock(&res->asts_reserved, &res->spinlock)) return; if (!res->migration_pending) { spin_unlock(&res->spinlock); return; } BUG_ON(res->state & DLM_LOCK_RES_MIGRATING); res->migration_pending = 0; res->state |= DLM_LOCK_RES_MIGRATING; spin_unlock(&res->spinlock); wake_up(&res->wq); wake_up(&dlm->migration_wq); } void dlm_force_free_mles(struct dlm_ctxt *dlm) { int i; struct hlist_head *bucket; struct dlm_master_list_entry *mle; struct hlist_node *tmp; /* * We notified all other nodes that we are exiting the domain and * marked the dlm state to DLM_CTXT_LEAVING. If any mles are still * around we force free them and wake any processes that are waiting * on the mles */ spin_lock(&dlm->spinlock); spin_lock(&dlm->master_lock); BUG_ON(dlm->dlm_state != DLM_CTXT_LEAVING); BUG_ON((find_first_bit(dlm->domain_map, O2NM_MAX_NODES) < O2NM_MAX_NODES)); for (i = 0; i < DLM_HASH_BUCKETS; i++) { bucket = dlm_master_hash(dlm, i); hlist_for_each_entry_safe(mle, tmp, bucket, master_hash_node) { if (mle->type != DLM_MLE_BLOCK) { mlog(ML_ERROR, "bad mle: %p\n", mle); dlm_print_one_mle(mle); } atomic_set(&mle->woken, 1); wake_up(&mle->wq); __dlm_unlink_mle(dlm, mle); __dlm_mle_detach_hb_events(dlm, mle); __dlm_put_mle(mle); } } spin_unlock(&dlm->master_lock); spin_unlock(&dlm->spinlock); }
linux-master
fs/ocfs2/dlm/dlmmaster.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmthread.c * * standalone DLM module * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/timer.h> #include <linux/kthread.h> #include <linux/delay.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #include "dlmdomain.h" #define MLOG_MASK_PREFIX (ML_DLM|ML_DLM_THREAD) #include "../cluster/masklog.h" static int dlm_thread(void *data); static void dlm_flush_asts(struct dlm_ctxt *dlm); /* will exit holding res->spinlock, but may drop in function */ /* waits until flags are cleared on res->state */ void __dlm_wait_on_lockres_flags(struct dlm_lock_resource *res, int flags) { DECLARE_WAITQUEUE(wait, current); assert_spin_locked(&res->spinlock); add_wait_queue(&res->wq, &wait); repeat: set_current_state(TASK_UNINTERRUPTIBLE); if (res->state & flags) { spin_unlock(&res->spinlock); schedule(); spin_lock(&res->spinlock); goto repeat; } remove_wait_queue(&res->wq, &wait); __set_current_state(TASK_RUNNING); } int __dlm_lockres_has_locks(struct dlm_lock_resource *res) { if (list_empty(&res->granted) && list_empty(&res->converting) && list_empty(&res->blocked)) return 0; return 1; } /* "unused": the lockres has no locks, is not on the dirty list, * has no inflight locks (in the gap between mastery and acquiring * the first lock), and has no bits in its refmap. * truly ready to be freed. */ int __dlm_lockres_unused(struct dlm_lock_resource *res) { int bit; assert_spin_locked(&res->spinlock); if (__dlm_lockres_has_locks(res)) return 0; /* Locks are in the process of being created */ if (res->inflight_locks) return 0; if (!list_empty(&res->dirty) || res->state & DLM_LOCK_RES_DIRTY) return 0; if (res->state & (DLM_LOCK_RES_RECOVERING| DLM_LOCK_RES_RECOVERY_WAITING)) return 0; /* Another node has this resource with this node as the master */ bit = find_first_bit(res->refmap, O2NM_MAX_NODES); if (bit < O2NM_MAX_NODES) return 0; return 1; } /* Call whenever you may have added or deleted something from one of * the lockres queue's. This will figure out whether it belongs on the * unused list or not and does the appropriate thing. */ void __dlm_lockres_calc_usage(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); if (__dlm_lockres_unused(res)){ if (list_empty(&res->purge)) { mlog(0, "%s: Adding res %.*s to purge list\n", dlm->name, res->lockname.len, res->lockname.name); res->last_used = jiffies; dlm_lockres_get(res); list_add_tail(&res->purge, &dlm->purge_list); dlm->purge_count++; } } else if (!list_empty(&res->purge)) { mlog(0, "%s: Removing res %.*s from purge list\n", dlm->name, res->lockname.len, res->lockname.name); list_del_init(&res->purge); dlm_lockres_put(res); dlm->purge_count--; } } void dlm_lockres_calc_usage(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { spin_lock(&dlm->spinlock); spin_lock(&res->spinlock); __dlm_lockres_calc_usage(dlm, res); spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); } /* * Do the real purge work: * unhash the lockres, and * clear flag DLM_LOCK_RES_DROPPING_REF. * It requires dlm and lockres spinlock to be taken. */ void __dlm_do_purge_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); if (!list_empty(&res->purge)) { mlog(0, "%s: Removing res %.*s from purgelist\n", dlm->name, res->lockname.len, res->lockname.name); list_del_init(&res->purge); dlm_lockres_put(res); dlm->purge_count--; } if (!__dlm_lockres_unused(res)) { mlog(ML_ERROR, "%s: res %.*s in use after deref\n", dlm->name, res->lockname.len, res->lockname.name); __dlm_print_one_lock_resource(res); BUG(); } __dlm_unhash_lockres(dlm, res); spin_lock(&dlm->track_lock); if (!list_empty(&res->tracking)) list_del_init(&res->tracking); else { mlog(ML_ERROR, "%s: Resource %.*s not on the Tracking list\n", dlm->name, res->lockname.len, res->lockname.name); __dlm_print_one_lock_resource(res); } spin_unlock(&dlm->track_lock); /* * lockres is not in the hash now. drop the flag and wake up * any processes waiting in dlm_get_lock_resource. */ res->state &= ~DLM_LOCK_RES_DROPPING_REF; } static void dlm_purge_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { int master; int ret = 0; assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); master = (res->owner == dlm->node_num); mlog(0, "%s: Purging res %.*s, master %d\n", dlm->name, res->lockname.len, res->lockname.name, master); if (!master) { if (res->state & DLM_LOCK_RES_DROPPING_REF) { mlog(ML_NOTICE, "%s: res %.*s already in DLM_LOCK_RES_DROPPING_REF state\n", dlm->name, res->lockname.len, res->lockname.name); spin_unlock(&res->spinlock); return; } res->state |= DLM_LOCK_RES_DROPPING_REF; /* drop spinlock... retake below */ spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); spin_lock(&res->spinlock); /* This ensures that clear refmap is sent after the set */ __dlm_wait_on_lockres_flags(res, DLM_LOCK_RES_SETREF_INPROG); spin_unlock(&res->spinlock); /* clear our bit from the master's refmap, ignore errors */ ret = dlm_drop_lockres_ref(dlm, res); if (ret < 0) { if (!dlm_is_host_down(ret)) BUG(); } spin_lock(&dlm->spinlock); spin_lock(&res->spinlock); } if (!list_empty(&res->purge)) { mlog(0, "%s: Removing res %.*s from purgelist, master %d\n", dlm->name, res->lockname.len, res->lockname.name, master); list_del_init(&res->purge); dlm_lockres_put(res); dlm->purge_count--; } if (!master && ret == DLM_DEREF_RESPONSE_INPROG) { mlog(0, "%s: deref %.*s in progress\n", dlm->name, res->lockname.len, res->lockname.name); spin_unlock(&res->spinlock); return; } if (!__dlm_lockres_unused(res)) { mlog(ML_ERROR, "%s: res %.*s in use after deref\n", dlm->name, res->lockname.len, res->lockname.name); __dlm_print_one_lock_resource(res); BUG(); } __dlm_unhash_lockres(dlm, res); spin_lock(&dlm->track_lock); if (!list_empty(&res->tracking)) list_del_init(&res->tracking); else { mlog(ML_ERROR, "Resource %.*s not on the Tracking list\n", res->lockname.len, res->lockname.name); __dlm_print_one_lock_resource(res); } spin_unlock(&dlm->track_lock); /* lockres is not in the hash now. drop the flag and wake up * any processes waiting in dlm_get_lock_resource. */ if (!master) { res->state &= ~DLM_LOCK_RES_DROPPING_REF; spin_unlock(&res->spinlock); wake_up(&res->wq); } else spin_unlock(&res->spinlock); } static void dlm_run_purge_list(struct dlm_ctxt *dlm, int purge_now) { unsigned int run_max, unused; unsigned long purge_jiffies; struct dlm_lock_resource *lockres; spin_lock(&dlm->spinlock); run_max = dlm->purge_count; while(run_max && !list_empty(&dlm->purge_list)) { run_max--; lockres = list_entry(dlm->purge_list.next, struct dlm_lock_resource, purge); spin_lock(&lockres->spinlock); purge_jiffies = lockres->last_used + msecs_to_jiffies(DLM_PURGE_INTERVAL_MS); /* Make sure that we want to be processing this guy at * this time. */ if (!purge_now && time_after(purge_jiffies, jiffies)) { /* Since resources are added to the purge list * in tail order, we can stop at the first * unpurgable resource -- anyone added after * him will have a greater last_used value */ spin_unlock(&lockres->spinlock); break; } /* Status of the lockres *might* change so double * check. If the lockres is unused, holding the dlm * spinlock will prevent people from getting and more * refs on it. */ unused = __dlm_lockres_unused(lockres); if (!unused || (lockres->state & DLM_LOCK_RES_MIGRATING) || (lockres->inflight_assert_workers != 0)) { mlog(0, "%s: res %.*s is in use or being remastered, " "used %d, state %d, assert master workers %u\n", dlm->name, lockres->lockname.len, lockres->lockname.name, !unused, lockres->state, lockres->inflight_assert_workers); list_move_tail(&lockres->purge, &dlm->purge_list); spin_unlock(&lockres->spinlock); continue; } dlm_lockres_get(lockres); dlm_purge_lockres(dlm, lockres); dlm_lockres_put(lockres); /* Avoid adding any scheduling latencies */ cond_resched_lock(&dlm->spinlock); } spin_unlock(&dlm->spinlock); } static void dlm_shuffle_lists(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { struct dlm_lock *lock, *target; int can_grant = 1; /* * Because this function is called with the lockres * spinlock, and because we know that it is not migrating/ * recovering/in-progress, it is fine to reserve asts and * basts right before queueing them all throughout */ assert_spin_locked(&dlm->ast_lock); assert_spin_locked(&res->spinlock); BUG_ON((res->state & (DLM_LOCK_RES_MIGRATING| DLM_LOCK_RES_RECOVERING| DLM_LOCK_RES_IN_PROGRESS))); converting: if (list_empty(&res->converting)) goto blocked; mlog(0, "%s: res %.*s has locks on the convert queue\n", dlm->name, res->lockname.len, res->lockname.name); target = list_entry(res->converting.next, struct dlm_lock, list); if (target->ml.convert_type == LKM_IVMODE) { mlog(ML_ERROR, "%s: res %.*s converting lock to invalid mode\n", dlm->name, res->lockname.len, res->lockname.name); BUG(); } list_for_each_entry(lock, &res->granted, list) { if (lock==target) continue; if (!dlm_lock_compatible(lock->ml.type, target->ml.convert_type)) { can_grant = 0; /* queue the BAST if not already */ if (lock->ml.highest_blocked == LKM_IVMODE) { __dlm_lockres_reserve_ast(res); __dlm_queue_bast(dlm, lock); } /* update the highest_blocked if needed */ if (lock->ml.highest_blocked < target->ml.convert_type) lock->ml.highest_blocked = target->ml.convert_type; } } list_for_each_entry(lock, &res->converting, list) { if (lock==target) continue; if (!dlm_lock_compatible(lock->ml.type, target->ml.convert_type)) { can_grant = 0; if (lock->ml.highest_blocked == LKM_IVMODE) { __dlm_lockres_reserve_ast(res); __dlm_queue_bast(dlm, lock); } if (lock->ml.highest_blocked < target->ml.convert_type) lock->ml.highest_blocked = target->ml.convert_type; } } /* we can convert the lock */ if (can_grant) { spin_lock(&target->spinlock); BUG_ON(target->ml.highest_blocked != LKM_IVMODE); mlog(0, "%s: res %.*s, AST for Converting lock %u:%llu, type " "%d => %d, node %u\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(target->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(target->ml.cookie)), target->ml.type, target->ml.convert_type, target->ml.node); target->ml.type = target->ml.convert_type; target->ml.convert_type = LKM_IVMODE; list_move_tail(&target->list, &res->granted); BUG_ON(!target->lksb); target->lksb->status = DLM_NORMAL; spin_unlock(&target->spinlock); __dlm_lockres_reserve_ast(res); __dlm_queue_ast(dlm, target); /* go back and check for more */ goto converting; } blocked: if (list_empty(&res->blocked)) goto leave; target = list_entry(res->blocked.next, struct dlm_lock, list); list_for_each_entry(lock, &res->granted, list) { if (lock==target) continue; if (!dlm_lock_compatible(lock->ml.type, target->ml.type)) { can_grant = 0; if (lock->ml.highest_blocked == LKM_IVMODE) { __dlm_lockres_reserve_ast(res); __dlm_queue_bast(dlm, lock); } if (lock->ml.highest_blocked < target->ml.type) lock->ml.highest_blocked = target->ml.type; } } list_for_each_entry(lock, &res->converting, list) { if (lock==target) continue; if (!dlm_lock_compatible(lock->ml.type, target->ml.type)) { can_grant = 0; if (lock->ml.highest_blocked == LKM_IVMODE) { __dlm_lockres_reserve_ast(res); __dlm_queue_bast(dlm, lock); } if (lock->ml.highest_blocked < target->ml.type) lock->ml.highest_blocked = target->ml.type; } } /* we can grant the blocked lock (only * possible if converting list empty) */ if (can_grant) { spin_lock(&target->spinlock); BUG_ON(target->ml.highest_blocked != LKM_IVMODE); mlog(0, "%s: res %.*s, AST for Blocked lock %u:%llu, type %d, " "node %u\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(target->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(target->ml.cookie)), target->ml.type, target->ml.node); /* target->ml.type is already correct */ list_move_tail(&target->list, &res->granted); BUG_ON(!target->lksb); target->lksb->status = DLM_NORMAL; spin_unlock(&target->spinlock); __dlm_lockres_reserve_ast(res); __dlm_queue_ast(dlm, target); /* go back and check for more */ goto converting; } leave: return; } /* must have NO locks when calling this with res !=NULL * */ void dlm_kick_thread(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { if (res) { spin_lock(&dlm->spinlock); spin_lock(&res->spinlock); __dlm_dirty_lockres(dlm, res); spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); } wake_up(&dlm->dlm_thread_wq); } void __dlm_dirty_lockres(struct dlm_ctxt *dlm, struct dlm_lock_resource *res) { assert_spin_locked(&dlm->spinlock); assert_spin_locked(&res->spinlock); /* don't shuffle secondary queues */ if (res->owner == dlm->node_num) { if (res->state & (DLM_LOCK_RES_MIGRATING | DLM_LOCK_RES_BLOCK_DIRTY)) return; if (list_empty(&res->dirty)) { /* ref for dirty_list */ dlm_lockres_get(res); list_add_tail(&res->dirty, &dlm->dirty_list); res->state |= DLM_LOCK_RES_DIRTY; } } mlog(0, "%s: res %.*s\n", dlm->name, res->lockname.len, res->lockname.name); } /* Launch the NM thread for the mounted volume */ int dlm_launch_thread(struct dlm_ctxt *dlm) { mlog(0, "Starting dlm_thread...\n"); dlm->dlm_thread_task = kthread_run(dlm_thread, dlm, "dlm-%s", dlm->name); if (IS_ERR(dlm->dlm_thread_task)) { mlog_errno(PTR_ERR(dlm->dlm_thread_task)); dlm->dlm_thread_task = NULL; return -EINVAL; } return 0; } void dlm_complete_thread(struct dlm_ctxt *dlm) { if (dlm->dlm_thread_task) { mlog(ML_KTHREAD, "Waiting for dlm thread to exit\n"); kthread_stop(dlm->dlm_thread_task); dlm->dlm_thread_task = NULL; } } static int dlm_dirty_list_empty(struct dlm_ctxt *dlm) { int empty; spin_lock(&dlm->spinlock); empty = list_empty(&dlm->dirty_list); spin_unlock(&dlm->spinlock); return empty; } static void dlm_flush_asts(struct dlm_ctxt *dlm) { int ret; struct dlm_lock *lock; struct dlm_lock_resource *res; u8 hi; spin_lock(&dlm->ast_lock); while (!list_empty(&dlm->pending_asts)) { lock = list_entry(dlm->pending_asts.next, struct dlm_lock, ast_list); /* get an extra ref on lock */ dlm_lock_get(lock); res = lock->lockres; mlog(0, "%s: res %.*s, Flush AST for lock %u:%llu, type %d, " "node %u\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), lock->ml.type, lock->ml.node); BUG_ON(!lock->ast_pending); /* remove from list (including ref) */ list_del_init(&lock->ast_list); dlm_lock_put(lock); spin_unlock(&dlm->ast_lock); if (lock->ml.node != dlm->node_num) { ret = dlm_do_remote_ast(dlm, res, lock); if (ret < 0) mlog_errno(ret); } else dlm_do_local_ast(dlm, res, lock); spin_lock(&dlm->ast_lock); /* possible that another ast was queued while * we were delivering the last one */ if (!list_empty(&lock->ast_list)) { mlog(0, "%s: res %.*s, AST queued while flushing last " "one\n", dlm->name, res->lockname.len, res->lockname.name); } else lock->ast_pending = 0; /* drop the extra ref. * this may drop it completely. */ dlm_lock_put(lock); dlm_lockres_release_ast(dlm, res); } while (!list_empty(&dlm->pending_basts)) { lock = list_entry(dlm->pending_basts.next, struct dlm_lock, bast_list); /* get an extra ref on lock */ dlm_lock_get(lock); res = lock->lockres; BUG_ON(!lock->bast_pending); /* get the highest blocked lock, and reset */ spin_lock(&lock->spinlock); BUG_ON(lock->ml.highest_blocked <= LKM_IVMODE); hi = lock->ml.highest_blocked; lock->ml.highest_blocked = LKM_IVMODE; spin_unlock(&lock->spinlock); /* remove from list (including ref) */ list_del_init(&lock->bast_list); dlm_lock_put(lock); spin_unlock(&dlm->ast_lock); mlog(0, "%s: res %.*s, Flush BAST for lock %u:%llu, " "blocked %d, node %u\n", dlm->name, res->lockname.len, res->lockname.name, dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), hi, lock->ml.node); if (lock->ml.node != dlm->node_num) { ret = dlm_send_proxy_bast(dlm, res, lock, hi); if (ret < 0) mlog_errno(ret); } else dlm_do_local_bast(dlm, res, lock, hi); spin_lock(&dlm->ast_lock); /* possible that another bast was queued while * we were delivering the last one */ if (!list_empty(&lock->bast_list)) { mlog(0, "%s: res %.*s, BAST queued while flushing last " "one\n", dlm->name, res->lockname.len, res->lockname.name); } else lock->bast_pending = 0; /* drop the extra ref. * this may drop it completely. */ dlm_lock_put(lock); dlm_lockres_release_ast(dlm, res); } wake_up(&dlm->ast_wq); spin_unlock(&dlm->ast_lock); } #define DLM_THREAD_TIMEOUT_MS (4 * 1000) #define DLM_THREAD_MAX_DIRTY 100 static int dlm_thread(void *data) { struct dlm_lock_resource *res; struct dlm_ctxt *dlm = data; unsigned long timeout = msecs_to_jiffies(DLM_THREAD_TIMEOUT_MS); mlog(0, "dlm thread running for %s...\n", dlm->name); while (!kthread_should_stop()) { int n = DLM_THREAD_MAX_DIRTY; /* dlm_shutting_down is very point-in-time, but that * doesn't matter as we'll just loop back around if we * get false on the leading edge of a state * transition. */ dlm_run_purge_list(dlm, dlm_shutting_down(dlm)); /* We really don't want to hold dlm->spinlock while * calling dlm_shuffle_lists on each lockres that * needs to have its queues adjusted and AST/BASTs * run. So let's pull each entry off the dirty_list * and drop dlm->spinlock ASAP. Once off the list, * res->spinlock needs to be taken again to protect * the queues while calling dlm_shuffle_lists. */ spin_lock(&dlm->spinlock); while (!list_empty(&dlm->dirty_list)) { int delay = 0; res = list_entry(dlm->dirty_list.next, struct dlm_lock_resource, dirty); /* peel a lockres off, remove it from the list, * unset the dirty flag and drop the dlm lock */ BUG_ON(!res); dlm_lockres_get(res); spin_lock(&res->spinlock); /* We clear the DLM_LOCK_RES_DIRTY state once we shuffle lists below */ list_del_init(&res->dirty); spin_unlock(&res->spinlock); spin_unlock(&dlm->spinlock); /* Drop dirty_list ref */ dlm_lockres_put(res); /* lockres can be re-dirtied/re-added to the * dirty_list in this gap, but that is ok */ spin_lock(&dlm->ast_lock); spin_lock(&res->spinlock); if (res->owner != dlm->node_num) { __dlm_print_one_lock_resource(res); mlog(ML_ERROR, "%s: inprog %d, mig %d, reco %d," " dirty %d\n", dlm->name, !!(res->state & DLM_LOCK_RES_IN_PROGRESS), !!(res->state & DLM_LOCK_RES_MIGRATING), !!(res->state & DLM_LOCK_RES_RECOVERING), !!(res->state & DLM_LOCK_RES_DIRTY)); } BUG_ON(res->owner != dlm->node_num); /* it is now ok to move lockreses in these states * to the dirty list, assuming that they will only be * dirty for a short while. */ BUG_ON(res->state & DLM_LOCK_RES_MIGRATING); if (res->state & (DLM_LOCK_RES_IN_PROGRESS | DLM_LOCK_RES_RECOVERING | DLM_LOCK_RES_RECOVERY_WAITING)) { /* move it to the tail and keep going */ res->state &= ~DLM_LOCK_RES_DIRTY; spin_unlock(&res->spinlock); spin_unlock(&dlm->ast_lock); mlog(0, "%s: res %.*s, inprogress, delay list " "shuffle, state %d\n", dlm->name, res->lockname.len, res->lockname.name, res->state); delay = 1; goto in_progress; } /* at this point the lockres is not migrating/ * recovering/in-progress. we have the lockres * spinlock and do NOT have the dlm lock. * safe to reserve/queue asts and run the lists. */ /* called while holding lockres lock */ dlm_shuffle_lists(dlm, res); res->state &= ~DLM_LOCK_RES_DIRTY; spin_unlock(&res->spinlock); spin_unlock(&dlm->ast_lock); dlm_lockres_calc_usage(dlm, res); in_progress: spin_lock(&dlm->spinlock); /* if the lock was in-progress, stick * it on the back of the list */ if (delay) { spin_lock(&res->spinlock); __dlm_dirty_lockres(dlm, res); spin_unlock(&res->spinlock); } dlm_lockres_put(res); /* unlikely, but we may need to give time to * other tasks */ if (!--n) { mlog(0, "%s: Throttling dlm thread\n", dlm->name); break; } } spin_unlock(&dlm->spinlock); dlm_flush_asts(dlm); /* yield and continue right away if there is more work to do */ if (!n) { cond_resched(); continue; } wait_event_interruptible_timeout(dlm->dlm_thread_wq, !dlm_dirty_list_empty(dlm) || kthread_should_stop(), timeout); } mlog(0, "quitting DLM thread\n"); return 0; }
linux-master
fs/ocfs2/dlm/dlmthread.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * dlmunlock.c * * underlying calls for unlocking locks * * Copyright (C) 2004 Oracle. All rights reserved. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/random.h> #include <linux/blkdev.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/spinlock.h> #include <linux/delay.h> #include "../cluster/heartbeat.h" #include "../cluster/nodemanager.h" #include "../cluster/tcp.h" #include "dlmapi.h" #include "dlmcommon.h" #define MLOG_MASK_PREFIX ML_DLM #include "../cluster/masklog.h" #define DLM_UNLOCK_FREE_LOCK 0x00000001 #define DLM_UNLOCK_CALL_AST 0x00000002 #define DLM_UNLOCK_REMOVE_LOCK 0x00000004 #define DLM_UNLOCK_REGRANT_LOCK 0x00000008 #define DLM_UNLOCK_CLEAR_CONVERT_TYPE 0x00000010 static enum dlm_status dlm_get_cancel_actions(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int *actions); static enum dlm_status dlm_get_unlock_actions(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int *actions); static enum dlm_status dlm_send_remote_unlock_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int flags, u8 owner); /* * according to the spec: * http://opendlm.sourceforge.net/cvsmirror/opendlm/docs/dlmbook_final.pdf * * flags & LKM_CANCEL != 0: must be converting or blocked * flags & LKM_CANCEL == 0: must be granted * * So to unlock a converting lock, you must first cancel the * convert (passing LKM_CANCEL in flags), then call the unlock * again (with no LKM_CANCEL in flags). */ /* * locking: * caller needs: none * taken: res->spinlock and lock->spinlock taken and dropped * held on exit: none * returns: DLM_NORMAL, DLM_NOLOCKMGR, status from network * all callers should have taken an extra ref on lock coming in */ static enum dlm_status dlmunlock_common(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int flags, int *call_ast, int master_node) { enum dlm_status status; int actions = 0; int in_use; u8 owner; int recovery_wait = 0; mlog(0, "master_node = %d, valblk = %d\n", master_node, flags & LKM_VALBLK); if (master_node) BUG_ON(res->owner != dlm->node_num); else BUG_ON(res->owner == dlm->node_num); spin_lock(&dlm->ast_lock); /* We want to be sure that we're not freeing a lock * that still has AST's pending... */ in_use = !list_empty(&lock->ast_list); spin_unlock(&dlm->ast_lock); if (in_use && !(flags & LKM_CANCEL)) { mlog(ML_ERROR, "lockres %.*s: Someone is calling dlmunlock " "while waiting for an ast!", res->lockname.len, res->lockname.name); return DLM_BADPARAM; } spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_IN_PROGRESS) { if (master_node && !(flags & LKM_CANCEL)) { mlog(ML_ERROR, "lockres in progress!\n"); spin_unlock(&res->spinlock); return DLM_FORWARD; } /* ok for this to sleep if not in a network handler */ __dlm_wait_on_lockres(res); res->state |= DLM_LOCK_RES_IN_PROGRESS; } spin_lock(&lock->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { status = DLM_RECOVERING; goto leave; } if (res->state & DLM_LOCK_RES_MIGRATING) { status = DLM_MIGRATING; goto leave; } /* see above for what the spec says about * LKM_CANCEL and the lock queue state */ if (flags & LKM_CANCEL) status = dlm_get_cancel_actions(dlm, res, lock, lksb, &actions); else status = dlm_get_unlock_actions(dlm, res, lock, lksb, &actions); if (status != DLM_NORMAL && (status != DLM_CANCELGRANT || !master_node)) goto leave; /* By now this has been masked out of cancel requests. */ if (flags & LKM_VALBLK) { /* make the final update to the lvb */ if (master_node) memcpy(res->lvb, lksb->lvb, DLM_LVB_LEN); else flags |= LKM_PUT_LVB; /* let the send function * handle it. */ } if (!master_node) { owner = res->owner; /* drop locks and send message */ if (flags & LKM_CANCEL) lock->cancel_pending = 1; else lock->unlock_pending = 1; spin_unlock(&lock->spinlock); spin_unlock(&res->spinlock); status = dlm_send_remote_unlock_request(dlm, res, lock, lksb, flags, owner); spin_lock(&res->spinlock); spin_lock(&lock->spinlock); /* if the master told us the lock was already granted, * let the ast handle all of these actions */ if (status == DLM_CANCELGRANT) { actions &= ~(DLM_UNLOCK_REMOVE_LOCK| DLM_UNLOCK_REGRANT_LOCK| DLM_UNLOCK_CLEAR_CONVERT_TYPE); } else if (status == DLM_RECOVERING || status == DLM_MIGRATING || status == DLM_FORWARD || status == DLM_NOLOCKMGR ) { /* must clear the actions because this unlock * is about to be retried. cannot free or do * any list manipulation. */ mlog(0, "%s:%.*s: clearing actions, %s\n", dlm->name, res->lockname.len, res->lockname.name, status==DLM_RECOVERING?"recovering": (status==DLM_MIGRATING?"migrating": (status == DLM_FORWARD ? "forward" : "nolockmanager"))); actions = 0; } if (flags & LKM_CANCEL) lock->cancel_pending = 0; else { if (!lock->unlock_pending) recovery_wait = 1; else lock->unlock_pending = 0; } } /* get an extra ref on lock. if we are just switching * lists here, we dont want the lock to go away. */ dlm_lock_get(lock); if (actions & DLM_UNLOCK_REMOVE_LOCK) { list_del_init(&lock->list); dlm_lock_put(lock); } if (actions & DLM_UNLOCK_REGRANT_LOCK) { dlm_lock_get(lock); list_add_tail(&lock->list, &res->granted); } if (actions & DLM_UNLOCK_CLEAR_CONVERT_TYPE) { mlog(0, "clearing convert_type at %smaster node\n", master_node ? "" : "non-"); lock->ml.convert_type = LKM_IVMODE; } /* remove the extra ref on lock */ dlm_lock_put(lock); leave: res->state &= ~DLM_LOCK_RES_IN_PROGRESS; if (!dlm_lock_on_list(&res->converting, lock)) BUG_ON(lock->ml.convert_type != LKM_IVMODE); else BUG_ON(lock->ml.convert_type == LKM_IVMODE); spin_unlock(&lock->spinlock); spin_unlock(&res->spinlock); wake_up(&res->wq); if (recovery_wait) { spin_lock(&res->spinlock); /* Unlock request will directly succeed after owner dies, * and the lock is already removed from grant list. We have to * wait for RECOVERING done or we miss the chance to purge it * since the removement is much faster than RECOVERING proc. */ __dlm_wait_on_lockres_flags(res, DLM_LOCK_RES_RECOVERING); spin_unlock(&res->spinlock); } /* let the caller's final dlm_lock_put handle the actual kfree */ if (actions & DLM_UNLOCK_FREE_LOCK) { /* this should always be coupled with list removal */ BUG_ON(!(actions & DLM_UNLOCK_REMOVE_LOCK)); mlog(0, "lock %u:%llu should be gone now! refs=%d\n", dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), kref_read(&lock->lock_refs)-1); dlm_lock_put(lock); } if (actions & DLM_UNLOCK_CALL_AST) *call_ast = 1; /* if cancel or unlock succeeded, lvb work is done */ if (status == DLM_NORMAL) lksb->flags &= ~(DLM_LKSB_PUT_LVB|DLM_LKSB_GET_LVB); return status; } void dlm_commit_pending_unlock(struct dlm_lock_resource *res, struct dlm_lock *lock) { /* leave DLM_LKSB_PUT_LVB on the lksb so any final * update of the lvb will be sent to the new master */ list_del_init(&lock->list); } void dlm_commit_pending_cancel(struct dlm_lock_resource *res, struct dlm_lock *lock) { list_move_tail(&lock->list, &res->granted); lock->ml.convert_type = LKM_IVMODE; } static inline enum dlm_status dlmunlock_master(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int flags, int *call_ast) { return dlmunlock_common(dlm, res, lock, lksb, flags, call_ast, 1); } static inline enum dlm_status dlmunlock_remote(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int flags, int *call_ast) { return dlmunlock_common(dlm, res, lock, lksb, flags, call_ast, 0); } /* * locking: * caller needs: none * taken: none * held on exit: none * returns: DLM_NORMAL, DLM_NOLOCKMGR, status from network */ static enum dlm_status dlm_send_remote_unlock_request(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int flags, u8 owner) { struct dlm_unlock_lock unlock; int tmpret; enum dlm_status ret; int status = 0; struct kvec vec[2]; size_t veclen = 1; mlog(0, "%.*s\n", res->lockname.len, res->lockname.name); if (owner == dlm->node_num) { /* ended up trying to contact ourself. this means * that the lockres had been remote but became local * via a migration. just retry it, now as local */ mlog(0, "%s:%.*s: this node became the master due to a " "migration, re-evaluate now\n", dlm->name, res->lockname.len, res->lockname.name); return DLM_FORWARD; } memset(&unlock, 0, sizeof(unlock)); unlock.node_idx = dlm->node_num; unlock.flags = cpu_to_be32(flags); unlock.cookie = lock->ml.cookie; unlock.namelen = res->lockname.len; memcpy(unlock.name, res->lockname.name, unlock.namelen); vec[0].iov_len = sizeof(struct dlm_unlock_lock); vec[0].iov_base = &unlock; if (flags & LKM_PUT_LVB) { /* extra data to send if we are updating lvb */ vec[1].iov_len = DLM_LVB_LEN; vec[1].iov_base = lock->lksb->lvb; veclen++; } tmpret = o2net_send_message_vec(DLM_UNLOCK_LOCK_MSG, dlm->key, vec, veclen, owner, &status); if (tmpret >= 0) { // successfully sent and received if (status == DLM_FORWARD) mlog(0, "master was in-progress. retry\n"); ret = status; } else { mlog(ML_ERROR, "Error %d when sending message %u (key 0x%x) to " "node %u\n", tmpret, DLM_UNLOCK_LOCK_MSG, dlm->key, owner); if (dlm_is_host_down(tmpret)) { /* NOTE: this seems strange, but it is what we want. * when the master goes down during a cancel or * unlock, the recovery code completes the operation * as if the master had not died, then passes the * updated state to the recovery master. this thread * just needs to finish out the operation and call * the unlockast. */ if (dlm_is_node_dead(dlm, owner)) ret = DLM_NORMAL; else ret = DLM_NOLOCKMGR; } else { /* something bad. this will BUG in ocfs2 */ ret = dlm_err_to_dlm_status(tmpret); } } return ret; } /* * locking: * caller needs: none * taken: takes and drops res->spinlock * held on exit: none * returns: DLM_NORMAL, DLM_BADARGS, DLM_IVLOCKID, * return value from dlmunlock_master */ int dlm_unlock_lock_handler(struct o2net_msg *msg, u32 len, void *data, void **ret_data) { struct dlm_ctxt *dlm = data; struct dlm_unlock_lock *unlock = (struct dlm_unlock_lock *)msg->buf; struct dlm_lock_resource *res = NULL; struct dlm_lock *lock = NULL, *iter; enum dlm_status status = DLM_NORMAL; int i; struct dlm_lockstatus *lksb = NULL; int ignore; u32 flags; struct list_head *queue; flags = be32_to_cpu(unlock->flags); if (flags & LKM_GET_LVB) { mlog(ML_ERROR, "bad args! GET_LVB specified on unlock!\n"); return DLM_BADARGS; } if ((flags & (LKM_PUT_LVB|LKM_CANCEL)) == (LKM_PUT_LVB|LKM_CANCEL)) { mlog(ML_ERROR, "bad args! cannot modify lvb on a CANCEL " "request!\n"); return DLM_BADARGS; } if (unlock->namelen > DLM_LOCKID_NAME_MAX) { mlog(ML_ERROR, "Invalid name length in unlock handler!\n"); return DLM_IVBUFLEN; } if (!dlm_grab(dlm)) return DLM_FORWARD; mlog_bug_on_msg(!dlm_domain_fully_joined(dlm), "Domain %s not fully joined!\n", dlm->name); mlog(0, "lvb: %s\n", flags & LKM_PUT_LVB ? "put lvb" : "none"); res = dlm_lookup_lockres(dlm, unlock->name, unlock->namelen); if (!res) { /* We assume here that a no lock resource simply means * it was migrated away and destroyed before the other * node could detect it. */ mlog(0, "returning DLM_FORWARD -- res no longer exists\n"); status = DLM_FORWARD; goto not_found; } queue=&res->granted; spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { spin_unlock(&res->spinlock); mlog(0, "returning DLM_RECOVERING\n"); status = DLM_RECOVERING; goto leave; } if (res->state & DLM_LOCK_RES_MIGRATING) { spin_unlock(&res->spinlock); mlog(0, "returning DLM_MIGRATING\n"); status = DLM_MIGRATING; goto leave; } if (res->owner != dlm->node_num) { spin_unlock(&res->spinlock); mlog(0, "returning DLM_FORWARD -- not master\n"); status = DLM_FORWARD; goto leave; } for (i=0; i<3; i++) { list_for_each_entry(iter, queue, list) { if (iter->ml.cookie == unlock->cookie && iter->ml.node == unlock->node_idx) { dlm_lock_get(iter); lock = iter; break; } } if (lock) break; /* scan granted -> converting -> blocked queues */ queue++; } spin_unlock(&res->spinlock); if (!lock) { status = DLM_IVLOCKID; goto not_found; } /* lock was found on queue */ lksb = lock->lksb; if (flags & (LKM_VALBLK|LKM_PUT_LVB) && lock->ml.type != LKM_EXMODE) flags &= ~(LKM_VALBLK|LKM_PUT_LVB); /* unlockast only called on originating node */ if (flags & LKM_PUT_LVB) { lksb->flags |= DLM_LKSB_PUT_LVB; memcpy(&lksb->lvb[0], &unlock->lvb[0], DLM_LVB_LEN); } /* if this is in-progress, propagate the DLM_FORWARD * all the way back out */ status = dlmunlock_master(dlm, res, lock, lksb, flags, &ignore); if (status == DLM_FORWARD) mlog(0, "lockres is in progress\n"); if (flags & LKM_PUT_LVB) lksb->flags &= ~DLM_LKSB_PUT_LVB; dlm_lockres_calc_usage(dlm, res); dlm_kick_thread(dlm, res); not_found: if (!lock) mlog(ML_ERROR, "failed to find lock to unlock! " "cookie=%u:%llu\n", dlm_get_lock_cookie_node(be64_to_cpu(unlock->cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(unlock->cookie))); else dlm_lock_put(lock); leave: if (res) dlm_lockres_put(res); dlm_put(dlm); return status; } static enum dlm_status dlm_get_cancel_actions(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int *actions) { enum dlm_status status; if (dlm_lock_on_list(&res->blocked, lock)) { /* cancel this outright */ status = DLM_NORMAL; *actions = (DLM_UNLOCK_CALL_AST | DLM_UNLOCK_REMOVE_LOCK); } else if (dlm_lock_on_list(&res->converting, lock)) { /* cancel the request, put back on granted */ status = DLM_NORMAL; *actions = (DLM_UNLOCK_CALL_AST | DLM_UNLOCK_REMOVE_LOCK | DLM_UNLOCK_REGRANT_LOCK | DLM_UNLOCK_CLEAR_CONVERT_TYPE); } else if (dlm_lock_on_list(&res->granted, lock)) { /* too late, already granted. */ status = DLM_CANCELGRANT; *actions = DLM_UNLOCK_CALL_AST; } else { mlog(ML_ERROR, "lock to cancel is not on any list!\n"); status = DLM_IVLOCKID; *actions = 0; } return status; } static enum dlm_status dlm_get_unlock_actions(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int *actions) { enum dlm_status status; /* unlock request */ if (!dlm_lock_on_list(&res->granted, lock)) { status = DLM_DENIED; dlm_error(status); *actions = 0; } else { /* unlock granted lock */ status = DLM_NORMAL; *actions = (DLM_UNLOCK_FREE_LOCK | DLM_UNLOCK_CALL_AST | DLM_UNLOCK_REMOVE_LOCK); } return status; } /* there seems to be no point in doing this async * since (even for the remote case) there is really * no work to queue up... so just do it and fire the * unlockast by hand when done... */ enum dlm_status dlmunlock(struct dlm_ctxt *dlm, struct dlm_lockstatus *lksb, int flags, dlm_astunlockfunc_t *unlockast, void *data) { enum dlm_status status; struct dlm_lock_resource *res; struct dlm_lock *lock = NULL; int call_ast, is_master; if (!lksb) { dlm_error(DLM_BADARGS); return DLM_BADARGS; } if (flags & ~(LKM_CANCEL | LKM_VALBLK | LKM_INVVALBLK)) { dlm_error(DLM_BADPARAM); return DLM_BADPARAM; } if ((flags & (LKM_VALBLK | LKM_CANCEL)) == (LKM_VALBLK | LKM_CANCEL)) { mlog(0, "VALBLK given with CANCEL: ignoring VALBLK\n"); flags &= ~LKM_VALBLK; } if (!lksb->lockid || !lksb->lockid->lockres) { dlm_error(DLM_BADPARAM); return DLM_BADPARAM; } lock = lksb->lockid; BUG_ON(!lock); dlm_lock_get(lock); res = lock->lockres; BUG_ON(!res); dlm_lockres_get(res); retry: call_ast = 0; /* need to retry up here because owner may have changed */ mlog(0, "lock=%p res=%p\n", lock, res); spin_lock(&res->spinlock); is_master = (res->owner == dlm->node_num); if (flags & LKM_VALBLK && lock->ml.type != LKM_EXMODE) flags &= ~LKM_VALBLK; spin_unlock(&res->spinlock); if (is_master) { status = dlmunlock_master(dlm, res, lock, lksb, flags, &call_ast); mlog(0, "done calling dlmunlock_master: returned %d, " "call_ast is %d\n", status, call_ast); } else { status = dlmunlock_remote(dlm, res, lock, lksb, flags, &call_ast); mlog(0, "done calling dlmunlock_remote: returned %d, " "call_ast is %d\n", status, call_ast); } if (status == DLM_RECOVERING || status == DLM_MIGRATING || status == DLM_FORWARD || status == DLM_NOLOCKMGR) { /* We want to go away for a tiny bit to allow recovery * / migration to complete on this resource. I don't * know of any wait queue we could sleep on as this * may be happening on another node. Perhaps the * proper solution is to queue up requests on the * other end? */ /* do we want to yield(); ?? */ msleep(50); mlog(0, "retrying unlock due to pending recovery/" "migration/in-progress/reconnect\n"); goto retry; } if (call_ast) { mlog(0, "calling unlockast(%p, %d)\n", data, status); if (is_master) { /* it is possible that there is one last bast * pending. make sure it is flushed, then * call the unlockast. * not an issue if this is a mastered remotely, * since this lock has been removed from the * lockres queues and cannot be found. */ dlm_kick_thread(dlm, NULL); wait_event(dlm->ast_wq, dlm_lock_basts_flushed(dlm, lock)); } (*unlockast)(data, status); } if (status == DLM_CANCELGRANT) status = DLM_NORMAL; if (status == DLM_NORMAL) { mlog(0, "kicking the thread\n"); dlm_kick_thread(dlm, res); } else dlm_error(status); dlm_lockres_calc_usage(dlm, res); dlm_lockres_put(res); dlm_lock_put(lock); mlog(0, "returning status=%d!\n", status); return status; } EXPORT_SYMBOL_GPL(dlmunlock);
linux-master
fs/ocfs2/dlm/dlmunlock.c
// SPDX-License-Identifier: GPL-2.0 /* * inode.c - part of debugfs, a tiny little debug file system * * Copyright (C) 2004,2019 Greg Kroah-Hartman <[email protected]> * Copyright (C) 2004 IBM Inc. * Copyright (C) 2019 Linux Foundation <[email protected]> * * debugfs is for people to use instead of /proc or /sys. * See ./Documentation/core-api/kernel-api.rst for more details. */ #define pr_fmt(fmt) "debugfs: " fmt #include <linux/module.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/pagemap.h> #include <linux/init.h> #include <linux/kobject.h> #include <linux/namei.h> #include <linux/debugfs.h> #include <linux/fsnotify.h> #include <linux/string.h> #include <linux/seq_file.h> #include <linux/parser.h> #include <linux/magic.h> #include <linux/slab.h> #include <linux/security.h> #include "internal.h" #define DEBUGFS_DEFAULT_MODE 0700 static struct vfsmount *debugfs_mount; static int debugfs_mount_count; static bool debugfs_registered; static unsigned int debugfs_allow __ro_after_init = DEFAULT_DEBUGFS_ALLOW_BITS; /* * Don't allow access attributes to be changed whilst the kernel is locked down * so that we can use the file mode as part of a heuristic to determine whether * to lock down individual files. */ static int debugfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *ia) { int ret; if (ia->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) { ret = security_locked_down(LOCKDOWN_DEBUGFS); if (ret) return ret; } return simple_setattr(&nop_mnt_idmap, dentry, ia); } static const struct inode_operations debugfs_file_inode_operations = { .setattr = debugfs_setattr, }; static const struct inode_operations debugfs_dir_inode_operations = { .lookup = simple_lookup, .setattr = debugfs_setattr, }; static const struct inode_operations debugfs_symlink_inode_operations = { .get_link = simple_get_link, .setattr = debugfs_setattr, }; static struct inode *debugfs_get_inode(struct super_block *sb) { struct inode *inode = new_inode(sb); if (inode) { inode->i_ino = get_next_ino(); inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); } return inode; } struct debugfs_mount_opts { kuid_t uid; kgid_t gid; umode_t mode; /* Opt_* bitfield. */ unsigned int opts; }; enum { Opt_uid, Opt_gid, Opt_mode, Opt_err }; static const match_table_t tokens = { {Opt_uid, "uid=%u"}, {Opt_gid, "gid=%u"}, {Opt_mode, "mode=%o"}, {Opt_err, NULL} }; struct debugfs_fs_info { struct debugfs_mount_opts mount_opts; }; static int debugfs_parse_options(char *data, struct debugfs_mount_opts *opts) { substring_t args[MAX_OPT_ARGS]; int option; int token; kuid_t uid; kgid_t gid; char *p; opts->opts = 0; opts->mode = DEBUGFS_DEFAULT_MODE; while ((p = strsep(&data, ",")) != NULL) { if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_uid: if (match_int(&args[0], &option)) return -EINVAL; uid = make_kuid(current_user_ns(), option); if (!uid_valid(uid)) return -EINVAL; opts->uid = uid; break; case Opt_gid: if (match_int(&args[0], &option)) return -EINVAL; gid = make_kgid(current_user_ns(), option); if (!gid_valid(gid)) return -EINVAL; opts->gid = gid; break; case Opt_mode: if (match_octal(&args[0], &option)) return -EINVAL; opts->mode = option & S_IALLUGO; break; /* * We might like to report bad mount options here; * but traditionally debugfs has ignored all mount options */ } opts->opts |= BIT(token); } return 0; } static void _debugfs_apply_options(struct super_block *sb, bool remount) { struct debugfs_fs_info *fsi = sb->s_fs_info; struct inode *inode = d_inode(sb->s_root); struct debugfs_mount_opts *opts = &fsi->mount_opts; /* * On remount, only reset mode/uid/gid if they were provided as mount * options. */ if (!remount || opts->opts & BIT(Opt_mode)) { inode->i_mode &= ~S_IALLUGO; inode->i_mode |= opts->mode; } if (!remount || opts->opts & BIT(Opt_uid)) inode->i_uid = opts->uid; if (!remount || opts->opts & BIT(Opt_gid)) inode->i_gid = opts->gid; } static void debugfs_apply_options(struct super_block *sb) { _debugfs_apply_options(sb, false); } static void debugfs_apply_options_remount(struct super_block *sb) { _debugfs_apply_options(sb, true); } static int debugfs_remount(struct super_block *sb, int *flags, char *data) { int err; struct debugfs_fs_info *fsi = sb->s_fs_info; sync_filesystem(sb); err = debugfs_parse_options(data, &fsi->mount_opts); if (err) goto fail; debugfs_apply_options_remount(sb); fail: return err; } static int debugfs_show_options(struct seq_file *m, struct dentry *root) { struct debugfs_fs_info *fsi = root->d_sb->s_fs_info; struct debugfs_mount_opts *opts = &fsi->mount_opts; if (!uid_eq(opts->uid, GLOBAL_ROOT_UID)) seq_printf(m, ",uid=%u", from_kuid_munged(&init_user_ns, opts->uid)); if (!gid_eq(opts->gid, GLOBAL_ROOT_GID)) seq_printf(m, ",gid=%u", from_kgid_munged(&init_user_ns, opts->gid)); if (opts->mode != DEBUGFS_DEFAULT_MODE) seq_printf(m, ",mode=%o", opts->mode); return 0; } static void debugfs_free_inode(struct inode *inode) { if (S_ISLNK(inode->i_mode)) kfree(inode->i_link); free_inode_nonrcu(inode); } static const struct super_operations debugfs_super_operations = { .statfs = simple_statfs, .remount_fs = debugfs_remount, .show_options = debugfs_show_options, .free_inode = debugfs_free_inode, }; static void debugfs_release_dentry(struct dentry *dentry) { void *fsd = dentry->d_fsdata; if (!((unsigned long)fsd & DEBUGFS_FSDATA_IS_REAL_FOPS_BIT)) kfree(dentry->d_fsdata); } static struct vfsmount *debugfs_automount(struct path *path) { debugfs_automount_t f; f = (debugfs_automount_t)path->dentry->d_fsdata; return f(path->dentry, d_inode(path->dentry)->i_private); } static const struct dentry_operations debugfs_dops = { .d_delete = always_delete_dentry, .d_release = debugfs_release_dentry, .d_automount = debugfs_automount, }; static int debug_fill_super(struct super_block *sb, void *data, int silent) { static const struct tree_descr debug_files[] = {{""}}; struct debugfs_fs_info *fsi; int err; fsi = kzalloc(sizeof(struct debugfs_fs_info), GFP_KERNEL); sb->s_fs_info = fsi; if (!fsi) { err = -ENOMEM; goto fail; } err = debugfs_parse_options(data, &fsi->mount_opts); if (err) goto fail; err = simple_fill_super(sb, DEBUGFS_MAGIC, debug_files); if (err) goto fail; sb->s_op = &debugfs_super_operations; sb->s_d_op = &debugfs_dops; debugfs_apply_options(sb); return 0; fail: kfree(fsi); sb->s_fs_info = NULL; return err; } static struct dentry *debug_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { if (!(debugfs_allow & DEBUGFS_ALLOW_API)) return ERR_PTR(-EPERM); return mount_single(fs_type, flags, data, debug_fill_super); } static struct file_system_type debug_fs_type = { .owner = THIS_MODULE, .name = "debugfs", .mount = debug_mount, .kill_sb = kill_litter_super, }; MODULE_ALIAS_FS("debugfs"); /** * debugfs_lookup() - look up an existing debugfs file * @name: a pointer to a string containing the name of the file to look up. * @parent: a pointer to the parent dentry of the file. * * This function will return a pointer to a dentry if it succeeds. If the file * doesn't exist or an error occurs, %NULL will be returned. The returned * dentry must be passed to dput() when it is no longer needed. * * If debugfs is not enabled in the kernel, the value -%ENODEV will be * returned. */ struct dentry *debugfs_lookup(const char *name, struct dentry *parent) { struct dentry *dentry; if (!debugfs_initialized() || IS_ERR_OR_NULL(name) || IS_ERR(parent)) return NULL; if (!parent) parent = debugfs_mount->mnt_root; dentry = lookup_positive_unlocked(name, parent, strlen(name)); if (IS_ERR(dentry)) return NULL; return dentry; } EXPORT_SYMBOL_GPL(debugfs_lookup); static struct dentry *start_creating(const char *name, struct dentry *parent) { struct dentry *dentry; int error; if (!(debugfs_allow & DEBUGFS_ALLOW_API)) return ERR_PTR(-EPERM); if (!debugfs_initialized()) return ERR_PTR(-ENOENT); pr_debug("creating file '%s'\n", name); if (IS_ERR(parent)) return parent; error = simple_pin_fs(&debug_fs_type, &debugfs_mount, &debugfs_mount_count); if (error) { pr_err("Unable to pin filesystem for file '%s'\n", name); return ERR_PTR(error); } /* If the parent is not specified, we create it in the root. * We need the root dentry to do this, which is in the super * block. A pointer to that is in the struct vfsmount that we * have around. */ if (!parent) parent = debugfs_mount->mnt_root; inode_lock(d_inode(parent)); if (unlikely(IS_DEADDIR(d_inode(parent)))) dentry = ERR_PTR(-ENOENT); else dentry = lookup_one_len(name, parent, strlen(name)); if (!IS_ERR(dentry) && d_really_is_positive(dentry)) { if (d_is_dir(dentry)) pr_err("Directory '%s' with parent '%s' already present!\n", name, parent->d_name.name); else pr_err("File '%s' in directory '%s' already present!\n", name, parent->d_name.name); dput(dentry); dentry = ERR_PTR(-EEXIST); } if (IS_ERR(dentry)) { inode_unlock(d_inode(parent)); simple_release_fs(&debugfs_mount, &debugfs_mount_count); } return dentry; } static struct dentry *failed_creating(struct dentry *dentry) { inode_unlock(d_inode(dentry->d_parent)); dput(dentry); simple_release_fs(&debugfs_mount, &debugfs_mount_count); return ERR_PTR(-ENOMEM); } static struct dentry *end_creating(struct dentry *dentry) { inode_unlock(d_inode(dentry->d_parent)); return dentry; } static struct dentry *__debugfs_create_file(const char *name, umode_t mode, struct dentry *parent, void *data, const struct file_operations *proxy_fops, const struct file_operations *real_fops) { struct dentry *dentry; struct inode *inode; if (!(mode & S_IFMT)) mode |= S_IFREG; BUG_ON(!S_ISREG(mode)); dentry = start_creating(name, parent); if (IS_ERR(dentry)) return dentry; if (!(debugfs_allow & DEBUGFS_ALLOW_API)) { failed_creating(dentry); return ERR_PTR(-EPERM); } inode = debugfs_get_inode(dentry->d_sb); if (unlikely(!inode)) { pr_err("out of free dentries, can not create file '%s'\n", name); return failed_creating(dentry); } inode->i_mode = mode; inode->i_private = data; inode->i_op = &debugfs_file_inode_operations; inode->i_fop = proxy_fops; dentry->d_fsdata = (void *)((unsigned long)real_fops | DEBUGFS_FSDATA_IS_REAL_FOPS_BIT); d_instantiate(dentry, inode); fsnotify_create(d_inode(dentry->d_parent), dentry); return end_creating(dentry); } /** * debugfs_create_file - create a file in the debugfs filesystem * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is NULL, then the * file will be created in the root of the debugfs filesystem. * @data: a pointer to something that the caller will want to get to later * on. The inode.i_private pointer will point to this value on * the open() call. * @fops: a pointer to a struct file_operations that should be used for * this file. * * This is the basic "create a file" function for debugfs. It allows for a * wide range of flexibility in creating a file, or a directory (if you want * to create a directory, the debugfs_create_dir() function is * recommended to be used instead.) * * This function will return a pointer to a dentry if it succeeds. This * pointer must be passed to the debugfs_remove() function when the file is * to be removed (no automatic cleanup happens if your module is unloaded, * you are responsible here.) If an error occurs, ERR_PTR(-ERROR) will be * returned. * * If debugfs is not enabled in the kernel, the value -%ENODEV will be * returned. * * NOTE: it's expected that most callers should _ignore_ the errors returned * by this function. Other debugfs functions handle the fact that the "dentry" * passed to them could be an error and they don't crash in that case. * Drivers should generally work fine even if debugfs fails to init anyway. */ struct dentry *debugfs_create_file(const char *name, umode_t mode, struct dentry *parent, void *data, const struct file_operations *fops) { return __debugfs_create_file(name, mode, parent, data, fops ? &debugfs_full_proxy_file_operations : &debugfs_noop_file_operations, fops); } EXPORT_SYMBOL_GPL(debugfs_create_file); /** * debugfs_create_file_unsafe - create a file in the debugfs filesystem * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is NULL, then the * file will be created in the root of the debugfs filesystem. * @data: a pointer to something that the caller will want to get to later * on. The inode.i_private pointer will point to this value on * the open() call. * @fops: a pointer to a struct file_operations that should be used for * this file. * * debugfs_create_file_unsafe() is completely analogous to * debugfs_create_file(), the only difference being that the fops * handed it will not get protected against file removals by the * debugfs core. * * It is your responsibility to protect your struct file_operation * methods against file removals by means of debugfs_file_get() * and debugfs_file_put(). ->open() is still protected by * debugfs though. * * Any struct file_operations defined by means of * DEFINE_DEBUGFS_ATTRIBUTE() is protected against file removals and * thus, may be used here. */ struct dentry *debugfs_create_file_unsafe(const char *name, umode_t mode, struct dentry *parent, void *data, const struct file_operations *fops) { return __debugfs_create_file(name, mode, parent, data, fops ? &debugfs_open_proxy_file_operations : &debugfs_noop_file_operations, fops); } EXPORT_SYMBOL_GPL(debugfs_create_file_unsafe); /** * debugfs_create_file_size - create a file in the debugfs filesystem * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is NULL, then the * file will be created in the root of the debugfs filesystem. * @data: a pointer to something that the caller will want to get to later * on. The inode.i_private pointer will point to this value on * the open() call. * @fops: a pointer to a struct file_operations that should be used for * this file. * @file_size: initial file size * * This is the basic "create a file" function for debugfs. It allows for a * wide range of flexibility in creating a file, or a directory (if you want * to create a directory, the debugfs_create_dir() function is * recommended to be used instead.) */ void debugfs_create_file_size(const char *name, umode_t mode, struct dentry *parent, void *data, const struct file_operations *fops, loff_t file_size) { struct dentry *de = debugfs_create_file(name, mode, parent, data, fops); if (!IS_ERR(de)) d_inode(de)->i_size = file_size; } EXPORT_SYMBOL_GPL(debugfs_create_file_size); /** * debugfs_create_dir - create a directory in the debugfs filesystem * @name: a pointer to a string containing the name of the directory to * create. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is NULL, then the * directory will be created in the root of the debugfs filesystem. * * This function creates a directory in debugfs with the given name. * * This function will return a pointer to a dentry if it succeeds. This * pointer must be passed to the debugfs_remove() function when the file is * to be removed (no automatic cleanup happens if your module is unloaded, * you are responsible here.) If an error occurs, ERR_PTR(-ERROR) will be * returned. * * If debugfs is not enabled in the kernel, the value -%ENODEV will be * returned. * * NOTE: it's expected that most callers should _ignore_ the errors returned * by this function. Other debugfs functions handle the fact that the "dentry" * passed to them could be an error and they don't crash in that case. * Drivers should generally work fine even if debugfs fails to init anyway. */ struct dentry *debugfs_create_dir(const char *name, struct dentry *parent) { struct dentry *dentry = start_creating(name, parent); struct inode *inode; if (IS_ERR(dentry)) return dentry; if (!(debugfs_allow & DEBUGFS_ALLOW_API)) { failed_creating(dentry); return ERR_PTR(-EPERM); } inode = debugfs_get_inode(dentry->d_sb); if (unlikely(!inode)) { pr_err("out of free dentries, can not create directory '%s'\n", name); return failed_creating(dentry); } inode->i_mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO; inode->i_op = &debugfs_dir_inode_operations; inode->i_fop = &simple_dir_operations; /* directory inodes start off with i_nlink == 2 (for "." entry) */ inc_nlink(inode); d_instantiate(dentry, inode); inc_nlink(d_inode(dentry->d_parent)); fsnotify_mkdir(d_inode(dentry->d_parent), dentry); return end_creating(dentry); } EXPORT_SYMBOL_GPL(debugfs_create_dir); /** * debugfs_create_automount - create automount point in the debugfs filesystem * @name: a pointer to a string containing the name of the file to create. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is NULL, then the * file will be created in the root of the debugfs filesystem. * @f: function to be called when pathname resolution steps on that one. * @data: opaque argument to pass to f(). * * @f should return what ->d_automount() would. */ struct dentry *debugfs_create_automount(const char *name, struct dentry *parent, debugfs_automount_t f, void *data) { struct dentry *dentry = start_creating(name, parent); struct inode *inode; if (IS_ERR(dentry)) return dentry; if (!(debugfs_allow & DEBUGFS_ALLOW_API)) { failed_creating(dentry); return ERR_PTR(-EPERM); } inode = debugfs_get_inode(dentry->d_sb); if (unlikely(!inode)) { pr_err("out of free dentries, can not create automount '%s'\n", name); return failed_creating(dentry); } make_empty_dir_inode(inode); inode->i_flags |= S_AUTOMOUNT; inode->i_private = data; dentry->d_fsdata = (void *)f; /* directory inodes start off with i_nlink == 2 (for "." entry) */ inc_nlink(inode); d_instantiate(dentry, inode); inc_nlink(d_inode(dentry->d_parent)); fsnotify_mkdir(d_inode(dentry->d_parent), dentry); return end_creating(dentry); } EXPORT_SYMBOL(debugfs_create_automount); /** * debugfs_create_symlink- create a symbolic link in the debugfs filesystem * @name: a pointer to a string containing the name of the symbolic link to * create. * @parent: a pointer to the parent dentry for this symbolic link. This * should be a directory dentry if set. If this parameter is NULL, * then the symbolic link will be created in the root of the debugfs * filesystem. * @target: a pointer to a string containing the path to the target of the * symbolic link. * * This function creates a symbolic link with the given name in debugfs that * links to the given target path. * * This function will return a pointer to a dentry if it succeeds. This * pointer must be passed to the debugfs_remove() function when the symbolic * link is to be removed (no automatic cleanup happens if your module is * unloaded, you are responsible here.) If an error occurs, ERR_PTR(-ERROR) * will be returned. * * If debugfs is not enabled in the kernel, the value -%ENODEV will be * returned. */ struct dentry *debugfs_create_symlink(const char *name, struct dentry *parent, const char *target) { struct dentry *dentry; struct inode *inode; char *link = kstrdup(target, GFP_KERNEL); if (!link) return ERR_PTR(-ENOMEM); dentry = start_creating(name, parent); if (IS_ERR(dentry)) { kfree(link); return dentry; } inode = debugfs_get_inode(dentry->d_sb); if (unlikely(!inode)) { pr_err("out of free dentries, can not create symlink '%s'\n", name); kfree(link); return failed_creating(dentry); } inode->i_mode = S_IFLNK | S_IRWXUGO; inode->i_op = &debugfs_symlink_inode_operations; inode->i_link = link; d_instantiate(dentry, inode); return end_creating(dentry); } EXPORT_SYMBOL_GPL(debugfs_create_symlink); static void __debugfs_file_removed(struct dentry *dentry) { struct debugfs_fsdata *fsd; /* * Paired with the closing smp_mb() implied by a successful * cmpxchg() in debugfs_file_get(): either * debugfs_file_get() must see a dead dentry or we must see a * debugfs_fsdata instance at ->d_fsdata here (or both). */ smp_mb(); fsd = READ_ONCE(dentry->d_fsdata); if ((unsigned long)fsd & DEBUGFS_FSDATA_IS_REAL_FOPS_BIT) return; if (!refcount_dec_and_test(&fsd->active_users)) wait_for_completion(&fsd->active_users_drained); } static void remove_one(struct dentry *victim) { if (d_is_reg(victim)) __debugfs_file_removed(victim); simple_release_fs(&debugfs_mount, &debugfs_mount_count); } /** * debugfs_remove - recursively removes a directory * @dentry: a pointer to a the dentry of the directory to be removed. If this * parameter is NULL or an error value, nothing will be done. * * This function recursively removes a directory tree in debugfs that * was previously created with a call to another debugfs function * (like debugfs_create_file() or variants thereof.) * * This function is required to be called in order for the file to be * removed, no automatic cleanup of files will happen when a module is * removed, you are responsible here. */ void debugfs_remove(struct dentry *dentry) { if (IS_ERR_OR_NULL(dentry)) return; simple_pin_fs(&debug_fs_type, &debugfs_mount, &debugfs_mount_count); simple_recursive_removal(dentry, remove_one); simple_release_fs(&debugfs_mount, &debugfs_mount_count); } EXPORT_SYMBOL_GPL(debugfs_remove); /** * debugfs_lookup_and_remove - lookup a directory or file and recursively remove it * @name: a pointer to a string containing the name of the item to look up. * @parent: a pointer to the parent dentry of the item. * * This is the equlivant of doing something like * debugfs_remove(debugfs_lookup(..)) but with the proper reference counting * handled for the directory being looked up. */ void debugfs_lookup_and_remove(const char *name, struct dentry *parent) { struct dentry *dentry; dentry = debugfs_lookup(name, parent); if (!dentry) return; debugfs_remove(dentry); dput(dentry); } EXPORT_SYMBOL_GPL(debugfs_lookup_and_remove); /** * debugfs_rename - rename a file/directory in the debugfs filesystem * @old_dir: a pointer to the parent dentry for the renamed object. This * should be a directory dentry. * @old_dentry: dentry of an object to be renamed. * @new_dir: a pointer to the parent dentry where the object should be * moved. This should be a directory dentry. * @new_name: a pointer to a string containing the target name. * * This function renames a file/directory in debugfs. The target must not * exist for rename to succeed. * * This function will return a pointer to old_dentry (which is updated to * reflect renaming) if it succeeds. If an error occurs, ERR_PTR(-ERROR) * will be returned. * * If debugfs is not enabled in the kernel, the value -%ENODEV will be * returned. */ struct dentry *debugfs_rename(struct dentry *old_dir, struct dentry *old_dentry, struct dentry *new_dir, const char *new_name) { int error; struct dentry *dentry = NULL, *trap; struct name_snapshot old_name; if (IS_ERR(old_dir)) return old_dir; if (IS_ERR(new_dir)) return new_dir; if (IS_ERR_OR_NULL(old_dentry)) return old_dentry; trap = lock_rename(new_dir, old_dir); /* Source or destination directories don't exist? */ if (d_really_is_negative(old_dir) || d_really_is_negative(new_dir)) goto exit; /* Source does not exist, cyclic rename, or mountpoint? */ if (d_really_is_negative(old_dentry) || old_dentry == trap || d_mountpoint(old_dentry)) goto exit; dentry = lookup_one_len(new_name, new_dir, strlen(new_name)); /* Lookup failed, cyclic rename or target exists? */ if (IS_ERR(dentry) || dentry == trap || d_really_is_positive(dentry)) goto exit; take_dentry_name_snapshot(&old_name, old_dentry); error = simple_rename(&nop_mnt_idmap, d_inode(old_dir), old_dentry, d_inode(new_dir), dentry, 0); if (error) { release_dentry_name_snapshot(&old_name); goto exit; } d_move(old_dentry, dentry); fsnotify_move(d_inode(old_dir), d_inode(new_dir), &old_name.name, d_is_dir(old_dentry), NULL, old_dentry); release_dentry_name_snapshot(&old_name); unlock_rename(new_dir, old_dir); dput(dentry); return old_dentry; exit: if (dentry && !IS_ERR(dentry)) dput(dentry); unlock_rename(new_dir, old_dir); if (IS_ERR(dentry)) return dentry; return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(debugfs_rename); /** * debugfs_initialized - Tells whether debugfs has been registered */ bool debugfs_initialized(void) { return debugfs_registered; } EXPORT_SYMBOL_GPL(debugfs_initialized); static int __init debugfs_kernel(char *str) { if (str) { if (!strcmp(str, "on")) debugfs_allow = DEBUGFS_ALLOW_API | DEBUGFS_ALLOW_MOUNT; else if (!strcmp(str, "no-mount")) debugfs_allow = DEBUGFS_ALLOW_API; else if (!strcmp(str, "off")) debugfs_allow = 0; } return 0; } early_param("debugfs", debugfs_kernel); static int __init debugfs_init(void) { int retval; if (!(debugfs_allow & DEBUGFS_ALLOW_MOUNT)) return -EPERM; retval = sysfs_create_mount_point(kernel_kobj, "debug"); if (retval) return retval; retval = register_filesystem(&debug_fs_type); if (retval) sysfs_remove_mount_point(kernel_kobj, "debug"); else debugfs_registered = true; return retval; } core_initcall(debugfs_init);
linux-master
fs/debugfs/inode.c
// SPDX-License-Identifier: GPL-2.0 /* * file.c - part of debugfs, a tiny little debug file system * * Copyright (C) 2004 Greg Kroah-Hartman <[email protected]> * Copyright (C) 2004 IBM Inc. * * debugfs is for people to use instead of /proc or /sys. * See Documentation/filesystems/ for more details. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/pagemap.h> #include <linux/debugfs.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/atomic.h> #include <linux/device.h> #include <linux/pm_runtime.h> #include <linux/poll.h> #include <linux/security.h> #include "internal.h" struct poll_table_struct; static ssize_t default_read_file(struct file *file, char __user *buf, size_t count, loff_t *ppos) { return 0; } static ssize_t default_write_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { return count; } const struct file_operations debugfs_noop_file_operations = { .read = default_read_file, .write = default_write_file, .open = simple_open, .llseek = noop_llseek, }; #define F_DENTRY(filp) ((filp)->f_path.dentry) const struct file_operations *debugfs_real_fops(const struct file *filp) { struct debugfs_fsdata *fsd = F_DENTRY(filp)->d_fsdata; if ((unsigned long)fsd & DEBUGFS_FSDATA_IS_REAL_FOPS_BIT) { /* * Urgh, we've been called w/o a protecting * debugfs_file_get(). */ WARN_ON(1); return NULL; } return fsd->real_fops; } EXPORT_SYMBOL_GPL(debugfs_real_fops); /** * debugfs_file_get - mark the beginning of file data access * @dentry: the dentry object whose data is being accessed. * * Up to a matching call to debugfs_file_put(), any successive call * into the file removing functions debugfs_remove() and * debugfs_remove_recursive() will block. Since associated private * file data may only get freed after a successful return of any of * the removal functions, you may safely access it after a successful * call to debugfs_file_get() without worrying about lifetime issues. * * If -%EIO is returned, the file has already been removed and thus, * it is not safe to access any of its data. If, on the other hand, * it is allowed to access the file data, zero is returned. */ int debugfs_file_get(struct dentry *dentry) { struct debugfs_fsdata *fsd; void *d_fsd; d_fsd = READ_ONCE(dentry->d_fsdata); if (!((unsigned long)d_fsd & DEBUGFS_FSDATA_IS_REAL_FOPS_BIT)) { fsd = d_fsd; } else { fsd = kmalloc(sizeof(*fsd), GFP_KERNEL); if (!fsd) return -ENOMEM; fsd->real_fops = (void *)((unsigned long)d_fsd & ~DEBUGFS_FSDATA_IS_REAL_FOPS_BIT); refcount_set(&fsd->active_users, 1); init_completion(&fsd->active_users_drained); if (cmpxchg(&dentry->d_fsdata, d_fsd, fsd) != d_fsd) { kfree(fsd); fsd = READ_ONCE(dentry->d_fsdata); } } /* * In case of a successful cmpxchg() above, this check is * strictly necessary and must follow it, see the comment in * __debugfs_remove_file(). * OTOH, if the cmpxchg() hasn't been executed or wasn't * successful, this serves the purpose of not starving * removers. */ if (d_unlinked(dentry)) return -EIO; if (!refcount_inc_not_zero(&fsd->active_users)) return -EIO; return 0; } EXPORT_SYMBOL_GPL(debugfs_file_get); /** * debugfs_file_put - mark the end of file data access * @dentry: the dentry object formerly passed to * debugfs_file_get(). * * Allow any ongoing concurrent call into debugfs_remove() or * debugfs_remove_recursive() blocked by a former call to * debugfs_file_get() to proceed and return to its caller. */ void debugfs_file_put(struct dentry *dentry) { struct debugfs_fsdata *fsd = READ_ONCE(dentry->d_fsdata); if (refcount_dec_and_test(&fsd->active_users)) complete(&fsd->active_users_drained); } EXPORT_SYMBOL_GPL(debugfs_file_put); /* * Only permit access to world-readable files when the kernel is locked down. * We also need to exclude any file that has ways to write or alter it as root * can bypass the permissions check. */ static int debugfs_locked_down(struct inode *inode, struct file *filp, const struct file_operations *real_fops) { if ((inode->i_mode & 07777 & ~0444) == 0 && !(filp->f_mode & FMODE_WRITE) && !real_fops->unlocked_ioctl && !real_fops->compat_ioctl && !real_fops->mmap) return 0; if (security_locked_down(LOCKDOWN_DEBUGFS)) return -EPERM; return 0; } static int open_proxy_open(struct inode *inode, struct file *filp) { struct dentry *dentry = F_DENTRY(filp); const struct file_operations *real_fops = NULL; int r; r = debugfs_file_get(dentry); if (r) return r == -EIO ? -ENOENT : r; real_fops = debugfs_real_fops(filp); r = debugfs_locked_down(inode, filp, real_fops); if (r) goto out; if (!fops_get(real_fops)) { #ifdef CONFIG_MODULES if (real_fops->owner && real_fops->owner->state == MODULE_STATE_GOING) { r = -ENXIO; goto out; } #endif /* Huh? Module did not clean up after itself at exit? */ WARN(1, "debugfs file owner did not clean up at exit: %pd", dentry); r = -ENXIO; goto out; } replace_fops(filp, real_fops); if (real_fops->open) r = real_fops->open(inode, filp); out: debugfs_file_put(dentry); return r; } const struct file_operations debugfs_open_proxy_file_operations = { .open = open_proxy_open, }; #define PROTO(args...) args #define ARGS(args...) args #define FULL_PROXY_FUNC(name, ret_type, filp, proto, args) \ static ret_type full_proxy_ ## name(proto) \ { \ struct dentry *dentry = F_DENTRY(filp); \ const struct file_operations *real_fops; \ ret_type r; \ \ r = debugfs_file_get(dentry); \ if (unlikely(r)) \ return r; \ real_fops = debugfs_real_fops(filp); \ r = real_fops->name(args); \ debugfs_file_put(dentry); \ return r; \ } FULL_PROXY_FUNC(llseek, loff_t, filp, PROTO(struct file *filp, loff_t offset, int whence), ARGS(filp, offset, whence)); FULL_PROXY_FUNC(read, ssize_t, filp, PROTO(struct file *filp, char __user *buf, size_t size, loff_t *ppos), ARGS(filp, buf, size, ppos)); FULL_PROXY_FUNC(write, ssize_t, filp, PROTO(struct file *filp, const char __user *buf, size_t size, loff_t *ppos), ARGS(filp, buf, size, ppos)); FULL_PROXY_FUNC(unlocked_ioctl, long, filp, PROTO(struct file *filp, unsigned int cmd, unsigned long arg), ARGS(filp, cmd, arg)); static __poll_t full_proxy_poll(struct file *filp, struct poll_table_struct *wait) { struct dentry *dentry = F_DENTRY(filp); __poll_t r = 0; const struct file_operations *real_fops; if (debugfs_file_get(dentry)) return EPOLLHUP; real_fops = debugfs_real_fops(filp); r = real_fops->poll(filp, wait); debugfs_file_put(dentry); return r; } static int full_proxy_release(struct inode *inode, struct file *filp) { const struct dentry *dentry = F_DENTRY(filp); const struct file_operations *real_fops = debugfs_real_fops(filp); const struct file_operations *proxy_fops = filp->f_op; int r = 0; /* * We must not protect this against removal races here: the * original releaser should be called unconditionally in order * not to leak any resources. Releasers must not assume that * ->i_private is still being meaningful here. */ if (real_fops->release) r = real_fops->release(inode, filp); replace_fops(filp, d_inode(dentry)->i_fop); kfree(proxy_fops); fops_put(real_fops); return r; } static void __full_proxy_fops_init(struct file_operations *proxy_fops, const struct file_operations *real_fops) { proxy_fops->release = full_proxy_release; if (real_fops->llseek) proxy_fops->llseek = full_proxy_llseek; if (real_fops->read) proxy_fops->read = full_proxy_read; if (real_fops->write) proxy_fops->write = full_proxy_write; if (real_fops->poll) proxy_fops->poll = full_proxy_poll; if (real_fops->unlocked_ioctl) proxy_fops->unlocked_ioctl = full_proxy_unlocked_ioctl; } static int full_proxy_open(struct inode *inode, struct file *filp) { struct dentry *dentry = F_DENTRY(filp); const struct file_operations *real_fops = NULL; struct file_operations *proxy_fops = NULL; int r; r = debugfs_file_get(dentry); if (r) return r == -EIO ? -ENOENT : r; real_fops = debugfs_real_fops(filp); r = debugfs_locked_down(inode, filp, real_fops); if (r) goto out; if (!fops_get(real_fops)) { #ifdef CONFIG_MODULES if (real_fops->owner && real_fops->owner->state == MODULE_STATE_GOING) { r = -ENXIO; goto out; } #endif /* Huh? Module did not cleanup after itself at exit? */ WARN(1, "debugfs file owner did not clean up at exit: %pd", dentry); r = -ENXIO; goto out; } proxy_fops = kzalloc(sizeof(*proxy_fops), GFP_KERNEL); if (!proxy_fops) { r = -ENOMEM; goto free_proxy; } __full_proxy_fops_init(proxy_fops, real_fops); replace_fops(filp, proxy_fops); if (real_fops->open) { r = real_fops->open(inode, filp); if (r) { replace_fops(filp, d_inode(dentry)->i_fop); goto free_proxy; } else if (filp->f_op != proxy_fops) { /* No protection against file removal anymore. */ WARN(1, "debugfs file owner replaced proxy fops: %pd", dentry); goto free_proxy; } } goto out; free_proxy: kfree(proxy_fops); fops_put(real_fops); out: debugfs_file_put(dentry); return r; } const struct file_operations debugfs_full_proxy_file_operations = { .open = full_proxy_open, }; ssize_t debugfs_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct dentry *dentry = F_DENTRY(file); ssize_t ret; ret = debugfs_file_get(dentry); if (unlikely(ret)) return ret; ret = simple_attr_read(file, buf, len, ppos); debugfs_file_put(dentry); return ret; } EXPORT_SYMBOL_GPL(debugfs_attr_read); static ssize_t debugfs_attr_write_xsigned(struct file *file, const char __user *buf, size_t len, loff_t *ppos, bool is_signed) { struct dentry *dentry = F_DENTRY(file); ssize_t ret; ret = debugfs_file_get(dentry); if (unlikely(ret)) return ret; if (is_signed) ret = simple_attr_write_signed(file, buf, len, ppos); else ret = simple_attr_write(file, buf, len, ppos); debugfs_file_put(dentry); return ret; } ssize_t debugfs_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return debugfs_attr_write_xsigned(file, buf, len, ppos, false); } EXPORT_SYMBOL_GPL(debugfs_attr_write); ssize_t debugfs_attr_write_signed(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return debugfs_attr_write_xsigned(file, buf, len, ppos, true); } EXPORT_SYMBOL_GPL(debugfs_attr_write_signed); static struct dentry *debugfs_create_mode_unsafe(const char *name, umode_t mode, struct dentry *parent, void *value, const struct file_operations *fops, const struct file_operations *fops_ro, const struct file_operations *fops_wo) { /* if there are no write bits set, make read only */ if (!(mode & S_IWUGO)) return debugfs_create_file_unsafe(name, mode, parent, value, fops_ro); /* if there are no read bits set, make write only */ if (!(mode & S_IRUGO)) return debugfs_create_file_unsafe(name, mode, parent, value, fops_wo); return debugfs_create_file_unsafe(name, mode, parent, value, fops); } static int debugfs_u8_set(void *data, u64 val) { *(u8 *)data = val; return 0; } static int debugfs_u8_get(void *data, u64 *val) { *val = *(u8 *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_u8, debugfs_u8_get, debugfs_u8_set, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u8_ro, debugfs_u8_get, NULL, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u8_wo, NULL, debugfs_u8_set, "%llu\n"); /** * debugfs_create_u8 - create a debugfs file that is used to read and write an unsigned 8-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_u8(const char *name, umode_t mode, struct dentry *parent, u8 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_u8, &fops_u8_ro, &fops_u8_wo); } EXPORT_SYMBOL_GPL(debugfs_create_u8); static int debugfs_u16_set(void *data, u64 val) { *(u16 *)data = val; return 0; } static int debugfs_u16_get(void *data, u64 *val) { *val = *(u16 *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_u16, debugfs_u16_get, debugfs_u16_set, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u16_ro, debugfs_u16_get, NULL, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u16_wo, NULL, debugfs_u16_set, "%llu\n"); /** * debugfs_create_u16 - create a debugfs file that is used to read and write an unsigned 16-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_u16(const char *name, umode_t mode, struct dentry *parent, u16 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_u16, &fops_u16_ro, &fops_u16_wo); } EXPORT_SYMBOL_GPL(debugfs_create_u16); static int debugfs_u32_set(void *data, u64 val) { *(u32 *)data = val; return 0; } static int debugfs_u32_get(void *data, u64 *val) { *val = *(u32 *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_u32, debugfs_u32_get, debugfs_u32_set, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u32_ro, debugfs_u32_get, NULL, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u32_wo, NULL, debugfs_u32_set, "%llu\n"); /** * debugfs_create_u32 - create a debugfs file that is used to read and write an unsigned 32-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_u32(const char *name, umode_t mode, struct dentry *parent, u32 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_u32, &fops_u32_ro, &fops_u32_wo); } EXPORT_SYMBOL_GPL(debugfs_create_u32); static int debugfs_u64_set(void *data, u64 val) { *(u64 *)data = val; return 0; } static int debugfs_u64_get(void *data, u64 *val) { *val = *(u64 *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_u64, debugfs_u64_get, debugfs_u64_set, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_ro, debugfs_u64_get, NULL, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); /** * debugfs_create_u64 - create a debugfs file that is used to read and write an unsigned 64-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_u64(const char *name, umode_t mode, struct dentry *parent, u64 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_u64, &fops_u64_ro, &fops_u64_wo); } EXPORT_SYMBOL_GPL(debugfs_create_u64); static int debugfs_ulong_set(void *data, u64 val) { *(unsigned long *)data = val; return 0; } static int debugfs_ulong_get(void *data, u64 *val) { *val = *(unsigned long *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_ulong, debugfs_ulong_get, debugfs_ulong_set, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_ulong_ro, debugfs_ulong_get, NULL, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_ulong_wo, NULL, debugfs_ulong_set, "%llu\n"); /** * debugfs_create_ulong - create a debugfs file that is used to read and write * an unsigned long value. * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_ulong(const char *name, umode_t mode, struct dentry *parent, unsigned long *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_ulong, &fops_ulong_ro, &fops_ulong_wo); } EXPORT_SYMBOL_GPL(debugfs_create_ulong); DEFINE_DEBUGFS_ATTRIBUTE(fops_x8, debugfs_u8_get, debugfs_u8_set, "0x%02llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x8_ro, debugfs_u8_get, NULL, "0x%02llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x8_wo, NULL, debugfs_u8_set, "0x%02llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x16, debugfs_u16_get, debugfs_u16_set, "0x%04llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x16_ro, debugfs_u16_get, NULL, "0x%04llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x16_wo, NULL, debugfs_u16_set, "0x%04llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x32, debugfs_u32_get, debugfs_u32_set, "0x%08llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x32_ro, debugfs_u32_get, NULL, "0x%08llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x32_wo, NULL, debugfs_u32_set, "0x%08llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x64, debugfs_u64_get, debugfs_u64_set, "0x%016llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x64_ro, debugfs_u64_get, NULL, "0x%016llx\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_x64_wo, NULL, debugfs_u64_set, "0x%016llx\n"); /* * debugfs_create_x{8,16,32,64} - create a debugfs file that is used to read and write an unsigned {8,16,32,64}-bit value * * These functions are exactly the same as the above functions (but use a hex * output for the decimal challenged). For details look at the above unsigned * decimal functions. */ /** * debugfs_create_x8 - create a debugfs file that is used to read and write an unsigned 8-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. */ void debugfs_create_x8(const char *name, umode_t mode, struct dentry *parent, u8 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_x8, &fops_x8_ro, &fops_x8_wo); } EXPORT_SYMBOL_GPL(debugfs_create_x8); /** * debugfs_create_x16 - create a debugfs file that is used to read and write an unsigned 16-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. */ void debugfs_create_x16(const char *name, umode_t mode, struct dentry *parent, u16 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_x16, &fops_x16_ro, &fops_x16_wo); } EXPORT_SYMBOL_GPL(debugfs_create_x16); /** * debugfs_create_x32 - create a debugfs file that is used to read and write an unsigned 32-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. */ void debugfs_create_x32(const char *name, umode_t mode, struct dentry *parent, u32 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_x32, &fops_x32_ro, &fops_x32_wo); } EXPORT_SYMBOL_GPL(debugfs_create_x32); /** * debugfs_create_x64 - create a debugfs file that is used to read and write an unsigned 64-bit value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. */ void debugfs_create_x64(const char *name, umode_t mode, struct dentry *parent, u64 *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_x64, &fops_x64_ro, &fops_x64_wo); } EXPORT_SYMBOL_GPL(debugfs_create_x64); static int debugfs_size_t_set(void *data, u64 val) { *(size_t *)data = val; return 0; } static int debugfs_size_t_get(void *data, u64 *val) { *val = *(size_t *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_size_t, debugfs_size_t_get, debugfs_size_t_set, "%llu\n"); /* %llu and %zu are more or less the same */ DEFINE_DEBUGFS_ATTRIBUTE(fops_size_t_ro, debugfs_size_t_get, NULL, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_size_t_wo, NULL, debugfs_size_t_set, "%llu\n"); /** * debugfs_create_size_t - create a debugfs file that is used to read and write an size_t value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. */ void debugfs_create_size_t(const char *name, umode_t mode, struct dentry *parent, size_t *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_size_t, &fops_size_t_ro, &fops_size_t_wo); } EXPORT_SYMBOL_GPL(debugfs_create_size_t); static int debugfs_atomic_t_set(void *data, u64 val) { atomic_set((atomic_t *)data, val); return 0; } static int debugfs_atomic_t_get(void *data, u64 *val) { *val = atomic_read((atomic_t *)data); return 0; } DEFINE_DEBUGFS_ATTRIBUTE_SIGNED(fops_atomic_t, debugfs_atomic_t_get, debugfs_atomic_t_set, "%lld\n"); DEFINE_DEBUGFS_ATTRIBUTE_SIGNED(fops_atomic_t_ro, debugfs_atomic_t_get, NULL, "%lld\n"); DEFINE_DEBUGFS_ATTRIBUTE_SIGNED(fops_atomic_t_wo, NULL, debugfs_atomic_t_set, "%lld\n"); /** * debugfs_create_atomic_t - create a debugfs file that is used to read and * write an atomic_t value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. */ void debugfs_create_atomic_t(const char *name, umode_t mode, struct dentry *parent, atomic_t *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_atomic_t, &fops_atomic_t_ro, &fops_atomic_t_wo); } EXPORT_SYMBOL_GPL(debugfs_create_atomic_t); ssize_t debugfs_read_file_bool(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[2]; bool val; int r; struct dentry *dentry = F_DENTRY(file); r = debugfs_file_get(dentry); if (unlikely(r)) return r; val = *(bool *)file->private_data; debugfs_file_put(dentry); if (val) buf[0] = 'Y'; else buf[0] = 'N'; buf[1] = '\n'; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } EXPORT_SYMBOL_GPL(debugfs_read_file_bool); ssize_t debugfs_write_file_bool(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { bool bv; int r; bool *val = file->private_data; struct dentry *dentry = F_DENTRY(file); r = kstrtobool_from_user(user_buf, count, &bv); if (!r) { r = debugfs_file_get(dentry); if (unlikely(r)) return r; *val = bv; debugfs_file_put(dentry); } return count; } EXPORT_SYMBOL_GPL(debugfs_write_file_bool); static const struct file_operations fops_bool = { .read = debugfs_read_file_bool, .write = debugfs_write_file_bool, .open = simple_open, .llseek = default_llseek, }; static const struct file_operations fops_bool_ro = { .read = debugfs_read_file_bool, .open = simple_open, .llseek = default_llseek, }; static const struct file_operations fops_bool_wo = { .write = debugfs_write_file_bool, .open = simple_open, .llseek = default_llseek, }; /** * debugfs_create_bool - create a debugfs file that is used to read and write a boolean value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_bool(const char *name, umode_t mode, struct dentry *parent, bool *value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_bool, &fops_bool_ro, &fops_bool_wo); } EXPORT_SYMBOL_GPL(debugfs_create_bool); ssize_t debugfs_read_file_str(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct dentry *dentry = F_DENTRY(file); char *str, *copy = NULL; int copy_len, len; ssize_t ret; ret = debugfs_file_get(dentry); if (unlikely(ret)) return ret; str = *(char **)file->private_data; len = strlen(str) + 1; copy = kmalloc(len, GFP_KERNEL); if (!copy) { debugfs_file_put(dentry); return -ENOMEM; } copy_len = strscpy(copy, str, len); debugfs_file_put(dentry); if (copy_len < 0) { kfree(copy); return copy_len; } copy[copy_len] = '\n'; ret = simple_read_from_buffer(user_buf, count, ppos, copy, len); kfree(copy); return ret; } EXPORT_SYMBOL_GPL(debugfs_create_str); static ssize_t debugfs_write_file_str(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct dentry *dentry = F_DENTRY(file); char *old, *new = NULL; int pos = *ppos; int r; r = debugfs_file_get(dentry); if (unlikely(r)) return r; old = *(char **)file->private_data; /* only allow strict concatenation */ r = -EINVAL; if (pos && pos != strlen(old)) goto error; r = -E2BIG; if (pos + count + 1 > PAGE_SIZE) goto error; r = -ENOMEM; new = kmalloc(pos + count + 1, GFP_KERNEL); if (!new) goto error; if (pos) memcpy(new, old, pos); r = -EFAULT; if (copy_from_user(new + pos, user_buf, count)) goto error; new[pos + count] = '\0'; strim(new); rcu_assign_pointer(*(char **)file->private_data, new); synchronize_rcu(); kfree(old); debugfs_file_put(dentry); return count; error: kfree(new); debugfs_file_put(dentry); return r; } static const struct file_operations fops_str = { .read = debugfs_read_file_str, .write = debugfs_write_file_str, .open = simple_open, .llseek = default_llseek, }; static const struct file_operations fops_str_ro = { .read = debugfs_read_file_str, .open = simple_open, .llseek = default_llseek, }; static const struct file_operations fops_str_wo = { .write = debugfs_write_file_str, .open = simple_open, .llseek = default_llseek, }; /** * debugfs_create_str - create a debugfs file that is used to read and write a string value * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @value: a pointer to the variable that the file should read to and write * from. * * This function creates a file in debugfs with the given name that * contains the value of the variable @value. If the @mode variable is so * set, it can be read from, and written to. */ void debugfs_create_str(const char *name, umode_t mode, struct dentry *parent, char **value) { debugfs_create_mode_unsafe(name, mode, parent, value, &fops_str, &fops_str_ro, &fops_str_wo); } static ssize_t read_file_blob(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct debugfs_blob_wrapper *blob = file->private_data; struct dentry *dentry = F_DENTRY(file); ssize_t r; r = debugfs_file_get(dentry); if (unlikely(r)) return r; r = simple_read_from_buffer(user_buf, count, ppos, blob->data, blob->size); debugfs_file_put(dentry); return r; } static const struct file_operations fops_blob = { .read = read_file_blob, .open = simple_open, .llseek = default_llseek, }; /** * debugfs_create_blob - create a debugfs file that is used to read a binary blob * @name: a pointer to a string containing the name of the file to create. * @mode: the read permission that the file should have (other permissions are * masked out) * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @blob: a pointer to a struct debugfs_blob_wrapper which contains a pointer * to the blob data and the size of the data. * * This function creates a file in debugfs with the given name that exports * @blob->data as a binary blob. If the @mode variable is so set it can be * read from. Writing is not supported. * * This function will return a pointer to a dentry if it succeeds. This * pointer must be passed to the debugfs_remove() function when the file is * to be removed (no automatic cleanup happens if your module is unloaded, * you are responsible here.) If an error occurs, ERR_PTR(-ERROR) will be * returned. * * If debugfs is not enabled in the kernel, the value ERR_PTR(-ENODEV) will * be returned. */ struct dentry *debugfs_create_blob(const char *name, umode_t mode, struct dentry *parent, struct debugfs_blob_wrapper *blob) { return debugfs_create_file_unsafe(name, mode & 0444, parent, blob, &fops_blob); } EXPORT_SYMBOL_GPL(debugfs_create_blob); static size_t u32_format_array(char *buf, size_t bufsize, u32 *array, int array_size) { size_t ret = 0; while (--array_size >= 0) { size_t len; char term = array_size ? ' ' : '\n'; len = snprintf(buf, bufsize, "%u%c", *array++, term); ret += len; buf += len; bufsize -= len; } return ret; } static int u32_array_open(struct inode *inode, struct file *file) { struct debugfs_u32_array *data = inode->i_private; int size, elements = data->n_elements; char *buf; /* * Max size: * - 10 digits + ' '/'\n' = 11 bytes per number * - terminating NUL character */ size = elements*11; buf = kmalloc(size+1, GFP_KERNEL); if (!buf) return -ENOMEM; buf[size] = 0; file->private_data = buf; u32_format_array(buf, size, data->array, data->n_elements); return nonseekable_open(inode, file); } static ssize_t u32_array_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { size_t size = strlen(file->private_data); return simple_read_from_buffer(buf, len, ppos, file->private_data, size); } static int u32_array_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static const struct file_operations u32_array_fops = { .owner = THIS_MODULE, .open = u32_array_open, .release = u32_array_release, .read = u32_array_read, .llseek = no_llseek, }; /** * debugfs_create_u32_array - create a debugfs file that is used to read u32 * array. * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @array: wrapper struct containing data pointer and size of the array. * * This function creates a file in debugfs with the given name that exports * @array as data. If the @mode variable is so set it can be read from. * Writing is not supported. Seek within the file is also not supported. * Once array is created its size can not be changed. */ void debugfs_create_u32_array(const char *name, umode_t mode, struct dentry *parent, struct debugfs_u32_array *array) { debugfs_create_file_unsafe(name, mode, parent, array, &u32_array_fops); } EXPORT_SYMBOL_GPL(debugfs_create_u32_array); #ifdef CONFIG_HAS_IOMEM /* * The regset32 stuff is used to print 32-bit registers using the * seq_file utilities. We offer printing a register set in an already-opened * sequential file or create a debugfs file that only prints a regset32. */ /** * debugfs_print_regs32 - use seq_print to describe a set of registers * @s: the seq_file structure being used to generate output * @regs: an array if struct debugfs_reg32 structures * @nregs: the length of the above array * @base: the base address to be used in reading the registers * @prefix: a string to be prefixed to every output line * * This function outputs a text block describing the current values of * some 32-bit hardware registers. It is meant to be used within debugfs * files based on seq_file that need to show registers, intermixed with other * information. The prefix argument may be used to specify a leading string, * because some peripherals have several blocks of identical registers, * for example configuration of dma channels */ void debugfs_print_regs32(struct seq_file *s, const struct debugfs_reg32 *regs, int nregs, void __iomem *base, char *prefix) { int i; for (i = 0; i < nregs; i++, regs++) { if (prefix) seq_printf(s, "%s", prefix); seq_printf(s, "%s = 0x%08x\n", regs->name, readl(base + regs->offset)); if (seq_has_overflowed(s)) break; } } EXPORT_SYMBOL_GPL(debugfs_print_regs32); static int debugfs_regset32_show(struct seq_file *s, void *data) { struct debugfs_regset32 *regset = s->private; if (regset->dev) pm_runtime_get_sync(regset->dev); debugfs_print_regs32(s, regset->regs, regset->nregs, regset->base, ""); if (regset->dev) pm_runtime_put(regset->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(debugfs_regset32); /** * debugfs_create_regset32 - create a debugfs file that returns register values * @name: a pointer to a string containing the name of the file to create. * @mode: the permission that the file should have * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @regset: a pointer to a struct debugfs_regset32, which contains a pointer * to an array of register definitions, the array size and the base * address where the register bank is to be found. * * This function creates a file in debugfs with the given name that reports * the names and values of a set of 32-bit registers. If the @mode variable * is so set it can be read from. Writing is not supported. */ void debugfs_create_regset32(const char *name, umode_t mode, struct dentry *parent, struct debugfs_regset32 *regset) { debugfs_create_file(name, mode, parent, regset, &debugfs_regset32_fops); } EXPORT_SYMBOL_GPL(debugfs_create_regset32); #endif /* CONFIG_HAS_IOMEM */ struct debugfs_devm_entry { int (*read)(struct seq_file *seq, void *data); struct device *dev; }; static int debugfs_devm_entry_open(struct inode *inode, struct file *f) { struct debugfs_devm_entry *entry = inode->i_private; return single_open(f, entry->read, entry->dev); } static const struct file_operations debugfs_devm_entry_ops = { .owner = THIS_MODULE, .open = debugfs_devm_entry_open, .release = single_release, .read = seq_read, .llseek = seq_lseek }; /** * debugfs_create_devm_seqfile - create a debugfs file that is bound to device. * * @dev: device related to this debugfs file. * @name: name of the debugfs file. * @parent: a pointer to the parent dentry for this file. This should be a * directory dentry if set. If this parameter is %NULL, then the * file will be created in the root of the debugfs filesystem. * @read_fn: function pointer called to print the seq_file content. */ void debugfs_create_devm_seqfile(struct device *dev, const char *name, struct dentry *parent, int (*read_fn)(struct seq_file *s, void *data)) { struct debugfs_devm_entry *entry; if (IS_ERR(parent)) return; entry = devm_kzalloc(dev, sizeof(*entry), GFP_KERNEL); if (!entry) return; entry->read = read_fn; entry->dev = dev; debugfs_create_file(name, S_IRUGO, parent, entry, &debugfs_devm_entry_ops); } EXPORT_SYMBOL_GPL(debugfs_create_devm_seqfile);
linux-master
fs/debugfs/file.c
// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/hfsplus/super.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * */ #include <linux/module.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/vfs.h> #include <linux/nls.h> static struct inode *hfsplus_alloc_inode(struct super_block *sb); static void hfsplus_free_inode(struct inode *inode); #include "hfsplus_fs.h" #include "xattr.h" static int hfsplus_system_read_inode(struct inode *inode) { struct hfsplus_vh *vhdr = HFSPLUS_SB(inode->i_sb)->s_vhdr; switch (inode->i_ino) { case HFSPLUS_EXT_CNID: hfsplus_inode_read_fork(inode, &vhdr->ext_file); inode->i_mapping->a_ops = &hfsplus_btree_aops; break; case HFSPLUS_CAT_CNID: hfsplus_inode_read_fork(inode, &vhdr->cat_file); inode->i_mapping->a_ops = &hfsplus_btree_aops; break; case HFSPLUS_ALLOC_CNID: hfsplus_inode_read_fork(inode, &vhdr->alloc_file); inode->i_mapping->a_ops = &hfsplus_aops; break; case HFSPLUS_START_CNID: hfsplus_inode_read_fork(inode, &vhdr->start_file); break; case HFSPLUS_ATTR_CNID: hfsplus_inode_read_fork(inode, &vhdr->attr_file); inode->i_mapping->a_ops = &hfsplus_btree_aops; break; default: return -EIO; } return 0; } struct inode *hfsplus_iget(struct super_block *sb, unsigned long ino) { struct hfs_find_data fd; struct inode *inode; int err; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; INIT_LIST_HEAD(&HFSPLUS_I(inode)->open_dir_list); spin_lock_init(&HFSPLUS_I(inode)->open_dir_lock); mutex_init(&HFSPLUS_I(inode)->extents_lock); HFSPLUS_I(inode)->flags = 0; HFSPLUS_I(inode)->extent_state = 0; HFSPLUS_I(inode)->rsrc_inode = NULL; atomic_set(&HFSPLUS_I(inode)->opencnt, 0); if (inode->i_ino >= HFSPLUS_FIRSTUSER_CNID || inode->i_ino == HFSPLUS_ROOT_CNID) { err = hfs_find_init(HFSPLUS_SB(inode->i_sb)->cat_tree, &fd); if (!err) { err = hfsplus_find_cat(inode->i_sb, inode->i_ino, &fd); if (!err) err = hfsplus_cat_read_inode(inode, &fd); hfs_find_exit(&fd); } } else { err = hfsplus_system_read_inode(inode); } if (err) { iget_failed(inode); return ERR_PTR(err); } unlock_new_inode(inode); return inode; } static int hfsplus_system_write_inode(struct inode *inode) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(inode->i_sb); struct hfsplus_vh *vhdr = sbi->s_vhdr; struct hfsplus_fork_raw *fork; struct hfs_btree *tree = NULL; switch (inode->i_ino) { case HFSPLUS_EXT_CNID: fork = &vhdr->ext_file; tree = sbi->ext_tree; break; case HFSPLUS_CAT_CNID: fork = &vhdr->cat_file; tree = sbi->cat_tree; break; case HFSPLUS_ALLOC_CNID: fork = &vhdr->alloc_file; break; case HFSPLUS_START_CNID: fork = &vhdr->start_file; break; case HFSPLUS_ATTR_CNID: fork = &vhdr->attr_file; tree = sbi->attr_tree; break; default: return -EIO; } if (fork->total_size != cpu_to_be64(inode->i_size)) { set_bit(HFSPLUS_SB_WRITEBACKUP, &sbi->flags); hfsplus_mark_mdb_dirty(inode->i_sb); } hfsplus_inode_write_fork(inode, fork); if (tree) { int err = hfs_btree_write(tree); if (err) { pr_err("b-tree write err: %d, ino %lu\n", err, inode->i_ino); return err; } } return 0; } static int hfsplus_write_inode(struct inode *inode, struct writeback_control *wbc) { int err; hfs_dbg(INODE, "hfsplus_write_inode: %lu\n", inode->i_ino); err = hfsplus_ext_write_extent(inode); if (err) return err; if (inode->i_ino >= HFSPLUS_FIRSTUSER_CNID || inode->i_ino == HFSPLUS_ROOT_CNID) return hfsplus_cat_write_inode(inode); else return hfsplus_system_write_inode(inode); } static void hfsplus_evict_inode(struct inode *inode) { hfs_dbg(INODE, "hfsplus_evict_inode: %lu\n", inode->i_ino); truncate_inode_pages_final(&inode->i_data); clear_inode(inode); if (HFSPLUS_IS_RSRC(inode)) { HFSPLUS_I(HFSPLUS_I(inode)->rsrc_inode)->rsrc_inode = NULL; iput(HFSPLUS_I(inode)->rsrc_inode); } } static int hfsplus_sync_fs(struct super_block *sb, int wait) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct hfsplus_vh *vhdr = sbi->s_vhdr; int write_backup = 0; int error, error2; if (!wait) return 0; hfs_dbg(SUPER, "hfsplus_sync_fs\n"); /* * Explicitly write out the special metadata inodes. * * While these special inodes are marked as hashed and written * out peridocically by the flusher threads we redirty them * during writeout of normal inodes, and thus the life lock * prevents us from getting the latest state to disk. */ error = filemap_write_and_wait(sbi->cat_tree->inode->i_mapping); error2 = filemap_write_and_wait(sbi->ext_tree->inode->i_mapping); if (!error) error = error2; if (sbi->attr_tree) { error2 = filemap_write_and_wait(sbi->attr_tree->inode->i_mapping); if (!error) error = error2; } error2 = filemap_write_and_wait(sbi->alloc_file->i_mapping); if (!error) error = error2; mutex_lock(&sbi->vh_mutex); mutex_lock(&sbi->alloc_mutex); vhdr->free_blocks = cpu_to_be32(sbi->free_blocks); vhdr->next_cnid = cpu_to_be32(sbi->next_cnid); vhdr->folder_count = cpu_to_be32(sbi->folder_count); vhdr->file_count = cpu_to_be32(sbi->file_count); if (test_and_clear_bit(HFSPLUS_SB_WRITEBACKUP, &sbi->flags)) { memcpy(sbi->s_backup_vhdr, sbi->s_vhdr, sizeof(*sbi->s_vhdr)); write_backup = 1; } error2 = hfsplus_submit_bio(sb, sbi->part_start + HFSPLUS_VOLHEAD_SECTOR, sbi->s_vhdr_buf, NULL, REQ_OP_WRITE | REQ_SYNC); if (!error) error = error2; if (!write_backup) goto out; error2 = hfsplus_submit_bio(sb, sbi->part_start + sbi->sect_count - 2, sbi->s_backup_vhdr_buf, NULL, REQ_OP_WRITE | REQ_SYNC); if (!error) error2 = error; out: mutex_unlock(&sbi->alloc_mutex); mutex_unlock(&sbi->vh_mutex); if (!test_bit(HFSPLUS_SB_NOBARRIER, &sbi->flags)) blkdev_issue_flush(sb->s_bdev); return error; } static void delayed_sync_fs(struct work_struct *work) { int err; struct hfsplus_sb_info *sbi; sbi = container_of(work, struct hfsplus_sb_info, sync_work.work); spin_lock(&sbi->work_lock); sbi->work_queued = 0; spin_unlock(&sbi->work_lock); err = hfsplus_sync_fs(sbi->alloc_file->i_sb, 1); if (err) pr_err("delayed sync fs err %d\n", err); } void hfsplus_mark_mdb_dirty(struct super_block *sb) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); unsigned long delay; if (sb_rdonly(sb)) return; spin_lock(&sbi->work_lock); if (!sbi->work_queued) { delay = msecs_to_jiffies(dirty_writeback_interval * 10); queue_delayed_work(system_long_wq, &sbi->sync_work, delay); sbi->work_queued = 1; } spin_unlock(&sbi->work_lock); } static void hfsplus_put_super(struct super_block *sb) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); hfs_dbg(SUPER, "hfsplus_put_super\n"); cancel_delayed_work_sync(&sbi->sync_work); if (!sb_rdonly(sb) && sbi->s_vhdr) { struct hfsplus_vh *vhdr = sbi->s_vhdr; vhdr->modify_date = hfsp_now2mt(); vhdr->attributes |= cpu_to_be32(HFSPLUS_VOL_UNMNT); vhdr->attributes &= cpu_to_be32(~HFSPLUS_VOL_INCNSTNT); hfsplus_sync_fs(sb, 1); } iput(sbi->alloc_file); iput(sbi->hidden_dir); hfs_btree_close(sbi->attr_tree); hfs_btree_close(sbi->cat_tree); hfs_btree_close(sbi->ext_tree); kfree(sbi->s_vhdr_buf); kfree(sbi->s_backup_vhdr_buf); unload_nls(sbi->nls); kfree(sb->s_fs_info); sb->s_fs_info = NULL; } static int hfsplus_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); u64 id = huge_encode_dev(sb->s_bdev->bd_dev); buf->f_type = HFSPLUS_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = sbi->total_blocks << sbi->fs_shift; buf->f_bfree = sbi->free_blocks << sbi->fs_shift; buf->f_bavail = buf->f_bfree; buf->f_files = 0xFFFFFFFF; buf->f_ffree = 0xFFFFFFFF - sbi->next_cnid; buf->f_fsid = u64_to_fsid(id); buf->f_namelen = HFSPLUS_MAX_STRLEN; return 0; } static int hfsplus_remount(struct super_block *sb, int *flags, char *data) { sync_filesystem(sb); if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) return 0; if (!(*flags & SB_RDONLY)) { struct hfsplus_vh *vhdr = HFSPLUS_SB(sb)->s_vhdr; int force = 0; if (!hfsplus_parse_options_remount(data, &force)) return -EINVAL; if (!(vhdr->attributes & cpu_to_be32(HFSPLUS_VOL_UNMNT))) { pr_warn("filesystem was not cleanly unmounted, running fsck.hfsplus is recommended. leaving read-only.\n"); sb->s_flags |= SB_RDONLY; *flags |= SB_RDONLY; } else if (force) { /* nothing */ } else if (vhdr->attributes & cpu_to_be32(HFSPLUS_VOL_SOFTLOCK)) { pr_warn("filesystem is marked locked, leaving read-only.\n"); sb->s_flags |= SB_RDONLY; *flags |= SB_RDONLY; } else if (vhdr->attributes & cpu_to_be32(HFSPLUS_VOL_JOURNALED)) { pr_warn("filesystem is marked journaled, leaving read-only.\n"); sb->s_flags |= SB_RDONLY; *flags |= SB_RDONLY; } } return 0; } static const struct super_operations hfsplus_sops = { .alloc_inode = hfsplus_alloc_inode, .free_inode = hfsplus_free_inode, .write_inode = hfsplus_write_inode, .evict_inode = hfsplus_evict_inode, .put_super = hfsplus_put_super, .sync_fs = hfsplus_sync_fs, .statfs = hfsplus_statfs, .remount_fs = hfsplus_remount, .show_options = hfsplus_show_options, }; static int hfsplus_fill_super(struct super_block *sb, void *data, int silent) { struct hfsplus_vh *vhdr; struct hfsplus_sb_info *sbi; hfsplus_cat_entry entry; struct hfs_find_data fd; struct inode *root, *inode; struct qstr str; struct nls_table *nls = NULL; u64 last_fs_block, last_fs_page; int err; err = -ENOMEM; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) goto out; sb->s_fs_info = sbi; mutex_init(&sbi->alloc_mutex); mutex_init(&sbi->vh_mutex); spin_lock_init(&sbi->work_lock); INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs); hfsplus_fill_defaults(sbi); err = -EINVAL; if (!hfsplus_parse_options(data, sbi)) { pr_err("unable to parse mount options\n"); goto out_unload_nls; } /* temporarily use utf8 to correctly find the hidden dir below */ nls = sbi->nls; sbi->nls = load_nls("utf8"); if (!sbi->nls) { pr_err("unable to load nls for utf8\n"); goto out_unload_nls; } /* Grab the volume header */ if (hfsplus_read_wrapper(sb)) { if (!silent) pr_warn("unable to find HFS+ superblock\n"); goto out_unload_nls; } vhdr = sbi->s_vhdr; /* Copy parts of the volume header into the superblock */ sb->s_magic = HFSPLUS_VOLHEAD_SIG; if (be16_to_cpu(vhdr->version) < HFSPLUS_MIN_VERSION || be16_to_cpu(vhdr->version) > HFSPLUS_CURRENT_VERSION) { pr_err("wrong filesystem version\n"); goto out_free_vhdr; } sbi->total_blocks = be32_to_cpu(vhdr->total_blocks); sbi->free_blocks = be32_to_cpu(vhdr->free_blocks); sbi->next_cnid = be32_to_cpu(vhdr->next_cnid); sbi->file_count = be32_to_cpu(vhdr->file_count); sbi->folder_count = be32_to_cpu(vhdr->folder_count); sbi->data_clump_blocks = be32_to_cpu(vhdr->data_clump_sz) >> sbi->alloc_blksz_shift; if (!sbi->data_clump_blocks) sbi->data_clump_blocks = 1; sbi->rsrc_clump_blocks = be32_to_cpu(vhdr->rsrc_clump_sz) >> sbi->alloc_blksz_shift; if (!sbi->rsrc_clump_blocks) sbi->rsrc_clump_blocks = 1; err = -EFBIG; last_fs_block = sbi->total_blocks - 1; last_fs_page = (last_fs_block << sbi->alloc_blksz_shift) >> PAGE_SHIFT; if ((last_fs_block > (sector_t)(~0ULL) >> (sbi->alloc_blksz_shift - 9)) || (last_fs_page > (pgoff_t)(~0ULL))) { pr_err("filesystem size too large\n"); goto out_free_vhdr; } /* Set up operations so we can load metadata */ sb->s_op = &hfsplus_sops; sb->s_maxbytes = MAX_LFS_FILESIZE; if (!(vhdr->attributes & cpu_to_be32(HFSPLUS_VOL_UNMNT))) { pr_warn("Filesystem was not cleanly unmounted, running fsck.hfsplus is recommended. mounting read-only.\n"); sb->s_flags |= SB_RDONLY; } else if (test_and_clear_bit(HFSPLUS_SB_FORCE, &sbi->flags)) { /* nothing */ } else if (vhdr->attributes & cpu_to_be32(HFSPLUS_VOL_SOFTLOCK)) { pr_warn("Filesystem is marked locked, mounting read-only.\n"); sb->s_flags |= SB_RDONLY; } else if ((vhdr->attributes & cpu_to_be32(HFSPLUS_VOL_JOURNALED)) && !sb_rdonly(sb)) { pr_warn("write access to a journaled filesystem is not supported, use the force option at your own risk, mounting read-only.\n"); sb->s_flags |= SB_RDONLY; } err = -EINVAL; /* Load metadata objects (B*Trees) */ sbi->ext_tree = hfs_btree_open(sb, HFSPLUS_EXT_CNID); if (!sbi->ext_tree) { pr_err("failed to load extents file\n"); goto out_free_vhdr; } sbi->cat_tree = hfs_btree_open(sb, HFSPLUS_CAT_CNID); if (!sbi->cat_tree) { pr_err("failed to load catalog file\n"); goto out_close_ext_tree; } atomic_set(&sbi->attr_tree_state, HFSPLUS_EMPTY_ATTR_TREE); if (vhdr->attr_file.total_blocks != 0) { sbi->attr_tree = hfs_btree_open(sb, HFSPLUS_ATTR_CNID); if (!sbi->attr_tree) { pr_err("failed to load attributes file\n"); goto out_close_cat_tree; } atomic_set(&sbi->attr_tree_state, HFSPLUS_VALID_ATTR_TREE); } sb->s_xattr = hfsplus_xattr_handlers; inode = hfsplus_iget(sb, HFSPLUS_ALLOC_CNID); if (IS_ERR(inode)) { pr_err("failed to load allocation file\n"); err = PTR_ERR(inode); goto out_close_attr_tree; } sbi->alloc_file = inode; /* Load the root directory */ root = hfsplus_iget(sb, HFSPLUS_ROOT_CNID); if (IS_ERR(root)) { pr_err("failed to load root directory\n"); err = PTR_ERR(root); goto out_put_alloc_file; } sb->s_d_op = &hfsplus_dentry_operations; sb->s_root = d_make_root(root); if (!sb->s_root) { err = -ENOMEM; goto out_put_alloc_file; } str.len = sizeof(HFSP_HIDDENDIR_NAME) - 1; str.name = HFSP_HIDDENDIR_NAME; err = hfs_find_init(sbi->cat_tree, &fd); if (err) goto out_put_root; err = hfsplus_cat_build_key(sb, fd.search_key, HFSPLUS_ROOT_CNID, &str); if (unlikely(err < 0)) goto out_put_root; if (!hfs_brec_read(&fd, &entry, sizeof(entry))) { hfs_find_exit(&fd); if (entry.type != cpu_to_be16(HFSPLUS_FOLDER)) { err = -EINVAL; goto out_put_root; } inode = hfsplus_iget(sb, be32_to_cpu(entry.folder.id)); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_put_root; } sbi->hidden_dir = inode; } else hfs_find_exit(&fd); if (!sb_rdonly(sb)) { /* * H+LX == hfsplusutils, H+Lx == this driver, H+lx is unused * all three are registered with Apple for our use */ vhdr->last_mount_vers = cpu_to_be32(HFSP_MOUNT_VERSION); vhdr->modify_date = hfsp_now2mt(); be32_add_cpu(&vhdr->write_count, 1); vhdr->attributes &= cpu_to_be32(~HFSPLUS_VOL_UNMNT); vhdr->attributes |= cpu_to_be32(HFSPLUS_VOL_INCNSTNT); hfsplus_sync_fs(sb, 1); if (!sbi->hidden_dir) { mutex_lock(&sbi->vh_mutex); sbi->hidden_dir = hfsplus_new_inode(sb, root, S_IFDIR); if (!sbi->hidden_dir) { mutex_unlock(&sbi->vh_mutex); err = -ENOMEM; goto out_put_root; } err = hfsplus_create_cat(sbi->hidden_dir->i_ino, root, &str, sbi->hidden_dir); if (err) { mutex_unlock(&sbi->vh_mutex); goto out_put_hidden_dir; } err = hfsplus_init_security(sbi->hidden_dir, root, &str); if (err == -EOPNOTSUPP) err = 0; /* Operation is not supported. */ else if (err) { /* * Try to delete anyway without * error analysis. */ hfsplus_delete_cat(sbi->hidden_dir->i_ino, root, &str); mutex_unlock(&sbi->vh_mutex); goto out_put_hidden_dir; } mutex_unlock(&sbi->vh_mutex); hfsplus_mark_inode_dirty(sbi->hidden_dir, HFSPLUS_I_CAT_DIRTY); } } unload_nls(sbi->nls); sbi->nls = nls; return 0; out_put_hidden_dir: cancel_delayed_work_sync(&sbi->sync_work); iput(sbi->hidden_dir); out_put_root: dput(sb->s_root); sb->s_root = NULL; out_put_alloc_file: iput(sbi->alloc_file); out_close_attr_tree: hfs_btree_close(sbi->attr_tree); out_close_cat_tree: hfs_btree_close(sbi->cat_tree); out_close_ext_tree: hfs_btree_close(sbi->ext_tree); out_free_vhdr: kfree(sbi->s_vhdr_buf); kfree(sbi->s_backup_vhdr_buf); out_unload_nls: unload_nls(sbi->nls); unload_nls(nls); kfree(sbi); out: return err; } MODULE_AUTHOR("Brad Boyer"); MODULE_DESCRIPTION("Extended Macintosh Filesystem"); MODULE_LICENSE("GPL"); static struct kmem_cache *hfsplus_inode_cachep; static struct inode *hfsplus_alloc_inode(struct super_block *sb) { struct hfsplus_inode_info *i; i = alloc_inode_sb(sb, hfsplus_inode_cachep, GFP_KERNEL); return i ? &i->vfs_inode : NULL; } static void hfsplus_free_inode(struct inode *inode) { kmem_cache_free(hfsplus_inode_cachep, HFSPLUS_I(inode)); } #define HFSPLUS_INODE_SIZE sizeof(struct hfsplus_inode_info) static struct dentry *hfsplus_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, hfsplus_fill_super); } static struct file_system_type hfsplus_fs_type = { .owner = THIS_MODULE, .name = "hfsplus", .mount = hfsplus_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("hfsplus"); static void hfsplus_init_once(void *p) { struct hfsplus_inode_info *i = p; inode_init_once(&i->vfs_inode); } static int __init init_hfsplus_fs(void) { int err; hfsplus_inode_cachep = kmem_cache_create("hfsplus_icache", HFSPLUS_INODE_SIZE, 0, SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, hfsplus_init_once); if (!hfsplus_inode_cachep) return -ENOMEM; err = hfsplus_create_attr_tree_cache(); if (err) goto destroy_inode_cache; err = register_filesystem(&hfsplus_fs_type); if (err) goto destroy_attr_tree_cache; return 0; destroy_attr_tree_cache: hfsplus_destroy_attr_tree_cache(); destroy_inode_cache: kmem_cache_destroy(hfsplus_inode_cachep); return err; } static void __exit exit_hfsplus_fs(void) { unregister_filesystem(&hfsplus_fs_type); /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); hfsplus_destroy_attr_tree_cache(); kmem_cache_destroy(hfsplus_inode_cachep); } module_init(init_hfsplus_fs) module_exit(exit_hfsplus_fs)
linux-master
fs/hfsplus/super.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/extents.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handling of Extents both in catalog and extents overflow trees */ #include <linux/errno.h> #include <linux/fs.h> #include <linux/pagemap.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" /* Compare two extents keys, returns 0 on same, pos/neg for difference */ int hfsplus_ext_cmp_key(const hfsplus_btree_key *k1, const hfsplus_btree_key *k2) { __be32 k1id, k2id; __be32 k1s, k2s; k1id = k1->ext.cnid; k2id = k2->ext.cnid; if (k1id != k2id) return be32_to_cpu(k1id) < be32_to_cpu(k2id) ? -1 : 1; if (k1->ext.fork_type != k2->ext.fork_type) return k1->ext.fork_type < k2->ext.fork_type ? -1 : 1; k1s = k1->ext.start_block; k2s = k2->ext.start_block; if (k1s == k2s) return 0; return be32_to_cpu(k1s) < be32_to_cpu(k2s) ? -1 : 1; } static void hfsplus_ext_build_key(hfsplus_btree_key *key, u32 cnid, u32 block, u8 type) { key->key_len = cpu_to_be16(HFSPLUS_EXT_KEYLEN - 2); key->ext.cnid = cpu_to_be32(cnid); key->ext.start_block = cpu_to_be32(block); key->ext.fork_type = type; key->ext.pad = 0; } static u32 hfsplus_ext_find_block(struct hfsplus_extent *ext, u32 off) { int i; u32 count; for (i = 0; i < 8; ext++, i++) { count = be32_to_cpu(ext->block_count); if (off < count) return be32_to_cpu(ext->start_block) + off; off -= count; } /* panic? */ return 0; } static int hfsplus_ext_block_count(struct hfsplus_extent *ext) { int i; u32 count = 0; for (i = 0; i < 8; ext++, i++) count += be32_to_cpu(ext->block_count); return count; } static u32 hfsplus_ext_lastblock(struct hfsplus_extent *ext) { int i; ext += 7; for (i = 0; i < 7; ext--, i++) if (ext->block_count) break; return be32_to_cpu(ext->start_block) + be32_to_cpu(ext->block_count); } static int __hfsplus_ext_write_extent(struct inode *inode, struct hfs_find_data *fd) { struct hfsplus_inode_info *hip = HFSPLUS_I(inode); int res; WARN_ON(!mutex_is_locked(&hip->extents_lock)); hfsplus_ext_build_key(fd->search_key, inode->i_ino, hip->cached_start, HFSPLUS_IS_RSRC(inode) ? HFSPLUS_TYPE_RSRC : HFSPLUS_TYPE_DATA); res = hfs_brec_find(fd, hfs_find_rec_by_key); if (hip->extent_state & HFSPLUS_EXT_NEW) { if (res != -ENOENT) return res; /* Fail early and avoid ENOSPC during the btree operation */ res = hfs_bmap_reserve(fd->tree, fd->tree->depth + 1); if (res) return res; hfs_brec_insert(fd, hip->cached_extents, sizeof(hfsplus_extent_rec)); hip->extent_state &= ~(HFSPLUS_EXT_DIRTY | HFSPLUS_EXT_NEW); } else { if (res) return res; hfs_bnode_write(fd->bnode, hip->cached_extents, fd->entryoffset, fd->entrylength); hip->extent_state &= ~HFSPLUS_EXT_DIRTY; } /* * We can't just use hfsplus_mark_inode_dirty here, because we * also get called from hfsplus_write_inode, which should not * redirty the inode. Instead the callers have to be careful * to explicily mark the inode dirty, too. */ set_bit(HFSPLUS_I_EXT_DIRTY, &hip->flags); return 0; } static int hfsplus_ext_write_extent_locked(struct inode *inode) { int res = 0; if (HFSPLUS_I(inode)->extent_state & HFSPLUS_EXT_DIRTY) { struct hfs_find_data fd; res = hfs_find_init(HFSPLUS_SB(inode->i_sb)->ext_tree, &fd); if (res) return res; res = __hfsplus_ext_write_extent(inode, &fd); hfs_find_exit(&fd); } return res; } int hfsplus_ext_write_extent(struct inode *inode) { int res; mutex_lock(&HFSPLUS_I(inode)->extents_lock); res = hfsplus_ext_write_extent_locked(inode); mutex_unlock(&HFSPLUS_I(inode)->extents_lock); return res; } static inline int __hfsplus_ext_read_extent(struct hfs_find_data *fd, struct hfsplus_extent *extent, u32 cnid, u32 block, u8 type) { int res; hfsplus_ext_build_key(fd->search_key, cnid, block, type); fd->key->ext.cnid = 0; res = hfs_brec_find(fd, hfs_find_rec_by_key); if (res && res != -ENOENT) return res; if (fd->key->ext.cnid != fd->search_key->ext.cnid || fd->key->ext.fork_type != fd->search_key->ext.fork_type) return -ENOENT; if (fd->entrylength != sizeof(hfsplus_extent_rec)) return -EIO; hfs_bnode_read(fd->bnode, extent, fd->entryoffset, sizeof(hfsplus_extent_rec)); return 0; } static inline int __hfsplus_ext_cache_extent(struct hfs_find_data *fd, struct inode *inode, u32 block) { struct hfsplus_inode_info *hip = HFSPLUS_I(inode); int res; WARN_ON(!mutex_is_locked(&hip->extents_lock)); if (hip->extent_state & HFSPLUS_EXT_DIRTY) { res = __hfsplus_ext_write_extent(inode, fd); if (res) return res; } res = __hfsplus_ext_read_extent(fd, hip->cached_extents, inode->i_ino, block, HFSPLUS_IS_RSRC(inode) ? HFSPLUS_TYPE_RSRC : HFSPLUS_TYPE_DATA); if (!res) { hip->cached_start = be32_to_cpu(fd->key->ext.start_block); hip->cached_blocks = hfsplus_ext_block_count(hip->cached_extents); } else { hip->cached_start = hip->cached_blocks = 0; hip->extent_state &= ~(HFSPLUS_EXT_DIRTY | HFSPLUS_EXT_NEW); } return res; } static int hfsplus_ext_read_extent(struct inode *inode, u32 block) { struct hfsplus_inode_info *hip = HFSPLUS_I(inode); struct hfs_find_data fd; int res; if (block >= hip->cached_start && block < hip->cached_start + hip->cached_blocks) return 0; res = hfs_find_init(HFSPLUS_SB(inode->i_sb)->ext_tree, &fd); if (!res) { res = __hfsplus_ext_cache_extent(&fd, inode, block); hfs_find_exit(&fd); } return res; } /* Get a block at iblock for inode, possibly allocating if create */ int hfsplus_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { struct super_block *sb = inode->i_sb; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct hfsplus_inode_info *hip = HFSPLUS_I(inode); int res = -EIO; u32 ablock, dblock, mask; sector_t sector; int was_dirty = 0; /* Convert inode block to disk allocation block */ ablock = iblock >> sbi->fs_shift; if (iblock >= hip->fs_blocks) { if (!create) return 0; if (iblock > hip->fs_blocks) return -EIO; if (ablock >= hip->alloc_blocks) { res = hfsplus_file_extend(inode, false); if (res) return res; } } else create = 0; if (ablock < hip->first_blocks) { dblock = hfsplus_ext_find_block(hip->first_extents, ablock); goto done; } if (inode->i_ino == HFSPLUS_EXT_CNID) return -EIO; mutex_lock(&hip->extents_lock); /* * hfsplus_ext_read_extent will write out a cached extent into * the extents btree. In that case we may have to mark the inode * dirty even for a pure read of an extent here. */ was_dirty = (hip->extent_state & HFSPLUS_EXT_DIRTY); res = hfsplus_ext_read_extent(inode, ablock); if (res) { mutex_unlock(&hip->extents_lock); return -EIO; } dblock = hfsplus_ext_find_block(hip->cached_extents, ablock - hip->cached_start); mutex_unlock(&hip->extents_lock); done: hfs_dbg(EXTENT, "get_block(%lu): %llu - %u\n", inode->i_ino, (long long)iblock, dblock); mask = (1 << sbi->fs_shift) - 1; sector = ((sector_t)dblock << sbi->fs_shift) + sbi->blockoffset + (iblock & mask); map_bh(bh_result, sb, sector); if (create) { set_buffer_new(bh_result); hip->phys_size += sb->s_blocksize; hip->fs_blocks++; inode_add_bytes(inode, sb->s_blocksize); } if (create || was_dirty) mark_inode_dirty(inode); return 0; } static void hfsplus_dump_extent(struct hfsplus_extent *extent) { int i; hfs_dbg(EXTENT, " "); for (i = 0; i < 8; i++) hfs_dbg_cont(EXTENT, " %u:%u", be32_to_cpu(extent[i].start_block), be32_to_cpu(extent[i].block_count)); hfs_dbg_cont(EXTENT, "\n"); } static int hfsplus_add_extent(struct hfsplus_extent *extent, u32 offset, u32 alloc_block, u32 block_count) { u32 count, start; int i; hfsplus_dump_extent(extent); for (i = 0; i < 8; extent++, i++) { count = be32_to_cpu(extent->block_count); if (offset == count) { start = be32_to_cpu(extent->start_block); if (alloc_block != start + count) { if (++i >= 8) return -ENOSPC; extent++; extent->start_block = cpu_to_be32(alloc_block); } else block_count += count; extent->block_count = cpu_to_be32(block_count); return 0; } else if (offset < count) break; offset -= count; } /* panic? */ return -EIO; } static int hfsplus_free_extents(struct super_block *sb, struct hfsplus_extent *extent, u32 offset, u32 block_nr) { u32 count, start; int i; int err = 0; /* Mapping the allocation file may lock the extent tree */ WARN_ON(mutex_is_locked(&HFSPLUS_SB(sb)->ext_tree->tree_lock)); hfsplus_dump_extent(extent); for (i = 0; i < 8; extent++, i++) { count = be32_to_cpu(extent->block_count); if (offset == count) goto found; else if (offset < count) break; offset -= count; } /* panic? */ return -EIO; found: for (;;) { start = be32_to_cpu(extent->start_block); if (count <= block_nr) { err = hfsplus_block_free(sb, start, count); if (err) { pr_err("can't free extent\n"); hfs_dbg(EXTENT, " start: %u count: %u\n", start, count); } extent->block_count = 0; extent->start_block = 0; block_nr -= count; } else { count -= block_nr; err = hfsplus_block_free(sb, start + count, block_nr); if (err) { pr_err("can't free extent\n"); hfs_dbg(EXTENT, " start: %u count: %u\n", start, count); } extent->block_count = cpu_to_be32(count); block_nr = 0; } if (!block_nr || !i) { /* * Try to free all extents and * return only last error */ return err; } i--; extent--; count = be32_to_cpu(extent->block_count); } } int hfsplus_free_fork(struct super_block *sb, u32 cnid, struct hfsplus_fork_raw *fork, int type) { struct hfs_find_data fd; hfsplus_extent_rec ext_entry; u32 total_blocks, blocks, start; int res, i; total_blocks = be32_to_cpu(fork->total_blocks); if (!total_blocks) return 0; blocks = 0; for (i = 0; i < 8; i++) blocks += be32_to_cpu(fork->extents[i].block_count); res = hfsplus_free_extents(sb, fork->extents, blocks, blocks); if (res) return res; if (total_blocks == blocks) return 0; res = hfs_find_init(HFSPLUS_SB(sb)->ext_tree, &fd); if (res) return res; do { res = __hfsplus_ext_read_extent(&fd, ext_entry, cnid, total_blocks, type); if (res) break; start = be32_to_cpu(fd.key->ext.start_block); hfs_brec_remove(&fd); mutex_unlock(&fd.tree->tree_lock); hfsplus_free_extents(sb, ext_entry, total_blocks - start, total_blocks); total_blocks = start; mutex_lock(&fd.tree->tree_lock); } while (total_blocks > blocks); hfs_find_exit(&fd); return res; } int hfsplus_file_extend(struct inode *inode, bool zeroout) { struct super_block *sb = inode->i_sb; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct hfsplus_inode_info *hip = HFSPLUS_I(inode); u32 start, len, goal; int res; if (sbi->alloc_file->i_size * 8 < sbi->total_blocks - sbi->free_blocks + 8) { /* extend alloc file */ pr_err_ratelimited("extend alloc file! (%llu,%u,%u)\n", sbi->alloc_file->i_size * 8, sbi->total_blocks, sbi->free_blocks); return -ENOSPC; } mutex_lock(&hip->extents_lock); if (hip->alloc_blocks == hip->first_blocks) goal = hfsplus_ext_lastblock(hip->first_extents); else { res = hfsplus_ext_read_extent(inode, hip->alloc_blocks); if (res) goto out; goal = hfsplus_ext_lastblock(hip->cached_extents); } len = hip->clump_blocks; start = hfsplus_block_allocate(sb, sbi->total_blocks, goal, &len); if (start >= sbi->total_blocks) { start = hfsplus_block_allocate(sb, goal, 0, &len); if (start >= goal) { res = -ENOSPC; goto out; } } if (zeroout) { res = sb_issue_zeroout(sb, start, len, GFP_NOFS); if (res) goto out; } hfs_dbg(EXTENT, "extend %lu: %u,%u\n", inode->i_ino, start, len); if (hip->alloc_blocks <= hip->first_blocks) { if (!hip->first_blocks) { hfs_dbg(EXTENT, "first extents\n"); /* no extents yet */ hip->first_extents[0].start_block = cpu_to_be32(start); hip->first_extents[0].block_count = cpu_to_be32(len); res = 0; } else { /* try to append to extents in inode */ res = hfsplus_add_extent(hip->first_extents, hip->alloc_blocks, start, len); if (res == -ENOSPC) goto insert_extent; } if (!res) { hfsplus_dump_extent(hip->first_extents); hip->first_blocks += len; } } else { res = hfsplus_add_extent(hip->cached_extents, hip->alloc_blocks - hip->cached_start, start, len); if (!res) { hfsplus_dump_extent(hip->cached_extents); hip->extent_state |= HFSPLUS_EXT_DIRTY; hip->cached_blocks += len; } else if (res == -ENOSPC) goto insert_extent; } out: if (!res) { hip->alloc_blocks += len; mutex_unlock(&hip->extents_lock); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_ALLOC_DIRTY); return 0; } mutex_unlock(&hip->extents_lock); return res; insert_extent: hfs_dbg(EXTENT, "insert new extent\n"); res = hfsplus_ext_write_extent_locked(inode); if (res) goto out; memset(hip->cached_extents, 0, sizeof(hfsplus_extent_rec)); hip->cached_extents[0].start_block = cpu_to_be32(start); hip->cached_extents[0].block_count = cpu_to_be32(len); hfsplus_dump_extent(hip->cached_extents); hip->extent_state |= HFSPLUS_EXT_DIRTY | HFSPLUS_EXT_NEW; hip->cached_start = hip->alloc_blocks; hip->cached_blocks = len; res = 0; goto out; } void hfsplus_file_truncate(struct inode *inode) { struct super_block *sb = inode->i_sb; struct hfsplus_inode_info *hip = HFSPLUS_I(inode); struct hfs_find_data fd; u32 alloc_cnt, blk_cnt, start; int res; hfs_dbg(INODE, "truncate: %lu, %llu -> %llu\n", inode->i_ino, (long long)hip->phys_size, inode->i_size); if (inode->i_size > hip->phys_size) { struct address_space *mapping = inode->i_mapping; struct page *page; void *fsdata = NULL; loff_t size = inode->i_size; res = hfsplus_write_begin(NULL, mapping, size, 0, &page, &fsdata); if (res) return; res = generic_write_end(NULL, mapping, size, 0, 0, page, fsdata); if (res < 0) return; mark_inode_dirty(inode); return; } else if (inode->i_size == hip->phys_size) return; blk_cnt = (inode->i_size + HFSPLUS_SB(sb)->alloc_blksz - 1) >> HFSPLUS_SB(sb)->alloc_blksz_shift; mutex_lock(&hip->extents_lock); alloc_cnt = hip->alloc_blocks; if (blk_cnt == alloc_cnt) goto out_unlock; res = hfs_find_init(HFSPLUS_SB(sb)->ext_tree, &fd); if (res) { mutex_unlock(&hip->extents_lock); /* XXX: We lack error handling of hfsplus_file_truncate() */ return; } while (1) { if (alloc_cnt == hip->first_blocks) { mutex_unlock(&fd.tree->tree_lock); hfsplus_free_extents(sb, hip->first_extents, alloc_cnt, alloc_cnt - blk_cnt); hfsplus_dump_extent(hip->first_extents); hip->first_blocks = blk_cnt; mutex_lock(&fd.tree->tree_lock); break; } res = __hfsplus_ext_cache_extent(&fd, inode, alloc_cnt); if (res) break; start = hip->cached_start; if (blk_cnt <= start) hfs_brec_remove(&fd); mutex_unlock(&fd.tree->tree_lock); hfsplus_free_extents(sb, hip->cached_extents, alloc_cnt - start, alloc_cnt - blk_cnt); hfsplus_dump_extent(hip->cached_extents); mutex_lock(&fd.tree->tree_lock); if (blk_cnt > start) { hip->extent_state |= HFSPLUS_EXT_DIRTY; break; } alloc_cnt = start; hip->cached_start = hip->cached_blocks = 0; hip->extent_state &= ~(HFSPLUS_EXT_DIRTY | HFSPLUS_EXT_NEW); } hfs_find_exit(&fd); hip->alloc_blocks = blk_cnt; out_unlock: mutex_unlock(&hip->extents_lock); hip->phys_size = inode->i_size; hip->fs_blocks = (inode->i_size + sb->s_blocksize - 1) >> sb->s_blocksize_bits; inode_set_bytes(inode, hip->fs_blocks << sb->s_blocksize_bits); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_ALLOC_DIRTY); }
linux-master
fs/hfsplus/extents.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/bnode.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handle basic btree node operations */ #include <linux/string.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/fs.h> #include <linux/swap.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" /* Copy a specified range of bytes from the raw data of a node */ void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len) { struct page **pagep; int l; off += node->page_offset; pagep = node->page + (off >> PAGE_SHIFT); off &= ~PAGE_MASK; l = min_t(int, len, PAGE_SIZE - off); memcpy_from_page(buf, *pagep, off, l); while ((len -= l) != 0) { buf += l; l = min_t(int, len, PAGE_SIZE); memcpy_from_page(buf, *++pagep, 0, l); } } u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off) { __be16 data; /* TODO: optimize later... */ hfs_bnode_read(node, &data, off, 2); return be16_to_cpu(data); } u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off) { u8 data; /* TODO: optimize later... */ hfs_bnode_read(node, &data, off, 1); return data; } void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off) { struct hfs_btree *tree; int key_len; tree = node->tree; if (node->type == HFS_NODE_LEAF || tree->attributes & HFS_TREE_VARIDXKEYS || node->tree->cnid == HFSPLUS_ATTR_CNID) key_len = hfs_bnode_read_u16(node, off) + 2; else key_len = tree->max_key_len + 2; hfs_bnode_read(node, key, off, key_len); } void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len) { struct page **pagep; int l; off += node->page_offset; pagep = node->page + (off >> PAGE_SHIFT); off &= ~PAGE_MASK; l = min_t(int, len, PAGE_SIZE - off); memcpy_to_page(*pagep, off, buf, l); set_page_dirty(*pagep); while ((len -= l) != 0) { buf += l; l = min_t(int, len, PAGE_SIZE); memcpy_to_page(*++pagep, 0, buf, l); set_page_dirty(*pagep); } } void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data) { __be16 v = cpu_to_be16(data); /* TODO: optimize later... */ hfs_bnode_write(node, &v, off, 2); } void hfs_bnode_clear(struct hfs_bnode *node, int off, int len) { struct page **pagep; int l; off += node->page_offset; pagep = node->page + (off >> PAGE_SHIFT); off &= ~PAGE_MASK; l = min_t(int, len, PAGE_SIZE - off); memzero_page(*pagep, off, l); set_page_dirty(*pagep); while ((len -= l) != 0) { l = min_t(int, len, PAGE_SIZE); memzero_page(*++pagep, 0, l); set_page_dirty(*pagep); } } void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst, struct hfs_bnode *src_node, int src, int len) { struct page **src_page, **dst_page; int l; hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len); if (!len) return; src += src_node->page_offset; dst += dst_node->page_offset; src_page = src_node->page + (src >> PAGE_SHIFT); src &= ~PAGE_MASK; dst_page = dst_node->page + (dst >> PAGE_SHIFT); dst &= ~PAGE_MASK; if (src == dst) { l = min_t(int, len, PAGE_SIZE - src); memcpy_page(*dst_page, src, *src_page, src, l); set_page_dirty(*dst_page); while ((len -= l) != 0) { l = min_t(int, len, PAGE_SIZE); memcpy_page(*++dst_page, 0, *++src_page, 0, l); set_page_dirty(*dst_page); } } else { void *src_ptr, *dst_ptr; do { dst_ptr = kmap_local_page(*dst_page) + dst; src_ptr = kmap_local_page(*src_page) + src; if (PAGE_SIZE - src < PAGE_SIZE - dst) { l = PAGE_SIZE - src; src = 0; dst += l; } else { l = PAGE_SIZE - dst; src += l; dst = 0; } l = min(len, l); memcpy(dst_ptr, src_ptr, l); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); if (!dst) dst_page++; else src_page++; } while ((len -= l)); } } void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len) { struct page **src_page, **dst_page; void *src_ptr, *dst_ptr; int l; hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len); if (!len) return; src += node->page_offset; dst += node->page_offset; if (dst > src) { src += len - 1; src_page = node->page + (src >> PAGE_SHIFT); src = (src & ~PAGE_MASK) + 1; dst += len - 1; dst_page = node->page + (dst >> PAGE_SHIFT); dst = (dst & ~PAGE_MASK) + 1; if (src == dst) { while (src < len) { dst_ptr = kmap_local_page(*dst_page); src_ptr = kmap_local_page(*src_page); memmove(dst_ptr, src_ptr, src); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); len -= src; src = PAGE_SIZE; src_page--; dst_page--; } src -= len; dst_ptr = kmap_local_page(*dst_page); src_ptr = kmap_local_page(*src_page); memmove(dst_ptr + src, src_ptr + src, len); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); } else { do { dst_ptr = kmap_local_page(*dst_page) + dst; src_ptr = kmap_local_page(*src_page) + src; if (src < dst) { l = src; src = PAGE_SIZE; dst -= l; } else { l = dst; src -= l; dst = PAGE_SIZE; } l = min(len, l); memmove(dst_ptr - l, src_ptr - l, l); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); if (dst == PAGE_SIZE) dst_page--; else src_page--; } while ((len -= l)); } } else { src_page = node->page + (src >> PAGE_SHIFT); src &= ~PAGE_MASK; dst_page = node->page + (dst >> PAGE_SHIFT); dst &= ~PAGE_MASK; if (src == dst) { l = min_t(int, len, PAGE_SIZE - src); dst_ptr = kmap_local_page(*dst_page) + src; src_ptr = kmap_local_page(*src_page) + src; memmove(dst_ptr, src_ptr, l); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); while ((len -= l) != 0) { l = min_t(int, len, PAGE_SIZE); dst_ptr = kmap_local_page(*++dst_page); src_ptr = kmap_local_page(*++src_page); memmove(dst_ptr, src_ptr, l); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); } } else { do { dst_ptr = kmap_local_page(*dst_page) + dst; src_ptr = kmap_local_page(*src_page) + src; if (PAGE_SIZE - src < PAGE_SIZE - dst) { l = PAGE_SIZE - src; src = 0; dst += l; } else { l = PAGE_SIZE - dst; src += l; dst = 0; } l = min(len, l); memmove(dst_ptr, src_ptr, l); kunmap_local(src_ptr); set_page_dirty(*dst_page); kunmap_local(dst_ptr); if (!dst) dst_page++; else src_page++; } while ((len -= l)); } } } void hfs_bnode_dump(struct hfs_bnode *node) { struct hfs_bnode_desc desc; __be32 cnid; int i, off, key_off; hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this); hfs_bnode_read(node, &desc, 0, sizeof(desc)); hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n", be32_to_cpu(desc.next), be32_to_cpu(desc.prev), desc.type, desc.height, be16_to_cpu(desc.num_recs)); off = node->tree->node_size - 2; for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) { key_off = hfs_bnode_read_u16(node, off); hfs_dbg(BNODE_MOD, " %d", key_off); if (i && node->type == HFS_NODE_INDEX) { int tmp; if (node->tree->attributes & HFS_TREE_VARIDXKEYS || node->tree->cnid == HFSPLUS_ATTR_CNID) tmp = hfs_bnode_read_u16(node, key_off) + 2; else tmp = node->tree->max_key_len + 2; hfs_dbg_cont(BNODE_MOD, " (%d", tmp); hfs_bnode_read(node, &cnid, key_off + tmp, 4); hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid)); } else if (i && node->type == HFS_NODE_LEAF) { int tmp; tmp = hfs_bnode_read_u16(node, key_off); hfs_dbg_cont(BNODE_MOD, " (%d)", tmp); } } hfs_dbg_cont(BNODE_MOD, "\n"); } void hfs_bnode_unlink(struct hfs_bnode *node) { struct hfs_btree *tree; struct hfs_bnode *tmp; __be32 cnid; tree = node->tree; if (node->prev) { tmp = hfs_bnode_find(tree, node->prev); if (IS_ERR(tmp)) return; tmp->next = node->next; cnid = cpu_to_be32(tmp->next); hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4); hfs_bnode_put(tmp); } else if (node->type == HFS_NODE_LEAF) tree->leaf_head = node->next; if (node->next) { tmp = hfs_bnode_find(tree, node->next); if (IS_ERR(tmp)) return; tmp->prev = node->prev; cnid = cpu_to_be32(tmp->prev); hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4); hfs_bnode_put(tmp); } else if (node->type == HFS_NODE_LEAF) tree->leaf_tail = node->prev; /* move down? */ if (!node->prev && !node->next) hfs_dbg(BNODE_MOD, "hfs_btree_del_level\n"); if (!node->parent) { tree->root = 0; tree->depth = 0; } set_bit(HFS_BNODE_DELETED, &node->flags); } static inline int hfs_bnode_hash(u32 num) { num = (num >> 16) + num; num += num >> 8; return num & (NODE_HASH_SIZE - 1); } struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid) { struct hfs_bnode *node; if (cnid >= tree->node_count) { pr_err("request for non-existent node %d in B*Tree\n", cnid); return NULL; } for (node = tree->node_hash[hfs_bnode_hash(cnid)]; node; node = node->next_hash) if (node->this == cnid) return node; return NULL; } static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid) { struct hfs_bnode *node, *node2; struct address_space *mapping; struct page *page; int size, block, i, hash; loff_t off; if (cnid >= tree->node_count) { pr_err("request for non-existent node %d in B*Tree\n", cnid); return NULL; } size = sizeof(struct hfs_bnode) + tree->pages_per_bnode * sizeof(struct page *); node = kzalloc(size, GFP_KERNEL); if (!node) return NULL; node->tree = tree; node->this = cnid; set_bit(HFS_BNODE_NEW, &node->flags); atomic_set(&node->refcnt, 1); hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n", node->tree->cnid, node->this); init_waitqueue_head(&node->lock_wq); spin_lock(&tree->hash_lock); node2 = hfs_bnode_findhash(tree, cnid); if (!node2) { hash = hfs_bnode_hash(cnid); node->next_hash = tree->node_hash[hash]; tree->node_hash[hash] = node; tree->node_hash_cnt++; } else { spin_unlock(&tree->hash_lock); kfree(node); wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); return node2; } spin_unlock(&tree->hash_lock); mapping = tree->inode->i_mapping; off = (loff_t)cnid << tree->node_size_shift; block = off >> PAGE_SHIFT; node->page_offset = off & ~PAGE_MASK; for (i = 0; i < tree->pages_per_bnode; block++, i++) { page = read_mapping_page(mapping, block, NULL); if (IS_ERR(page)) goto fail; node->page[i] = page; } return node; fail: set_bit(HFS_BNODE_ERROR, &node->flags); return node; } void hfs_bnode_unhash(struct hfs_bnode *node) { struct hfs_bnode **p; hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)]; *p && *p != node; p = &(*p)->next_hash) ; BUG_ON(!*p); *p = node->next_hash; node->tree->node_hash_cnt--; } /* Load a particular node out of a tree */ struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num) { struct hfs_bnode *node; struct hfs_bnode_desc *desc; int i, rec_off, off, next_off; int entry_size, key_size; spin_lock(&tree->hash_lock); node = hfs_bnode_findhash(tree, num); if (node) { hfs_bnode_get(node); spin_unlock(&tree->hash_lock); wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags)); if (test_bit(HFS_BNODE_ERROR, &node->flags)) goto node_error; return node; } spin_unlock(&tree->hash_lock); node = __hfs_bnode_create(tree, num); if (!node) return ERR_PTR(-ENOMEM); if (test_bit(HFS_BNODE_ERROR, &node->flags)) goto node_error; if (!test_bit(HFS_BNODE_NEW, &node->flags)) return node; desc = (struct hfs_bnode_desc *)(kmap_local_page(node->page[0]) + node->page_offset); node->prev = be32_to_cpu(desc->prev); node->next = be32_to_cpu(desc->next); node->num_recs = be16_to_cpu(desc->num_recs); node->type = desc->type; node->height = desc->height; kunmap_local(desc); switch (node->type) { case HFS_NODE_HEADER: case HFS_NODE_MAP: if (node->height != 0) goto node_error; break; case HFS_NODE_LEAF: if (node->height != 1) goto node_error; break; case HFS_NODE_INDEX: if (node->height <= 1 || node->height > tree->depth) goto node_error; break; default: goto node_error; } rec_off = tree->node_size - 2; off = hfs_bnode_read_u16(node, rec_off); if (off != sizeof(struct hfs_bnode_desc)) goto node_error; for (i = 1; i <= node->num_recs; off = next_off, i++) { rec_off -= 2; next_off = hfs_bnode_read_u16(node, rec_off); if (next_off <= off || next_off > tree->node_size || next_off & 1) goto node_error; entry_size = next_off - off; if (node->type != HFS_NODE_INDEX && node->type != HFS_NODE_LEAF) continue; key_size = hfs_bnode_read_u16(node, off) + 2; if (key_size >= entry_size || key_size & 1) goto node_error; } clear_bit(HFS_BNODE_NEW, &node->flags); wake_up(&node->lock_wq); return node; node_error: set_bit(HFS_BNODE_ERROR, &node->flags); clear_bit(HFS_BNODE_NEW, &node->flags); wake_up(&node->lock_wq); hfs_bnode_put(node); return ERR_PTR(-EIO); } void hfs_bnode_free(struct hfs_bnode *node) { int i; for (i = 0; i < node->tree->pages_per_bnode; i++) if (node->page[i]) put_page(node->page[i]); kfree(node); } struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num) { struct hfs_bnode *node; struct page **pagep; int i; spin_lock(&tree->hash_lock); node = hfs_bnode_findhash(tree, num); spin_unlock(&tree->hash_lock); if (node) { pr_crit("new node %u already hashed?\n", num); WARN_ON(1); return node; } node = __hfs_bnode_create(tree, num); if (!node) return ERR_PTR(-ENOMEM); if (test_bit(HFS_BNODE_ERROR, &node->flags)) { hfs_bnode_put(node); return ERR_PTR(-EIO); } pagep = node->page; memzero_page(*pagep, node->page_offset, min_t(int, PAGE_SIZE, tree->node_size)); set_page_dirty(*pagep); for (i = 1; i < tree->pages_per_bnode; i++) { memzero_page(*++pagep, 0, PAGE_SIZE); set_page_dirty(*pagep); } clear_bit(HFS_BNODE_NEW, &node->flags); wake_up(&node->lock_wq); return node; } void hfs_bnode_get(struct hfs_bnode *node) { if (node) { atomic_inc(&node->refcnt); hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); } } /* Dispose of resources used by a node */ void hfs_bnode_put(struct hfs_bnode *node) { if (node) { struct hfs_btree *tree = node->tree; int i; hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); BUG_ON(!atomic_read(&node->refcnt)); if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock)) return; for (i = 0; i < tree->pages_per_bnode; i++) { if (!node->page[i]) continue; mark_page_accessed(node->page[i]); } if (test_bit(HFS_BNODE_DELETED, &node->flags)) { hfs_bnode_unhash(node); spin_unlock(&tree->hash_lock); if (hfs_bnode_need_zeroout(tree)) hfs_bnode_clear(node, 0, tree->node_size); hfs_bmap_free(node); hfs_bnode_free(node); return; } spin_unlock(&tree->hash_lock); } } /* * Unused nodes have to be zeroed if this is the catalog tree and * a corresponding flag in the volume header is set. */ bool hfs_bnode_need_zeroout(struct hfs_btree *tree) { struct super_block *sb = tree->inode->i_sb; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); const u32 volume_attr = be32_to_cpu(sbi->s_vhdr->attributes); return tree->cnid == HFSPLUS_CAT_CNID && volume_attr & HFSPLUS_VOL_UNUSED_NODE_FIX; }
linux-master
fs/hfsplus/bnode.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/btree.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handle opening/closing btree */ #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/log2.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" /* * Initial source code of clump size calculation is gotten * from http://opensource.apple.com/tarballs/diskdev_cmds/ */ #define CLUMP_ENTRIES 15 static short clumptbl[CLUMP_ENTRIES * 3] = { /* * Volume Attributes Catalog Extents * Size Clump (MB) Clump (MB) Clump (MB) */ /* 1GB */ 4, 4, 4, /* 2GB */ 6, 6, 4, /* 4GB */ 8, 8, 4, /* 8GB */ 11, 11, 5, /* * For volumes 16GB and larger, we want to make sure that a full OS * install won't require fragmentation of the Catalog or Attributes * B-trees. We do this by making the clump sizes sufficiently large, * and by leaving a gap after the B-trees for them to grow into. * * For SnowLeopard 10A298, a FullNetInstall with all packages selected * results in: * Catalog B-tree Header * nodeSize: 8192 * totalNodes: 31616 * freeNodes: 1978 * (used = 231.55 MB) * Attributes B-tree Header * nodeSize: 8192 * totalNodes: 63232 * freeNodes: 958 * (used = 486.52 MB) * * We also want Time Machine backup volumes to have a sufficiently * large clump size to reduce fragmentation. * * The series of numbers for Catalog and Attribute form a geometric * series. For Catalog (16GB to 512GB), each term is 8**(1/5) times * the previous term. For Attributes (16GB to 512GB), each term is * 4**(1/5) times the previous term. For 1TB to 16TB, each term is * 2**(1/5) times the previous term. */ /* 16GB */ 64, 32, 5, /* 32GB */ 84, 49, 6, /* 64GB */ 111, 74, 7, /* 128GB */ 147, 111, 8, /* 256GB */ 194, 169, 9, /* 512GB */ 256, 256, 11, /* 1TB */ 294, 294, 14, /* 2TB */ 338, 338, 16, /* 4TB */ 388, 388, 20, /* 8TB */ 446, 446, 25, /* 16TB */ 512, 512, 32 }; u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size, u64 sectors, int file_id) { u32 mod = max(node_size, block_size); u32 clump_size; int column; int i; /* Figure out which column of the above table to use for this file. */ switch (file_id) { case HFSPLUS_ATTR_CNID: column = 0; break; case HFSPLUS_CAT_CNID: column = 1; break; default: column = 2; break; } /* * The default clump size is 0.8% of the volume size. And * it must also be a multiple of the node and block size. */ if (sectors < 0x200000) { clump_size = sectors << 2; /* 0.8 % */ if (clump_size < (8 * node_size)) clump_size = 8 * node_size; } else { /* turn exponent into table index... */ for (i = 0, sectors = sectors >> 22; sectors && (i < CLUMP_ENTRIES - 1); ++i, sectors = sectors >> 1) { /* empty body */ } clump_size = clumptbl[column + (i) * 3] * 1024 * 1024; } /* * Round the clump size to a multiple of node and block size. * NOTE: This rounds down. */ clump_size /= mod; clump_size *= mod; /* * Rounding down could have rounded down to 0 if the block size was * greater than the clump size. If so, just use one block or node. */ if (clump_size == 0) clump_size = mod; return clump_size; } /* Get a reference to a B*Tree and do some initial checks */ struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id) { struct hfs_btree *tree; struct hfs_btree_header_rec *head; struct address_space *mapping; struct inode *inode; struct page *page; unsigned int size; tree = kzalloc(sizeof(*tree), GFP_KERNEL); if (!tree) return NULL; mutex_init(&tree->tree_lock); spin_lock_init(&tree->hash_lock); tree->sb = sb; tree->cnid = id; inode = hfsplus_iget(sb, id); if (IS_ERR(inode)) goto free_tree; tree->inode = inode; if (!HFSPLUS_I(tree->inode)->first_blocks) { pr_err("invalid btree extent records (0 size)\n"); goto free_inode; } mapping = tree->inode->i_mapping; page = read_mapping_page(mapping, 0, NULL); if (IS_ERR(page)) goto free_inode; /* Load the header */ head = (struct hfs_btree_header_rec *)(kmap_local_page(page) + sizeof(struct hfs_bnode_desc)); tree->root = be32_to_cpu(head->root); tree->leaf_count = be32_to_cpu(head->leaf_count); tree->leaf_head = be32_to_cpu(head->leaf_head); tree->leaf_tail = be32_to_cpu(head->leaf_tail); tree->node_count = be32_to_cpu(head->node_count); tree->free_nodes = be32_to_cpu(head->free_nodes); tree->attributes = be32_to_cpu(head->attributes); tree->node_size = be16_to_cpu(head->node_size); tree->max_key_len = be16_to_cpu(head->max_key_len); tree->depth = be16_to_cpu(head->depth); /* Verify the tree and set the correct compare function */ switch (id) { case HFSPLUS_EXT_CNID: if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) { pr_err("invalid extent max_key_len %d\n", tree->max_key_len); goto fail_page; } if (tree->attributes & HFS_TREE_VARIDXKEYS) { pr_err("invalid extent btree flag\n"); goto fail_page; } tree->keycmp = hfsplus_ext_cmp_key; break; case HFSPLUS_CAT_CNID: if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) { pr_err("invalid catalog max_key_len %d\n", tree->max_key_len); goto fail_page; } if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) { pr_err("invalid catalog btree flag\n"); goto fail_page; } if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) && (head->key_type == HFSPLUS_KEY_BINARY)) tree->keycmp = hfsplus_cat_bin_cmp_key; else { tree->keycmp = hfsplus_cat_case_cmp_key; set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags); } break; case HFSPLUS_ATTR_CNID: if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) { pr_err("invalid attributes max_key_len %d\n", tree->max_key_len); goto fail_page; } tree->keycmp = hfsplus_attr_bin_cmp_key; break; default: pr_err("unknown B*Tree requested\n"); goto fail_page; } if (!(tree->attributes & HFS_TREE_BIGKEYS)) { pr_err("invalid btree flag\n"); goto fail_page; } size = tree->node_size; if (!is_power_of_2(size)) goto fail_page; if (!tree->node_count) goto fail_page; tree->node_size_shift = ffs(size) - 1; tree->pages_per_bnode = (tree->node_size + PAGE_SIZE - 1) >> PAGE_SHIFT; kunmap_local(head); put_page(page); return tree; fail_page: kunmap_local(head); put_page(page); free_inode: tree->inode->i_mapping->a_ops = &hfsplus_aops; iput(tree->inode); free_tree: kfree(tree); return NULL; } /* Release resources used by a btree */ void hfs_btree_close(struct hfs_btree *tree) { struct hfs_bnode *node; int i; if (!tree) return; for (i = 0; i < NODE_HASH_SIZE; i++) { while ((node = tree->node_hash[i])) { tree->node_hash[i] = node->next_hash; if (atomic_read(&node->refcnt)) pr_crit("node %d:%d " "still has %d user(s)!\n", node->tree->cnid, node->this, atomic_read(&node->refcnt)); hfs_bnode_free(node); tree->node_hash_cnt--; } } iput(tree->inode); kfree(tree); } int hfs_btree_write(struct hfs_btree *tree) { struct hfs_btree_header_rec *head; struct hfs_bnode *node; struct page *page; node = hfs_bnode_find(tree, 0); if (IS_ERR(node)) /* panic? */ return -EIO; /* Load the header */ page = node->page[0]; head = (struct hfs_btree_header_rec *)(kmap_local_page(page) + sizeof(struct hfs_bnode_desc)); head->root = cpu_to_be32(tree->root); head->leaf_count = cpu_to_be32(tree->leaf_count); head->leaf_head = cpu_to_be32(tree->leaf_head); head->leaf_tail = cpu_to_be32(tree->leaf_tail); head->node_count = cpu_to_be32(tree->node_count); head->free_nodes = cpu_to_be32(tree->free_nodes); head->attributes = cpu_to_be32(tree->attributes); head->depth = cpu_to_be16(tree->depth); kunmap_local(head); set_page_dirty(page); hfs_bnode_put(node); return 0; } static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx) { struct hfs_btree *tree = prev->tree; struct hfs_bnode *node; struct hfs_bnode_desc desc; __be32 cnid; node = hfs_bnode_create(tree, idx); if (IS_ERR(node)) return node; tree->free_nodes--; prev->next = idx; cnid = cpu_to_be32(idx); hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4); node->type = HFS_NODE_MAP; node->num_recs = 1; hfs_bnode_clear(node, 0, tree->node_size); desc.next = 0; desc.prev = 0; desc.type = HFS_NODE_MAP; desc.height = 0; desc.num_recs = cpu_to_be16(1); desc.reserved = 0; hfs_bnode_write(node, &desc, 0, sizeof(desc)); hfs_bnode_write_u16(node, 14, 0x8000); hfs_bnode_write_u16(node, tree->node_size - 2, 14); hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6); return node; } /* Make sure @tree has enough space for the @rsvd_nodes */ int hfs_bmap_reserve(struct hfs_btree *tree, int rsvd_nodes) { struct inode *inode = tree->inode; struct hfsplus_inode_info *hip = HFSPLUS_I(inode); u32 count; int res; if (rsvd_nodes <= 0) return 0; while (tree->free_nodes < rsvd_nodes) { res = hfsplus_file_extend(inode, hfs_bnode_need_zeroout(tree)); if (res) return res; hip->phys_size = inode->i_size = (loff_t)hip->alloc_blocks << HFSPLUS_SB(tree->sb)->alloc_blksz_shift; hip->fs_blocks = hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift; inode_set_bytes(inode, inode->i_size); count = inode->i_size >> tree->node_size_shift; tree->free_nodes += count - tree->node_count; tree->node_count = count; } return 0; } struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree) { struct hfs_bnode *node, *next_node; struct page **pagep; u32 nidx, idx; unsigned off; u16 off16; u16 len; u8 *data, byte, m; int i, res; res = hfs_bmap_reserve(tree, 1); if (res) return ERR_PTR(res); nidx = 0; node = hfs_bnode_find(tree, nidx); if (IS_ERR(node)) return node; len = hfs_brec_lenoff(node, 2, &off16); off = off16; off += node->page_offset; pagep = node->page + (off >> PAGE_SHIFT); data = kmap_local_page(*pagep); off &= ~PAGE_MASK; idx = 0; for (;;) { while (len) { byte = data[off]; if (byte != 0xff) { for (m = 0x80, i = 0; i < 8; m >>= 1, i++) { if (!(byte & m)) { idx += i; data[off] |= m; set_page_dirty(*pagep); kunmap_local(data); tree->free_nodes--; mark_inode_dirty(tree->inode); hfs_bnode_put(node); return hfs_bnode_create(tree, idx); } } } if (++off >= PAGE_SIZE) { kunmap_local(data); data = kmap_local_page(*++pagep); off = 0; } idx += 8; len--; } kunmap_local(data); nidx = node->next; if (!nidx) { hfs_dbg(BNODE_MOD, "create new bmap node\n"); next_node = hfs_bmap_new_bmap(node, idx); } else next_node = hfs_bnode_find(tree, nidx); hfs_bnode_put(node); if (IS_ERR(next_node)) return next_node; node = next_node; len = hfs_brec_lenoff(node, 0, &off16); off = off16; off += node->page_offset; pagep = node->page + (off >> PAGE_SHIFT); data = kmap_local_page(*pagep); off &= ~PAGE_MASK; } } void hfs_bmap_free(struct hfs_bnode *node) { struct hfs_btree *tree; struct page *page; u16 off, len; u32 nidx; u8 *data, byte, m; hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this); BUG_ON(!node->this); tree = node->tree; nidx = node->this; node = hfs_bnode_find(tree, 0); if (IS_ERR(node)) return; len = hfs_brec_lenoff(node, 2, &off); while (nidx >= len * 8) { u32 i; nidx -= len * 8; i = node->next; if (!i) { /* panic */; pr_crit("unable to free bnode %u. " "bmap not found!\n", node->this); hfs_bnode_put(node); return; } hfs_bnode_put(node); node = hfs_bnode_find(tree, i); if (IS_ERR(node)) return; if (node->type != HFS_NODE_MAP) { /* panic */; pr_crit("invalid bmap found! " "(%u,%d)\n", node->this, node->type); hfs_bnode_put(node); return; } len = hfs_brec_lenoff(node, 0, &off); } off += node->page_offset + nidx / 8; page = node->page[off >> PAGE_SHIFT]; data = kmap_local_page(page); off &= ~PAGE_MASK; m = 1 << (~nidx & 7); byte = data[off]; if (!(byte & m)) { pr_crit("trying to free free bnode " "%u(%d)\n", node->this, node->type); kunmap_local(data); hfs_bnode_put(node); return; } data[off] = byte & ~m; set_page_dirty(page); kunmap_local(data); hfs_bnode_put(node); tree->free_nodes++; mark_inode_dirty(tree->inode); }
linux-master
fs/hfsplus/btree.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/unicode.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handler routines for unicode strings */ #include <linux/types.h> #include <linux/nls.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" /* Fold the case of a unicode char, given the 16 bit value */ /* Returns folded char, or 0 if ignorable */ static inline u16 case_fold(u16 c) { u16 tmp; tmp = hfsplus_case_fold_table[c >> 8]; if (tmp) tmp = hfsplus_case_fold_table[tmp + (c & 0xff)]; else tmp = c; return tmp; } /* Compare unicode strings, return values like normal strcmp */ int hfsplus_strcasecmp(const struct hfsplus_unistr *s1, const struct hfsplus_unistr *s2) { u16 len1, len2, c1, c2; const hfsplus_unichr *p1, *p2; len1 = be16_to_cpu(s1->length); len2 = be16_to_cpu(s2->length); p1 = s1->unicode; p2 = s2->unicode; while (1) { c1 = c2 = 0; while (len1 && !c1) { c1 = case_fold(be16_to_cpu(*p1)); p1++; len1--; } while (len2 && !c2) { c2 = case_fold(be16_to_cpu(*p2)); p2++; len2--; } if (c1 != c2) return (c1 < c2) ? -1 : 1; if (!c1 && !c2) return 0; } } /* Compare names as a sequence of 16-bit unsigned integers */ int hfsplus_strcmp(const struct hfsplus_unistr *s1, const struct hfsplus_unistr *s2) { u16 len1, len2, c1, c2; const hfsplus_unichr *p1, *p2; int len; len1 = be16_to_cpu(s1->length); len2 = be16_to_cpu(s2->length); p1 = s1->unicode; p2 = s2->unicode; for (len = min(len1, len2); len > 0; len--) { c1 = be16_to_cpu(*p1); c2 = be16_to_cpu(*p2); if (c1 != c2) return c1 < c2 ? -1 : 1; p1++; p2++; } return len1 < len2 ? -1 : len1 > len2 ? 1 : 0; } #define Hangul_SBase 0xac00 #define Hangul_LBase 0x1100 #define Hangul_VBase 0x1161 #define Hangul_TBase 0x11a7 #define Hangul_SCount 11172 #define Hangul_LCount 19 #define Hangul_VCount 21 #define Hangul_TCount 28 #define Hangul_NCount (Hangul_VCount * Hangul_TCount) static u16 *hfsplus_compose_lookup(u16 *p, u16 cc) { int i, s, e; s = 1; e = p[1]; if (!e || cc < p[s * 2] || cc > p[e * 2]) return NULL; do { i = (s + e) / 2; if (cc > p[i * 2]) s = i + 1; else if (cc < p[i * 2]) e = i - 1; else return hfsplus_compose_table + p[i * 2 + 1]; } while (s <= e); return NULL; } int hfsplus_uni2asc(struct super_block *sb, const struct hfsplus_unistr *ustr, char *astr, int *len_p) { const hfsplus_unichr *ip; struct nls_table *nls = HFSPLUS_SB(sb)->nls; u8 *op; u16 cc, c0, c1; u16 *ce1, *ce2; int i, len, ustrlen, res, compose; op = astr; ip = ustr->unicode; ustrlen = be16_to_cpu(ustr->length); len = *len_p; ce1 = NULL; compose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags); while (ustrlen > 0) { c0 = be16_to_cpu(*ip++); ustrlen--; /* search for single decomposed char */ if (likely(compose)) ce1 = hfsplus_compose_lookup(hfsplus_compose_table, c0); if (ce1) cc = ce1[0]; else cc = 0; if (cc) { /* start of a possibly decomposed Hangul char */ if (cc != 0xffff) goto done; if (!ustrlen) goto same; c1 = be16_to_cpu(*ip) - Hangul_VBase; if (c1 < Hangul_VCount) { /* compose the Hangul char */ cc = (c0 - Hangul_LBase) * Hangul_VCount; cc = (cc + c1) * Hangul_TCount; cc += Hangul_SBase; ip++; ustrlen--; if (!ustrlen) goto done; c1 = be16_to_cpu(*ip) - Hangul_TBase; if (c1 > 0 && c1 < Hangul_TCount) { cc += c1; ip++; ustrlen--; } goto done; } } while (1) { /* main loop for common case of not composed chars */ if (!ustrlen) goto same; c1 = be16_to_cpu(*ip); if (likely(compose)) ce1 = hfsplus_compose_lookup( hfsplus_compose_table, c1); if (ce1) break; switch (c0) { case 0: c0 = 0x2400; break; case '/': c0 = ':'; break; } res = nls->uni2char(c0, op, len); if (res < 0) { if (res == -ENAMETOOLONG) goto out; *op = '?'; res = 1; } op += res; len -= res; c0 = c1; ip++; ustrlen--; } ce2 = hfsplus_compose_lookup(ce1, c0); if (ce2) { i = 1; while (i < ustrlen) { ce1 = hfsplus_compose_lookup(ce2, be16_to_cpu(ip[i])); if (!ce1) break; i++; ce2 = ce1; } cc = ce2[0]; if (cc) { ip += i; ustrlen -= i; goto done; } } same: switch (c0) { case 0: cc = 0x2400; break; case '/': cc = ':'; break; default: cc = c0; } done: res = nls->uni2char(cc, op, len); if (res < 0) { if (res == -ENAMETOOLONG) goto out; *op = '?'; res = 1; } op += res; len -= res; } res = 0; out: *len_p = (char *)op - astr; return res; } /* * Convert one or more ASCII characters into a single unicode character. * Returns the number of ASCII characters corresponding to the unicode char. */ static inline int asc2unichar(struct super_block *sb, const char *astr, int len, wchar_t *uc) { int size = HFSPLUS_SB(sb)->nls->char2uni(astr, len, uc); if (size <= 0) { *uc = '?'; size = 1; } switch (*uc) { case 0x2400: *uc = 0; break; case ':': *uc = '/'; break; } return size; } /* Decomposes a non-Hangul unicode character. */ static u16 *hfsplus_decompose_nonhangul(wchar_t uc, int *size) { int off; off = hfsplus_decompose_table[(uc >> 12) & 0xf]; if (off == 0 || off == 0xffff) return NULL; off = hfsplus_decompose_table[off + ((uc >> 8) & 0xf)]; if (!off) return NULL; off = hfsplus_decompose_table[off + ((uc >> 4) & 0xf)]; if (!off) return NULL; off = hfsplus_decompose_table[off + (uc & 0xf)]; *size = off & 3; if (*size == 0) return NULL; return hfsplus_decompose_table + (off / 4); } /* * Try to decompose a unicode character as Hangul. Return 0 if @uc is not * precomposed Hangul, otherwise return the length of the decomposition. * * This function was adapted from sample code from the Unicode Standard * Annex #15: Unicode Normalization Forms, version 3.2.0. * * Copyright (C) 1991-2018 Unicode, Inc. All rights reserved. Distributed * under the Terms of Use in http://www.unicode.org/copyright.html. */ static int hfsplus_try_decompose_hangul(wchar_t uc, u16 *result) { int index; int l, v, t; index = uc - Hangul_SBase; if (index < 0 || index >= Hangul_SCount) return 0; l = Hangul_LBase + index / Hangul_NCount; v = Hangul_VBase + (index % Hangul_NCount) / Hangul_TCount; t = Hangul_TBase + index % Hangul_TCount; result[0] = l; result[1] = v; if (t != Hangul_TBase) { result[2] = t; return 3; } return 2; } /* Decomposes a single unicode character. */ static u16 *decompose_unichar(wchar_t uc, int *size, u16 *hangul_buffer) { u16 *result; /* Hangul is handled separately */ result = hangul_buffer; *size = hfsplus_try_decompose_hangul(uc, result); if (*size == 0) result = hfsplus_decompose_nonhangul(uc, size); return result; } int hfsplus_asc2uni(struct super_block *sb, struct hfsplus_unistr *ustr, int max_unistr_len, const char *astr, int len) { int size, dsize, decompose; u16 *dstr, outlen = 0; wchar_t c; u16 dhangul[3]; decompose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags); while (outlen < max_unistr_len && len > 0) { size = asc2unichar(sb, astr, len, &c); if (decompose) dstr = decompose_unichar(c, &dsize, dhangul); else dstr = NULL; if (dstr) { if (outlen + dsize > max_unistr_len) break; do { ustr->unicode[outlen++] = cpu_to_be16(*dstr++); } while (--dsize > 0); } else ustr->unicode[outlen++] = cpu_to_be16(c); astr += size; len -= size; } ustr->length = cpu_to_be16(outlen); if (len > 0) return -ENAMETOOLONG; return 0; } /* * Hash a string to an integer as appropriate for the HFS+ filesystem. * Composed unicode characters are decomposed and case-folding is performed * if the appropriate bits are (un)set on the superblock. */ int hfsplus_hash_dentry(const struct dentry *dentry, struct qstr *str) { struct super_block *sb = dentry->d_sb; const char *astr; const u16 *dstr; int casefold, decompose, size, len; unsigned long hash; wchar_t c; u16 c2; u16 dhangul[3]; casefold = test_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags); decompose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags); hash = init_name_hash(dentry); astr = str->name; len = str->len; while (len > 0) { int dsize; size = asc2unichar(sb, astr, len, &c); astr += size; len -= size; if (decompose) dstr = decompose_unichar(c, &dsize, dhangul); else dstr = NULL; if (dstr) { do { c2 = *dstr++; if (casefold) c2 = case_fold(c2); if (!casefold || c2) hash = partial_name_hash(c2, hash); } while (--dsize > 0); } else { c2 = c; if (casefold) c2 = case_fold(c2); if (!casefold || c2) hash = partial_name_hash(c2, hash); } } str->hash = end_name_hash(hash); return 0; } /* * Compare strings with HFS+ filename ordering. * Composed unicode characters are decomposed and case-folding is performed * if the appropriate bits are (un)set on the superblock. */ int hfsplus_compare_dentry(const struct dentry *dentry, unsigned int len, const char *str, const struct qstr *name) { struct super_block *sb = dentry->d_sb; int casefold, decompose, size; int dsize1, dsize2, len1, len2; const u16 *dstr1, *dstr2; const char *astr1, *astr2; u16 c1, c2; wchar_t c; u16 dhangul_1[3], dhangul_2[3]; casefold = test_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags); decompose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags); astr1 = str; len1 = len; astr2 = name->name; len2 = name->len; dsize1 = dsize2 = 0; dstr1 = dstr2 = NULL; while (len1 > 0 && len2 > 0) { if (!dsize1) { size = asc2unichar(sb, astr1, len1, &c); astr1 += size; len1 -= size; if (decompose) dstr1 = decompose_unichar(c, &dsize1, dhangul_1); if (!decompose || !dstr1) { c1 = c; dstr1 = &c1; dsize1 = 1; } } if (!dsize2) { size = asc2unichar(sb, astr2, len2, &c); astr2 += size; len2 -= size; if (decompose) dstr2 = decompose_unichar(c, &dsize2, dhangul_2); if (!decompose || !dstr2) { c2 = c; dstr2 = &c2; dsize2 = 1; } } c1 = *dstr1; c2 = *dstr2; if (casefold) { c1 = case_fold(c1); if (!c1) { dstr1++; dsize1--; continue; } c2 = case_fold(c2); if (!c2) { dstr2++; dsize2--; continue; } } if (c1 < c2) return -1; else if (c1 > c2) return 1; dstr1++; dsize1--; dstr2++; dsize2--; } if (len1 < len2) return -1; if (len1 > len2) return 1; return 0; }
linux-master
fs/hfsplus/unicode.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/tables.c * * Various data tables */ #include "hfsplus_fs.h" /* * Unicode case folding table taken from Apple Technote #1150 * (HFS Plus Volume Format) */ u16 hfsplus_case_fold_table[] = { /* * The lower case table consists of a 256-entry high-byte table followed by * some number of 256-entry subtables. The high-byte table contains either an * offset to the subtable for characters with that high byte or zero, which * means that there are no case mappings or ignored characters in that block. * Ignored characters are mapped to zero. */ // High-byte indices ( == 0 iff no case mapping and no ignorables ) /* 0 */ 0x0100, 0x0200, 0x0000, 0x0300, 0x0400, 0x0500, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 1 */ 0x0600, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 2 */ 0x0700, 0x0800, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 3 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 4 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 5 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 6 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 7 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 9 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* C */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* D */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* E */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* F */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0900, 0x0A00, // Table 1 (for high byte 0x00) /* 0 */ 0xFFFF, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F, /* 1 */ 0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018, 0x0019, 0x001A, 0x001B, 0x001C, 0x001D, 0x001E, 0x001F, /* 2 */ 0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027, 0x0028, 0x0029, 0x002A, 0x002B, 0x002C, 0x002D, 0x002E, 0x002F, /* 3 */ 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037, 0x0038, 0x0039, 0x003A, 0x003B, 0x003C, 0x003D, 0x003E, 0x003F, /* 4 */ 0x0040, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006A, 0x006B, 0x006C, 0x006D, 0x006E, 0x006F, /* 5 */ 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007A, 0x005B, 0x005C, 0x005D, 0x005E, 0x005F, /* 6 */ 0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006A, 0x006B, 0x006C, 0x006D, 0x006E, 0x006F, /* 7 */ 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007A, 0x007B, 0x007C, 0x007D, 0x007E, 0x007F, /* 8 */ 0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086, 0x0087, 0x0088, 0x0089, 0x008A, 0x008B, 0x008C, 0x008D, 0x008E, 0x008F, /* 9 */ 0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097, 0x0098, 0x0099, 0x009A, 0x009B, 0x009C, 0x009D, 0x009E, 0x009F, /* A */ 0x00A0, 0x00A1, 0x00A2, 0x00A3, 0x00A4, 0x00A5, 0x00A6, 0x00A7, 0x00A8, 0x00A9, 0x00AA, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x00AF, /* B */ 0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B4, 0x00B5, 0x00B6, 0x00B7, 0x00B8, 0x00B9, 0x00BA, 0x00BB, 0x00BC, 0x00BD, 0x00BE, 0x00BF, /* C */ 0x00C0, 0x00C1, 0x00C2, 0x00C3, 0x00C4, 0x00C5, 0x00E6, 0x00C7, 0x00C8, 0x00C9, 0x00CA, 0x00CB, 0x00CC, 0x00CD, 0x00CE, 0x00CF, /* D */ 0x00F0, 0x00D1, 0x00D2, 0x00D3, 0x00D4, 0x00D5, 0x00D6, 0x00D7, 0x00F8, 0x00D9, 0x00DA, 0x00DB, 0x00DC, 0x00DD, 0x00FE, 0x00DF, /* E */ 0x00E0, 0x00E1, 0x00E2, 0x00E3, 0x00E4, 0x00E5, 0x00E6, 0x00E7, 0x00E8, 0x00E9, 0x00EA, 0x00EB, 0x00EC, 0x00ED, 0x00EE, 0x00EF, /* F */ 0x00F0, 0x00F1, 0x00F2, 0x00F3, 0x00F4, 0x00F5, 0x00F6, 0x00F7, 0x00F8, 0x00F9, 0x00FA, 0x00FB, 0x00FC, 0x00FD, 0x00FE, 0x00FF, // Table 2 (for high byte 0x01) /* 0 */ 0x0100, 0x0101, 0x0102, 0x0103, 0x0104, 0x0105, 0x0106, 0x0107, 0x0108, 0x0109, 0x010A, 0x010B, 0x010C, 0x010D, 0x010E, 0x010F, /* 1 */ 0x0111, 0x0111, 0x0112, 0x0113, 0x0114, 0x0115, 0x0116, 0x0117, 0x0118, 0x0119, 0x011A, 0x011B, 0x011C, 0x011D, 0x011E, 0x011F, /* 2 */ 0x0120, 0x0121, 0x0122, 0x0123, 0x0124, 0x0125, 0x0127, 0x0127, 0x0128, 0x0129, 0x012A, 0x012B, 0x012C, 0x012D, 0x012E, 0x012F, /* 3 */ 0x0130, 0x0131, 0x0133, 0x0133, 0x0134, 0x0135, 0x0136, 0x0137, 0x0138, 0x0139, 0x013A, 0x013B, 0x013C, 0x013D, 0x013E, 0x0140, /* 4 */ 0x0140, 0x0142, 0x0142, 0x0143, 0x0144, 0x0145, 0x0146, 0x0147, 0x0148, 0x0149, 0x014B, 0x014B, 0x014C, 0x014D, 0x014E, 0x014F, /* 5 */ 0x0150, 0x0151, 0x0153, 0x0153, 0x0154, 0x0155, 0x0156, 0x0157, 0x0158, 0x0159, 0x015A, 0x015B, 0x015C, 0x015D, 0x015E, 0x015F, /* 6 */ 0x0160, 0x0161, 0x0162, 0x0163, 0x0164, 0x0165, 0x0167, 0x0167, 0x0168, 0x0169, 0x016A, 0x016B, 0x016C, 0x016D, 0x016E, 0x016F, /* 7 */ 0x0170, 0x0171, 0x0172, 0x0173, 0x0174, 0x0175, 0x0176, 0x0177, 0x0178, 0x0179, 0x017A, 0x017B, 0x017C, 0x017D, 0x017E, 0x017F, /* 8 */ 0x0180, 0x0253, 0x0183, 0x0183, 0x0185, 0x0185, 0x0254, 0x0188, 0x0188, 0x0256, 0x0257, 0x018C, 0x018C, 0x018D, 0x01DD, 0x0259, /* 9 */ 0x025B, 0x0192, 0x0192, 0x0260, 0x0263, 0x0195, 0x0269, 0x0268, 0x0199, 0x0199, 0x019A, 0x019B, 0x026F, 0x0272, 0x019E, 0x0275, /* A */ 0x01A0, 0x01A1, 0x01A3, 0x01A3, 0x01A5, 0x01A5, 0x01A6, 0x01A8, 0x01A8, 0x0283, 0x01AA, 0x01AB, 0x01AD, 0x01AD, 0x0288, 0x01AF, /* B */ 0x01B0, 0x028A, 0x028B, 0x01B4, 0x01B4, 0x01B6, 0x01B6, 0x0292, 0x01B9, 0x01B9, 0x01BA, 0x01BB, 0x01BD, 0x01BD, 0x01BE, 0x01BF, /* C */ 0x01C0, 0x01C1, 0x01C2, 0x01C3, 0x01C6, 0x01C6, 0x01C6, 0x01C9, 0x01C9, 0x01C9, 0x01CC, 0x01CC, 0x01CC, 0x01CD, 0x01CE, 0x01CF, /* D */ 0x01D0, 0x01D1, 0x01D2, 0x01D3, 0x01D4, 0x01D5, 0x01D6, 0x01D7, 0x01D8, 0x01D9, 0x01DA, 0x01DB, 0x01DC, 0x01DD, 0x01DE, 0x01DF, /* E */ 0x01E0, 0x01E1, 0x01E2, 0x01E3, 0x01E5, 0x01E5, 0x01E6, 0x01E7, 0x01E8, 0x01E9, 0x01EA, 0x01EB, 0x01EC, 0x01ED, 0x01EE, 0x01EF, /* F */ 0x01F0, 0x01F3, 0x01F3, 0x01F3, 0x01F4, 0x01F5, 0x01F6, 0x01F7, 0x01F8, 0x01F9, 0x01FA, 0x01FB, 0x01FC, 0x01FD, 0x01FE, 0x01FF, // Table 3 (for high byte 0x03) /* 0 */ 0x0300, 0x0301, 0x0302, 0x0303, 0x0304, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030A, 0x030B, 0x030C, 0x030D, 0x030E, 0x030F, /* 1 */ 0x0310, 0x0311, 0x0312, 0x0313, 0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x0319, 0x031A, 0x031B, 0x031C, 0x031D, 0x031E, 0x031F, /* 2 */ 0x0320, 0x0321, 0x0322, 0x0323, 0x0324, 0x0325, 0x0326, 0x0327, 0x0328, 0x0329, 0x032A, 0x032B, 0x032C, 0x032D, 0x032E, 0x032F, /* 3 */ 0x0330, 0x0331, 0x0332, 0x0333, 0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x0339, 0x033A, 0x033B, 0x033C, 0x033D, 0x033E, 0x033F, /* 4 */ 0x0340, 0x0341, 0x0342, 0x0343, 0x0344, 0x0345, 0x0346, 0x0347, 0x0348, 0x0349, 0x034A, 0x034B, 0x034C, 0x034D, 0x034E, 0x034F, /* 5 */ 0x0350, 0x0351, 0x0352, 0x0353, 0x0354, 0x0355, 0x0356, 0x0357, 0x0358, 0x0359, 0x035A, 0x035B, 0x035C, 0x035D, 0x035E, 0x035F, /* 6 */ 0x0360, 0x0361, 0x0362, 0x0363, 0x0364, 0x0365, 0x0366, 0x0367, 0x0368, 0x0369, 0x036A, 0x036B, 0x036C, 0x036D, 0x036E, 0x036F, /* 7 */ 0x0370, 0x0371, 0x0372, 0x0373, 0x0374, 0x0375, 0x0376, 0x0377, 0x0378, 0x0379, 0x037A, 0x037B, 0x037C, 0x037D, 0x037E, 0x037F, /* 8 */ 0x0380, 0x0381, 0x0382, 0x0383, 0x0384, 0x0385, 0x0386, 0x0387, 0x0388, 0x0389, 0x038A, 0x038B, 0x038C, 0x038D, 0x038E, 0x038F, /* 9 */ 0x0390, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7, 0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF, /* A */ 0x03C0, 0x03C1, 0x03A2, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7, 0x03C8, 0x03C9, 0x03AA, 0x03AB, 0x03AC, 0x03AD, 0x03AE, 0x03AF, /* B */ 0x03B0, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7, 0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF, /* C */ 0x03C0, 0x03C1, 0x03C2, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7, 0x03C8, 0x03C9, 0x03CA, 0x03CB, 0x03CC, 0x03CD, 0x03CE, 0x03CF, /* D */ 0x03D0, 0x03D1, 0x03D2, 0x03D3, 0x03D4, 0x03D5, 0x03D6, 0x03D7, 0x03D8, 0x03D9, 0x03DA, 0x03DB, 0x03DC, 0x03DD, 0x03DE, 0x03DF, /* E */ 0x03E0, 0x03E1, 0x03E3, 0x03E3, 0x03E5, 0x03E5, 0x03E7, 0x03E7, 0x03E9, 0x03E9, 0x03EB, 0x03EB, 0x03ED, 0x03ED, 0x03EF, 0x03EF, /* F */ 0x03F0, 0x03F1, 0x03F2, 0x03F3, 0x03F4, 0x03F5, 0x03F6, 0x03F7, 0x03F8, 0x03F9, 0x03FA, 0x03FB, 0x03FC, 0x03FD, 0x03FE, 0x03FF, // Table 4 (for high byte 0x04) /* 0 */ 0x0400, 0x0401, 0x0452, 0x0403, 0x0454, 0x0455, 0x0456, 0x0407, 0x0458, 0x0459, 0x045A, 0x045B, 0x040C, 0x040D, 0x040E, 0x045F, /* 1 */ 0x0430, 0x0431, 0x0432, 0x0433, 0x0434, 0x0435, 0x0436, 0x0437, 0x0438, 0x0419, 0x043A, 0x043B, 0x043C, 0x043D, 0x043E, 0x043F, /* 2 */ 0x0440, 0x0441, 0x0442, 0x0443, 0x0444, 0x0445, 0x0446, 0x0447, 0x0448, 0x0449, 0x044A, 0x044B, 0x044C, 0x044D, 0x044E, 0x044F, /* 3 */ 0x0430, 0x0431, 0x0432, 0x0433, 0x0434, 0x0435, 0x0436, 0x0437, 0x0438, 0x0439, 0x043A, 0x043B, 0x043C, 0x043D, 0x043E, 0x043F, /* 4 */ 0x0440, 0x0441, 0x0442, 0x0443, 0x0444, 0x0445, 0x0446, 0x0447, 0x0448, 0x0449, 0x044A, 0x044B, 0x044C, 0x044D, 0x044E, 0x044F, /* 5 */ 0x0450, 0x0451, 0x0452, 0x0453, 0x0454, 0x0455, 0x0456, 0x0457, 0x0458, 0x0459, 0x045A, 0x045B, 0x045C, 0x045D, 0x045E, 0x045F, /* 6 */ 0x0461, 0x0461, 0x0463, 0x0463, 0x0465, 0x0465, 0x0467, 0x0467, 0x0469, 0x0469, 0x046B, 0x046B, 0x046D, 0x046D, 0x046F, 0x046F, /* 7 */ 0x0471, 0x0471, 0x0473, 0x0473, 0x0475, 0x0475, 0x0476, 0x0477, 0x0479, 0x0479, 0x047B, 0x047B, 0x047D, 0x047D, 0x047F, 0x047F, /* 8 */ 0x0481, 0x0481, 0x0482, 0x0483, 0x0484, 0x0485, 0x0486, 0x0487, 0x0488, 0x0489, 0x048A, 0x048B, 0x048C, 0x048D, 0x048E, 0x048F, /* 9 */ 0x0491, 0x0491, 0x0493, 0x0493, 0x0495, 0x0495, 0x0497, 0x0497, 0x0499, 0x0499, 0x049B, 0x049B, 0x049D, 0x049D, 0x049F, 0x049F, /* A */ 0x04A1, 0x04A1, 0x04A3, 0x04A3, 0x04A5, 0x04A5, 0x04A7, 0x04A7, 0x04A9, 0x04A9, 0x04AB, 0x04AB, 0x04AD, 0x04AD, 0x04AF, 0x04AF, /* B */ 0x04B1, 0x04B1, 0x04B3, 0x04B3, 0x04B5, 0x04B5, 0x04B7, 0x04B7, 0x04B9, 0x04B9, 0x04BB, 0x04BB, 0x04BD, 0x04BD, 0x04BF, 0x04BF, /* C */ 0x04C0, 0x04C1, 0x04C2, 0x04C4, 0x04C4, 0x04C5, 0x04C6, 0x04C8, 0x04C8, 0x04C9, 0x04CA, 0x04CC, 0x04CC, 0x04CD, 0x04CE, 0x04CF, /* D */ 0x04D0, 0x04D1, 0x04D2, 0x04D3, 0x04D4, 0x04D5, 0x04D6, 0x04D7, 0x04D8, 0x04D9, 0x04DA, 0x04DB, 0x04DC, 0x04DD, 0x04DE, 0x04DF, /* E */ 0x04E0, 0x04E1, 0x04E2, 0x04E3, 0x04E4, 0x04E5, 0x04E6, 0x04E7, 0x04E8, 0x04E9, 0x04EA, 0x04EB, 0x04EC, 0x04ED, 0x04EE, 0x04EF, /* F */ 0x04F0, 0x04F1, 0x04F2, 0x04F3, 0x04F4, 0x04F5, 0x04F6, 0x04F7, 0x04F8, 0x04F9, 0x04FA, 0x04FB, 0x04FC, 0x04FD, 0x04FE, 0x04FF, // Table 5 (for high byte 0x05) /* 0 */ 0x0500, 0x0501, 0x0502, 0x0503, 0x0504, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050A, 0x050B, 0x050C, 0x050D, 0x050E, 0x050F, /* 1 */ 0x0510, 0x0511, 0x0512, 0x0513, 0x0514, 0x0515, 0x0516, 0x0517, 0x0518, 0x0519, 0x051A, 0x051B, 0x051C, 0x051D, 0x051E, 0x051F, /* 2 */ 0x0520, 0x0521, 0x0522, 0x0523, 0x0524, 0x0525, 0x0526, 0x0527, 0x0528, 0x0529, 0x052A, 0x052B, 0x052C, 0x052D, 0x052E, 0x052F, /* 3 */ 0x0530, 0x0561, 0x0562, 0x0563, 0x0564, 0x0565, 0x0566, 0x0567, 0x0568, 0x0569, 0x056A, 0x056B, 0x056C, 0x056D, 0x056E, 0x056F, /* 4 */ 0x0570, 0x0571, 0x0572, 0x0573, 0x0574, 0x0575, 0x0576, 0x0577, 0x0578, 0x0579, 0x057A, 0x057B, 0x057C, 0x057D, 0x057E, 0x057F, /* 5 */ 0x0580, 0x0581, 0x0582, 0x0583, 0x0584, 0x0585, 0x0586, 0x0557, 0x0558, 0x0559, 0x055A, 0x055B, 0x055C, 0x055D, 0x055E, 0x055F, /* 6 */ 0x0560, 0x0561, 0x0562, 0x0563, 0x0564, 0x0565, 0x0566, 0x0567, 0x0568, 0x0569, 0x056A, 0x056B, 0x056C, 0x056D, 0x056E, 0x056F, /* 7 */ 0x0570, 0x0571, 0x0572, 0x0573, 0x0574, 0x0575, 0x0576, 0x0577, 0x0578, 0x0579, 0x057A, 0x057B, 0x057C, 0x057D, 0x057E, 0x057F, /* 8 */ 0x0580, 0x0581, 0x0582, 0x0583, 0x0584, 0x0585, 0x0586, 0x0587, 0x0588, 0x0589, 0x058A, 0x058B, 0x058C, 0x058D, 0x058E, 0x058F, /* 9 */ 0x0590, 0x0591, 0x0592, 0x0593, 0x0594, 0x0595, 0x0596, 0x0597, 0x0598, 0x0599, 0x059A, 0x059B, 0x059C, 0x059D, 0x059E, 0x059F, /* A */ 0x05A0, 0x05A1, 0x05A2, 0x05A3, 0x05A4, 0x05A5, 0x05A6, 0x05A7, 0x05A8, 0x05A9, 0x05AA, 0x05AB, 0x05AC, 0x05AD, 0x05AE, 0x05AF, /* B */ 0x05B0, 0x05B1, 0x05B2, 0x05B3, 0x05B4, 0x05B5, 0x05B6, 0x05B7, 0x05B8, 0x05B9, 0x05BA, 0x05BB, 0x05BC, 0x05BD, 0x05BE, 0x05BF, /* C */ 0x05C0, 0x05C1, 0x05C2, 0x05C3, 0x05C4, 0x05C5, 0x05C6, 0x05C7, 0x05C8, 0x05C9, 0x05CA, 0x05CB, 0x05CC, 0x05CD, 0x05CE, 0x05CF, /* D */ 0x05D0, 0x05D1, 0x05D2, 0x05D3, 0x05D4, 0x05D5, 0x05D6, 0x05D7, 0x05D8, 0x05D9, 0x05DA, 0x05DB, 0x05DC, 0x05DD, 0x05DE, 0x05DF, /* E */ 0x05E0, 0x05E1, 0x05E2, 0x05E3, 0x05E4, 0x05E5, 0x05E6, 0x05E7, 0x05E8, 0x05E9, 0x05EA, 0x05EB, 0x05EC, 0x05ED, 0x05EE, 0x05EF, /* F */ 0x05F0, 0x05F1, 0x05F2, 0x05F3, 0x05F4, 0x05F5, 0x05F6, 0x05F7, 0x05F8, 0x05F9, 0x05FA, 0x05FB, 0x05FC, 0x05FD, 0x05FE, 0x05FF, // Table 6 (for high byte 0x10) /* 0 */ 0x1000, 0x1001, 0x1002, 0x1003, 0x1004, 0x1005, 0x1006, 0x1007, 0x1008, 0x1009, 0x100A, 0x100B, 0x100C, 0x100D, 0x100E, 0x100F, /* 1 */ 0x1010, 0x1011, 0x1012, 0x1013, 0x1014, 0x1015, 0x1016, 0x1017, 0x1018, 0x1019, 0x101A, 0x101B, 0x101C, 0x101D, 0x101E, 0x101F, /* 2 */ 0x1020, 0x1021, 0x1022, 0x1023, 0x1024, 0x1025, 0x1026, 0x1027, 0x1028, 0x1029, 0x102A, 0x102B, 0x102C, 0x102D, 0x102E, 0x102F, /* 3 */ 0x1030, 0x1031, 0x1032, 0x1033, 0x1034, 0x1035, 0x1036, 0x1037, 0x1038, 0x1039, 0x103A, 0x103B, 0x103C, 0x103D, 0x103E, 0x103F, /* 4 */ 0x1040, 0x1041, 0x1042, 0x1043, 0x1044, 0x1045, 0x1046, 0x1047, 0x1048, 0x1049, 0x104A, 0x104B, 0x104C, 0x104D, 0x104E, 0x104F, /* 5 */ 0x1050, 0x1051, 0x1052, 0x1053, 0x1054, 0x1055, 0x1056, 0x1057, 0x1058, 0x1059, 0x105A, 0x105B, 0x105C, 0x105D, 0x105E, 0x105F, /* 6 */ 0x1060, 0x1061, 0x1062, 0x1063, 0x1064, 0x1065, 0x1066, 0x1067, 0x1068, 0x1069, 0x106A, 0x106B, 0x106C, 0x106D, 0x106E, 0x106F, /* 7 */ 0x1070, 0x1071, 0x1072, 0x1073, 0x1074, 0x1075, 0x1076, 0x1077, 0x1078, 0x1079, 0x107A, 0x107B, 0x107C, 0x107D, 0x107E, 0x107F, /* 8 */ 0x1080, 0x1081, 0x1082, 0x1083, 0x1084, 0x1085, 0x1086, 0x1087, 0x1088, 0x1089, 0x108A, 0x108B, 0x108C, 0x108D, 0x108E, 0x108F, /* 9 */ 0x1090, 0x1091, 0x1092, 0x1093, 0x1094, 0x1095, 0x1096, 0x1097, 0x1098, 0x1099, 0x109A, 0x109B, 0x109C, 0x109D, 0x109E, 0x109F, /* A */ 0x10D0, 0x10D1, 0x10D2, 0x10D3, 0x10D4, 0x10D5, 0x10D6, 0x10D7, 0x10D8, 0x10D9, 0x10DA, 0x10DB, 0x10DC, 0x10DD, 0x10DE, 0x10DF, /* B */ 0x10E0, 0x10E1, 0x10E2, 0x10E3, 0x10E4, 0x10E5, 0x10E6, 0x10E7, 0x10E8, 0x10E9, 0x10EA, 0x10EB, 0x10EC, 0x10ED, 0x10EE, 0x10EF, /* C */ 0x10F0, 0x10F1, 0x10F2, 0x10F3, 0x10F4, 0x10F5, 0x10C6, 0x10C7, 0x10C8, 0x10C9, 0x10CA, 0x10CB, 0x10CC, 0x10CD, 0x10CE, 0x10CF, /* D */ 0x10D0, 0x10D1, 0x10D2, 0x10D3, 0x10D4, 0x10D5, 0x10D6, 0x10D7, 0x10D8, 0x10D9, 0x10DA, 0x10DB, 0x10DC, 0x10DD, 0x10DE, 0x10DF, /* E */ 0x10E0, 0x10E1, 0x10E2, 0x10E3, 0x10E4, 0x10E5, 0x10E6, 0x10E7, 0x10E8, 0x10E9, 0x10EA, 0x10EB, 0x10EC, 0x10ED, 0x10EE, 0x10EF, /* F */ 0x10F0, 0x10F1, 0x10F2, 0x10F3, 0x10F4, 0x10F5, 0x10F6, 0x10F7, 0x10F8, 0x10F9, 0x10FA, 0x10FB, 0x10FC, 0x10FD, 0x10FE, 0x10FF, // Table 7 (for high byte 0x20) /* 0 */ 0x2000, 0x2001, 0x2002, 0x2003, 0x2004, 0x2005, 0x2006, 0x2007, 0x2008, 0x2009, 0x200A, 0x200B, 0x0000, 0x0000, 0x0000, 0x0000, /* 1 */ 0x2010, 0x2011, 0x2012, 0x2013, 0x2014, 0x2015, 0x2016, 0x2017, 0x2018, 0x2019, 0x201A, 0x201B, 0x201C, 0x201D, 0x201E, 0x201F, /* 2 */ 0x2020, 0x2021, 0x2022, 0x2023, 0x2024, 0x2025, 0x2026, 0x2027, 0x2028, 0x2029, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x202F, /* 3 */ 0x2030, 0x2031, 0x2032, 0x2033, 0x2034, 0x2035, 0x2036, 0x2037, 0x2038, 0x2039, 0x203A, 0x203B, 0x203C, 0x203D, 0x203E, 0x203F, /* 4 */ 0x2040, 0x2041, 0x2042, 0x2043, 0x2044, 0x2045, 0x2046, 0x2047, 0x2048, 0x2049, 0x204A, 0x204B, 0x204C, 0x204D, 0x204E, 0x204F, /* 5 */ 0x2050, 0x2051, 0x2052, 0x2053, 0x2054, 0x2055, 0x2056, 0x2057, 0x2058, 0x2059, 0x205A, 0x205B, 0x205C, 0x205D, 0x205E, 0x205F, /* 6 */ 0x2060, 0x2061, 0x2062, 0x2063, 0x2064, 0x2065, 0x2066, 0x2067, 0x2068, 0x2069, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 7 */ 0x2070, 0x2071, 0x2072, 0x2073, 0x2074, 0x2075, 0x2076, 0x2077, 0x2078, 0x2079, 0x207A, 0x207B, 0x207C, 0x207D, 0x207E, 0x207F, /* 8 */ 0x2080, 0x2081, 0x2082, 0x2083, 0x2084, 0x2085, 0x2086, 0x2087, 0x2088, 0x2089, 0x208A, 0x208B, 0x208C, 0x208D, 0x208E, 0x208F, /* 9 */ 0x2090, 0x2091, 0x2092, 0x2093, 0x2094, 0x2095, 0x2096, 0x2097, 0x2098, 0x2099, 0x209A, 0x209B, 0x209C, 0x209D, 0x209E, 0x209F, /* A */ 0x20A0, 0x20A1, 0x20A2, 0x20A3, 0x20A4, 0x20A5, 0x20A6, 0x20A7, 0x20A8, 0x20A9, 0x20AA, 0x20AB, 0x20AC, 0x20AD, 0x20AE, 0x20AF, /* B */ 0x20B0, 0x20B1, 0x20B2, 0x20B3, 0x20B4, 0x20B5, 0x20B6, 0x20B7, 0x20B8, 0x20B9, 0x20BA, 0x20BB, 0x20BC, 0x20BD, 0x20BE, 0x20BF, /* C */ 0x20C0, 0x20C1, 0x20C2, 0x20C3, 0x20C4, 0x20C5, 0x20C6, 0x20C7, 0x20C8, 0x20C9, 0x20CA, 0x20CB, 0x20CC, 0x20CD, 0x20CE, 0x20CF, /* D */ 0x20D0, 0x20D1, 0x20D2, 0x20D3, 0x20D4, 0x20D5, 0x20D6, 0x20D7, 0x20D8, 0x20D9, 0x20DA, 0x20DB, 0x20DC, 0x20DD, 0x20DE, 0x20DF, /* E */ 0x20E0, 0x20E1, 0x20E2, 0x20E3, 0x20E4, 0x20E5, 0x20E6, 0x20E7, 0x20E8, 0x20E9, 0x20EA, 0x20EB, 0x20EC, 0x20ED, 0x20EE, 0x20EF, /* F */ 0x20F0, 0x20F1, 0x20F2, 0x20F3, 0x20F4, 0x20F5, 0x20F6, 0x20F7, 0x20F8, 0x20F9, 0x20FA, 0x20FB, 0x20FC, 0x20FD, 0x20FE, 0x20FF, // Table 8 (for high byte 0x21) /* 0 */ 0x2100, 0x2101, 0x2102, 0x2103, 0x2104, 0x2105, 0x2106, 0x2107, 0x2108, 0x2109, 0x210A, 0x210B, 0x210C, 0x210D, 0x210E, 0x210F, /* 1 */ 0x2110, 0x2111, 0x2112, 0x2113, 0x2114, 0x2115, 0x2116, 0x2117, 0x2118, 0x2119, 0x211A, 0x211B, 0x211C, 0x211D, 0x211E, 0x211F, /* 2 */ 0x2120, 0x2121, 0x2122, 0x2123, 0x2124, 0x2125, 0x2126, 0x2127, 0x2128, 0x2129, 0x212A, 0x212B, 0x212C, 0x212D, 0x212E, 0x212F, /* 3 */ 0x2130, 0x2131, 0x2132, 0x2133, 0x2134, 0x2135, 0x2136, 0x2137, 0x2138, 0x2139, 0x213A, 0x213B, 0x213C, 0x213D, 0x213E, 0x213F, /* 4 */ 0x2140, 0x2141, 0x2142, 0x2143, 0x2144, 0x2145, 0x2146, 0x2147, 0x2148, 0x2149, 0x214A, 0x214B, 0x214C, 0x214D, 0x214E, 0x214F, /* 5 */ 0x2150, 0x2151, 0x2152, 0x2153, 0x2154, 0x2155, 0x2156, 0x2157, 0x2158, 0x2159, 0x215A, 0x215B, 0x215C, 0x215D, 0x215E, 0x215F, /* 6 */ 0x2170, 0x2171, 0x2172, 0x2173, 0x2174, 0x2175, 0x2176, 0x2177, 0x2178, 0x2179, 0x217A, 0x217B, 0x217C, 0x217D, 0x217E, 0x217F, /* 7 */ 0x2170, 0x2171, 0x2172, 0x2173, 0x2174, 0x2175, 0x2176, 0x2177, 0x2178, 0x2179, 0x217A, 0x217B, 0x217C, 0x217D, 0x217E, 0x217F, /* 8 */ 0x2180, 0x2181, 0x2182, 0x2183, 0x2184, 0x2185, 0x2186, 0x2187, 0x2188, 0x2189, 0x218A, 0x218B, 0x218C, 0x218D, 0x218E, 0x218F, /* 9 */ 0x2190, 0x2191, 0x2192, 0x2193, 0x2194, 0x2195, 0x2196, 0x2197, 0x2198, 0x2199, 0x219A, 0x219B, 0x219C, 0x219D, 0x219E, 0x219F, /* A */ 0x21A0, 0x21A1, 0x21A2, 0x21A3, 0x21A4, 0x21A5, 0x21A6, 0x21A7, 0x21A8, 0x21A9, 0x21AA, 0x21AB, 0x21AC, 0x21AD, 0x21AE, 0x21AF, /* B */ 0x21B0, 0x21B1, 0x21B2, 0x21B3, 0x21B4, 0x21B5, 0x21B6, 0x21B7, 0x21B8, 0x21B9, 0x21BA, 0x21BB, 0x21BC, 0x21BD, 0x21BE, 0x21BF, /* C */ 0x21C0, 0x21C1, 0x21C2, 0x21C3, 0x21C4, 0x21C5, 0x21C6, 0x21C7, 0x21C8, 0x21C9, 0x21CA, 0x21CB, 0x21CC, 0x21CD, 0x21CE, 0x21CF, /* D */ 0x21D0, 0x21D1, 0x21D2, 0x21D3, 0x21D4, 0x21D5, 0x21D6, 0x21D7, 0x21D8, 0x21D9, 0x21DA, 0x21DB, 0x21DC, 0x21DD, 0x21DE, 0x21DF, /* E */ 0x21E0, 0x21E1, 0x21E2, 0x21E3, 0x21E4, 0x21E5, 0x21E6, 0x21E7, 0x21E8, 0x21E9, 0x21EA, 0x21EB, 0x21EC, 0x21ED, 0x21EE, 0x21EF, /* F */ 0x21F0, 0x21F1, 0x21F2, 0x21F3, 0x21F4, 0x21F5, 0x21F6, 0x21F7, 0x21F8, 0x21F9, 0x21FA, 0x21FB, 0x21FC, 0x21FD, 0x21FE, 0x21FF, // Table 9 (for high byte 0xFE) /* 0 */ 0xFE00, 0xFE01, 0xFE02, 0xFE03, 0xFE04, 0xFE05, 0xFE06, 0xFE07, 0xFE08, 0xFE09, 0xFE0A, 0xFE0B, 0xFE0C, 0xFE0D, 0xFE0E, 0xFE0F, /* 1 */ 0xFE10, 0xFE11, 0xFE12, 0xFE13, 0xFE14, 0xFE15, 0xFE16, 0xFE17, 0xFE18, 0xFE19, 0xFE1A, 0xFE1B, 0xFE1C, 0xFE1D, 0xFE1E, 0xFE1F, /* 2 */ 0xFE20, 0xFE21, 0xFE22, 0xFE23, 0xFE24, 0xFE25, 0xFE26, 0xFE27, 0xFE28, 0xFE29, 0xFE2A, 0xFE2B, 0xFE2C, 0xFE2D, 0xFE2E, 0xFE2F, /* 3 */ 0xFE30, 0xFE31, 0xFE32, 0xFE33, 0xFE34, 0xFE35, 0xFE36, 0xFE37, 0xFE38, 0xFE39, 0xFE3A, 0xFE3B, 0xFE3C, 0xFE3D, 0xFE3E, 0xFE3F, /* 4 */ 0xFE40, 0xFE41, 0xFE42, 0xFE43, 0xFE44, 0xFE45, 0xFE46, 0xFE47, 0xFE48, 0xFE49, 0xFE4A, 0xFE4B, 0xFE4C, 0xFE4D, 0xFE4E, 0xFE4F, /* 5 */ 0xFE50, 0xFE51, 0xFE52, 0xFE53, 0xFE54, 0xFE55, 0xFE56, 0xFE57, 0xFE58, 0xFE59, 0xFE5A, 0xFE5B, 0xFE5C, 0xFE5D, 0xFE5E, 0xFE5F, /* 6 */ 0xFE60, 0xFE61, 0xFE62, 0xFE63, 0xFE64, 0xFE65, 0xFE66, 0xFE67, 0xFE68, 0xFE69, 0xFE6A, 0xFE6B, 0xFE6C, 0xFE6D, 0xFE6E, 0xFE6F, /* 7 */ 0xFE70, 0xFE71, 0xFE72, 0xFE73, 0xFE74, 0xFE75, 0xFE76, 0xFE77, 0xFE78, 0xFE79, 0xFE7A, 0xFE7B, 0xFE7C, 0xFE7D, 0xFE7E, 0xFE7F, /* 8 */ 0xFE80, 0xFE81, 0xFE82, 0xFE83, 0xFE84, 0xFE85, 0xFE86, 0xFE87, 0xFE88, 0xFE89, 0xFE8A, 0xFE8B, 0xFE8C, 0xFE8D, 0xFE8E, 0xFE8F, /* 9 */ 0xFE90, 0xFE91, 0xFE92, 0xFE93, 0xFE94, 0xFE95, 0xFE96, 0xFE97, 0xFE98, 0xFE99, 0xFE9A, 0xFE9B, 0xFE9C, 0xFE9D, 0xFE9E, 0xFE9F, /* A */ 0xFEA0, 0xFEA1, 0xFEA2, 0xFEA3, 0xFEA4, 0xFEA5, 0xFEA6, 0xFEA7, 0xFEA8, 0xFEA9, 0xFEAA, 0xFEAB, 0xFEAC, 0xFEAD, 0xFEAE, 0xFEAF, /* B */ 0xFEB0, 0xFEB1, 0xFEB2, 0xFEB3, 0xFEB4, 0xFEB5, 0xFEB6, 0xFEB7, 0xFEB8, 0xFEB9, 0xFEBA, 0xFEBB, 0xFEBC, 0xFEBD, 0xFEBE, 0xFEBF, /* C */ 0xFEC0, 0xFEC1, 0xFEC2, 0xFEC3, 0xFEC4, 0xFEC5, 0xFEC6, 0xFEC7, 0xFEC8, 0xFEC9, 0xFECA, 0xFECB, 0xFECC, 0xFECD, 0xFECE, 0xFECF, /* D */ 0xFED0, 0xFED1, 0xFED2, 0xFED3, 0xFED4, 0xFED5, 0xFED6, 0xFED7, 0xFED8, 0xFED9, 0xFEDA, 0xFEDB, 0xFEDC, 0xFEDD, 0xFEDE, 0xFEDF, /* E */ 0xFEE0, 0xFEE1, 0xFEE2, 0xFEE3, 0xFEE4, 0xFEE5, 0xFEE6, 0xFEE7, 0xFEE8, 0xFEE9, 0xFEEA, 0xFEEB, 0xFEEC, 0xFEED, 0xFEEE, 0xFEEF, /* F */ 0xFEF0, 0xFEF1, 0xFEF2, 0xFEF3, 0xFEF4, 0xFEF5, 0xFEF6, 0xFEF7, 0xFEF8, 0xFEF9, 0xFEFA, 0xFEFB, 0xFEFC, 0xFEFD, 0xFEFE, 0x0000, // Table 10 (for high byte 0xFF) /* 0 */ 0xFF00, 0xFF01, 0xFF02, 0xFF03, 0xFF04, 0xFF05, 0xFF06, 0xFF07, 0xFF08, 0xFF09, 0xFF0A, 0xFF0B, 0xFF0C, 0xFF0D, 0xFF0E, 0xFF0F, /* 1 */ 0xFF10, 0xFF11, 0xFF12, 0xFF13, 0xFF14, 0xFF15, 0xFF16, 0xFF17, 0xFF18, 0xFF19, 0xFF1A, 0xFF1B, 0xFF1C, 0xFF1D, 0xFF1E, 0xFF1F, /* 2 */ 0xFF20, 0xFF41, 0xFF42, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F, /* 3 */ 0xFF50, 0xFF51, 0xFF52, 0xFF53, 0xFF54, 0xFF55, 0xFF56, 0xFF57, 0xFF58, 0xFF59, 0xFF5A, 0xFF3B, 0xFF3C, 0xFF3D, 0xFF3E, 0xFF3F, /* 4 */ 0xFF40, 0xFF41, 0xFF42, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F, /* 5 */ 0xFF50, 0xFF51, 0xFF52, 0xFF53, 0xFF54, 0xFF55, 0xFF56, 0xFF57, 0xFF58, 0xFF59, 0xFF5A, 0xFF5B, 0xFF5C, 0xFF5D, 0xFF5E, 0xFF5F, /* 6 */ 0xFF60, 0xFF61, 0xFF62, 0xFF63, 0xFF64, 0xFF65, 0xFF66, 0xFF67, 0xFF68, 0xFF69, 0xFF6A, 0xFF6B, 0xFF6C, 0xFF6D, 0xFF6E, 0xFF6F, /* 7 */ 0xFF70, 0xFF71, 0xFF72, 0xFF73, 0xFF74, 0xFF75, 0xFF76, 0xFF77, 0xFF78, 0xFF79, 0xFF7A, 0xFF7B, 0xFF7C, 0xFF7D, 0xFF7E, 0xFF7F, /* 8 */ 0xFF80, 0xFF81, 0xFF82, 0xFF83, 0xFF84, 0xFF85, 0xFF86, 0xFF87, 0xFF88, 0xFF89, 0xFF8A, 0xFF8B, 0xFF8C, 0xFF8D, 0xFF8E, 0xFF8F, /* 9 */ 0xFF90, 0xFF91, 0xFF92, 0xFF93, 0xFF94, 0xFF95, 0xFF96, 0xFF97, 0xFF98, 0xFF99, 0xFF9A, 0xFF9B, 0xFF9C, 0xFF9D, 0xFF9E, 0xFF9F, /* A */ 0xFFA0, 0xFFA1, 0xFFA2, 0xFFA3, 0xFFA4, 0xFFA5, 0xFFA6, 0xFFA7, 0xFFA8, 0xFFA9, 0xFFAA, 0xFFAB, 0xFFAC, 0xFFAD, 0xFFAE, 0xFFAF, /* B */ 0xFFB0, 0xFFB1, 0xFFB2, 0xFFB3, 0xFFB4, 0xFFB5, 0xFFB6, 0xFFB7, 0xFFB8, 0xFFB9, 0xFFBA, 0xFFBB, 0xFFBC, 0xFFBD, 0xFFBE, 0xFFBF, /* C */ 0xFFC0, 0xFFC1, 0xFFC2, 0xFFC3, 0xFFC4, 0xFFC5, 0xFFC6, 0xFFC7, 0xFFC8, 0xFFC9, 0xFFCA, 0xFFCB, 0xFFCC, 0xFFCD, 0xFFCE, 0xFFCF, /* D */ 0xFFD0, 0xFFD1, 0xFFD2, 0xFFD3, 0xFFD4, 0xFFD5, 0xFFD6, 0xFFD7, 0xFFD8, 0xFFD9, 0xFFDA, 0xFFDB, 0xFFDC, 0xFFDD, 0xFFDE, 0xFFDF, /* E */ 0xFFE0, 0xFFE1, 0xFFE2, 0xFFE3, 0xFFE4, 0xFFE5, 0xFFE6, 0xFFE7, 0xFFE8, 0xFFE9, 0xFFEA, 0xFFEB, 0xFFEC, 0xFFED, 0xFFEE, 0xFFEF, /* F */ 0xFFF0, 0xFFF1, 0xFFF2, 0xFFF3, 0xFFF4, 0xFFF5, 0xFFF6, 0xFFF7, 0xFFF8, 0xFFF9, 0xFFFA, 0xFFFB, 0xFFFC, 0xFFFD, 0xFFFE, 0xFFFF, }; u16 hfsplus_decompose_table[] = { /* base table */ 0x0010, 0x04c0, 0x0000, 0x06f0, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x07b0, /* char table 0x0___ */ 0x0020, 0x0070, 0x0160, 0x0190, 0x0230, 0x0000, 0x0000, 0x0000, 0x0000, 0x02d0, 0x0340, 0x0360, 0x03b0, 0x03e0, 0x0400, 0x0430, /* char table 0x00__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0030, 0x0040, 0x0050, 0x0060, /* char values 0x00c_ */ 0x2042, 0x204a, 0x2052, 0x205a, 0x2062, 0x206a, 0x0000, 0x2072, 0x207a, 0x2082, 0x208a, 0x2092, 0x209a, 0x20a2, 0x20aa, 0x20b2, /* char values 0x00d_ */ 0x0000, 0x20ba, 0x20c2, 0x20ca, 0x20d2, 0x20da, 0x20e2, 0x0000, 0x0000, 0x20ea, 0x20f2, 0x20fa, 0x2102, 0x210a, 0x0000, 0x0000, /* char values 0x00e_ */ 0x2112, 0x211a, 0x2122, 0x212a, 0x2132, 0x213a, 0x0000, 0x2142, 0x214a, 0x2152, 0x215a, 0x2162, 0x216a, 0x2172, 0x217a, 0x2182, /* char values 0x00f_ */ 0x0000, 0x218a, 0x2192, 0x219a, 0x21a2, 0x21aa, 0x21b2, 0x0000, 0x0000, 0x21ba, 0x21c2, 0x21ca, 0x21d2, 0x21da, 0x0000, 0x21e2, /* char table 0x01__ */ 0x0080, 0x0090, 0x00a0, 0x00b0, 0x00c0, 0x00d0, 0x00e0, 0x00f0, 0x0000, 0x0000, 0x0100, 0x0110, 0x0120, 0x0130, 0x0140, 0x0150, /* char values 0x010_ */ 0x21ea, 0x21f2, 0x21fa, 0x2202, 0x220a, 0x2212, 0x221a, 0x2222, 0x222a, 0x2232, 0x223a, 0x2242, 0x224a, 0x2252, 0x225a, 0x2262, /* char values 0x011_ */ 0x0000, 0x0000, 0x226a, 0x2272, 0x227a, 0x2282, 0x228a, 0x2292, 0x229a, 0x22a2, 0x22aa, 0x22b2, 0x22ba, 0x22c2, 0x22ca, 0x22d2, /* char values 0x012_ */ 0x22da, 0x22e2, 0x22ea, 0x22f2, 0x22fa, 0x2302, 0x0000, 0x0000, 0x230a, 0x2312, 0x231a, 0x2322, 0x232a, 0x2332, 0x233a, 0x2342, /* char values 0x013_ */ 0x234a, 0x0000, 0x0000, 0x0000, 0x2352, 0x235a, 0x2362, 0x236a, 0x0000, 0x2372, 0x237a, 0x2382, 0x238a, 0x2392, 0x239a, 0x0000, /* char values 0x014_ */ 0x0000, 0x0000, 0x0000, 0x23a2, 0x23aa, 0x23b2, 0x23ba, 0x23c2, 0x23ca, 0x0000, 0x0000, 0x0000, 0x23d2, 0x23da, 0x23e2, 0x23ea, /* char values 0x015_ */ 0x23f2, 0x23fa, 0x0000, 0x0000, 0x2402, 0x240a, 0x2412, 0x241a, 0x2422, 0x242a, 0x2432, 0x243a, 0x2442, 0x244a, 0x2452, 0x245a, /* char values 0x016_ */ 0x2462, 0x246a, 0x2472, 0x247a, 0x2482, 0x248a, 0x0000, 0x0000, 0x2492, 0x249a, 0x24a2, 0x24aa, 0x24b2, 0x24ba, 0x24c2, 0x24ca, /* char values 0x017_ */ 0x24d2, 0x24da, 0x24e2, 0x24ea, 0x24f2, 0x24fa, 0x2502, 0x250a, 0x2512, 0x251a, 0x2522, 0x252a, 0x2532, 0x253a, 0x2542, 0x0000, /* char values 0x01a_ */ 0x254a, 0x2552, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x255a, /* char values 0x01b_ */ 0x2562, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x01c_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x256a, 0x2572, 0x257a, /* char values 0x01d_ */ 0x2582, 0x258a, 0x2592, 0x259a, 0x25a2, 0x25ab, 0x25b7, 0x25c3, 0x25cf, 0x25db, 0x25e7, 0x25f3, 0x25ff, 0x0000, 0x260b, 0x2617, /* char values 0x01e_ */ 0x2623, 0x262f, 0x263a, 0x2642, 0x0000, 0x0000, 0x264a, 0x2652, 0x265a, 0x2662, 0x266a, 0x2672, 0x267b, 0x2687, 0x2692, 0x269a, /* char values 0x01f_ */ 0x26a2, 0x0000, 0x0000, 0x0000, 0x26aa, 0x26b2, 0x0000, 0x0000, 0x0000, 0x0000, 0x26bb, 0x26c7, 0x26d2, 0x26da, 0x26e2, 0x26ea, /* char table 0x02__ */ 0x0170, 0x0180, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x020_ */ 0x26f2, 0x26fa, 0x2702, 0x270a, 0x2712, 0x271a, 0x2722, 0x272a, 0x2732, 0x273a, 0x2742, 0x274a, 0x2752, 0x275a, 0x2762, 0x276a, /* char values 0x021_ */ 0x2772, 0x277a, 0x2782, 0x278a, 0x2792, 0x279a, 0x27a2, 0x27aa, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x03__ */ 0x0000, 0x01a0, 0x0000, 0x0000, 0x01b0, 0x0000, 0x0000, 0x01c0, 0x01d0, 0x01e0, 0x01f0, 0x0200, 0x0210, 0x0220, 0x0000, 0x0000, /* char values 0x031_ */ 0x27b2, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x034_ */ 0x27b9, 0x27bd, 0x0000, 0x27c1, 0x27c6, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x037_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x27cd, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x27d1, 0x0000, /* char values 0x038_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x27d6, 0x27de, 0x27e5, 0x27ea, 0x27f2, 0x27fa, 0x0000, 0x2802, 0x0000, 0x280a, 0x2812, /* char values 0x039_ */ 0x281b, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x03a_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2826, 0x282e, 0x2836, 0x283e, 0x2846, 0x284e, /* char values 0x03b_ */ 0x2857, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x03c_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2862, 0x286a, 0x2872, 0x287a, 0x2882, 0x0000, /* char values 0x03d_ */ 0x0000, 0x0000, 0x0000, 0x288a, 0x2892, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x04__ */ 0x0240, 0x0250, 0x0000, 0x0260, 0x0000, 0x0270, 0x0000, 0x0280, 0x0000, 0x0000, 0x0000, 0x0000, 0x0290, 0x02a0, 0x02b0, 0x02c0, /* char values 0x040_ */ 0x0000, 0x289a, 0x0000, 0x28a2, 0x0000, 0x0000, 0x0000, 0x28aa, 0x0000, 0x0000, 0x0000, 0x0000, 0x28b2, 0x0000, 0x28ba, 0x0000, /* char values 0x041_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x28c2, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x043_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x28ca, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x045_ */ 0x0000, 0x28d2, 0x0000, 0x28da, 0x0000, 0x0000, 0x0000, 0x28e2, 0x0000, 0x0000, 0x0000, 0x0000, 0x28ea, 0x0000, 0x28f2, 0x0000, /* char values 0x047_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x28fa, 0x2902, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x04c_ */ 0x0000, 0x290a, 0x2912, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x04d_ */ 0x291a, 0x2922, 0x292a, 0x2932, 0x2939, 0x293d, 0x2942, 0x294a, 0x2951, 0x2955, 0x295a, 0x2962, 0x296a, 0x2972, 0x297a, 0x2982, /* char values 0x04e_ */ 0x2989, 0x298d, 0x2992, 0x299a, 0x29a2, 0x29aa, 0x29b2, 0x29ba, 0x29c1, 0x29c5, 0x29ca, 0x29d2, 0x0000, 0x0000, 0x29da, 0x29e2, /* char values 0x04f_ */ 0x29ea, 0x29f2, 0x29fa, 0x2a02, 0x2a0a, 0x2a12, 0x0000, 0x0000, 0x2a1a, 0x2a22, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x09__ */ 0x0000, 0x0000, 0x02e0, 0x02f0, 0x0000, 0x0300, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0310, 0x0320, 0x0330, 0x0000, 0x0000, /* char values 0x092_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2a2a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x093_ */ 0x0000, 0x2a32, 0x0000, 0x0000, 0x2a3a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x095_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2a42, 0x2a4a, 0x2a52, 0x2a5a, 0x2a62, 0x2a6a, 0x2a72, 0x2a7a, /* char values 0x09b_ */ 0x2a82, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x09c_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2a8a, 0x2a92, 0x0000, 0x0000, 0x0000, /* char values 0x09d_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2a9a, 0x2aa2, 0x0000, 0x2aaa, /* char table 0x0a__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0350, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0a5_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2ab2, 0x2aba, 0x2ac2, 0x2aca, 0x0000, 0x2ad2, 0x0000, /* char table 0x0b__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0370, 0x0380, 0x0000, 0x0000, 0x0000, 0x0390, 0x0000, 0x0000, 0x03a0, 0x0000, 0x0000, 0x0000, /* char values 0x0b4_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2ada, 0x0000, 0x0000, 0x2ae2, 0x2aea, 0x0000, 0x0000, 0x0000, /* char values 0x0b5_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2af2, 0x2afa, 0x0000, 0x2b02, /* char values 0x0b9_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x2b0a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0bc_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2b12, 0x2b1a, 0x2b22, 0x0000, 0x0000, 0x0000, /* char table 0x0c__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x03c0, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x03d0, 0x0000, 0x0000, 0x0000, /* char values 0x0c4_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2b2a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0cc_ */ 0x2b32, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2b3a, 0x2b42, 0x0000, 0x2b4a, 0x2b53, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x0d__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x03f0, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0d4_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2b5e, 0x2b66, 0x2b6e, 0x0000, 0x0000, 0x0000, /* char table 0x0e__ */ 0x0000, 0x0000, 0x0000, 0x0410, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0420, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0e3_ */ 0x0000, 0x0000, 0x0000, 0x2b76, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0eb_ */ 0x0000, 0x0000, 0x0000, 0x2b7e, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x0f__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0440, 0x0450, 0x0460, 0x0470, 0x0480, 0x0490, 0x04a0, 0x04b0, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0f4_ */ 0x0000, 0x0000, 0x0000, 0x2b86, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2b8e, 0x0000, 0x0000, /* char values 0x0f5_ */ 0x0000, 0x0000, 0x2b96, 0x0000, 0x0000, 0x0000, 0x0000, 0x2b9e, 0x0000, 0x0000, 0x0000, 0x0000, 0x2ba6, 0x0000, 0x0000, 0x0000, /* char values 0x0f6_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2bae, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0f7_ */ 0x0000, 0x0000, 0x0000, 0x2bb6, 0x0000, 0x2bbe, 0x2bc6, 0x2bcf, 0x2bda, 0x2be3, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0f8_ */ 0x0000, 0x2bee, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x0f9_ */ 0x0000, 0x0000, 0x0000, 0x2bf6, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2bfe, 0x0000, 0x0000, /* char values 0x0fa_ */ 0x0000, 0x0000, 0x2c06, 0x0000, 0x0000, 0x0000, 0x0000, 0x2c0e, 0x0000, 0x0000, 0x0000, 0x0000, 0x2c16, 0x0000, 0x0000, 0x0000, /* char values 0x0fb_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2c1e, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x1___ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x04d0, 0x05e0, /* char table 0x1e__ */ 0x04e0, 0x04f0, 0x0500, 0x0510, 0x0520, 0x0530, 0x0540, 0x0550, 0x0560, 0x0570, 0x0580, 0x0590, 0x05a0, 0x05b0, 0x05c0, 0x05d0, /* char values 0x1e0_ */ 0x2c26, 0x2c2e, 0x2c36, 0x2c3e, 0x2c46, 0x2c4e, 0x2c56, 0x2c5e, 0x2c67, 0x2c73, 0x2c7e, 0x2c86, 0x2c8e, 0x2c96, 0x2c9e, 0x2ca6, /* char values 0x1e1_ */ 0x2cae, 0x2cb6, 0x2cbe, 0x2cc6, 0x2ccf, 0x2cdb, 0x2ce7, 0x2cf3, 0x2cfe, 0x2d06, 0x2d0e, 0x2d16, 0x2d1f, 0x2d2b, 0x2d36, 0x2d3e, /* char values 0x1e2_ */ 0x2d46, 0x2d4e, 0x2d56, 0x2d5e, 0x2d66, 0x2d6e, 0x2d76, 0x2d7e, 0x2d86, 0x2d8e, 0x2d96, 0x2d9e, 0x2da6, 0x2dae, 0x2db7, 0x2dc3, /* char values 0x1e3_ */ 0x2dce, 0x2dd6, 0x2dde, 0x2de6, 0x2dee, 0x2df6, 0x2dfe, 0x2e06, 0x2e0f, 0x2e1b, 0x2e26, 0x2e2e, 0x2e36, 0x2e3e, 0x2e46, 0x2e4e, /* char values 0x1e4_ */ 0x2e56, 0x2e5e, 0x2e66, 0x2e6e, 0x2e76, 0x2e7e, 0x2e86, 0x2e8e, 0x2e96, 0x2e9e, 0x2ea6, 0x2eae, 0x2eb7, 0x2ec3, 0x2ecf, 0x2edb, /* char values 0x1e5_ */ 0x2ee7, 0x2ef3, 0x2eff, 0x2f0b, 0x2f16, 0x2f1e, 0x2f26, 0x2f2e, 0x2f36, 0x2f3e, 0x2f46, 0x2f4e, 0x2f57, 0x2f63, 0x2f6e, 0x2f76, /* char values 0x1e6_ */ 0x2f7e, 0x2f86, 0x2f8e, 0x2f96, 0x2f9f, 0x2fab, 0x2fb7, 0x2fc3, 0x2fcf, 0x2fdb, 0x2fe6, 0x2fee, 0x2ff6, 0x2ffe, 0x3006, 0x300e, /* char values 0x1e7_ */ 0x3016, 0x301e, 0x3026, 0x302e, 0x3036, 0x303e, 0x3046, 0x304e, 0x3057, 0x3063, 0x306f, 0x307b, 0x3086, 0x308e, 0x3096, 0x309e, /* char values 0x1e8_ */ 0x30a6, 0x30ae, 0x30b6, 0x30be, 0x30c6, 0x30ce, 0x30d6, 0x30de, 0x30e6, 0x30ee, 0x30f6, 0x30fe, 0x3106, 0x310e, 0x3116, 0x311e, /* char values 0x1e9_ */ 0x3126, 0x312e, 0x3136, 0x313e, 0x3146, 0x314e, 0x3156, 0x315e, 0x3166, 0x316e, 0x0000, 0x3176, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x1ea_ */ 0x317e, 0x3186, 0x318e, 0x3196, 0x319f, 0x31ab, 0x31b7, 0x31c3, 0x31cf, 0x31db, 0x31e7, 0x31f3, 0x31ff, 0x320b, 0x3217, 0x3223, /* char values 0x1eb_ */ 0x322f, 0x323b, 0x3247, 0x3253, 0x325f, 0x326b, 0x3277, 0x3283, 0x328e, 0x3296, 0x329e, 0x32a6, 0x32ae, 0x32b6, 0x32bf, 0x32cb, /* char values 0x1ec_ */ 0x32d7, 0x32e3, 0x32ef, 0x32fb, 0x3307, 0x3313, 0x331f, 0x332b, 0x3336, 0x333e, 0x3346, 0x334e, 0x3356, 0x335e, 0x3366, 0x336e, /* char values 0x1ed_ */ 0x3377, 0x3383, 0x338f, 0x339b, 0x33a7, 0x33b3, 0x33bf, 0x33cb, 0x33d7, 0x33e3, 0x33ef, 0x33fb, 0x3407, 0x3413, 0x341f, 0x342b, /* char values 0x1ee_ */ 0x3437, 0x3443, 0x344f, 0x345b, 0x3466, 0x346e, 0x3476, 0x347e, 0x3487, 0x3493, 0x349f, 0x34ab, 0x34b7, 0x34c3, 0x34cf, 0x34db, /* char values 0x1ef_ */ 0x34e7, 0x34f3, 0x34fe, 0x3506, 0x350e, 0x3516, 0x351e, 0x3526, 0x352e, 0x3536, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x1f__ */ 0x05f0, 0x0600, 0x0610, 0x0620, 0x0630, 0x0640, 0x0650, 0x0660, 0x0670, 0x0680, 0x0690, 0x06a0, 0x06b0, 0x06c0, 0x06d0, 0x06e0, /* char values 0x1f0_ */ 0x353e, 0x3546, 0x354f, 0x355b, 0x3567, 0x3573, 0x357f, 0x358b, 0x3596, 0x359e, 0x35a7, 0x35b3, 0x35bf, 0x35cb, 0x35d7, 0x35e3, /* char values 0x1f1_ */ 0x35ee, 0x35f6, 0x35ff, 0x360b, 0x3617, 0x3623, 0x0000, 0x0000, 0x362e, 0x3636, 0x363f, 0x364b, 0x3657, 0x3663, 0x0000, 0x0000, /* char values 0x1f2_ */ 0x366e, 0x3676, 0x367f, 0x368b, 0x3697, 0x36a3, 0x36af, 0x36bb, 0x36c6, 0x36ce, 0x36d7, 0x36e3, 0x36ef, 0x36fb, 0x3707, 0x3713, /* char values 0x1f3_ */ 0x371e, 0x3726, 0x372f, 0x373b, 0x3747, 0x3753, 0x375f, 0x376b, 0x3776, 0x377e, 0x3787, 0x3793, 0x379f, 0x37ab, 0x37b7, 0x37c3, /* char values 0x1f4_ */ 0x37ce, 0x37d6, 0x37df, 0x37eb, 0x37f7, 0x3803, 0x0000, 0x0000, 0x380e, 0x3816, 0x381f, 0x382b, 0x3837, 0x3843, 0x0000, 0x0000, /* char values 0x1f5_ */ 0x384e, 0x3856, 0x385f, 0x386b, 0x3877, 0x3883, 0x388f, 0x389b, 0x0000, 0x38a6, 0x0000, 0x38af, 0x0000, 0x38bb, 0x0000, 0x38c7, /* char values 0x1f6_ */ 0x38d2, 0x38da, 0x38e3, 0x38ef, 0x38fb, 0x3907, 0x3913, 0x391f, 0x392a, 0x3932, 0x393b, 0x3947, 0x3953, 0x395f, 0x396b, 0x3977, /* char values 0x1f7_ */ 0x3982, 0x398a, 0x3992, 0x399a, 0x39a2, 0x39aa, 0x39b2, 0x39ba, 0x39c2, 0x39ca, 0x39d2, 0x39da, 0x39e2, 0x39ea, 0x0000, 0x0000, /* char values 0x1f8_ */ 0x39f3, 0x39ff, 0x3a0c, 0x3a1c, 0x3a2c, 0x3a3c, 0x3a4c, 0x3a5c, 0x3a6b, 0x3a77, 0x3a84, 0x3a94, 0x3aa4, 0x3ab4, 0x3ac4, 0x3ad4, /* char values 0x1f9_ */ 0x3ae3, 0x3aef, 0x3afc, 0x3b0c, 0x3b1c, 0x3b2c, 0x3b3c, 0x3b4c, 0x3b5b, 0x3b67, 0x3b74, 0x3b84, 0x3b94, 0x3ba4, 0x3bb4, 0x3bc4, /* char values 0x1fa_ */ 0x3bd3, 0x3bdf, 0x3bec, 0x3bfc, 0x3c0c, 0x3c1c, 0x3c2c, 0x3c3c, 0x3c4b, 0x3c57, 0x3c64, 0x3c74, 0x3c84, 0x3c94, 0x3ca4, 0x3cb4, /* char values 0x1fb_ */ 0x3cc2, 0x3cca, 0x3cd3, 0x3cde, 0x3ce7, 0x0000, 0x3cf2, 0x3cfb, 0x3d06, 0x3d0e, 0x3d16, 0x3d1e, 0x3d26, 0x0000, 0x3d2d, 0x0000, /* char values 0x1fc_ */ 0x0000, 0x3d32, 0x3d3b, 0x3d46, 0x3d4f, 0x0000, 0x3d5a, 0x3d63, 0x3d6e, 0x3d76, 0x3d7e, 0x3d86, 0x3d8e, 0x3d96, 0x3d9e, 0x3da6, /* char values 0x1fd_ */ 0x3dae, 0x3db6, 0x3dbf, 0x3dcb, 0x0000, 0x0000, 0x3dd6, 0x3ddf, 0x3dea, 0x3df2, 0x3dfa, 0x3e02, 0x0000, 0x3e0a, 0x3e12, 0x3e1a, /* char values 0x1fe_ */ 0x3e22, 0x3e2a, 0x3e33, 0x3e3f, 0x3e4a, 0x3e52, 0x3e5a, 0x3e63, 0x3e6e, 0x3e76, 0x3e7e, 0x3e86, 0x3e8e, 0x3e96, 0x3e9e, 0x3ea5, /* char values 0x1ff_ */ 0x0000, 0x0000, 0x3eab, 0x3eb6, 0x3ebf, 0x0000, 0x3eca, 0x3ed3, 0x3ede, 0x3ee6, 0x3eee, 0x3ef6, 0x3efe, 0x3f05, 0x0000, 0x0000, /* char table 0x3___ */ 0x0700, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0x30__ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0710, 0x0720, 0x0730, 0x0740, 0x0000, 0x0750, 0x0760, 0x0770, 0x0780, 0x0790, 0x0000, 0x07a0, /* char values 0x304_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x3f0a, 0x0000, 0x3f12, 0x0000, /* char values 0x305_ */ 0x3f1a, 0x0000, 0x3f22, 0x0000, 0x3f2a, 0x0000, 0x3f32, 0x0000, 0x3f3a, 0x0000, 0x3f42, 0x0000, 0x3f4a, 0x0000, 0x3f52, 0x0000, /* char values 0x306_ */ 0x3f5a, 0x0000, 0x3f62, 0x0000, 0x0000, 0x3f6a, 0x0000, 0x3f72, 0x0000, 0x3f7a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x307_ */ 0x3f82, 0x3f8a, 0x0000, 0x3f92, 0x3f9a, 0x0000, 0x3fa2, 0x3faa, 0x0000, 0x3fb2, 0x3fba, 0x0000, 0x3fc2, 0x3fca, 0x0000, 0x0000, /* char values 0x309_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x3fd2, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x3fda, 0x0000, /* char values 0x30a_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x3fe2, 0x0000, 0x3fea, 0x0000, /* char values 0x30b_ */ 0x3ff2, 0x0000, 0x3ffa, 0x0000, 0x4002, 0x0000, 0x400a, 0x0000, 0x4012, 0x0000, 0x401a, 0x0000, 0x4022, 0x0000, 0x402a, 0x0000, /* char values 0x30c_ */ 0x4032, 0x0000, 0x403a, 0x0000, 0x0000, 0x4042, 0x0000, 0x404a, 0x0000, 0x4052, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0x30d_ */ 0x405a, 0x4062, 0x0000, 0x406a, 0x4072, 0x0000, 0x407a, 0x4082, 0x0000, 0x408a, 0x4092, 0x0000, 0x409a, 0x40a2, 0x0000, 0x0000, /* char values 0x30f_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x40aa, 0x0000, 0x0000, 0x40b2, 0x40ba, 0x40c2, 0x40ca, 0x0000, 0x0000, 0x0000, 0x40d2, 0x0000, /* char table 0xf___ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x07c0, 0x0000, 0x0000, 0x0000, 0x0000, /* char table 0xfb__ */ 0x0000, 0x07d0, 0x07e0, 0x07f0, 0x0800, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* char values 0xfb1_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x40da, /* char values 0xfb2_ */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x40e2, 0x40ea, 0x40f3, 0x40ff, 0x410a, 0x4112, /* char values 0xfb3_ */ 0x411a, 0x4122, 0x412a, 0x4132, 0x413a, 0x4142, 0x414a, 0x0000, 0x4152, 0x415a, 0x4162, 0x416a, 0x4172, 0x0000, 0x417a, 0x0000, /* char values 0xfb4_ */ 0x4182, 0x418a, 0x0000, 0x4192, 0x419a, 0x0000, 0x41a2, 0x41aa, 0x41b2, 0x41ba, 0x41c2, 0x41ca, 0x41d2, 0x41da, 0x41e2, 0x0000, /* decomposed characters */ 0x0041, 0x0300, 0x0041, 0x0301, 0x0041, 0x0302, 0x0041, 0x0303, 0x0041, 0x0308, 0x0041, 0x030a, 0x0043, 0x0327, 0x0045, 0x0300, 0x0045, 0x0301, 0x0045, 0x0302, 0x0045, 0x0308, 0x0049, 0x0300, 0x0049, 0x0301, 0x0049, 0x0302, 0x0049, 0x0308, 0x004e, 0x0303, 0x004f, 0x0300, 0x004f, 0x0301, 0x004f, 0x0302, 0x004f, 0x0303, 0x004f, 0x0308, 0x0055, 0x0300, 0x0055, 0x0301, 0x0055, 0x0302, 0x0055, 0x0308, 0x0059, 0x0301, 0x0061, 0x0300, 0x0061, 0x0301, 0x0061, 0x0302, 0x0061, 0x0303, 0x0061, 0x0308, 0x0061, 0x030a, 0x0063, 0x0327, 0x0065, 0x0300, 0x0065, 0x0301, 0x0065, 0x0302, 0x0065, 0x0308, 0x0069, 0x0300, 0x0069, 0x0301, 0x0069, 0x0302, 0x0069, 0x0308, 0x006e, 0x0303, 0x006f, 0x0300, 0x006f, 0x0301, 0x006f, 0x0302, 0x006f, 0x0303, 0x006f, 0x0308, 0x0075, 0x0300, 0x0075, 0x0301, 0x0075, 0x0302, 0x0075, 0x0308, 0x0079, 0x0301, 0x0079, 0x0308, 0x0041, 0x0304, 0x0061, 0x0304, 0x0041, 0x0306, 0x0061, 0x0306, 0x0041, 0x0328, 0x0061, 0x0328, 0x0043, 0x0301, 0x0063, 0x0301, 0x0043, 0x0302, 0x0063, 0x0302, 0x0043, 0x0307, 0x0063, 0x0307, 0x0043, 0x030c, 0x0063, 0x030c, 0x0044, 0x030c, 0x0064, 0x030c, 0x0045, 0x0304, 0x0065, 0x0304, 0x0045, 0x0306, 0x0065, 0x0306, 0x0045, 0x0307, 0x0065, 0x0307, 0x0045, 0x0328, 0x0065, 0x0328, 0x0045, 0x030c, 0x0065, 0x030c, 0x0047, 0x0302, 0x0067, 0x0302, 0x0047, 0x0306, 0x0067, 0x0306, 0x0047, 0x0307, 0x0067, 0x0307, 0x0047, 0x0327, 0x0067, 0x0327, 0x0048, 0x0302, 0x0068, 0x0302, 0x0049, 0x0303, 0x0069, 0x0303, 0x0049, 0x0304, 0x0069, 0x0304, 0x0049, 0x0306, 0x0069, 0x0306, 0x0049, 0x0328, 0x0069, 0x0328, 0x0049, 0x0307, 0x004a, 0x0302, 0x006a, 0x0302, 0x004b, 0x0327, 0x006b, 0x0327, 0x004c, 0x0301, 0x006c, 0x0301, 0x004c, 0x0327, 0x006c, 0x0327, 0x004c, 0x030c, 0x006c, 0x030c, 0x004e, 0x0301, 0x006e, 0x0301, 0x004e, 0x0327, 0x006e, 0x0327, 0x004e, 0x030c, 0x006e, 0x030c, 0x004f, 0x0304, 0x006f, 0x0304, 0x004f, 0x0306, 0x006f, 0x0306, 0x004f, 0x030b, 0x006f, 0x030b, 0x0052, 0x0301, 0x0072, 0x0301, 0x0052, 0x0327, 0x0072, 0x0327, 0x0052, 0x030c, 0x0072, 0x030c, 0x0053, 0x0301, 0x0073, 0x0301, 0x0053, 0x0302, 0x0073, 0x0302, 0x0053, 0x0327, 0x0073, 0x0327, 0x0053, 0x030c, 0x0073, 0x030c, 0x0054, 0x0327, 0x0074, 0x0327, 0x0054, 0x030c, 0x0074, 0x030c, 0x0055, 0x0303, 0x0075, 0x0303, 0x0055, 0x0304, 0x0075, 0x0304, 0x0055, 0x0306, 0x0075, 0x0306, 0x0055, 0x030a, 0x0075, 0x030a, 0x0055, 0x030b, 0x0075, 0x030b, 0x0055, 0x0328, 0x0075, 0x0328, 0x0057, 0x0302, 0x0077, 0x0302, 0x0059, 0x0302, 0x0079, 0x0302, 0x0059, 0x0308, 0x005a, 0x0301, 0x007a, 0x0301, 0x005a, 0x0307, 0x007a, 0x0307, 0x005a, 0x030c, 0x007a, 0x030c, 0x004f, 0x031b, 0x006f, 0x031b, 0x0055, 0x031b, 0x0075, 0x031b, 0x0041, 0x030c, 0x0061, 0x030c, 0x0049, 0x030c, 0x0069, 0x030c, 0x004f, 0x030c, 0x006f, 0x030c, 0x0055, 0x030c, 0x0075, 0x030c, 0x0055, 0x0308, 0x0304, 0x0075, 0x0308, 0x0304, 0x0055, 0x0308, 0x0301, 0x0075, 0x0308, 0x0301, 0x0055, 0x0308, 0x030c, 0x0075, 0x0308, 0x030c, 0x0055, 0x0308, 0x0300, 0x0075, 0x0308, 0x0300, 0x0041, 0x0308, 0x0304, 0x0061, 0x0308, 0x0304, 0x0041, 0x0307, 0x0304, 0x0061, 0x0307, 0x0304, 0x00c6, 0x0304, 0x00e6, 0x0304, 0x0047, 0x030c, 0x0067, 0x030c, 0x004b, 0x030c, 0x006b, 0x030c, 0x004f, 0x0328, 0x006f, 0x0328, 0x004f, 0x0328, 0x0304, 0x006f, 0x0328, 0x0304, 0x01b7, 0x030c, 0x0292, 0x030c, 0x006a, 0x030c, 0x0047, 0x0301, 0x0067, 0x0301, 0x0041, 0x030a, 0x0301, 0x0061, 0x030a, 0x0301, 0x00c6, 0x0301, 0x00e6, 0x0301, 0x00d8, 0x0301, 0x00f8, 0x0301, 0x0041, 0x030f, 0x0061, 0x030f, 0x0041, 0x0311, 0x0061, 0x0311, 0x0045, 0x030f, 0x0065, 0x030f, 0x0045, 0x0311, 0x0065, 0x0311, 0x0049, 0x030f, 0x0069, 0x030f, 0x0049, 0x0311, 0x0069, 0x0311, 0x004f, 0x030f, 0x006f, 0x030f, 0x004f, 0x0311, 0x006f, 0x0311, 0x0052, 0x030f, 0x0072, 0x030f, 0x0052, 0x0311, 0x0072, 0x0311, 0x0055, 0x030f, 0x0075, 0x030f, 0x0055, 0x0311, 0x0075, 0x0311, 0x0306, 0x0307, 0x0300, 0x0301, 0x0313, 0x0308, 0x030d, 0x02b9, 0x003b, 0x00a8, 0x030d, 0x0391, 0x030d, 0x00b7, 0x0395, 0x030d, 0x0397, 0x030d, 0x0399, 0x030d, 0x039f, 0x030d, 0x03a5, 0x030d, 0x03a9, 0x030d, 0x03b9, 0x0308, 0x030d, 0x0399, 0x0308, 0x03a5, 0x0308, 0x03b1, 0x030d, 0x03b5, 0x030d, 0x03b7, 0x030d, 0x03b9, 0x030d, 0x03c5, 0x0308, 0x030d, 0x03b9, 0x0308, 0x03c5, 0x0308, 0x03bf, 0x030d, 0x03c5, 0x030d, 0x03c9, 0x030d, 0x03d2, 0x030d, 0x03d2, 0x0308, 0x0415, 0x0308, 0x0413, 0x0301, 0x0406, 0x0308, 0x041a, 0x0301, 0x0423, 0x0306, 0x0418, 0x0306, 0x0438, 0x0306, 0x0435, 0x0308, 0x0433, 0x0301, 0x0456, 0x0308, 0x043a, 0x0301, 0x0443, 0x0306, 0x0474, 0x030f, 0x0475, 0x030f, 0x0416, 0x0306, 0x0436, 0x0306, 0x0410, 0x0306, 0x0430, 0x0306, 0x0410, 0x0308, 0x0430, 0x0308, 0x00c6, 0x00e6, 0x0415, 0x0306, 0x0435, 0x0306, 0x018f, 0x0259, 0x018f, 0x0308, 0x0259, 0x0308, 0x0416, 0x0308, 0x0436, 0x0308, 0x0417, 0x0308, 0x0437, 0x0308, 0x01b7, 0x0292, 0x0418, 0x0304, 0x0438, 0x0304, 0x0418, 0x0308, 0x0438, 0x0308, 0x041e, 0x0308, 0x043e, 0x0308, 0x019f, 0x0275, 0x019f, 0x0308, 0x0275, 0x0308, 0x0423, 0x0304, 0x0443, 0x0304, 0x0423, 0x0308, 0x0443, 0x0308, 0x0423, 0x030b, 0x0443, 0x030b, 0x0427, 0x0308, 0x0447, 0x0308, 0x042b, 0x0308, 0x044b, 0x0308, 0x0928, 0x093c, 0x0930, 0x093c, 0x0933, 0x093c, 0x0915, 0x093c, 0x0916, 0x093c, 0x0917, 0x093c, 0x091c, 0x093c, 0x0921, 0x093c, 0x0922, 0x093c, 0x092b, 0x093c, 0x092f, 0x093c, 0x09ac, 0x09bc, 0x09c7, 0x09be, 0x09c7, 0x09d7, 0x09a1, 0x09bc, 0x09a2, 0x09bc, 0x09af, 0x09bc, 0x0a16, 0x0a3c, 0x0a17, 0x0a3c, 0x0a1c, 0x0a3c, 0x0a21, 0x0a3c, 0x0a2b, 0x0a3c, 0x0b47, 0x0b56, 0x0b47, 0x0b3e, 0x0b47, 0x0b57, 0x0b21, 0x0b3c, 0x0b22, 0x0b3c, 0x0b2f, 0x0b3c, 0x0b92, 0x0bd7, 0x0bc6, 0x0bbe, 0x0bc7, 0x0bbe, 0x0bc6, 0x0bd7, 0x0c46, 0x0c56, 0x0cbf, 0x0cd5, 0x0cc6, 0x0cd5, 0x0cc6, 0x0cd6, 0x0cc6, 0x0cc2, 0x0cc6, 0x0cc2, 0x0cd5, 0x0d46, 0x0d3e, 0x0d47, 0x0d3e, 0x0d46, 0x0d57, 0x0e4d, 0x0e32, 0x0ecd, 0x0eb2, 0x0f42, 0x0fb7, 0x0f4c, 0x0fb7, 0x0f51, 0x0fb7, 0x0f56, 0x0fb7, 0x0f5b, 0x0fb7, 0x0f40, 0x0fb5, 0x0f72, 0x0f71, 0x0f74, 0x0f71, 0x0fb2, 0x0f80, 0x0fb2, 0x0f80, 0x0f71, 0x0fb3, 0x0f80, 0x0fb3, 0x0f80, 0x0f71, 0x0f80, 0x0f71, 0x0f92, 0x0fb7, 0x0f9c, 0x0fb7, 0x0fa1, 0x0fb7, 0x0fa6, 0x0fb7, 0x0fab, 0x0fb7, 0x0f90, 0x0fb5, 0x0041, 0x0325, 0x0061, 0x0325, 0x0042, 0x0307, 0x0062, 0x0307, 0x0042, 0x0323, 0x0062, 0x0323, 0x0042, 0x0331, 0x0062, 0x0331, 0x0043, 0x0327, 0x0301, 0x0063, 0x0327, 0x0301, 0x0044, 0x0307, 0x0064, 0x0307, 0x0044, 0x0323, 0x0064, 0x0323, 0x0044, 0x0331, 0x0064, 0x0331, 0x0044, 0x0327, 0x0064, 0x0327, 0x0044, 0x032d, 0x0064, 0x032d, 0x0045, 0x0304, 0x0300, 0x0065, 0x0304, 0x0300, 0x0045, 0x0304, 0x0301, 0x0065, 0x0304, 0x0301, 0x0045, 0x032d, 0x0065, 0x032d, 0x0045, 0x0330, 0x0065, 0x0330, 0x0045, 0x0327, 0x0306, 0x0065, 0x0327, 0x0306, 0x0046, 0x0307, 0x0066, 0x0307, 0x0047, 0x0304, 0x0067, 0x0304, 0x0048, 0x0307, 0x0068, 0x0307, 0x0048, 0x0323, 0x0068, 0x0323, 0x0048, 0x0308, 0x0068, 0x0308, 0x0048, 0x0327, 0x0068, 0x0327, 0x0048, 0x032e, 0x0068, 0x032e, 0x0049, 0x0330, 0x0069, 0x0330, 0x0049, 0x0308, 0x0301, 0x0069, 0x0308, 0x0301, 0x004b, 0x0301, 0x006b, 0x0301, 0x004b, 0x0323, 0x006b, 0x0323, 0x004b, 0x0331, 0x006b, 0x0331, 0x004c, 0x0323, 0x006c, 0x0323, 0x004c, 0x0323, 0x0304, 0x006c, 0x0323, 0x0304, 0x004c, 0x0331, 0x006c, 0x0331, 0x004c, 0x032d, 0x006c, 0x032d, 0x004d, 0x0301, 0x006d, 0x0301, 0x004d, 0x0307, 0x006d, 0x0307, 0x004d, 0x0323, 0x006d, 0x0323, 0x004e, 0x0307, 0x006e, 0x0307, 0x004e, 0x0323, 0x006e, 0x0323, 0x004e, 0x0331, 0x006e, 0x0331, 0x004e, 0x032d, 0x006e, 0x032d, 0x004f, 0x0303, 0x0301, 0x006f, 0x0303, 0x0301, 0x004f, 0x0303, 0x0308, 0x006f, 0x0303, 0x0308, 0x004f, 0x0304, 0x0300, 0x006f, 0x0304, 0x0300, 0x004f, 0x0304, 0x0301, 0x006f, 0x0304, 0x0301, 0x0050, 0x0301, 0x0070, 0x0301, 0x0050, 0x0307, 0x0070, 0x0307, 0x0052, 0x0307, 0x0072, 0x0307, 0x0052, 0x0323, 0x0072, 0x0323, 0x0052, 0x0323, 0x0304, 0x0072, 0x0323, 0x0304, 0x0052, 0x0331, 0x0072, 0x0331, 0x0053, 0x0307, 0x0073, 0x0307, 0x0053, 0x0323, 0x0073, 0x0323, 0x0053, 0x0301, 0x0307, 0x0073, 0x0301, 0x0307, 0x0053, 0x030c, 0x0307, 0x0073, 0x030c, 0x0307, 0x0053, 0x0323, 0x0307, 0x0073, 0x0323, 0x0307, 0x0054, 0x0307, 0x0074, 0x0307, 0x0054, 0x0323, 0x0074, 0x0323, 0x0054, 0x0331, 0x0074, 0x0331, 0x0054, 0x032d, 0x0074, 0x032d, 0x0055, 0x0324, 0x0075, 0x0324, 0x0055, 0x0330, 0x0075, 0x0330, 0x0055, 0x032d, 0x0075, 0x032d, 0x0055, 0x0303, 0x0301, 0x0075, 0x0303, 0x0301, 0x0055, 0x0304, 0x0308, 0x0075, 0x0304, 0x0308, 0x0056, 0x0303, 0x0076, 0x0303, 0x0056, 0x0323, 0x0076, 0x0323, 0x0057, 0x0300, 0x0077, 0x0300, 0x0057, 0x0301, 0x0077, 0x0301, 0x0057, 0x0308, 0x0077, 0x0308, 0x0057, 0x0307, 0x0077, 0x0307, 0x0057, 0x0323, 0x0077, 0x0323, 0x0058, 0x0307, 0x0078, 0x0307, 0x0058, 0x0308, 0x0078, 0x0308, 0x0059, 0x0307, 0x0079, 0x0307, 0x005a, 0x0302, 0x007a, 0x0302, 0x005a, 0x0323, 0x007a, 0x0323, 0x005a, 0x0331, 0x007a, 0x0331, 0x0068, 0x0331, 0x0074, 0x0308, 0x0077, 0x030a, 0x0079, 0x030a, 0x017f, 0x0307, 0x0041, 0x0323, 0x0061, 0x0323, 0x0041, 0x0309, 0x0061, 0x0309, 0x0041, 0x0302, 0x0301, 0x0061, 0x0302, 0x0301, 0x0041, 0x0302, 0x0300, 0x0061, 0x0302, 0x0300, 0x0041, 0x0302, 0x0309, 0x0061, 0x0302, 0x0309, 0x0041, 0x0302, 0x0303, 0x0061, 0x0302, 0x0303, 0x0041, 0x0323, 0x0302, 0x0061, 0x0323, 0x0302, 0x0041, 0x0306, 0x0301, 0x0061, 0x0306, 0x0301, 0x0041, 0x0306, 0x0300, 0x0061, 0x0306, 0x0300, 0x0041, 0x0306, 0x0309, 0x0061, 0x0306, 0x0309, 0x0041, 0x0306, 0x0303, 0x0061, 0x0306, 0x0303, 0x0041, 0x0323, 0x0306, 0x0061, 0x0323, 0x0306, 0x0045, 0x0323, 0x0065, 0x0323, 0x0045, 0x0309, 0x0065, 0x0309, 0x0045, 0x0303, 0x0065, 0x0303, 0x0045, 0x0302, 0x0301, 0x0065, 0x0302, 0x0301, 0x0045, 0x0302, 0x0300, 0x0065, 0x0302, 0x0300, 0x0045, 0x0302, 0x0309, 0x0065, 0x0302, 0x0309, 0x0045, 0x0302, 0x0303, 0x0065, 0x0302, 0x0303, 0x0045, 0x0323, 0x0302, 0x0065, 0x0323, 0x0302, 0x0049, 0x0309, 0x0069, 0x0309, 0x0049, 0x0323, 0x0069, 0x0323, 0x004f, 0x0323, 0x006f, 0x0323, 0x004f, 0x0309, 0x006f, 0x0309, 0x004f, 0x0302, 0x0301, 0x006f, 0x0302, 0x0301, 0x004f, 0x0302, 0x0300, 0x006f, 0x0302, 0x0300, 0x004f, 0x0302, 0x0309, 0x006f, 0x0302, 0x0309, 0x004f, 0x0302, 0x0303, 0x006f, 0x0302, 0x0303, 0x004f, 0x0323, 0x0302, 0x006f, 0x0323, 0x0302, 0x004f, 0x031b, 0x0301, 0x006f, 0x031b, 0x0301, 0x004f, 0x031b, 0x0300, 0x006f, 0x031b, 0x0300, 0x004f, 0x031b, 0x0309, 0x006f, 0x031b, 0x0309, 0x004f, 0x031b, 0x0303, 0x006f, 0x031b, 0x0303, 0x004f, 0x031b, 0x0323, 0x006f, 0x031b, 0x0323, 0x0055, 0x0323, 0x0075, 0x0323, 0x0055, 0x0309, 0x0075, 0x0309, 0x0055, 0x031b, 0x0301, 0x0075, 0x031b, 0x0301, 0x0055, 0x031b, 0x0300, 0x0075, 0x031b, 0x0300, 0x0055, 0x031b, 0x0309, 0x0075, 0x031b, 0x0309, 0x0055, 0x031b, 0x0303, 0x0075, 0x031b, 0x0303, 0x0055, 0x031b, 0x0323, 0x0075, 0x031b, 0x0323, 0x0059, 0x0300, 0x0079, 0x0300, 0x0059, 0x0323, 0x0079, 0x0323, 0x0059, 0x0309, 0x0079, 0x0309, 0x0059, 0x0303, 0x0079, 0x0303, 0x03b1, 0x0313, 0x03b1, 0x0314, 0x03b1, 0x0313, 0x0300, 0x03b1, 0x0314, 0x0300, 0x03b1, 0x0313, 0x0301, 0x03b1, 0x0314, 0x0301, 0x03b1, 0x0313, 0x0342, 0x03b1, 0x0314, 0x0342, 0x0391, 0x0313, 0x0391, 0x0314, 0x0391, 0x0313, 0x0300, 0x0391, 0x0314, 0x0300, 0x0391, 0x0313, 0x0301, 0x0391, 0x0314, 0x0301, 0x0391, 0x0313, 0x0342, 0x0391, 0x0314, 0x0342, 0x03b5, 0x0313, 0x03b5, 0x0314, 0x03b5, 0x0313, 0x0300, 0x03b5, 0x0314, 0x0300, 0x03b5, 0x0313, 0x0301, 0x03b5, 0x0314, 0x0301, 0x0395, 0x0313, 0x0395, 0x0314, 0x0395, 0x0313, 0x0300, 0x0395, 0x0314, 0x0300, 0x0395, 0x0313, 0x0301, 0x0395, 0x0314, 0x0301, 0x03b7, 0x0313, 0x03b7, 0x0314, 0x03b7, 0x0313, 0x0300, 0x03b7, 0x0314, 0x0300, 0x03b7, 0x0313, 0x0301, 0x03b7, 0x0314, 0x0301, 0x03b7, 0x0313, 0x0342, 0x03b7, 0x0314, 0x0342, 0x0397, 0x0313, 0x0397, 0x0314, 0x0397, 0x0313, 0x0300, 0x0397, 0x0314, 0x0300, 0x0397, 0x0313, 0x0301, 0x0397, 0x0314, 0x0301, 0x0397, 0x0313, 0x0342, 0x0397, 0x0314, 0x0342, 0x03b9, 0x0313, 0x03b9, 0x0314, 0x03b9, 0x0313, 0x0300, 0x03b9, 0x0314, 0x0300, 0x03b9, 0x0313, 0x0301, 0x03b9, 0x0314, 0x0301, 0x03b9, 0x0313, 0x0342, 0x03b9, 0x0314, 0x0342, 0x0399, 0x0313, 0x0399, 0x0314, 0x0399, 0x0313, 0x0300, 0x0399, 0x0314, 0x0300, 0x0399, 0x0313, 0x0301, 0x0399, 0x0314, 0x0301, 0x0399, 0x0313, 0x0342, 0x0399, 0x0314, 0x0342, 0x03bf, 0x0313, 0x03bf, 0x0314, 0x03bf, 0x0313, 0x0300, 0x03bf, 0x0314, 0x0300, 0x03bf, 0x0313, 0x0301, 0x03bf, 0x0314, 0x0301, 0x039f, 0x0313, 0x039f, 0x0314, 0x039f, 0x0313, 0x0300, 0x039f, 0x0314, 0x0300, 0x039f, 0x0313, 0x0301, 0x039f, 0x0314, 0x0301, 0x03c5, 0x0313, 0x03c5, 0x0314, 0x03c5, 0x0313, 0x0300, 0x03c5, 0x0314, 0x0300, 0x03c5, 0x0313, 0x0301, 0x03c5, 0x0314, 0x0301, 0x03c5, 0x0313, 0x0342, 0x03c5, 0x0314, 0x0342, 0x03a5, 0x0314, 0x03a5, 0x0314, 0x0300, 0x03a5, 0x0314, 0x0301, 0x03a5, 0x0314, 0x0342, 0x03c9, 0x0313, 0x03c9, 0x0314, 0x03c9, 0x0313, 0x0300, 0x03c9, 0x0314, 0x0300, 0x03c9, 0x0313, 0x0301, 0x03c9, 0x0314, 0x0301, 0x03c9, 0x0313, 0x0342, 0x03c9, 0x0314, 0x0342, 0x03a9, 0x0313, 0x03a9, 0x0314, 0x03a9, 0x0313, 0x0300, 0x03a9, 0x0314, 0x0300, 0x03a9, 0x0313, 0x0301, 0x03a9, 0x0314, 0x0301, 0x03a9, 0x0313, 0x0342, 0x03a9, 0x0314, 0x0342, 0x03b1, 0x0300, 0x03b1, 0x0301, 0x03b5, 0x0300, 0x03b5, 0x0301, 0x03b7, 0x0300, 0x03b7, 0x0301, 0x03b9, 0x0300, 0x03b9, 0x0301, 0x03bf, 0x0300, 0x03bf, 0x0301, 0x03c5, 0x0300, 0x03c5, 0x0301, 0x03c9, 0x0300, 0x03c9, 0x0301, 0x03b1, 0x0345, 0x0313, 0x03b1, 0x0345, 0x0314, 0x03b1, 0x0345, 0x0313, 0x0300, 0x03b1, 0x0345, 0x0314, 0x0300, 0x03b1, 0x0345, 0x0313, 0x0301, 0x03b1, 0x0345, 0x0314, 0x0301, 0x03b1, 0x0345, 0x0313, 0x0342, 0x03b1, 0x0345, 0x0314, 0x0342, 0x0391, 0x0345, 0x0313, 0x0391, 0x0345, 0x0314, 0x0391, 0x0345, 0x0313, 0x0300, 0x0391, 0x0345, 0x0314, 0x0300, 0x0391, 0x0345, 0x0313, 0x0301, 0x0391, 0x0345, 0x0314, 0x0301, 0x0391, 0x0345, 0x0313, 0x0342, 0x0391, 0x0345, 0x0314, 0x0342, 0x03b7, 0x0345, 0x0313, 0x03b7, 0x0345, 0x0314, 0x03b7, 0x0345, 0x0313, 0x0300, 0x03b7, 0x0345, 0x0314, 0x0300, 0x03b7, 0x0345, 0x0313, 0x0301, 0x03b7, 0x0345, 0x0314, 0x0301, 0x03b7, 0x0345, 0x0313, 0x0342, 0x03b7, 0x0345, 0x0314, 0x0342, 0x0397, 0x0345, 0x0313, 0x0397, 0x0345, 0x0314, 0x0397, 0x0345, 0x0313, 0x0300, 0x0397, 0x0345, 0x0314, 0x0300, 0x0397, 0x0345, 0x0313, 0x0301, 0x0397, 0x0345, 0x0314, 0x0301, 0x0397, 0x0345, 0x0313, 0x0342, 0x0397, 0x0345, 0x0314, 0x0342, 0x03c9, 0x0345, 0x0313, 0x03c9, 0x0345, 0x0314, 0x03c9, 0x0345, 0x0313, 0x0300, 0x03c9, 0x0345, 0x0314, 0x0300, 0x03c9, 0x0345, 0x0313, 0x0301, 0x03c9, 0x0345, 0x0314, 0x0301, 0x03c9, 0x0345, 0x0313, 0x0342, 0x03c9, 0x0345, 0x0314, 0x0342, 0x03a9, 0x0345, 0x0313, 0x03a9, 0x0345, 0x0314, 0x03a9, 0x0345, 0x0313, 0x0300, 0x03a9, 0x0345, 0x0314, 0x0300, 0x03a9, 0x0345, 0x0313, 0x0301, 0x03a9, 0x0345, 0x0314, 0x0301, 0x03a9, 0x0345, 0x0313, 0x0342, 0x03a9, 0x0345, 0x0314, 0x0342, 0x03b1, 0x0306, 0x03b1, 0x0304, 0x03b1, 0x0345, 0x0300, 0x03b1, 0x0345, 0x03b1, 0x0345, 0x0301, 0x03b1, 0x0342, 0x03b1, 0x0345, 0x0342, 0x0391, 0x0306, 0x0391, 0x0304, 0x0391, 0x0300, 0x0391, 0x0301, 0x0391, 0x0345, 0x03b9, 0x00a8, 0x0342, 0x03b7, 0x0345, 0x0300, 0x03b7, 0x0345, 0x03b7, 0x0345, 0x0301, 0x03b7, 0x0342, 0x03b7, 0x0345, 0x0342, 0x0395, 0x0300, 0x0395, 0x0301, 0x0397, 0x0300, 0x0397, 0x0301, 0x0397, 0x0345, 0x1fbf, 0x0300, 0x1fbf, 0x0301, 0x1fbf, 0x0342, 0x03b9, 0x0306, 0x03b9, 0x0304, 0x03b9, 0x0308, 0x0300, 0x03b9, 0x0308, 0x0301, 0x03b9, 0x0342, 0x03b9, 0x0308, 0x0342, 0x0399, 0x0306, 0x0399, 0x0304, 0x0399, 0x0300, 0x0399, 0x0301, 0x1ffe, 0x0300, 0x1ffe, 0x0301, 0x1ffe, 0x0342, 0x03c5, 0x0306, 0x03c5, 0x0304, 0x03c5, 0x0308, 0x0300, 0x03c5, 0x0308, 0x0301, 0x03c1, 0x0313, 0x03c1, 0x0314, 0x03c5, 0x0342, 0x03c5, 0x0308, 0x0342, 0x03a5, 0x0306, 0x03a5, 0x0304, 0x03a5, 0x0300, 0x03a5, 0x0301, 0x03a1, 0x0314, 0x00a8, 0x0300, 0x00a8, 0x0301, 0x0060, 0x03c9, 0x0345, 0x0300, 0x03c9, 0x0345, 0x03bf, 0x0345, 0x0301, 0x03c9, 0x0342, 0x03c9, 0x0345, 0x0342, 0x039f, 0x0300, 0x039f, 0x0301, 0x03a9, 0x0300, 0x03a9, 0x0301, 0x03a9, 0x0345, 0x00b4, 0x304b, 0x3099, 0x304d, 0x3099, 0x304f, 0x3099, 0x3051, 0x3099, 0x3053, 0x3099, 0x3055, 0x3099, 0x3057, 0x3099, 0x3059, 0x3099, 0x305b, 0x3099, 0x305d, 0x3099, 0x305f, 0x3099, 0x3061, 0x3099, 0x3064, 0x3099, 0x3066, 0x3099, 0x3068, 0x3099, 0x306f, 0x3099, 0x306f, 0x309a, 0x3072, 0x3099, 0x3072, 0x309a, 0x3075, 0x3099, 0x3075, 0x309a, 0x3078, 0x3099, 0x3078, 0x309a, 0x307b, 0x3099, 0x307b, 0x309a, 0x3046, 0x3099, 0x309d, 0x3099, 0x30ab, 0x3099, 0x30ad, 0x3099, 0x30af, 0x3099, 0x30b1, 0x3099, 0x30b3, 0x3099, 0x30b5, 0x3099, 0x30b7, 0x3099, 0x30b9, 0x3099, 0x30bb, 0x3099, 0x30bd, 0x3099, 0x30bf, 0x3099, 0x30c1, 0x3099, 0x30c4, 0x3099, 0x30c6, 0x3099, 0x30c8, 0x3099, 0x30cf, 0x3099, 0x30cf, 0x309a, 0x30d2, 0x3099, 0x30d2, 0x309a, 0x30d5, 0x3099, 0x30d5, 0x309a, 0x30d8, 0x3099, 0x30d8, 0x309a, 0x30db, 0x3099, 0x30db, 0x309a, 0x30a6, 0x3099, 0x30ef, 0x3099, 0x30f0, 0x3099, 0x30f1, 0x3099, 0x30f2, 0x3099, 0x30fd, 0x3099, 0x05f2, 0x05b7, 0x05e9, 0x05c1, 0x05e9, 0x05c2, 0x05e9, 0x05bc, 0x05c1, 0x05e9, 0x05bc, 0x05c2, 0x05d0, 0x05b7, 0x05d0, 0x05b8, 0x05d0, 0x05bc, 0x05d1, 0x05bc, 0x05d2, 0x05bc, 0x05d3, 0x05bc, 0x05d4, 0x05bc, 0x05d5, 0x05bc, 0x05d6, 0x05bc, 0x05d8, 0x05bc, 0x05d9, 0x05bc, 0x05da, 0x05bc, 0x05db, 0x05bc, 0x05dc, 0x05bc, 0x05de, 0x05bc, 0x05e0, 0x05bc, 0x05e1, 0x05bc, 0x05e3, 0x05bc, 0x05e4, 0x05bc, 0x05e6, 0x05bc, 0x05e7, 0x05bc, 0x05e8, 0x05bc, 0x05e9, 0x05bc, 0x05ea, 0x05bc, 0x05d5, 0x05b9, 0x05d1, 0x05bf, 0x05db, 0x05bf, 0x05e4, 0x05bf }; u16 hfsplus_compose_table[] = { /* base */ 0x0000, 0x0050, 0x0300, 0x00a4, 0x0301, 0x00e4, 0x0302, 0x015c, 0x0303, 0x0192, 0x0304, 0x01b4, 0x0306, 0x01e6, 0x0307, 0x0220, 0x0308, 0x0270, 0x0309, 0x02d2, 0x030a, 0x02ec, 0x030b, 0x02fa, 0x030c, 0x0308, 0x030d, 0x034c, 0x030f, 0x0370, 0x0311, 0x038e, 0x0313, 0x03a8, 0x0314, 0x03c6, 0x031b, 0x03e8, 0x0323, 0x03f2, 0x0324, 0x0440, 0x0325, 0x0446, 0x0327, 0x044c, 0x0328, 0x047a, 0x032d, 0x0490, 0x032e, 0x04aa, 0x0330, 0x04b0, 0x0331, 0x04be, 0x0342, 0x04e2, 0x0345, 0x04f4, 0x05b7, 0x0504, 0x05b8, 0x050a, 0x05b9, 0x050e, 0x05bc, 0x0512, 0x05bf, 0x0540, 0x05c1, 0x0548, 0x05c2, 0x054c, 0x093c, 0x0550, 0x09bc, 0x0568, 0x09be, 0x0572, 0x09d7, 0x0576, 0x0a3c, 0x057a, 0x0b3c, 0x0586, 0x0b3e, 0x058e, 0x0b56, 0x0592, 0x0b57, 0x0596, 0x0bbe, 0x059a, 0x0bd7, 0x05a0, 0x0c56, 0x05a6, 0x0cc2, 0x05aa, 0x0cd5, 0x05ae, 0x0cd6, 0x05b4, 0x0d3e, 0x05b8, 0x0d57, 0x05be, 0x0e32, 0x05c2, 0x0eb2, 0x05c6, 0x0f71, 0x05ca, 0x0f80, 0x05d2, 0x0fb5, 0x05d8, 0x0fb7, 0x05de, 0x1100, 0x00a2, 0x1101, 0x00a2, 0x1102, 0x00a2, 0x1103, 0x00a2, 0x1104, 0x00a2, 0x1105, 0x00a2, 0x1106, 0x00a2, 0x1107, 0x00a2, 0x1108, 0x00a2, 0x1109, 0x00a2, 0x110a, 0x00a2, 0x110b, 0x00a2, 0x110c, 0x00a2, 0x110d, 0x00a2, 0x110e, 0x00a2, 0x110f, 0x00a2, 0x1110, 0x00a2, 0x1111, 0x00a2, 0x1112, 0x00a2, 0x3099, 0x05f4, 0x309a, 0x0656, /* hangul marker */ 0xffff, 0x0000, /* 0x0300 */ 0x0340, 0x001f, 0x0041, 0x066c, 0x0045, 0x066e, 0x0049, 0x0670, 0x004f, 0x0672, 0x0055, 0x0674, 0x0057, 0x0676, 0x0059, 0x0678, 0x0061, 0x067a, 0x0065, 0x067c, 0x0069, 0x067e, 0x006f, 0x0680, 0x0075, 0x0682, 0x0077, 0x0684, 0x0079, 0x0686, 0x00a8, 0x0688, 0x0391, 0x068a, 0x0395, 0x068c, 0x0397, 0x068e, 0x0399, 0x0690, 0x039f, 0x0692, 0x03a5, 0x0694, 0x03a9, 0x0696, 0x03b1, 0x0698, 0x03b5, 0x069a, 0x03b7, 0x069c, 0x03b9, 0x069e, 0x03bf, 0x06a0, 0x03c5, 0x06a2, 0x03c9, 0x06a4, 0x1fbf, 0x06a6, 0x1ffe, 0x06a8, /* 0x0301 */ 0x0341, 0x003b, 0x0041, 0x06aa, 0x0043, 0x06ac, 0x0045, 0x06ae, 0x0047, 0x06b0, 0x0049, 0x06b2, 0x004b, 0x06b4, 0x004c, 0x06b6, 0x004d, 0x06b8, 0x004e, 0x06ba, 0x004f, 0x06bc, 0x0050, 0x06be, 0x0052, 0x06c0, 0x0053, 0x06c2, 0x0055, 0x06c6, 0x0057, 0x06c8, 0x0059, 0x06ca, 0x005a, 0x06cc, 0x0061, 0x06ce, 0x0063, 0x06d0, 0x0065, 0x06d2, 0x0067, 0x06d4, 0x0069, 0x06d6, 0x006b, 0x06d8, 0x006c, 0x06da, 0x006d, 0x06dc, 0x006e, 0x06de, 0x006f, 0x06e0, 0x0070, 0x06e2, 0x0072, 0x06e4, 0x0073, 0x06e6, 0x0075, 0x06ea, 0x0077, 0x06ec, 0x0079, 0x06ee, 0x007a, 0x06f0, 0x00a8, 0x06f2, 0x00c6, 0x06f4, 0x00d8, 0x06f6, 0x00e6, 0x06f8, 0x00f8, 0x06fa, 0x0391, 0x06fc, 0x0395, 0x06fe, 0x0397, 0x0700, 0x0399, 0x0702, 0x039f, 0x0704, 0x03a5, 0x0706, 0x03a9, 0x0708, 0x03b1, 0x070a, 0x03b5, 0x070c, 0x03b7, 0x070e, 0x03b9, 0x0710, 0x03bf, 0x0712, 0x03c5, 0x0714, 0x03c9, 0x0716, 0x0413, 0x0718, 0x041a, 0x071a, 0x0433, 0x071c, 0x043a, 0x071e, 0x1fbf, 0x0720, 0x1ffe, 0x0722, /* 0x0302 */ 0x0000, 0x001a, 0x0041, 0x0724, 0x0043, 0x072e, 0x0045, 0x0730, 0x0047, 0x073a, 0x0048, 0x073c, 0x0049, 0x073e, 0x004a, 0x0740, 0x004f, 0x0742, 0x0053, 0x074c, 0x0055, 0x074e, 0x0057, 0x0750, 0x0059, 0x0752, 0x005a, 0x0754, 0x0061, 0x0756, 0x0063, 0x0760, 0x0065, 0x0762, 0x0067, 0x076c, 0x0068, 0x076e, 0x0069, 0x0770, 0x006a, 0x0772, 0x006f, 0x0774, 0x0073, 0x077e, 0x0075, 0x0780, 0x0077, 0x0782, 0x0079, 0x0784, 0x007a, 0x0786, /* 0x0303 */ 0x0000, 0x0010, 0x0041, 0x0788, 0x0045, 0x078a, 0x0049, 0x078c, 0x004e, 0x078e, 0x004f, 0x0790, 0x0055, 0x0796, 0x0056, 0x079a, 0x0059, 0x079c, 0x0061, 0x079e, 0x0065, 0x07a0, 0x0069, 0x07a2, 0x006e, 0x07a4, 0x006f, 0x07a6, 0x0075, 0x07ac, 0x0076, 0x07b0, 0x0079, 0x07b2, /* 0x0304 */ 0x0000, 0x0018, 0x0041, 0x07b4, 0x0045, 0x07b6, 0x0047, 0x07bc, 0x0049, 0x07be, 0x004f, 0x07c0, 0x0055, 0x07c6, 0x0061, 0x07ca, 0x0065, 0x07cc, 0x0067, 0x07d2, 0x0069, 0x07d4, 0x006f, 0x07d6, 0x0075, 0x07dc, 0x00c6, 0x07e0, 0x00e6, 0x07e2, 0x0391, 0x07e4, 0x0399, 0x07e6, 0x03a5, 0x07e8, 0x03b1, 0x07ea, 0x03b9, 0x07ec, 0x03c5, 0x07ee, 0x0418, 0x07f0, 0x0423, 0x07f2, 0x0438, 0x07f4, 0x0443, 0x07f6, /* 0x0306 */ 0x0000, 0x001c, 0x0041, 0x07f8, 0x0045, 0x0802, 0x0047, 0x0804, 0x0049, 0x0806, 0x004f, 0x0808, 0x0055, 0x080a, 0x0061, 0x080c, 0x0065, 0x0816, 0x0067, 0x0818, 0x0069, 0x081a, 0x006f, 0x081c, 0x0075, 0x081e, 0x0391, 0x0820, 0x0399, 0x0822, 0x03a5, 0x0824, 0x03b1, 0x0826, 0x03b9, 0x0828, 0x03c5, 0x082a, 0x0410, 0x082c, 0x0415, 0x082e, 0x0416, 0x0830, 0x0418, 0x0832, 0x0423, 0x0834, 0x0430, 0x0836, 0x0435, 0x0838, 0x0436, 0x083a, 0x0438, 0x083c, 0x0443, 0x083e, /* 0x0307 */ 0x0000, 0x0027, 0x0041, 0x0840, 0x0042, 0x0844, 0x0043, 0x0846, 0x0044, 0x0848, 0x0045, 0x084a, 0x0046, 0x084c, 0x0047, 0x084e, 0x0048, 0x0850, 0x0049, 0x0852, 0x004d, 0x0854, 0x004e, 0x0856, 0x0050, 0x0858, 0x0052, 0x085a, 0x0053, 0x085c, 0x0054, 0x085e, 0x0057, 0x0860, 0x0058, 0x0862, 0x0059, 0x0864, 0x005a, 0x0866, 0x0061, 0x0868, 0x0062, 0x086c, 0x0063, 0x086e, 0x0064, 0x0870, 0x0065, 0x0872, 0x0066, 0x0874, 0x0067, 0x0876, 0x0068, 0x0878, 0x006d, 0x087a, 0x006e, 0x087c, 0x0070, 0x087e, 0x0072, 0x0880, 0x0073, 0x0882, 0x0074, 0x0884, 0x0077, 0x0886, 0x0078, 0x0888, 0x0079, 0x088a, 0x007a, 0x088c, 0x017f, 0x088e, 0x0306, 0x0890, /* 0x0308 */ 0x0000, 0x0030, 0x0041, 0x0892, 0x0045, 0x0896, 0x0048, 0x0898, 0x0049, 0x089a, 0x004f, 0x089e, 0x0055, 0x08a0, 0x0057, 0x08aa, 0x0058, 0x08ac, 0x0059, 0x08ae, 0x0061, 0x08b0, 0x0065, 0x08b4, 0x0068, 0x08b6, 0x0069, 0x08b8, 0x006f, 0x08bc, 0x0074, 0x08be, 0x0075, 0x08c0, 0x0077, 0x08ca, 0x0078, 0x08cc, 0x0079, 0x08ce, 0x018f, 0x08d0, 0x019f, 0x08d2, 0x0259, 0x08d4, 0x0275, 0x08d6, 0x0399, 0x08d8, 0x03a5, 0x08da, 0x03b9, 0x08dc, 0x03c5, 0x08e6, 0x03d2, 0x08f0, 0x0406, 0x08f2, 0x0410, 0x08f4, 0x0415, 0x08f6, 0x0416, 0x08f8, 0x0417, 0x08fa, 0x0418, 0x08fc, 0x041e, 0x08fe, 0x0423, 0x0900, 0x0427, 0x0902, 0x042b, 0x0904, 0x0430, 0x0906, 0x0435, 0x0908, 0x0436, 0x090a, 0x0437, 0x090c, 0x0438, 0x090e, 0x043e, 0x0910, 0x0443, 0x0912, 0x0447, 0x0914, 0x044b, 0x0916, 0x0456, 0x0918, /* 0x0309 */ 0x0000, 0x000c, 0x0041, 0x091a, 0x0045, 0x091c, 0x0049, 0x091e, 0x004f, 0x0920, 0x0055, 0x0922, 0x0059, 0x0924, 0x0061, 0x0926, 0x0065, 0x0928, 0x0069, 0x092a, 0x006f, 0x092c, 0x0075, 0x092e, 0x0079, 0x0930, /* 0x030a */ 0x0000, 0x0006, 0x0041, 0x0932, 0x0055, 0x0936, 0x0061, 0x0938, 0x0075, 0x093c, 0x0077, 0x093e, 0x0079, 0x0940, /* 0x030b */ 0x0000, 0x0006, 0x004f, 0x0942, 0x0055, 0x0944, 0x006f, 0x0946, 0x0075, 0x0948, 0x0423, 0x094a, 0x0443, 0x094c, /* 0x030c */ 0x0000, 0x0021, 0x0041, 0x094e, 0x0043, 0x0950, 0x0044, 0x0952, 0x0045, 0x0954, 0x0047, 0x0956, 0x0049, 0x0958, 0x004b, 0x095a, 0x004c, 0x095c, 0x004e, 0x095e, 0x004f, 0x0960, 0x0052, 0x0962, 0x0053, 0x0964, 0x0054, 0x0968, 0x0055, 0x096a, 0x005a, 0x096c, 0x0061, 0x096e, 0x0063, 0x0970, 0x0064, 0x0972, 0x0065, 0x0974, 0x0067, 0x0976, 0x0069, 0x0978, 0x006a, 0x097a, 0x006b, 0x097c, 0x006c, 0x097e, 0x006e, 0x0980, 0x006f, 0x0982, 0x0072, 0x0984, 0x0073, 0x0986, 0x0074, 0x098a, 0x0075, 0x098c, 0x007a, 0x098e, 0x01b7, 0x0990, 0x0292, 0x0992, /* 0x030d */ 0x0000, 0x0011, 0x00a8, 0x0994, 0x0308, 0x0996, 0x0391, 0x0998, 0x0395, 0x099a, 0x0397, 0x099c, 0x0399, 0x099e, 0x039f, 0x09a0, 0x03a5, 0x09a2, 0x03a9, 0x09a4, 0x03b1, 0x09a6, 0x03b5, 0x09a8, 0x03b7, 0x09aa, 0x03b9, 0x09ac, 0x03bf, 0x09ae, 0x03c5, 0x09b0, 0x03c9, 0x09b2, 0x03d2, 0x09b4, /* 0x030f */ 0x0000, 0x000e, 0x0041, 0x09b6, 0x0045, 0x09b8, 0x0049, 0x09ba, 0x004f, 0x09bc, 0x0052, 0x09be, 0x0055, 0x09c0, 0x0061, 0x09c2, 0x0065, 0x09c4, 0x0069, 0x09c6, 0x006f, 0x09c8, 0x0072, 0x09ca, 0x0075, 0x09cc, 0x0474, 0x09ce, 0x0475, 0x09d0, /* 0x0311 */ 0x0000, 0x000c, 0x0041, 0x09d2, 0x0045, 0x09d4, 0x0049, 0x09d6, 0x004f, 0x09d8, 0x0052, 0x09da, 0x0055, 0x09dc, 0x0061, 0x09de, 0x0065, 0x09e0, 0x0069, 0x09e2, 0x006f, 0x09e4, 0x0072, 0x09e6, 0x0075, 0x09e8, /* 0x0313 */ 0x0343, 0x000e, 0x0391, 0x09ea, 0x0395, 0x09f2, 0x0397, 0x09f8, 0x0399, 0x0a00, 0x039f, 0x0a08, 0x03a9, 0x0a0e, 0x03b1, 0x0a16, 0x03b5, 0x0a1e, 0x03b7, 0x0a24, 0x03b9, 0x0a2c, 0x03bf, 0x0a34, 0x03c1, 0x0a3a, 0x03c5, 0x0a3c, 0x03c9, 0x0a44, /* 0x0314 */ 0x0000, 0x0010, 0x0391, 0x0a4c, 0x0395, 0x0a54, 0x0397, 0x0a5a, 0x0399, 0x0a62, 0x039f, 0x0a6a, 0x03a1, 0x0a70, 0x03a5, 0x0a72, 0x03a9, 0x0a7a, 0x03b1, 0x0a82, 0x03b5, 0x0a8a, 0x03b7, 0x0a90, 0x03b9, 0x0a98, 0x03bf, 0x0aa0, 0x03c1, 0x0aa6, 0x03c5, 0x0aa8, 0x03c9, 0x0ab0, /* 0x031b */ 0x0000, 0x0004, 0x004f, 0x0ab8, 0x0055, 0x0ac4, 0x006f, 0x0ad0, 0x0075, 0x0adc, /* 0x0323 */ 0x0000, 0x0026, 0x0041, 0x0ae8, 0x0042, 0x0aee, 0x0044, 0x0af0, 0x0045, 0x0af2, 0x0048, 0x0af6, 0x0049, 0x0af8, 0x004b, 0x0afa, 0x004c, 0x0afc, 0x004d, 0x0b00, 0x004e, 0x0b02, 0x004f, 0x0b04, 0x0052, 0x0b08, 0x0053, 0x0b0c, 0x0054, 0x0b10, 0x0055, 0x0b12, 0x0056, 0x0b14, 0x0057, 0x0b16, 0x0059, 0x0b18, 0x005a, 0x0b1a, 0x0061, 0x0b1c, 0x0062, 0x0b22, 0x0064, 0x0b24, 0x0065, 0x0b26, 0x0068, 0x0b2a, 0x0069, 0x0b2c, 0x006b, 0x0b2e, 0x006c, 0x0b30, 0x006d, 0x0b34, 0x006e, 0x0b36, 0x006f, 0x0b38, 0x0072, 0x0b3c, 0x0073, 0x0b40, 0x0074, 0x0b44, 0x0075, 0x0b46, 0x0076, 0x0b48, 0x0077, 0x0b4a, 0x0079, 0x0b4c, 0x007a, 0x0b4e, /* 0x0324 */ 0x0000, 0x0002, 0x0055, 0x0b50, 0x0075, 0x0b52, /* 0x0325 */ 0x0000, 0x0002, 0x0041, 0x0b54, 0x0061, 0x0b56, /* 0x0327 */ 0x0000, 0x0016, 0x0043, 0x0b58, 0x0044, 0x0b5c, 0x0045, 0x0b5e, 0x0047, 0x0b62, 0x0048, 0x0b64, 0x004b, 0x0b66, 0x004c, 0x0b68, 0x004e, 0x0b6a, 0x0052, 0x0b6c, 0x0053, 0x0b6e, 0x0054, 0x0b70, 0x0063, 0x0b72, 0x0064, 0x0b76, 0x0065, 0x0b78, 0x0067, 0x0b7c, 0x0068, 0x0b7e, 0x006b, 0x0b80, 0x006c, 0x0b82, 0x006e, 0x0b84, 0x0072, 0x0b86, 0x0073, 0x0b88, 0x0074, 0x0b8a, /* 0x0328 */ 0x0000, 0x000a, 0x0041, 0x0b8c, 0x0045, 0x0b8e, 0x0049, 0x0b90, 0x004f, 0x0b92, 0x0055, 0x0b96, 0x0061, 0x0b98, 0x0065, 0x0b9a, 0x0069, 0x0b9c, 0x006f, 0x0b9e, 0x0075, 0x0ba2, /* 0x032d */ 0x0000, 0x000c, 0x0044, 0x0ba4, 0x0045, 0x0ba6, 0x004c, 0x0ba8, 0x004e, 0x0baa, 0x0054, 0x0bac, 0x0055, 0x0bae, 0x0064, 0x0bb0, 0x0065, 0x0bb2, 0x006c, 0x0bb4, 0x006e, 0x0bb6, 0x0074, 0x0bb8, 0x0075, 0x0bba, /* 0x032e */ 0x0000, 0x0002, 0x0048, 0x0bbc, 0x0068, 0x0bbe, /* 0x0330 */ 0x0000, 0x0006, 0x0045, 0x0bc0, 0x0049, 0x0bc2, 0x0055, 0x0bc4, 0x0065, 0x0bc6, 0x0069, 0x0bc8, 0x0075, 0x0bca, /* 0x0331 */ 0x0000, 0x0011, 0x0042, 0x0bcc, 0x0044, 0x0bce, 0x004b, 0x0bd0, 0x004c, 0x0bd2, 0x004e, 0x0bd4, 0x0052, 0x0bd6, 0x0054, 0x0bd8, 0x005a, 0x0bda, 0x0062, 0x0bdc, 0x0064, 0x0bde, 0x0068, 0x0be0, 0x006b, 0x0be2, 0x006c, 0x0be4, 0x006e, 0x0be6, 0x0072, 0x0be8, 0x0074, 0x0bea, 0x007a, 0x0bec, /* 0x0342 */ 0x0000, 0x0008, 0x00a8, 0x0bee, 0x03b1, 0x0bf0, 0x03b7, 0x0bf2, 0x03b9, 0x0bf4, 0x03c5, 0x0bf6, 0x03c9, 0x0bf8, 0x1fbf, 0x0bfa, 0x1ffe, 0x0bfc, /* 0x0345 */ 0x0000, 0x0007, 0x0391, 0x0bfe, 0x0397, 0x0c04, 0x03a9, 0x0c0a, 0x03b1, 0x0c10, 0x03b7, 0x0c1c, 0x03bf, 0x0c28, 0x03c9, 0x0c2c, /* 0x05b7 */ 0x0000, 0x0002, 0x05d0, 0x0c36, 0x05f2, 0x0c38, /* 0x05b8 */ 0x0000, 0x0001, 0x05d0, 0x0c3a, /* 0x05b9 */ 0x0000, 0x0001, 0x05d5, 0x0c3c, /* 0x05bc */ 0x0000, 0x0016, 0x05d0, 0x0c3e, 0x05d1, 0x0c40, 0x05d2, 0x0c42, 0x05d3, 0x0c44, 0x05d4, 0x0c46, 0x05d5, 0x0c48, 0x05d6, 0x0c4a, 0x05d8, 0x0c4c, 0x05d9, 0x0c4e, 0x05da, 0x0c50, 0x05db, 0x0c52, 0x05dc, 0x0c54, 0x05de, 0x0c56, 0x05e0, 0x0c58, 0x05e1, 0x0c5a, 0x05e3, 0x0c5c, 0x05e4, 0x0c5e, 0x05e6, 0x0c60, 0x05e7, 0x0c62, 0x05e8, 0x0c64, 0x05e9, 0x0c66, 0x05ea, 0x0c6c, /* 0x05bf */ 0x0000, 0x0003, 0x05d1, 0x0c6e, 0x05db, 0x0c70, 0x05e4, 0x0c72, /* 0x05c1 */ 0x0000, 0x0001, 0x05e9, 0x0c74, /* 0x05c2 */ 0x0000, 0x0001, 0x05e9, 0x0c76, /* 0x093c */ 0x0000, 0x000b, 0x0915, 0x0c78, 0x0916, 0x0c7a, 0x0917, 0x0c7c, 0x091c, 0x0c7e, 0x0921, 0x0c80, 0x0922, 0x0c82, 0x0928, 0x0c84, 0x092b, 0x0c86, 0x092f, 0x0c88, 0x0930, 0x0c8a, 0x0933, 0x0c8c, /* 0x09bc */ 0x0000, 0x0004, 0x09a1, 0x0c8e, 0x09a2, 0x0c90, 0x09ac, 0x0c92, 0x09af, 0x0c94, /* 0x09be */ 0x0000, 0x0001, 0x09c7, 0x0c96, /* 0x09d7 */ 0x0000, 0x0001, 0x09c7, 0x0c98, /* 0x0a3c */ 0x0000, 0x0005, 0x0a16, 0x0c9a, 0x0a17, 0x0c9c, 0x0a1c, 0x0c9e, 0x0a21, 0x0ca0, 0x0a2b, 0x0ca2, /* 0x0b3c */ 0x0000, 0x0003, 0x0b21, 0x0ca4, 0x0b22, 0x0ca6, 0x0b2f, 0x0ca8, /* 0x0b3e */ 0x0000, 0x0001, 0x0b47, 0x0caa, /* 0x0b56 */ 0x0000, 0x0001, 0x0b47, 0x0cac, /* 0x0b57 */ 0x0000, 0x0001, 0x0b47, 0x0cae, /* 0x0bbe */ 0x0000, 0x0002, 0x0bc6, 0x0cb0, 0x0bc7, 0x0cb2, /* 0x0bd7 */ 0x0000, 0x0002, 0x0b92, 0x0cb4, 0x0bc6, 0x0cb6, /* 0x0c56 */ 0x0000, 0x0001, 0x0c46, 0x0cb8, /* 0x0cc2 */ 0x0000, 0x0001, 0x0cc6, 0x0cba, /* 0x0cd5 */ 0x0000, 0x0002, 0x0cbf, 0x0cbe, 0x0cc6, 0x0cc0, /* 0x0cd6 */ 0x0000, 0x0001, 0x0cc6, 0x0cc2, /* 0x0d3e */ 0x0000, 0x0002, 0x0d46, 0x0cc4, 0x0d47, 0x0cc6, /* 0x0d57 */ 0x0000, 0x0001, 0x0d46, 0x0cc8, /* 0x0e32 */ 0x0000, 0x0001, 0x0e4d, 0x0cca, /* 0x0eb2 */ 0x0000, 0x0001, 0x0ecd, 0x0ccc, /* 0x0f71 */ 0x0000, 0x0003, 0x0f72, 0x0cce, 0x0f74, 0x0cd0, 0x0f80, 0x0cd2, /* 0x0f80 */ 0x0000, 0x0002, 0x0fb2, 0x0cd4, 0x0fb3, 0x0cd8, /* 0x0fb5 */ 0x0000, 0x0002, 0x0f40, 0x0cdc, 0x0f90, 0x0cde, /* 0x0fb7 */ 0x0000, 0x000a, 0x0f42, 0x0ce0, 0x0f4c, 0x0ce2, 0x0f51, 0x0ce4, 0x0f56, 0x0ce6, 0x0f5b, 0x0ce8, 0x0f92, 0x0cea, 0x0f9c, 0x0cec, 0x0fa1, 0x0cee, 0x0fa6, 0x0cf0, 0x0fab, 0x0cf2, /* 0x3099 */ 0x0000, 0x0030, 0x3046, 0x0cf4, 0x304b, 0x0cf6, 0x304d, 0x0cf8, 0x304f, 0x0cfa, 0x3051, 0x0cfc, 0x3053, 0x0cfe, 0x3055, 0x0d00, 0x3057, 0x0d02, 0x3059, 0x0d04, 0x305b, 0x0d06, 0x305d, 0x0d08, 0x305f, 0x0d0a, 0x3061, 0x0d0c, 0x3064, 0x0d0e, 0x3066, 0x0d10, 0x3068, 0x0d12, 0x306f, 0x0d14, 0x3072, 0x0d16, 0x3075, 0x0d18, 0x3078, 0x0d1a, 0x307b, 0x0d1c, 0x309d, 0x0d1e, 0x30a6, 0x0d20, 0x30ab, 0x0d22, 0x30ad, 0x0d24, 0x30af, 0x0d26, 0x30b1, 0x0d28, 0x30b3, 0x0d2a, 0x30b5, 0x0d2c, 0x30b7, 0x0d2e, 0x30b9, 0x0d30, 0x30bb, 0x0d32, 0x30bd, 0x0d34, 0x30bf, 0x0d36, 0x30c1, 0x0d38, 0x30c4, 0x0d3a, 0x30c6, 0x0d3c, 0x30c8, 0x0d3e, 0x30cf, 0x0d40, 0x30d2, 0x0d42, 0x30d5, 0x0d44, 0x30d8, 0x0d46, 0x30db, 0x0d48, 0x30ef, 0x0d4a, 0x30f0, 0x0d4c, 0x30f1, 0x0d4e, 0x30f2, 0x0d50, 0x30fd, 0x0d52, /* 0x309a */ 0x0000, 0x000a, 0x306f, 0x0d54, 0x3072, 0x0d56, 0x3075, 0x0d58, 0x3078, 0x0d5a, 0x307b, 0x0d5c, 0x30cf, 0x0d5e, 0x30d2, 0x0d60, 0x30d5, 0x0d62, 0x30d8, 0x0d64, 0x30db, 0x0d66, /* 0x0041 0x0300 */ 0x00c0, 0x0000, /* 0x0045 0x0300 */ 0x00c8, 0x0000, /* 0x0049 0x0300 */ 0x00cc, 0x0000, /* 0x004f 0x0300 */ 0x00d2, 0x0000, /* 0x0055 0x0300 */ 0x00d9, 0x0000, /* 0x0057 0x0300 */ 0x1e80, 0x0000, /* 0x0059 0x0300 */ 0x1ef2, 0x0000, /* 0x0061 0x0300 */ 0x00e0, 0x0000, /* 0x0065 0x0300 */ 0x00e8, 0x0000, /* 0x0069 0x0300 */ 0x00ec, 0x0000, /* 0x006f 0x0300 */ 0x00f2, 0x0000, /* 0x0075 0x0300 */ 0x00f9, 0x0000, /* 0x0077 0x0300 */ 0x1e81, 0x0000, /* 0x0079 0x0300 */ 0x1ef3, 0x0000, /* 0x00a8 0x0300 */ 0x1fed, 0x0000, /* 0x0391 0x0300 */ 0x1fba, 0x0000, /* 0x0395 0x0300 */ 0x1fc8, 0x0000, /* 0x0397 0x0300 */ 0x1fca, 0x0000, /* 0x0399 0x0300 */ 0x1fda, 0x0000, /* 0x039f 0x0300 */ 0x1ff8, 0x0000, /* 0x03a5 0x0300 */ 0x1fea, 0x0000, /* 0x03a9 0x0300 */ 0x1ffa, 0x0000, /* 0x03b1 0x0300 */ 0x1f70, 0x0000, /* 0x03b5 0x0300 */ 0x1f72, 0x0000, /* 0x03b7 0x0300 */ 0x1f74, 0x0000, /* 0x03b9 0x0300 */ 0x1f76, 0x0000, /* 0x03bf 0x0300 */ 0x1f78, 0x0000, /* 0x03c5 0x0300 */ 0x1f7a, 0x0000, /* 0x03c9 0x0300 */ 0x1f7c, 0x0000, /* 0x1fbf 0x0300 */ 0x1fcd, 0x0000, /* 0x1ffe 0x0300 */ 0x1fdd, 0x0000, /* 0x0041 0x0301 */ 0x00c1, 0x0000, /* 0x0043 0x0301 */ 0x0106, 0x0000, /* 0x0045 0x0301 */ 0x00c9, 0x0000, /* 0x0047 0x0301 */ 0x01f4, 0x0000, /* 0x0049 0x0301 */ 0x00cd, 0x0000, /* 0x004b 0x0301 */ 0x1e30, 0x0000, /* 0x004c 0x0301 */ 0x0139, 0x0000, /* 0x004d 0x0301 */ 0x1e3e, 0x0000, /* 0x004e 0x0301 */ 0x0143, 0x0000, /* 0x004f 0x0301 */ 0x00d3, 0x0000, /* 0x0050 0x0301 */ 0x1e54, 0x0000, /* 0x0052 0x0301 */ 0x0154, 0x0000, /* 0x0053 0x0301 */ 0x015a, 0x0001, 0x0307, 0x0d68, /* 0x0055 0x0301 */ 0x00da, 0x0000, /* 0x0057 0x0301 */ 0x1e82, 0x0000, /* 0x0059 0x0301 */ 0x00dd, 0x0000, /* 0x005a 0x0301 */ 0x0179, 0x0000, /* 0x0061 0x0301 */ 0x00e1, 0x0000, /* 0x0063 0x0301 */ 0x0107, 0x0000, /* 0x0065 0x0301 */ 0x00e9, 0x0000, /* 0x0067 0x0301 */ 0x01f5, 0x0000, /* 0x0069 0x0301 */ 0x00ed, 0x0000, /* 0x006b 0x0301 */ 0x1e31, 0x0000, /* 0x006c 0x0301 */ 0x013a, 0x0000, /* 0x006d 0x0301 */ 0x1e3f, 0x0000, /* 0x006e 0x0301 */ 0x0144, 0x0000, /* 0x006f 0x0301 */ 0x00f3, 0x0000, /* 0x0070 0x0301 */ 0x1e55, 0x0000, /* 0x0072 0x0301 */ 0x0155, 0x0000, /* 0x0073 0x0301 */ 0x015b, 0x0001, 0x0307, 0x0d6a, /* 0x0075 0x0301 */ 0x00fa, 0x0000, /* 0x0077 0x0301 */ 0x1e83, 0x0000, /* 0x0079 0x0301 */ 0x00fd, 0x0000, /* 0x007a 0x0301 */ 0x017a, 0x0000, /* 0x00a8 0x0301 */ 0x1fee, 0x0000, /* 0x00c6 0x0301 */ 0x01fc, 0x0000, /* 0x00d8 0x0301 */ 0x01fe, 0x0000, /* 0x00e6 0x0301 */ 0x01fd, 0x0000, /* 0x00f8 0x0301 */ 0x01ff, 0x0000, /* 0x0391 0x0301 */ 0x1fbb, 0x0000, /* 0x0395 0x0301 */ 0x1fc9, 0x0000, /* 0x0397 0x0301 */ 0x1fcb, 0x0000, /* 0x0399 0x0301 */ 0x1fdb, 0x0000, /* 0x039f 0x0301 */ 0x1ff9, 0x0000, /* 0x03a5 0x0301 */ 0x1feb, 0x0000, /* 0x03a9 0x0301 */ 0x1ffb, 0x0000, /* 0x03b1 0x0301 */ 0x1f71, 0x0000, /* 0x03b5 0x0301 */ 0x1f73, 0x0000, /* 0x03b7 0x0301 */ 0x1f75, 0x0000, /* 0x03b9 0x0301 */ 0x1f77, 0x0000, /* 0x03bf 0x0301 */ 0x1f79, 0x0000, /* 0x03c5 0x0301 */ 0x1f7b, 0x0000, /* 0x03c9 0x0301 */ 0x1f7d, 0x0000, /* 0x0413 0x0301 */ 0x0403, 0x0000, /* 0x041a 0x0301 */ 0x040c, 0x0000, /* 0x0433 0x0301 */ 0x0453, 0x0000, /* 0x043a 0x0301 */ 0x045c, 0x0000, /* 0x1fbf 0x0301 */ 0x1fce, 0x0000, /* 0x1ffe 0x0301 */ 0x1fde, 0x0000, /* 0x0041 0x0302 */ 0x00c2, 0x0004, 0x0300, 0x0d6c, 0x0301, 0x0d6e, 0x0303, 0x0d70, 0x0309, 0x0d72, /* 0x0043 0x0302 */ 0x0108, 0x0000, /* 0x0045 0x0302 */ 0x00ca, 0x0004, 0x0300, 0x0d74, 0x0301, 0x0d76, 0x0303, 0x0d78, 0x0309, 0x0d7a, /* 0x0047 0x0302 */ 0x011c, 0x0000, /* 0x0048 0x0302 */ 0x0124, 0x0000, /* 0x0049 0x0302 */ 0x00ce, 0x0000, /* 0x004a 0x0302 */ 0x0134, 0x0000, /* 0x004f 0x0302 */ 0x00d4, 0x0004, 0x0300, 0x0d7c, 0x0301, 0x0d7e, 0x0303, 0x0d80, 0x0309, 0x0d82, /* 0x0053 0x0302 */ 0x015c, 0x0000, /* 0x0055 0x0302 */ 0x00db, 0x0000, /* 0x0057 0x0302 */ 0x0174, 0x0000, /* 0x0059 0x0302 */ 0x0176, 0x0000, /* 0x005a 0x0302 */ 0x1e90, 0x0000, /* 0x0061 0x0302 */ 0x00e2, 0x0004, 0x0300, 0x0d84, 0x0301, 0x0d86, 0x0303, 0x0d88, 0x0309, 0x0d8a, /* 0x0063 0x0302 */ 0x0109, 0x0000, /* 0x0065 0x0302 */ 0x00ea, 0x0004, 0x0300, 0x0d8c, 0x0301, 0x0d8e, 0x0303, 0x0d90, 0x0309, 0x0d92, /* 0x0067 0x0302 */ 0x011d, 0x0000, /* 0x0068 0x0302 */ 0x0125, 0x0000, /* 0x0069 0x0302 */ 0x00ee, 0x0000, /* 0x006a 0x0302 */ 0x0135, 0x0000, /* 0x006f 0x0302 */ 0x00f4, 0x0004, 0x0300, 0x0d94, 0x0301, 0x0d96, 0x0303, 0x0d98, 0x0309, 0x0d9a, /* 0x0073 0x0302 */ 0x015d, 0x0000, /* 0x0075 0x0302 */ 0x00fb, 0x0000, /* 0x0077 0x0302 */ 0x0175, 0x0000, /* 0x0079 0x0302 */ 0x0177, 0x0000, /* 0x007a 0x0302 */ 0x1e91, 0x0000, /* 0x0041 0x0303 */ 0x00c3, 0x0000, /* 0x0045 0x0303 */ 0x1ebc, 0x0000, /* 0x0049 0x0303 */ 0x0128, 0x0000, /* 0x004e 0x0303 */ 0x00d1, 0x0000, /* 0x004f 0x0303 */ 0x00d5, 0x0002, 0x0301, 0x0d9c, 0x0308, 0x0d9e, /* 0x0055 0x0303 */ 0x0168, 0x0001, 0x0301, 0x0da0, /* 0x0056 0x0303 */ 0x1e7c, 0x0000, /* 0x0059 0x0303 */ 0x1ef8, 0x0000, /* 0x0061 0x0303 */ 0x00e3, 0x0000, /* 0x0065 0x0303 */ 0x1ebd, 0x0000, /* 0x0069 0x0303 */ 0x0129, 0x0000, /* 0x006e 0x0303 */ 0x00f1, 0x0000, /* 0x006f 0x0303 */ 0x00f5, 0x0002, 0x0301, 0x0da2, 0x0308, 0x0da4, /* 0x0075 0x0303 */ 0x0169, 0x0001, 0x0301, 0x0da6, /* 0x0076 0x0303 */ 0x1e7d, 0x0000, /* 0x0079 0x0303 */ 0x1ef9, 0x0000, /* 0x0041 0x0304 */ 0x0100, 0x0000, /* 0x0045 0x0304 */ 0x0112, 0x0002, 0x0300, 0x0da8, 0x0301, 0x0daa, /* 0x0047 0x0304 */ 0x1e20, 0x0000, /* 0x0049 0x0304 */ 0x012a, 0x0000, /* 0x004f 0x0304 */ 0x014c, 0x0002, 0x0300, 0x0dac, 0x0301, 0x0dae, /* 0x0055 0x0304 */ 0x016a, 0x0001, 0x0308, 0x0db0, /* 0x0061 0x0304 */ 0x0101, 0x0000, /* 0x0065 0x0304 */ 0x0113, 0x0002, 0x0300, 0x0db2, 0x0301, 0x0db4, /* 0x0067 0x0304 */ 0x1e21, 0x0000, /* 0x0069 0x0304 */ 0x012b, 0x0000, /* 0x006f 0x0304 */ 0x014d, 0x0002, 0x0300, 0x0db6, 0x0301, 0x0db8, /* 0x0075 0x0304 */ 0x016b, 0x0001, 0x0308, 0x0dba, /* 0x00c6 0x0304 */ 0x01e2, 0x0000, /* 0x00e6 0x0304 */ 0x01e3, 0x0000, /* 0x0391 0x0304 */ 0x1fb9, 0x0000, /* 0x0399 0x0304 */ 0x1fd9, 0x0000, /* 0x03a5 0x0304 */ 0x1fe9, 0x0000, /* 0x03b1 0x0304 */ 0x1fb1, 0x0000, /* 0x03b9 0x0304 */ 0x1fd1, 0x0000, /* 0x03c5 0x0304 */ 0x1fe1, 0x0000, /* 0x0418 0x0304 */ 0x04e2, 0x0000, /* 0x0423 0x0304 */ 0x04ee, 0x0000, /* 0x0438 0x0304 */ 0x04e3, 0x0000, /* 0x0443 0x0304 */ 0x04ef, 0x0000, /* 0x0041 0x0306 */ 0x0102, 0x0004, 0x0300, 0x0dbc, 0x0301, 0x0dbe, 0x0303, 0x0dc0, 0x0309, 0x0dc2, /* 0x0045 0x0306 */ 0x0114, 0x0000, /* 0x0047 0x0306 */ 0x011e, 0x0000, /* 0x0049 0x0306 */ 0x012c, 0x0000, /* 0x004f 0x0306 */ 0x014e, 0x0000, /* 0x0055 0x0306 */ 0x016c, 0x0000, /* 0x0061 0x0306 */ 0x0103, 0x0004, 0x0300, 0x0dc4, 0x0301, 0x0dc6, 0x0303, 0x0dc8, 0x0309, 0x0dca, /* 0x0065 0x0306 */ 0x0115, 0x0000, /* 0x0067 0x0306 */ 0x011f, 0x0000, /* 0x0069 0x0306 */ 0x012d, 0x0000, /* 0x006f 0x0306 */ 0x014f, 0x0000, /* 0x0075 0x0306 */ 0x016d, 0x0000, /* 0x0391 0x0306 */ 0x1fb8, 0x0000, /* 0x0399 0x0306 */ 0x1fd8, 0x0000, /* 0x03a5 0x0306 */ 0x1fe8, 0x0000, /* 0x03b1 0x0306 */ 0x1fb0, 0x0000, /* 0x03b9 0x0306 */ 0x1fd0, 0x0000, /* 0x03c5 0x0306 */ 0x1fe0, 0x0000, /* 0x0410 0x0306 */ 0x04d0, 0x0000, /* 0x0415 0x0306 */ 0x04d6, 0x0000, /* 0x0416 0x0306 */ 0x04c1, 0x0000, /* 0x0418 0x0306 */ 0x0419, 0x0000, /* 0x0423 0x0306 */ 0x040e, 0x0000, /* 0x0430 0x0306 */ 0x04d1, 0x0000, /* 0x0435 0x0306 */ 0x04d7, 0x0000, /* 0x0436 0x0306 */ 0x04c2, 0x0000, /* 0x0438 0x0306 */ 0x0439, 0x0000, /* 0x0443 0x0306 */ 0x045e, 0x0000, /* 0x0041 0x0307 */ 0x0000, 0x0001, 0x0304, 0x0dcc, /* 0x0042 0x0307 */ 0x1e02, 0x0000, /* 0x0043 0x0307 */ 0x010a, 0x0000, /* 0x0044 0x0307 */ 0x1e0a, 0x0000, /* 0x0045 0x0307 */ 0x0116, 0x0000, /* 0x0046 0x0307 */ 0x1e1e, 0x0000, /* 0x0047 0x0307 */ 0x0120, 0x0000, /* 0x0048 0x0307 */ 0x1e22, 0x0000, /* 0x0049 0x0307 */ 0x0130, 0x0000, /* 0x004d 0x0307 */ 0x1e40, 0x0000, /* 0x004e 0x0307 */ 0x1e44, 0x0000, /* 0x0050 0x0307 */ 0x1e56, 0x0000, /* 0x0052 0x0307 */ 0x1e58, 0x0000, /* 0x0053 0x0307 */ 0x1e60, 0x0000, /* 0x0054 0x0307 */ 0x1e6a, 0x0000, /* 0x0057 0x0307 */ 0x1e86, 0x0000, /* 0x0058 0x0307 */ 0x1e8a, 0x0000, /* 0x0059 0x0307 */ 0x1e8e, 0x0000, /* 0x005a 0x0307 */ 0x017b, 0x0000, /* 0x0061 0x0307 */ 0x0000, 0x0001, 0x0304, 0x0dce, /* 0x0062 0x0307 */ 0x1e03, 0x0000, /* 0x0063 0x0307 */ 0x010b, 0x0000, /* 0x0064 0x0307 */ 0x1e0b, 0x0000, /* 0x0065 0x0307 */ 0x0117, 0x0000, /* 0x0066 0x0307 */ 0x1e1f, 0x0000, /* 0x0067 0x0307 */ 0x0121, 0x0000, /* 0x0068 0x0307 */ 0x1e23, 0x0000, /* 0x006d 0x0307 */ 0x1e41, 0x0000, /* 0x006e 0x0307 */ 0x1e45, 0x0000, /* 0x0070 0x0307 */ 0x1e57, 0x0000, /* 0x0072 0x0307 */ 0x1e59, 0x0000, /* 0x0073 0x0307 */ 0x1e61, 0x0000, /* 0x0074 0x0307 */ 0x1e6b, 0x0000, /* 0x0077 0x0307 */ 0x1e87, 0x0000, /* 0x0078 0x0307 */ 0x1e8b, 0x0000, /* 0x0079 0x0307 */ 0x1e8f, 0x0000, /* 0x007a 0x0307 */ 0x017c, 0x0000, /* 0x017f 0x0307 */ 0x1e9b, 0x0000, /* 0x0306 0x0307 */ 0x0310, 0x0000, /* 0x0041 0x0308 */ 0x00c4, 0x0001, 0x0304, 0x0dd0, /* 0x0045 0x0308 */ 0x00cb, 0x0000, /* 0x0048 0x0308 */ 0x1e26, 0x0000, /* 0x0049 0x0308 */ 0x00cf, 0x0001, 0x0301, 0x0dd2, /* 0x004f 0x0308 */ 0x00d6, 0x0000, /* 0x0055 0x0308 */ 0x00dc, 0x0004, 0x0300, 0x0dd4, 0x0301, 0x0dd6, 0x0304, 0x0dd8, 0x030c, 0x0dda, /* 0x0057 0x0308 */ 0x1e84, 0x0000, /* 0x0058 0x0308 */ 0x1e8c, 0x0000, /* 0x0059 0x0308 */ 0x0178, 0x0000, /* 0x0061 0x0308 */ 0x00e4, 0x0001, 0x0304, 0x0ddc, /* 0x0065 0x0308 */ 0x00eb, 0x0000, /* 0x0068 0x0308 */ 0x1e27, 0x0000, /* 0x0069 0x0308 */ 0x00ef, 0x0001, 0x0301, 0x0dde, /* 0x006f 0x0308 */ 0x00f6, 0x0000, /* 0x0074 0x0308 */ 0x1e97, 0x0000, /* 0x0075 0x0308 */ 0x00fc, 0x0004, 0x0300, 0x0de0, 0x0301, 0x0de2, 0x0304, 0x0de4, 0x030c, 0x0de6, /* 0x0077 0x0308 */ 0x1e85, 0x0000, /* 0x0078 0x0308 */ 0x1e8d, 0x0000, /* 0x0079 0x0308 */ 0x00ff, 0x0000, /* 0x018f 0x0308 */ 0x04da, 0x0000, /* 0x019f 0x0308 */ 0x04ea, 0x0000, /* 0x0259 0x0308 */ 0x04db, 0x0000, /* 0x0275 0x0308 */ 0x04eb, 0x0000, /* 0x0399 0x0308 */ 0x03aa, 0x0000, /* 0x03a5 0x0308 */ 0x03ab, 0x0000, /* 0x03b9 0x0308 */ 0x03ca, 0x0004, 0x0300, 0x0de8, 0x0301, 0x0dea, 0x030d, 0x0dec, 0x0342, 0x0dee, /* 0x03c5 0x0308 */ 0x03cb, 0x0004, 0x0300, 0x0df0, 0x0301, 0x0df2, 0x030d, 0x0df4, 0x0342, 0x0df6, /* 0x03d2 0x0308 */ 0x03d4, 0x0000, /* 0x0406 0x0308 */ 0x0407, 0x0000, /* 0x0410 0x0308 */ 0x04d2, 0x0000, /* 0x0415 0x0308 */ 0x0401, 0x0000, /* 0x0416 0x0308 */ 0x04dc, 0x0000, /* 0x0417 0x0308 */ 0x04de, 0x0000, /* 0x0418 0x0308 */ 0x04e4, 0x0000, /* 0x041e 0x0308 */ 0x04e6, 0x0000, /* 0x0423 0x0308 */ 0x04f0, 0x0000, /* 0x0427 0x0308 */ 0x04f4, 0x0000, /* 0x042b 0x0308 */ 0x04f8, 0x0000, /* 0x0430 0x0308 */ 0x04d3, 0x0000, /* 0x0435 0x0308 */ 0x0451, 0x0000, /* 0x0436 0x0308 */ 0x04dd, 0x0000, /* 0x0437 0x0308 */ 0x04df, 0x0000, /* 0x0438 0x0308 */ 0x04e5, 0x0000, /* 0x043e 0x0308 */ 0x04e7, 0x0000, /* 0x0443 0x0308 */ 0x04f1, 0x0000, /* 0x0447 0x0308 */ 0x04f5, 0x0000, /* 0x044b 0x0308 */ 0x04f9, 0x0000, /* 0x0456 0x0308 */ 0x0457, 0x0000, /* 0x0041 0x0309 */ 0x1ea2, 0x0000, /* 0x0045 0x0309 */ 0x1eba, 0x0000, /* 0x0049 0x0309 */ 0x1ec8, 0x0000, /* 0x004f 0x0309 */ 0x1ece, 0x0000, /* 0x0055 0x0309 */ 0x1ee6, 0x0000, /* 0x0059 0x0309 */ 0x1ef6, 0x0000, /* 0x0061 0x0309 */ 0x1ea3, 0x0000, /* 0x0065 0x0309 */ 0x1ebb, 0x0000, /* 0x0069 0x0309 */ 0x1ec9, 0x0000, /* 0x006f 0x0309 */ 0x1ecf, 0x0000, /* 0x0075 0x0309 */ 0x1ee7, 0x0000, /* 0x0079 0x0309 */ 0x1ef7, 0x0000, /* 0x0041 0x030a */ 0x00c5, 0x0001, 0x0301, 0x0df8, /* 0x0055 0x030a */ 0x016e, 0x0000, /* 0x0061 0x030a */ 0x00e5, 0x0001, 0x0301, 0x0dfa, /* 0x0075 0x030a */ 0x016f, 0x0000, /* 0x0077 0x030a */ 0x1e98, 0x0000, /* 0x0079 0x030a */ 0x1e99, 0x0000, /* 0x004f 0x030b */ 0x0150, 0x0000, /* 0x0055 0x030b */ 0x0170, 0x0000, /* 0x006f 0x030b */ 0x0151, 0x0000, /* 0x0075 0x030b */ 0x0171, 0x0000, /* 0x0423 0x030b */ 0x04f2, 0x0000, /* 0x0443 0x030b */ 0x04f3, 0x0000, /* 0x0041 0x030c */ 0x01cd, 0x0000, /* 0x0043 0x030c */ 0x010c, 0x0000, /* 0x0044 0x030c */ 0x010e, 0x0000, /* 0x0045 0x030c */ 0x011a, 0x0000, /* 0x0047 0x030c */ 0x01e6, 0x0000, /* 0x0049 0x030c */ 0x01cf, 0x0000, /* 0x004b 0x030c */ 0x01e8, 0x0000, /* 0x004c 0x030c */ 0x013d, 0x0000, /* 0x004e 0x030c */ 0x0147, 0x0000, /* 0x004f 0x030c */ 0x01d1, 0x0000, /* 0x0052 0x030c */ 0x0158, 0x0000, /* 0x0053 0x030c */ 0x0160, 0x0001, 0x0307, 0x0dfc, /* 0x0054 0x030c */ 0x0164, 0x0000, /* 0x0055 0x030c */ 0x01d3, 0x0000, /* 0x005a 0x030c */ 0x017d, 0x0000, /* 0x0061 0x030c */ 0x01ce, 0x0000, /* 0x0063 0x030c */ 0x010d, 0x0000, /* 0x0064 0x030c */ 0x010f, 0x0000, /* 0x0065 0x030c */ 0x011b, 0x0000, /* 0x0067 0x030c */ 0x01e7, 0x0000, /* 0x0069 0x030c */ 0x01d0, 0x0000, /* 0x006a 0x030c */ 0x01f0, 0x0000, /* 0x006b 0x030c */ 0x01e9, 0x0000, /* 0x006c 0x030c */ 0x013e, 0x0000, /* 0x006e 0x030c */ 0x0148, 0x0000, /* 0x006f 0x030c */ 0x01d2, 0x0000, /* 0x0072 0x030c */ 0x0159, 0x0000, /* 0x0073 0x030c */ 0x0161, 0x0001, 0x0307, 0x0dfe, /* 0x0074 0x030c */ 0x0165, 0x0000, /* 0x0075 0x030c */ 0x01d4, 0x0000, /* 0x007a 0x030c */ 0x017e, 0x0000, /* 0x01b7 0x030c */ 0x01ee, 0x0000, /* 0x0292 0x030c */ 0x01ef, 0x0000, /* 0x00a8 0x030d */ 0x0385, 0x0000, /* 0x0308 0x030d */ 0x0344, 0x0000, /* 0x0391 0x030d */ 0x0386, 0x0000, /* 0x0395 0x030d */ 0x0388, 0x0000, /* 0x0397 0x030d */ 0x0389, 0x0000, /* 0x0399 0x030d */ 0x038a, 0x0000, /* 0x039f 0x030d */ 0x038c, 0x0000, /* 0x03a5 0x030d */ 0x038e, 0x0000, /* 0x03a9 0x030d */ 0x038f, 0x0000, /* 0x03b1 0x030d */ 0x03ac, 0x0000, /* 0x03b5 0x030d */ 0x03ad, 0x0000, /* 0x03b7 0x030d */ 0x03ae, 0x0000, /* 0x03b9 0x030d */ 0x03af, 0x0000, /* 0x03bf 0x030d */ 0x03cc, 0x0000, /* 0x03c5 0x030d */ 0x03cd, 0x0000, /* 0x03c9 0x030d */ 0x03ce, 0x0000, /* 0x03d2 0x030d */ 0x03d3, 0x0000, /* 0x0041 0x030f */ 0x0200, 0x0000, /* 0x0045 0x030f */ 0x0204, 0x0000, /* 0x0049 0x030f */ 0x0208, 0x0000, /* 0x004f 0x030f */ 0x020c, 0x0000, /* 0x0052 0x030f */ 0x0210, 0x0000, /* 0x0055 0x030f */ 0x0214, 0x0000, /* 0x0061 0x030f */ 0x0201, 0x0000, /* 0x0065 0x030f */ 0x0205, 0x0000, /* 0x0069 0x030f */ 0x0209, 0x0000, /* 0x006f 0x030f */ 0x020d, 0x0000, /* 0x0072 0x030f */ 0x0211, 0x0000, /* 0x0075 0x030f */ 0x0215, 0x0000, /* 0x0474 0x030f */ 0x0476, 0x0000, /* 0x0475 0x030f */ 0x0477, 0x0000, /* 0x0041 0x0311 */ 0x0202, 0x0000, /* 0x0045 0x0311 */ 0x0206, 0x0000, /* 0x0049 0x0311 */ 0x020a, 0x0000, /* 0x004f 0x0311 */ 0x020e, 0x0000, /* 0x0052 0x0311 */ 0x0212, 0x0000, /* 0x0055 0x0311 */ 0x0216, 0x0000, /* 0x0061 0x0311 */ 0x0203, 0x0000, /* 0x0065 0x0311 */ 0x0207, 0x0000, /* 0x0069 0x0311 */ 0x020b, 0x0000, /* 0x006f 0x0311 */ 0x020f, 0x0000, /* 0x0072 0x0311 */ 0x0213, 0x0000, /* 0x0075 0x0311 */ 0x0217, 0x0000, /* 0x0391 0x0313 */ 0x1f08, 0x0003, 0x0300, 0x0e00, 0x0301, 0x0e02, 0x0342, 0x0e04, /* 0x0395 0x0313 */ 0x1f18, 0x0002, 0x0300, 0x0e06, 0x0301, 0x0e08, /* 0x0397 0x0313 */ 0x1f28, 0x0003, 0x0300, 0x0e0a, 0x0301, 0x0e0c, 0x0342, 0x0e0e, /* 0x0399 0x0313 */ 0x1f38, 0x0003, 0x0300, 0x0e10, 0x0301, 0x0e12, 0x0342, 0x0e14, /* 0x039f 0x0313 */ 0x1f48, 0x0002, 0x0300, 0x0e16, 0x0301, 0x0e18, /* 0x03a9 0x0313 */ 0x1f68, 0x0003, 0x0300, 0x0e1a, 0x0301, 0x0e1c, 0x0342, 0x0e1e, /* 0x03b1 0x0313 */ 0x1f00, 0x0003, 0x0300, 0x0e20, 0x0301, 0x0e22, 0x0342, 0x0e24, /* 0x03b5 0x0313 */ 0x1f10, 0x0002, 0x0300, 0x0e26, 0x0301, 0x0e28, /* 0x03b7 0x0313 */ 0x1f20, 0x0003, 0x0300, 0x0e2a, 0x0301, 0x0e2c, 0x0342, 0x0e2e, /* 0x03b9 0x0313 */ 0x1f30, 0x0003, 0x0300, 0x0e30, 0x0301, 0x0e32, 0x0342, 0x0e34, /* 0x03bf 0x0313 */ 0x1f40, 0x0002, 0x0300, 0x0e36, 0x0301, 0x0e38, /* 0x03c1 0x0313 */ 0x1fe4, 0x0000, /* 0x03c5 0x0313 */ 0x1f50, 0x0003, 0x0300, 0x0e3a, 0x0301, 0x0e3c, 0x0342, 0x0e3e, /* 0x03c9 0x0313 */ 0x1f60, 0x0003, 0x0300, 0x0e40, 0x0301, 0x0e42, 0x0342, 0x0e44, /* 0x0391 0x0314 */ 0x1f09, 0x0003, 0x0300, 0x0e46, 0x0301, 0x0e48, 0x0342, 0x0e4a, /* 0x0395 0x0314 */ 0x1f19, 0x0002, 0x0300, 0x0e4c, 0x0301, 0x0e4e, /* 0x0397 0x0314 */ 0x1f29, 0x0003, 0x0300, 0x0e50, 0x0301, 0x0e52, 0x0342, 0x0e54, /* 0x0399 0x0314 */ 0x1f39, 0x0003, 0x0300, 0x0e56, 0x0301, 0x0e58, 0x0342, 0x0e5a, /* 0x039f 0x0314 */ 0x1f49, 0x0002, 0x0300, 0x0e5c, 0x0301, 0x0e5e, /* 0x03a1 0x0314 */ 0x1fec, 0x0000, /* 0x03a5 0x0314 */ 0x1f59, 0x0003, 0x0300, 0x0e60, 0x0301, 0x0e62, 0x0342, 0x0e64, /* 0x03a9 0x0314 */ 0x1f69, 0x0003, 0x0300, 0x0e66, 0x0301, 0x0e68, 0x0342, 0x0e6a, /* 0x03b1 0x0314 */ 0x1f01, 0x0003, 0x0300, 0x0e6c, 0x0301, 0x0e6e, 0x0342, 0x0e70, /* 0x03b5 0x0314 */ 0x1f11, 0x0002, 0x0300, 0x0e72, 0x0301, 0x0e74, /* 0x03b7 0x0314 */ 0x1f21, 0x0003, 0x0300, 0x0e76, 0x0301, 0x0e78, 0x0342, 0x0e7a, /* 0x03b9 0x0314 */ 0x1f31, 0x0003, 0x0300, 0x0e7c, 0x0301, 0x0e7e, 0x0342, 0x0e80, /* 0x03bf 0x0314 */ 0x1f41, 0x0002, 0x0300, 0x0e82, 0x0301, 0x0e84, /* 0x03c1 0x0314 */ 0x1fe5, 0x0000, /* 0x03c5 0x0314 */ 0x1f51, 0x0003, 0x0300, 0x0e86, 0x0301, 0x0e88, 0x0342, 0x0e8a, /* 0x03c9 0x0314 */ 0x1f61, 0x0003, 0x0300, 0x0e8c, 0x0301, 0x0e8e, 0x0342, 0x0e90, /* 0x004f 0x031b */ 0x01a0, 0x0005, 0x0300, 0x0e92, 0x0301, 0x0e94, 0x0303, 0x0e96, 0x0309, 0x0e98, 0x0323, 0x0e9a, /* 0x0055 0x031b */ 0x01af, 0x0005, 0x0300, 0x0e9c, 0x0301, 0x0e9e, 0x0303, 0x0ea0, 0x0309, 0x0ea2, 0x0323, 0x0ea4, /* 0x006f 0x031b */ 0x01a1, 0x0005, 0x0300, 0x0ea6, 0x0301, 0x0ea8, 0x0303, 0x0eaa, 0x0309, 0x0eac, 0x0323, 0x0eae, /* 0x0075 0x031b */ 0x01b0, 0x0005, 0x0300, 0x0eb0, 0x0301, 0x0eb2, 0x0303, 0x0eb4, 0x0309, 0x0eb6, 0x0323, 0x0eb8, /* 0x0041 0x0323 */ 0x1ea0, 0x0002, 0x0302, 0x0eba, 0x0306, 0x0ebc, /* 0x0042 0x0323 */ 0x1e04, 0x0000, /* 0x0044 0x0323 */ 0x1e0c, 0x0000, /* 0x0045 0x0323 */ 0x1eb8, 0x0001, 0x0302, 0x0ebe, /* 0x0048 0x0323 */ 0x1e24, 0x0000, /* 0x0049 0x0323 */ 0x1eca, 0x0000, /* 0x004b 0x0323 */ 0x1e32, 0x0000, /* 0x004c 0x0323 */ 0x1e36, 0x0001, 0x0304, 0x0ec0, /* 0x004d 0x0323 */ 0x1e42, 0x0000, /* 0x004e 0x0323 */ 0x1e46, 0x0000, /* 0x004f 0x0323 */ 0x1ecc, 0x0001, 0x0302, 0x0ec2, /* 0x0052 0x0323 */ 0x1e5a, 0x0001, 0x0304, 0x0ec4, /* 0x0053 0x0323 */ 0x1e62, 0x0001, 0x0307, 0x0ec6, /* 0x0054 0x0323 */ 0x1e6c, 0x0000, /* 0x0055 0x0323 */ 0x1ee4, 0x0000, /* 0x0056 0x0323 */ 0x1e7e, 0x0000, /* 0x0057 0x0323 */ 0x1e88, 0x0000, /* 0x0059 0x0323 */ 0x1ef4, 0x0000, /* 0x005a 0x0323 */ 0x1e92, 0x0000, /* 0x0061 0x0323 */ 0x1ea1, 0x0002, 0x0302, 0x0ec8, 0x0306, 0x0eca, /* 0x0062 0x0323 */ 0x1e05, 0x0000, /* 0x0064 0x0323 */ 0x1e0d, 0x0000, /* 0x0065 0x0323 */ 0x1eb9, 0x0001, 0x0302, 0x0ecc, /* 0x0068 0x0323 */ 0x1e25, 0x0000, /* 0x0069 0x0323 */ 0x1ecb, 0x0000, /* 0x006b 0x0323 */ 0x1e33, 0x0000, /* 0x006c 0x0323 */ 0x1e37, 0x0001, 0x0304, 0x0ece, /* 0x006d 0x0323 */ 0x1e43, 0x0000, /* 0x006e 0x0323 */ 0x1e47, 0x0000, /* 0x006f 0x0323 */ 0x1ecd, 0x0001, 0x0302, 0x0ed0, /* 0x0072 0x0323 */ 0x1e5b, 0x0001, 0x0304, 0x0ed2, /* 0x0073 0x0323 */ 0x1e63, 0x0001, 0x0307, 0x0ed4, /* 0x0074 0x0323 */ 0x1e6d, 0x0000, /* 0x0075 0x0323 */ 0x1ee5, 0x0000, /* 0x0076 0x0323 */ 0x1e7f, 0x0000, /* 0x0077 0x0323 */ 0x1e89, 0x0000, /* 0x0079 0x0323 */ 0x1ef5, 0x0000, /* 0x007a 0x0323 */ 0x1e93, 0x0000, /* 0x0055 0x0324 */ 0x1e72, 0x0000, /* 0x0075 0x0324 */ 0x1e73, 0x0000, /* 0x0041 0x0325 */ 0x1e00, 0x0000, /* 0x0061 0x0325 */ 0x1e01, 0x0000, /* 0x0043 0x0327 */ 0x00c7, 0x0001, 0x0301, 0x0ed6, /* 0x0044 0x0327 */ 0x1e10, 0x0000, /* 0x0045 0x0327 */ 0x0000, 0x0001, 0x0306, 0x0ed8, /* 0x0047 0x0327 */ 0x0122, 0x0000, /* 0x0048 0x0327 */ 0x1e28, 0x0000, /* 0x004b 0x0327 */ 0x0136, 0x0000, /* 0x004c 0x0327 */ 0x013b, 0x0000, /* 0x004e 0x0327 */ 0x0145, 0x0000, /* 0x0052 0x0327 */ 0x0156, 0x0000, /* 0x0053 0x0327 */ 0x015e, 0x0000, /* 0x0054 0x0327 */ 0x0162, 0x0000, /* 0x0063 0x0327 */ 0x00e7, 0x0001, 0x0301, 0x0eda, /* 0x0064 0x0327 */ 0x1e11, 0x0000, /* 0x0065 0x0327 */ 0x0000, 0x0001, 0x0306, 0x0edc, /* 0x0067 0x0327 */ 0x0123, 0x0000, /* 0x0068 0x0327 */ 0x1e29, 0x0000, /* 0x006b 0x0327 */ 0x0137, 0x0000, /* 0x006c 0x0327 */ 0x013c, 0x0000, /* 0x006e 0x0327 */ 0x0146, 0x0000, /* 0x0072 0x0327 */ 0x0157, 0x0000, /* 0x0073 0x0327 */ 0x015f, 0x0000, /* 0x0074 0x0327 */ 0x0163, 0x0000, /* 0x0041 0x0328 */ 0x0104, 0x0000, /* 0x0045 0x0328 */ 0x0118, 0x0000, /* 0x0049 0x0328 */ 0x012e, 0x0000, /* 0x004f 0x0328 */ 0x01ea, 0x0001, 0x0304, 0x0ede, /* 0x0055 0x0328 */ 0x0172, 0x0000, /* 0x0061 0x0328 */ 0x0105, 0x0000, /* 0x0065 0x0328 */ 0x0119, 0x0000, /* 0x0069 0x0328 */ 0x012f, 0x0000, /* 0x006f 0x0328 */ 0x01eb, 0x0001, 0x0304, 0x0ee0, /* 0x0075 0x0328 */ 0x0173, 0x0000, /* 0x0044 0x032d */ 0x1e12, 0x0000, /* 0x0045 0x032d */ 0x1e18, 0x0000, /* 0x004c 0x032d */ 0x1e3c, 0x0000, /* 0x004e 0x032d */ 0x1e4a, 0x0000, /* 0x0054 0x032d */ 0x1e70, 0x0000, /* 0x0055 0x032d */ 0x1e76, 0x0000, /* 0x0064 0x032d */ 0x1e13, 0x0000, /* 0x0065 0x032d */ 0x1e19, 0x0000, /* 0x006c 0x032d */ 0x1e3d, 0x0000, /* 0x006e 0x032d */ 0x1e4b, 0x0000, /* 0x0074 0x032d */ 0x1e71, 0x0000, /* 0x0075 0x032d */ 0x1e77, 0x0000, /* 0x0048 0x032e */ 0x1e2a, 0x0000, /* 0x0068 0x032e */ 0x1e2b, 0x0000, /* 0x0045 0x0330 */ 0x1e1a, 0x0000, /* 0x0049 0x0330 */ 0x1e2c, 0x0000, /* 0x0055 0x0330 */ 0x1e74, 0x0000, /* 0x0065 0x0330 */ 0x1e1b, 0x0000, /* 0x0069 0x0330 */ 0x1e2d, 0x0000, /* 0x0075 0x0330 */ 0x1e75, 0x0000, /* 0x0042 0x0331 */ 0x1e06, 0x0000, /* 0x0044 0x0331 */ 0x1e0e, 0x0000, /* 0x004b 0x0331 */ 0x1e34, 0x0000, /* 0x004c 0x0331 */ 0x1e3a, 0x0000, /* 0x004e 0x0331 */ 0x1e48, 0x0000, /* 0x0052 0x0331 */ 0x1e5e, 0x0000, /* 0x0054 0x0331 */ 0x1e6e, 0x0000, /* 0x005a 0x0331 */ 0x1e94, 0x0000, /* 0x0062 0x0331 */ 0x1e07, 0x0000, /* 0x0064 0x0331 */ 0x1e0f, 0x0000, /* 0x0068 0x0331 */ 0x1e96, 0x0000, /* 0x006b 0x0331 */ 0x1e35, 0x0000, /* 0x006c 0x0331 */ 0x1e3b, 0x0000, /* 0x006e 0x0331 */ 0x1e49, 0x0000, /* 0x0072 0x0331 */ 0x1e5f, 0x0000, /* 0x0074 0x0331 */ 0x1e6f, 0x0000, /* 0x007a 0x0331 */ 0x1e95, 0x0000, /* 0x00a8 0x0342 */ 0x1fc1, 0x0000, /* 0x03b1 0x0342 */ 0x1fb6, 0x0000, /* 0x03b7 0x0342 */ 0x1fc6, 0x0000, /* 0x03b9 0x0342 */ 0x1fd6, 0x0000, /* 0x03c5 0x0342 */ 0x1fe6, 0x0000, /* 0x03c9 0x0342 */ 0x1ff6, 0x0000, /* 0x1fbf 0x0342 */ 0x1fcf, 0x0000, /* 0x1ffe 0x0342 */ 0x1fdf, 0x0000, /* 0x0391 0x0345 */ 0x1fbc, 0x0002, 0x0313, 0x0ee2, 0x0314, 0x0eea, /* 0x0397 0x0345 */ 0x1fcc, 0x0002, 0x0313, 0x0ef2, 0x0314, 0x0efa, /* 0x03a9 0x0345 */ 0x1ffc, 0x0002, 0x0313, 0x0f02, 0x0314, 0x0f0a, /* 0x03b1 0x0345 */ 0x1fb3, 0x0005, 0x0300, 0x0f12, 0x0301, 0x0f14, 0x0313, 0x0f16, 0x0314, 0x0f1e, 0x0342, 0x0f26, /* 0x03b7 0x0345 */ 0x1fc3, 0x0005, 0x0300, 0x0f28, 0x0301, 0x0f2a, 0x0313, 0x0f2c, 0x0314, 0x0f34, 0x0342, 0x0f3c, /* 0x03bf 0x0345 */ 0x0000, 0x0001, 0x0301, 0x0f3e, /* 0x03c9 0x0345 */ 0x1ff3, 0x0004, 0x0300, 0x0f40, 0x0313, 0x0f42, 0x0314, 0x0f4a, 0x0342, 0x0f52, /* 0x05d0 0x05b7 */ 0xfb2e, 0x0000, /* 0x05f2 0x05b7 */ 0xfb1f, 0x0000, /* 0x05d0 0x05b8 */ 0xfb2f, 0x0000, /* 0x05d5 0x05b9 */ 0xfb4b, 0x0000, /* 0x05d0 0x05bc */ 0xfb30, 0x0000, /* 0x05d1 0x05bc */ 0xfb31, 0x0000, /* 0x05d2 0x05bc */ 0xfb32, 0x0000, /* 0x05d3 0x05bc */ 0xfb33, 0x0000, /* 0x05d4 0x05bc */ 0xfb34, 0x0000, /* 0x05d5 0x05bc */ 0xfb35, 0x0000, /* 0x05d6 0x05bc */ 0xfb36, 0x0000, /* 0x05d8 0x05bc */ 0xfb38, 0x0000, /* 0x05d9 0x05bc */ 0xfb39, 0x0000, /* 0x05da 0x05bc */ 0xfb3a, 0x0000, /* 0x05db 0x05bc */ 0xfb3b, 0x0000, /* 0x05dc 0x05bc */ 0xfb3c, 0x0000, /* 0x05de 0x05bc */ 0xfb3e, 0x0000, /* 0x05e0 0x05bc */ 0xfb40, 0x0000, /* 0x05e1 0x05bc */ 0xfb41, 0x0000, /* 0x05e3 0x05bc */ 0xfb43, 0x0000, /* 0x05e4 0x05bc */ 0xfb44, 0x0000, /* 0x05e6 0x05bc */ 0xfb46, 0x0000, /* 0x05e7 0x05bc */ 0xfb47, 0x0000, /* 0x05e8 0x05bc */ 0xfb48, 0x0000, /* 0x05e9 0x05bc */ 0xfb49, 0x0002, 0x05c1, 0x0f54, 0x05c2, 0x0f56, /* 0x05ea 0x05bc */ 0xfb4a, 0x0000, /* 0x05d1 0x05bf */ 0xfb4c, 0x0000, /* 0x05db 0x05bf */ 0xfb4d, 0x0000, /* 0x05e4 0x05bf */ 0xfb4e, 0x0000, /* 0x05e9 0x05c1 */ 0xfb2a, 0x0000, /* 0x05e9 0x05c2 */ 0xfb2b, 0x0000, /* 0x0915 0x093c */ 0x0958, 0x0000, /* 0x0916 0x093c */ 0x0959, 0x0000, /* 0x0917 0x093c */ 0x095a, 0x0000, /* 0x091c 0x093c */ 0x095b, 0x0000, /* 0x0921 0x093c */ 0x095c, 0x0000, /* 0x0922 0x093c */ 0x095d, 0x0000, /* 0x0928 0x093c */ 0x0929, 0x0000, /* 0x092b 0x093c */ 0x095e, 0x0000, /* 0x092f 0x093c */ 0x095f, 0x0000, /* 0x0930 0x093c */ 0x0931, 0x0000, /* 0x0933 0x093c */ 0x0934, 0x0000, /* 0x09a1 0x09bc */ 0x09dc, 0x0000, /* 0x09a2 0x09bc */ 0x09dd, 0x0000, /* 0x09ac 0x09bc */ 0x09b0, 0x0000, /* 0x09af 0x09bc */ 0x09df, 0x0000, /* 0x09c7 0x09be */ 0x09cb, 0x0000, /* 0x09c7 0x09d7 */ 0x09cc, 0x0000, /* 0x0a16 0x0a3c */ 0x0a59, 0x0000, /* 0x0a17 0x0a3c */ 0x0a5a, 0x0000, /* 0x0a1c 0x0a3c */ 0x0a5b, 0x0000, /* 0x0a21 0x0a3c */ 0x0a5c, 0x0000, /* 0x0a2b 0x0a3c */ 0x0a5e, 0x0000, /* 0x0b21 0x0b3c */ 0x0b5c, 0x0000, /* 0x0b22 0x0b3c */ 0x0b5d, 0x0000, /* 0x0b2f 0x0b3c */ 0x0b5f, 0x0000, /* 0x0b47 0x0b3e */ 0x0b4b, 0x0000, /* 0x0b47 0x0b56 */ 0x0b48, 0x0000, /* 0x0b47 0x0b57 */ 0x0b4c, 0x0000, /* 0x0bc6 0x0bbe */ 0x0bca, 0x0000, /* 0x0bc7 0x0bbe */ 0x0bcb, 0x0000, /* 0x0b92 0x0bd7 */ 0x0b94, 0x0000, /* 0x0bc6 0x0bd7 */ 0x0bcc, 0x0000, /* 0x0c46 0x0c56 */ 0x0c48, 0x0000, /* 0x0cc6 0x0cc2 */ 0x0cca, 0x0001, 0x0cd5, 0x0f58, /* 0x0cbf 0x0cd5 */ 0x0cc0, 0x0000, /* 0x0cc6 0x0cd5 */ 0x0cc7, 0x0000, /* 0x0cc6 0x0cd6 */ 0x0cc8, 0x0000, /* 0x0d46 0x0d3e */ 0x0d4a, 0x0000, /* 0x0d47 0x0d3e */ 0x0d4b, 0x0000, /* 0x0d46 0x0d57 */ 0x0d4c, 0x0000, /* 0x0e4d 0x0e32 */ 0x0e33, 0x0000, /* 0x0ecd 0x0eb2 */ 0x0eb3, 0x0000, /* 0x0f72 0x0f71 */ 0x0f73, 0x0000, /* 0x0f74 0x0f71 */ 0x0f75, 0x0000, /* 0x0f80 0x0f71 */ 0x0f81, 0x0000, /* 0x0fb2 0x0f80 */ 0x0f76, 0x0001, 0x0f71, 0x0f5a, /* 0x0fb3 0x0f80 */ 0x0f78, 0x0001, 0x0f71, 0x0f5c, /* 0x0f40 0x0fb5 */ 0x0f69, 0x0000, /* 0x0f90 0x0fb5 */ 0x0fb9, 0x0000, /* 0x0f42 0x0fb7 */ 0x0f43, 0x0000, /* 0x0f4c 0x0fb7 */ 0x0f4d, 0x0000, /* 0x0f51 0x0fb7 */ 0x0f52, 0x0000, /* 0x0f56 0x0fb7 */ 0x0f57, 0x0000, /* 0x0f5b 0x0fb7 */ 0x0f5c, 0x0000, /* 0x0f92 0x0fb7 */ 0x0f93, 0x0000, /* 0x0f9c 0x0fb7 */ 0x0f9d, 0x0000, /* 0x0fa1 0x0fb7 */ 0x0fa2, 0x0000, /* 0x0fa6 0x0fb7 */ 0x0fa7, 0x0000, /* 0x0fab 0x0fb7 */ 0x0fac, 0x0000, /* 0x3046 0x3099 */ 0x3094, 0x0000, /* 0x304b 0x3099 */ 0x304c, 0x0000, /* 0x304d 0x3099 */ 0x304e, 0x0000, /* 0x304f 0x3099 */ 0x3050, 0x0000, /* 0x3051 0x3099 */ 0x3052, 0x0000, /* 0x3053 0x3099 */ 0x3054, 0x0000, /* 0x3055 0x3099 */ 0x3056, 0x0000, /* 0x3057 0x3099 */ 0x3058, 0x0000, /* 0x3059 0x3099 */ 0x305a, 0x0000, /* 0x305b 0x3099 */ 0x305c, 0x0000, /* 0x305d 0x3099 */ 0x305e, 0x0000, /* 0x305f 0x3099 */ 0x3060, 0x0000, /* 0x3061 0x3099 */ 0x3062, 0x0000, /* 0x3064 0x3099 */ 0x3065, 0x0000, /* 0x3066 0x3099 */ 0x3067, 0x0000, /* 0x3068 0x3099 */ 0x3069, 0x0000, /* 0x306f 0x3099 */ 0x3070, 0x0000, /* 0x3072 0x3099 */ 0x3073, 0x0000, /* 0x3075 0x3099 */ 0x3076, 0x0000, /* 0x3078 0x3099 */ 0x3079, 0x0000, /* 0x307b 0x3099 */ 0x307c, 0x0000, /* 0x309d 0x3099 */ 0x309e, 0x0000, /* 0x30a6 0x3099 */ 0x30f4, 0x0000, /* 0x30ab 0x3099 */ 0x30ac, 0x0000, /* 0x30ad 0x3099 */ 0x30ae, 0x0000, /* 0x30af 0x3099 */ 0x30b0, 0x0000, /* 0x30b1 0x3099 */ 0x30b2, 0x0000, /* 0x30b3 0x3099 */ 0x30b4, 0x0000, /* 0x30b5 0x3099 */ 0x30b6, 0x0000, /* 0x30b7 0x3099 */ 0x30b8, 0x0000, /* 0x30b9 0x3099 */ 0x30ba, 0x0000, /* 0x30bb 0x3099 */ 0x30bc, 0x0000, /* 0x30bd 0x3099 */ 0x30be, 0x0000, /* 0x30bf 0x3099 */ 0x30c0, 0x0000, /* 0x30c1 0x3099 */ 0x30c2, 0x0000, /* 0x30c4 0x3099 */ 0x30c5, 0x0000, /* 0x30c6 0x3099 */ 0x30c7, 0x0000, /* 0x30c8 0x3099 */ 0x30c9, 0x0000, /* 0x30cf 0x3099 */ 0x30d0, 0x0000, /* 0x30d2 0x3099 */ 0x30d3, 0x0000, /* 0x30d5 0x3099 */ 0x30d6, 0x0000, /* 0x30d8 0x3099 */ 0x30d9, 0x0000, /* 0x30db 0x3099 */ 0x30dc, 0x0000, /* 0x30ef 0x3099 */ 0x30f7, 0x0000, /* 0x30f0 0x3099 */ 0x30f8, 0x0000, /* 0x30f1 0x3099 */ 0x30f9, 0x0000, /* 0x30f2 0x3099 */ 0x30fa, 0x0000, /* 0x30fd 0x3099 */ 0x30fe, 0x0000, /* 0x306f 0x309a */ 0x3071, 0x0000, /* 0x3072 0x309a */ 0x3074, 0x0000, /* 0x3075 0x309a */ 0x3077, 0x0000, /* 0x3078 0x309a */ 0x307a, 0x0000, /* 0x307b 0x309a */ 0x307d, 0x0000, /* 0x30cf 0x309a */ 0x30d1, 0x0000, /* 0x30d2 0x309a */ 0x30d4, 0x0000, /* 0x30d5 0x309a */ 0x30d7, 0x0000, /* 0x30d8 0x309a */ 0x30da, 0x0000, /* 0x30db 0x309a */ 0x30dd, 0x0000, /* 0x0307 0x0053 0x0301 */ 0x1e64, 0x0000, /* 0x0307 0x0073 0x0301 */ 0x1e65, 0x0000, /* 0x0300 0x0041 0x0302 */ 0x1ea6, 0x0000, /* 0x0301 0x0041 0x0302 */ 0x1ea4, 0x0000, /* 0x0303 0x0041 0x0302 */ 0x1eaa, 0x0000, /* 0x0309 0x0041 0x0302 */ 0x1ea8, 0x0000, /* 0x0300 0x0045 0x0302 */ 0x1ec0, 0x0000, /* 0x0301 0x0045 0x0302 */ 0x1ebe, 0x0000, /* 0x0303 0x0045 0x0302 */ 0x1ec4, 0x0000, /* 0x0309 0x0045 0x0302 */ 0x1ec2, 0x0000, /* 0x0300 0x004f 0x0302 */ 0x1ed2, 0x0000, /* 0x0301 0x004f 0x0302 */ 0x1ed0, 0x0000, /* 0x0303 0x004f 0x0302 */ 0x1ed6, 0x0000, /* 0x0309 0x004f 0x0302 */ 0x1ed4, 0x0000, /* 0x0300 0x0061 0x0302 */ 0x1ea7, 0x0000, /* 0x0301 0x0061 0x0302 */ 0x1ea5, 0x0000, /* 0x0303 0x0061 0x0302 */ 0x1eab, 0x0000, /* 0x0309 0x0061 0x0302 */ 0x1ea9, 0x0000, /* 0x0300 0x0065 0x0302 */ 0x1ec1, 0x0000, /* 0x0301 0x0065 0x0302 */ 0x1ebf, 0x0000, /* 0x0303 0x0065 0x0302 */ 0x1ec5, 0x0000, /* 0x0309 0x0065 0x0302 */ 0x1ec3, 0x0000, /* 0x0300 0x006f 0x0302 */ 0x1ed3, 0x0000, /* 0x0301 0x006f 0x0302 */ 0x1ed1, 0x0000, /* 0x0303 0x006f 0x0302 */ 0x1ed7, 0x0000, /* 0x0309 0x006f 0x0302 */ 0x1ed5, 0x0000, /* 0x0301 0x004f 0x0303 */ 0x1e4c, 0x0000, /* 0x0308 0x004f 0x0303 */ 0x1e4e, 0x0000, /* 0x0301 0x0055 0x0303 */ 0x1e78, 0x0000, /* 0x0301 0x006f 0x0303 */ 0x1e4d, 0x0000, /* 0x0308 0x006f 0x0303 */ 0x1e4f, 0x0000, /* 0x0301 0x0075 0x0303 */ 0x1e79, 0x0000, /* 0x0300 0x0045 0x0304 */ 0x1e14, 0x0000, /* 0x0301 0x0045 0x0304 */ 0x1e16, 0x0000, /* 0x0300 0x004f 0x0304 */ 0x1e50, 0x0000, /* 0x0301 0x004f 0x0304 */ 0x1e52, 0x0000, /* 0x0308 0x0055 0x0304 */ 0x1e7a, 0x0000, /* 0x0300 0x0065 0x0304 */ 0x1e15, 0x0000, /* 0x0301 0x0065 0x0304 */ 0x1e17, 0x0000, /* 0x0300 0x006f 0x0304 */ 0x1e51, 0x0000, /* 0x0301 0x006f 0x0304 */ 0x1e53, 0x0000, /* 0x0308 0x0075 0x0304 */ 0x1e7b, 0x0000, /* 0x0300 0x0041 0x0306 */ 0x1eb0, 0x0000, /* 0x0301 0x0041 0x0306 */ 0x1eae, 0x0000, /* 0x0303 0x0041 0x0306 */ 0x1eb4, 0x0000, /* 0x0309 0x0041 0x0306 */ 0x1eb2, 0x0000, /* 0x0300 0x0061 0x0306 */ 0x1eb1, 0x0000, /* 0x0301 0x0061 0x0306 */ 0x1eaf, 0x0000, /* 0x0303 0x0061 0x0306 */ 0x1eb5, 0x0000, /* 0x0309 0x0061 0x0306 */ 0x1eb3, 0x0000, /* 0x0304 0x0041 0x0307 */ 0x01e0, 0x0000, /* 0x0304 0x0061 0x0307 */ 0x01e1, 0x0000, /* 0x0304 0x0041 0x0308 */ 0x01de, 0x0000, /* 0x0301 0x0049 0x0308 */ 0x1e2e, 0x0000, /* 0x0300 0x0055 0x0308 */ 0x01db, 0x0000, /* 0x0301 0x0055 0x0308 */ 0x01d7, 0x0000, /* 0x0304 0x0055 0x0308 */ 0x01d5, 0x0000, /* 0x030c 0x0055 0x0308 */ 0x01d9, 0x0000, /* 0x0304 0x0061 0x0308 */ 0x01df, 0x0000, /* 0x0301 0x0069 0x0308 */ 0x1e2f, 0x0000, /* 0x0300 0x0075 0x0308 */ 0x01dc, 0x0000, /* 0x0301 0x0075 0x0308 */ 0x01d8, 0x0000, /* 0x0304 0x0075 0x0308 */ 0x01d6, 0x0000, /* 0x030c 0x0075 0x0308 */ 0x01da, 0x0000, /* 0x0300 0x03b9 0x0308 */ 0x1fd2, 0x0000, /* 0x0301 0x03b9 0x0308 */ 0x1fd3, 0x0000, /* 0x030d 0x03b9 0x0308 */ 0x0390, 0x0000, /* 0x0342 0x03b9 0x0308 */ 0x1fd7, 0x0000, /* 0x0300 0x03c5 0x0308 */ 0x1fe2, 0x0000, /* 0x0301 0x03c5 0x0308 */ 0x1fe3, 0x0000, /* 0x030d 0x03c5 0x0308 */ 0x03b0, 0x0000, /* 0x0342 0x03c5 0x0308 */ 0x1fe7, 0x0000, /* 0x0301 0x0041 0x030a */ 0x01fa, 0x0000, /* 0x0301 0x0061 0x030a */ 0x01fb, 0x0000, /* 0x0307 0x0053 0x030c */ 0x1e66, 0x0000, /* 0x0307 0x0073 0x030c */ 0x1e67, 0x0000, /* 0x0300 0x0391 0x0313 */ 0x1f0a, 0x0000, /* 0x0301 0x0391 0x0313 */ 0x1f0c, 0x0000, /* 0x0342 0x0391 0x0313 */ 0x1f0e, 0x0000, /* 0x0300 0x0395 0x0313 */ 0x1f1a, 0x0000, /* 0x0301 0x0395 0x0313 */ 0x1f1c, 0x0000, /* 0x0300 0x0397 0x0313 */ 0x1f2a, 0x0000, /* 0x0301 0x0397 0x0313 */ 0x1f2c, 0x0000, /* 0x0342 0x0397 0x0313 */ 0x1f2e, 0x0000, /* 0x0300 0x0399 0x0313 */ 0x1f3a, 0x0000, /* 0x0301 0x0399 0x0313 */ 0x1f3c, 0x0000, /* 0x0342 0x0399 0x0313 */ 0x1f3e, 0x0000, /* 0x0300 0x039f 0x0313 */ 0x1f4a, 0x0000, /* 0x0301 0x039f 0x0313 */ 0x1f4c, 0x0000, /* 0x0300 0x03a9 0x0313 */ 0x1f6a, 0x0000, /* 0x0301 0x03a9 0x0313 */ 0x1f6c, 0x0000, /* 0x0342 0x03a9 0x0313 */ 0x1f6e, 0x0000, /* 0x0300 0x03b1 0x0313 */ 0x1f02, 0x0000, /* 0x0301 0x03b1 0x0313 */ 0x1f04, 0x0000, /* 0x0342 0x03b1 0x0313 */ 0x1f06, 0x0000, /* 0x0300 0x03b5 0x0313 */ 0x1f12, 0x0000, /* 0x0301 0x03b5 0x0313 */ 0x1f14, 0x0000, /* 0x0300 0x03b7 0x0313 */ 0x1f22, 0x0000, /* 0x0301 0x03b7 0x0313 */ 0x1f24, 0x0000, /* 0x0342 0x03b7 0x0313 */ 0x1f26, 0x0000, /* 0x0300 0x03b9 0x0313 */ 0x1f32, 0x0000, /* 0x0301 0x03b9 0x0313 */ 0x1f34, 0x0000, /* 0x0342 0x03b9 0x0313 */ 0x1f36, 0x0000, /* 0x0300 0x03bf 0x0313 */ 0x1f42, 0x0000, /* 0x0301 0x03bf 0x0313 */ 0x1f44, 0x0000, /* 0x0300 0x03c5 0x0313 */ 0x1f52, 0x0000, /* 0x0301 0x03c5 0x0313 */ 0x1f54, 0x0000, /* 0x0342 0x03c5 0x0313 */ 0x1f56, 0x0000, /* 0x0300 0x03c9 0x0313 */ 0x1f62, 0x0000, /* 0x0301 0x03c9 0x0313 */ 0x1f64, 0x0000, /* 0x0342 0x03c9 0x0313 */ 0x1f66, 0x0000, /* 0x0300 0x0391 0x0314 */ 0x1f0b, 0x0000, /* 0x0301 0x0391 0x0314 */ 0x1f0d, 0x0000, /* 0x0342 0x0391 0x0314 */ 0x1f0f, 0x0000, /* 0x0300 0x0395 0x0314 */ 0x1f1b, 0x0000, /* 0x0301 0x0395 0x0314 */ 0x1f1d, 0x0000, /* 0x0300 0x0397 0x0314 */ 0x1f2b, 0x0000, /* 0x0301 0x0397 0x0314 */ 0x1f2d, 0x0000, /* 0x0342 0x0397 0x0314 */ 0x1f2f, 0x0000, /* 0x0300 0x0399 0x0314 */ 0x1f3b, 0x0000, /* 0x0301 0x0399 0x0314 */ 0x1f3d, 0x0000, /* 0x0342 0x0399 0x0314 */ 0x1f3f, 0x0000, /* 0x0300 0x039f 0x0314 */ 0x1f4b, 0x0000, /* 0x0301 0x039f 0x0314 */ 0x1f4d, 0x0000, /* 0x0300 0x03a5 0x0314 */ 0x1f5b, 0x0000, /* 0x0301 0x03a5 0x0314 */ 0x1f5d, 0x0000, /* 0x0342 0x03a5 0x0314 */ 0x1f5f, 0x0000, /* 0x0300 0x03a9 0x0314 */ 0x1f6b, 0x0000, /* 0x0301 0x03a9 0x0314 */ 0x1f6d, 0x0000, /* 0x0342 0x03a9 0x0314 */ 0x1f6f, 0x0000, /* 0x0300 0x03b1 0x0314 */ 0x1f03, 0x0000, /* 0x0301 0x03b1 0x0314 */ 0x1f05, 0x0000, /* 0x0342 0x03b1 0x0314 */ 0x1f07, 0x0000, /* 0x0300 0x03b5 0x0314 */ 0x1f13, 0x0000, /* 0x0301 0x03b5 0x0314 */ 0x1f15, 0x0000, /* 0x0300 0x03b7 0x0314 */ 0x1f23, 0x0000, /* 0x0301 0x03b7 0x0314 */ 0x1f25, 0x0000, /* 0x0342 0x03b7 0x0314 */ 0x1f27, 0x0000, /* 0x0300 0x03b9 0x0314 */ 0x1f33, 0x0000, /* 0x0301 0x03b9 0x0314 */ 0x1f35, 0x0000, /* 0x0342 0x03b9 0x0314 */ 0x1f37, 0x0000, /* 0x0300 0x03bf 0x0314 */ 0x1f43, 0x0000, /* 0x0301 0x03bf 0x0314 */ 0x1f45, 0x0000, /* 0x0300 0x03c5 0x0314 */ 0x1f53, 0x0000, /* 0x0301 0x03c5 0x0314 */ 0x1f55, 0x0000, /* 0x0342 0x03c5 0x0314 */ 0x1f57, 0x0000, /* 0x0300 0x03c9 0x0314 */ 0x1f63, 0x0000, /* 0x0301 0x03c9 0x0314 */ 0x1f65, 0x0000, /* 0x0342 0x03c9 0x0314 */ 0x1f67, 0x0000, /* 0x0300 0x004f 0x031b */ 0x1edc, 0x0000, /* 0x0301 0x004f 0x031b */ 0x1eda, 0x0000, /* 0x0303 0x004f 0x031b */ 0x1ee0, 0x0000, /* 0x0309 0x004f 0x031b */ 0x1ede, 0x0000, /* 0x0323 0x004f 0x031b */ 0x1ee2, 0x0000, /* 0x0300 0x0055 0x031b */ 0x1eea, 0x0000, /* 0x0301 0x0055 0x031b */ 0x1ee8, 0x0000, /* 0x0303 0x0055 0x031b */ 0x1eee, 0x0000, /* 0x0309 0x0055 0x031b */ 0x1eec, 0x0000, /* 0x0323 0x0055 0x031b */ 0x1ef0, 0x0000, /* 0x0300 0x006f 0x031b */ 0x1edd, 0x0000, /* 0x0301 0x006f 0x031b */ 0x1edb, 0x0000, /* 0x0303 0x006f 0x031b */ 0x1ee1, 0x0000, /* 0x0309 0x006f 0x031b */ 0x1edf, 0x0000, /* 0x0323 0x006f 0x031b */ 0x1ee3, 0x0000, /* 0x0300 0x0075 0x031b */ 0x1eeb, 0x0000, /* 0x0301 0x0075 0x031b */ 0x1ee9, 0x0000, /* 0x0303 0x0075 0x031b */ 0x1eef, 0x0000, /* 0x0309 0x0075 0x031b */ 0x1eed, 0x0000, /* 0x0323 0x0075 0x031b */ 0x1ef1, 0x0000, /* 0x0302 0x0041 0x0323 */ 0x1eac, 0x0000, /* 0x0306 0x0041 0x0323 */ 0x1eb6, 0x0000, /* 0x0302 0x0045 0x0323 */ 0x1ec6, 0x0000, /* 0x0304 0x004c 0x0323 */ 0x1e38, 0x0000, /* 0x0302 0x004f 0x0323 */ 0x1ed8, 0x0000, /* 0x0304 0x0052 0x0323 */ 0x1e5c, 0x0000, /* 0x0307 0x0053 0x0323 */ 0x1e68, 0x0000, /* 0x0302 0x0061 0x0323 */ 0x1ead, 0x0000, /* 0x0306 0x0061 0x0323 */ 0x1eb7, 0x0000, /* 0x0302 0x0065 0x0323 */ 0x1ec7, 0x0000, /* 0x0304 0x006c 0x0323 */ 0x1e39, 0x0000, /* 0x0302 0x006f 0x0323 */ 0x1ed9, 0x0000, /* 0x0304 0x0072 0x0323 */ 0x1e5d, 0x0000, /* 0x0307 0x0073 0x0323 */ 0x1e69, 0x0000, /* 0x0301 0x0043 0x0327 */ 0x1e08, 0x0000, /* 0x0306 0x0045 0x0327 */ 0x1e1c, 0x0000, /* 0x0301 0x0063 0x0327 */ 0x1e09, 0x0000, /* 0x0306 0x0065 0x0327 */ 0x1e1d, 0x0000, /* 0x0304 0x004f 0x0328 */ 0x01ec, 0x0000, /* 0x0304 0x006f 0x0328 */ 0x01ed, 0x0000, /* 0x0313 0x0391 0x0345 */ 0x1f88, 0x0003, 0x0300, 0x0f5e, 0x0301, 0x0f60, 0x0342, 0x0f62, /* 0x0314 0x0391 0x0345 */ 0x1f89, 0x0003, 0x0300, 0x0f64, 0x0301, 0x0f66, 0x0342, 0x0f68, /* 0x0313 0x0397 0x0345 */ 0x1f98, 0x0003, 0x0300, 0x0f6a, 0x0301, 0x0f6c, 0x0342, 0x0f6e, /* 0x0314 0x0397 0x0345 */ 0x1f99, 0x0003, 0x0300, 0x0f70, 0x0301, 0x0f72, 0x0342, 0x0f74, /* 0x0313 0x03a9 0x0345 */ 0x1fa8, 0x0003, 0x0300, 0x0f76, 0x0301, 0x0f78, 0x0342, 0x0f7a, /* 0x0314 0x03a9 0x0345 */ 0x1fa9, 0x0003, 0x0300, 0x0f7c, 0x0301, 0x0f7e, 0x0342, 0x0f80, /* 0x0300 0x03b1 0x0345 */ 0x1fb2, 0x0000, /* 0x0301 0x03b1 0x0345 */ 0x1fb4, 0x0000, /* 0x0313 0x03b1 0x0345 */ 0x1f80, 0x0003, 0x0300, 0x0f82, 0x0301, 0x0f84, 0x0342, 0x0f86, /* 0x0314 0x03b1 0x0345 */ 0x1f81, 0x0003, 0x0300, 0x0f88, 0x0301, 0x0f8a, 0x0342, 0x0f8c, /* 0x0342 0x03b1 0x0345 */ 0x1fb7, 0x0000, /* 0x0300 0x03b7 0x0345 */ 0x1fc2, 0x0000, /* 0x0301 0x03b7 0x0345 */ 0x1fc4, 0x0000, /* 0x0313 0x03b7 0x0345 */ 0x1f90, 0x0003, 0x0300, 0x0f8e, 0x0301, 0x0f90, 0x0342, 0x0f92, /* 0x0314 0x03b7 0x0345 */ 0x1f91, 0x0003, 0x0300, 0x0f94, 0x0301, 0x0f96, 0x0342, 0x0f98, /* 0x0342 0x03b7 0x0345 */ 0x1fc7, 0x0000, /* 0x0301 0x03bf 0x0345 */ 0x1ff4, 0x0000, /* 0x0300 0x03c9 0x0345 */ 0x1ff2, 0x0000, /* 0x0313 0x03c9 0x0345 */ 0x1fa0, 0x0003, 0x0300, 0x0f9a, 0x0301, 0x0f9c, 0x0342, 0x0f9e, /* 0x0314 0x03c9 0x0345 */ 0x1fa1, 0x0003, 0x0300, 0x0fa0, 0x0301, 0x0fa2, 0x0342, 0x0fa4, /* 0x0342 0x03c9 0x0345 */ 0x1ff7, 0x0000, /* 0x05c1 0x05e9 0x05bc */ 0xfb2c, 0x0000, /* 0x05c2 0x05e9 0x05bc */ 0xfb2d, 0x0000, /* 0x0cd5 0x0cc6 0x0cc2 */ 0x0ccb, 0x0000, /* 0x0f71 0x0fb2 0x0f80 */ 0x0f77, 0x0000, /* 0x0f71 0x0fb3 0x0f80 */ 0x0f79, 0x0000, /* 0x0300 0x0313 0x0391 0x0345 */ 0x1f8a, 0x0000, /* 0x0301 0x0313 0x0391 0x0345 */ 0x1f8c, 0x0000, /* 0x0342 0x0313 0x0391 0x0345 */ 0x1f8e, 0x0000, /* 0x0300 0x0314 0x0391 0x0345 */ 0x1f8b, 0x0000, /* 0x0301 0x0314 0x0391 0x0345 */ 0x1f8d, 0x0000, /* 0x0342 0x0314 0x0391 0x0345 */ 0x1f8f, 0x0000, /* 0x0300 0x0313 0x0397 0x0345 */ 0x1f9a, 0x0000, /* 0x0301 0x0313 0x0397 0x0345 */ 0x1f9c, 0x0000, /* 0x0342 0x0313 0x0397 0x0345 */ 0x1f9e, 0x0000, /* 0x0300 0x0314 0x0397 0x0345 */ 0x1f9b, 0x0000, /* 0x0301 0x0314 0x0397 0x0345 */ 0x1f9d, 0x0000, /* 0x0342 0x0314 0x0397 0x0345 */ 0x1f9f, 0x0000, /* 0x0300 0x0313 0x03a9 0x0345 */ 0x1faa, 0x0000, /* 0x0301 0x0313 0x03a9 0x0345 */ 0x1fac, 0x0000, /* 0x0342 0x0313 0x03a9 0x0345 */ 0x1fae, 0x0000, /* 0x0300 0x0314 0x03a9 0x0345 */ 0x1fab, 0x0000, /* 0x0301 0x0314 0x03a9 0x0345 */ 0x1fad, 0x0000, /* 0x0342 0x0314 0x03a9 0x0345 */ 0x1faf, 0x0000, /* 0x0300 0x0313 0x03b1 0x0345 */ 0x1f82, 0x0000, /* 0x0301 0x0313 0x03b1 0x0345 */ 0x1f84, 0x0000, /* 0x0342 0x0313 0x03b1 0x0345 */ 0x1f86, 0x0000, /* 0x0300 0x0314 0x03b1 0x0345 */ 0x1f83, 0x0000, /* 0x0301 0x0314 0x03b1 0x0345 */ 0x1f85, 0x0000, /* 0x0342 0x0314 0x03b1 0x0345 */ 0x1f87, 0x0000, /* 0x0300 0x0313 0x03b7 0x0345 */ 0x1f92, 0x0000, /* 0x0301 0x0313 0x03b7 0x0345 */ 0x1f94, 0x0000, /* 0x0342 0x0313 0x03b7 0x0345 */ 0x1f96, 0x0000, /* 0x0300 0x0314 0x03b7 0x0345 */ 0x1f93, 0x0000, /* 0x0301 0x0314 0x03b7 0x0345 */ 0x1f95, 0x0000, /* 0x0342 0x0314 0x03b7 0x0345 */ 0x1f97, 0x0000, /* 0x0300 0x0313 0x03c9 0x0345 */ 0x1fa2, 0x0000, /* 0x0301 0x0313 0x03c9 0x0345 */ 0x1fa4, 0x0000, /* 0x0342 0x0313 0x03c9 0x0345 */ 0x1fa6, 0x0000, /* 0x0300 0x0314 0x03c9 0x0345 */ 0x1fa3, 0x0000, /* 0x0301 0x0314 0x03c9 0x0345 */ 0x1fa5, 0x0000, /* 0x0342 0x0314 0x03c9 0x0345 */ 0x1fa7, 0x0000, };
linux-master
fs/hfsplus/tables.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/xattr_trusted.c * * Vyacheslav Dubeyko <[email protected]> * * Handler for trusted extended attributes. */ #include <linux/nls.h> #include "hfsplus_fs.h" #include "xattr.h" static int hfsplus_trusted_getxattr(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { return hfsplus_getxattr(inode, name, buffer, size, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); } static int hfsplus_trusted_setxattr(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *buffer, size_t size, int flags) { return hfsplus_setxattr(inode, name, buffer, size, flags, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); } const struct xattr_handler hfsplus_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .get = hfsplus_trusted_getxattr, .set = hfsplus_trusted_setxattr, };
linux-master
fs/hfsplus/xattr_trusted.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/xattr.c * * Vyacheslav Dubeyko <[email protected]> * * Logic of processing extended attributes */ #include "hfsplus_fs.h" #include <linux/nls.h> #include "xattr.h" static int hfsplus_removexattr(struct inode *inode, const char *name); const struct xattr_handler *hfsplus_xattr_handlers[] = { &hfsplus_xattr_osx_handler, &hfsplus_xattr_user_handler, &hfsplus_xattr_trusted_handler, &hfsplus_xattr_security_handler, NULL }; static int strcmp_xattr_finder_info(const char *name) { if (name) { return strncmp(name, HFSPLUS_XATTR_FINDER_INFO_NAME, sizeof(HFSPLUS_XATTR_FINDER_INFO_NAME)); } return -1; } static int strcmp_xattr_acl(const char *name) { if (name) { return strncmp(name, HFSPLUS_XATTR_ACL_NAME, sizeof(HFSPLUS_XATTR_ACL_NAME)); } return -1; } static bool is_known_namespace(const char *name) { if (strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN) && strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN) && strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN) && strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN)) return false; return true; } static void hfsplus_init_header_node(struct inode *attr_file, u32 clump_size, char *buf, u16 node_size) { struct hfs_bnode_desc *desc; struct hfs_btree_header_rec *head; u16 offset; __be16 *rec_offsets; u32 hdr_node_map_rec_bits; char *bmp; u32 used_nodes; u32 used_bmp_bytes; u64 tmp; hfs_dbg(ATTR_MOD, "init_hdr_attr_file: clump %u, node_size %u\n", clump_size, node_size); /* The end of the node contains list of record offsets */ rec_offsets = (__be16 *)(buf + node_size); desc = (struct hfs_bnode_desc *)buf; desc->type = HFS_NODE_HEADER; desc->num_recs = cpu_to_be16(HFSPLUS_BTREE_HDR_NODE_RECS_COUNT); offset = sizeof(struct hfs_bnode_desc); *--rec_offsets = cpu_to_be16(offset); head = (struct hfs_btree_header_rec *)(buf + offset); head->node_size = cpu_to_be16(node_size); tmp = i_size_read(attr_file); do_div(tmp, node_size); head->node_count = cpu_to_be32(tmp); head->free_nodes = cpu_to_be32(be32_to_cpu(head->node_count) - 1); head->clump_size = cpu_to_be32(clump_size); head->attributes |= cpu_to_be32(HFS_TREE_BIGKEYS | HFS_TREE_VARIDXKEYS); head->max_key_len = cpu_to_be16(HFSPLUS_ATTR_KEYLEN - sizeof(u16)); offset += sizeof(struct hfs_btree_header_rec); *--rec_offsets = cpu_to_be16(offset); offset += HFSPLUS_BTREE_HDR_USER_BYTES; *--rec_offsets = cpu_to_be16(offset); hdr_node_map_rec_bits = 8 * (node_size - offset - (4 * sizeof(u16))); if (be32_to_cpu(head->node_count) > hdr_node_map_rec_bits) { u32 map_node_bits; u32 map_nodes; desc->next = cpu_to_be32(be32_to_cpu(head->leaf_tail) + 1); map_node_bits = 8 * (node_size - sizeof(struct hfs_bnode_desc) - (2 * sizeof(u16)) - 2); map_nodes = (be32_to_cpu(head->node_count) - hdr_node_map_rec_bits + (map_node_bits - 1)) / map_node_bits; be32_add_cpu(&head->free_nodes, 0 - map_nodes); } bmp = buf + offset; used_nodes = be32_to_cpu(head->node_count) - be32_to_cpu(head->free_nodes); used_bmp_bytes = used_nodes / 8; if (used_bmp_bytes) { memset(bmp, 0xFF, used_bmp_bytes); bmp += used_bmp_bytes; used_nodes %= 8; } *bmp = ~(0xFF >> used_nodes); offset += hdr_node_map_rec_bits / 8; *--rec_offsets = cpu_to_be16(offset); } static int hfsplus_create_attributes_file(struct super_block *sb) { int err = 0; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct inode *attr_file; struct hfsplus_inode_info *hip; u32 clump_size; u16 node_size = HFSPLUS_ATTR_TREE_NODE_SIZE; char *buf; int index, written; struct address_space *mapping; struct page *page; int old_state = HFSPLUS_EMPTY_ATTR_TREE; hfs_dbg(ATTR_MOD, "create_attr_file: ino %d\n", HFSPLUS_ATTR_CNID); check_attr_tree_state_again: switch (atomic_read(&sbi->attr_tree_state)) { case HFSPLUS_EMPTY_ATTR_TREE: if (old_state != atomic_cmpxchg(&sbi->attr_tree_state, old_state, HFSPLUS_CREATING_ATTR_TREE)) goto check_attr_tree_state_again; break; case HFSPLUS_CREATING_ATTR_TREE: /* * This state means that another thread is in process * of AttributesFile creation. Theoretically, it is * possible to be here. But really __setxattr() method * first of all calls hfs_find_init() for lookup in * B-tree of CatalogFile. This method locks mutex of * CatalogFile's B-tree. As a result, if some thread * is inside AttributedFile creation operation then * another threads will be waiting unlocking of * CatalogFile's B-tree's mutex. However, if code will * change then we will return error code (-EAGAIN) from * here. Really, it means that first try to set of xattr * fails with error but second attempt will have success. */ return -EAGAIN; case HFSPLUS_VALID_ATTR_TREE: return 0; case HFSPLUS_FAILED_ATTR_TREE: return -EOPNOTSUPP; default: BUG(); } attr_file = hfsplus_iget(sb, HFSPLUS_ATTR_CNID); if (IS_ERR(attr_file)) { pr_err("failed to load attributes file\n"); return PTR_ERR(attr_file); } BUG_ON(i_size_read(attr_file) != 0); hip = HFSPLUS_I(attr_file); clump_size = hfsplus_calc_btree_clump_size(sb->s_blocksize, node_size, sbi->sect_count, HFSPLUS_ATTR_CNID); mutex_lock(&hip->extents_lock); hip->clump_blocks = clump_size >> sbi->alloc_blksz_shift; mutex_unlock(&hip->extents_lock); if (sbi->free_blocks <= (hip->clump_blocks << 1)) { err = -ENOSPC; goto end_attr_file_creation; } while (hip->alloc_blocks < hip->clump_blocks) { err = hfsplus_file_extend(attr_file, false); if (unlikely(err)) { pr_err("failed to extend attributes file\n"); goto end_attr_file_creation; } hip->phys_size = attr_file->i_size = (loff_t)hip->alloc_blocks << sbi->alloc_blksz_shift; hip->fs_blocks = hip->alloc_blocks << sbi->fs_shift; inode_set_bytes(attr_file, attr_file->i_size); } buf = kzalloc(node_size, GFP_NOFS); if (!buf) { err = -ENOMEM; goto end_attr_file_creation; } hfsplus_init_header_node(attr_file, clump_size, buf, node_size); mapping = attr_file->i_mapping; index = 0; written = 0; for (; written < node_size; index++, written += PAGE_SIZE) { void *kaddr; page = read_mapping_page(mapping, index, NULL); if (IS_ERR(page)) { err = PTR_ERR(page); goto failed_header_node_init; } kaddr = kmap_atomic(page); memcpy(kaddr, buf + written, min_t(size_t, PAGE_SIZE, node_size - written)); kunmap_atomic(kaddr); set_page_dirty(page); put_page(page); } hfsplus_mark_inode_dirty(attr_file, HFSPLUS_I_ATTR_DIRTY); sbi->attr_tree = hfs_btree_open(sb, HFSPLUS_ATTR_CNID); if (!sbi->attr_tree) pr_err("failed to load attributes file\n"); failed_header_node_init: kfree(buf); end_attr_file_creation: iput(attr_file); if (!err) atomic_set(&sbi->attr_tree_state, HFSPLUS_VALID_ATTR_TREE); else if (err == -ENOSPC) atomic_set(&sbi->attr_tree_state, HFSPLUS_EMPTY_ATTR_TREE); else atomic_set(&sbi->attr_tree_state, HFSPLUS_FAILED_ATTR_TREE); return err; } int __hfsplus_setxattr(struct inode *inode, const char *name, const void *value, size_t size, int flags) { int err; struct hfs_find_data cat_fd; hfsplus_cat_entry entry; u16 cat_entry_flags, cat_entry_type; u16 folder_finderinfo_len = sizeof(struct DInfo) + sizeof(struct DXInfo); u16 file_finderinfo_len = sizeof(struct FInfo) + sizeof(struct FXInfo); if ((!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) || HFSPLUS_IS_RSRC(inode)) return -EOPNOTSUPP; if (value == NULL) return hfsplus_removexattr(inode, name); err = hfs_find_init(HFSPLUS_SB(inode->i_sb)->cat_tree, &cat_fd); if (err) { pr_err("can't init xattr find struct\n"); return err; } err = hfsplus_find_cat(inode->i_sb, inode->i_ino, &cat_fd); if (err) { pr_err("catalog searching failed\n"); goto end_setxattr; } if (!strcmp_xattr_finder_info(name)) { if (flags & XATTR_CREATE) { pr_err("xattr exists yet\n"); err = -EOPNOTSUPP; goto end_setxattr; } hfs_bnode_read(cat_fd.bnode, &entry, cat_fd.entryoffset, sizeof(hfsplus_cat_entry)); if (be16_to_cpu(entry.type) == HFSPLUS_FOLDER) { if (size == folder_finderinfo_len) { memcpy(&entry.folder.info, value, folder_finderinfo_len); hfs_bnode_write(cat_fd.bnode, &entry, cat_fd.entryoffset, sizeof(struct hfsplus_cat_folder)); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_CAT_DIRTY); } else { err = -ERANGE; goto end_setxattr; } } else if (be16_to_cpu(entry.type) == HFSPLUS_FILE) { if (size == file_finderinfo_len) { memcpy(&entry.file.info, value, file_finderinfo_len); hfs_bnode_write(cat_fd.bnode, &entry, cat_fd.entryoffset, sizeof(struct hfsplus_cat_file)); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_CAT_DIRTY); } else { err = -ERANGE; goto end_setxattr; } } else { err = -EOPNOTSUPP; goto end_setxattr; } goto end_setxattr; } if (!HFSPLUS_SB(inode->i_sb)->attr_tree) { err = hfsplus_create_attributes_file(inode->i_sb); if (unlikely(err)) goto end_setxattr; } if (hfsplus_attr_exists(inode, name)) { if (flags & XATTR_CREATE) { pr_err("xattr exists yet\n"); err = -EOPNOTSUPP; goto end_setxattr; } err = hfsplus_delete_attr(inode, name); if (err) goto end_setxattr; err = hfsplus_create_attr(inode, name, value, size); if (err) goto end_setxattr; } else { if (flags & XATTR_REPLACE) { pr_err("cannot replace xattr\n"); err = -EOPNOTSUPP; goto end_setxattr; } err = hfsplus_create_attr(inode, name, value, size); if (err) goto end_setxattr; } cat_entry_type = hfs_bnode_read_u16(cat_fd.bnode, cat_fd.entryoffset); if (cat_entry_type == HFSPLUS_FOLDER) { cat_entry_flags = hfs_bnode_read_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_folder, flags)); cat_entry_flags |= HFSPLUS_XATTR_EXISTS; if (!strcmp_xattr_acl(name)) cat_entry_flags |= HFSPLUS_ACL_EXISTS; hfs_bnode_write_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_folder, flags), cat_entry_flags); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_CAT_DIRTY); } else if (cat_entry_type == HFSPLUS_FILE) { cat_entry_flags = hfs_bnode_read_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_file, flags)); cat_entry_flags |= HFSPLUS_XATTR_EXISTS; if (!strcmp_xattr_acl(name)) cat_entry_flags |= HFSPLUS_ACL_EXISTS; hfs_bnode_write_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_file, flags), cat_entry_flags); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_CAT_DIRTY); } else { pr_err("invalid catalog entry type\n"); err = -EIO; goto end_setxattr; } end_setxattr: hfs_find_exit(&cat_fd); return err; } static int name_len(const char *xattr_name, int xattr_name_len) { int len = xattr_name_len + 1; if (!is_known_namespace(xattr_name)) len += XATTR_MAC_OSX_PREFIX_LEN; return len; } static int copy_name(char *buffer, const char *xattr_name, int name_len) { int len = name_len; int offset = 0; if (!is_known_namespace(xattr_name)) { memcpy(buffer, XATTR_MAC_OSX_PREFIX, XATTR_MAC_OSX_PREFIX_LEN); offset += XATTR_MAC_OSX_PREFIX_LEN; len += XATTR_MAC_OSX_PREFIX_LEN; } strncpy(buffer + offset, xattr_name, name_len); memset(buffer + offset + name_len, 0, 1); len += 1; return len; } int hfsplus_setxattr(struct inode *inode, const char *name, const void *value, size_t size, int flags, const char *prefix, size_t prefixlen) { char *xattr_name; int res; xattr_name = kmalloc(NLS_MAX_CHARSET_SIZE * HFSPLUS_ATTR_MAX_STRLEN + 1, GFP_KERNEL); if (!xattr_name) return -ENOMEM; strcpy(xattr_name, prefix); strcpy(xattr_name + prefixlen, name); res = __hfsplus_setxattr(inode, xattr_name, value, size, flags); kfree(xattr_name); return res; } static ssize_t hfsplus_getxattr_finder_info(struct inode *inode, void *value, size_t size) { ssize_t res = 0; struct hfs_find_data fd; u16 entry_type; u16 folder_rec_len = sizeof(struct DInfo) + sizeof(struct DXInfo); u16 file_rec_len = sizeof(struct FInfo) + sizeof(struct FXInfo); u16 record_len = max(folder_rec_len, file_rec_len); u8 folder_finder_info[sizeof(struct DInfo) + sizeof(struct DXInfo)]; u8 file_finder_info[sizeof(struct FInfo) + sizeof(struct FXInfo)]; if (size >= record_len) { res = hfs_find_init(HFSPLUS_SB(inode->i_sb)->cat_tree, &fd); if (res) { pr_err("can't init xattr find struct\n"); return res; } res = hfsplus_find_cat(inode->i_sb, inode->i_ino, &fd); if (res) goto end_getxattr_finder_info; entry_type = hfs_bnode_read_u16(fd.bnode, fd.entryoffset); if (entry_type == HFSPLUS_FOLDER) { hfs_bnode_read(fd.bnode, folder_finder_info, fd.entryoffset + offsetof(struct hfsplus_cat_folder, user_info), folder_rec_len); memcpy(value, folder_finder_info, folder_rec_len); res = folder_rec_len; } else if (entry_type == HFSPLUS_FILE) { hfs_bnode_read(fd.bnode, file_finder_info, fd.entryoffset + offsetof(struct hfsplus_cat_file, user_info), file_rec_len); memcpy(value, file_finder_info, file_rec_len); res = file_rec_len; } else { res = -EOPNOTSUPP; goto end_getxattr_finder_info; } } else res = size ? -ERANGE : record_len; end_getxattr_finder_info: if (size >= record_len) hfs_find_exit(&fd); return res; } ssize_t __hfsplus_getxattr(struct inode *inode, const char *name, void *value, size_t size) { struct hfs_find_data fd; hfsplus_attr_entry *entry; __be32 xattr_record_type; u32 record_type; u16 record_length = 0; ssize_t res; if ((!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) || HFSPLUS_IS_RSRC(inode)) return -EOPNOTSUPP; if (!strcmp_xattr_finder_info(name)) return hfsplus_getxattr_finder_info(inode, value, size); if (!HFSPLUS_SB(inode->i_sb)->attr_tree) return -EOPNOTSUPP; entry = hfsplus_alloc_attr_entry(); if (!entry) { pr_err("can't allocate xattr entry\n"); return -ENOMEM; } res = hfs_find_init(HFSPLUS_SB(inode->i_sb)->attr_tree, &fd); if (res) { pr_err("can't init xattr find struct\n"); goto failed_getxattr_init; } res = hfsplus_find_attr(inode->i_sb, inode->i_ino, name, &fd); if (res) { if (res == -ENOENT) res = -ENODATA; else pr_err("xattr searching failed\n"); goto out; } hfs_bnode_read(fd.bnode, &xattr_record_type, fd.entryoffset, sizeof(xattr_record_type)); record_type = be32_to_cpu(xattr_record_type); if (record_type == HFSPLUS_ATTR_INLINE_DATA) { record_length = hfs_bnode_read_u16(fd.bnode, fd.entryoffset + offsetof(struct hfsplus_attr_inline_data, length)); if (record_length > HFSPLUS_MAX_INLINE_DATA_SIZE) { pr_err("invalid xattr record size\n"); res = -EIO; goto out; } } else if (record_type == HFSPLUS_ATTR_FORK_DATA || record_type == HFSPLUS_ATTR_EXTENTS) { pr_err("only inline data xattr are supported\n"); res = -EOPNOTSUPP; goto out; } else { pr_err("invalid xattr record\n"); res = -EIO; goto out; } if (size) { hfs_bnode_read(fd.bnode, entry, fd.entryoffset, offsetof(struct hfsplus_attr_inline_data, raw_bytes) + record_length); } if (size >= record_length) { memcpy(value, entry->inline_data.raw_bytes, record_length); res = record_length; } else res = size ? -ERANGE : record_length; out: hfs_find_exit(&fd); failed_getxattr_init: hfsplus_destroy_attr_entry(entry); return res; } ssize_t hfsplus_getxattr(struct inode *inode, const char *name, void *value, size_t size, const char *prefix, size_t prefixlen) { int res; char *xattr_name; xattr_name = kmalloc(NLS_MAX_CHARSET_SIZE * HFSPLUS_ATTR_MAX_STRLEN + 1, GFP_KERNEL); if (!xattr_name) return -ENOMEM; strcpy(xattr_name, prefix); strcpy(xattr_name + prefixlen, name); res = __hfsplus_getxattr(inode, xattr_name, value, size); kfree(xattr_name); return res; } static inline int can_list(const char *xattr_name) { if (!xattr_name) return 0; return strncmp(xattr_name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) || capable(CAP_SYS_ADMIN); } static ssize_t hfsplus_listxattr_finder_info(struct dentry *dentry, char *buffer, size_t size) { ssize_t res; struct inode *inode = d_inode(dentry); struct hfs_find_data fd; u16 entry_type; u8 folder_finder_info[sizeof(struct DInfo) + sizeof(struct DXInfo)]; u8 file_finder_info[sizeof(struct FInfo) + sizeof(struct FXInfo)]; unsigned long len, found_bit; int xattr_name_len, symbols_count; res = hfs_find_init(HFSPLUS_SB(inode->i_sb)->cat_tree, &fd); if (res) { pr_err("can't init xattr find struct\n"); return res; } res = hfsplus_find_cat(inode->i_sb, inode->i_ino, &fd); if (res) goto end_listxattr_finder_info; entry_type = hfs_bnode_read_u16(fd.bnode, fd.entryoffset); if (entry_type == HFSPLUS_FOLDER) { len = sizeof(struct DInfo) + sizeof(struct DXInfo); hfs_bnode_read(fd.bnode, folder_finder_info, fd.entryoffset + offsetof(struct hfsplus_cat_folder, user_info), len); found_bit = find_first_bit((void *)folder_finder_info, len*8); } else if (entry_type == HFSPLUS_FILE) { len = sizeof(struct FInfo) + sizeof(struct FXInfo); hfs_bnode_read(fd.bnode, file_finder_info, fd.entryoffset + offsetof(struct hfsplus_cat_file, user_info), len); found_bit = find_first_bit((void *)file_finder_info, len*8); } else { res = -EOPNOTSUPP; goto end_listxattr_finder_info; } if (found_bit >= (len*8)) res = 0; else { symbols_count = sizeof(HFSPLUS_XATTR_FINDER_INFO_NAME) - 1; xattr_name_len = name_len(HFSPLUS_XATTR_FINDER_INFO_NAME, symbols_count); if (!buffer || !size) { if (can_list(HFSPLUS_XATTR_FINDER_INFO_NAME)) res = xattr_name_len; } else if (can_list(HFSPLUS_XATTR_FINDER_INFO_NAME)) { if (size < xattr_name_len) res = -ERANGE; else { res = copy_name(buffer, HFSPLUS_XATTR_FINDER_INFO_NAME, symbols_count); } } } end_listxattr_finder_info: hfs_find_exit(&fd); return res; } ssize_t hfsplus_listxattr(struct dentry *dentry, char *buffer, size_t size) { ssize_t err; ssize_t res; struct inode *inode = d_inode(dentry); struct hfs_find_data fd; struct hfsplus_attr_key attr_key; char *strbuf; int xattr_name_len; if ((!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) || HFSPLUS_IS_RSRC(inode)) return -EOPNOTSUPP; res = hfsplus_listxattr_finder_info(dentry, buffer, size); if (res < 0) return res; else if (!HFSPLUS_SB(inode->i_sb)->attr_tree) return (res == 0) ? -EOPNOTSUPP : res; err = hfs_find_init(HFSPLUS_SB(inode->i_sb)->attr_tree, &fd); if (err) { pr_err("can't init xattr find struct\n"); return err; } strbuf = kmalloc(NLS_MAX_CHARSET_SIZE * HFSPLUS_ATTR_MAX_STRLEN + XATTR_MAC_OSX_PREFIX_LEN + 1, GFP_KERNEL); if (!strbuf) { res = -ENOMEM; goto out; } err = hfsplus_find_attr(inode->i_sb, inode->i_ino, NULL, &fd); if (err) { if (err == -ENOENT) { if (res == 0) res = -ENODATA; goto end_listxattr; } else { res = err; goto end_listxattr; } } for (;;) { u16 key_len = hfs_bnode_read_u16(fd.bnode, fd.keyoffset); if (key_len == 0 || key_len > fd.tree->max_key_len) { pr_err("invalid xattr key length: %d\n", key_len); res = -EIO; goto end_listxattr; } hfs_bnode_read(fd.bnode, &attr_key, fd.keyoffset, key_len + sizeof(key_len)); if (be32_to_cpu(attr_key.cnid) != inode->i_ino) goto end_listxattr; xattr_name_len = NLS_MAX_CHARSET_SIZE * HFSPLUS_ATTR_MAX_STRLEN; if (hfsplus_uni2asc(inode->i_sb, (const struct hfsplus_unistr *)&fd.key->attr.key_name, strbuf, &xattr_name_len)) { pr_err("unicode conversion failed\n"); res = -EIO; goto end_listxattr; } if (!buffer || !size) { if (can_list(strbuf)) res += name_len(strbuf, xattr_name_len); } else if (can_list(strbuf)) { if (size < (res + name_len(strbuf, xattr_name_len))) { res = -ERANGE; goto end_listxattr; } else res += copy_name(buffer + res, strbuf, xattr_name_len); } if (hfs_brec_goto(&fd, 1)) goto end_listxattr; } end_listxattr: kfree(strbuf); out: hfs_find_exit(&fd); return res; } static int hfsplus_removexattr(struct inode *inode, const char *name) { int err; struct hfs_find_data cat_fd; u16 flags; u16 cat_entry_type; int is_xattr_acl_deleted; int is_all_xattrs_deleted; if (!HFSPLUS_SB(inode->i_sb)->attr_tree) return -EOPNOTSUPP; if (!strcmp_xattr_finder_info(name)) return -EOPNOTSUPP; err = hfs_find_init(HFSPLUS_SB(inode->i_sb)->cat_tree, &cat_fd); if (err) { pr_err("can't init xattr find struct\n"); return err; } err = hfsplus_find_cat(inode->i_sb, inode->i_ino, &cat_fd); if (err) { pr_err("catalog searching failed\n"); goto end_removexattr; } err = hfsplus_delete_attr(inode, name); if (err) goto end_removexattr; is_xattr_acl_deleted = !strcmp_xattr_acl(name); is_all_xattrs_deleted = !hfsplus_attr_exists(inode, NULL); if (!is_xattr_acl_deleted && !is_all_xattrs_deleted) goto end_removexattr; cat_entry_type = hfs_bnode_read_u16(cat_fd.bnode, cat_fd.entryoffset); if (cat_entry_type == HFSPLUS_FOLDER) { flags = hfs_bnode_read_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_folder, flags)); if (is_xattr_acl_deleted) flags &= ~HFSPLUS_ACL_EXISTS; if (is_all_xattrs_deleted) flags &= ~HFSPLUS_XATTR_EXISTS; hfs_bnode_write_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_folder, flags), flags); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_CAT_DIRTY); } else if (cat_entry_type == HFSPLUS_FILE) { flags = hfs_bnode_read_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_file, flags)); if (is_xattr_acl_deleted) flags &= ~HFSPLUS_ACL_EXISTS; if (is_all_xattrs_deleted) flags &= ~HFSPLUS_XATTR_EXISTS; hfs_bnode_write_u16(cat_fd.bnode, cat_fd.entryoffset + offsetof(struct hfsplus_cat_file, flags), flags); hfsplus_mark_inode_dirty(inode, HFSPLUS_I_CAT_DIRTY); } else { pr_err("invalid catalog entry type\n"); err = -EIO; goto end_removexattr; } end_removexattr: hfs_find_exit(&cat_fd); return err; } static int hfsplus_osx_getxattr(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { /* * Don't allow retrieving properly prefixed attributes * by prepending them with "osx." */ if (is_known_namespace(name)) return -EOPNOTSUPP; /* * osx is the namespace we use to indicate an unprefixed * attribute on the filesystem (like the ones that OS X * creates), so we pass the name through unmodified (after * ensuring it doesn't conflict with another namespace). */ return __hfsplus_getxattr(inode, name, buffer, size); } static int hfsplus_osx_setxattr(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *buffer, size_t size, int flags) { /* * Don't allow setting properly prefixed attributes * by prepending them with "osx." */ if (is_known_namespace(name)) return -EOPNOTSUPP; /* * osx is the namespace we use to indicate an unprefixed * attribute on the filesystem (like the ones that OS X * creates), so we pass the name through unmodified (after * ensuring it doesn't conflict with another namespace). */ return __hfsplus_setxattr(inode, name, buffer, size, flags); } const struct xattr_handler hfsplus_xattr_osx_handler = { .prefix = XATTR_MAC_OSX_PREFIX, .get = hfsplus_osx_getxattr, .set = hfsplus_osx_setxattr, };
linux-master
fs/hfsplus/xattr.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/bfind.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Search routines for btrees */ #include <linux/slab.h> #include "hfsplus_fs.h" int hfs_find_init(struct hfs_btree *tree, struct hfs_find_data *fd) { void *ptr; fd->tree = tree; fd->bnode = NULL; ptr = kmalloc(tree->max_key_len * 2 + 4, GFP_KERNEL); if (!ptr) return -ENOMEM; fd->search_key = ptr; fd->key = ptr + tree->max_key_len + 2; hfs_dbg(BNODE_REFS, "find_init: %d (%p)\n", tree->cnid, __builtin_return_address(0)); switch (tree->cnid) { case HFSPLUS_CAT_CNID: mutex_lock_nested(&tree->tree_lock, CATALOG_BTREE_MUTEX); break; case HFSPLUS_EXT_CNID: mutex_lock_nested(&tree->tree_lock, EXTENTS_BTREE_MUTEX); break; case HFSPLUS_ATTR_CNID: mutex_lock_nested(&tree->tree_lock, ATTR_BTREE_MUTEX); break; default: BUG(); } return 0; } void hfs_find_exit(struct hfs_find_data *fd) { hfs_bnode_put(fd->bnode); kfree(fd->search_key); hfs_dbg(BNODE_REFS, "find_exit: %d (%p)\n", fd->tree->cnid, __builtin_return_address(0)); mutex_unlock(&fd->tree->tree_lock); fd->tree = NULL; } int hfs_find_1st_rec_by_cnid(struct hfs_bnode *bnode, struct hfs_find_data *fd, int *begin, int *end, int *cur_rec) { __be32 cur_cnid; __be32 search_cnid; if (bnode->tree->cnid == HFSPLUS_EXT_CNID) { cur_cnid = fd->key->ext.cnid; search_cnid = fd->search_key->ext.cnid; } else if (bnode->tree->cnid == HFSPLUS_CAT_CNID) { cur_cnid = fd->key->cat.parent; search_cnid = fd->search_key->cat.parent; } else if (bnode->tree->cnid == HFSPLUS_ATTR_CNID) { cur_cnid = fd->key->attr.cnid; search_cnid = fd->search_key->attr.cnid; } else { cur_cnid = 0; /* used-uninitialized warning */ search_cnid = 0; BUG(); } if (cur_cnid == search_cnid) { (*end) = (*cur_rec); if ((*begin) == (*end)) return 1; } else { if (be32_to_cpu(cur_cnid) < be32_to_cpu(search_cnid)) (*begin) = (*cur_rec) + 1; else (*end) = (*cur_rec) - 1; } return 0; } int hfs_find_rec_by_key(struct hfs_bnode *bnode, struct hfs_find_data *fd, int *begin, int *end, int *cur_rec) { int cmpval; cmpval = bnode->tree->keycmp(fd->key, fd->search_key); if (!cmpval) { (*end) = (*cur_rec); return 1; } if (cmpval < 0) (*begin) = (*cur_rec) + 1; else *(end) = (*cur_rec) - 1; return 0; } /* Find the record in bnode that best matches key (not greater than...)*/ int __hfs_brec_find(struct hfs_bnode *bnode, struct hfs_find_data *fd, search_strategy_t rec_found) { u16 off, len, keylen; int rec; int b, e; int res; BUG_ON(!rec_found); b = 0; e = bnode->num_recs - 1; res = -ENOENT; do { rec = (e + b) / 2; len = hfs_brec_lenoff(bnode, rec, &off); keylen = hfs_brec_keylen(bnode, rec); if (keylen == 0) { res = -EINVAL; goto fail; } hfs_bnode_read(bnode, fd->key, off, keylen); if (rec_found(bnode, fd, &b, &e, &rec)) { res = 0; goto done; } } while (b <= e); if (rec != e && e >= 0) { len = hfs_brec_lenoff(bnode, e, &off); keylen = hfs_brec_keylen(bnode, e); if (keylen == 0) { res = -EINVAL; goto fail; } hfs_bnode_read(bnode, fd->key, off, keylen); } done: fd->record = e; fd->keyoffset = off; fd->keylength = keylen; fd->entryoffset = off + keylen; fd->entrylength = len - keylen; fail: return res; } /* Traverse a B*Tree from the root to a leaf finding best fit to key */ /* Return allocated copy of node found, set recnum to best record */ int hfs_brec_find(struct hfs_find_data *fd, search_strategy_t do_key_compare) { struct hfs_btree *tree; struct hfs_bnode *bnode; u32 nidx, parent; __be32 data; int height, res; tree = fd->tree; if (fd->bnode) hfs_bnode_put(fd->bnode); fd->bnode = NULL; nidx = tree->root; if (!nidx) return -ENOENT; height = tree->depth; res = 0; parent = 0; for (;;) { bnode = hfs_bnode_find(tree, nidx); if (IS_ERR(bnode)) { res = PTR_ERR(bnode); bnode = NULL; break; } if (bnode->height != height) goto invalid; if (bnode->type != (--height ? HFS_NODE_INDEX : HFS_NODE_LEAF)) goto invalid; bnode->parent = parent; res = __hfs_brec_find(bnode, fd, do_key_compare); if (!height) break; if (fd->record < 0) goto release; parent = nidx; hfs_bnode_read(bnode, &data, fd->entryoffset, 4); nidx = be32_to_cpu(data); hfs_bnode_put(bnode); } fd->bnode = bnode; return res; invalid: pr_err("inconsistency in B*Tree (%d,%d,%d,%u,%u)\n", height, bnode->height, bnode->type, nidx, parent); res = -EIO; release: hfs_bnode_put(bnode); return res; } int hfs_brec_read(struct hfs_find_data *fd, void *rec, int rec_len) { int res; res = hfs_brec_find(fd, hfs_find_rec_by_key); if (res) return res; if (fd->entrylength > rec_len) return -EINVAL; hfs_bnode_read(fd->bnode, rec, fd->entryoffset, fd->entrylength); return 0; } int hfs_brec_goto(struct hfs_find_data *fd, int cnt) { struct hfs_btree *tree; struct hfs_bnode *bnode; int idx, res = 0; u16 off, len, keylen; bnode = fd->bnode; tree = bnode->tree; if (cnt < 0) { cnt = -cnt; while (cnt > fd->record) { cnt -= fd->record + 1; fd->record = bnode->num_recs - 1; idx = bnode->prev; if (!idx) { res = -ENOENT; goto out; } hfs_bnode_put(bnode); bnode = hfs_bnode_find(tree, idx); if (IS_ERR(bnode)) { res = PTR_ERR(bnode); bnode = NULL; goto out; } } fd->record -= cnt; } else { while (cnt >= bnode->num_recs - fd->record) { cnt -= bnode->num_recs - fd->record; fd->record = 0; idx = bnode->next; if (!idx) { res = -ENOENT; goto out; } hfs_bnode_put(bnode); bnode = hfs_bnode_find(tree, idx); if (IS_ERR(bnode)) { res = PTR_ERR(bnode); bnode = NULL; goto out; } } fd->record += cnt; } len = hfs_brec_lenoff(bnode, fd->record, &off); keylen = hfs_brec_keylen(bnode, fd->record); if (keylen == 0) { res = -EINVAL; goto out; } fd->keyoffset = off; fd->keylength = keylen; fd->entryoffset = off + keylen; fd->entrylength = len - keylen; hfs_bnode_read(bnode, fd->key, off, keylen); out: fd->bnode = bnode; return res; }
linux-master
fs/hfsplus/bfind.c
/* * linux/fs/hfsplus/part_tbl.c * * Copyright (C) 1996-1997 Paul H. Hargrove * This file may be distributed under the terms of * the GNU General Public License. * * Original code to handle the new style Mac partition table based on * a patch contributed by Holger Schemel ([email protected]). * * In function preconditions the term "valid" applied to a pointer to * a structure means that the pointer is non-NULL and the structure it * points to has all fields initialized to consistent values. * */ #include <linux/slab.h> #include "hfsplus_fs.h" /* offsets to various blocks */ #define HFS_DD_BLK 0 /* Driver Descriptor block */ #define HFS_PMAP_BLK 1 /* First block of partition map */ #define HFS_MDB_BLK 2 /* Block (w/i partition) of MDB */ /* magic numbers for various disk blocks */ #define HFS_DRVR_DESC_MAGIC 0x4552 /* "ER": driver descriptor map */ #define HFS_OLD_PMAP_MAGIC 0x5453 /* "TS": old-type partition map */ #define HFS_NEW_PMAP_MAGIC 0x504D /* "PM": new-type partition map */ #define HFS_SUPER_MAGIC 0x4244 /* "BD": HFS MDB (super block) */ #define HFS_MFS_SUPER_MAGIC 0xD2D7 /* MFS MDB (super block) */ /* * The new style Mac partition map * * For each partition on the media there is a physical block (512-byte * block) containing one of these structures. These blocks are * contiguous starting at block 1. */ struct new_pmap { __be16 pmSig; /* signature */ __be16 reSigPad; /* padding */ __be32 pmMapBlkCnt; /* partition blocks count */ __be32 pmPyPartStart; /* physical block start of partition */ __be32 pmPartBlkCnt; /* physical block count of partition */ u8 pmPartName[32]; /* (null terminated?) string giving the name of this partition */ u8 pmPartType[32]; /* (null terminated?) string giving the type of this partition */ /* a bunch more stuff we don't need */ } __packed; /* * The old style Mac partition map * * The partition map consists for a 2-byte signature followed by an * array of these structures. The map is terminated with an all-zero * one of these. */ struct old_pmap { __be16 pdSig; /* Signature bytes */ struct old_pmap_entry { __be32 pdStart; __be32 pdSize; __be32 pdFSID; } pdEntry[42]; } __packed; static int hfs_parse_old_pmap(struct super_block *sb, struct old_pmap *pm, sector_t *part_start, sector_t *part_size) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); int i; for (i = 0; i < 42; i++) { struct old_pmap_entry *p = &pm->pdEntry[i]; if (p->pdStart && p->pdSize && p->pdFSID == cpu_to_be32(0x54465331)/*"TFS1"*/ && (sbi->part < 0 || sbi->part == i)) { *part_start += be32_to_cpu(p->pdStart); *part_size = be32_to_cpu(p->pdSize); return 0; } } return -ENOENT; } static int hfs_parse_new_pmap(struct super_block *sb, void *buf, struct new_pmap *pm, sector_t *part_start, sector_t *part_size) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); int size = be32_to_cpu(pm->pmMapBlkCnt); int buf_size = hfsplus_min_io_size(sb); int res; int i = 0; do { if (!memcmp(pm->pmPartType, "Apple_HFS", 9) && (sbi->part < 0 || sbi->part == i)) { *part_start += be32_to_cpu(pm->pmPyPartStart); *part_size = be32_to_cpu(pm->pmPartBlkCnt); return 0; } if (++i >= size) return -ENOENT; pm = (struct new_pmap *)((u8 *)pm + HFSPLUS_SECTOR_SIZE); if ((u8 *)pm - (u8 *)buf >= buf_size) { res = hfsplus_submit_bio(sb, *part_start + HFS_PMAP_BLK + i, buf, (void **)&pm, REQ_OP_READ); if (res) return res; } } while (pm->pmSig == cpu_to_be16(HFS_NEW_PMAP_MAGIC)); return -ENOENT; } /* * Parse the partition map looking for the start and length of a * HFS/HFS+ partition. */ int hfs_part_find(struct super_block *sb, sector_t *part_start, sector_t *part_size) { void *buf, *data; int res; buf = kmalloc(hfsplus_min_io_size(sb), GFP_KERNEL); if (!buf) return -ENOMEM; res = hfsplus_submit_bio(sb, *part_start + HFS_PMAP_BLK, buf, &data, REQ_OP_READ); if (res) goto out; switch (be16_to_cpu(*((__be16 *)data))) { case HFS_OLD_PMAP_MAGIC: res = hfs_parse_old_pmap(sb, data, part_start, part_size); break; case HFS_NEW_PMAP_MAGIC: res = hfs_parse_new_pmap(sb, buf, data, part_start, part_size); break; default: res = -ENOENT; break; } out: kfree(buf); return res; }
linux-master
fs/hfsplus/part_tbl.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/bitmap.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handling of allocation file */ #include <linux/pagemap.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" #define PAGE_CACHE_BITS (PAGE_SIZE * 8) int hfsplus_block_allocate(struct super_block *sb, u32 size, u32 offset, u32 *max) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct page *page; struct address_space *mapping; __be32 *pptr, *curr, *end; u32 mask, start, len, n; __be32 val; int i; len = *max; if (!len) return size; hfs_dbg(BITMAP, "block_allocate: %u,%u,%u\n", size, offset, len); mutex_lock(&sbi->alloc_mutex); mapping = sbi->alloc_file->i_mapping; page = read_mapping_page(mapping, offset / PAGE_CACHE_BITS, NULL); if (IS_ERR(page)) { start = size; goto out; } pptr = kmap_local_page(page); curr = pptr + (offset & (PAGE_CACHE_BITS - 1)) / 32; i = offset % 32; offset &= ~(PAGE_CACHE_BITS - 1); if ((size ^ offset) / PAGE_CACHE_BITS) end = pptr + PAGE_CACHE_BITS / 32; else end = pptr + ((size + 31) & (PAGE_CACHE_BITS - 1)) / 32; /* scan the first partial u32 for zero bits */ val = *curr; if (~val) { n = be32_to_cpu(val); mask = (1U << 31) >> i; for (; i < 32; mask >>= 1, i++) { if (!(n & mask)) goto found; } } curr++; /* scan complete u32s for the first zero bit */ while (1) { while (curr < end) { val = *curr; if (~val) { n = be32_to_cpu(val); mask = 1 << 31; for (i = 0; i < 32; mask >>= 1, i++) { if (!(n & mask)) goto found; } } curr++; } kunmap_local(pptr); offset += PAGE_CACHE_BITS; if (offset >= size) break; page = read_mapping_page(mapping, offset / PAGE_CACHE_BITS, NULL); if (IS_ERR(page)) { start = size; goto out; } curr = pptr = kmap_local_page(page); if ((size ^ offset) / PAGE_CACHE_BITS) end = pptr + PAGE_CACHE_BITS / 32; else end = pptr + ((size + 31) & (PAGE_CACHE_BITS - 1)) / 32; } hfs_dbg(BITMAP, "bitmap full\n"); start = size; goto out; found: start = offset + (curr - pptr) * 32 + i; if (start >= size) { hfs_dbg(BITMAP, "bitmap full\n"); goto out; } /* do any partial u32 at the start */ len = min(size - start, len); while (1) { n |= mask; if (++i >= 32) break; mask >>= 1; if (!--len || n & mask) goto done; } if (!--len) goto done; *curr++ = cpu_to_be32(n); /* do full u32s */ while (1) { while (curr < end) { n = be32_to_cpu(*curr); if (len < 32) goto last; if (n) { len = 32; goto last; } *curr++ = cpu_to_be32(0xffffffff); len -= 32; } set_page_dirty(page); kunmap_local(pptr); offset += PAGE_CACHE_BITS; page = read_mapping_page(mapping, offset / PAGE_CACHE_BITS, NULL); if (IS_ERR(page)) { start = size; goto out; } pptr = kmap_local_page(page); curr = pptr; end = pptr + PAGE_CACHE_BITS / 32; } last: /* do any partial u32 at end */ mask = 1U << 31; for (i = 0; i < len; i++) { if (n & mask) break; n |= mask; mask >>= 1; } done: *curr = cpu_to_be32(n); set_page_dirty(page); kunmap_local(pptr); *max = offset + (curr - pptr) * 32 + i - start; sbi->free_blocks -= *max; hfsplus_mark_mdb_dirty(sb); hfs_dbg(BITMAP, "-> %u,%u\n", start, *max); out: mutex_unlock(&sbi->alloc_mutex); return start; } int hfsplus_block_free(struct super_block *sb, u32 offset, u32 count) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct page *page; struct address_space *mapping; __be32 *pptr, *curr, *end; u32 mask, len, pnr; int i; /* is there any actual work to be done? */ if (!count) return 0; hfs_dbg(BITMAP, "block_free: %u,%u\n", offset, count); /* are all of the bits in range? */ if ((offset + count) > sbi->total_blocks) return -ENOENT; mutex_lock(&sbi->alloc_mutex); mapping = sbi->alloc_file->i_mapping; pnr = offset / PAGE_CACHE_BITS; page = read_mapping_page(mapping, pnr, NULL); if (IS_ERR(page)) goto kaboom; pptr = kmap_local_page(page); curr = pptr + (offset & (PAGE_CACHE_BITS - 1)) / 32; end = pptr + PAGE_CACHE_BITS / 32; len = count; /* do any partial u32 at the start */ i = offset % 32; if (i) { int j = 32 - i; mask = 0xffffffffU << j; if (j > count) { mask |= 0xffffffffU >> (i + count); *curr++ &= cpu_to_be32(mask); goto out; } *curr++ &= cpu_to_be32(mask); count -= j; } /* do full u32s */ while (1) { while (curr < end) { if (count < 32) goto done; *curr++ = 0; count -= 32; } if (!count) break; set_page_dirty(page); kunmap_local(pptr); page = read_mapping_page(mapping, ++pnr, NULL); if (IS_ERR(page)) goto kaboom; pptr = kmap_local_page(page); curr = pptr; end = pptr + PAGE_CACHE_BITS / 32; } done: /* do any partial u32 at end */ if (count) { mask = 0xffffffffU >> count; *curr &= cpu_to_be32(mask); } out: set_page_dirty(page); kunmap_local(pptr); sbi->free_blocks += len; hfsplus_mark_mdb_dirty(sb); mutex_unlock(&sbi->alloc_mutex); return 0; kaboom: pr_crit("unable to mark blocks free: error %ld\n", PTR_ERR(page)); mutex_unlock(&sbi->alloc_mutex); return -EIO; }
linux-master
fs/hfsplus/bitmap.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/xattr_user.c * * Vyacheslav Dubeyko <[email protected]> * * Handler for user extended attributes. */ #include <linux/nls.h> #include "hfsplus_fs.h" #include "xattr.h" static int hfsplus_user_getxattr(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { return hfsplus_getxattr(inode, name, buffer, size, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN); } static int hfsplus_user_setxattr(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *buffer, size_t size, int flags) { return hfsplus_setxattr(inode, name, buffer, size, flags, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN); } const struct xattr_handler hfsplus_xattr_user_handler = { .prefix = XATTR_USER_PREFIX, .get = hfsplus_user_getxattr, .set = hfsplus_user_setxattr, };
linux-master
fs/hfsplus/xattr_user.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/dir.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handling of directories */ #include <linux/errno.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/nls.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" #include "xattr.h" static inline void hfsplus_instantiate(struct dentry *dentry, struct inode *inode, u32 cnid) { dentry->d_fsdata = (void *)(unsigned long)cnid; d_instantiate(dentry, inode); } /* Find the entry inside dir named dentry->d_name */ static struct dentry *hfsplus_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode = NULL; struct hfs_find_data fd; struct super_block *sb; hfsplus_cat_entry entry; int err; u32 cnid, linkid = 0; u16 type; sb = dir->i_sb; dentry->d_fsdata = NULL; err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &fd); if (err) return ERR_PTR(err); err = hfsplus_cat_build_key(sb, fd.search_key, dir->i_ino, &dentry->d_name); if (unlikely(err < 0)) goto fail; again: err = hfs_brec_read(&fd, &entry, sizeof(entry)); if (err) { if (err == -ENOENT) { hfs_find_exit(&fd); /* No such entry */ inode = NULL; goto out; } goto fail; } type = be16_to_cpu(entry.type); if (type == HFSPLUS_FOLDER) { if (fd.entrylength < sizeof(struct hfsplus_cat_folder)) { err = -EIO; goto fail; } cnid = be32_to_cpu(entry.folder.id); dentry->d_fsdata = (void *)(unsigned long)cnid; } else if (type == HFSPLUS_FILE) { if (fd.entrylength < sizeof(struct hfsplus_cat_file)) { err = -EIO; goto fail; } cnid = be32_to_cpu(entry.file.id); if (entry.file.user_info.fdType == cpu_to_be32(HFSP_HARDLINK_TYPE) && entry.file.user_info.fdCreator == cpu_to_be32(HFSP_HFSPLUS_CREATOR) && HFSPLUS_SB(sb)->hidden_dir && (entry.file.create_date == HFSPLUS_I(HFSPLUS_SB(sb)->hidden_dir)-> create_date || entry.file.create_date == HFSPLUS_I(d_inode(sb->s_root))-> create_date)) { struct qstr str; char name[32]; if (dentry->d_fsdata) { /* * We found a link pointing to another link, * so ignore it and treat it as regular file. */ cnid = (unsigned long)dentry->d_fsdata; linkid = 0; } else { dentry->d_fsdata = (void *)(unsigned long)cnid; linkid = be32_to_cpu(entry.file.permissions.dev); str.len = sprintf(name, "iNode%d", linkid); str.name = name; err = hfsplus_cat_build_key(sb, fd.search_key, HFSPLUS_SB(sb)->hidden_dir->i_ino, &str); if (unlikely(err < 0)) goto fail; goto again; } } else if (!dentry->d_fsdata) dentry->d_fsdata = (void *)(unsigned long)cnid; } else { pr_err("invalid catalog entry type in lookup\n"); err = -EIO; goto fail; } hfs_find_exit(&fd); inode = hfsplus_iget(dir->i_sb, cnid); if (IS_ERR(inode)) return ERR_CAST(inode); if (S_ISREG(inode->i_mode)) HFSPLUS_I(inode)->linkid = linkid; out: return d_splice_alias(inode, dentry); fail: hfs_find_exit(&fd); return ERR_PTR(err); } static int hfsplus_readdir(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); struct super_block *sb = inode->i_sb; int len, err; char *strbuf; hfsplus_cat_entry entry; struct hfs_find_data fd; struct hfsplus_readdir_data *rd; u16 type; if (file->f_pos >= inode->i_size) return 0; err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &fd); if (err) return err; strbuf = kmalloc(NLS_MAX_CHARSET_SIZE * HFSPLUS_MAX_STRLEN + 1, GFP_KERNEL); if (!strbuf) { err = -ENOMEM; goto out; } hfsplus_cat_build_key_with_cnid(sb, fd.search_key, inode->i_ino); err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err) goto out; if (ctx->pos == 0) { /* This is completely artificial... */ if (!dir_emit_dot(file, ctx)) goto out; ctx->pos = 1; } if (ctx->pos == 1) { if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) { err = -EIO; goto out; } hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength); if (be16_to_cpu(entry.type) != HFSPLUS_FOLDER_THREAD) { pr_err("bad catalog folder thread\n"); err = -EIO; goto out; } if (fd.entrylength < HFSPLUS_MIN_THREAD_SZ) { pr_err("truncated catalog thread\n"); err = -EIO; goto out; } if (!dir_emit(ctx, "..", 2, be32_to_cpu(entry.thread.parentID), DT_DIR)) goto out; ctx->pos = 2; } if (ctx->pos >= inode->i_size) goto out; err = hfs_brec_goto(&fd, ctx->pos - 1); if (err) goto out; for (;;) { if (be32_to_cpu(fd.key->cat.parent) != inode->i_ino) { pr_err("walked past end of dir\n"); err = -EIO; goto out; } if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) { err = -EIO; goto out; } hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength); type = be16_to_cpu(entry.type); len = NLS_MAX_CHARSET_SIZE * HFSPLUS_MAX_STRLEN; err = hfsplus_uni2asc(sb, &fd.key->cat.name, strbuf, &len); if (err) goto out; if (type == HFSPLUS_FOLDER) { if (fd.entrylength < sizeof(struct hfsplus_cat_folder)) { pr_err("small dir entry\n"); err = -EIO; goto out; } if (HFSPLUS_SB(sb)->hidden_dir && HFSPLUS_SB(sb)->hidden_dir->i_ino == be32_to_cpu(entry.folder.id)) goto next; if (!dir_emit(ctx, strbuf, len, be32_to_cpu(entry.folder.id), DT_DIR)) break; } else if (type == HFSPLUS_FILE) { u16 mode; unsigned type = DT_UNKNOWN; if (fd.entrylength < sizeof(struct hfsplus_cat_file)) { pr_err("small file entry\n"); err = -EIO; goto out; } mode = be16_to_cpu(entry.file.permissions.mode); if (S_ISREG(mode)) type = DT_REG; else if (S_ISLNK(mode)) type = DT_LNK; else if (S_ISFIFO(mode)) type = DT_FIFO; else if (S_ISCHR(mode)) type = DT_CHR; else if (S_ISBLK(mode)) type = DT_BLK; else if (S_ISSOCK(mode)) type = DT_SOCK; if (!dir_emit(ctx, strbuf, len, be32_to_cpu(entry.file.id), type)) break; } else { pr_err("bad catalog entry type\n"); err = -EIO; goto out; } next: ctx->pos++; if (ctx->pos >= inode->i_size) goto out; err = hfs_brec_goto(&fd, 1); if (err) goto out; } rd = file->private_data; if (!rd) { rd = kmalloc(sizeof(struct hfsplus_readdir_data), GFP_KERNEL); if (!rd) { err = -ENOMEM; goto out; } file->private_data = rd; rd->file = file; spin_lock(&HFSPLUS_I(inode)->open_dir_lock); list_add(&rd->list, &HFSPLUS_I(inode)->open_dir_list); spin_unlock(&HFSPLUS_I(inode)->open_dir_lock); } /* * Can be done after the list insertion; exclusion with * hfsplus_delete_cat() is provided by directory lock. */ memcpy(&rd->key, fd.key, sizeof(struct hfsplus_cat_key)); out: kfree(strbuf); hfs_find_exit(&fd); return err; } static int hfsplus_dir_release(struct inode *inode, struct file *file) { struct hfsplus_readdir_data *rd = file->private_data; if (rd) { spin_lock(&HFSPLUS_I(inode)->open_dir_lock); list_del(&rd->list); spin_unlock(&HFSPLUS_I(inode)->open_dir_lock); kfree(rd); } return 0; } static int hfsplus_link(struct dentry *src_dentry, struct inode *dst_dir, struct dentry *dst_dentry) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dst_dir->i_sb); struct inode *inode = d_inode(src_dentry); struct inode *src_dir = d_inode(src_dentry->d_parent); struct qstr str; char name[32]; u32 cnid, id; int res; if (HFSPLUS_IS_RSRC(inode)) return -EPERM; if (!S_ISREG(inode->i_mode)) return -EPERM; mutex_lock(&sbi->vh_mutex); if (inode->i_ino == (u32)(unsigned long)src_dentry->d_fsdata) { for (;;) { get_random_bytes(&id, sizeof(cnid)); id &= 0x3fffffff; str.name = name; str.len = sprintf(name, "iNode%d", id); res = hfsplus_rename_cat(inode->i_ino, src_dir, &src_dentry->d_name, sbi->hidden_dir, &str); if (!res) break; if (res != -EEXIST) goto out; } HFSPLUS_I(inode)->linkid = id; cnid = sbi->next_cnid++; src_dentry->d_fsdata = (void *)(unsigned long)cnid; res = hfsplus_create_cat(cnid, src_dir, &src_dentry->d_name, inode); if (res) /* panic? */ goto out; sbi->file_count++; } cnid = sbi->next_cnid++; res = hfsplus_create_cat(cnid, dst_dir, &dst_dentry->d_name, inode); if (res) goto out; inc_nlink(inode); hfsplus_instantiate(dst_dentry, inode, cnid); ihold(inode); inode_set_ctime_current(inode); mark_inode_dirty(inode); sbi->file_count++; hfsplus_mark_mdb_dirty(dst_dir->i_sb); out: mutex_unlock(&sbi->vh_mutex); return res; } static int hfsplus_unlink(struct inode *dir, struct dentry *dentry) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb); struct inode *inode = d_inode(dentry); struct qstr str; char name[32]; u32 cnid; int res; if (HFSPLUS_IS_RSRC(inode)) return -EPERM; mutex_lock(&sbi->vh_mutex); cnid = (u32)(unsigned long)dentry->d_fsdata; if (inode->i_ino == cnid && atomic_read(&HFSPLUS_I(inode)->opencnt)) { str.name = name; str.len = sprintf(name, "temp%lu", inode->i_ino); res = hfsplus_rename_cat(inode->i_ino, dir, &dentry->d_name, sbi->hidden_dir, &str); if (!res) { inode->i_flags |= S_DEAD; drop_nlink(inode); } goto out; } res = hfsplus_delete_cat(cnid, dir, &dentry->d_name); if (res) goto out; if (inode->i_nlink > 0) drop_nlink(inode); if (inode->i_ino == cnid) clear_nlink(inode); if (!inode->i_nlink) { if (inode->i_ino != cnid) { sbi->file_count--; if (!atomic_read(&HFSPLUS_I(inode)->opencnt)) { res = hfsplus_delete_cat(inode->i_ino, sbi->hidden_dir, NULL); if (!res) hfsplus_delete_inode(inode); } else inode->i_flags |= S_DEAD; } else hfsplus_delete_inode(inode); } else sbi->file_count--; inode_set_ctime_current(inode); mark_inode_dirty(inode); out: mutex_unlock(&sbi->vh_mutex); return res; } static int hfsplus_rmdir(struct inode *dir, struct dentry *dentry) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb); struct inode *inode = d_inode(dentry); int res; if (inode->i_size != 2) return -ENOTEMPTY; mutex_lock(&sbi->vh_mutex); res = hfsplus_delete_cat(inode->i_ino, dir, &dentry->d_name); if (res) goto out; clear_nlink(inode); inode_set_ctime_current(inode); hfsplus_delete_inode(inode); mark_inode_dirty(inode); out: mutex_unlock(&sbi->vh_mutex); return res; } static int hfsplus_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *symname) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb); struct inode *inode; int res = -ENOMEM; mutex_lock(&sbi->vh_mutex); inode = hfsplus_new_inode(dir->i_sb, dir, S_IFLNK | S_IRWXUGO); if (!inode) goto out; res = page_symlink(inode, symname, strlen(symname) + 1); if (res) goto out_err; res = hfsplus_create_cat(inode->i_ino, dir, &dentry->d_name, inode); if (res) goto out_err; res = hfsplus_init_security(inode, dir, &dentry->d_name); if (res == -EOPNOTSUPP) res = 0; /* Operation is not supported. */ else if (res) { /* Try to delete anyway without error analysis. */ hfsplus_delete_cat(inode->i_ino, dir, &dentry->d_name); goto out_err; } hfsplus_instantiate(dentry, inode, inode->i_ino); mark_inode_dirty(inode); goto out; out_err: clear_nlink(inode); hfsplus_delete_inode(inode); iput(inode); out: mutex_unlock(&sbi->vh_mutex); return res; } static int hfsplus_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb); struct inode *inode; int res = -ENOMEM; mutex_lock(&sbi->vh_mutex); inode = hfsplus_new_inode(dir->i_sb, dir, mode); if (!inode) goto out; if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) init_special_inode(inode, mode, rdev); res = hfsplus_create_cat(inode->i_ino, dir, &dentry->d_name, inode); if (res) goto failed_mknod; res = hfsplus_init_security(inode, dir, &dentry->d_name); if (res == -EOPNOTSUPP) res = 0; /* Operation is not supported. */ else if (res) { /* Try to delete anyway without error analysis. */ hfsplus_delete_cat(inode->i_ino, dir, &dentry->d_name); goto failed_mknod; } hfsplus_instantiate(dentry, inode, inode->i_ino); mark_inode_dirty(inode); goto out; failed_mknod: clear_nlink(inode); hfsplus_delete_inode(inode); iput(inode); out: mutex_unlock(&sbi->vh_mutex); return res; } static int hfsplus_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return hfsplus_mknod(&nop_mnt_idmap, dir, dentry, mode, 0); } static int hfsplus_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { return hfsplus_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFDIR, 0); } static int hfsplus_rename(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { int res; if (flags & ~RENAME_NOREPLACE) return -EINVAL; /* Unlink destination if it already exists */ if (d_really_is_positive(new_dentry)) { if (d_is_dir(new_dentry)) res = hfsplus_rmdir(new_dir, new_dentry); else res = hfsplus_unlink(new_dir, new_dentry); if (res) return res; } res = hfsplus_rename_cat((u32)(unsigned long)old_dentry->d_fsdata, old_dir, &old_dentry->d_name, new_dir, &new_dentry->d_name); if (!res) new_dentry->d_fsdata = old_dentry->d_fsdata; return res; } const struct inode_operations hfsplus_dir_inode_operations = { .lookup = hfsplus_lookup, .create = hfsplus_create, .link = hfsplus_link, .unlink = hfsplus_unlink, .mkdir = hfsplus_mkdir, .rmdir = hfsplus_rmdir, .symlink = hfsplus_symlink, .mknod = hfsplus_mknod, .rename = hfsplus_rename, .getattr = hfsplus_getattr, .listxattr = hfsplus_listxattr, .fileattr_get = hfsplus_fileattr_get, .fileattr_set = hfsplus_fileattr_set, }; const struct file_operations hfsplus_dir_operations = { .fsync = hfsplus_file_fsync, .read = generic_read_dir, .iterate_shared = hfsplus_readdir, .unlocked_ioctl = hfsplus_ioctl, .llseek = generic_file_llseek, .release = hfsplus_dir_release, };
linux-master
fs/hfsplus/dir.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/wrapper.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handling of HFS wrappers around HFS+ volumes */ #include <linux/fs.h> #include <linux/blkdev.h> #include <linux/cdrom.h> #include <asm/unaligned.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" struct hfsplus_wd { u32 ablk_size; u16 ablk_start; u16 embed_start; u16 embed_count; }; /** * hfsplus_submit_bio - Perform block I/O * @sb: super block of volume for I/O * @sector: block to read or write, for blocks of HFSPLUS_SECTOR_SIZE bytes * @buf: buffer for I/O * @data: output pointer for location of requested data * @op: direction of I/O * @op_flags: request op flags * * The unit of I/O is hfsplus_min_io_size(sb), which may be bigger than * HFSPLUS_SECTOR_SIZE, and @buf must be sized accordingly. On reads * @data will return a pointer to the start of the requested sector, * which may not be the same location as @buf. * * If @sector is not aligned to the bdev logical block size it will * be rounded down. For writes this means that @buf should contain data * that starts at the rounded-down address. As long as the data was * read using hfsplus_submit_bio() and the same buffer is used things * will work correctly. */ int hfsplus_submit_bio(struct super_block *sb, sector_t sector, void *buf, void **data, blk_opf_t opf) { const enum req_op op = opf & REQ_OP_MASK; struct bio *bio; int ret = 0; u64 io_size; loff_t start; int offset; /* * Align sector to hardware sector size and find offset. We * assume that io_size is a power of two, which _should_ * be true. */ io_size = hfsplus_min_io_size(sb); start = (loff_t)sector << HFSPLUS_SECTOR_SHIFT; offset = start & (io_size - 1); sector &= ~((io_size >> HFSPLUS_SECTOR_SHIFT) - 1); bio = bio_alloc(sb->s_bdev, 1, opf, GFP_NOIO); bio->bi_iter.bi_sector = sector; if (op != REQ_OP_WRITE && data) *data = (u8 *)buf + offset; while (io_size > 0) { unsigned int page_offset = offset_in_page(buf); unsigned int len = min_t(unsigned int, PAGE_SIZE - page_offset, io_size); ret = bio_add_page(bio, virt_to_page(buf), len, page_offset); if (ret != len) { ret = -EIO; goto out; } io_size -= len; buf = (u8 *)buf + len; } ret = submit_bio_wait(bio); out: bio_put(bio); return ret < 0 ? ret : 0; } static int hfsplus_read_mdb(void *bufptr, struct hfsplus_wd *wd) { u32 extent; u16 attrib; __be16 sig; sig = *(__be16 *)(bufptr + HFSP_WRAPOFF_EMBEDSIG); if (sig != cpu_to_be16(HFSPLUS_VOLHEAD_SIG) && sig != cpu_to_be16(HFSPLUS_VOLHEAD_SIGX)) return 0; attrib = be16_to_cpu(*(__be16 *)(bufptr + HFSP_WRAPOFF_ATTRIB)); if (!(attrib & HFSP_WRAP_ATTRIB_SLOCK) || !(attrib & HFSP_WRAP_ATTRIB_SPARED)) return 0; wd->ablk_size = be32_to_cpu(*(__be32 *)(bufptr + HFSP_WRAPOFF_ABLKSIZE)); if (wd->ablk_size < HFSPLUS_SECTOR_SIZE) return 0; if (wd->ablk_size % HFSPLUS_SECTOR_SIZE) return 0; wd->ablk_start = be16_to_cpu(*(__be16 *)(bufptr + HFSP_WRAPOFF_ABLKSTART)); extent = get_unaligned_be32(bufptr + HFSP_WRAPOFF_EMBEDEXT); wd->embed_start = (extent >> 16) & 0xFFFF; wd->embed_count = extent & 0xFFFF; return 1; } static int hfsplus_get_last_session(struct super_block *sb, sector_t *start, sector_t *size) { struct cdrom_device_info *cdi = disk_to_cdi(sb->s_bdev->bd_disk); /* default values */ *start = 0; *size = bdev_nr_sectors(sb->s_bdev); if (HFSPLUS_SB(sb)->session >= 0) { struct cdrom_tocentry te; if (!cdi) return -EINVAL; te.cdte_track = HFSPLUS_SB(sb)->session; te.cdte_format = CDROM_LBA; if (cdrom_read_tocentry(cdi, &te) || (te.cdte_ctrl & CDROM_DATA_TRACK) != 4) { pr_err("invalid session number or type of track\n"); return -EINVAL; } *start = (sector_t)te.cdte_addr.lba << 2; } else if (cdi) { struct cdrom_multisession ms_info; ms_info.addr_format = CDROM_LBA; if (cdrom_multisession(cdi, &ms_info) == 0 && ms_info.xa_flag) *start = (sector_t)ms_info.addr.lba << 2; } return 0; } /* Find the volume header and fill in some minimum bits in superblock */ /* Takes in super block, returns true if good data read */ int hfsplus_read_wrapper(struct super_block *sb) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct hfsplus_wd wd; sector_t part_start, part_size; u32 blocksize; int error = 0; error = -EINVAL; blocksize = sb_min_blocksize(sb, HFSPLUS_SECTOR_SIZE); if (!blocksize) goto out; if (hfsplus_get_last_session(sb, &part_start, &part_size)) goto out; error = -ENOMEM; sbi->s_vhdr_buf = kmalloc(hfsplus_min_io_size(sb), GFP_KERNEL); if (!sbi->s_vhdr_buf) goto out; sbi->s_backup_vhdr_buf = kmalloc(hfsplus_min_io_size(sb), GFP_KERNEL); if (!sbi->s_backup_vhdr_buf) goto out_free_vhdr; reread: error = hfsplus_submit_bio(sb, part_start + HFSPLUS_VOLHEAD_SECTOR, sbi->s_vhdr_buf, (void **)&sbi->s_vhdr, REQ_OP_READ); if (error) goto out_free_backup_vhdr; error = -EINVAL; switch (sbi->s_vhdr->signature) { case cpu_to_be16(HFSPLUS_VOLHEAD_SIGX): set_bit(HFSPLUS_SB_HFSX, &sbi->flags); fallthrough; case cpu_to_be16(HFSPLUS_VOLHEAD_SIG): break; case cpu_to_be16(HFSP_WRAP_MAGIC): if (!hfsplus_read_mdb(sbi->s_vhdr, &wd)) goto out_free_backup_vhdr; wd.ablk_size >>= HFSPLUS_SECTOR_SHIFT; part_start += (sector_t)wd.ablk_start + (sector_t)wd.embed_start * wd.ablk_size; part_size = (sector_t)wd.embed_count * wd.ablk_size; goto reread; default: /* * Check for a partition block. * * (should do this only for cdrom/loop though) */ if (hfs_part_find(sb, &part_start, &part_size)) goto out_free_backup_vhdr; goto reread; } error = hfsplus_submit_bio(sb, part_start + part_size - 2, sbi->s_backup_vhdr_buf, (void **)&sbi->s_backup_vhdr, REQ_OP_READ); if (error) goto out_free_backup_vhdr; error = -EINVAL; if (sbi->s_backup_vhdr->signature != sbi->s_vhdr->signature) { pr_warn("invalid secondary volume header\n"); goto out_free_backup_vhdr; } blocksize = be32_to_cpu(sbi->s_vhdr->blocksize); /* * Block size must be at least as large as a sector and a multiple of 2. */ if (blocksize < HFSPLUS_SECTOR_SIZE || ((blocksize - 1) & blocksize)) goto out_free_backup_vhdr; sbi->alloc_blksz = blocksize; sbi->alloc_blksz_shift = ilog2(blocksize); blocksize = min_t(u32, sbi->alloc_blksz, PAGE_SIZE); /* * Align block size to block offset. */ while (part_start & ((blocksize >> HFSPLUS_SECTOR_SHIFT) - 1)) blocksize >>= 1; if (sb_set_blocksize(sb, blocksize) != blocksize) { pr_err("unable to set blocksize to %u!\n", blocksize); goto out_free_backup_vhdr; } sbi->blockoffset = part_start >> (sb->s_blocksize_bits - HFSPLUS_SECTOR_SHIFT); sbi->part_start = part_start; sbi->sect_count = part_size; sbi->fs_shift = sbi->alloc_blksz_shift - sb->s_blocksize_bits; return 0; out_free_backup_vhdr: kfree(sbi->s_backup_vhdr_buf); out_free_vhdr: kfree(sbi->s_vhdr_buf); out: return error; }
linux-master
fs/hfsplus/wrapper.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/inode.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Inode handling routines */ #include <linux/blkdev.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/mpage.h> #include <linux/sched.h> #include <linux/cred.h> #include <linux/uio.h> #include <linux/fileattr.h> #include "hfsplus_fs.h" #include "hfsplus_raw.h" #include "xattr.h" static int hfsplus_read_folio(struct file *file, struct folio *folio) { return block_read_full_folio(folio, hfsplus_get_block); } static int hfsplus_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, hfsplus_get_block, wbc); } static void hfsplus_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); hfsplus_file_truncate(inode); } } int hfsplus_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { int ret; *pagep = NULL; ret = cont_write_begin(file, mapping, pos, len, pagep, fsdata, hfsplus_get_block, &HFSPLUS_I(mapping->host)->phys_size); if (unlikely(ret)) hfsplus_write_failed(mapping, pos + len); return ret; } static sector_t hfsplus_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping, block, hfsplus_get_block); } static bool hfsplus_release_folio(struct folio *folio, gfp_t mask) { struct inode *inode = folio->mapping->host; struct super_block *sb = inode->i_sb; struct hfs_btree *tree; struct hfs_bnode *node; u32 nidx; int i; bool res = true; switch (inode->i_ino) { case HFSPLUS_EXT_CNID: tree = HFSPLUS_SB(sb)->ext_tree; break; case HFSPLUS_CAT_CNID: tree = HFSPLUS_SB(sb)->cat_tree; break; case HFSPLUS_ATTR_CNID: tree = HFSPLUS_SB(sb)->attr_tree; break; default: BUG(); return false; } if (!tree) return false; if (tree->node_size >= PAGE_SIZE) { nidx = folio->index >> (tree->node_size_shift - PAGE_SHIFT); spin_lock(&tree->hash_lock); node = hfs_bnode_findhash(tree, nidx); if (!node) ; else if (atomic_read(&node->refcnt)) res = false; if (res && node) { hfs_bnode_unhash(node); hfs_bnode_free(node); } spin_unlock(&tree->hash_lock); } else { nidx = folio->index << (PAGE_SHIFT - tree->node_size_shift); i = 1 << (PAGE_SHIFT - tree->node_size_shift); spin_lock(&tree->hash_lock); do { node = hfs_bnode_findhash(tree, nidx++); if (!node) continue; if (atomic_read(&node->refcnt)) { res = false; break; } hfs_bnode_unhash(node); hfs_bnode_free(node); } while (--i && nidx < tree->node_count); spin_unlock(&tree->hash_lock); } return res ? try_to_free_buffers(folio) : false; } static ssize_t hfsplus_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; size_t count = iov_iter_count(iter); ssize_t ret; ret = blockdev_direct_IO(iocb, inode, iter, hfsplus_get_block); /* * In case of error extending write may have instantiated a few * blocks outside i_size. Trim these off again. */ if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { loff_t isize = i_size_read(inode); loff_t end = iocb->ki_pos + count; if (end > isize) hfsplus_write_failed(mapping, end); } return ret; } static int hfsplus_writepages(struct address_space *mapping, struct writeback_control *wbc) { return mpage_writepages(mapping, wbc, hfsplus_get_block); } const struct address_space_operations hfsplus_btree_aops = { .dirty_folio = block_dirty_folio, .invalidate_folio = block_invalidate_folio, .read_folio = hfsplus_read_folio, .writepage = hfsplus_writepage, .write_begin = hfsplus_write_begin, .write_end = generic_write_end, .bmap = hfsplus_bmap, .release_folio = hfsplus_release_folio, }; const struct address_space_operations hfsplus_aops = { .dirty_folio = block_dirty_folio, .invalidate_folio = block_invalidate_folio, .read_folio = hfsplus_read_folio, .write_begin = hfsplus_write_begin, .write_end = generic_write_end, .bmap = hfsplus_bmap, .direct_IO = hfsplus_direct_IO, .writepages = hfsplus_writepages, .migrate_folio = buffer_migrate_folio, }; const struct dentry_operations hfsplus_dentry_operations = { .d_hash = hfsplus_hash_dentry, .d_compare = hfsplus_compare_dentry, }; static void hfsplus_get_perms(struct inode *inode, struct hfsplus_perm *perms, int dir) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(inode->i_sb); u16 mode; mode = be16_to_cpu(perms->mode); i_uid_write(inode, be32_to_cpu(perms->owner)); if ((test_bit(HFSPLUS_SB_UID, &sbi->flags)) || (!i_uid_read(inode) && !mode)) inode->i_uid = sbi->uid; i_gid_write(inode, be32_to_cpu(perms->group)); if ((test_bit(HFSPLUS_SB_GID, &sbi->flags)) || (!i_gid_read(inode) && !mode)) inode->i_gid = sbi->gid; if (dir) { mode = mode ? (mode & S_IALLUGO) : (S_IRWXUGO & ~(sbi->umask)); mode |= S_IFDIR; } else if (!mode) mode = S_IFREG | ((S_IRUGO|S_IWUGO) & ~(sbi->umask)); inode->i_mode = mode; HFSPLUS_I(inode)->userflags = perms->userflags; if (perms->rootflags & HFSPLUS_FLG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (perms->rootflags & HFSPLUS_FLG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; } static int hfsplus_file_open(struct inode *inode, struct file *file) { if (HFSPLUS_IS_RSRC(inode)) inode = HFSPLUS_I(inode)->rsrc_inode; if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) return -EOVERFLOW; atomic_inc(&HFSPLUS_I(inode)->opencnt); return 0; } static int hfsplus_file_release(struct inode *inode, struct file *file) { struct super_block *sb = inode->i_sb; if (HFSPLUS_IS_RSRC(inode)) inode = HFSPLUS_I(inode)->rsrc_inode; if (atomic_dec_and_test(&HFSPLUS_I(inode)->opencnt)) { inode_lock(inode); hfsplus_file_truncate(inode); if (inode->i_flags & S_DEAD) { hfsplus_delete_cat(inode->i_ino, HFSPLUS_SB(sb)->hidden_dir, NULL); hfsplus_delete_inode(inode); } inode_unlock(inode); } return 0; } static int hfsplus_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); int error; error = setattr_prepare(&nop_mnt_idmap, dentry, attr); if (error) return error; if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size != i_size_read(inode)) { inode_dio_wait(inode); if (attr->ia_size > inode->i_size) { error = generic_cont_expand_simple(inode, attr->ia_size); if (error) return error; } truncate_setsize(inode, attr->ia_size); hfsplus_file_truncate(inode); inode->i_mtime = inode_set_ctime_current(inode); } setattr_copy(&nop_mnt_idmap, inode, attr); mark_inode_dirty(inode); return 0; } int hfsplus_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct hfsplus_inode_info *hip = HFSPLUS_I(inode); if (request_mask & STATX_BTIME) { stat->result_mask |= STATX_BTIME; stat->btime = hfsp_mt2ut(hip->create_date); } if (inode->i_flags & S_APPEND) stat->attributes |= STATX_ATTR_APPEND; if (inode->i_flags & S_IMMUTABLE) stat->attributes |= STATX_ATTR_IMMUTABLE; if (hip->userflags & HFSPLUS_FLG_NODUMP) stat->attributes |= STATX_ATTR_NODUMP; stat->attributes_mask |= STATX_ATTR_APPEND | STATX_ATTR_IMMUTABLE | STATX_ATTR_NODUMP; generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); return 0; } int hfsplus_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct hfsplus_inode_info *hip = HFSPLUS_I(inode); struct hfsplus_sb_info *sbi = HFSPLUS_SB(inode->i_sb); int error = 0, error2; error = file_write_and_wait_range(file, start, end); if (error) return error; inode_lock(inode); /* * Sync inode metadata into the catalog and extent trees. */ sync_inode_metadata(inode, 1); /* * And explicitly write out the btrees. */ if (test_and_clear_bit(HFSPLUS_I_CAT_DIRTY, &hip->flags)) error = filemap_write_and_wait(sbi->cat_tree->inode->i_mapping); if (test_and_clear_bit(HFSPLUS_I_EXT_DIRTY, &hip->flags)) { error2 = filemap_write_and_wait(sbi->ext_tree->inode->i_mapping); if (!error) error = error2; } if (test_and_clear_bit(HFSPLUS_I_ATTR_DIRTY, &hip->flags)) { if (sbi->attr_tree) { error2 = filemap_write_and_wait( sbi->attr_tree->inode->i_mapping); if (!error) error = error2; } else { pr_err("sync non-existent attributes tree\n"); } } if (test_and_clear_bit(HFSPLUS_I_ALLOC_DIRTY, &hip->flags)) { error2 = filemap_write_and_wait(sbi->alloc_file->i_mapping); if (!error) error = error2; } if (!test_bit(HFSPLUS_SB_NOBARRIER, &sbi->flags)) blkdev_issue_flush(inode->i_sb->s_bdev); inode_unlock(inode); return error; } static const struct inode_operations hfsplus_file_inode_operations = { .setattr = hfsplus_setattr, .getattr = hfsplus_getattr, .listxattr = hfsplus_listxattr, .fileattr_get = hfsplus_fileattr_get, .fileattr_set = hfsplus_fileattr_set, }; static const struct file_operations hfsplus_file_operations = { .llseek = generic_file_llseek, .read_iter = generic_file_read_iter, .write_iter = generic_file_write_iter, .mmap = generic_file_mmap, .splice_read = filemap_splice_read, .fsync = hfsplus_file_fsync, .open = hfsplus_file_open, .release = hfsplus_file_release, .unlocked_ioctl = hfsplus_ioctl, }; struct inode *hfsplus_new_inode(struct super_block *sb, struct inode *dir, umode_t mode) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct inode *inode = new_inode(sb); struct hfsplus_inode_info *hip; if (!inode) return NULL; inode->i_ino = sbi->next_cnid++; inode_init_owner(&nop_mnt_idmap, inode, dir, mode); set_nlink(inode, 1); inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode); hip = HFSPLUS_I(inode); INIT_LIST_HEAD(&hip->open_dir_list); spin_lock_init(&hip->open_dir_lock); mutex_init(&hip->extents_lock); atomic_set(&hip->opencnt, 0); hip->extent_state = 0; hip->flags = 0; hip->userflags = 0; hip->subfolders = 0; memset(hip->first_extents, 0, sizeof(hfsplus_extent_rec)); memset(hip->cached_extents, 0, sizeof(hfsplus_extent_rec)); hip->alloc_blocks = 0; hip->first_blocks = 0; hip->cached_start = 0; hip->cached_blocks = 0; hip->phys_size = 0; hip->fs_blocks = 0; hip->rsrc_inode = NULL; if (S_ISDIR(inode->i_mode)) { inode->i_size = 2; sbi->folder_count++; inode->i_op = &hfsplus_dir_inode_operations; inode->i_fop = &hfsplus_dir_operations; } else if (S_ISREG(inode->i_mode)) { sbi->file_count++; inode->i_op = &hfsplus_file_inode_operations; inode->i_fop = &hfsplus_file_operations; inode->i_mapping->a_ops = &hfsplus_aops; hip->clump_blocks = sbi->data_clump_blocks; } else if (S_ISLNK(inode->i_mode)) { sbi->file_count++; inode->i_op = &page_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &hfsplus_aops; hip->clump_blocks = 1; } else sbi->file_count++; insert_inode_hash(inode); mark_inode_dirty(inode); hfsplus_mark_mdb_dirty(sb); return inode; } void hfsplus_delete_inode(struct inode *inode) { struct super_block *sb = inode->i_sb; if (S_ISDIR(inode->i_mode)) { HFSPLUS_SB(sb)->folder_count--; hfsplus_mark_mdb_dirty(sb); return; } HFSPLUS_SB(sb)->file_count--; if (S_ISREG(inode->i_mode)) { if (!inode->i_nlink) { inode->i_size = 0; hfsplus_file_truncate(inode); } } else if (S_ISLNK(inode->i_mode)) { inode->i_size = 0; hfsplus_file_truncate(inode); } hfsplus_mark_mdb_dirty(sb); } void hfsplus_inode_read_fork(struct inode *inode, struct hfsplus_fork_raw *fork) { struct super_block *sb = inode->i_sb; struct hfsplus_sb_info *sbi = HFSPLUS_SB(sb); struct hfsplus_inode_info *hip = HFSPLUS_I(inode); u32 count; int i; memcpy(&hip->first_extents, &fork->extents, sizeof(hfsplus_extent_rec)); for (count = 0, i = 0; i < 8; i++) count += be32_to_cpu(fork->extents[i].block_count); hip->first_blocks = count; memset(hip->cached_extents, 0, sizeof(hfsplus_extent_rec)); hip->cached_start = 0; hip->cached_blocks = 0; hip->alloc_blocks = be32_to_cpu(fork->total_blocks); hip->phys_size = inode->i_size = be64_to_cpu(fork->total_size); hip->fs_blocks = (inode->i_size + sb->s_blocksize - 1) >> sb->s_blocksize_bits; inode_set_bytes(inode, hip->fs_blocks << sb->s_blocksize_bits); hip->clump_blocks = be32_to_cpu(fork->clump_size) >> sbi->alloc_blksz_shift; if (!hip->clump_blocks) { hip->clump_blocks = HFSPLUS_IS_RSRC(inode) ? sbi->rsrc_clump_blocks : sbi->data_clump_blocks; } } void hfsplus_inode_write_fork(struct inode *inode, struct hfsplus_fork_raw *fork) { memcpy(&fork->extents, &HFSPLUS_I(inode)->first_extents, sizeof(hfsplus_extent_rec)); fork->total_size = cpu_to_be64(inode->i_size); fork->total_blocks = cpu_to_be32(HFSPLUS_I(inode)->alloc_blocks); } int hfsplus_cat_read_inode(struct inode *inode, struct hfs_find_data *fd) { hfsplus_cat_entry entry; int res = 0; u16 type; type = hfs_bnode_read_u16(fd->bnode, fd->entryoffset); HFSPLUS_I(inode)->linkid = 0; if (type == HFSPLUS_FOLDER) { struct hfsplus_cat_folder *folder = &entry.folder; if (fd->entrylength < sizeof(struct hfsplus_cat_folder)) { pr_err("bad catalog folder entry\n"); res = -EIO; goto out; } hfs_bnode_read(fd->bnode, &entry, fd->entryoffset, sizeof(struct hfsplus_cat_folder)); hfsplus_get_perms(inode, &folder->permissions, 1); set_nlink(inode, 1); inode->i_size = 2 + be32_to_cpu(folder->valence); inode->i_atime = hfsp_mt2ut(folder->access_date); inode->i_mtime = hfsp_mt2ut(folder->content_mod_date); inode_set_ctime_to_ts(inode, hfsp_mt2ut(folder->attribute_mod_date)); HFSPLUS_I(inode)->create_date = folder->create_date; HFSPLUS_I(inode)->fs_blocks = 0; if (folder->flags & cpu_to_be16(HFSPLUS_HAS_FOLDER_COUNT)) { HFSPLUS_I(inode)->subfolders = be32_to_cpu(folder->subfolders); } inode->i_op = &hfsplus_dir_inode_operations; inode->i_fop = &hfsplus_dir_operations; } else if (type == HFSPLUS_FILE) { struct hfsplus_cat_file *file = &entry.file; if (fd->entrylength < sizeof(struct hfsplus_cat_file)) { pr_err("bad catalog file entry\n"); res = -EIO; goto out; } hfs_bnode_read(fd->bnode, &entry, fd->entryoffset, sizeof(struct hfsplus_cat_file)); hfsplus_inode_read_fork(inode, HFSPLUS_IS_RSRC(inode) ? &file->rsrc_fork : &file->data_fork); hfsplus_get_perms(inode, &file->permissions, 0); set_nlink(inode, 1); if (S_ISREG(inode->i_mode)) { if (file->permissions.dev) set_nlink(inode, be32_to_cpu(file->permissions.dev)); inode->i_op = &hfsplus_file_inode_operations; inode->i_fop = &hfsplus_file_operations; inode->i_mapping->a_ops = &hfsplus_aops; } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &page_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &hfsplus_aops; } else { init_special_inode(inode, inode->i_mode, be32_to_cpu(file->permissions.dev)); } inode->i_atime = hfsp_mt2ut(file->access_date); inode->i_mtime = hfsp_mt2ut(file->content_mod_date); inode_set_ctime_to_ts(inode, hfsp_mt2ut(file->attribute_mod_date)); HFSPLUS_I(inode)->create_date = file->create_date; } else { pr_err("bad catalog entry used to create inode\n"); res = -EIO; } out: return res; } int hfsplus_cat_write_inode(struct inode *inode) { struct inode *main_inode = inode; struct hfs_find_data fd; hfsplus_cat_entry entry; int res = 0; if (HFSPLUS_IS_RSRC(inode)) main_inode = HFSPLUS_I(inode)->rsrc_inode; if (!main_inode->i_nlink) return 0; if (hfs_find_init(HFSPLUS_SB(main_inode->i_sb)->cat_tree, &fd)) /* panic? */ return -EIO; if (hfsplus_find_cat(main_inode->i_sb, main_inode->i_ino, &fd)) /* panic? */ goto out; if (S_ISDIR(main_inode->i_mode)) { struct hfsplus_cat_folder *folder = &entry.folder; if (fd.entrylength < sizeof(struct hfsplus_cat_folder)) { pr_err("bad catalog folder entry\n"); res = -EIO; goto out; } hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, sizeof(struct hfsplus_cat_folder)); /* simple node checks? */ hfsplus_cat_set_perms(inode, &folder->permissions); folder->access_date = hfsp_ut2mt(inode->i_atime); folder->content_mod_date = hfsp_ut2mt(inode->i_mtime); folder->attribute_mod_date = hfsp_ut2mt(inode_get_ctime(inode)); folder->valence = cpu_to_be32(inode->i_size - 2); if (folder->flags & cpu_to_be16(HFSPLUS_HAS_FOLDER_COUNT)) { folder->subfolders = cpu_to_be32(HFSPLUS_I(inode)->subfolders); } hfs_bnode_write(fd.bnode, &entry, fd.entryoffset, sizeof(struct hfsplus_cat_folder)); } else if (HFSPLUS_IS_RSRC(inode)) { struct hfsplus_cat_file *file = &entry.file; hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, sizeof(struct hfsplus_cat_file)); hfsplus_inode_write_fork(inode, &file->rsrc_fork); hfs_bnode_write(fd.bnode, &entry, fd.entryoffset, sizeof(struct hfsplus_cat_file)); } else { struct hfsplus_cat_file *file = &entry.file; if (fd.entrylength < sizeof(struct hfsplus_cat_file)) { pr_err("bad catalog file entry\n"); res = -EIO; goto out; } hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, sizeof(struct hfsplus_cat_file)); hfsplus_inode_write_fork(inode, &file->data_fork); hfsplus_cat_set_perms(inode, &file->permissions); if (HFSPLUS_FLG_IMMUTABLE & (file->permissions.rootflags | file->permissions.userflags)) file->flags |= cpu_to_be16(HFSPLUS_FILE_LOCKED); else file->flags &= cpu_to_be16(~HFSPLUS_FILE_LOCKED); file->access_date = hfsp_ut2mt(inode->i_atime); file->content_mod_date = hfsp_ut2mt(inode->i_mtime); file->attribute_mod_date = hfsp_ut2mt(inode_get_ctime(inode)); hfs_bnode_write(fd.bnode, &entry, fd.entryoffset, sizeof(struct hfsplus_cat_file)); } set_bit(HFSPLUS_I_CAT_DIRTY, &HFSPLUS_I(inode)->flags); out: hfs_find_exit(&fd); return res; } int hfsplus_fileattr_get(struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); struct hfsplus_inode_info *hip = HFSPLUS_I(inode); unsigned int flags = 0; if (inode->i_flags & S_IMMUTABLE) flags |= FS_IMMUTABLE_FL; if (inode->i_flags & S_APPEND) flags |= FS_APPEND_FL; if (hip->userflags & HFSPLUS_FLG_NODUMP) flags |= FS_NODUMP_FL; fileattr_fill_flags(fa, flags); return 0; } int hfsplus_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); struct hfsplus_inode_info *hip = HFSPLUS_I(inode); unsigned int new_fl = 0; if (fileattr_has_fsx(fa)) return -EOPNOTSUPP; /* don't silently ignore unsupported ext2 flags */ if (fa->flags & ~(FS_IMMUTABLE_FL|FS_APPEND_FL|FS_NODUMP_FL)) return -EOPNOTSUPP; if (fa->flags & FS_IMMUTABLE_FL) new_fl |= S_IMMUTABLE; if (fa->flags & FS_APPEND_FL) new_fl |= S_APPEND; inode_set_flags(inode, new_fl, S_IMMUTABLE | S_APPEND); if (fa->flags & FS_NODUMP_FL) hip->userflags |= HFSPLUS_FLG_NODUMP; else hip->userflags &= ~HFSPLUS_FLG_NODUMP; inode_set_ctime_current(inode); mark_inode_dirty(inode); return 0; }
linux-master
fs/hfsplus/inode.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/ioctl.c * * Copyright (C) 2003 * Ethan Benson <[email protected]> * partially derived from linux/fs/ext2/ioctl.c * Copyright (C) 1993, 1994, 1995 * Remy Card ([email protected]) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * hfsplus ioctls */ #include <linux/capability.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/sched.h> #include <linux/uaccess.h> #include "hfsplus_fs.h" /* * "Blessing" an HFS+ filesystem writes metadata to the superblock informing * the platform firmware which file to boot from */ static int hfsplus_ioctl_bless(struct file *file, int __user *user_flags) { struct dentry *dentry = file->f_path.dentry; struct inode *inode = d_inode(dentry); struct hfsplus_sb_info *sbi = HFSPLUS_SB(inode->i_sb); struct hfsplus_vh *vh = sbi->s_vhdr; struct hfsplus_vh *bvh = sbi->s_backup_vhdr; u32 cnid = (unsigned long)dentry->d_fsdata; if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&sbi->vh_mutex); /* Directory containing the bootable system */ vh->finder_info[0] = bvh->finder_info[0] = cpu_to_be32(parent_ino(dentry)); /* * Bootloader. Just using the inode here breaks in the case of * hard links - the firmware wants the ID of the hard link file, * but the inode points at the indirect inode */ vh->finder_info[1] = bvh->finder_info[1] = cpu_to_be32(cnid); /* Per spec, the OS X system folder - same as finder_info[0] here */ vh->finder_info[5] = bvh->finder_info[5] = cpu_to_be32(parent_ino(dentry)); mutex_unlock(&sbi->vh_mutex); return 0; } long hfsplus_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; switch (cmd) { case HFSPLUS_IOC_BLESS: return hfsplus_ioctl_bless(file, argp); default: return -ENOTTY; } }
linux-master
fs/hfsplus/ioctl.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/xattr_trusted.c * * Vyacheslav Dubeyko <[email protected]> * * Handler for storing security labels as extended attributes. */ #include <linux/security.h> #include <linux/nls.h> #include "hfsplus_fs.h" #include "xattr.h" static int hfsplus_security_getxattr(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { return hfsplus_getxattr(inode, name, buffer, size, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN); } static int hfsplus_security_setxattr(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *buffer, size_t size, int flags) { return hfsplus_setxattr(inode, name, buffer, size, flags, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN); } static int hfsplus_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *fs_info) { const struct xattr *xattr; char *xattr_name; int err = 0; xattr_name = kmalloc(NLS_MAX_CHARSET_SIZE * HFSPLUS_ATTR_MAX_STRLEN + 1, GFP_KERNEL); if (!xattr_name) return -ENOMEM; for (xattr = xattr_array; xattr->name != NULL; xattr++) { if (!strcmp(xattr->name, "")) continue; strcpy(xattr_name, XATTR_SECURITY_PREFIX); strcpy(xattr_name + XATTR_SECURITY_PREFIX_LEN, xattr->name); memset(xattr_name + XATTR_SECURITY_PREFIX_LEN + strlen(xattr->name), 0, 1); err = __hfsplus_setxattr(inode, xattr_name, xattr->value, xattr->value_len, 0); if (err) break; } kfree(xattr_name); return err; } int hfsplus_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr) { return security_inode_init_security(inode, dir, qstr, &hfsplus_initxattrs, NULL); } const struct xattr_handler hfsplus_xattr_security_handler = { .prefix = XATTR_SECURITY_PREFIX, .get = hfsplus_security_getxattr, .set = hfsplus_security_setxattr, };
linux-master
fs/hfsplus/xattr_security.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/brec.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handle individual btree records */ #include "hfsplus_fs.h" #include "hfsplus_raw.h" static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd); static int hfs_brec_update_parent(struct hfs_find_data *fd); static int hfs_btree_inc_height(struct hfs_btree *); /* Get the length and offset of the given record in the given node */ u16 hfs_brec_lenoff(struct hfs_bnode *node, u16 rec, u16 *off) { __be16 retval[2]; u16 dataoff; dataoff = node->tree->node_size - (rec + 2) * 2; hfs_bnode_read(node, retval, dataoff, 4); *off = be16_to_cpu(retval[1]); return be16_to_cpu(retval[0]) - *off; } /* Get the length of the key from a keyed record */ u16 hfs_brec_keylen(struct hfs_bnode *node, u16 rec) { u16 retval, recoff; if (node->type != HFS_NODE_INDEX && node->type != HFS_NODE_LEAF) return 0; if ((node->type == HFS_NODE_INDEX) && !(node->tree->attributes & HFS_TREE_VARIDXKEYS) && (node->tree->cnid != HFSPLUS_ATTR_CNID)) { retval = node->tree->max_key_len + 2; } else { recoff = hfs_bnode_read_u16(node, node->tree->node_size - (rec + 1) * 2); if (!recoff) return 0; if (recoff > node->tree->node_size - 2) { pr_err("recoff %d too large\n", recoff); return 0; } retval = hfs_bnode_read_u16(node, recoff) + 2; if (retval > node->tree->max_key_len + 2) { pr_err("keylen %d too large\n", retval); retval = 0; } } return retval; } int hfs_brec_insert(struct hfs_find_data *fd, void *entry, int entry_len) { struct hfs_btree *tree; struct hfs_bnode *node, *new_node; int size, key_len, rec; int data_off, end_off; int idx_rec_off, data_rec_off, end_rec_off; __be32 cnid; tree = fd->tree; if (!fd->bnode) { if (!tree->root) hfs_btree_inc_height(tree); node = hfs_bnode_find(tree, tree->leaf_head); if (IS_ERR(node)) return PTR_ERR(node); fd->bnode = node; fd->record = -1; } new_node = NULL; key_len = be16_to_cpu(fd->search_key->key_len) + 2; again: /* new record idx and complete record size */ rec = fd->record + 1; size = key_len + entry_len; node = fd->bnode; hfs_bnode_dump(node); /* get last offset */ end_rec_off = tree->node_size - (node->num_recs + 1) * 2; end_off = hfs_bnode_read_u16(node, end_rec_off); end_rec_off -= 2; hfs_dbg(BNODE_MOD, "insert_rec: %d, %d, %d, %d\n", rec, size, end_off, end_rec_off); if (size > end_rec_off - end_off) { if (new_node) panic("not enough room!\n"); new_node = hfs_bnode_split(fd); if (IS_ERR(new_node)) return PTR_ERR(new_node); goto again; } if (node->type == HFS_NODE_LEAF) { tree->leaf_count++; mark_inode_dirty(tree->inode); } node->num_recs++; /* write new last offset */ hfs_bnode_write_u16(node, offsetof(struct hfs_bnode_desc, num_recs), node->num_recs); hfs_bnode_write_u16(node, end_rec_off, end_off + size); data_off = end_off; data_rec_off = end_rec_off + 2; idx_rec_off = tree->node_size - (rec + 1) * 2; if (idx_rec_off == data_rec_off) goto skip; /* move all following entries */ do { data_off = hfs_bnode_read_u16(node, data_rec_off + 2); hfs_bnode_write_u16(node, data_rec_off, data_off + size); data_rec_off += 2; } while (data_rec_off < idx_rec_off); /* move data away */ hfs_bnode_move(node, data_off + size, data_off, end_off - data_off); skip: hfs_bnode_write(node, fd->search_key, data_off, key_len); hfs_bnode_write(node, entry, data_off + key_len, entry_len); hfs_bnode_dump(node); /* * update parent key if we inserted a key * at the start of the node and it is not the new node */ if (!rec && new_node != node) { hfs_bnode_read_key(node, fd->search_key, data_off + size); hfs_brec_update_parent(fd); } if (new_node) { hfs_bnode_put(fd->bnode); if (!new_node->parent) { hfs_btree_inc_height(tree); new_node->parent = tree->root; } fd->bnode = hfs_bnode_find(tree, new_node->parent); /* create index data entry */ cnid = cpu_to_be32(new_node->this); entry = &cnid; entry_len = sizeof(cnid); /* get index key */ hfs_bnode_read_key(new_node, fd->search_key, 14); __hfs_brec_find(fd->bnode, fd, hfs_find_rec_by_key); hfs_bnode_put(new_node); new_node = NULL; if ((tree->attributes & HFS_TREE_VARIDXKEYS) || (tree->cnid == HFSPLUS_ATTR_CNID)) key_len = be16_to_cpu(fd->search_key->key_len) + 2; else { fd->search_key->key_len = cpu_to_be16(tree->max_key_len); key_len = tree->max_key_len + 2; } goto again; } return 0; } int hfs_brec_remove(struct hfs_find_data *fd) { struct hfs_btree *tree; struct hfs_bnode *node, *parent; int end_off, rec_off, data_off, size; tree = fd->tree; node = fd->bnode; again: rec_off = tree->node_size - (fd->record + 2) * 2; end_off = tree->node_size - (node->num_recs + 1) * 2; if (node->type == HFS_NODE_LEAF) { tree->leaf_count--; mark_inode_dirty(tree->inode); } hfs_bnode_dump(node); hfs_dbg(BNODE_MOD, "remove_rec: %d, %d\n", fd->record, fd->keylength + fd->entrylength); if (!--node->num_recs) { hfs_bnode_unlink(node); if (!node->parent) return 0; parent = hfs_bnode_find(tree, node->parent); if (IS_ERR(parent)) return PTR_ERR(parent); hfs_bnode_put(node); node = fd->bnode = parent; __hfs_brec_find(node, fd, hfs_find_rec_by_key); goto again; } hfs_bnode_write_u16(node, offsetof(struct hfs_bnode_desc, num_recs), node->num_recs); if (rec_off == end_off) goto skip; size = fd->keylength + fd->entrylength; do { data_off = hfs_bnode_read_u16(node, rec_off); hfs_bnode_write_u16(node, rec_off + 2, data_off - size); rec_off -= 2; } while (rec_off >= end_off); /* fill hole */ hfs_bnode_move(node, fd->keyoffset, fd->keyoffset + size, data_off - fd->keyoffset - size); skip: hfs_bnode_dump(node); if (!fd->record) hfs_brec_update_parent(fd); return 0; } static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd) { struct hfs_btree *tree; struct hfs_bnode *node, *new_node, *next_node; struct hfs_bnode_desc node_desc; int num_recs, new_rec_off, new_off, old_rec_off; int data_start, data_end, size; tree = fd->tree; node = fd->bnode; new_node = hfs_bmap_alloc(tree); if (IS_ERR(new_node)) return new_node; hfs_bnode_get(node); hfs_dbg(BNODE_MOD, "split_nodes: %d - %d - %d\n", node->this, new_node->this, node->next); new_node->next = node->next; new_node->prev = node->this; new_node->parent = node->parent; new_node->type = node->type; new_node->height = node->height; if (node->next) next_node = hfs_bnode_find(tree, node->next); else next_node = NULL; if (IS_ERR(next_node)) { hfs_bnode_put(node); hfs_bnode_put(new_node); return next_node; } size = tree->node_size / 2 - node->num_recs * 2 - 14; old_rec_off = tree->node_size - 4; num_recs = 1; for (;;) { data_start = hfs_bnode_read_u16(node, old_rec_off); if (data_start > size) break; old_rec_off -= 2; if (++num_recs < node->num_recs) continue; /* panic? */ hfs_bnode_put(node); hfs_bnode_put(new_node); if (next_node) hfs_bnode_put(next_node); return ERR_PTR(-ENOSPC); } if (fd->record + 1 < num_recs) { /* new record is in the lower half, * so leave some more space there */ old_rec_off += 2; num_recs--; data_start = hfs_bnode_read_u16(node, old_rec_off); } else { hfs_bnode_put(node); hfs_bnode_get(new_node); fd->bnode = new_node; fd->record -= num_recs; fd->keyoffset -= data_start - 14; fd->entryoffset -= data_start - 14; } new_node->num_recs = node->num_recs - num_recs; node->num_recs = num_recs; new_rec_off = tree->node_size - 2; new_off = 14; size = data_start - new_off; num_recs = new_node->num_recs; data_end = data_start; while (num_recs) { hfs_bnode_write_u16(new_node, new_rec_off, new_off); old_rec_off -= 2; new_rec_off -= 2; data_end = hfs_bnode_read_u16(node, old_rec_off); new_off = data_end - size; num_recs--; } hfs_bnode_write_u16(new_node, new_rec_off, new_off); hfs_bnode_copy(new_node, 14, node, data_start, data_end - data_start); /* update new bnode header */ node_desc.next = cpu_to_be32(new_node->next); node_desc.prev = cpu_to_be32(new_node->prev); node_desc.type = new_node->type; node_desc.height = new_node->height; node_desc.num_recs = cpu_to_be16(new_node->num_recs); node_desc.reserved = 0; hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc)); /* update previous bnode header */ node->next = new_node->this; hfs_bnode_read(node, &node_desc, 0, sizeof(node_desc)); node_desc.next = cpu_to_be32(node->next); node_desc.num_recs = cpu_to_be16(node->num_recs); hfs_bnode_write(node, &node_desc, 0, sizeof(node_desc)); /* update next bnode header */ if (next_node) { next_node->prev = new_node->this; hfs_bnode_read(next_node, &node_desc, 0, sizeof(node_desc)); node_desc.prev = cpu_to_be32(next_node->prev); hfs_bnode_write(next_node, &node_desc, 0, sizeof(node_desc)); hfs_bnode_put(next_node); } else if (node->this == tree->leaf_tail) { /* if there is no next node, this might be the new tail */ tree->leaf_tail = new_node->this; mark_inode_dirty(tree->inode); } hfs_bnode_dump(node); hfs_bnode_dump(new_node); hfs_bnode_put(node); return new_node; } static int hfs_brec_update_parent(struct hfs_find_data *fd) { struct hfs_btree *tree; struct hfs_bnode *node, *new_node, *parent; int newkeylen, diff; int rec, rec_off, end_rec_off; int start_off, end_off; tree = fd->tree; node = fd->bnode; new_node = NULL; if (!node->parent) return 0; again: parent = hfs_bnode_find(tree, node->parent); if (IS_ERR(parent)) return PTR_ERR(parent); __hfs_brec_find(parent, fd, hfs_find_rec_by_key); if (fd->record < 0) return -ENOENT; hfs_bnode_dump(parent); rec = fd->record; /* size difference between old and new key */ if ((tree->attributes & HFS_TREE_VARIDXKEYS) || (tree->cnid == HFSPLUS_ATTR_CNID)) newkeylen = hfs_bnode_read_u16(node, 14) + 2; else fd->keylength = newkeylen = tree->max_key_len + 2; hfs_dbg(BNODE_MOD, "update_rec: %d, %d, %d\n", rec, fd->keylength, newkeylen); rec_off = tree->node_size - (rec + 2) * 2; end_rec_off = tree->node_size - (parent->num_recs + 1) * 2; diff = newkeylen - fd->keylength; if (!diff) goto skip; if (diff > 0) { end_off = hfs_bnode_read_u16(parent, end_rec_off); if (end_rec_off - end_off < diff) { hfs_dbg(BNODE_MOD, "splitting index node\n"); fd->bnode = parent; new_node = hfs_bnode_split(fd); if (IS_ERR(new_node)) return PTR_ERR(new_node); parent = fd->bnode; rec = fd->record; rec_off = tree->node_size - (rec + 2) * 2; end_rec_off = tree->node_size - (parent->num_recs + 1) * 2; } } end_off = start_off = hfs_bnode_read_u16(parent, rec_off); hfs_bnode_write_u16(parent, rec_off, start_off + diff); start_off -= 4; /* move previous cnid too */ while (rec_off > end_rec_off) { rec_off -= 2; end_off = hfs_bnode_read_u16(parent, rec_off); hfs_bnode_write_u16(parent, rec_off, end_off + diff); } hfs_bnode_move(parent, start_off + diff, start_off, end_off - start_off); skip: hfs_bnode_copy(parent, fd->keyoffset, node, 14, newkeylen); hfs_bnode_dump(parent); hfs_bnode_put(node); node = parent; if (new_node) { __be32 cnid; if (!new_node->parent) { hfs_btree_inc_height(tree); new_node->parent = tree->root; } fd->bnode = hfs_bnode_find(tree, new_node->parent); /* create index key and entry */ hfs_bnode_read_key(new_node, fd->search_key, 14); cnid = cpu_to_be32(new_node->this); __hfs_brec_find(fd->bnode, fd, hfs_find_rec_by_key); hfs_brec_insert(fd, &cnid, sizeof(cnid)); hfs_bnode_put(fd->bnode); hfs_bnode_put(new_node); if (!rec) { if (new_node == node) goto out; /* restore search_key */ hfs_bnode_read_key(node, fd->search_key, 14); } new_node = NULL; } if (!rec && node->parent) goto again; out: fd->bnode = node; return 0; } static int hfs_btree_inc_height(struct hfs_btree *tree) { struct hfs_bnode *node, *new_node; struct hfs_bnode_desc node_desc; int key_size, rec; __be32 cnid; node = NULL; if (tree->root) { node = hfs_bnode_find(tree, tree->root); if (IS_ERR(node)) return PTR_ERR(node); } new_node = hfs_bmap_alloc(tree); if (IS_ERR(new_node)) { hfs_bnode_put(node); return PTR_ERR(new_node); } tree->root = new_node->this; if (!tree->depth) { tree->leaf_head = tree->leaf_tail = new_node->this; new_node->type = HFS_NODE_LEAF; new_node->num_recs = 0; } else { new_node->type = HFS_NODE_INDEX; new_node->num_recs = 1; } new_node->parent = 0; new_node->next = 0; new_node->prev = 0; new_node->height = ++tree->depth; node_desc.next = cpu_to_be32(new_node->next); node_desc.prev = cpu_to_be32(new_node->prev); node_desc.type = new_node->type; node_desc.height = new_node->height; node_desc.num_recs = cpu_to_be16(new_node->num_recs); node_desc.reserved = 0; hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc)); rec = tree->node_size - 2; hfs_bnode_write_u16(new_node, rec, 14); if (node) { /* insert old root idx into new root */ node->parent = tree->root; if (node->type == HFS_NODE_LEAF || tree->attributes & HFS_TREE_VARIDXKEYS || tree->cnid == HFSPLUS_ATTR_CNID) key_size = hfs_bnode_read_u16(node, 14) + 2; else key_size = tree->max_key_len + 2; hfs_bnode_copy(new_node, 14, node, 14, key_size); if (!(tree->attributes & HFS_TREE_VARIDXKEYS) && (tree->cnid != HFSPLUS_ATTR_CNID)) { key_size = tree->max_key_len + 2; hfs_bnode_write_u16(new_node, 14, tree->max_key_len); } cnid = cpu_to_be32(node->this); hfs_bnode_write(new_node, &cnid, 14 + key_size, 4); rec -= 2; hfs_bnode_write_u16(new_node, rec, 14 + key_size + 4); hfs_bnode_put(node); } hfs_bnode_put(new_node); mark_inode_dirty(tree->inode); return 0; }
linux-master
fs/hfsplus/brec.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/catalog.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Handling of catalog records */ #include "hfsplus_fs.h" #include "hfsplus_raw.h" int hfsplus_cat_case_cmp_key(const hfsplus_btree_key *k1, const hfsplus_btree_key *k2) { __be32 k1p, k2p; k1p = k1->cat.parent; k2p = k2->cat.parent; if (k1p != k2p) return be32_to_cpu(k1p) < be32_to_cpu(k2p) ? -1 : 1; return hfsplus_strcasecmp(&k1->cat.name, &k2->cat.name); } int hfsplus_cat_bin_cmp_key(const hfsplus_btree_key *k1, const hfsplus_btree_key *k2) { __be32 k1p, k2p; k1p = k1->cat.parent; k2p = k2->cat.parent; if (k1p != k2p) return be32_to_cpu(k1p) < be32_to_cpu(k2p) ? -1 : 1; return hfsplus_strcmp(&k1->cat.name, &k2->cat.name); } /* Generates key for catalog file/folders record. */ int hfsplus_cat_build_key(struct super_block *sb, hfsplus_btree_key *key, u32 parent, const struct qstr *str) { int len, err; key->cat.parent = cpu_to_be32(parent); err = hfsplus_asc2uni(sb, &key->cat.name, HFSPLUS_MAX_STRLEN, str->name, str->len); if (unlikely(err < 0)) return err; len = be16_to_cpu(key->cat.name.length); key->key_len = cpu_to_be16(6 + 2 * len); return 0; } /* Generates key for catalog thread record. */ void hfsplus_cat_build_key_with_cnid(struct super_block *sb, hfsplus_btree_key *key, u32 parent) { key->cat.parent = cpu_to_be32(parent); key->cat.name.length = 0; key->key_len = cpu_to_be16(6); } static void hfsplus_cat_build_key_uni(hfsplus_btree_key *key, u32 parent, struct hfsplus_unistr *name) { int ustrlen; ustrlen = be16_to_cpu(name->length); key->cat.parent = cpu_to_be32(parent); key->cat.name.length = cpu_to_be16(ustrlen); ustrlen *= 2; memcpy(key->cat.name.unicode, name->unicode, ustrlen); key->key_len = cpu_to_be16(6 + ustrlen); } void hfsplus_cat_set_perms(struct inode *inode, struct hfsplus_perm *perms) { if (inode->i_flags & S_IMMUTABLE) perms->rootflags |= HFSPLUS_FLG_IMMUTABLE; else perms->rootflags &= ~HFSPLUS_FLG_IMMUTABLE; if (inode->i_flags & S_APPEND) perms->rootflags |= HFSPLUS_FLG_APPEND; else perms->rootflags &= ~HFSPLUS_FLG_APPEND; perms->userflags = HFSPLUS_I(inode)->userflags; perms->mode = cpu_to_be16(inode->i_mode); perms->owner = cpu_to_be32(i_uid_read(inode)); perms->group = cpu_to_be32(i_gid_read(inode)); if (S_ISREG(inode->i_mode)) perms->dev = cpu_to_be32(inode->i_nlink); else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) perms->dev = cpu_to_be32(inode->i_rdev); else perms->dev = 0; } static int hfsplus_cat_build_record(hfsplus_cat_entry *entry, u32 cnid, struct inode *inode) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(inode->i_sb); if (S_ISDIR(inode->i_mode)) { struct hfsplus_cat_folder *folder; folder = &entry->folder; memset(folder, 0, sizeof(*folder)); folder->type = cpu_to_be16(HFSPLUS_FOLDER); if (test_bit(HFSPLUS_SB_HFSX, &sbi->flags)) folder->flags |= cpu_to_be16(HFSPLUS_HAS_FOLDER_COUNT); folder->id = cpu_to_be32(inode->i_ino); HFSPLUS_I(inode)->create_date = folder->create_date = folder->content_mod_date = folder->attribute_mod_date = folder->access_date = hfsp_now2mt(); hfsplus_cat_set_perms(inode, &folder->permissions); if (inode == sbi->hidden_dir) /* invisible and namelocked */ folder->user_info.frFlags = cpu_to_be16(0x5000); return sizeof(*folder); } else { struct hfsplus_cat_file *file; file = &entry->file; memset(file, 0, sizeof(*file)); file->type = cpu_to_be16(HFSPLUS_FILE); file->flags = cpu_to_be16(HFSPLUS_FILE_THREAD_EXISTS); file->id = cpu_to_be32(cnid); HFSPLUS_I(inode)->create_date = file->create_date = file->content_mod_date = file->attribute_mod_date = file->access_date = hfsp_now2mt(); if (cnid == inode->i_ino) { hfsplus_cat_set_perms(inode, &file->permissions); if (S_ISLNK(inode->i_mode)) { file->user_info.fdType = cpu_to_be32(HFSP_SYMLINK_TYPE); file->user_info.fdCreator = cpu_to_be32(HFSP_SYMLINK_CREATOR); } else { file->user_info.fdType = cpu_to_be32(sbi->type); file->user_info.fdCreator = cpu_to_be32(sbi->creator); } if (HFSPLUS_FLG_IMMUTABLE & (file->permissions.rootflags | file->permissions.userflags)) file->flags |= cpu_to_be16(HFSPLUS_FILE_LOCKED); } else { file->user_info.fdType = cpu_to_be32(HFSP_HARDLINK_TYPE); file->user_info.fdCreator = cpu_to_be32(HFSP_HFSPLUS_CREATOR); file->user_info.fdFlags = cpu_to_be16(0x100); file->create_date = HFSPLUS_I(sbi->hidden_dir)->create_date; file->permissions.dev = cpu_to_be32(HFSPLUS_I(inode)->linkid); } return sizeof(*file); } } static int hfsplus_fill_cat_thread(struct super_block *sb, hfsplus_cat_entry *entry, int type, u32 parentid, const struct qstr *str) { int err; entry->type = cpu_to_be16(type); entry->thread.reserved = 0; entry->thread.parentID = cpu_to_be32(parentid); err = hfsplus_asc2uni(sb, &entry->thread.nodeName, HFSPLUS_MAX_STRLEN, str->name, str->len); if (unlikely(err < 0)) return err; return 10 + be16_to_cpu(entry->thread.nodeName.length) * 2; } /* Try to get a catalog entry for given catalog id */ int hfsplus_find_cat(struct super_block *sb, u32 cnid, struct hfs_find_data *fd) { hfsplus_cat_entry tmp; int err; u16 type; hfsplus_cat_build_key_with_cnid(sb, fd->search_key, cnid); err = hfs_brec_read(fd, &tmp, sizeof(hfsplus_cat_entry)); if (err) return err; type = be16_to_cpu(tmp.type); if (type != HFSPLUS_FOLDER_THREAD && type != HFSPLUS_FILE_THREAD) { pr_err("found bad thread record in catalog\n"); return -EIO; } if (be16_to_cpu(tmp.thread.nodeName.length) > 255) { pr_err("catalog name length corrupted\n"); return -EIO; } hfsplus_cat_build_key_uni(fd->search_key, be32_to_cpu(tmp.thread.parentID), &tmp.thread.nodeName); return hfs_brec_find(fd, hfs_find_rec_by_key); } static void hfsplus_subfolders_inc(struct inode *dir) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb); if (test_bit(HFSPLUS_SB_HFSX, &sbi->flags)) { /* * Increment subfolder count. Note, the value is only meaningful * for folders with HFSPLUS_HAS_FOLDER_COUNT flag set. */ HFSPLUS_I(dir)->subfolders++; } } static void hfsplus_subfolders_dec(struct inode *dir) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb); if (test_bit(HFSPLUS_SB_HFSX, &sbi->flags)) { /* * Decrement subfolder count. Note, the value is only meaningful * for folders with HFSPLUS_HAS_FOLDER_COUNT flag set. * * Check for zero. Some subfolders may have been created * by an implementation ignorant of this counter. */ if (HFSPLUS_I(dir)->subfolders) HFSPLUS_I(dir)->subfolders--; } } int hfsplus_create_cat(u32 cnid, struct inode *dir, const struct qstr *str, struct inode *inode) { struct super_block *sb = dir->i_sb; struct hfs_find_data fd; hfsplus_cat_entry entry; int entry_size; int err; hfs_dbg(CAT_MOD, "create_cat: %s,%u(%d)\n", str->name, cnid, inode->i_nlink); err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &fd); if (err) return err; /* * Fail early and avoid ENOSPC during the btree operations. We may * have to split the root node at most once. */ err = hfs_bmap_reserve(fd.tree, 2 * fd.tree->depth); if (err) goto err2; hfsplus_cat_build_key_with_cnid(sb, fd.search_key, cnid); entry_size = hfsplus_fill_cat_thread(sb, &entry, S_ISDIR(inode->i_mode) ? HFSPLUS_FOLDER_THREAD : HFSPLUS_FILE_THREAD, dir->i_ino, str); if (unlikely(entry_size < 0)) { err = entry_size; goto err2; } err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err != -ENOENT) { if (!err) err = -EEXIST; goto err2; } err = hfs_brec_insert(&fd, &entry, entry_size); if (err) goto err2; err = hfsplus_cat_build_key(sb, fd.search_key, dir->i_ino, str); if (unlikely(err)) goto err1; entry_size = hfsplus_cat_build_record(&entry, cnid, inode); err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err != -ENOENT) { /* panic? */ if (!err) err = -EEXIST; goto err1; } err = hfs_brec_insert(&fd, &entry, entry_size); if (err) goto err1; dir->i_size++; if (S_ISDIR(inode->i_mode)) hfsplus_subfolders_inc(dir); dir->i_mtime = inode_set_ctime_current(dir); hfsplus_mark_inode_dirty(dir, HFSPLUS_I_CAT_DIRTY); hfs_find_exit(&fd); return 0; err1: hfsplus_cat_build_key_with_cnid(sb, fd.search_key, cnid); if (!hfs_brec_find(&fd, hfs_find_rec_by_key)) hfs_brec_remove(&fd); err2: hfs_find_exit(&fd); return err; } int hfsplus_delete_cat(u32 cnid, struct inode *dir, const struct qstr *str) { struct super_block *sb = dir->i_sb; struct hfs_find_data fd; struct hfsplus_fork_raw fork; struct list_head *pos; int err, off; u16 type; hfs_dbg(CAT_MOD, "delete_cat: %s,%u\n", str ? str->name : NULL, cnid); err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &fd); if (err) return err; /* * Fail early and avoid ENOSPC during the btree operations. We may * have to split the root node at most once. */ err = hfs_bmap_reserve(fd.tree, 2 * (int)fd.tree->depth - 2); if (err) goto out; if (!str) { int len; hfsplus_cat_build_key_with_cnid(sb, fd.search_key, cnid); err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err) goto out; off = fd.entryoffset + offsetof(struct hfsplus_cat_thread, nodeName); fd.search_key->cat.parent = cpu_to_be32(dir->i_ino); hfs_bnode_read(fd.bnode, &fd.search_key->cat.name.length, off, 2); len = be16_to_cpu(fd.search_key->cat.name.length) * 2; hfs_bnode_read(fd.bnode, &fd.search_key->cat.name.unicode, off + 2, len); fd.search_key->key_len = cpu_to_be16(6 + len); } else { err = hfsplus_cat_build_key(sb, fd.search_key, dir->i_ino, str); if (unlikely(err)) goto out; } err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err) goto out; type = hfs_bnode_read_u16(fd.bnode, fd.entryoffset); if (type == HFSPLUS_FILE) { #if 0 off = fd.entryoffset + offsetof(hfsplus_cat_file, data_fork); hfs_bnode_read(fd.bnode, &fork, off, sizeof(fork)); hfsplus_free_fork(sb, cnid, &fork, HFSPLUS_TYPE_DATA); #endif off = fd.entryoffset + offsetof(struct hfsplus_cat_file, rsrc_fork); hfs_bnode_read(fd.bnode, &fork, off, sizeof(fork)); hfsplus_free_fork(sb, cnid, &fork, HFSPLUS_TYPE_RSRC); } /* we only need to take spinlock for exclusion with ->release() */ spin_lock(&HFSPLUS_I(dir)->open_dir_lock); list_for_each(pos, &HFSPLUS_I(dir)->open_dir_list) { struct hfsplus_readdir_data *rd = list_entry(pos, struct hfsplus_readdir_data, list); if (fd.tree->keycmp(fd.search_key, (void *)&rd->key) < 0) rd->file->f_pos--; } spin_unlock(&HFSPLUS_I(dir)->open_dir_lock); err = hfs_brec_remove(&fd); if (err) goto out; hfsplus_cat_build_key_with_cnid(sb, fd.search_key, cnid); err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err) goto out; err = hfs_brec_remove(&fd); if (err) goto out; dir->i_size--; if (type == HFSPLUS_FOLDER) hfsplus_subfolders_dec(dir); dir->i_mtime = inode_set_ctime_current(dir); hfsplus_mark_inode_dirty(dir, HFSPLUS_I_CAT_DIRTY); if (type == HFSPLUS_FILE || type == HFSPLUS_FOLDER) { if (HFSPLUS_SB(sb)->attr_tree) hfsplus_delete_all_attrs(dir, cnid); } out: hfs_find_exit(&fd); return err; } int hfsplus_rename_cat(u32 cnid, struct inode *src_dir, const struct qstr *src_name, struct inode *dst_dir, const struct qstr *dst_name) { struct super_block *sb = src_dir->i_sb; struct hfs_find_data src_fd, dst_fd; hfsplus_cat_entry entry; int entry_size, type; int err; hfs_dbg(CAT_MOD, "rename_cat: %u - %lu,%s - %lu,%s\n", cnid, src_dir->i_ino, src_name->name, dst_dir->i_ino, dst_name->name); err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &src_fd); if (err) return err; dst_fd = src_fd; /* * Fail early and avoid ENOSPC during the btree operations. We may * have to split the root node at most twice. */ err = hfs_bmap_reserve(src_fd.tree, 4 * (int)src_fd.tree->depth - 1); if (err) goto out; /* find the old dir entry and read the data */ err = hfsplus_cat_build_key(sb, src_fd.search_key, src_dir->i_ino, src_name); if (unlikely(err)) goto out; err = hfs_brec_find(&src_fd, hfs_find_rec_by_key); if (err) goto out; if (src_fd.entrylength > sizeof(entry) || src_fd.entrylength < 0) { err = -EIO; goto out; } hfs_bnode_read(src_fd.bnode, &entry, src_fd.entryoffset, src_fd.entrylength); type = be16_to_cpu(entry.type); /* create new dir entry with the data from the old entry */ err = hfsplus_cat_build_key(sb, dst_fd.search_key, dst_dir->i_ino, dst_name); if (unlikely(err)) goto out; err = hfs_brec_find(&dst_fd, hfs_find_rec_by_key); if (err != -ENOENT) { if (!err) err = -EEXIST; goto out; } err = hfs_brec_insert(&dst_fd, &entry, src_fd.entrylength); if (err) goto out; dst_dir->i_size++; if (type == HFSPLUS_FOLDER) hfsplus_subfolders_inc(dst_dir); dst_dir->i_mtime = inode_set_ctime_current(dst_dir); /* finally remove the old entry */ err = hfsplus_cat_build_key(sb, src_fd.search_key, src_dir->i_ino, src_name); if (unlikely(err)) goto out; err = hfs_brec_find(&src_fd, hfs_find_rec_by_key); if (err) goto out; err = hfs_brec_remove(&src_fd); if (err) goto out; src_dir->i_size--; if (type == HFSPLUS_FOLDER) hfsplus_subfolders_dec(src_dir); src_dir->i_mtime = inode_set_ctime_current(src_dir); /* remove old thread entry */ hfsplus_cat_build_key_with_cnid(sb, src_fd.search_key, cnid); err = hfs_brec_find(&src_fd, hfs_find_rec_by_key); if (err) goto out; type = hfs_bnode_read_u16(src_fd.bnode, src_fd.entryoffset); err = hfs_brec_remove(&src_fd); if (err) goto out; /* create new thread entry */ hfsplus_cat_build_key_with_cnid(sb, dst_fd.search_key, cnid); entry_size = hfsplus_fill_cat_thread(sb, &entry, type, dst_dir->i_ino, dst_name); if (unlikely(entry_size < 0)) { err = entry_size; goto out; } err = hfs_brec_find(&dst_fd, hfs_find_rec_by_key); if (err != -ENOENT) { if (!err) err = -EEXIST; goto out; } err = hfs_brec_insert(&dst_fd, &entry, entry_size); hfsplus_mark_inode_dirty(dst_dir, HFSPLUS_I_CAT_DIRTY); hfsplus_mark_inode_dirty(src_dir, HFSPLUS_I_CAT_DIRTY); out: hfs_bnode_put(dst_fd.bnode); hfs_find_exit(&src_fd); return err; }
linux-master
fs/hfsplus/catalog.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/options.c * * Copyright (C) 2001 * Brad Boyer ([email protected]) * (C) 2003 Ardis Technologies <[email protected]> * * Option parsing */ #include <linux/string.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/parser.h> #include <linux/nls.h> #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/slab.h> #include "hfsplus_fs.h" enum { opt_creator, opt_type, opt_umask, opt_uid, opt_gid, opt_part, opt_session, opt_nls, opt_nodecompose, opt_decompose, opt_barrier, opt_nobarrier, opt_force, opt_err }; static const match_table_t tokens = { { opt_creator, "creator=%s" }, { opt_type, "type=%s" }, { opt_umask, "umask=%o" }, { opt_uid, "uid=%u" }, { opt_gid, "gid=%u" }, { opt_part, "part=%u" }, { opt_session, "session=%u" }, { opt_nls, "nls=%s" }, { opt_decompose, "decompose" }, { opt_nodecompose, "nodecompose" }, { opt_barrier, "barrier" }, { opt_nobarrier, "nobarrier" }, { opt_force, "force" }, { opt_err, NULL } }; /* Initialize an options object to reasonable defaults */ void hfsplus_fill_defaults(struct hfsplus_sb_info *opts) { if (!opts) return; opts->creator = HFSPLUS_DEF_CR_TYPE; opts->type = HFSPLUS_DEF_CR_TYPE; opts->umask = current_umask(); opts->uid = current_uid(); opts->gid = current_gid(); opts->part = -1; opts->session = -1; } /* convert a "four byte character" to a 32 bit int with error checks */ static inline int match_fourchar(substring_t *arg, u32 *result) { if (arg->to - arg->from != 4) return -EINVAL; memcpy(result, arg->from, 4); return 0; } int hfsplus_parse_options_remount(char *input, int *force) { char *p; substring_t args[MAX_OPT_ARGS]; int token; if (!input) return 1; while ((p = strsep(&input, ",")) != NULL) { if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case opt_force: *force = 1; break; default: break; } } return 1; } /* Parse options from mount. Returns 0 on failure */ /* input is the options passed to mount() as a string */ int hfsplus_parse_options(char *input, struct hfsplus_sb_info *sbi) { char *p; substring_t args[MAX_OPT_ARGS]; int tmp, token; if (!input) goto done; while ((p = strsep(&input, ",")) != NULL) { if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case opt_creator: if (match_fourchar(&args[0], &sbi->creator)) { pr_err("creator requires a 4 character value\n"); return 0; } break; case opt_type: if (match_fourchar(&args[0], &sbi->type)) { pr_err("type requires a 4 character value\n"); return 0; } break; case opt_umask: if (match_octal(&args[0], &tmp)) { pr_err("umask requires a value\n"); return 0; } sbi->umask = (umode_t)tmp; break; case opt_uid: if (match_int(&args[0], &tmp)) { pr_err("uid requires an argument\n"); return 0; } sbi->uid = make_kuid(current_user_ns(), (uid_t)tmp); if (!uid_valid(sbi->uid)) { pr_err("invalid uid specified\n"); return 0; } else { set_bit(HFSPLUS_SB_UID, &sbi->flags); } break; case opt_gid: if (match_int(&args[0], &tmp)) { pr_err("gid requires an argument\n"); return 0; } sbi->gid = make_kgid(current_user_ns(), (gid_t)tmp); if (!gid_valid(sbi->gid)) { pr_err("invalid gid specified\n"); return 0; } else { set_bit(HFSPLUS_SB_GID, &sbi->flags); } break; case opt_part: if (match_int(&args[0], &sbi->part)) { pr_err("part requires an argument\n"); return 0; } break; case opt_session: if (match_int(&args[0], &sbi->session)) { pr_err("session requires an argument\n"); return 0; } break; case opt_nls: if (sbi->nls) { pr_err("unable to change nls mapping\n"); return 0; } p = match_strdup(&args[0]); if (p) sbi->nls = load_nls(p); if (!sbi->nls) { pr_err("unable to load nls mapping \"%s\"\n", p); kfree(p); return 0; } kfree(p); break; case opt_decompose: clear_bit(HFSPLUS_SB_NODECOMPOSE, &sbi->flags); break; case opt_nodecompose: set_bit(HFSPLUS_SB_NODECOMPOSE, &sbi->flags); break; case opt_barrier: clear_bit(HFSPLUS_SB_NOBARRIER, &sbi->flags); break; case opt_nobarrier: set_bit(HFSPLUS_SB_NOBARRIER, &sbi->flags); break; case opt_force: set_bit(HFSPLUS_SB_FORCE, &sbi->flags); break; default: return 0; } } done: if (!sbi->nls) { /* try utf8 first, as this is the old default behaviour */ sbi->nls = load_nls("utf8"); if (!sbi->nls) sbi->nls = load_nls_default(); if (!sbi->nls) return 0; } return 1; } int hfsplus_show_options(struct seq_file *seq, struct dentry *root) { struct hfsplus_sb_info *sbi = HFSPLUS_SB(root->d_sb); if (sbi->creator != HFSPLUS_DEF_CR_TYPE) seq_show_option_n(seq, "creator", (char *)&sbi->creator, 4); if (sbi->type != HFSPLUS_DEF_CR_TYPE) seq_show_option_n(seq, "type", (char *)&sbi->type, 4); seq_printf(seq, ",umask=%o,uid=%u,gid=%u", sbi->umask, from_kuid_munged(&init_user_ns, sbi->uid), from_kgid_munged(&init_user_ns, sbi->gid)); if (sbi->part >= 0) seq_printf(seq, ",part=%u", sbi->part); if (sbi->session >= 0) seq_printf(seq, ",session=%u", sbi->session); if (sbi->nls) seq_printf(seq, ",nls=%s", sbi->nls->charset); if (test_bit(HFSPLUS_SB_NODECOMPOSE, &sbi->flags)) seq_puts(seq, ",nodecompose"); if (test_bit(HFSPLUS_SB_NOBARRIER, &sbi->flags)) seq_puts(seq, ",nobarrier"); return 0; }
linux-master
fs/hfsplus/options.c
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/attributes.c * * Vyacheslav Dubeyko <[email protected]> * * Handling of records in attributes tree */ #include "hfsplus_fs.h" #include "hfsplus_raw.h" static struct kmem_cache *hfsplus_attr_tree_cachep; int __init hfsplus_create_attr_tree_cache(void) { if (hfsplus_attr_tree_cachep) return -EEXIST; hfsplus_attr_tree_cachep = kmem_cache_create("hfsplus_attr_cache", sizeof(hfsplus_attr_entry), 0, SLAB_HWCACHE_ALIGN, NULL); if (!hfsplus_attr_tree_cachep) return -ENOMEM; return 0; } void hfsplus_destroy_attr_tree_cache(void) { kmem_cache_destroy(hfsplus_attr_tree_cachep); } int hfsplus_attr_bin_cmp_key(const hfsplus_btree_key *k1, const hfsplus_btree_key *k2) { __be32 k1_cnid, k2_cnid; k1_cnid = k1->attr.cnid; k2_cnid = k2->attr.cnid; if (k1_cnid != k2_cnid) return be32_to_cpu(k1_cnid) < be32_to_cpu(k2_cnid) ? -1 : 1; return hfsplus_strcmp( (const struct hfsplus_unistr *)&k1->attr.key_name, (const struct hfsplus_unistr *)&k2->attr.key_name); } int hfsplus_attr_build_key(struct super_block *sb, hfsplus_btree_key *key, u32 cnid, const char *name) { int len; memset(key, 0, sizeof(struct hfsplus_attr_key)); key->attr.cnid = cpu_to_be32(cnid); if (name) { int res = hfsplus_asc2uni(sb, (struct hfsplus_unistr *)&key->attr.key_name, HFSPLUS_ATTR_MAX_STRLEN, name, strlen(name)); if (res) return res; len = be16_to_cpu(key->attr.key_name.length); } else { key->attr.key_name.length = 0; len = 0; } /* The length of the key, as stored in key_len field, does not include * the size of the key_len field itself. * So, offsetof(hfsplus_attr_key, key_name) is a trick because * it takes into consideration key_len field (__be16) of * hfsplus_attr_key structure instead of length field (__be16) of * hfsplus_attr_unistr structure. */ key->key_len = cpu_to_be16(offsetof(struct hfsplus_attr_key, key_name) + 2 * len); return 0; } hfsplus_attr_entry *hfsplus_alloc_attr_entry(void) { return kmem_cache_alloc(hfsplus_attr_tree_cachep, GFP_KERNEL); } void hfsplus_destroy_attr_entry(hfsplus_attr_entry *entry) { if (entry) kmem_cache_free(hfsplus_attr_tree_cachep, entry); } #define HFSPLUS_INVALID_ATTR_RECORD -1 static int hfsplus_attr_build_record(hfsplus_attr_entry *entry, int record_type, u32 cnid, const void *value, size_t size) { if (record_type == HFSPLUS_ATTR_FORK_DATA) { /* * Mac OS X supports only inline data attributes. * Do nothing */ memset(entry, 0, sizeof(*entry)); return sizeof(struct hfsplus_attr_fork_data); } else if (record_type == HFSPLUS_ATTR_EXTENTS) { /* * Mac OS X supports only inline data attributes. * Do nothing. */ memset(entry, 0, sizeof(*entry)); return sizeof(struct hfsplus_attr_extents); } else if (record_type == HFSPLUS_ATTR_INLINE_DATA) { u16 len; memset(entry, 0, sizeof(struct hfsplus_attr_inline_data)); entry->inline_data.record_type = cpu_to_be32(record_type); if (size <= HFSPLUS_MAX_INLINE_DATA_SIZE) len = size; else return HFSPLUS_INVALID_ATTR_RECORD; entry->inline_data.length = cpu_to_be16(len); memcpy(entry->inline_data.raw_bytes, value, len); /* * Align len on two-byte boundary. * It needs to add pad byte if we have odd len. */ len = round_up(len, 2); return offsetof(struct hfsplus_attr_inline_data, raw_bytes) + len; } else /* invalid input */ memset(entry, 0, sizeof(*entry)); return HFSPLUS_INVALID_ATTR_RECORD; } int hfsplus_find_attr(struct super_block *sb, u32 cnid, const char *name, struct hfs_find_data *fd) { int err = 0; hfs_dbg(ATTR_MOD, "find_attr: %s,%d\n", name ? name : NULL, cnid); if (!HFSPLUS_SB(sb)->attr_tree) { pr_err("attributes file doesn't exist\n"); return -EINVAL; } if (name) { err = hfsplus_attr_build_key(sb, fd->search_key, cnid, name); if (err) goto failed_find_attr; err = hfs_brec_find(fd, hfs_find_rec_by_key); if (err) goto failed_find_attr; } else { err = hfsplus_attr_build_key(sb, fd->search_key, cnid, NULL); if (err) goto failed_find_attr; err = hfs_brec_find(fd, hfs_find_1st_rec_by_cnid); if (err) goto failed_find_attr; } failed_find_attr: return err; } int hfsplus_attr_exists(struct inode *inode, const char *name) { int err = 0; struct super_block *sb = inode->i_sb; struct hfs_find_data fd; if (!HFSPLUS_SB(sb)->attr_tree) return 0; err = hfs_find_init(HFSPLUS_SB(sb)->attr_tree, &fd); if (err) return 0; err = hfsplus_find_attr(sb, inode->i_ino, name, &fd); if (err) goto attr_not_found; hfs_find_exit(&fd); return 1; attr_not_found: hfs_find_exit(&fd); return 0; } int hfsplus_create_attr(struct inode *inode, const char *name, const void *value, size_t size) { struct super_block *sb = inode->i_sb; struct hfs_find_data fd; hfsplus_attr_entry *entry_ptr; int entry_size; int err; hfs_dbg(ATTR_MOD, "create_attr: %s,%ld\n", name ? name : NULL, inode->i_ino); if (!HFSPLUS_SB(sb)->attr_tree) { pr_err("attributes file doesn't exist\n"); return -EINVAL; } entry_ptr = hfsplus_alloc_attr_entry(); if (!entry_ptr) return -ENOMEM; err = hfs_find_init(HFSPLUS_SB(sb)->attr_tree, &fd); if (err) goto failed_init_create_attr; /* Fail early and avoid ENOSPC during the btree operation */ err = hfs_bmap_reserve(fd.tree, fd.tree->depth + 1); if (err) goto failed_create_attr; if (name) { err = hfsplus_attr_build_key(sb, fd.search_key, inode->i_ino, name); if (err) goto failed_create_attr; } else { err = -EINVAL; goto failed_create_attr; } /* Mac OS X supports only inline data attributes. */ entry_size = hfsplus_attr_build_record(entry_ptr, HFSPLUS_ATTR_INLINE_DATA, inode->i_ino, value, size); if (entry_size == HFSPLUS_INVALID_ATTR_RECORD) { err = -EINVAL; goto failed_create_attr; } err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err != -ENOENT) { if (!err) err = -EEXIST; goto failed_create_attr; } err = hfs_brec_insert(&fd, entry_ptr, entry_size); if (err) goto failed_create_attr; hfsplus_mark_inode_dirty(inode, HFSPLUS_I_ATTR_DIRTY); failed_create_attr: hfs_find_exit(&fd); failed_init_create_attr: hfsplus_destroy_attr_entry(entry_ptr); return err; } static int __hfsplus_delete_attr(struct inode *inode, u32 cnid, struct hfs_find_data *fd) { int err = 0; __be32 found_cnid, record_type; hfs_bnode_read(fd->bnode, &found_cnid, fd->keyoffset + offsetof(struct hfsplus_attr_key, cnid), sizeof(__be32)); if (cnid != be32_to_cpu(found_cnid)) return -ENOENT; hfs_bnode_read(fd->bnode, &record_type, fd->entryoffset, sizeof(record_type)); switch (be32_to_cpu(record_type)) { case HFSPLUS_ATTR_INLINE_DATA: /* All is OK. Do nothing. */ break; case HFSPLUS_ATTR_FORK_DATA: case HFSPLUS_ATTR_EXTENTS: pr_err("only inline data xattr are supported\n"); return -EOPNOTSUPP; default: pr_err("invalid extended attribute record\n"); return -ENOENT; } /* Avoid btree corruption */ hfs_bnode_read(fd->bnode, fd->search_key, fd->keyoffset, fd->keylength); err = hfs_brec_remove(fd); if (err) return err; hfsplus_mark_inode_dirty(inode, HFSPLUS_I_ATTR_DIRTY); return err; } int hfsplus_delete_attr(struct inode *inode, const char *name) { int err = 0; struct super_block *sb = inode->i_sb; struct hfs_find_data fd; hfs_dbg(ATTR_MOD, "delete_attr: %s,%ld\n", name ? name : NULL, inode->i_ino); if (!HFSPLUS_SB(sb)->attr_tree) { pr_err("attributes file doesn't exist\n"); return -EINVAL; } err = hfs_find_init(HFSPLUS_SB(sb)->attr_tree, &fd); if (err) return err; /* Fail early and avoid ENOSPC during the btree operation */ err = hfs_bmap_reserve(fd.tree, fd.tree->depth); if (err) goto out; if (name) { err = hfsplus_attr_build_key(sb, fd.search_key, inode->i_ino, name); if (err) goto out; } else { pr_err("invalid extended attribute name\n"); err = -EINVAL; goto out; } err = hfs_brec_find(&fd, hfs_find_rec_by_key); if (err) goto out; err = __hfsplus_delete_attr(inode, inode->i_ino, &fd); if (err) goto out; out: hfs_find_exit(&fd); return err; } int hfsplus_delete_all_attrs(struct inode *dir, u32 cnid) { int err = 0; struct hfs_find_data fd; hfs_dbg(ATTR_MOD, "delete_all_attrs: %d\n", cnid); if (!HFSPLUS_SB(dir->i_sb)->attr_tree) { pr_err("attributes file doesn't exist\n"); return -EINVAL; } err = hfs_find_init(HFSPLUS_SB(dir->i_sb)->attr_tree, &fd); if (err) return err; for (;;) { err = hfsplus_find_attr(dir->i_sb, cnid, NULL, &fd); if (err) { if (err != -ENOENT) pr_err("xattr search failed\n"); goto end_delete_all; } err = __hfsplus_delete_attr(dir, cnid, &fd); if (err) goto end_delete_all; } end_delete_all: hfs_find_exit(&fd); return err; }
linux-master
fs/hfsplus/attributes.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux driver model AC97 bus interface * * Author: Nicolas Pitre * Created: Jan 14, 2005 * Copyright: (C) MontaVista Software Inc. */ #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/string.h> #include <sound/ac97_codec.h> /* * snd_ac97_check_id() - Reads and checks the vendor ID of the device * @ac97: The AC97 device to check * @id: The ID to compare to * @id_mask: Mask that is applied to the device ID before comparing to @id * * If @id is 0 this function returns true if the read device vendor ID is * a valid ID. If @id is non 0 this functions returns true if @id * matches the read vendor ID. Otherwise the function returns false. */ static bool snd_ac97_check_id(struct snd_ac97 *ac97, unsigned int id, unsigned int id_mask) { ac97->id = ac97->bus->ops->read(ac97, AC97_VENDOR_ID1) << 16; ac97->id |= ac97->bus->ops->read(ac97, AC97_VENDOR_ID2); if (ac97->id == 0x0 || ac97->id == 0xffffffff) return false; if (id != 0 && id != (ac97->id & id_mask)) return false; return true; } /** * snd_ac97_reset() - Reset AC'97 device * @ac97: The AC'97 device to reset * @try_warm: Try a warm reset first * @id: Expected device vendor ID * @id_mask: Mask that is applied to the device ID before comparing to @id * * This function resets the AC'97 device. If @try_warm is true the function * first performs a warm reset. If the warm reset is successful the function * returns 1. Otherwise or if @try_warm is false the function issues cold reset * followed by a warm reset. If this is successful the function returns 0, * otherwise a negative error code. If @id is 0 any valid device ID will be * accepted, otherwise only the ID that matches @id and @id_mask is accepted. */ int snd_ac97_reset(struct snd_ac97 *ac97, bool try_warm, unsigned int id, unsigned int id_mask) { const struct snd_ac97_bus_ops *ops = ac97->bus->ops; if (try_warm && ops->warm_reset) { ops->warm_reset(ac97); if (snd_ac97_check_id(ac97, id, id_mask)) return 1; } if (ops->reset) ops->reset(ac97); if (ops->warm_reset) ops->warm_reset(ac97); if (snd_ac97_check_id(ac97, id, id_mask)) return 0; return -ENODEV; } EXPORT_SYMBOL_GPL(snd_ac97_reset); struct bus_type ac97_bus_type = { .name = "ac97", }; static int __init ac97_bus_init(void) { return bus_register(&ac97_bus_type); } subsys_initcall(ac97_bus_init); static void __exit ac97_bus_exit(void) { bus_unregister(&ac97_bus_type); } module_exit(ac97_bus_exit); EXPORT_SYMBOL(ac97_bus_type); MODULE_LICENSE("GPL");
linux-master
sound/ac97_bus.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Sound core. This file is composed of two parts. sound_class * which is common to both OSS and ALSA and OSS sound core which * is used OSS or emulation of it. */ /* * First, the common part. */ #include <linux/module.h> #include <linux/device.h> #include <linux/err.h> #include <linux/kdev_t.h> #include <linux/major.h> #include <sound/core.h> #ifdef CONFIG_SOUND_OSS_CORE static int __init init_oss_soundcore(void); static void cleanup_oss_soundcore(void); #else static inline int init_oss_soundcore(void) { return 0; } static inline void cleanup_oss_soundcore(void) { } #endif MODULE_DESCRIPTION("Core sound module"); MODULE_AUTHOR("Alan Cox"); MODULE_LICENSE("GPL"); static char *sound_devnode(const struct device *dev, umode_t *mode) { if (MAJOR(dev->devt) == SOUND_MAJOR) return NULL; return kasprintf(GFP_KERNEL, "snd/%s", dev_name(dev)); } const struct class sound_class = { .name = "sound", .devnode = sound_devnode, }; EXPORT_SYMBOL(sound_class); static int __init init_soundcore(void) { int rc; rc = init_oss_soundcore(); if (rc) return rc; rc = class_register(&sound_class); if (rc) { cleanup_oss_soundcore(); return rc; } return 0; } static void __exit cleanup_soundcore(void) { cleanup_oss_soundcore(); class_unregister(&sound_class); } subsys_initcall(init_soundcore); module_exit(cleanup_soundcore); #ifdef CONFIG_SOUND_OSS_CORE /* * OSS sound core handling. Breaks out sound functions to submodules * * Author: Alan Cox <[email protected]> * * Fixes: * * -------------------- * * Top level handler for the sound subsystem. Various devices can * plug into this. The fact they don't all go via OSS doesn't mean * they don't have to implement the OSS API. There is a lot of logic * to keeping much of the OSS weight out of the code in a compatibility * module, but it's up to the driver to rember to load it... * * The code provides a set of functions for registration of devices * by type. This is done rather than providing a single call so that * we can hide any future changes in the internals (eg when we go to * 32bit dev_t) from the modules and their interface. * * Secondly we need to allocate the dsp, dsp16 and audio devices as * one. Thus we misuse the chains a bit to simplify this. * * Thirdly to make it more fun and for 2.3.x and above we do all * of this using fine grained locking. * * FIXME: we have to resolve modules and fine grained load/unload * locking at some point in 2.3.x. */ #include <linux/init.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sound.h> #include <linux/kmod.h> #define SOUND_STEP 16 struct sound_unit { int unit_minor; const struct file_operations *unit_fops; struct sound_unit *next; char name[32]; }; /* * By default, OSS sound_core claims full legacy minor range (0-255) * of SOUND_MAJOR to trap open attempts to any sound minor and * requests modules using custom sound-slot/service-* module aliases. * The only benefit of doing this is allowing use of custom module * aliases instead of the standard char-major-* ones. This behavior * prevents alternative OSS implementation and is scheduled to be * removed. * * CONFIG_SOUND_OSS_CORE_PRECLAIM and soundcore.preclaim_oss kernel * parameter are added to allow distros and developers to try and * switch to alternative implementations without needing to rebuild * the kernel in the meantime. If preclaim_oss is non-zero, the * kernel will behave the same as before. All SOUND_MAJOR minors are * preclaimed and the custom module aliases along with standard chrdev * ones are emitted if a missing device is opened. If preclaim_oss is * zero, sound_core only grabs what's actually in use and for missing * devices only the standard chrdev aliases are requested. * * All these clutters are scheduled to be removed along with * sound-slot/service-* module aliases. */ static int preclaim_oss = IS_ENABLED(CONFIG_SOUND_OSS_CORE_PRECLAIM); module_param(preclaim_oss, int, 0444); static int soundcore_open(struct inode *, struct file *); static const struct file_operations soundcore_fops = { /* We must have an owner or the module locking fails */ .owner = THIS_MODULE, .open = soundcore_open, .llseek = noop_llseek, }; /* * Low level list operator. Scan the ordered list, find a hole and * join into it. Called with the lock asserted */ static int __sound_insert_unit(struct sound_unit * s, struct sound_unit **list, const struct file_operations *fops, int index, int low, int top) { int n=low; if (index < 0) { /* first free */ while (*list && (*list)->unit_minor<n) list=&((*list)->next); while(n<top) { /* Found a hole ? */ if(*list==NULL || (*list)->unit_minor>n) break; list=&((*list)->next); n+=SOUND_STEP; } if(n>=top) return -ENOENT; } else { n = low+(index*16); while (*list) { if ((*list)->unit_minor==n) return -EBUSY; if ((*list)->unit_minor>n) break; list=&((*list)->next); } } /* * Fill it in */ s->unit_minor=n; s->unit_fops=fops; /* * Link it */ s->next=*list; *list=s; return n; } /* * Remove a node from the chain. Called with the lock asserted */ static struct sound_unit *__sound_remove_unit(struct sound_unit **list, int unit) { while(*list) { struct sound_unit *p=*list; if(p->unit_minor==unit) { *list=p->next; return p; } list=&(p->next); } printk(KERN_ERR "Sound device %d went missing!\n", unit); return NULL; } /* * This lock guards the sound loader list. */ static DEFINE_SPINLOCK(sound_loader_lock); /* * Allocate the controlling structure and add it to the sound driver * list. Acquires locks as needed */ static int sound_insert_unit(struct sound_unit **list, const struct file_operations *fops, int index, int low, int top, const char *name, umode_t mode, struct device *dev) { struct sound_unit *s = kmalloc(sizeof(*s), GFP_KERNEL); int r; if (!s) return -ENOMEM; spin_lock(&sound_loader_lock); retry: r = __sound_insert_unit(s, list, fops, index, low, top); spin_unlock(&sound_loader_lock); if (r < 0) goto fail; else if (r < SOUND_STEP) sprintf(s->name, "sound/%s", name); else sprintf(s->name, "sound/%s%d", name, r / SOUND_STEP); if (!preclaim_oss) { /* * Something else might have grabbed the minor. If * first free slot is requested, rescan with @low set * to the next unit; otherwise, -EBUSY. */ r = __register_chrdev(SOUND_MAJOR, s->unit_minor, 1, s->name, &soundcore_fops); if (r < 0) { spin_lock(&sound_loader_lock); __sound_remove_unit(list, s->unit_minor); if (index < 0) { low = s->unit_minor + SOUND_STEP; goto retry; } spin_unlock(&sound_loader_lock); r = -EBUSY; goto fail; } } device_create(&sound_class, dev, MKDEV(SOUND_MAJOR, s->unit_minor), NULL, "%s", s->name+6); return s->unit_minor; fail: kfree(s); return r; } /* * Remove a unit. Acquires locks as needed. The drivers MUST have * completed the removal before their file operations become * invalid. */ static void sound_remove_unit(struct sound_unit **list, int unit) { struct sound_unit *p; spin_lock(&sound_loader_lock); p = __sound_remove_unit(list, unit); spin_unlock(&sound_loader_lock); if (p) { if (!preclaim_oss) __unregister_chrdev(SOUND_MAJOR, p->unit_minor, 1, p->name); device_destroy(&sound_class, MKDEV(SOUND_MAJOR, p->unit_minor)); kfree(p); } } /* * Allocations * * 0 *16 Mixers * 1 *8 Sequencers * 2 *16 Midi * 3 *16 DSP * 4 *16 SunDSP * 5 *16 DSP16 * 6 -- sndstat (obsolete) * 7 *16 unused * 8 -- alternate sequencer (see above) * 9 *16 raw synthesizer access * 10 *16 unused * 11 *16 unused * 12 *16 unused * 13 *16 unused * 14 *16 unused * 15 *16 unused */ static struct sound_unit *chains[SOUND_STEP]; /** * register_sound_special_device - register a special sound node * @fops: File operations for the driver * @unit: Unit number to allocate * @dev: device pointer * * Allocate a special sound device by minor number from the sound * subsystem. * * Return: The allocated number is returned on success. On failure, * a negative error code is returned. */ int register_sound_special_device(const struct file_operations *fops, int unit, struct device *dev) { const int chain = unit % SOUND_STEP; int max_unit = 256; const char *name; char _name[16]; switch (chain) { case 0: name = "mixer"; break; case 1: name = "sequencer"; if (unit >= SOUND_STEP) goto __unknown; max_unit = unit + 1; break; case 2: name = "midi"; break; case 3: name = "dsp"; break; case 4: name = "audio"; break; case 5: name = "dspW"; break; case 8: name = "sequencer2"; if (unit >= SOUND_STEP) goto __unknown; max_unit = unit + 1; break; case 9: name = "dmmidi"; break; case 10: name = "dmfm"; break; case 12: name = "adsp"; break; case 13: name = "amidi"; break; case 14: name = "admmidi"; break; default: { __unknown: sprintf(_name, "unknown%d", chain); if (unit >= SOUND_STEP) strcat(_name, "-"); name = _name; } break; } return sound_insert_unit(&chains[chain], fops, -1, unit, max_unit, name, 0600, dev); } EXPORT_SYMBOL(register_sound_special_device); int register_sound_special(const struct file_operations *fops, int unit) { return register_sound_special_device(fops, unit, NULL); } EXPORT_SYMBOL(register_sound_special); /** * register_sound_mixer - register a mixer device * @fops: File operations for the driver * @dev: Unit number to allocate * * Allocate a mixer device. Unit is the number of the mixer requested. * Pass -1 to request the next free mixer unit. * * Return: On success, the allocated number is returned. On failure, * a negative error code is returned. */ int register_sound_mixer(const struct file_operations *fops, int dev) { return sound_insert_unit(&chains[0], fops, dev, 0, 128, "mixer", 0600, NULL); } EXPORT_SYMBOL(register_sound_mixer); /* * DSP's are registered as a triple. Register only one and cheat * in open - see below. */ /** * register_sound_dsp - register a DSP device * @fops: File operations for the driver * @dev: Unit number to allocate * * Allocate a DSP device. Unit is the number of the DSP requested. * Pass -1 to request the next free DSP unit. * * This function allocates both the audio and dsp device entries together * and will always allocate them as a matching pair - eg dsp3/audio3 * * Return: On success, the allocated number is returned. On failure, * a negative error code is returned. */ int register_sound_dsp(const struct file_operations *fops, int dev) { return sound_insert_unit(&chains[3], fops, dev, 3, 131, "dsp", 0600, NULL); } EXPORT_SYMBOL(register_sound_dsp); /** * unregister_sound_special - unregister a special sound device * @unit: unit number to allocate * * Release a sound device that was allocated with * register_sound_special(). The unit passed is the return value from * the register function. */ void unregister_sound_special(int unit) { sound_remove_unit(&chains[unit % SOUND_STEP], unit); } EXPORT_SYMBOL(unregister_sound_special); /** * unregister_sound_mixer - unregister a mixer * @unit: unit number to allocate * * Release a sound device that was allocated with register_sound_mixer(). * The unit passed is the return value from the register function. */ void unregister_sound_mixer(int unit) { sound_remove_unit(&chains[0], unit); } EXPORT_SYMBOL(unregister_sound_mixer); /** * unregister_sound_dsp - unregister a DSP device * @unit: unit number to allocate * * Release a sound device that was allocated with register_sound_dsp(). * The unit passed is the return value from the register function. * * Both of the allocated units are released together automatically. */ void unregister_sound_dsp(int unit) { sound_remove_unit(&chains[3], unit); } EXPORT_SYMBOL(unregister_sound_dsp); static struct sound_unit *__look_for_unit(int chain, int unit) { struct sound_unit *s; s=chains[chain]; while(s && s->unit_minor <= unit) { if(s->unit_minor==unit) return s; s=s->next; } return NULL; } static int soundcore_open(struct inode *inode, struct file *file) { int chain; int unit = iminor(inode); struct sound_unit *s; const struct file_operations *new_fops = NULL; chain=unit&0x0F; if(chain==4 || chain==5) /* dsp/audio/dsp16 */ { unit&=0xF0; unit|=3; chain=3; } spin_lock(&sound_loader_lock); s = __look_for_unit(chain, unit); if (s) new_fops = fops_get(s->unit_fops); if (preclaim_oss && !new_fops) { spin_unlock(&sound_loader_lock); /* * Please, don't change this order or code. * For ALSA slot means soundcard and OSS emulation code * comes as add-on modules which aren't depend on * ALSA toplevel modules for soundcards, thus we need * load them at first. [Jaroslav Kysela <[email protected]>] */ request_module("sound-slot-%i", unit>>4); request_module("sound-service-%i-%i", unit>>4, chain); /* * sound-slot/service-* module aliases are scheduled * for removal in favor of the standard char-major-* * module aliases. For the time being, generate both * the legacy and standard module aliases to ease * transition. */ if (request_module("char-major-%d-%d", SOUND_MAJOR, unit) > 0) request_module("char-major-%d", SOUND_MAJOR); spin_lock(&sound_loader_lock); s = __look_for_unit(chain, unit); if (s) new_fops = fops_get(s->unit_fops); } spin_unlock(&sound_loader_lock); if (!new_fops) return -ENODEV; /* * We rely upon the fact that we can't be unloaded while the * subdriver is there. */ replace_fops(file, new_fops); if (!file->f_op->open) return -ENODEV; return file->f_op->open(inode, file); } MODULE_ALIAS_CHARDEV_MAJOR(SOUND_MAJOR); static void cleanup_oss_soundcore(void) { /* We have nothing to really do here - we know the lists must be empty */ unregister_chrdev(SOUND_MAJOR, "sound"); } static int __init init_oss_soundcore(void) { if (preclaim_oss && register_chrdev(SOUND_MAJOR, "sound", &soundcore_fops) < 0) { printk(KERN_ERR "soundcore: sound device already in use.\n"); return -EBUSY; } return 0; } #endif /* CONFIG_SOUND_OSS_CORE */
linux-master
sound/sound_core.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Advanced Linux Sound Architecture * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/init.h> #include <sound/core.h> static int __init alsa_sound_last_init(void) { struct snd_card *card; int idx, ok = 0; printk(KERN_INFO "ALSA device list:\n"); for (idx = 0; idx < SNDRV_CARDS; idx++) { card = snd_card_ref(idx); if (card) { printk(KERN_INFO " #%i: %s\n", idx, card->longname); snd_card_unref(card); ok++; } } if (ok == 0) printk(KERN_INFO " No soundcards found.\n"); return 0; } late_initcall_sync(alsa_sound_last_init);
linux-master
sound/last.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Robert Jarzmik <[email protected]> */ #include <sound/ac97_codec.h> #include <sound/ac97/codec.h> #include <sound/ac97/controller.h> #include <linux/device.h> #include <linux/slab.h> #include <sound/soc.h> /* For compat_ac97_* */
linux-master
sound/ac97/codec.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Robert Jarzmik <[email protected]> */ #include <linux/module.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/idr.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <sound/ac97/codec.h> #include <sound/ac97/controller.h> #include <sound/ac97/regs.h> #include "ac97_core.h" /* * Protects ac97_controllers and each ac97_controller structure. */ static DEFINE_MUTEX(ac97_controllers_mutex); static DEFINE_IDR(ac97_adapter_idr); static LIST_HEAD(ac97_controllers); static struct bus_type ac97_bus_type; static inline struct ac97_controller* to_ac97_controller(struct device *ac97_adapter) { return container_of(ac97_adapter, struct ac97_controller, adap); } static int ac97_unbound_ctrl_write(struct ac97_controller *adrv, int slot, unsigned short reg, unsigned short val) { return -ENODEV; } static int ac97_unbound_ctrl_read(struct ac97_controller *adrv, int slot, unsigned short reg) { return -ENODEV; } static const struct ac97_controller_ops ac97_unbound_ctrl_ops = { .write = ac97_unbound_ctrl_write, .read = ac97_unbound_ctrl_read, }; static struct ac97_controller ac97_unbound_ctrl = { .ops = &ac97_unbound_ctrl_ops, }; static struct ac97_codec_device * ac97_codec_find(struct ac97_controller *ac97_ctrl, unsigned int codec_num) { if (codec_num >= AC97_BUS_MAX_CODECS) return ERR_PTR(-EINVAL); return ac97_ctrl->codecs[codec_num]; } static struct device_node * ac97_of_get_child_device(struct ac97_controller *ac97_ctrl, int idx, unsigned int vendor_id) { struct device_node *node; u32 reg; char compat[] = "ac97,0000,0000"; snprintf(compat, sizeof(compat), "ac97,%04x,%04x", vendor_id >> 16, vendor_id & 0xffff); for_each_child_of_node(ac97_ctrl->parent->of_node, node) { if ((idx != of_property_read_u32(node, "reg", &reg)) || !of_device_is_compatible(node, compat)) continue; return node; } return NULL; } static void ac97_codec_release(struct device *dev) { struct ac97_codec_device *adev; struct ac97_controller *ac97_ctrl; adev = to_ac97_device(dev); ac97_ctrl = adev->ac97_ctrl; ac97_ctrl->codecs[adev->num] = NULL; of_node_put(dev->of_node); kfree(adev); } static int ac97_codec_add(struct ac97_controller *ac97_ctrl, int idx, unsigned int vendor_id) { struct ac97_codec_device *codec; int ret; codec = kzalloc(sizeof(*codec), GFP_KERNEL); if (!codec) return -ENOMEM; ac97_ctrl->codecs[idx] = codec; codec->vendor_id = vendor_id; codec->dev.release = ac97_codec_release; codec->dev.bus = &ac97_bus_type; codec->dev.parent = &ac97_ctrl->adap; codec->num = idx; codec->ac97_ctrl = ac97_ctrl; device_initialize(&codec->dev); dev_set_name(&codec->dev, "%s:%u", dev_name(ac97_ctrl->parent), idx); codec->dev.of_node = ac97_of_get_child_device(ac97_ctrl, idx, vendor_id); ret = device_add(&codec->dev); if (ret) { put_device(&codec->dev); return ret; } return 0; } unsigned int snd_ac97_bus_scan_one(struct ac97_controller *adrv, unsigned int codec_num) { unsigned short vid1, vid2; int ret; ret = adrv->ops->read(adrv, codec_num, AC97_VENDOR_ID1); vid1 = (ret & 0xffff); if (ret < 0) return 0; ret = adrv->ops->read(adrv, codec_num, AC97_VENDOR_ID2); vid2 = (ret & 0xffff); if (ret < 0) return 0; dev_dbg(&adrv->adap, "%s(codec_num=%u): vendor_id=0x%08x\n", __func__, codec_num, AC97_ID(vid1, vid2)); return AC97_ID(vid1, vid2); } static int ac97_bus_scan(struct ac97_controller *ac97_ctrl) { int ret, i; unsigned int vendor_id; for (i = 0; i < AC97_BUS_MAX_CODECS; i++) { if (ac97_codec_find(ac97_ctrl, i)) continue; if (!(ac97_ctrl->slots_available & BIT(i))) continue; vendor_id = snd_ac97_bus_scan_one(ac97_ctrl, i); if (!vendor_id) continue; ret = ac97_codec_add(ac97_ctrl, i, vendor_id); if (ret < 0) return ret; } return 0; } static int ac97_bus_reset(struct ac97_controller *ac97_ctrl) { ac97_ctrl->ops->reset(ac97_ctrl); return 0; } /** * snd_ac97_codec_driver_register - register an AC97 codec driver * @dev: AC97 driver codec to register * * Register an AC97 codec driver to the ac97 bus driver, aka. the AC97 digital * controller. * * Returns 0 on success or error code */ int snd_ac97_codec_driver_register(struct ac97_codec_driver *drv) { drv->driver.bus = &ac97_bus_type; return driver_register(&drv->driver); } EXPORT_SYMBOL_GPL(snd_ac97_codec_driver_register); /** * snd_ac97_codec_driver_unregister - unregister an AC97 codec driver * @dev: AC97 codec driver to unregister * * Unregister a previously registered ac97 codec driver. */ void snd_ac97_codec_driver_unregister(struct ac97_codec_driver *drv) { driver_unregister(&drv->driver); } EXPORT_SYMBOL_GPL(snd_ac97_codec_driver_unregister); /** * snd_ac97_codec_get_platdata - get platform_data * @adev: the ac97 codec device * * For legacy platforms, in order to have platform_data in codec drivers * available, while ac97 device are auto-created upon probe, this retrieves the * platdata which was setup on ac97 controller registration. * * Returns the platform data pointer */ void *snd_ac97_codec_get_platdata(const struct ac97_codec_device *adev) { struct ac97_controller *ac97_ctrl = adev->ac97_ctrl; return ac97_ctrl->codecs_pdata[adev->num]; } EXPORT_SYMBOL_GPL(snd_ac97_codec_get_platdata); static void ac97_ctrl_codecs_unregister(struct ac97_controller *ac97_ctrl) { int i; for (i = 0; i < AC97_BUS_MAX_CODECS; i++) if (ac97_ctrl->codecs[i]) { ac97_ctrl->codecs[i]->ac97_ctrl = &ac97_unbound_ctrl; device_unregister(&ac97_ctrl->codecs[i]->dev); } } static ssize_t cold_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct ac97_controller *ac97_ctrl; mutex_lock(&ac97_controllers_mutex); ac97_ctrl = to_ac97_controller(dev); ac97_ctrl->ops->reset(ac97_ctrl); mutex_unlock(&ac97_controllers_mutex); return len; } static DEVICE_ATTR_WO(cold_reset); static ssize_t warm_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct ac97_controller *ac97_ctrl; if (!dev) return -ENODEV; mutex_lock(&ac97_controllers_mutex); ac97_ctrl = to_ac97_controller(dev); ac97_ctrl->ops->warm_reset(ac97_ctrl); mutex_unlock(&ac97_controllers_mutex); return len; } static DEVICE_ATTR_WO(warm_reset); static struct attribute *ac97_controller_device_attrs[] = { &dev_attr_cold_reset.attr, &dev_attr_warm_reset.attr, NULL }; static const struct attribute_group ac97_adapter_attr_group = { .name = "ac97_operations", .attrs = ac97_controller_device_attrs, }; static const struct attribute_group *ac97_adapter_groups[] = { &ac97_adapter_attr_group, NULL, }; static void ac97_del_adapter(struct ac97_controller *ac97_ctrl) { mutex_lock(&ac97_controllers_mutex); ac97_ctrl_codecs_unregister(ac97_ctrl); list_del(&ac97_ctrl->controllers); mutex_unlock(&ac97_controllers_mutex); device_unregister(&ac97_ctrl->adap); } static void ac97_adapter_release(struct device *dev) { struct ac97_controller *ac97_ctrl; ac97_ctrl = to_ac97_controller(dev); idr_remove(&ac97_adapter_idr, ac97_ctrl->nr); dev_dbg(&ac97_ctrl->adap, "adapter unregistered by %s\n", dev_name(ac97_ctrl->parent)); } static const struct device_type ac97_adapter_type = { .groups = ac97_adapter_groups, .release = ac97_adapter_release, }; static int ac97_add_adapter(struct ac97_controller *ac97_ctrl) { int ret; mutex_lock(&ac97_controllers_mutex); ret = idr_alloc(&ac97_adapter_idr, ac97_ctrl, 0, 0, GFP_KERNEL); ac97_ctrl->nr = ret; if (ret >= 0) { dev_set_name(&ac97_ctrl->adap, "ac97-%d", ret); ac97_ctrl->adap.type = &ac97_adapter_type; ac97_ctrl->adap.parent = ac97_ctrl->parent; ret = device_register(&ac97_ctrl->adap); if (ret) put_device(&ac97_ctrl->adap); } if (!ret) list_add(&ac97_ctrl->controllers, &ac97_controllers); mutex_unlock(&ac97_controllers_mutex); if (!ret) dev_dbg(&ac97_ctrl->adap, "adapter registered by %s\n", dev_name(ac97_ctrl->parent)); return ret; } /** * snd_ac97_controller_register - register an ac97 controller * @ops: the ac97 bus operations * @dev: the device providing the ac97 DC function * @slots_available: mask of the ac97 codecs that can be scanned and probed * bit0 => codec 0, bit1 => codec 1 ... bit 3 => codec 3 * * Register a digital controller which can control up to 4 ac97 codecs. This is * the controller side of the AC97 AC-link, while the slave side are the codecs. * * Returns a valid controller upon success, negative pointer value upon error */ struct ac97_controller *snd_ac97_controller_register( const struct ac97_controller_ops *ops, struct device *dev, unsigned short slots_available, void **codecs_pdata) { struct ac97_controller *ac97_ctrl; int ret, i; ac97_ctrl = kzalloc(sizeof(*ac97_ctrl), GFP_KERNEL); if (!ac97_ctrl) return ERR_PTR(-ENOMEM); for (i = 0; i < AC97_BUS_MAX_CODECS && codecs_pdata; i++) ac97_ctrl->codecs_pdata[i] = codecs_pdata[i]; ac97_ctrl->ops = ops; ac97_ctrl->slots_available = slots_available; ac97_ctrl->parent = dev; ret = ac97_add_adapter(ac97_ctrl); if (ret) goto err; ac97_bus_reset(ac97_ctrl); ac97_bus_scan(ac97_ctrl); return ac97_ctrl; err: kfree(ac97_ctrl); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(snd_ac97_controller_register); /** * snd_ac97_controller_unregister - unregister an ac97 controller * @ac97_ctrl: the device previously provided to ac97_controller_register() * */ void snd_ac97_controller_unregister(struct ac97_controller *ac97_ctrl) { ac97_del_adapter(ac97_ctrl); } EXPORT_SYMBOL_GPL(snd_ac97_controller_unregister); #ifdef CONFIG_PM static int ac97_pm_runtime_suspend(struct device *dev) { struct ac97_codec_device *codec = to_ac97_device(dev); int ret = pm_generic_runtime_suspend(dev); if (ret == 0 && dev->driver) { if (pm_runtime_is_irq_safe(dev)) clk_disable(codec->clk); else clk_disable_unprepare(codec->clk); } return ret; } static int ac97_pm_runtime_resume(struct device *dev) { struct ac97_codec_device *codec = to_ac97_device(dev); int ret; if (dev->driver) { if (pm_runtime_is_irq_safe(dev)) ret = clk_enable(codec->clk); else ret = clk_prepare_enable(codec->clk); if (ret) return ret; } return pm_generic_runtime_resume(dev); } #endif /* CONFIG_PM */ static const struct dev_pm_ops ac97_pm = { .suspend = pm_generic_suspend, .resume = pm_generic_resume, .freeze = pm_generic_freeze, .thaw = pm_generic_thaw, .poweroff = pm_generic_poweroff, .restore = pm_generic_restore, SET_RUNTIME_PM_OPS( ac97_pm_runtime_suspend, ac97_pm_runtime_resume, NULL) }; static int ac97_get_enable_clk(struct ac97_codec_device *adev) { int ret; adev->clk = clk_get(&adev->dev, "ac97_clk"); if (IS_ERR(adev->clk)) return PTR_ERR(adev->clk); ret = clk_prepare_enable(adev->clk); if (ret) clk_put(adev->clk); return ret; } static void ac97_put_disable_clk(struct ac97_codec_device *adev) { clk_disable_unprepare(adev->clk); clk_put(adev->clk); } static ssize_t vendor_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ac97_codec_device *codec = to_ac97_device(dev); return sysfs_emit(buf, "%08x", codec->vendor_id); } static DEVICE_ATTR_RO(vendor_id); static struct attribute *ac97_dev_attrs[] = { &dev_attr_vendor_id.attr, NULL, }; ATTRIBUTE_GROUPS(ac97_dev); static int ac97_bus_match(struct device *dev, struct device_driver *drv) { struct ac97_codec_device *adev = to_ac97_device(dev); struct ac97_codec_driver *adrv = to_ac97_driver(drv); const struct ac97_id *id = adrv->id_table; int i = 0; if (adev->vendor_id == 0x0 || adev->vendor_id == 0xffffffff) return false; do { if (ac97_ids_match(id[i].id, adev->vendor_id, id[i].mask)) return true; } while (id[i++].id); return false; } static int ac97_bus_probe(struct device *dev) { struct ac97_codec_device *adev = to_ac97_device(dev); struct ac97_codec_driver *adrv = to_ac97_driver(dev->driver); int ret; ret = ac97_get_enable_clk(adev); if (ret) return ret; pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); ret = adrv->probe(adev); if (ret == 0) return 0; pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_put_noidle(dev); ac97_put_disable_clk(adev); return ret; } static void ac97_bus_remove(struct device *dev) { struct ac97_codec_device *adev = to_ac97_device(dev); struct ac97_codec_driver *adrv = to_ac97_driver(dev->driver); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) return; adrv->remove(adev); pm_runtime_put_noidle(dev); ac97_put_disable_clk(adev); pm_runtime_disable(dev); } static struct bus_type ac97_bus_type = { .name = "ac97bus", .dev_groups = ac97_dev_groups, .match = ac97_bus_match, .pm = &ac97_pm, .probe = ac97_bus_probe, .remove = ac97_bus_remove, }; static int __init ac97_bus_init(void) { return bus_register(&ac97_bus_type); } subsys_initcall(ac97_bus_init); static void __exit ac97_bus_exit(void) { bus_unregister(&ac97_bus_type); } module_exit(ac97_bus_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Robert Jarzmik <[email protected]>");
linux-master
sound/ac97/bus.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Robert Jarzmik <[email protected]> */ #include <linux/list.h> #include <linux/slab.h> #include <sound/ac97/codec.h> #include <sound/ac97/compat.h> #include <sound/ac97/controller.h> #include <sound/soc.h> #include "ac97_core.h" static void compat_ac97_release(struct device *dev) { kfree(to_ac97_t(dev)); } static void compat_ac97_reset(struct snd_ac97 *ac97) { struct ac97_codec_device *adev = to_ac97_device(ac97->private_data); struct ac97_controller *actrl = adev->ac97_ctrl; if (actrl->ops->reset) actrl->ops->reset(actrl); } static void compat_ac97_warm_reset(struct snd_ac97 *ac97) { struct ac97_codec_device *adev = to_ac97_device(ac97->private_data); struct ac97_controller *actrl = adev->ac97_ctrl; if (actrl->ops->warm_reset) actrl->ops->warm_reset(actrl); } static void compat_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct ac97_codec_device *adev = to_ac97_device(ac97->private_data); struct ac97_controller *actrl = adev->ac97_ctrl; actrl->ops->write(actrl, ac97->num, reg, val); } static unsigned short compat_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct ac97_codec_device *adev = to_ac97_device(ac97->private_data); struct ac97_controller *actrl = adev->ac97_ctrl; return actrl->ops->read(actrl, ac97->num, reg); } static const struct snd_ac97_bus_ops compat_snd_ac97_bus_ops = { .reset = compat_ac97_reset, .warm_reset = compat_ac97_warm_reset, .write = compat_ac97_write, .read = compat_ac97_read, }; static struct snd_ac97_bus compat_soc_ac97_bus = { .ops = &compat_snd_ac97_bus_ops, }; struct snd_ac97 *snd_ac97_compat_alloc(struct ac97_codec_device *adev) { struct snd_ac97 *ac97; int ret; ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); if (ac97 == NULL) return ERR_PTR(-ENOMEM); ac97->private_data = adev; ac97->bus = &compat_soc_ac97_bus; ac97->dev.parent = &adev->dev; ac97->dev.release = compat_ac97_release; dev_set_name(&ac97->dev, "%s-compat", dev_name(&adev->dev)); ret = device_register(&ac97->dev); if (ret) { put_device(&ac97->dev); return ERR_PTR(ret); } return ac97; } EXPORT_SYMBOL_GPL(snd_ac97_compat_alloc); void snd_ac97_compat_release(struct snd_ac97 *ac97) { device_unregister(&ac97->dev); } EXPORT_SYMBOL_GPL(snd_ac97_compat_release); int snd_ac97_reset(struct snd_ac97 *ac97, bool try_warm, unsigned int id, unsigned int id_mask) { struct ac97_codec_device *adev = to_ac97_device(ac97->private_data); struct ac97_controller *actrl = adev->ac97_ctrl; unsigned int scanned; if (try_warm) { compat_ac97_warm_reset(ac97); scanned = snd_ac97_bus_scan_one(actrl, adev->num); if (ac97_ids_match(scanned, adev->vendor_id, id_mask)) return 1; } compat_ac97_reset(ac97); compat_ac97_warm_reset(ac97); scanned = snd_ac97_bus_scan_one(actrl, adev->num); if (ac97_ids_match(scanned, adev->vendor_id, id_mask)) return 0; return -ENODEV; } EXPORT_SYMBOL_GPL(snd_ac97_reset);
linux-master
sound/ac97/snd_ac97_compat.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Xen para-virtual sound device * * Copyright (C) 2016-2018 EPAM Systems Inc. * * Author: Oleksandr Andrushchenko <[email protected]> */ #include <xen/events.h> #include <xen/grant_table.h> #include <xen/xen.h> #include <xen/xenbus.h> #include "xen_snd_front.h" #include "xen_snd_front_alsa.h" #include "xen_snd_front_cfg.h" #include "xen_snd_front_evtchnl.h" static irqreturn_t evtchnl_interrupt_req(int irq, void *dev_id) { struct xen_snd_front_evtchnl *channel = dev_id; struct xen_snd_front_info *front_info = channel->front_info; struct xensnd_resp *resp; RING_IDX i, rp; if (unlikely(channel->state != EVTCHNL_STATE_CONNECTED)) return IRQ_HANDLED; mutex_lock(&channel->ring_io_lock); again: rp = channel->u.req.ring.sring->rsp_prod; /* Ensure we see queued responses up to rp. */ rmb(); /* * Assume that the backend is trusted to always write sane values * to the ring counters, so no overflow checks on frontend side * are required. */ for (i = channel->u.req.ring.rsp_cons; i != rp; i++) { resp = RING_GET_RESPONSE(&channel->u.req.ring, i); if (resp->id != channel->evt_id) continue; switch (resp->operation) { case XENSND_OP_OPEN: case XENSND_OP_CLOSE: case XENSND_OP_READ: case XENSND_OP_WRITE: case XENSND_OP_TRIGGER: channel->u.req.resp_status = resp->status; complete(&channel->u.req.completion); break; case XENSND_OP_HW_PARAM_QUERY: channel->u.req.resp_status = resp->status; channel->u.req.resp.hw_param = resp->resp.hw_param; complete(&channel->u.req.completion); break; default: dev_err(&front_info->xb_dev->dev, "Operation %d is not supported\n", resp->operation); break; } } channel->u.req.ring.rsp_cons = i; if (i != channel->u.req.ring.req_prod_pvt) { int more_to_do; RING_FINAL_CHECK_FOR_RESPONSES(&channel->u.req.ring, more_to_do); if (more_to_do) goto again; } else { channel->u.req.ring.sring->rsp_event = i + 1; } mutex_unlock(&channel->ring_io_lock); return IRQ_HANDLED; } static irqreturn_t evtchnl_interrupt_evt(int irq, void *dev_id) { struct xen_snd_front_evtchnl *channel = dev_id; struct xensnd_event_page *page = channel->u.evt.page; u32 cons, prod; if (unlikely(channel->state != EVTCHNL_STATE_CONNECTED)) return IRQ_HANDLED; mutex_lock(&channel->ring_io_lock); prod = page->in_prod; /* Ensure we see ring contents up to prod. */ virt_rmb(); if (prod == page->in_cons) goto out; /* * Assume that the backend is trusted to always write sane values * to the ring counters, so no overflow checks on frontend side * are required. */ for (cons = page->in_cons; cons != prod; cons++) { struct xensnd_evt *event; event = &XENSND_IN_RING_REF(page, cons); if (unlikely(event->id != channel->evt_id++)) continue; switch (event->type) { case XENSND_EVT_CUR_POS: xen_snd_front_alsa_handle_cur_pos(channel, event->op.cur_pos.position); break; } } page->in_cons = cons; /* Ensure ring contents. */ virt_wmb(); out: mutex_unlock(&channel->ring_io_lock); return IRQ_HANDLED; } void xen_snd_front_evtchnl_flush(struct xen_snd_front_evtchnl *channel) { int notify; channel->u.req.ring.req_prod_pvt++; RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&channel->u.req.ring, notify); if (notify) notify_remote_via_irq(channel->irq); } static void evtchnl_free(struct xen_snd_front_info *front_info, struct xen_snd_front_evtchnl *channel) { void *page = NULL; if (channel->type == EVTCHNL_TYPE_REQ) page = channel->u.req.ring.sring; else if (channel->type == EVTCHNL_TYPE_EVT) page = channel->u.evt.page; if (!page) return; channel->state = EVTCHNL_STATE_DISCONNECTED; if (channel->type == EVTCHNL_TYPE_REQ) { /* Release all who still waits for response if any. */ channel->u.req.resp_status = -EIO; complete_all(&channel->u.req.completion); } if (channel->irq) unbind_from_irqhandler(channel->irq, channel); if (channel->port) xenbus_free_evtchn(front_info->xb_dev, channel->port); /* End access and free the page. */ xenbus_teardown_ring(&page, 1, &channel->gref); memset(channel, 0, sizeof(*channel)); } void xen_snd_front_evtchnl_free_all(struct xen_snd_front_info *front_info) { int i; if (!front_info->evt_pairs) return; for (i = 0; i < front_info->num_evt_pairs; i++) { evtchnl_free(front_info, &front_info->evt_pairs[i].req); evtchnl_free(front_info, &front_info->evt_pairs[i].evt); } kfree(front_info->evt_pairs); front_info->evt_pairs = NULL; } static int evtchnl_alloc(struct xen_snd_front_info *front_info, int index, struct xen_snd_front_evtchnl *channel, enum xen_snd_front_evtchnl_type type) { struct xenbus_device *xb_dev = front_info->xb_dev; void *page; irq_handler_t handler; char *handler_name = NULL; int ret; memset(channel, 0, sizeof(*channel)); channel->type = type; channel->index = index; channel->front_info = front_info; channel->state = EVTCHNL_STATE_DISCONNECTED; ret = xenbus_setup_ring(xb_dev, GFP_KERNEL, &page, 1, &channel->gref); if (ret) goto fail; handler_name = kasprintf(GFP_KERNEL, "%s-%s", XENSND_DRIVER_NAME, type == EVTCHNL_TYPE_REQ ? XENSND_FIELD_RING_REF : XENSND_FIELD_EVT_RING_REF); if (!handler_name) { ret = -ENOMEM; goto fail; } mutex_init(&channel->ring_io_lock); if (type == EVTCHNL_TYPE_REQ) { struct xen_sndif_sring *sring = page; init_completion(&channel->u.req.completion); mutex_init(&channel->u.req.req_io_lock); XEN_FRONT_RING_INIT(&channel->u.req.ring, sring, XEN_PAGE_SIZE); handler = evtchnl_interrupt_req; } else { channel->u.evt.page = page; handler = evtchnl_interrupt_evt; } ret = xenbus_alloc_evtchn(xb_dev, &channel->port); if (ret < 0) goto fail; ret = bind_evtchn_to_irq(channel->port); if (ret < 0) { dev_err(&xb_dev->dev, "Failed to bind IRQ for domid %d port %d: %d\n", front_info->xb_dev->otherend_id, channel->port, ret); goto fail; } channel->irq = ret; ret = request_threaded_irq(channel->irq, NULL, handler, IRQF_ONESHOT, handler_name, channel); if (ret < 0) { dev_err(&xb_dev->dev, "Failed to request IRQ %d: %d\n", channel->irq, ret); goto fail; } kfree(handler_name); return 0; fail: kfree(handler_name); dev_err(&xb_dev->dev, "Failed to allocate ring: %d\n", ret); return ret; } int xen_snd_front_evtchnl_create_all(struct xen_snd_front_info *front_info, int num_streams) { struct xen_front_cfg_card *cfg = &front_info->cfg; struct device *dev = &front_info->xb_dev->dev; int d, ret = 0; front_info->evt_pairs = kcalloc(num_streams, sizeof(struct xen_snd_front_evtchnl_pair), GFP_KERNEL); if (!front_info->evt_pairs) return -ENOMEM; /* Iterate over devices and their streams and create event channels. */ for (d = 0; d < cfg->num_pcm_instances; d++) { struct xen_front_cfg_pcm_instance *pcm_instance; int s, index; pcm_instance = &cfg->pcm_instances[d]; for (s = 0; s < pcm_instance->num_streams_pb; s++) { index = pcm_instance->streams_pb[s].index; ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].req, EVTCHNL_TYPE_REQ); if (ret < 0) { dev_err(dev, "Error allocating control channel\n"); goto fail; } ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].evt, EVTCHNL_TYPE_EVT); if (ret < 0) { dev_err(dev, "Error allocating in-event channel\n"); goto fail; } } for (s = 0; s < pcm_instance->num_streams_cap; s++) { index = pcm_instance->streams_cap[s].index; ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].req, EVTCHNL_TYPE_REQ); if (ret < 0) { dev_err(dev, "Error allocating control channel\n"); goto fail; } ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].evt, EVTCHNL_TYPE_EVT); if (ret < 0) { dev_err(dev, "Error allocating in-event channel\n"); goto fail; } } } front_info->num_evt_pairs = num_streams; return 0; fail: xen_snd_front_evtchnl_free_all(front_info); return ret; } static int evtchnl_publish(struct xenbus_transaction xbt, struct xen_snd_front_evtchnl *channel, const char *path, const char *node_ring, const char *node_chnl) { struct xenbus_device *xb_dev = channel->front_info->xb_dev; int ret; /* Write control channel ring reference. */ ret = xenbus_printf(xbt, path, node_ring, "%u", channel->gref); if (ret < 0) { dev_err(&xb_dev->dev, "Error writing ring-ref: %d\n", ret); return ret; } /* Write event channel ring reference. */ ret = xenbus_printf(xbt, path, node_chnl, "%u", channel->port); if (ret < 0) { dev_err(&xb_dev->dev, "Error writing event channel: %d\n", ret); return ret; } return 0; } int xen_snd_front_evtchnl_publish_all(struct xen_snd_front_info *front_info) { struct xen_front_cfg_card *cfg = &front_info->cfg; struct xenbus_transaction xbt; int ret, d; again: ret = xenbus_transaction_start(&xbt); if (ret < 0) { xenbus_dev_fatal(front_info->xb_dev, ret, "starting transaction"); return ret; } for (d = 0; d < cfg->num_pcm_instances; d++) { struct xen_front_cfg_pcm_instance *pcm_instance; int s, index; pcm_instance = &cfg->pcm_instances[d]; for (s = 0; s < pcm_instance->num_streams_pb; s++) { index = pcm_instance->streams_pb[s].index; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].req, pcm_instance->streams_pb[s].xenstore_path, XENSND_FIELD_RING_REF, XENSND_FIELD_EVT_CHNL); if (ret < 0) goto fail; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].evt, pcm_instance->streams_pb[s].xenstore_path, XENSND_FIELD_EVT_RING_REF, XENSND_FIELD_EVT_EVT_CHNL); if (ret < 0) goto fail; } for (s = 0; s < pcm_instance->num_streams_cap; s++) { index = pcm_instance->streams_cap[s].index; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].req, pcm_instance->streams_cap[s].xenstore_path, XENSND_FIELD_RING_REF, XENSND_FIELD_EVT_CHNL); if (ret < 0) goto fail; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].evt, pcm_instance->streams_cap[s].xenstore_path, XENSND_FIELD_EVT_RING_REF, XENSND_FIELD_EVT_EVT_CHNL); if (ret < 0) goto fail; } } ret = xenbus_transaction_end(xbt, 0); if (ret < 0) { if (ret == -EAGAIN) goto again; xenbus_dev_fatal(front_info->xb_dev, ret, "completing transaction"); goto fail_to_end; } return 0; fail: xenbus_transaction_end(xbt, 1); fail_to_end: xenbus_dev_fatal(front_info->xb_dev, ret, "writing XenStore"); return ret; } void xen_snd_front_evtchnl_pair_set_connected(struct xen_snd_front_evtchnl_pair *evt_pair, bool is_connected) { enum xen_snd_front_evtchnl_state state; if (is_connected) state = EVTCHNL_STATE_CONNECTED; else state = EVTCHNL_STATE_DISCONNECTED; mutex_lock(&evt_pair->req.ring_io_lock); evt_pair->req.state = state; mutex_unlock(&evt_pair->req.ring_io_lock); mutex_lock(&evt_pair->evt.ring_io_lock); evt_pair->evt.state = state; mutex_unlock(&evt_pair->evt.ring_io_lock); } void xen_snd_front_evtchnl_pair_clear(struct xen_snd_front_evtchnl_pair *evt_pair) { mutex_lock(&evt_pair->req.ring_io_lock); evt_pair->req.evt_next_id = 0; mutex_unlock(&evt_pair->req.ring_io_lock); mutex_lock(&evt_pair->evt.ring_io_lock); evt_pair->evt.evt_next_id = 0; mutex_unlock(&evt_pair->evt.ring_io_lock); }
linux-master
sound/xen/xen_snd_front_evtchnl.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Xen para-virtual sound device * * Copyright (C) 2016-2018 EPAM Systems Inc. * * Author: Oleksandr Andrushchenko <[email protected]> */ #include <linux/delay.h> #include <linux/module.h> #include <xen/page.h> #include <xen/platform_pci.h> #include <xen/xen.h> #include <xen/xenbus.h> #include <xen/xen-front-pgdir-shbuf.h> #include <xen/interface/io/sndif.h> #include "xen_snd_front.h" #include "xen_snd_front_alsa.h" #include "xen_snd_front_evtchnl.h" static struct xensnd_req * be_stream_prepare_req(struct xen_snd_front_evtchnl *evtchnl, u8 operation) { struct xensnd_req *req; req = RING_GET_REQUEST(&evtchnl->u.req.ring, evtchnl->u.req.ring.req_prod_pvt); req->operation = operation; req->id = evtchnl->evt_next_id++; evtchnl->evt_id = req->id; return req; } static int be_stream_do_io(struct xen_snd_front_evtchnl *evtchnl) { if (unlikely(evtchnl->state != EVTCHNL_STATE_CONNECTED)) return -EIO; reinit_completion(&evtchnl->u.req.completion); xen_snd_front_evtchnl_flush(evtchnl); return 0; } static int be_stream_wait_io(struct xen_snd_front_evtchnl *evtchnl) { if (wait_for_completion_timeout(&evtchnl->u.req.completion, msecs_to_jiffies(VSND_WAIT_BACK_MS)) <= 0) return -ETIMEDOUT; return evtchnl->u.req.resp_status; } int xen_snd_front_stream_query_hw_param(struct xen_snd_front_evtchnl *evtchnl, struct xensnd_query_hw_param *hw_param_req, struct xensnd_query_hw_param *hw_param_resp) { struct xensnd_req *req; int ret; mutex_lock(&evtchnl->u.req.req_io_lock); mutex_lock(&evtchnl->ring_io_lock); req = be_stream_prepare_req(evtchnl, XENSND_OP_HW_PARAM_QUERY); req->op.hw_param = *hw_param_req; mutex_unlock(&evtchnl->ring_io_lock); ret = be_stream_do_io(evtchnl); if (ret == 0) ret = be_stream_wait_io(evtchnl); if (ret == 0) *hw_param_resp = evtchnl->u.req.resp.hw_param; mutex_unlock(&evtchnl->u.req.req_io_lock); return ret; } int xen_snd_front_stream_prepare(struct xen_snd_front_evtchnl *evtchnl, struct xen_front_pgdir_shbuf *shbuf, u8 format, unsigned int channels, unsigned int rate, u32 buffer_sz, u32 period_sz) { struct xensnd_req *req; int ret; mutex_lock(&evtchnl->u.req.req_io_lock); mutex_lock(&evtchnl->ring_io_lock); req = be_stream_prepare_req(evtchnl, XENSND_OP_OPEN); req->op.open.pcm_format = format; req->op.open.pcm_channels = channels; req->op.open.pcm_rate = rate; req->op.open.buffer_sz = buffer_sz; req->op.open.period_sz = period_sz; req->op.open.gref_directory = xen_front_pgdir_shbuf_get_dir_start(shbuf); mutex_unlock(&evtchnl->ring_io_lock); ret = be_stream_do_io(evtchnl); if (ret == 0) ret = be_stream_wait_io(evtchnl); mutex_unlock(&evtchnl->u.req.req_io_lock); return ret; } int xen_snd_front_stream_close(struct xen_snd_front_evtchnl *evtchnl) { __always_unused struct xensnd_req *req; int ret; mutex_lock(&evtchnl->u.req.req_io_lock); mutex_lock(&evtchnl->ring_io_lock); req = be_stream_prepare_req(evtchnl, XENSND_OP_CLOSE); mutex_unlock(&evtchnl->ring_io_lock); ret = be_stream_do_io(evtchnl); if (ret == 0) ret = be_stream_wait_io(evtchnl); mutex_unlock(&evtchnl->u.req.req_io_lock); return ret; } int xen_snd_front_stream_write(struct xen_snd_front_evtchnl *evtchnl, unsigned long pos, unsigned long count) { struct xensnd_req *req; int ret; mutex_lock(&evtchnl->u.req.req_io_lock); mutex_lock(&evtchnl->ring_io_lock); req = be_stream_prepare_req(evtchnl, XENSND_OP_WRITE); req->op.rw.length = count; req->op.rw.offset = pos; mutex_unlock(&evtchnl->ring_io_lock); ret = be_stream_do_io(evtchnl); if (ret == 0) ret = be_stream_wait_io(evtchnl); mutex_unlock(&evtchnl->u.req.req_io_lock); return ret; } int xen_snd_front_stream_read(struct xen_snd_front_evtchnl *evtchnl, unsigned long pos, unsigned long count) { struct xensnd_req *req; int ret; mutex_lock(&evtchnl->u.req.req_io_lock); mutex_lock(&evtchnl->ring_io_lock); req = be_stream_prepare_req(evtchnl, XENSND_OP_READ); req->op.rw.length = count; req->op.rw.offset = pos; mutex_unlock(&evtchnl->ring_io_lock); ret = be_stream_do_io(evtchnl); if (ret == 0) ret = be_stream_wait_io(evtchnl); mutex_unlock(&evtchnl->u.req.req_io_lock); return ret; } int xen_snd_front_stream_trigger(struct xen_snd_front_evtchnl *evtchnl, int type) { struct xensnd_req *req; int ret; mutex_lock(&evtchnl->u.req.req_io_lock); mutex_lock(&evtchnl->ring_io_lock); req = be_stream_prepare_req(evtchnl, XENSND_OP_TRIGGER); req->op.trigger.type = type; mutex_unlock(&evtchnl->ring_io_lock); ret = be_stream_do_io(evtchnl); if (ret == 0) ret = be_stream_wait_io(evtchnl); mutex_unlock(&evtchnl->u.req.req_io_lock); return ret; } static void xen_snd_drv_fini(struct xen_snd_front_info *front_info) { xen_snd_front_alsa_fini(front_info); xen_snd_front_evtchnl_free_all(front_info); } static int sndback_initwait(struct xen_snd_front_info *front_info) { int num_streams; int ret; ret = xen_snd_front_cfg_card(front_info, &num_streams); if (ret < 0) return ret; /* create event channels for all streams and publish */ ret = xen_snd_front_evtchnl_create_all(front_info, num_streams); if (ret < 0) return ret; return xen_snd_front_evtchnl_publish_all(front_info); } static int sndback_connect(struct xen_snd_front_info *front_info) { return xen_snd_front_alsa_init(front_info); } static void sndback_disconnect(struct xen_snd_front_info *front_info) { xen_snd_drv_fini(front_info); xenbus_switch_state(front_info->xb_dev, XenbusStateInitialising); } static void sndback_changed(struct xenbus_device *xb_dev, enum xenbus_state backend_state) { struct xen_snd_front_info *front_info = dev_get_drvdata(&xb_dev->dev); int ret; dev_dbg(&xb_dev->dev, "Backend state is %s, front is %s\n", xenbus_strstate(backend_state), xenbus_strstate(xb_dev->state)); switch (backend_state) { case XenbusStateReconfiguring: case XenbusStateReconfigured: case XenbusStateInitialised: break; case XenbusStateInitialising: /* Recovering after backend unexpected closure. */ sndback_disconnect(front_info); break; case XenbusStateInitWait: /* Recovering after backend unexpected closure. */ sndback_disconnect(front_info); ret = sndback_initwait(front_info); if (ret < 0) xenbus_dev_fatal(xb_dev, ret, "initializing frontend"); else xenbus_switch_state(xb_dev, XenbusStateInitialised); break; case XenbusStateConnected: if (xb_dev->state != XenbusStateInitialised) break; ret = sndback_connect(front_info); if (ret < 0) xenbus_dev_fatal(xb_dev, ret, "initializing frontend"); else xenbus_switch_state(xb_dev, XenbusStateConnected); break; case XenbusStateClosing: /* * In this state backend starts freeing resources, * so let it go into closed state first, so we can also * remove ours. */ break; case XenbusStateUnknown: case XenbusStateClosed: if (xb_dev->state == XenbusStateClosed) break; sndback_disconnect(front_info); break; } } static int xen_drv_probe(struct xenbus_device *xb_dev, const struct xenbus_device_id *id) { struct xen_snd_front_info *front_info; front_info = devm_kzalloc(&xb_dev->dev, sizeof(*front_info), GFP_KERNEL); if (!front_info) return -ENOMEM; front_info->xb_dev = xb_dev; dev_set_drvdata(&xb_dev->dev, front_info); return xenbus_switch_state(xb_dev, XenbusStateInitialising); } static void xen_drv_remove(struct xenbus_device *dev) { struct xen_snd_front_info *front_info = dev_get_drvdata(&dev->dev); int to = 100; xenbus_switch_state(dev, XenbusStateClosing); /* * On driver removal it is disconnected from XenBus, * so no backend state change events come via .otherend_changed * callback. This prevents us from exiting gracefully, e.g. * signaling the backend to free event channels, waiting for its * state to change to XenbusStateClosed and cleaning at our end. * Normally when front driver removed backend will finally go into * XenbusStateInitWait state. * * Workaround: read backend's state manually and wait with time-out. */ while ((xenbus_read_unsigned(front_info->xb_dev->otherend, "state", XenbusStateUnknown) != XenbusStateInitWait) && --to) msleep(10); if (!to) { unsigned int state; state = xenbus_read_unsigned(front_info->xb_dev->otherend, "state", XenbusStateUnknown); pr_err("Backend state is %s while removing driver\n", xenbus_strstate(state)); } xen_snd_drv_fini(front_info); xenbus_frontend_closed(dev); } static const struct xenbus_device_id xen_drv_ids[] = { { XENSND_DRIVER_NAME }, { "" } }; static struct xenbus_driver xen_driver = { .ids = xen_drv_ids, .probe = xen_drv_probe, .remove = xen_drv_remove, .otherend_changed = sndback_changed, .not_essential = true, }; static int __init xen_drv_init(void) { if (!xen_domain()) return -ENODEV; if (!xen_has_pv_devices()) return -ENODEV; /* At the moment we only support case with XEN_PAGE_SIZE == PAGE_SIZE */ if (XEN_PAGE_SIZE != PAGE_SIZE) { pr_err(XENSND_DRIVER_NAME ": different kernel and Xen page sizes are not supported: XEN_PAGE_SIZE (%lu) != PAGE_SIZE (%lu)\n", XEN_PAGE_SIZE, PAGE_SIZE); return -ENODEV; } pr_info("Initialising Xen " XENSND_DRIVER_NAME " frontend driver\n"); return xenbus_register_frontend(&xen_driver); } static void __exit xen_drv_fini(void) { pr_info("Unregistering Xen " XENSND_DRIVER_NAME " frontend driver\n"); xenbus_unregister_driver(&xen_driver); } module_init(xen_drv_init); module_exit(xen_drv_fini); MODULE_DESCRIPTION("Xen virtual sound device frontend"); MODULE_LICENSE("GPL"); MODULE_ALIAS("xen:" XENSND_DRIVER_NAME);
linux-master
sound/xen/xen_snd_front.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Xen para-virtual sound device * * Copyright (C) 2016-2018 EPAM Systems Inc. * * Author: Oleksandr Andrushchenko <[email protected]> */ #include <xen/xenbus.h> #include <xen/interface/io/sndif.h> #include "xen_snd_front.h" #include "xen_snd_front_cfg.h" /* Maximum number of supported streams. */ #define VSND_MAX_STREAM 8 struct cfg_hw_sample_rate { const char *name; unsigned int mask; unsigned int value; }; static const struct cfg_hw_sample_rate CFG_HW_SUPPORTED_RATES[] = { { .name = "5512", .mask = SNDRV_PCM_RATE_5512, .value = 5512 }, { .name = "8000", .mask = SNDRV_PCM_RATE_8000, .value = 8000 }, { .name = "11025", .mask = SNDRV_PCM_RATE_11025, .value = 11025 }, { .name = "16000", .mask = SNDRV_PCM_RATE_16000, .value = 16000 }, { .name = "22050", .mask = SNDRV_PCM_RATE_22050, .value = 22050 }, { .name = "32000", .mask = SNDRV_PCM_RATE_32000, .value = 32000 }, { .name = "44100", .mask = SNDRV_PCM_RATE_44100, .value = 44100 }, { .name = "48000", .mask = SNDRV_PCM_RATE_48000, .value = 48000 }, { .name = "64000", .mask = SNDRV_PCM_RATE_64000, .value = 64000 }, { .name = "96000", .mask = SNDRV_PCM_RATE_96000, .value = 96000 }, { .name = "176400", .mask = SNDRV_PCM_RATE_176400, .value = 176400 }, { .name = "192000", .mask = SNDRV_PCM_RATE_192000, .value = 192000 }, }; struct cfg_hw_sample_format { const char *name; u64 mask; }; static const struct cfg_hw_sample_format CFG_HW_SUPPORTED_FORMATS[] = { { .name = XENSND_PCM_FORMAT_U8_STR, .mask = SNDRV_PCM_FMTBIT_U8 }, { .name = XENSND_PCM_FORMAT_S8_STR, .mask = SNDRV_PCM_FMTBIT_S8 }, { .name = XENSND_PCM_FORMAT_U16_LE_STR, .mask = SNDRV_PCM_FMTBIT_U16_LE }, { .name = XENSND_PCM_FORMAT_U16_BE_STR, .mask = SNDRV_PCM_FMTBIT_U16_BE }, { .name = XENSND_PCM_FORMAT_S16_LE_STR, .mask = SNDRV_PCM_FMTBIT_S16_LE }, { .name = XENSND_PCM_FORMAT_S16_BE_STR, .mask = SNDRV_PCM_FMTBIT_S16_BE }, { .name = XENSND_PCM_FORMAT_U24_LE_STR, .mask = SNDRV_PCM_FMTBIT_U24_LE }, { .name = XENSND_PCM_FORMAT_U24_BE_STR, .mask = SNDRV_PCM_FMTBIT_U24_BE }, { .name = XENSND_PCM_FORMAT_S24_LE_STR, .mask = SNDRV_PCM_FMTBIT_S24_LE }, { .name = XENSND_PCM_FORMAT_S24_BE_STR, .mask = SNDRV_PCM_FMTBIT_S24_BE }, { .name = XENSND_PCM_FORMAT_U32_LE_STR, .mask = SNDRV_PCM_FMTBIT_U32_LE }, { .name = XENSND_PCM_FORMAT_U32_BE_STR, .mask = SNDRV_PCM_FMTBIT_U32_BE }, { .name = XENSND_PCM_FORMAT_S32_LE_STR, .mask = SNDRV_PCM_FMTBIT_S32_LE }, { .name = XENSND_PCM_FORMAT_S32_BE_STR, .mask = SNDRV_PCM_FMTBIT_S32_BE }, { .name = XENSND_PCM_FORMAT_A_LAW_STR, .mask = SNDRV_PCM_FMTBIT_A_LAW }, { .name = XENSND_PCM_FORMAT_MU_LAW_STR, .mask = SNDRV_PCM_FMTBIT_MU_LAW }, { .name = XENSND_PCM_FORMAT_F32_LE_STR, .mask = SNDRV_PCM_FMTBIT_FLOAT_LE }, { .name = XENSND_PCM_FORMAT_F32_BE_STR, .mask = SNDRV_PCM_FMTBIT_FLOAT_BE }, { .name = XENSND_PCM_FORMAT_F64_LE_STR, .mask = SNDRV_PCM_FMTBIT_FLOAT64_LE }, { .name = XENSND_PCM_FORMAT_F64_BE_STR, .mask = SNDRV_PCM_FMTBIT_FLOAT64_BE }, { .name = XENSND_PCM_FORMAT_IEC958_SUBFRAME_LE_STR, .mask = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE }, { .name = XENSND_PCM_FORMAT_IEC958_SUBFRAME_BE_STR, .mask = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE }, { .name = XENSND_PCM_FORMAT_IMA_ADPCM_STR, .mask = SNDRV_PCM_FMTBIT_IMA_ADPCM }, { .name = XENSND_PCM_FORMAT_MPEG_STR, .mask = SNDRV_PCM_FMTBIT_MPEG }, { .name = XENSND_PCM_FORMAT_GSM_STR, .mask = SNDRV_PCM_FMTBIT_GSM }, }; static void cfg_hw_rates(char *list, unsigned int len, const char *path, struct snd_pcm_hardware *pcm_hw) { char *cur_rate; unsigned int cur_mask; unsigned int cur_value; unsigned int rates; unsigned int rate_min; unsigned int rate_max; int i; rates = 0; rate_min = -1; rate_max = 0; while ((cur_rate = strsep(&list, XENSND_LIST_SEPARATOR))) { for (i = 0; i < ARRAY_SIZE(CFG_HW_SUPPORTED_RATES); i++) if (!strncasecmp(cur_rate, CFG_HW_SUPPORTED_RATES[i].name, XENSND_SAMPLE_RATE_MAX_LEN)) { cur_mask = CFG_HW_SUPPORTED_RATES[i].mask; cur_value = CFG_HW_SUPPORTED_RATES[i].value; rates |= cur_mask; if (rate_min > cur_value) rate_min = cur_value; if (rate_max < cur_value) rate_max = cur_value; } } if (rates) { pcm_hw->rates = rates; pcm_hw->rate_min = rate_min; pcm_hw->rate_max = rate_max; } } static void cfg_formats(char *list, unsigned int len, const char *path, struct snd_pcm_hardware *pcm_hw) { u64 formats; char *cur_format; int i; formats = 0; while ((cur_format = strsep(&list, XENSND_LIST_SEPARATOR))) { for (i = 0; i < ARRAY_SIZE(CFG_HW_SUPPORTED_FORMATS); i++) if (!strncasecmp(cur_format, CFG_HW_SUPPORTED_FORMATS[i].name, XENSND_SAMPLE_FORMAT_MAX_LEN)) formats |= CFG_HW_SUPPORTED_FORMATS[i].mask; } if (formats) pcm_hw->formats = formats; } #define MAX_BUFFER_SIZE (64 * 1024) #define MIN_PERIOD_SIZE 64 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | \ SNDRV_PCM_FMTBIT_S16_LE) #define USE_RATE (SNDRV_PCM_RATE_CONTINUOUS | \ SNDRV_PCM_RATE_8000_48000) #define USE_RATE_MIN 5512 #define USE_RATE_MAX 48000 #define USE_CHANNELS_MIN 1 #define USE_CHANNELS_MAX 2 #define USE_PERIODS_MIN 2 #define USE_PERIODS_MAX (MAX_BUFFER_SIZE / MIN_PERIOD_SIZE) static const struct snd_pcm_hardware SND_DRV_PCM_HW_DEFAULT = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = USE_FORMATS, .rates = USE_RATE, .rate_min = USE_RATE_MIN, .rate_max = USE_RATE_MAX, .channels_min = USE_CHANNELS_MIN, .channels_max = USE_CHANNELS_MAX, .buffer_bytes_max = MAX_BUFFER_SIZE, .period_bytes_min = MIN_PERIOD_SIZE, .period_bytes_max = MAX_PERIOD_SIZE, .periods_min = USE_PERIODS_MIN, .periods_max = USE_PERIODS_MAX, .fifo_size = 0, }; static void cfg_read_pcm_hw(const char *path, struct snd_pcm_hardware *parent_pcm_hw, struct snd_pcm_hardware *pcm_hw) { char *list; int val; size_t buf_sz; unsigned int len; /* Inherit parent's PCM HW and read overrides from XenStore. */ if (parent_pcm_hw) *pcm_hw = *parent_pcm_hw; else *pcm_hw = SND_DRV_PCM_HW_DEFAULT; val = xenbus_read_unsigned(path, XENSND_FIELD_CHANNELS_MIN, 0); if (val) pcm_hw->channels_min = val; val = xenbus_read_unsigned(path, XENSND_FIELD_CHANNELS_MAX, 0); if (val) pcm_hw->channels_max = val; list = xenbus_read(XBT_NIL, path, XENSND_FIELD_SAMPLE_RATES, &len); if (!IS_ERR(list)) { cfg_hw_rates(list, len, path, pcm_hw); kfree(list); } list = xenbus_read(XBT_NIL, path, XENSND_FIELD_SAMPLE_FORMATS, &len); if (!IS_ERR(list)) { cfg_formats(list, len, path, pcm_hw); kfree(list); } buf_sz = xenbus_read_unsigned(path, XENSND_FIELD_BUFFER_SIZE, 0); if (buf_sz) pcm_hw->buffer_bytes_max = buf_sz; /* Update configuration to match new values. */ if (pcm_hw->channels_min > pcm_hw->channels_max) pcm_hw->channels_min = pcm_hw->channels_max; if (pcm_hw->rate_min > pcm_hw->rate_max) pcm_hw->rate_min = pcm_hw->rate_max; pcm_hw->period_bytes_max = pcm_hw->buffer_bytes_max; pcm_hw->periods_max = pcm_hw->period_bytes_max / pcm_hw->period_bytes_min; } static int cfg_get_stream_type(const char *path, int index, int *num_pb, int *num_cap) { char *str = NULL; char *stream_path; int ret; *num_pb = 0; *num_cap = 0; stream_path = kasprintf(GFP_KERNEL, "%s/%d", path, index); if (!stream_path) { ret = -ENOMEM; goto fail; } str = xenbus_read(XBT_NIL, stream_path, XENSND_FIELD_TYPE, NULL); if (IS_ERR(str)) { ret = PTR_ERR(str); str = NULL; goto fail; } if (!strncasecmp(str, XENSND_STREAM_TYPE_PLAYBACK, sizeof(XENSND_STREAM_TYPE_PLAYBACK))) { (*num_pb)++; } else if (!strncasecmp(str, XENSND_STREAM_TYPE_CAPTURE, sizeof(XENSND_STREAM_TYPE_CAPTURE))) { (*num_cap)++; } else { ret = -EINVAL; goto fail; } ret = 0; fail: kfree(stream_path); kfree(str); return ret; } static int cfg_stream(struct xen_snd_front_info *front_info, struct xen_front_cfg_pcm_instance *pcm_instance, const char *path, int index, int *cur_pb, int *cur_cap, int *stream_cnt) { char *str = NULL; char *stream_path; struct xen_front_cfg_stream *stream; int ret; stream_path = devm_kasprintf(&front_info->xb_dev->dev, GFP_KERNEL, "%s/%d", path, index); if (!stream_path) { ret = -ENOMEM; goto fail; } str = xenbus_read(XBT_NIL, stream_path, XENSND_FIELD_TYPE, NULL); if (IS_ERR(str)) { ret = PTR_ERR(str); str = NULL; goto fail; } if (!strncasecmp(str, XENSND_STREAM_TYPE_PLAYBACK, sizeof(XENSND_STREAM_TYPE_PLAYBACK))) { stream = &pcm_instance->streams_pb[(*cur_pb)++]; } else if (!strncasecmp(str, XENSND_STREAM_TYPE_CAPTURE, sizeof(XENSND_STREAM_TYPE_CAPTURE))) { stream = &pcm_instance->streams_cap[(*cur_cap)++]; } else { ret = -EINVAL; goto fail; } /* Get next stream index. */ stream->index = (*stream_cnt)++; stream->xenstore_path = stream_path; /* * Check XenStore if PCM HW configuration exists for this stream * and update if so, e.g. we inherit all values from device's PCM HW, * but can still override some of the values for the stream. */ cfg_read_pcm_hw(stream->xenstore_path, &pcm_instance->pcm_hw, &stream->pcm_hw); ret = 0; fail: kfree(str); return ret; } static int cfg_device(struct xen_snd_front_info *front_info, struct xen_front_cfg_pcm_instance *pcm_instance, struct snd_pcm_hardware *parent_pcm_hw, const char *path, int node_index, int *stream_cnt) { char *str; char *device_path; int ret, i, num_streams; int num_pb, num_cap; int cur_pb, cur_cap; char node[3]; device_path = kasprintf(GFP_KERNEL, "%s/%d", path, node_index); if (!device_path) return -ENOMEM; str = xenbus_read(XBT_NIL, device_path, XENSND_FIELD_DEVICE_NAME, NULL); if (!IS_ERR(str)) { strscpy(pcm_instance->name, str, sizeof(pcm_instance->name)); kfree(str); } pcm_instance->device_id = node_index; /* * Check XenStore if PCM HW configuration exists for this device * and update if so, e.g. we inherit all values from card's PCM HW, * but can still override some of the values for the device. */ cfg_read_pcm_hw(device_path, parent_pcm_hw, &pcm_instance->pcm_hw); /* Find out how many streams were configured in Xen store. */ num_streams = 0; do { snprintf(node, sizeof(node), "%d", num_streams); if (!xenbus_exists(XBT_NIL, device_path, node)) break; num_streams++; } while (num_streams < VSND_MAX_STREAM); pcm_instance->num_streams_pb = 0; pcm_instance->num_streams_cap = 0; /* Get number of playback and capture streams. */ for (i = 0; i < num_streams; i++) { ret = cfg_get_stream_type(device_path, i, &num_pb, &num_cap); if (ret < 0) goto fail; pcm_instance->num_streams_pb += num_pb; pcm_instance->num_streams_cap += num_cap; } if (pcm_instance->num_streams_pb) { pcm_instance->streams_pb = devm_kcalloc(&front_info->xb_dev->dev, pcm_instance->num_streams_pb, sizeof(struct xen_front_cfg_stream), GFP_KERNEL); if (!pcm_instance->streams_pb) { ret = -ENOMEM; goto fail; } } if (pcm_instance->num_streams_cap) { pcm_instance->streams_cap = devm_kcalloc(&front_info->xb_dev->dev, pcm_instance->num_streams_cap, sizeof(struct xen_front_cfg_stream), GFP_KERNEL); if (!pcm_instance->streams_cap) { ret = -ENOMEM; goto fail; } } cur_pb = 0; cur_cap = 0; for (i = 0; i < num_streams; i++) { ret = cfg_stream(front_info, pcm_instance, device_path, i, &cur_pb, &cur_cap, stream_cnt); if (ret < 0) goto fail; } ret = 0; fail: kfree(device_path); return ret; } int xen_snd_front_cfg_card(struct xen_snd_front_info *front_info, int *stream_cnt) { struct xenbus_device *xb_dev = front_info->xb_dev; struct xen_front_cfg_card *cfg = &front_info->cfg; int ret, num_devices, i; char node[3]; *stream_cnt = 0; num_devices = 0; do { scnprintf(node, sizeof(node), "%d", num_devices); if (!xenbus_exists(XBT_NIL, xb_dev->nodename, node)) break; num_devices++; } while (num_devices < SNDRV_PCM_DEVICES); if (!num_devices) { dev_warn(&xb_dev->dev, "No devices configured for sound card at %s\n", xb_dev->nodename); return -ENODEV; } /* Start from default PCM HW configuration for the card. */ cfg_read_pcm_hw(xb_dev->nodename, NULL, &cfg->pcm_hw); cfg->pcm_instances = devm_kcalloc(&front_info->xb_dev->dev, num_devices, sizeof(struct xen_front_cfg_pcm_instance), GFP_KERNEL); if (!cfg->pcm_instances) return -ENOMEM; for (i = 0; i < num_devices; i++) { ret = cfg_device(front_info, &cfg->pcm_instances[i], &cfg->pcm_hw, xb_dev->nodename, i, stream_cnt); if (ret < 0) return ret; } cfg->num_pcm_instances = num_devices; return 0; }
linux-master
sound/xen/xen_snd_front_cfg.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Xen para-virtual sound device * * Copyright (C) 2016-2018 EPAM Systems Inc. * * Author: Oleksandr Andrushchenko <[email protected]> */ #include <linux/platform_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <xen/xenbus.h> #include <xen/xen-front-pgdir-shbuf.h> #include "xen_snd_front.h" #include "xen_snd_front_alsa.h" #include "xen_snd_front_cfg.h" #include "xen_snd_front_evtchnl.h" struct xen_snd_front_pcm_stream_info { struct xen_snd_front_info *front_info; struct xen_snd_front_evtchnl_pair *evt_pair; /* This is the shared buffer with its backing storage. */ struct xen_front_pgdir_shbuf shbuf; u8 *buffer; size_t buffer_sz; int num_pages; struct page **pages; int index; bool is_open; struct snd_pcm_hardware pcm_hw; /* Number of processed frames as reported by the backend. */ snd_pcm_uframes_t be_cur_frame; /* Current HW pointer to be reported via .period callback. */ atomic_t hw_ptr; /* Modulo of the number of processed frames - for period detection. */ u32 out_frames; }; struct xen_snd_front_pcm_instance_info { struct xen_snd_front_card_info *card_info; struct snd_pcm *pcm; struct snd_pcm_hardware pcm_hw; int num_pcm_streams_pb; struct xen_snd_front_pcm_stream_info *streams_pb; int num_pcm_streams_cap; struct xen_snd_front_pcm_stream_info *streams_cap; }; struct xen_snd_front_card_info { struct xen_snd_front_info *front_info; struct snd_card *card; struct snd_pcm_hardware pcm_hw; int num_pcm_instances; struct xen_snd_front_pcm_instance_info *pcm_instances; }; struct alsa_sndif_sample_format { u8 sndif; snd_pcm_format_t alsa; }; struct alsa_sndif_hw_param { u8 sndif; snd_pcm_hw_param_t alsa; }; static const struct alsa_sndif_sample_format ALSA_SNDIF_FORMATS[] = { { .sndif = XENSND_PCM_FORMAT_U8, .alsa = SNDRV_PCM_FORMAT_U8 }, { .sndif = XENSND_PCM_FORMAT_S8, .alsa = SNDRV_PCM_FORMAT_S8 }, { .sndif = XENSND_PCM_FORMAT_U16_LE, .alsa = SNDRV_PCM_FORMAT_U16_LE }, { .sndif = XENSND_PCM_FORMAT_U16_BE, .alsa = SNDRV_PCM_FORMAT_U16_BE }, { .sndif = XENSND_PCM_FORMAT_S16_LE, .alsa = SNDRV_PCM_FORMAT_S16_LE }, { .sndif = XENSND_PCM_FORMAT_S16_BE, .alsa = SNDRV_PCM_FORMAT_S16_BE }, { .sndif = XENSND_PCM_FORMAT_U24_LE, .alsa = SNDRV_PCM_FORMAT_U24_LE }, { .sndif = XENSND_PCM_FORMAT_U24_BE, .alsa = SNDRV_PCM_FORMAT_U24_BE }, { .sndif = XENSND_PCM_FORMAT_S24_LE, .alsa = SNDRV_PCM_FORMAT_S24_LE }, { .sndif = XENSND_PCM_FORMAT_S24_BE, .alsa = SNDRV_PCM_FORMAT_S24_BE }, { .sndif = XENSND_PCM_FORMAT_U32_LE, .alsa = SNDRV_PCM_FORMAT_U32_LE }, { .sndif = XENSND_PCM_FORMAT_U32_BE, .alsa = SNDRV_PCM_FORMAT_U32_BE }, { .sndif = XENSND_PCM_FORMAT_S32_LE, .alsa = SNDRV_PCM_FORMAT_S32_LE }, { .sndif = XENSND_PCM_FORMAT_S32_BE, .alsa = SNDRV_PCM_FORMAT_S32_BE }, { .sndif = XENSND_PCM_FORMAT_A_LAW, .alsa = SNDRV_PCM_FORMAT_A_LAW }, { .sndif = XENSND_PCM_FORMAT_MU_LAW, .alsa = SNDRV_PCM_FORMAT_MU_LAW }, { .sndif = XENSND_PCM_FORMAT_F32_LE, .alsa = SNDRV_PCM_FORMAT_FLOAT_LE }, { .sndif = XENSND_PCM_FORMAT_F32_BE, .alsa = SNDRV_PCM_FORMAT_FLOAT_BE }, { .sndif = XENSND_PCM_FORMAT_F64_LE, .alsa = SNDRV_PCM_FORMAT_FLOAT64_LE }, { .sndif = XENSND_PCM_FORMAT_F64_BE, .alsa = SNDRV_PCM_FORMAT_FLOAT64_BE }, { .sndif = XENSND_PCM_FORMAT_IEC958_SUBFRAME_LE, .alsa = SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE }, { .sndif = XENSND_PCM_FORMAT_IEC958_SUBFRAME_BE, .alsa = SNDRV_PCM_FORMAT_IEC958_SUBFRAME_BE }, { .sndif = XENSND_PCM_FORMAT_IMA_ADPCM, .alsa = SNDRV_PCM_FORMAT_IMA_ADPCM }, { .sndif = XENSND_PCM_FORMAT_MPEG, .alsa = SNDRV_PCM_FORMAT_MPEG }, { .sndif = XENSND_PCM_FORMAT_GSM, .alsa = SNDRV_PCM_FORMAT_GSM }, }; static int to_sndif_format(snd_pcm_format_t format) { int i; for (i = 0; i < ARRAY_SIZE(ALSA_SNDIF_FORMATS); i++) if (ALSA_SNDIF_FORMATS[i].alsa == format) return ALSA_SNDIF_FORMATS[i].sndif; return -EINVAL; } static u64 to_sndif_formats_mask(u64 alsa_formats) { u64 mask; int i; mask = 0; for (i = 0; i < ARRAY_SIZE(ALSA_SNDIF_FORMATS); i++) if (pcm_format_to_bits(ALSA_SNDIF_FORMATS[i].alsa) & alsa_formats) mask |= BIT_ULL(ALSA_SNDIF_FORMATS[i].sndif); return mask; } static u64 to_alsa_formats_mask(u64 sndif_formats) { u64 mask; int i; mask = 0; for (i = 0; i < ARRAY_SIZE(ALSA_SNDIF_FORMATS); i++) if (BIT_ULL(ALSA_SNDIF_FORMATS[i].sndif) & sndif_formats) mask |= pcm_format_to_bits(ALSA_SNDIF_FORMATS[i].alsa); return mask; } static void stream_clear(struct xen_snd_front_pcm_stream_info *stream) { stream->is_open = false; stream->be_cur_frame = 0; stream->out_frames = 0; atomic_set(&stream->hw_ptr, 0); xen_snd_front_evtchnl_pair_clear(stream->evt_pair); memset(&stream->shbuf, 0, sizeof(stream->shbuf)); stream->buffer = NULL; stream->buffer_sz = 0; stream->pages = NULL; stream->num_pages = 0; } static void stream_free(struct xen_snd_front_pcm_stream_info *stream) { xen_front_pgdir_shbuf_unmap(&stream->shbuf); xen_front_pgdir_shbuf_free(&stream->shbuf); if (stream->buffer) free_pages_exact(stream->buffer, stream->buffer_sz); kfree(stream->pages); stream_clear(stream); } static struct xen_snd_front_pcm_stream_info * stream_get(struct snd_pcm_substream *substream) { struct xen_snd_front_pcm_instance_info *pcm_instance = snd_pcm_substream_chip(substream); struct xen_snd_front_pcm_stream_info *stream; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) stream = &pcm_instance->streams_pb[substream->number]; else stream = &pcm_instance->streams_cap[substream->number]; return stream; } static int alsa_hw_rule(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct xen_snd_front_pcm_stream_info *stream = rule->private; struct device *dev = &stream->front_info->xb_dev->dev; struct snd_mask *formats = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_interval *rates = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *period = hw_param_interval(params, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); struct snd_interval *buffer = hw_param_interval(params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE); struct xensnd_query_hw_param req; struct xensnd_query_hw_param resp; struct snd_interval interval; struct snd_mask mask; u64 sndif_formats; int changed, ret; /* Collect all the values we need for the query. */ req.formats = to_sndif_formats_mask((u64)formats->bits[0] | (u64)(formats->bits[1]) << 32); req.rates.min = rates->min; req.rates.max = rates->max; req.channels.min = channels->min; req.channels.max = channels->max; req.buffer.min = buffer->min; req.buffer.max = buffer->max; req.period.min = period->min; req.period.max = period->max; ret = xen_snd_front_stream_query_hw_param(&stream->evt_pair->req, &req, &resp); if (ret < 0) { /* Check if this is due to backend communication error. */ if (ret == -EIO || ret == -ETIMEDOUT) dev_err(dev, "Failed to query ALSA HW parameters\n"); return ret; } /* Refine HW parameters after the query. */ changed = 0; sndif_formats = to_alsa_formats_mask(resp.formats); snd_mask_none(&mask); mask.bits[0] = (u32)sndif_formats; mask.bits[1] = (u32)(sndif_formats >> 32); ret = snd_mask_refine(formats, &mask); if (ret < 0) return ret; changed |= ret; interval.openmin = 0; interval.openmax = 0; interval.integer = 1; interval.min = resp.rates.min; interval.max = resp.rates.max; ret = snd_interval_refine(rates, &interval); if (ret < 0) return ret; changed |= ret; interval.min = resp.channels.min; interval.max = resp.channels.max; ret = snd_interval_refine(channels, &interval); if (ret < 0) return ret; changed |= ret; interval.min = resp.buffer.min; interval.max = resp.buffer.max; ret = snd_interval_refine(buffer, &interval); if (ret < 0) return ret; changed |= ret; interval.min = resp.period.min; interval.max = resp.period.max; ret = snd_interval_refine(period, &interval); if (ret < 0) return ret; changed |= ret; return changed; } static int alsa_open(struct snd_pcm_substream *substream) { struct xen_snd_front_pcm_instance_info *pcm_instance = snd_pcm_substream_chip(substream); struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct xen_snd_front_info *front_info = pcm_instance->card_info->front_info; struct device *dev = &front_info->xb_dev->dev; int ret; /* * Return our HW properties: override defaults with those configured * via XenStore. */ runtime->hw = stream->pcm_hw; runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_DOUBLE | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_NONINTERLEAVED | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_PAUSE); runtime->hw.info |= SNDRV_PCM_INFO_INTERLEAVED; stream->evt_pair = &front_info->evt_pairs[stream->index]; stream->front_info = front_info; stream->evt_pair->evt.u.evt.substream = substream; stream_clear(stream); xen_snd_front_evtchnl_pair_set_connected(stream->evt_pair, true); ret = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, alsa_hw_rule, stream, SNDRV_PCM_HW_PARAM_FORMAT, -1); if (ret) { dev_err(dev, "Failed to add HW rule for SNDRV_PCM_HW_PARAM_FORMAT\n"); return ret; } ret = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, alsa_hw_rule, stream, SNDRV_PCM_HW_PARAM_RATE, -1); if (ret) { dev_err(dev, "Failed to add HW rule for SNDRV_PCM_HW_PARAM_RATE\n"); return ret; } ret = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, alsa_hw_rule, stream, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (ret) { dev_err(dev, "Failed to add HW rule for SNDRV_PCM_HW_PARAM_CHANNELS\n"); return ret; } ret = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, alsa_hw_rule, stream, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, -1); if (ret) { dev_err(dev, "Failed to add HW rule for SNDRV_PCM_HW_PARAM_PERIOD_SIZE\n"); return ret; } ret = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, alsa_hw_rule, stream, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, -1); if (ret) { dev_err(dev, "Failed to add HW rule for SNDRV_PCM_HW_PARAM_BUFFER_SIZE\n"); return ret; } return 0; } static int alsa_close(struct snd_pcm_substream *substream) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); xen_snd_front_evtchnl_pair_set_connected(stream->evt_pair, false); return 0; } static int shbuf_setup_backstore(struct xen_snd_front_pcm_stream_info *stream, size_t buffer_sz) { int i; stream->buffer = alloc_pages_exact(buffer_sz, GFP_KERNEL); if (!stream->buffer) return -ENOMEM; stream->buffer_sz = buffer_sz; stream->num_pages = DIV_ROUND_UP(stream->buffer_sz, PAGE_SIZE); stream->pages = kcalloc(stream->num_pages, sizeof(struct page *), GFP_KERNEL); if (!stream->pages) return -ENOMEM; for (i = 0; i < stream->num_pages; i++) stream->pages[i] = virt_to_page(stream->buffer + i * PAGE_SIZE); return 0; } static int alsa_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); struct xen_snd_front_info *front_info = stream->front_info; struct xen_front_pgdir_shbuf_cfg buf_cfg; int ret; /* * This callback may be called multiple times, * so free the previously allocated shared buffer if any. */ stream_free(stream); ret = shbuf_setup_backstore(stream, params_buffer_bytes(params)); if (ret < 0) goto fail; memset(&buf_cfg, 0, sizeof(buf_cfg)); buf_cfg.xb_dev = front_info->xb_dev; buf_cfg.pgdir = &stream->shbuf; buf_cfg.num_pages = stream->num_pages; buf_cfg.pages = stream->pages; ret = xen_front_pgdir_shbuf_alloc(&buf_cfg); if (ret < 0) goto fail; ret = xen_front_pgdir_shbuf_map(&stream->shbuf); if (ret < 0) goto fail; return 0; fail: stream_free(stream); dev_err(&front_info->xb_dev->dev, "Failed to allocate buffers for stream with index %d\n", stream->index); return ret; } static int alsa_hw_free(struct snd_pcm_substream *substream) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); int ret; ret = xen_snd_front_stream_close(&stream->evt_pair->req); stream_free(stream); return ret; } static int alsa_prepare(struct snd_pcm_substream *substream) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); if (!stream->is_open) { struct snd_pcm_runtime *runtime = substream->runtime; u8 sndif_format; int ret; ret = to_sndif_format(runtime->format); if (ret < 0) { dev_err(&stream->front_info->xb_dev->dev, "Unsupported sample format: %d\n", runtime->format); return ret; } sndif_format = ret; ret = xen_snd_front_stream_prepare(&stream->evt_pair->req, &stream->shbuf, sndif_format, runtime->channels, runtime->rate, snd_pcm_lib_buffer_bytes(substream), snd_pcm_lib_period_bytes(substream)); if (ret < 0) return ret; stream->is_open = true; } return 0; } static int alsa_trigger(struct snd_pcm_substream *substream, int cmd) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); int type; switch (cmd) { case SNDRV_PCM_TRIGGER_START: type = XENSND_OP_TRIGGER_START; break; case SNDRV_PCM_TRIGGER_RESUME: type = XENSND_OP_TRIGGER_RESUME; break; case SNDRV_PCM_TRIGGER_STOP: type = XENSND_OP_TRIGGER_STOP; break; case SNDRV_PCM_TRIGGER_SUSPEND: type = XENSND_OP_TRIGGER_PAUSE; break; default: return -EINVAL; } return xen_snd_front_stream_trigger(&stream->evt_pair->req, type); } void xen_snd_front_alsa_handle_cur_pos(struct xen_snd_front_evtchnl *evtchnl, u64 pos_bytes) { struct snd_pcm_substream *substream = evtchnl->u.evt.substream; struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); snd_pcm_uframes_t delta, new_hw_ptr, cur_frame; cur_frame = bytes_to_frames(substream->runtime, pos_bytes); delta = cur_frame - stream->be_cur_frame; stream->be_cur_frame = cur_frame; new_hw_ptr = (snd_pcm_uframes_t)atomic_read(&stream->hw_ptr); new_hw_ptr = (new_hw_ptr + delta) % substream->runtime->buffer_size; atomic_set(&stream->hw_ptr, (int)new_hw_ptr); stream->out_frames += delta; if (stream->out_frames > substream->runtime->period_size) { stream->out_frames %= substream->runtime->period_size; snd_pcm_period_elapsed(substream); } } static snd_pcm_uframes_t alsa_pointer(struct snd_pcm_substream *substream) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); return (snd_pcm_uframes_t)atomic_read(&stream->hw_ptr); } static int alsa_pb_copy(struct snd_pcm_substream *substream, int channel, unsigned long pos, struct iov_iter *src, unsigned long count) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); if (unlikely(pos + count > stream->buffer_sz)) return -EINVAL; if (copy_from_iter(stream->buffer + pos, count, src) != count) return -EFAULT; return xen_snd_front_stream_write(&stream->evt_pair->req, pos, count); } static int alsa_cap_copy(struct snd_pcm_substream *substream, int channel, unsigned long pos, struct iov_iter *dst, unsigned long count) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); int ret; if (unlikely(pos + count > stream->buffer_sz)) return -EINVAL; ret = xen_snd_front_stream_read(&stream->evt_pair->req, pos, count); if (ret < 0) return ret; if (copy_to_iter(stream->buffer + pos, count, dst) != count) return -EFAULT; return 0; } static int alsa_pb_fill_silence(struct snd_pcm_substream *substream, int channel, unsigned long pos, unsigned long count) { struct xen_snd_front_pcm_stream_info *stream = stream_get(substream); if (unlikely(pos + count > stream->buffer_sz)) return -EINVAL; memset(stream->buffer + pos, 0, count); return xen_snd_front_stream_write(&stream->evt_pair->req, pos, count); } /* * FIXME: The mmaped data transfer is asynchronous and there is no * ack signal from user-space when it is done. This is the * reason it is not implemented in the PV driver as we do need * to know when the buffer can be transferred to the backend. */ static const struct snd_pcm_ops snd_drv_alsa_playback_ops = { .open = alsa_open, .close = alsa_close, .hw_params = alsa_hw_params, .hw_free = alsa_hw_free, .prepare = alsa_prepare, .trigger = alsa_trigger, .pointer = alsa_pointer, .copy = alsa_pb_copy, .fill_silence = alsa_pb_fill_silence, }; static const struct snd_pcm_ops snd_drv_alsa_capture_ops = { .open = alsa_open, .close = alsa_close, .hw_params = alsa_hw_params, .hw_free = alsa_hw_free, .prepare = alsa_prepare, .trigger = alsa_trigger, .pointer = alsa_pointer, .copy = alsa_cap_copy, }; static int new_pcm_instance(struct xen_snd_front_card_info *card_info, struct xen_front_cfg_pcm_instance *instance_cfg, struct xen_snd_front_pcm_instance_info *pcm_instance_info) { struct snd_pcm *pcm; int ret, i; dev_dbg(&card_info->front_info->xb_dev->dev, "New PCM device \"%s\" with id %d playback %d capture %d", instance_cfg->name, instance_cfg->device_id, instance_cfg->num_streams_pb, instance_cfg->num_streams_cap); pcm_instance_info->card_info = card_info; pcm_instance_info->pcm_hw = instance_cfg->pcm_hw; if (instance_cfg->num_streams_pb) { pcm_instance_info->streams_pb = devm_kcalloc(&card_info->card->card_dev, instance_cfg->num_streams_pb, sizeof(struct xen_snd_front_pcm_stream_info), GFP_KERNEL); if (!pcm_instance_info->streams_pb) return -ENOMEM; } if (instance_cfg->num_streams_cap) { pcm_instance_info->streams_cap = devm_kcalloc(&card_info->card->card_dev, instance_cfg->num_streams_cap, sizeof(struct xen_snd_front_pcm_stream_info), GFP_KERNEL); if (!pcm_instance_info->streams_cap) return -ENOMEM; } pcm_instance_info->num_pcm_streams_pb = instance_cfg->num_streams_pb; pcm_instance_info->num_pcm_streams_cap = instance_cfg->num_streams_cap; for (i = 0; i < pcm_instance_info->num_pcm_streams_pb; i++) { pcm_instance_info->streams_pb[i].pcm_hw = instance_cfg->streams_pb[i].pcm_hw; pcm_instance_info->streams_pb[i].index = instance_cfg->streams_pb[i].index; } for (i = 0; i < pcm_instance_info->num_pcm_streams_cap; i++) { pcm_instance_info->streams_cap[i].pcm_hw = instance_cfg->streams_cap[i].pcm_hw; pcm_instance_info->streams_cap[i].index = instance_cfg->streams_cap[i].index; } ret = snd_pcm_new(card_info->card, instance_cfg->name, instance_cfg->device_id, instance_cfg->num_streams_pb, instance_cfg->num_streams_cap, &pcm); if (ret < 0) return ret; pcm->private_data = pcm_instance_info; pcm->info_flags = 0; /* we want to handle all PCM operations in non-atomic context */ pcm->nonatomic = true; strscpy(pcm->name, "Virtual card PCM", sizeof(pcm->name)); if (instance_cfg->num_streams_pb) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_drv_alsa_playback_ops); if (instance_cfg->num_streams_cap) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_drv_alsa_capture_ops); pcm_instance_info->pcm = pcm; return 0; } int xen_snd_front_alsa_init(struct xen_snd_front_info *front_info) { struct device *dev = &front_info->xb_dev->dev; struct xen_front_cfg_card *cfg = &front_info->cfg; struct xen_snd_front_card_info *card_info; struct snd_card *card; int ret, i; dev_dbg(dev, "Creating virtual sound card\n"); ret = snd_card_new(dev, 0, XENSND_DRIVER_NAME, THIS_MODULE, sizeof(struct xen_snd_front_card_info), &card); if (ret < 0) return ret; card_info = card->private_data; card_info->front_info = front_info; front_info->card_info = card_info; card_info->card = card; card_info->pcm_instances = devm_kcalloc(dev, cfg->num_pcm_instances, sizeof(struct xen_snd_front_pcm_instance_info), GFP_KERNEL); if (!card_info->pcm_instances) { ret = -ENOMEM; goto fail; } card_info->num_pcm_instances = cfg->num_pcm_instances; card_info->pcm_hw = cfg->pcm_hw; for (i = 0; i < cfg->num_pcm_instances; i++) { ret = new_pcm_instance(card_info, &cfg->pcm_instances[i], &card_info->pcm_instances[i]); if (ret < 0) goto fail; } strscpy(card->driver, XENSND_DRIVER_NAME, sizeof(card->driver)); strscpy(card->shortname, cfg->name_short, sizeof(card->shortname)); strscpy(card->longname, cfg->name_long, sizeof(card->longname)); ret = snd_card_register(card); if (ret < 0) goto fail; return 0; fail: snd_card_free(card); return ret; } void xen_snd_front_alsa_fini(struct xen_snd_front_info *front_info) { struct xen_snd_front_card_info *card_info; struct snd_card *card; card_info = front_info->card_info; if (!card_info) return; card = card_info->card; if (!card) return; dev_dbg(&front_info->xb_dev->dev, "Removing virtual sound card %d\n", card->number); snd_card_free(card); /* Card_info will be freed when destroying front_info->xb_dev->dev. */ card_info->card = NULL; }
linux-master
sound/xen/xen_snd_front_alsa.c
// SPDX-License-Identifier: GPL-2.0-only /* Hewlett-Packard Harmony audio driver * * This is a driver for the Harmony audio chipset found * on the LASI ASIC of various early HP PA-RISC workstations. * * Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}> * * Based on the previous Harmony incarnations by, * Copyright 2000 (c) Linuxcare Canada, Alex deVries * Copyright 2000-2003 (c) Helge Deller * Copyright 2001 (c) Matthieu Delahaye * Copyright 2001 (c) Jean-Christophe Vaugeois * Copyright 2003 (c) Laurent Canet * Copyright 2004 (c) Stuart Brady * * Notes: * - graveyard and silence buffers last for lifetime of * the driver. playback and capture buffers are allocated * per _open()/_close(). * * TODO: */ #include <linux/init.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/control.h> #include <sound/rawmidi.h> #include <sound/initval.h> #include <sound/info.h> #include <asm/hardware.h> #include <asm/parisc-device.h> #include "harmony.h" static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for Harmony driver."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for Harmony driver."); static const struct parisc_device_id snd_harmony_devtable[] __initconst = { /* bushmaster / flounder */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A }, /* 712 / 715 */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B }, /* pace */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E }, /* outfield / coral II */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F }, { 0, } }; MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable); #define NAME "harmony" #define PFX NAME ": " static const unsigned int snd_harmony_rates[] = { 5512, 6615, 8000, 9600, 11025, 16000, 18900, 22050, 27428, 32000, 33075, 37800, 44100, 48000 }; static const unsigned int rate_bits[14] = { HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ, HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ, HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ, HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ, HARMONY_SR_44KHZ, HARMONY_SR_48KHZ }; static const struct snd_pcm_hw_constraint_list hw_constraint_rates = { .count = ARRAY_SIZE(snd_harmony_rates), .list = snd_harmony_rates, .mask = 0, }; static inline unsigned long harmony_read(struct snd_harmony *h, unsigned r) { return __raw_readl(h->iobase + r); } static inline void harmony_write(struct snd_harmony *h, unsigned r, unsigned long v) { __raw_writel(v, h->iobase + r); } static inline void harmony_wait_for_control(struct snd_harmony *h) { while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ; } static inline void harmony_reset(struct snd_harmony *h) { harmony_write(h, HARMONY_RESET, 1); mdelay(50); harmony_write(h, HARMONY_RESET, 0); } static void harmony_disable_interrupts(struct snd_harmony *h) { u32 dstatus; harmony_wait_for_control(h); dstatus = harmony_read(h, HARMONY_DSTATUS); dstatus &= ~HARMONY_DSTATUS_IE; harmony_write(h, HARMONY_DSTATUS, dstatus); } static void harmony_enable_interrupts(struct snd_harmony *h) { u32 dstatus; harmony_wait_for_control(h); dstatus = harmony_read(h, HARMONY_DSTATUS); dstatus |= HARMONY_DSTATUS_IE; harmony_write(h, HARMONY_DSTATUS, dstatus); } static void harmony_mute(struct snd_harmony *h) { unsigned long flags; spin_lock_irqsave(&h->mixer_lock, flags); harmony_wait_for_control(h); harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE); spin_unlock_irqrestore(&h->mixer_lock, flags); } static void harmony_unmute(struct snd_harmony *h) { unsigned long flags; spin_lock_irqsave(&h->mixer_lock, flags); harmony_wait_for_control(h); harmony_write(h, HARMONY_GAINCTL, h->st.gain); spin_unlock_irqrestore(&h->mixer_lock, flags); } static void harmony_set_control(struct snd_harmony *h) { u32 ctrl; unsigned long flags; spin_lock_irqsave(&h->lock, flags); ctrl = (HARMONY_CNTL_C | (h->st.format << 6) | (h->st.stereo << 5) | (h->st.rate)); harmony_wait_for_control(h); harmony_write(h, HARMONY_CNTL, ctrl); spin_unlock_irqrestore(&h->lock, flags); } static irqreturn_t snd_harmony_interrupt(int irq, void *dev) { u32 dstatus; struct snd_harmony *h = dev; spin_lock(&h->lock); harmony_disable_interrupts(h); harmony_wait_for_control(h); dstatus = harmony_read(h, HARMONY_DSTATUS); spin_unlock(&h->lock); if (dstatus & HARMONY_DSTATUS_PN) { if (h->psubs && h->st.playing) { spin_lock(&h->lock); h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */ h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */ harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr + h->pbuf.buf); h->stats.play_intr++; spin_unlock(&h->lock); snd_pcm_period_elapsed(h->psubs); } else { spin_lock(&h->lock); harmony_write(h, HARMONY_PNXTADD, h->sdma.addr); h->stats.silence_intr++; spin_unlock(&h->lock); } } if (dstatus & HARMONY_DSTATUS_RN) { if (h->csubs && h->st.capturing) { spin_lock(&h->lock); h->cbuf.buf += h->cbuf.count; h->cbuf.buf %= h->cbuf.size; harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr + h->cbuf.buf); h->stats.rec_intr++; spin_unlock(&h->lock); snd_pcm_period_elapsed(h->csubs); } else { spin_lock(&h->lock); harmony_write(h, HARMONY_RNXTADD, h->gdma.addr); h->stats.graveyard_intr++; spin_unlock(&h->lock); } } spin_lock(&h->lock); harmony_enable_interrupts(h); spin_unlock(&h->lock); return IRQ_HANDLED; } static unsigned int snd_harmony_rate_bits(int rate) { unsigned int i; for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++) if (snd_harmony_rates[i] == rate) return rate_bits[i]; return HARMONY_SR_44KHZ; } static const struct snd_pcm_hardware snd_harmony_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BLOCK_TRANSFER), .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW), .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT), .rate_min = 5512, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = MAX_BUF_SIZE, .period_bytes_min = BUF_SIZE, .period_bytes_max = BUF_SIZE, .periods_min = 1, .periods_max = MAX_BUFS, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_harmony_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BLOCK_TRANSFER), .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW), .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT), .rate_min = 5512, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = MAX_BUF_SIZE, .period_bytes_min = BUF_SIZE, .period_bytes_max = BUF_SIZE, .periods_min = 1, .periods_max = MAX_BUFS, .fifo_size = 0, }; static int snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd) { struct snd_harmony *h = snd_pcm_substream_chip(ss); if (h->st.capturing) return -EBUSY; spin_lock(&h->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: h->st.playing = 1; harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr); harmony_write(h, HARMONY_RNXTADD, h->gdma.addr); harmony_unmute(h); harmony_enable_interrupts(h); break; case SNDRV_PCM_TRIGGER_STOP: h->st.playing = 0; harmony_mute(h); harmony_write(h, HARMONY_PNXTADD, h->sdma.addr); harmony_disable_interrupts(h); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_SUSPEND: default: spin_unlock(&h->lock); snd_BUG(); return -EINVAL; } spin_unlock(&h->lock); return 0; } static int snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd) { struct snd_harmony *h = snd_pcm_substream_chip(ss); if (h->st.playing) return -EBUSY; spin_lock(&h->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: h->st.capturing = 1; harmony_write(h, HARMONY_PNXTADD, h->sdma.addr); harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr); harmony_unmute(h); harmony_enable_interrupts(h); break; case SNDRV_PCM_TRIGGER_STOP: h->st.capturing = 0; harmony_mute(h); harmony_write(h, HARMONY_RNXTADD, h->gdma.addr); harmony_disable_interrupts(h); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_SUSPEND: default: spin_unlock(&h->lock); snd_BUG(); return -EINVAL; } spin_unlock(&h->lock); return 0; } static int snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force) { int o = h->st.format; int n; switch(fmt) { case SNDRV_PCM_FORMAT_S16_BE: n = HARMONY_DF_16BIT_LINEAR; break; case SNDRV_PCM_FORMAT_A_LAW: n = HARMONY_DF_8BIT_ALAW; break; case SNDRV_PCM_FORMAT_MU_LAW: n = HARMONY_DF_8BIT_ULAW; break; default: n = HARMONY_DF_16BIT_LINEAR; break; } if (force || o != n) { snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ / (snd_pcm_format_physical_width(fmt) / 8)); } return n; } static int snd_harmony_playback_prepare(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; if (h->st.capturing) return -EBUSY; h->pbuf.size = snd_pcm_lib_buffer_bytes(ss); h->pbuf.count = snd_pcm_lib_period_bytes(ss); if (h->pbuf.buf >= h->pbuf.size) h->pbuf.buf = 0; h->st.playing = 0; h->st.rate = snd_harmony_rate_bits(rt->rate); h->st.format = snd_harmony_set_data_format(h, rt->format, 0); if (rt->channels == 2) h->st.stereo = HARMONY_SS_STEREO; else h->st.stereo = HARMONY_SS_MONO; harmony_set_control(h); h->pbuf.addr = rt->dma_addr; return 0; } static int snd_harmony_capture_prepare(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; if (h->st.playing) return -EBUSY; h->cbuf.size = snd_pcm_lib_buffer_bytes(ss); h->cbuf.count = snd_pcm_lib_period_bytes(ss); if (h->cbuf.buf >= h->cbuf.size) h->cbuf.buf = 0; h->st.capturing = 0; h->st.rate = snd_harmony_rate_bits(rt->rate); h->st.format = snd_harmony_set_data_format(h, rt->format, 0); if (rt->channels == 2) h->st.stereo = HARMONY_SS_STEREO; else h->st.stereo = HARMONY_SS_MONO; harmony_set_control(h); h->cbuf.addr = rt->dma_addr; return 0; } static snd_pcm_uframes_t snd_harmony_playback_pointer(struct snd_pcm_substream *ss) { struct snd_pcm_runtime *rt = ss->runtime; struct snd_harmony *h = snd_pcm_substream_chip(ss); unsigned long pcuradd; unsigned long played; if (!(h->st.playing) || (h->psubs == NULL)) return 0; if ((h->pbuf.addr == 0) || (h->pbuf.size == 0)) return 0; pcuradd = harmony_read(h, HARMONY_PCURADD); played = pcuradd - h->pbuf.addr; #ifdef HARMONY_DEBUG printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n", pcuradd, h->pbuf.addr, played); #endif if (pcuradd > h->pbuf.addr + h->pbuf.size) { return 0; } return bytes_to_frames(rt, played); } static snd_pcm_uframes_t snd_harmony_capture_pointer(struct snd_pcm_substream *ss) { struct snd_pcm_runtime *rt = ss->runtime; struct snd_harmony *h = snd_pcm_substream_chip(ss); unsigned long rcuradd; unsigned long caught; if (!(h->st.capturing) || (h->csubs == NULL)) return 0; if ((h->cbuf.addr == 0) || (h->cbuf.size == 0)) return 0; rcuradd = harmony_read(h, HARMONY_RCURADD); caught = rcuradd - h->cbuf.addr; #ifdef HARMONY_DEBUG printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n", rcuradd, h->cbuf.addr, caught); #endif if (rcuradd > h->cbuf.addr + h->cbuf.size) { return 0; } return bytes_to_frames(rt, caught); } static int snd_harmony_playback_open(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; int err; h->psubs = ss; rt->hw = snd_harmony_playback; snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraint_rates); err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_harmony_capture_open(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; int err; h->csubs = ss; rt->hw = snd_harmony_capture; snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraint_rates); err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_harmony_playback_close(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); h->psubs = NULL; return 0; } static int snd_harmony_capture_close(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); h->csubs = NULL; return 0; } static const struct snd_pcm_ops snd_harmony_playback_ops = { .open = snd_harmony_playback_open, .close = snd_harmony_playback_close, .prepare = snd_harmony_playback_prepare, .trigger = snd_harmony_playback_trigger, .pointer = snd_harmony_playback_pointer, }; static const struct snd_pcm_ops snd_harmony_capture_ops = { .open = snd_harmony_capture_open, .close = snd_harmony_capture_close, .prepare = snd_harmony_capture_prepare, .trigger = snd_harmony_capture_trigger, .pointer = snd_harmony_capture_pointer, }; static int snd_harmony_pcm_init(struct snd_harmony *h) { struct snd_pcm *pcm; int err; if (snd_BUG_ON(!h)) return -EINVAL; harmony_disable_interrupts(h); err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_harmony_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_harmony_capture_ops); pcm->private_data = h; pcm->info_flags = 0; strcpy(pcm->name, "harmony"); h->pcm = pcm; h->psubs = NULL; h->csubs = NULL; /* initialize graveyard buffer */ h->dma.type = SNDRV_DMA_TYPE_DEV; h->dma.dev = &h->dev->dev; err = snd_dma_alloc_pages(h->dma.type, h->dma.dev, BUF_SIZE*GRAVEYARD_BUFS, &h->gdma); if (err < 0) { printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n"); return err; } /* initialize silence buffers */ err = snd_dma_alloc_pages(h->dma.type, h->dma.dev, BUF_SIZE*SILENCE_BUFS, &h->sdma); if (err < 0) { printk(KERN_ERR PFX "cannot allocate silence buffer!\n"); return err; } /* pre-allocate space for DMA */ snd_pcm_set_managed_buffer_all(pcm, h->dma.type, h->dma.dev, MAX_BUF_SIZE, MAX_BUF_SIZE); h->st.format = snd_harmony_set_data_format(h, SNDRV_PCM_FORMAT_S16_BE, 1); return 0; } static void snd_harmony_set_new_gain(struct snd_harmony *h) { harmony_wait_for_control(h); harmony_write(h, HARMONY_GAINCTL, h->st.gain); } static int snd_harmony_mixercontrol_info(struct snd_kcontrol *kc, struct snd_ctl_elem_info *uinfo) { int mask = (kc->private_value >> 16) & 0xff; int left_shift = (kc->private_value) & 0xff; int right_shift = (kc->private_value >> 8) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = left_shift == right_shift ? 1 : 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_harmony_volume_get(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int shift_left = (kc->private_value) & 0xff; int shift_right = (kc->private_value >> 8) & 0xff; int mask = (kc->private_value >> 16) & 0xff; int invert = (kc->private_value >> 24) & 0xff; int left, right; spin_lock_irq(&h->mixer_lock); left = (h->st.gain >> shift_left) & mask; right = (h->st.gain >> shift_right) & mask; if (invert) { left = mask - left; right = mask - right; } ucontrol->value.integer.value[0] = left; if (shift_left != shift_right) ucontrol->value.integer.value[1] = right; spin_unlock_irq(&h->mixer_lock); return 0; } static int snd_harmony_volume_put(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int shift_left = (kc->private_value) & 0xff; int shift_right = (kc->private_value >> 8) & 0xff; int mask = (kc->private_value >> 16) & 0xff; int invert = (kc->private_value >> 24) & 0xff; int left, right; int old_gain = h->st.gain; spin_lock_irq(&h->mixer_lock); left = ucontrol->value.integer.value[0] & mask; if (invert) left = mask - left; h->st.gain &= ~( (mask << shift_left ) ); h->st.gain |= (left << shift_left); if (shift_left != shift_right) { right = ucontrol->value.integer.value[1] & mask; if (invert) right = mask - right; h->st.gain &= ~( (mask << shift_right) ); h->st.gain |= (right << shift_right); } snd_harmony_set_new_gain(h); spin_unlock_irq(&h->mixer_lock); return h->st.gain != old_gain; } static int snd_harmony_captureroute_info(struct snd_kcontrol *kc, struct snd_ctl_elem_info *uinfo) { static const char * const texts[2] = { "Line", "Mic" }; return snd_ctl_enum_info(uinfo, 1, 2, texts); } static int snd_harmony_captureroute_get(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int value; spin_lock_irq(&h->mixer_lock); value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1; ucontrol->value.enumerated.item[0] = value; spin_unlock_irq(&h->mixer_lock); return 0; } static int snd_harmony_captureroute_put(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int value; int old_gain = h->st.gain; spin_lock_irq(&h->mixer_lock); value = ucontrol->value.enumerated.item[0] & 1; h->st.gain &= ~HARMONY_GAIN_IS_MASK; h->st.gain |= value << HARMONY_GAIN_IS_SHIFT; snd_harmony_set_new_gain(h); spin_unlock_irq(&h->mixer_lock); return h->st.gain != old_gain; } #define HARMONY_CONTROLS ARRAY_SIZE(snd_harmony_controls) #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_harmony_mixercontrol_info, \ .get = snd_harmony_volume_get, .put = snd_harmony_volume_put, \ .private_value = ((left_shift) | ((right_shift) << 8) | \ ((mask) << 16) | ((invert) << 24)) } static const struct snd_kcontrol_new snd_harmony_controls[] = { HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT, HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1), HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT, HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0), HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Route", .info = snd_harmony_captureroute_info, .get = snd_harmony_captureroute_get, .put = snd_harmony_captureroute_put }, HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT, HARMONY_GAIN_SE_SHIFT, 1, 0), HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT, HARMONY_GAIN_LE_SHIFT, 1, 0), HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT, HARMONY_GAIN_HE_SHIFT, 1, 0), }; static void snd_harmony_mixer_reset(struct snd_harmony *h) { harmony_mute(h); harmony_reset(h); h->st.gain = HARMONY_GAIN_DEFAULT; harmony_unmute(h); } static int snd_harmony_mixer_init(struct snd_harmony *h) { struct snd_card *card; int idx, err; if (snd_BUG_ON(!h)) return -EINVAL; card = h->card; strcpy(card->mixername, "Harmony Gain control interface"); for (idx = 0; idx < HARMONY_CONTROLS; idx++) { err = snd_ctl_add(card, snd_ctl_new1(&snd_harmony_controls[idx], h)); if (err < 0) return err; } snd_harmony_mixer_reset(h); return 0; } static int snd_harmony_free(struct snd_harmony *h) { if (h->gdma.addr) snd_dma_free_pages(&h->gdma); if (h->sdma.addr) snd_dma_free_pages(&h->sdma); if (h->irq >= 0) free_irq(h->irq, h); iounmap(h->iobase); kfree(h); return 0; } static int snd_harmony_dev_free(struct snd_device *dev) { struct snd_harmony *h = dev->device_data; return snd_harmony_free(h); } static int snd_harmony_create(struct snd_card *card, struct parisc_device *padev, struct snd_harmony **rchip) { int err; struct snd_harmony *h; static const struct snd_device_ops ops = { .dev_free = snd_harmony_dev_free, }; *rchip = NULL; h = kzalloc(sizeof(*h), GFP_KERNEL); if (h == NULL) return -ENOMEM; h->hpa = padev->hpa.start; h->card = card; h->dev = padev; h->irq = -1; h->iobase = ioremap(padev->hpa.start, HARMONY_SIZE); if (h->iobase == NULL) { printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n", (unsigned long)padev->hpa.start); err = -EBUSY; goto free_and_ret; } err = request_irq(padev->irq, snd_harmony_interrupt, 0, "harmony", h); if (err) { printk(KERN_ERR PFX "could not obtain interrupt %d", padev->irq); goto free_and_ret; } h->irq = padev->irq; spin_lock_init(&h->mixer_lock); spin_lock_init(&h->lock); err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, h, &ops); if (err < 0) goto free_and_ret; *rchip = h; return 0; free_and_ret: snd_harmony_free(h); return err; } static int __init snd_harmony_probe(struct parisc_device *padev) { int err; struct snd_card *card; struct snd_harmony *h; err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card); if (err < 0) return err; err = snd_harmony_create(card, padev, &h); if (err < 0) goto free_and_ret; err = snd_harmony_pcm_init(h); if (err < 0) goto free_and_ret; err = snd_harmony_mixer_init(h); if (err < 0) goto free_and_ret; strcpy(card->driver, "harmony"); strcpy(card->shortname, "Harmony"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, h->hpa, h->irq); err = snd_card_register(card); if (err < 0) goto free_and_ret; parisc_set_drvdata(padev, card); return 0; free_and_ret: snd_card_free(card); return err; } static void __exit snd_harmony_remove(struct parisc_device *padev) { snd_card_free(parisc_get_drvdata(padev)); } static struct parisc_driver snd_harmony_driver __refdata = { .name = "harmony", .id_table = snd_harmony_devtable, .probe = snd_harmony_probe, .remove = __exit_p(snd_harmony_remove), }; static int __init alsa_harmony_init(void) { return register_parisc_driver(&snd_harmony_driver); } static void __exit alsa_harmony_fini(void) { unregister_parisc_driver(&snd_harmony_driver); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyle McMartin <[email protected]>"); MODULE_DESCRIPTION("Harmony sound driver"); module_init(alsa_harmony_init); module_exit(alsa_harmony_fini);
linux-master
sound/parisc/harmony.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * bt87x.c - Brooktree Bt878/Bt879 driver for ALSA * * Copyright (c) Clemens Ladisch <[email protected]> * * based on btaudio.c by Gerd Knorr <[email protected]> */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/io.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/control.h> #include <sound/initval.h> MODULE_AUTHOR("Clemens Ladisch <[email protected]>"); MODULE_DESCRIPTION("Brooktree Bt87x audio driver"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -2}; /* Exclude the first card */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ static int digital_rate[SNDRV_CARDS]; /* digital input rate */ static bool load_all; /* allow to load cards not the allowlist */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Bt87x soundcard"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Bt87x soundcard"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Bt87x soundcard"); module_param_array(digital_rate, int, NULL, 0444); MODULE_PARM_DESC(digital_rate, "Digital input rate for Bt87x soundcard"); module_param(load_all, bool, 0444); MODULE_PARM_DESC(load_all, "Allow to load cards not on the allowlist"); /* register offsets */ #define REG_INT_STAT 0x100 /* interrupt status */ #define REG_INT_MASK 0x104 /* interrupt mask */ #define REG_GPIO_DMA_CTL 0x10c /* audio control */ #define REG_PACKET_LEN 0x110 /* audio packet lengths */ #define REG_RISC_STRT_ADD 0x114 /* RISC program start address */ #define REG_RISC_COUNT 0x120 /* RISC program counter */ /* interrupt bits */ #define INT_OFLOW (1 << 3) /* audio A/D overflow */ #define INT_RISCI (1 << 11) /* RISC instruction IRQ bit set */ #define INT_FBUS (1 << 12) /* FIFO overrun due to bus access latency */ #define INT_FTRGT (1 << 13) /* FIFO overrun due to target latency */ #define INT_FDSR (1 << 14) /* FIFO data stream resynchronization */ #define INT_PPERR (1 << 15) /* PCI parity error */ #define INT_RIPERR (1 << 16) /* RISC instruction parity error */ #define INT_PABORT (1 << 17) /* PCI master or target abort */ #define INT_OCERR (1 << 18) /* invalid opcode */ #define INT_SCERR (1 << 19) /* sync counter overflow */ #define INT_RISC_EN (1 << 27) /* DMA controller running */ #define INT_RISCS_SHIFT 28 /* RISC status bits */ /* audio control bits */ #define CTL_FIFO_ENABLE (1 << 0) /* enable audio data FIFO */ #define CTL_RISC_ENABLE (1 << 1) /* enable audio DMA controller */ #define CTL_PKTP_4 (0 << 2) /* packet mode FIFO trigger point - 4 DWORDs */ #define CTL_PKTP_8 (1 << 2) /* 8 DWORDs */ #define CTL_PKTP_16 (2 << 2) /* 16 DWORDs */ #define CTL_ACAP_EN (1 << 4) /* enable audio capture */ #define CTL_DA_APP (1 << 5) /* GPIO input */ #define CTL_DA_IOM_AFE (0 << 6) /* audio A/D input */ #define CTL_DA_IOM_DA (1 << 6) /* digital audio input */ #define CTL_DA_SDR_SHIFT 8 /* DDF first stage decimation rate */ #define CTL_DA_SDR_MASK (0xf<< 8) #define CTL_DA_LMT (1 << 12) /* limit audio data values */ #define CTL_DA_ES2 (1 << 13) /* enable DDF stage 2 */ #define CTL_DA_SBR (1 << 14) /* samples rounded to 8 bits */ #define CTL_DA_DPM (1 << 15) /* data packet mode */ #define CTL_DA_LRD_SHIFT 16 /* ALRCK delay */ #define CTL_DA_MLB (1 << 21) /* MSB/LSB format */ #define CTL_DA_LRI (1 << 22) /* left/right indication */ #define CTL_DA_SCE (1 << 23) /* sample clock edge */ #define CTL_A_SEL_STV (0 << 24) /* TV tuner audio input */ #define CTL_A_SEL_SFM (1 << 24) /* FM audio input */ #define CTL_A_SEL_SML (2 << 24) /* mic/line audio input */ #define CTL_A_SEL_SMXC (3 << 24) /* MUX bypass */ #define CTL_A_SEL_SHIFT 24 #define CTL_A_SEL_MASK (3 << 24) #define CTL_A_PWRDN (1 << 26) /* analog audio power-down */ #define CTL_A_G2X (1 << 27) /* audio gain boost */ #define CTL_A_GAIN_SHIFT 28 /* audio input gain */ #define CTL_A_GAIN_MASK (0xf<<28) /* RISC instruction opcodes */ #define RISC_WRITE (0x1 << 28) /* write FIFO data to memory at address */ #define RISC_WRITEC (0x5 << 28) /* write FIFO data to memory at current address */ #define RISC_SKIP (0x2 << 28) /* skip FIFO data */ #define RISC_JUMP (0x7 << 28) /* jump to address */ #define RISC_SYNC (0x8 << 28) /* synchronize with FIFO */ /* RISC instruction bits */ #define RISC_BYTES_ENABLE (0xf << 12) /* byte enable bits */ #define RISC_RESYNC ( 1 << 15) /* disable FDSR errors */ #define RISC_SET_STATUS_SHIFT 16 /* set status bits */ #define RISC_RESET_STATUS_SHIFT 20 /* clear status bits */ #define RISC_IRQ ( 1 << 24) /* interrupt */ #define RISC_EOL ( 1 << 26) /* end of line */ #define RISC_SOL ( 1 << 27) /* start of line */ /* SYNC status bits values */ #define RISC_SYNC_FM1 0x6 #define RISC_SYNC_VRO 0xc #define ANALOG_CLOCK 1792000 #ifdef CONFIG_SND_BT87X_OVERCLOCK #define CLOCK_DIV_MIN 1 #else #define CLOCK_DIV_MIN 4 #endif #define CLOCK_DIV_MAX 15 #define ERROR_INTERRUPTS (INT_FBUS | INT_FTRGT | INT_PPERR | \ INT_RIPERR | INT_PABORT | INT_OCERR) #define MY_INTERRUPTS (INT_RISCI | ERROR_INTERRUPTS) /* SYNC, one WRITE per line, one extra WRITE per page boundary, SYNC, JUMP */ #define MAX_RISC_SIZE ((1 + 255 + (PAGE_ALIGN(255 * 4092) / PAGE_SIZE - 1) + 1 + 1) * 8) /* Cards with configuration information */ enum snd_bt87x_boardid { SND_BT87X_BOARD_UNKNOWN, SND_BT87X_BOARD_GENERIC, /* both an & dig interfaces, 32kHz */ SND_BT87X_BOARD_ANALOG, /* board with no external A/D */ SND_BT87X_BOARD_OSPREY2x0, SND_BT87X_BOARD_OSPREY440, SND_BT87X_BOARD_AVPHONE98, }; /* Card configuration */ struct snd_bt87x_board { int dig_rate; /* Digital input sampling rate */ u32 digital_fmt; /* Register settings for digital input */ unsigned no_analog:1; /* No analog input */ unsigned no_digital:1; /* No digital input */ }; static const struct snd_bt87x_board snd_bt87x_boards[] = { [SND_BT87X_BOARD_UNKNOWN] = { .dig_rate = 32000, /* just a guess */ }, [SND_BT87X_BOARD_GENERIC] = { .dig_rate = 32000, }, [SND_BT87X_BOARD_ANALOG] = { .no_digital = 1, }, [SND_BT87X_BOARD_OSPREY2x0] = { .dig_rate = 44100, .digital_fmt = CTL_DA_LRI | (1 << CTL_DA_LRD_SHIFT), }, [SND_BT87X_BOARD_OSPREY440] = { .dig_rate = 32000, .digital_fmt = CTL_DA_LRI | (1 << CTL_DA_LRD_SHIFT), .no_analog = 1, }, [SND_BT87X_BOARD_AVPHONE98] = { .dig_rate = 48000, }, }; struct snd_bt87x { struct snd_card *card; struct pci_dev *pci; struct snd_bt87x_board board; void __iomem *mmio; int irq; spinlock_t reg_lock; unsigned long opened; struct snd_pcm_substream *substream; struct snd_dma_buffer dma_risc; unsigned int line_bytes; unsigned int lines; u32 reg_control; u32 interrupt_mask; int current_line; int pci_parity_errors; }; enum { DEVICE_DIGITAL, DEVICE_ANALOG }; static inline u32 snd_bt87x_readl(struct snd_bt87x *chip, u32 reg) { return readl(chip->mmio + reg); } static inline void snd_bt87x_writel(struct snd_bt87x *chip, u32 reg, u32 value) { writel(value, chip->mmio + reg); } static int snd_bt87x_create_risc(struct snd_bt87x *chip, struct snd_pcm_substream *substream, unsigned int periods, unsigned int period_bytes) { unsigned int i, offset; __le32 *risc; if (chip->dma_risc.area == NULL) { if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, PAGE_ALIGN(MAX_RISC_SIZE), &chip->dma_risc) < 0) return -ENOMEM; } risc = (__le32 *)chip->dma_risc.area; offset = 0; *risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_FM1); *risc++ = cpu_to_le32(0); for (i = 0; i < periods; ++i) { u32 rest; rest = period_bytes; do { u32 cmd, len; unsigned int addr; len = PAGE_SIZE - (offset % PAGE_SIZE); if (len > rest) len = rest; cmd = RISC_WRITE | len; if (rest == period_bytes) { u32 block = i * 16 / periods; cmd |= RISC_SOL; cmd |= block << RISC_SET_STATUS_SHIFT; cmd |= (~block & 0xf) << RISC_RESET_STATUS_SHIFT; } if (len == rest) cmd |= RISC_EOL | RISC_IRQ; *risc++ = cpu_to_le32(cmd); addr = snd_pcm_sgbuf_get_addr(substream, offset); *risc++ = cpu_to_le32(addr); offset += len; rest -= len; } while (rest > 0); } *risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_VRO); *risc++ = cpu_to_le32(0); *risc++ = cpu_to_le32(RISC_JUMP); *risc++ = cpu_to_le32(chip->dma_risc.addr); chip->line_bytes = period_bytes; chip->lines = periods; return 0; } static void snd_bt87x_free_risc(struct snd_bt87x *chip) { if (chip->dma_risc.area) { snd_dma_free_pages(&chip->dma_risc); chip->dma_risc.area = NULL; } } static void snd_bt87x_pci_error(struct snd_bt87x *chip, unsigned int status) { int pci_status = pci_status_get_and_clear_errors(chip->pci); if (pci_status != PCI_STATUS_DETECTED_PARITY) dev_err(chip->card->dev, "Aieee - PCI error! status %#08x, PCI status %#04x\n", status & ERROR_INTERRUPTS, pci_status); else { dev_err(chip->card->dev, "Aieee - PCI parity error detected!\n"); /* error 'handling' similar to aic7xxx_pci.c: */ chip->pci_parity_errors++; if (chip->pci_parity_errors > 20) { dev_err(chip->card->dev, "Too many PCI parity errors observed.\n"); dev_err(chip->card->dev, "Some device on this bus is generating bad parity.\n"); dev_err(chip->card->dev, "This is an error *observed by*, not *generated by*, this card.\n"); dev_err(chip->card->dev, "PCI parity error checking has been disabled.\n"); chip->interrupt_mask &= ~(INT_PPERR | INT_RIPERR); snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask); } } } static irqreturn_t snd_bt87x_interrupt(int irq, void *dev_id) { struct snd_bt87x *chip = dev_id; unsigned int status, irq_status; status = snd_bt87x_readl(chip, REG_INT_STAT); irq_status = status & chip->interrupt_mask; if (!irq_status) return IRQ_NONE; snd_bt87x_writel(chip, REG_INT_STAT, irq_status); if (irq_status & ERROR_INTERRUPTS) { if (irq_status & (INT_FBUS | INT_FTRGT)) dev_warn(chip->card->dev, "FIFO overrun, status %#08x\n", status); if (irq_status & INT_OCERR) dev_err(chip->card->dev, "internal RISC error, status %#08x\n", status); if (irq_status & (INT_PPERR | INT_RIPERR | INT_PABORT)) snd_bt87x_pci_error(chip, irq_status); } if ((irq_status & INT_RISCI) && (chip->reg_control & CTL_ACAP_EN)) { int current_block, irq_block; /* assume that exactly one line has been recorded */ chip->current_line = (chip->current_line + 1) % chip->lines; /* but check if some interrupts have been skipped */ current_block = chip->current_line * 16 / chip->lines; irq_block = status >> INT_RISCS_SHIFT; if (current_block != irq_block) chip->current_line = DIV_ROUND_UP(irq_block * chip->lines, 16); snd_pcm_period_elapsed(chip->substream); } return IRQ_HANDLED; } static const struct snd_pcm_hardware snd_bt87x_digital_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH, .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = 0, /* set at runtime */ .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 255 * 4092, .period_bytes_min = 32, .period_bytes_max = 4092, .periods_min = 2, .periods_max = 255, }; static const struct snd_pcm_hardware snd_bt87x_analog_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8, .rates = SNDRV_PCM_RATE_KNOT, .rate_min = ANALOG_CLOCK / CLOCK_DIV_MAX, .rate_max = ANALOG_CLOCK / CLOCK_DIV_MIN, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = 255 * 4092, .period_bytes_min = 32, .period_bytes_max = 4092, .periods_min = 2, .periods_max = 255, }; static int snd_bt87x_set_digital_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime) { chip->reg_control |= CTL_DA_IOM_DA | CTL_A_PWRDN; runtime->hw = snd_bt87x_digital_hw; runtime->hw.rates = snd_pcm_rate_to_rate_bit(chip->board.dig_rate); runtime->hw.rate_min = chip->board.dig_rate; runtime->hw.rate_max = chip->board.dig_rate; return 0; } static int snd_bt87x_set_analog_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime) { static const struct snd_ratnum analog_clock = { .num = ANALOG_CLOCK, .den_min = CLOCK_DIV_MIN, .den_max = CLOCK_DIV_MAX, .den_step = 1 }; static const struct snd_pcm_hw_constraint_ratnums constraint_rates = { .nrats = 1, .rats = &analog_clock }; chip->reg_control &= ~(CTL_DA_IOM_DA | CTL_A_PWRDN); runtime->hw = snd_bt87x_analog_hw; return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraint_rates); } static int snd_bt87x_pcm_open(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if (test_and_set_bit(0, &chip->opened)) return -EBUSY; if (substream->pcm->device == DEVICE_DIGITAL) err = snd_bt87x_set_digital_hw(chip, runtime); else err = snd_bt87x_set_analog_hw(chip, runtime); if (err < 0) goto _error; err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) goto _error; chip->substream = substream; return 0; _error: clear_bit(0, &chip->opened); smp_mb__after_atomic(); return err; } static int snd_bt87x_close(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); chip->reg_control |= CTL_A_PWRDN; snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); spin_unlock_irq(&chip->reg_lock); chip->substream = NULL; clear_bit(0, &chip->opened); smp_mb__after_atomic(); return 0; } static int snd_bt87x_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); return snd_bt87x_create_risc(chip, substream, params_periods(hw_params), params_period_bytes(hw_params)); } static int snd_bt87x_hw_free(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); snd_bt87x_free_risc(chip); return 0; } static int snd_bt87x_prepare(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int decimation; spin_lock_irq(&chip->reg_lock); chip->reg_control &= ~(CTL_DA_SDR_MASK | CTL_DA_SBR); decimation = (ANALOG_CLOCK + runtime->rate / 4) / runtime->rate; chip->reg_control |= decimation << CTL_DA_SDR_SHIFT; if (runtime->format == SNDRV_PCM_FORMAT_S8) chip->reg_control |= CTL_DA_SBR; snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_bt87x_start(struct snd_bt87x *chip) { spin_lock(&chip->reg_lock); chip->current_line = 0; chip->reg_control |= CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN; snd_bt87x_writel(chip, REG_RISC_STRT_ADD, chip->dma_risc.addr); snd_bt87x_writel(chip, REG_PACKET_LEN, chip->line_bytes | (chip->lines << 16)); snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); spin_unlock(&chip->reg_lock); return 0; } static int snd_bt87x_stop(struct snd_bt87x *chip) { spin_lock(&chip->reg_lock); chip->reg_control &= ~(CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); snd_bt87x_writel(chip, REG_INT_MASK, 0); snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS); spin_unlock(&chip->reg_lock); return 0; } static int snd_bt87x_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: return snd_bt87x_start(chip); case SNDRV_PCM_TRIGGER_STOP: return snd_bt87x_stop(chip); default: return -EINVAL; } } static snd_pcm_uframes_t snd_bt87x_pointer(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; return (snd_pcm_uframes_t)bytes_to_frames(runtime, chip->current_line * chip->line_bytes); } static const struct snd_pcm_ops snd_bt87x_pcm_ops = { .open = snd_bt87x_pcm_open, .close = snd_bt87x_close, .hw_params = snd_bt87x_hw_params, .hw_free = snd_bt87x_hw_free, .prepare = snd_bt87x_prepare, .trigger = snd_bt87x_trigger, .pointer = snd_bt87x_pointer, }; static int snd_bt87x_capture_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 1; info->value.integer.min = 0; info->value.integer.max = 15; return 0; } static int snd_bt87x_capture_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); value->value.integer.value[0] = (chip->reg_control & CTL_A_GAIN_MASK) >> CTL_A_GAIN_SHIFT; return 0; } static int snd_bt87x_capture_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); u32 old_control; int changed; spin_lock_irq(&chip->reg_lock); old_control = chip->reg_control; chip->reg_control = (chip->reg_control & ~CTL_A_GAIN_MASK) | (value->value.integer.value[0] << CTL_A_GAIN_SHIFT); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); changed = old_control != chip->reg_control; spin_unlock_irq(&chip->reg_lock); return changed; } static const struct snd_kcontrol_new snd_bt87x_capture_volume = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Volume", .info = snd_bt87x_capture_volume_info, .get = snd_bt87x_capture_volume_get, .put = snd_bt87x_capture_volume_put, }; #define snd_bt87x_capture_boost_info snd_ctl_boolean_mono_info static int snd_bt87x_capture_boost_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); value->value.integer.value[0] = !! (chip->reg_control & CTL_A_G2X); return 0; } static int snd_bt87x_capture_boost_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); u32 old_control; int changed; spin_lock_irq(&chip->reg_lock); old_control = chip->reg_control; chip->reg_control = (chip->reg_control & ~CTL_A_G2X) | (value->value.integer.value[0] ? CTL_A_G2X : 0); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); changed = chip->reg_control != old_control; spin_unlock_irq(&chip->reg_lock); return changed; } static const struct snd_kcontrol_new snd_bt87x_capture_boost = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Boost", .info = snd_bt87x_capture_boost_info, .get = snd_bt87x_capture_boost_get, .put = snd_bt87x_capture_boost_put, }; static int snd_bt87x_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { static const char *const texts[3] = {"TV Tuner", "FM", "Mic/Line"}; return snd_ctl_enum_info(info, 1, 3, texts); } static int snd_bt87x_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); value->value.enumerated.item[0] = (chip->reg_control & CTL_A_SEL_MASK) >> CTL_A_SEL_SHIFT; return 0; } static int snd_bt87x_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); u32 old_control; int changed; spin_lock_irq(&chip->reg_lock); old_control = chip->reg_control; chip->reg_control = (chip->reg_control & ~CTL_A_SEL_MASK) | (value->value.enumerated.item[0] << CTL_A_SEL_SHIFT); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); changed = chip->reg_control != old_control; spin_unlock_irq(&chip->reg_lock); return changed; } static const struct snd_kcontrol_new snd_bt87x_capture_source = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Source", .info = snd_bt87x_capture_source_info, .get = snd_bt87x_capture_source_get, .put = snd_bt87x_capture_source_put, }; static void snd_bt87x_free(struct snd_card *card) { struct snd_bt87x *chip = card->private_data; snd_bt87x_stop(chip); } static int snd_bt87x_pcm(struct snd_bt87x *chip, int device, char *name) { int err; struct snd_pcm *pcm; err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm); if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, name); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_bt87x_pcm_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_SG, &chip->pci->dev, 128 * 1024, ALIGN(255 * 4092, 1024)); return 0; } static int snd_bt87x_create(struct snd_card *card, struct pci_dev *pci) { struct snd_bt87x *chip = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; chip->card = card; chip->pci = pci; chip->irq = -1; spin_lock_init(&chip->reg_lock); err = pcim_iomap_regions(pci, 1 << 0, "Bt87x audio"); if (err < 0) return err; chip->mmio = pcim_iomap_table(pci)[0]; chip->reg_control = CTL_A_PWRDN | CTL_DA_ES2 | CTL_PKTP_16 | (15 << CTL_DA_SDR_SHIFT); chip->interrupt_mask = MY_INTERRUPTS; snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); snd_bt87x_writel(chip, REG_INT_MASK, 0); snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS); err = devm_request_irq(&pci->dev, pci->irq, snd_bt87x_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip); if (err < 0) { dev_err(card->dev, "cannot grab irq %d\n", pci->irq); return err; } chip->irq = pci->irq; card->sync_irq = chip->irq; card->private_free = snd_bt87x_free; pci_set_master(pci); return 0; } #define BT_DEVICE(chip, subvend, subdev, id) \ { .vendor = PCI_VENDOR_ID_BROOKTREE, \ .device = chip, \ .subvendor = subvend, .subdevice = subdev, \ .driver_data = SND_BT87X_BOARD_ ## id } /* driver_data is the card id for that device */ static const struct pci_device_id snd_bt87x_ids[] = { /* Hauppauge WinTV series */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0x13eb, GENERIC), /* Hauppauge WinTV series */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, 0x0070, 0x13eb, GENERIC), /* Viewcast Osprey 200 */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff01, OSPREY2x0), /* Viewcast Osprey 440 (rate is configurable via gpio) */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff07, OSPREY440), /* ATI TV-Wonder */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1002, 0x0001, GENERIC), /* Leadtek Winfast tv 2000xp delux */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x107d, 0x6606, GENERIC), /* Pinnacle PCTV */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x11bd, 0x0012, GENERIC), /* Voodoo TV 200 */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x121a, 0x3000, GENERIC), /* Askey Computer Corp. MagicTView'99 */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x144f, 0x3000, GENERIC), /* AVerMedia Studio No. 103, 203, ...? */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1461, 0x0003, AVPHONE98), /* Prolink PixelView PV-M4900 */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1554, 0x4011, GENERIC), /* Pinnacle Studio PCTV rave */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0xbd11, 0x1200, GENERIC), { } }; MODULE_DEVICE_TABLE(pci, snd_bt87x_ids); /* cards known not to have audio * (DVB cards use the audio function to transfer MPEG data) */ static struct { unsigned short subvendor, subdevice; } denylist[] = { {0x0071, 0x0101}, /* Nebula Electronics DigiTV */ {0x11bd, 0x001c}, /* Pinnacle PCTV Sat */ {0x11bd, 0x0026}, /* Pinnacle PCTV SAT CI */ {0x1461, 0x0761}, /* AVermedia AverTV DVB-T */ {0x1461, 0x0771}, /* AVermedia DVB-T 771 */ {0x1822, 0x0001}, /* Twinhan VisionPlus DVB-T */ {0x18ac, 0xd500}, /* DVICO FusionHDTV 5 Lite */ {0x18ac, 0xdb10}, /* DVICO FusionHDTV DVB-T Lite */ {0x18ac, 0xdb11}, /* Ultraview DVB-T Lite */ {0x270f, 0xfc00}, /* Chaintech Digitop DST-1000 DVB-S */ {0x7063, 0x2000}, /* pcHDTV HD-2000 TV */ }; static struct pci_driver driver; /* return the id of the card, or a negative value if it's on the denylist */ static int snd_bt87x_detect_card(struct pci_dev *pci) { int i; const struct pci_device_id *supported; supported = pci_match_id(snd_bt87x_ids, pci); if (supported && supported->driver_data > 0) return supported->driver_data; for (i = 0; i < ARRAY_SIZE(denylist); ++i) if (denylist[i].subvendor == pci->subsystem_vendor && denylist[i].subdevice == pci->subsystem_device) { dev_dbg(&pci->dev, "card %#04x-%#04x:%#04x has no audio\n", pci->device, pci->subsystem_vendor, pci->subsystem_device); return -EBUSY; } dev_info(&pci->dev, "unknown card %#04x-%#04x:%#04x\n", pci->device, pci->subsystem_vendor, pci->subsystem_device); dev_info(&pci->dev, "please mail id, board name, and, " "if it works, the correct digital_rate option to " "<[email protected]>\n"); return SND_BT87X_BOARD_UNKNOWN; } static int __snd_bt87x_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct snd_bt87x *chip; int err; enum snd_bt87x_boardid boardid; if (!pci_id->driver_data) { err = snd_bt87x_detect_card(pci); if (err < 0) return -ENODEV; boardid = err; } else boardid = pci_id->driver_data; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { ++dev; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; err = snd_bt87x_create(card, pci); if (err < 0) return err; memcpy(&chip->board, &snd_bt87x_boards[boardid], sizeof(chip->board)); if (!chip->board.no_digital) { if (digital_rate[dev] > 0) chip->board.dig_rate = digital_rate[dev]; chip->reg_control |= chip->board.digital_fmt; err = snd_bt87x_pcm(chip, DEVICE_DIGITAL, "Bt87x Digital"); if (err < 0) return err; } if (!chip->board.no_analog) { err = snd_bt87x_pcm(chip, DEVICE_ANALOG, "Bt87x Analog"); if (err < 0) return err; err = snd_ctl_add(card, snd_ctl_new1( &snd_bt87x_capture_volume, chip)); if (err < 0) return err; err = snd_ctl_add(card, snd_ctl_new1( &snd_bt87x_capture_boost, chip)); if (err < 0) return err; err = snd_ctl_add(card, snd_ctl_new1( &snd_bt87x_capture_source, chip)); if (err < 0) return err; } dev_info(card->dev, "bt87x%d: Using board %d, %sanalog, %sdigital " "(rate %d Hz)\n", dev, boardid, chip->board.no_analog ? "no " : "", chip->board.no_digital ? "no " : "", chip->board.dig_rate); strcpy(card->driver, "Bt87x"); sprintf(card->shortname, "Brooktree Bt%x", pci->device); sprintf(card->longname, "%s at %#llx, irq %i", card->shortname, (unsigned long long)pci_resource_start(pci, 0), chip->irq); strcpy(card->mixername, "Bt87x"); err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); ++dev; return 0; } static int snd_bt87x_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_bt87x_probe(pci, pci_id)); } /* default entries for all Bt87x cards - it's not exported */ /* driver_data is set to 0 to call detection */ static const struct pci_device_id snd_bt87x_default_ids[] = { BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, PCI_ANY_ID, PCI_ANY_ID, UNKNOWN), BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, PCI_ANY_ID, PCI_ANY_ID, UNKNOWN), { } }; static struct pci_driver driver = { .name = KBUILD_MODNAME, .id_table = snd_bt87x_ids, .probe = snd_bt87x_probe, }; static int __init alsa_card_bt87x_init(void) { if (load_all) driver.id_table = snd_bt87x_default_ids; return pci_register_driver(&driver); } static void __exit alsa_card_bt87x_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_bt87x_init) module_exit(alsa_card_bt87x_exit)
linux-master
sound/pci/bt87x.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * The driver for the ForteMedia FM801 based soundcards * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/tlv.h> #include <sound/ac97_codec.h> #include <sound/mpu401.h> #include <sound/opl3.h> #include <sound/initval.h> #ifdef CONFIG_SND_FM801_TEA575X_BOOL #include <media/drv-intf/tea575x.h> #endif MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("ForteMedia FM801"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ /* * Enable TEA575x tuner * 1 = MediaForte 256-PCS * 2 = MediaForte 256-PCP * 3 = MediaForte 64-PCR * 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card * High 16-bits are video (radio) device number + 1 */ static int tea575x_tuner[SNDRV_CARDS]; static int radio_nr[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1}; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for the FM801 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for the FM801 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable FM801 soundcard."); module_param_array(tea575x_tuner, int, NULL, 0444); MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only)."); module_param_array(radio_nr, int, NULL, 0444); MODULE_PARM_DESC(radio_nr, "Radio device numbers"); #define TUNER_DISABLED (1<<3) #define TUNER_ONLY (1<<4) #define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF) /* * Direct registers */ #define fm801_writew(chip,reg,value) outw((value), chip->port + FM801_##reg) #define fm801_readw(chip,reg) inw(chip->port + FM801_##reg) #define fm801_writel(chip,reg,value) outl((value), chip->port + FM801_##reg) #define FM801_PCM_VOL 0x00 /* PCM Output Volume */ #define FM801_FM_VOL 0x02 /* FM Output Volume */ #define FM801_I2S_VOL 0x04 /* I2S Volume */ #define FM801_REC_SRC 0x06 /* Record Source */ #define FM801_PLY_CTRL 0x08 /* Playback Control */ #define FM801_PLY_COUNT 0x0a /* Playback Count */ #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */ #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */ #define FM801_CAP_CTRL 0x14 /* Capture Control */ #define FM801_CAP_COUNT 0x16 /* Capture Count */ #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */ #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */ #define FM801_CODEC_CTRL 0x22 /* Codec Control */ #define FM801_I2S_MODE 0x24 /* I2S Mode Control */ #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */ #define FM801_I2C_CTRL 0x29 /* I2C Control */ #define FM801_AC97_CMD 0x2a /* AC'97 Command */ #define FM801_AC97_DATA 0x2c /* AC'97 Data */ #define FM801_MPU401_DATA 0x30 /* MPU401 Data */ #define FM801_MPU401_CMD 0x31 /* MPU401 Command */ #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */ #define FM801_GEN_CTRL 0x54 /* General Control */ #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */ #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */ #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */ #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */ #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */ #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */ #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */ /* codec access */ #define FM801_AC97_READ (1<<7) /* read=1, write=0 */ #define FM801_AC97_VALID (1<<8) /* port valid=1 */ #define FM801_AC97_BUSY (1<<9) /* busy=1 */ #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */ /* playback and record control register bits */ #define FM801_BUF1_LAST (1<<1) #define FM801_BUF2_LAST (1<<2) #define FM801_START (1<<5) #define FM801_PAUSE (1<<6) #define FM801_IMMED_STOP (1<<7) #define FM801_RATE_SHIFT 8 #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT) #define FM801_CHANNELS_4 (1<<12) /* playback only */ #define FM801_CHANNELS_6 (2<<12) /* playback only */ #define FM801_CHANNELS_6MS (3<<12) /* playback only */ #define FM801_CHANNELS_MASK (3<<12) #define FM801_16BIT (1<<14) #define FM801_STEREO (1<<15) /* IRQ status bits */ #define FM801_IRQ_PLAYBACK (1<<8) #define FM801_IRQ_CAPTURE (1<<9) #define FM801_IRQ_VOLUME (1<<14) #define FM801_IRQ_MPU (1<<15) /* GPIO control register */ #define FM801_GPIO_GP0 (1<<0) /* read/write */ #define FM801_GPIO_GP1 (1<<1) #define FM801_GPIO_GP2 (1<<2) #define FM801_GPIO_GP3 (1<<3) #define FM801_GPIO_GP(x) (1<<(0+(x))) #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/ #define FM801_GPIO_GD1 (1<<9) #define FM801_GPIO_GD2 (1<<10) #define FM801_GPIO_GD3 (1<<11) #define FM801_GPIO_GD(x) (1<<(8+(x))) #define FM801_GPIO_GS0 (1<<12) /* function select: */ #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */ #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */ #define FM801_GPIO_GS3 (1<<15) #define FM801_GPIO_GS(x) (1<<(12+(x))) /** * struct fm801 - describes FM801 chip * @dev: device for this chio * @irq: irq number * @port: I/O port number * @multichannel: multichannel support * @secondary: secondary codec * @secondary_addr: address of the secondary codec * @tea575x_tuner: tuner access method & flags * @ply_ctrl: playback control * @cap_ctrl: capture control * @ply_buffer: playback buffer * @ply_buf: playback buffer index * @ply_count: playback buffer count * @ply_size: playback buffer size * @ply_pos: playback position * @cap_buffer: capture buffer * @cap_buf: capture buffer index * @cap_count: capture buffer count * @cap_size: capture buffer size * @cap_pos: capture position * @ac97_bus: ac97 bus handle * @ac97: ac97 handle * @ac97_sec: ac97 secondary handle * @card: ALSA card * @pcm: PCM devices * @rmidi: rmidi device * @playback_substream: substream for playback * @capture_substream: substream for capture * @p_dma_size: playback DMA size * @c_dma_size: capture DMA size * @reg_lock: lock * @proc_entry: /proc entry * @v4l2_dev: v4l2 device * @tea: tea575a structure * @saved_regs: context saved during suspend */ struct fm801 { struct device *dev; int irq; unsigned long port; unsigned int multichannel: 1, secondary: 1; unsigned char secondary_addr; unsigned int tea575x_tuner; unsigned short ply_ctrl; unsigned short cap_ctrl; unsigned long ply_buffer; unsigned int ply_buf; unsigned int ply_count; unsigned int ply_size; unsigned int ply_pos; unsigned long cap_buffer; unsigned int cap_buf; unsigned int cap_count; unsigned int cap_size; unsigned int cap_pos; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; struct snd_ac97 *ac97_sec; struct snd_card *card; struct snd_pcm *pcm; struct snd_rawmidi *rmidi; struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; unsigned int p_dma_size; unsigned int c_dma_size; spinlock_t reg_lock; struct snd_info_entry *proc_entry; #ifdef CONFIG_SND_FM801_TEA575X_BOOL struct v4l2_device v4l2_dev; struct snd_tea575x tea; #endif #ifdef CONFIG_PM_SLEEP u16 saved_regs[0x20]; #endif }; /* * IO accessors */ static inline void fm801_iowrite16(struct fm801 *chip, unsigned short offset, u16 value) { outw(value, chip->port + offset); } static inline u16 fm801_ioread16(struct fm801 *chip, unsigned short offset) { return inw(chip->port + offset); } static const struct pci_device_id snd_fm801_ids[] = { { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */ { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_fm801_ids); /* * common I/O routines */ static bool fm801_ac97_is_ready(struct fm801 *chip, unsigned int iterations) { unsigned int idx; for (idx = 0; idx < iterations; idx++) { if (!(fm801_readw(chip, AC97_CMD) & FM801_AC97_BUSY)) return true; udelay(10); } return false; } static bool fm801_ac97_is_valid(struct fm801 *chip, unsigned int iterations) { unsigned int idx; for (idx = 0; idx < iterations; idx++) { if (fm801_readw(chip, AC97_CMD) & FM801_AC97_VALID) return true; udelay(10); } return false; } static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg, unsigned short mask, unsigned short value) { int change; unsigned long flags; unsigned short old, new; spin_lock_irqsave(&chip->reg_lock, flags); old = fm801_ioread16(chip, reg); new = (old & ~mask) | value; change = old != new; if (change) fm801_iowrite16(chip, reg, new); spin_unlock_irqrestore(&chip->reg_lock, flags); return change; } static void snd_fm801_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct fm801 *chip = ac97->private_data; /* * Wait until the codec interface is not ready.. */ if (!fm801_ac97_is_ready(chip, 100)) { dev_err(chip->card->dev, "AC'97 interface is busy (1)\n"); return; } /* write data and address */ fm801_writew(chip, AC97_DATA, val); fm801_writew(chip, AC97_CMD, reg | (ac97->addr << FM801_AC97_ADDR_SHIFT)); /* * Wait until the write command is not completed.. */ if (!fm801_ac97_is_ready(chip, 1000)) dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n", ac97->num); } static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct fm801 *chip = ac97->private_data; /* * Wait until the codec interface is not ready.. */ if (!fm801_ac97_is_ready(chip, 100)) { dev_err(chip->card->dev, "AC'97 interface is busy (1)\n"); return 0; } /* read command */ fm801_writew(chip, AC97_CMD, reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ); if (!fm801_ac97_is_ready(chip, 100)) { dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n", ac97->num); return 0; } if (!fm801_ac97_is_valid(chip, 1000)) { dev_err(chip->card->dev, "AC'97 interface #%d is not valid (2)\n", ac97->num); return 0; } return fm801_readw(chip, AC97_DATA); } static const unsigned int rates[] = { 5500, 8000, 9600, 11025, 16000, 19200, 22050, 32000, 38400, 44100, 48000 }; static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { 2, 4, 6 }; static const struct snd_pcm_hw_constraint_list hw_constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; /* * Sample rate routines */ static unsigned short snd_fm801_rate_bits(unsigned int rate) { unsigned int idx; for (idx = 0; idx < ARRAY_SIZE(rates); idx++) if (rates[idx] == rate) return idx; snd_BUG(); return ARRAY_SIZE(rates) - 1; } /* * PCM part */ static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct fm801 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: chip->ply_ctrl &= ~(FM801_BUF1_LAST | FM801_BUF2_LAST | FM801_PAUSE); chip->ply_ctrl |= FM801_START | FM801_IMMED_STOP; break; case SNDRV_PCM_TRIGGER_STOP: chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->ply_ctrl |= FM801_PAUSE; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->ply_ctrl &= ~FM801_PAUSE; break; default: spin_unlock(&chip->reg_lock); snd_BUG(); return -EINVAL; } fm801_writew(chip, PLY_CTRL, chip->ply_ctrl); spin_unlock(&chip->reg_lock); return 0; } static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct fm801 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: chip->cap_ctrl &= ~(FM801_BUF1_LAST | FM801_BUF2_LAST | FM801_PAUSE); chip->cap_ctrl |= FM801_START | FM801_IMMED_STOP; break; case SNDRV_PCM_TRIGGER_STOP: chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->cap_ctrl |= FM801_PAUSE; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->cap_ctrl &= ~FM801_PAUSE; break; default: spin_unlock(&chip->reg_lock); snd_BUG(); return -EINVAL; } fm801_writew(chip, CAP_CTRL, chip->cap_ctrl); spin_unlock(&chip->reg_lock); return 0; } static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->ply_size = snd_pcm_lib_buffer_bytes(substream); chip->ply_count = snd_pcm_lib_period_bytes(substream); spin_lock_irq(&chip->reg_lock); chip->ply_ctrl &= ~(FM801_START | FM801_16BIT | FM801_STEREO | FM801_RATE_MASK | FM801_CHANNELS_MASK); if (snd_pcm_format_width(runtime->format) == 16) chip->ply_ctrl |= FM801_16BIT; if (runtime->channels > 1) { chip->ply_ctrl |= FM801_STEREO; if (runtime->channels == 4) chip->ply_ctrl |= FM801_CHANNELS_4; else if (runtime->channels == 6) chip->ply_ctrl |= FM801_CHANNELS_6; } chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; chip->ply_buf = 0; fm801_writew(chip, PLY_CTRL, chip->ply_ctrl); fm801_writew(chip, PLY_COUNT, chip->ply_count - 1); chip->ply_buffer = runtime->dma_addr; chip->ply_pos = 0; fm801_writel(chip, PLY_BUF1, chip->ply_buffer); fm801_writel(chip, PLY_BUF2, chip->ply_buffer + (chip->ply_count % chip->ply_size)); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->cap_size = snd_pcm_lib_buffer_bytes(substream); chip->cap_count = snd_pcm_lib_period_bytes(substream); spin_lock_irq(&chip->reg_lock); chip->cap_ctrl &= ~(FM801_START | FM801_16BIT | FM801_STEREO | FM801_RATE_MASK); if (snd_pcm_format_width(runtime->format) == 16) chip->cap_ctrl |= FM801_16BIT; if (runtime->channels > 1) chip->cap_ctrl |= FM801_STEREO; chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; chip->cap_buf = 0; fm801_writew(chip, CAP_CTRL, chip->cap_ctrl); fm801_writew(chip, CAP_COUNT, chip->cap_count - 1); chip->cap_buffer = runtime->dma_addr; chip->cap_pos = 0; fm801_writel(chip, CAP_BUF1, chip->cap_buffer); fm801_writel(chip, CAP_BUF2, chip->cap_buffer + (chip->cap_count % chip->cap_size)); spin_unlock_irq(&chip->reg_lock); return 0; } static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); size_t ptr; if (!(chip->ply_ctrl & FM801_START)) return 0; spin_lock(&chip->reg_lock); ptr = chip->ply_pos + (chip->ply_count - 1) - fm801_readw(chip, PLY_COUNT); if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_PLAYBACK) { ptr += chip->ply_count; ptr %= chip->ply_size; } spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, ptr); } static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); size_t ptr; if (!(chip->cap_ctrl & FM801_START)) return 0; spin_lock(&chip->reg_lock); ptr = chip->cap_pos + (chip->cap_count - 1) - fm801_readw(chip, CAP_COUNT); if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_CAPTURE) { ptr += chip->cap_count; ptr %= chip->cap_size; } spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, ptr); } static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id) { struct fm801 *chip = dev_id; unsigned short status; unsigned int tmp; status = fm801_readw(chip, IRQ_STATUS); status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME; if (! status) return IRQ_NONE; /* ack first */ fm801_writew(chip, IRQ_STATUS, status); if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) { spin_lock(&chip->reg_lock); chip->ply_buf++; chip->ply_pos += chip->ply_count; chip->ply_pos %= chip->ply_size; tmp = chip->ply_pos + chip->ply_count; tmp %= chip->ply_size; if (chip->ply_buf & 1) fm801_writel(chip, PLY_BUF1, chip->ply_buffer + tmp); else fm801_writel(chip, PLY_BUF2, chip->ply_buffer + tmp); spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(chip->playback_substream); } if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) { spin_lock(&chip->reg_lock); chip->cap_buf++; chip->cap_pos += chip->cap_count; chip->cap_pos %= chip->cap_size; tmp = chip->cap_pos + chip->cap_count; tmp %= chip->cap_size; if (chip->cap_buf & 1) fm801_writel(chip, CAP_BUF1, chip->cap_buffer + tmp); else fm801_writel(chip, CAP_BUF2, chip->cap_buffer + tmp); spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(chip->capture_substream); } if (chip->rmidi && (status & FM801_IRQ_MPU)) snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data); if (status & FM801_IRQ_VOLUME) { /* TODO */ } return IRQ_HANDLED; } static const struct snd_pcm_hardware snd_fm801_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, .rate_min = 5500, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_fm801_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, .rate_min = 5500, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static int snd_fm801_playback_open(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; chip->playback_substream = substream; runtime->hw = snd_fm801_playback; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (chip->multichannel) { runtime->hw.channels_max = 6; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels); } err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_fm801_capture_open(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; chip->capture_substream = substream; runtime->hw = snd_fm801_capture; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_fm801_playback_close(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); chip->playback_substream = NULL; return 0; } static int snd_fm801_capture_close(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); chip->capture_substream = NULL; return 0; } static const struct snd_pcm_ops snd_fm801_playback_ops = { .open = snd_fm801_playback_open, .close = snd_fm801_playback_close, .prepare = snd_fm801_playback_prepare, .trigger = snd_fm801_playback_trigger, .pointer = snd_fm801_playback_pointer, }; static const struct snd_pcm_ops snd_fm801_capture_ops = { .open = snd_fm801_capture_open, .close = snd_fm801_capture_close, .prepare = snd_fm801_capture_prepare, .trigger = snd_fm801_capture_trigger, .pointer = snd_fm801_capture_pointer, }; static int snd_fm801_pcm(struct fm801 *chip, int device) { struct pci_dev *pdev = to_pci_dev(chip->dev); struct snd_pcm *pcm; int err; err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops); pcm->private_data = chip; pcm->info_flags = 0; strcpy(pcm->name, "FM801"); chip->pcm = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pdev->dev, chip->multichannel ? 128*1024 : 64*1024, 128*1024); return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_alt_chmaps, chip->multichannel ? 6 : 2, 0, NULL); } /* * TEA5757 radio */ #ifdef CONFIG_SND_FM801_TEA575X_BOOL /* GPIO to TEA575x maps */ struct snd_fm801_tea575x_gpio { u8 data, clk, wren, most; char *name; }; static const struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = { { .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" }, { .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" }, { .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" }, }; #define get_tea575x_gpio(chip) \ (&snd_fm801_tea575x_gpios[((chip)->tea575x_tuner & TUNER_TYPE_MASK) - 1]) static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins) { struct fm801 *chip = tea->private_data; unsigned short reg = fm801_readw(chip, GPIO_CTRL); struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip); reg &= ~(FM801_GPIO_GP(gpio.data) | FM801_GPIO_GP(gpio.clk) | FM801_GPIO_GP(gpio.wren)); reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0; reg |= (pins & TEA575X_CLK) ? FM801_GPIO_GP(gpio.clk) : 0; /* WRITE_ENABLE is inverted */ reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren); fm801_writew(chip, GPIO_CTRL, reg); } static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea) { struct fm801 *chip = tea->private_data; unsigned short reg = fm801_readw(chip, GPIO_CTRL); struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip); u8 ret; ret = 0; if (reg & FM801_GPIO_GP(gpio.data)) ret |= TEA575X_DATA; if (reg & FM801_GPIO_GP(gpio.most)) ret |= TEA575X_MOST; return ret; } static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output) { struct fm801 *chip = tea->private_data; unsigned short reg = fm801_readw(chip, GPIO_CTRL); struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip); /* use GPIO lines and set write enable bit */ reg |= FM801_GPIO_GS(gpio.data) | FM801_GPIO_GS(gpio.wren) | FM801_GPIO_GS(gpio.clk) | FM801_GPIO_GS(gpio.most); if (output) { /* all of lines are in the write direction */ /* clear data and clock lines */ reg &= ~(FM801_GPIO_GD(gpio.data) | FM801_GPIO_GD(gpio.wren) | FM801_GPIO_GD(gpio.clk) | FM801_GPIO_GP(gpio.data) | FM801_GPIO_GP(gpio.clk) | FM801_GPIO_GP(gpio.wren)); } else { /* use GPIO lines, set data direction to input */ reg |= FM801_GPIO_GD(gpio.data) | FM801_GPIO_GD(gpio.most) | FM801_GPIO_GP(gpio.data) | FM801_GPIO_GP(gpio.most) | FM801_GPIO_GP(gpio.wren); /* all of lines are in the write direction, except data */ /* clear data, write enable and clock lines */ reg &= ~(FM801_GPIO_GD(gpio.wren) | FM801_GPIO_GD(gpio.clk) | FM801_GPIO_GP(gpio.clk)); } fm801_writew(chip, GPIO_CTRL, reg); } static const struct snd_tea575x_ops snd_fm801_tea_ops = { .set_pins = snd_fm801_tea575x_set_pins, .get_pins = snd_fm801_tea575x_get_pins, .set_direction = snd_fm801_tea575x_set_direction, }; #endif /* * Mixer routines */ #define FM801_SINGLE(xname, reg, shift, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \ .get = snd_fm801_get_single, .put = snd_fm801_put_single, \ .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) } static int snd_fm801_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_fm801_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; long *value = ucontrol->value.integer.value; value[0] = (fm801_ioread16(chip, reg) >> shift) & mask; if (invert) value[0] = mask - value[0]; return 0; } static int snd_fm801_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short val; val = (ucontrol->value.integer.value[0] & mask); if (invert) val = mask - val; return snd_fm801_update_bits(chip, reg, mask << shift, val << shift); } #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \ .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) } #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ .name = xname, .info = snd_fm801_info_double, \ .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \ .tlv = { .p = (xtlv) } } static int snd_fm801_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_fm801_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift_left = (kcontrol->private_value >> 8) & 0x0f; int shift_right = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; long *value = ucontrol->value.integer.value; spin_lock_irq(&chip->reg_lock); value[0] = (fm801_ioread16(chip, reg) >> shift_left) & mask; value[1] = (fm801_ioread16(chip, reg) >> shift_right) & mask; spin_unlock_irq(&chip->reg_lock); if (invert) { value[0] = mask - value[0]; value[1] = mask - value[1]; } return 0; } static int snd_fm801_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift_left = (kcontrol->private_value >> 8) & 0x0f; int shift_right = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short val1, val2; val1 = ucontrol->value.integer.value[0] & mask; val2 = ucontrol->value.integer.value[1] & mask; if (invert) { val1 = mask - val1; val2 = mask - val2; } return snd_fm801_update_bits(chip, reg, (mask << shift_left) | (mask << shift_right), (val1 << shift_left ) | (val2 << shift_right)); } static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[5] = { "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary" }; return snd_ctl_enum_info(uinfo, 1, 5, texts); } static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); unsigned short val; val = fm801_readw(chip, REC_SRC) & 7; if (val > 4) val = 4; ucontrol->value.enumerated.item[0] = val; return 0; } static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); unsigned short val; val = ucontrol->value.enumerated.item[0]; if (val > 4) return -EINVAL; return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val); } static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0); #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls) static const struct snd_kcontrol_new snd_fm801_controls[] = { FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1), FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1), FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Capture Source", .info = snd_fm801_info_mux, .get = snd_fm801_get_mux, .put = snd_fm801_put_mux, } }; #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi) static const struct snd_kcontrol_new snd_fm801_controls_multi[] = { FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0), FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0), }; static int snd_fm801_mixer(struct fm801 *chip) { struct snd_ac97_template ac97; unsigned int i; int err; static const struct snd_ac97_bus_ops ops = { .write = snd_fm801_codec_write, .read = snd_fm801_codec_read, }; err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus); if (err < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97); if (err < 0) return err; if (chip->secondary) { ac97.num = 1; ac97.addr = chip->secondary_addr; err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec); if (err < 0) return err; } for (i = 0; i < FM801_CONTROLS; i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip)); if (err < 0) return err; } if (chip->multichannel) { for (i = 0; i < FM801_CONTROLS_MULTI; i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip)); if (err < 0) return err; } } return 0; } /* * initialization routines */ static int wait_for_codec(struct fm801 *chip, unsigned int codec_id, unsigned short reg, unsigned long waits) { unsigned long timeout = jiffies + waits; fm801_writew(chip, AC97_CMD, reg | (codec_id << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ); udelay(5); do { if ((fm801_readw(chip, AC97_CMD) & (FM801_AC97_VALID | FM801_AC97_BUSY)) == FM801_AC97_VALID) return 0; schedule_timeout_uninterruptible(1); } while (time_after(timeout, jiffies)); return -EIO; } static int reset_codec(struct fm801 *chip) { /* codec cold reset + AC'97 warm reset */ fm801_writew(chip, CODEC_CTRL, (1 << 5) | (1 << 6)); fm801_readw(chip, CODEC_CTRL); /* flush posting data */ udelay(100); fm801_writew(chip, CODEC_CTRL, 0); return wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)); } static void snd_fm801_chip_multichannel_init(struct fm801 *chip) { unsigned short cmdw; if (chip->multichannel) { if (chip->secondary_addr) { wait_for_codec(chip, chip->secondary_addr, AC97_VENDOR_ID1, msecs_to_jiffies(50)); } else { /* my card has the secondary codec */ /* at address #3, so the loop is inverted */ int i; for (i = 3; i > 0; i--) { if (!wait_for_codec(chip, i, AC97_VENDOR_ID1, msecs_to_jiffies(50))) { cmdw = fm801_readw(chip, AC97_DATA); if (cmdw != 0xffff && cmdw != 0) { chip->secondary = 1; chip->secondary_addr = i; break; } } } } /* the recovery phase, it seems that probing for non-existing codec might */ /* cause timeout problems */ wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750)); } } static void snd_fm801_chip_init(struct fm801 *chip) { unsigned short cmdw; /* init volume */ fm801_writew(chip, PCM_VOL, 0x0808); fm801_writew(chip, FM_VOL, 0x9f1f); fm801_writew(chip, I2S_VOL, 0x8808); /* I2S control - I2S mode */ fm801_writew(chip, I2S_MODE, 0x0003); /* interrupt setup */ cmdw = fm801_readw(chip, IRQ_MASK); if (chip->irq < 0) cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */ else cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */ fm801_writew(chip, IRQ_MASK, cmdw); /* interrupt clear */ fm801_writew(chip, IRQ_STATUS, FM801_IRQ_PLAYBACK | FM801_IRQ_CAPTURE | FM801_IRQ_MPU); } static void snd_fm801_free(struct snd_card *card) { struct fm801 *chip = card->private_data; unsigned short cmdw; /* interrupt setup - mask everything */ cmdw = fm801_readw(chip, IRQ_MASK); cmdw |= 0x00c3; fm801_writew(chip, IRQ_MASK, cmdw); #ifdef CONFIG_SND_FM801_TEA575X_BOOL if (!(chip->tea575x_tuner & TUNER_DISABLED)) { snd_tea575x_exit(&chip->tea); v4l2_device_unregister(&chip->v4l2_dev); } #endif } static int snd_fm801_create(struct snd_card *card, struct pci_dev *pci, int tea575x_tuner, int radio_nr) { struct fm801 *chip = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&chip->reg_lock); chip->card = card; chip->dev = &pci->dev; chip->irq = -1; chip->tea575x_tuner = tea575x_tuner; err = pci_request_regions(pci, "FM801"); if (err < 0) return err; chip->port = pci_resource_start(pci, 0); if (pci->revision >= 0xb1) /* FM801-AU */ chip->multichannel = 1; if (!(chip->tea575x_tuner & TUNER_ONLY)) { if (reset_codec(chip) < 0) { dev_info(chip->card->dev, "Primary AC'97 codec not found, assume SF64-PCR (tuner-only)\n"); chip->tea575x_tuner = 3 | TUNER_ONLY; } else { snd_fm801_chip_multichannel_init(chip); } } if ((chip->tea575x_tuner & TUNER_ONLY) == 0) { if (devm_request_irq(&pci->dev, pci->irq, snd_fm801_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; pci_set_master(pci); } card->private_free = snd_fm801_free; snd_fm801_chip_init(chip); #ifdef CONFIG_SND_FM801_TEA575X_BOOL err = v4l2_device_register(&pci->dev, &chip->v4l2_dev); if (err < 0) return err; chip->tea.v4l2_dev = &chip->v4l2_dev; chip->tea.radio_nr = radio_nr; chip->tea.private_data = chip; chip->tea.ops = &snd_fm801_tea_ops; sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci)); if ((chip->tea575x_tuner & TUNER_TYPE_MASK) > 0 && (chip->tea575x_tuner & TUNER_TYPE_MASK) < 4) { if (snd_tea575x_init(&chip->tea, THIS_MODULE)) { dev_err(card->dev, "TEA575x radio not found\n"); return -ENODEV; } } else if ((chip->tea575x_tuner & TUNER_TYPE_MASK) == 0) { unsigned int tuner_only = chip->tea575x_tuner & TUNER_ONLY; /* autodetect tuner connection */ for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) { chip->tea575x_tuner = tea575x_tuner; if (!snd_tea575x_init(&chip->tea, THIS_MODULE)) { dev_info(card->dev, "detected TEA575x radio type %s\n", get_tea575x_gpio(chip)->name); break; } } if (tea575x_tuner == 4) { dev_err(card->dev, "TEA575x radio not found\n"); chip->tea575x_tuner = TUNER_DISABLED; } chip->tea575x_tuner |= tuner_only; } if (!(chip->tea575x_tuner & TUNER_DISABLED)) { strscpy(chip->tea.card, get_tea575x_gpio(chip)->name, sizeof(chip->tea.card)); } #endif return 0; } static int __snd_card_fm801_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct fm801 *chip; struct snd_opl3 *opl3; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; err = snd_fm801_create(card, pci, tea575x_tuner[dev], radio_nr[dev]); if (err < 0) return err; strcpy(card->driver, "FM801"); strcpy(card->shortname, "ForteMedia FM801-"); strcat(card->shortname, chip->multichannel ? "AU" : "AS"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, chip->port, chip->irq); if (chip->tea575x_tuner & TUNER_ONLY) goto __fm801_tuner_only; err = snd_fm801_pcm(chip, 0); if (err < 0) return err; err = snd_fm801_mixer(chip); if (err < 0) return err; err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801, chip->port + FM801_MPU401_DATA, MPU401_INFO_INTEGRATED | MPU401_INFO_IRQ_HOOK, -1, &chip->rmidi); if (err < 0) return err; err = snd_opl3_create(card, chip->port + FM801_OPL3_BANK0, chip->port + FM801_OPL3_BANK1, OPL3_HW_OPL3_FM801, 1, &opl3); if (err < 0) return err; err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); if (err < 0) return err; __fm801_tuner_only: err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); dev++; return 0; } static int snd_card_fm801_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_card_fm801_probe(pci, pci_id)); } #ifdef CONFIG_PM_SLEEP static const unsigned char saved_regs[] = { FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC, FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2, FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2, FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL, }; static int snd_fm801_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct fm801 *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < ARRAY_SIZE(saved_regs); i++) chip->saved_regs[i] = fm801_ioread16(chip, saved_regs[i]); if (chip->tea575x_tuner & TUNER_ONLY) { /* FIXME: tea575x suspend */ } else { snd_ac97_suspend(chip->ac97); snd_ac97_suspend(chip->ac97_sec); } return 0; } static int snd_fm801_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct fm801 *chip = card->private_data; int i; if (chip->tea575x_tuner & TUNER_ONLY) { snd_fm801_chip_init(chip); } else { reset_codec(chip); snd_fm801_chip_multichannel_init(chip); snd_fm801_chip_init(chip); snd_ac97_resume(chip->ac97); snd_ac97_resume(chip->ac97_sec); } for (i = 0; i < ARRAY_SIZE(saved_regs); i++) fm801_iowrite16(chip, saved_regs[i], chip->saved_regs[i]); #ifdef CONFIG_SND_FM801_TEA575X_BOOL if (!(chip->tea575x_tuner & TUNER_DISABLED)) snd_tea575x_set_freq(&chip->tea); #endif snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_fm801_pm, snd_fm801_suspend, snd_fm801_resume); #define SND_FM801_PM_OPS &snd_fm801_pm #else #define SND_FM801_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct pci_driver fm801_driver = { .name = KBUILD_MODNAME, .id_table = snd_fm801_ids, .probe = snd_card_fm801_probe, .driver = { .pm = SND_FM801_PM_OPS, }, }; module_pci_driver(fm801_driver);
linux-master
sound/pci/fm801.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Ensoniq ES1370/ES1371 AudioPCI soundcard * Copyright (c) by Jaroslav Kysela <[email protected]>, * Thomas Sailer <[email protected]> */ /* Power-Management-Code ( CONFIG_PM ) * for ens1371 only ( FIXME ) * derived from cs4281.c, atiixp.c and via82xx.c * using https://www.kernel.org/doc/html/latest/sound/kernel-api/writing-an-alsa-driver.html * by Kurt J. Bosch */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/gameport.h> #include <linux/module.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/rawmidi.h> #ifdef CHIP1371 #include <sound/ac97_codec.h> #else #include <sound/ak4531_codec.h> #endif #include <sound/initval.h> #include <sound/asoundef.h> #ifndef CHIP1371 #undef CHIP1370 #define CHIP1370 #endif #ifdef CHIP1370 #define DRIVER_NAME "ENS1370" #define CHIP_NAME "ES1370" /* it can be ENS but just to keep compatibility... */ #else #define DRIVER_NAME "ENS1371" #define CHIP_NAME "ES1371" #endif MODULE_AUTHOR("Jaroslav Kysela <[email protected]>, Thomas Sailer <[email protected]>"); MODULE_LICENSE("GPL"); #ifdef CHIP1370 MODULE_DESCRIPTION("Ensoniq AudioPCI ES1370"); #endif #ifdef CHIP1371 MODULE_DESCRIPTION("Ensoniq/Creative AudioPCI ES1371+"); #endif #if IS_REACHABLE(CONFIG_GAMEPORT) #define SUPPORT_JOYSTICK #endif static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ #ifdef SUPPORT_JOYSTICK #ifdef CHIP1371 static int joystick_port[SNDRV_CARDS]; #else static bool joystick[SNDRV_CARDS]; #endif #endif #ifdef CHIP1371 static int spdif[SNDRV_CARDS]; static int lineio[SNDRV_CARDS]; #endif module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Ensoniq AudioPCI soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Ensoniq AudioPCI soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Ensoniq AudioPCI soundcard."); #ifdef SUPPORT_JOYSTICK #ifdef CHIP1371 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); MODULE_PARM_DESC(joystick_port, "Joystick port address."); #else module_param_array(joystick, bool, NULL, 0444); MODULE_PARM_DESC(joystick, "Enable joystick."); #endif #endif /* SUPPORT_JOYSTICK */ #ifdef CHIP1371 module_param_array(spdif, int, NULL, 0444); MODULE_PARM_DESC(spdif, "S/PDIF output (-1 = none, 0 = auto, 1 = force)."); module_param_array(lineio, int, NULL, 0444); MODULE_PARM_DESC(lineio, "Line In to Rear Out (0 = auto, 1 = force)."); #endif /* ES1371 chip ID */ /* This is a little confusing because all ES1371 compatible chips have the same DEVICE_ID, the only thing differentiating them is the REV_ID field. This is only significant if you want to enable features on the later parts. Yes, I know it's stupid and why didn't we use the sub IDs? */ #define ES1371REV_ES1373_A 0x04 #define ES1371REV_ES1373_B 0x06 #define ES1371REV_CT5880_A 0x07 #define CT5880REV_CT5880_C 0x02 #define CT5880REV_CT5880_D 0x03 /* ??? -jk */ #define CT5880REV_CT5880_E 0x04 /* mw */ #define ES1371REV_ES1371_B 0x09 #define EV1938REV_EV1938_A 0x00 #define ES1371REV_ES1373_8 0x08 /* * Direct registers */ #define ES_REG(ensoniq, x) ((ensoniq)->port + ES_REG_##x) #define ES_REG_CONTROL 0x00 /* R/W: Interrupt/Chip select control register */ #define ES_1370_ADC_STOP (1<<31) /* disable capture buffer transfers */ #define ES_1370_XCTL1 (1<<30) /* general purpose output bit */ #define ES_1373_BYPASS_P1 (1<<31) /* bypass SRC for PB1 */ #define ES_1373_BYPASS_P2 (1<<30) /* bypass SRC for PB2 */ #define ES_1373_BYPASS_R (1<<29) /* bypass SRC for REC */ #define ES_1373_TEST_BIT (1<<28) /* should be set to 0 for normal operation */ #define ES_1373_RECEN_B (1<<27) /* mix record with playback for I2S/SPDIF out */ #define ES_1373_SPDIF_THRU (1<<26) /* 0 = SPDIF thru mode, 1 = SPDIF == dig out */ #define ES_1371_JOY_ASEL(o) (((o)&0x03)<<24)/* joystick port mapping */ #define ES_1371_JOY_ASELM (0x03<<24) /* mask for above */ #define ES_1371_JOY_ASELI(i) (((i)>>24)&0x03) #define ES_1371_GPIO_IN(i) (((i)>>20)&0x0f)/* GPIO in [3:0] pins - R/O */ #define ES_1370_PCLKDIVO(o) (((o)&0x1fff)<<16)/* clock divide ratio for DAC2 */ #define ES_1370_PCLKDIVM ((0x1fff)<<16) /* mask for above */ #define ES_1370_PCLKDIVI(i) (((i)>>16)&0x1fff)/* clock divide ratio for DAC2 */ #define ES_1371_GPIO_OUT(o) (((o)&0x0f)<<16)/* GPIO out [3:0] pins - W/R */ #define ES_1371_GPIO_OUTM (0x0f<<16) /* mask for above */ #define ES_MSFMTSEL (1<<15) /* MPEG serial data format; 0 = SONY, 1 = I2S */ #define ES_1370_M_SBB (1<<14) /* clock source for DAC - 0 = clock generator; 1 = MPEG clocks */ #define ES_1371_SYNC_RES (1<<14) /* Warm AC97 reset */ #define ES_1370_WTSRSEL(o) (((o)&0x03)<<12)/* fixed frequency clock for DAC1 */ #define ES_1370_WTSRSELM (0x03<<12) /* mask for above */ #define ES_1371_ADC_STOP (1<<13) /* disable CCB transfer capture information */ #define ES_1371_PWR_INTRM (1<<12) /* power level change interrupts enable */ #define ES_1370_DAC_SYNC (1<<11) /* DAC's are synchronous */ #define ES_1371_M_CB (1<<11) /* capture clock source; 0 = AC'97 ADC; 1 = I2S */ #define ES_CCB_INTRM (1<<10) /* CCB voice interrupts enable */ #define ES_1370_M_CB (1<<9) /* capture clock source; 0 = ADC; 1 = MPEG */ #define ES_1370_XCTL0 (1<<8) /* generap purpose output bit */ #define ES_1371_PDLEV(o) (((o)&0x03)<<8) /* current power down level */ #define ES_1371_PDLEVM (0x03<<8) /* mask for above */ #define ES_BREQ (1<<7) /* memory bus request enable */ #define ES_DAC1_EN (1<<6) /* DAC1 playback channel enable */ #define ES_DAC2_EN (1<<5) /* DAC2 playback channel enable */ #define ES_ADC_EN (1<<4) /* ADC capture channel enable */ #define ES_UART_EN (1<<3) /* UART enable */ #define ES_JYSTK_EN (1<<2) /* Joystick module enable */ #define ES_1370_CDC_EN (1<<1) /* Codec interface enable */ #define ES_1371_XTALCKDIS (1<<1) /* Xtal clock disable */ #define ES_1370_SERR_DISABLE (1<<0) /* PCI serr signal disable */ #define ES_1371_PCICLKDIS (1<<0) /* PCI clock disable */ #define ES_REG_STATUS 0x04 /* R/O: Interrupt/Chip select status register */ #define ES_INTR (1<<31) /* Interrupt is pending */ #define ES_1371_ST_AC97_RST (1<<29) /* CT5880 AC'97 Reset bit */ #define ES_1373_REAR_BIT27 (1<<27) /* rear bits: 000 - front, 010 - mirror, 101 - separate */ #define ES_1373_REAR_BIT26 (1<<26) #define ES_1373_REAR_BIT24 (1<<24) #define ES_1373_GPIO_INT_EN(o)(((o)&0x0f)<<20)/* GPIO [3:0] pins - interrupt enable */ #define ES_1373_SPDIF_EN (1<<18) /* SPDIF enable */ #define ES_1373_SPDIF_TEST (1<<17) /* SPDIF test */ #define ES_1371_TEST (1<<16) /* test ASIC */ #define ES_1373_GPIO_INT(i) (((i)&0x0f)>>12)/* GPIO [3:0] pins - interrupt pending */ #define ES_1370_CSTAT (1<<10) /* CODEC is busy or register write in progress */ #define ES_1370_CBUSY (1<<9) /* CODEC is busy */ #define ES_1370_CWRIP (1<<8) /* CODEC register write in progress */ #define ES_1371_SYNC_ERR (1<<8) /* CODEC synchronization error occurred */ #define ES_1371_VC(i) (((i)>>6)&0x03) /* voice code from CCB module */ #define ES_1370_VC(i) (((i)>>5)&0x03) /* voice code from CCB module */ #define ES_1371_MPWR (1<<5) /* power level interrupt pending */ #define ES_MCCB (1<<4) /* CCB interrupt pending */ #define ES_UART (1<<3) /* UART interrupt pending */ #define ES_DAC1 (1<<2) /* DAC1 channel interrupt pending */ #define ES_DAC2 (1<<1) /* DAC2 channel interrupt pending */ #define ES_ADC (1<<0) /* ADC channel interrupt pending */ #define ES_REG_UART_DATA 0x08 /* R/W: UART data register */ #define ES_REG_UART_STATUS 0x09 /* R/O: UART status register */ #define ES_RXINT (1<<7) /* RX interrupt occurred */ #define ES_TXINT (1<<2) /* TX interrupt occurred */ #define ES_TXRDY (1<<1) /* transmitter ready */ #define ES_RXRDY (1<<0) /* receiver ready */ #define ES_REG_UART_CONTROL 0x09 /* W/O: UART control register */ #define ES_RXINTEN (1<<7) /* RX interrupt enable */ #define ES_TXINTENO(o) (((o)&0x03)<<5) /* TX interrupt enable */ #define ES_TXINTENM (0x03<<5) /* mask for above */ #define ES_TXINTENI(i) (((i)>>5)&0x03) #define ES_CNTRL(o) (((o)&0x03)<<0) /* control */ #define ES_CNTRLM (0x03<<0) /* mask for above */ #define ES_REG_UART_RES 0x0a /* R/W: UART reserver register */ #define ES_TEST_MODE (1<<0) /* test mode enabled */ #define ES_REG_MEM_PAGE 0x0c /* R/W: Memory page register */ #define ES_MEM_PAGEO(o) (((o)&0x0f)<<0) /* memory page select - out */ #define ES_MEM_PAGEM (0x0f<<0) /* mask for above */ #define ES_MEM_PAGEI(i) (((i)>>0)&0x0f) /* memory page select - in */ #define ES_REG_1370_CODEC 0x10 /* W/O: Codec write register address */ #define ES_1370_CODEC_WRITE(a,d) ((((a)&0xff)<<8)|(((d)&0xff)<<0)) #define ES_REG_1371_CODEC 0x14 /* W/R: Codec Read/Write register address */ #define ES_1371_CODEC_RDY (1<<31) /* codec ready */ #define ES_1371_CODEC_WIP (1<<30) /* codec register access in progress */ #define EV_1938_CODEC_MAGIC (1<<26) #define ES_1371_CODEC_PIRD (1<<23) /* codec read/write select register */ #define ES_1371_CODEC_WRITE(a,d) ((((a)&0x7f)<<16)|(((d)&0xffff)<<0)) #define ES_1371_CODEC_READS(a) ((((a)&0x7f)<<16)|ES_1371_CODEC_PIRD) #define ES_1371_CODEC_READ(i) (((i)>>0)&0xffff) #define ES_REG_1371_SMPRATE 0x10 /* W/R: Codec rate converter interface register */ #define ES_1371_SRC_RAM_ADDRO(o) (((o)&0x7f)<<25)/* address of the sample rate converter */ #define ES_1371_SRC_RAM_ADDRM (0x7f<<25) /* mask for above */ #define ES_1371_SRC_RAM_ADDRI(i) (((i)>>25)&0x7f)/* address of the sample rate converter */ #define ES_1371_SRC_RAM_WE (1<<24) /* R/W: read/write control for sample rate converter */ #define ES_1371_SRC_RAM_BUSY (1<<23) /* R/O: sample rate memory is busy */ #define ES_1371_SRC_DISABLE (1<<22) /* sample rate converter disable */ #define ES_1371_DIS_P1 (1<<21) /* playback channel 1 accumulator update disable */ #define ES_1371_DIS_P2 (1<<20) /* playback channel 1 accumulator update disable */ #define ES_1371_DIS_R1 (1<<19) /* capture channel accumulator update disable */ #define ES_1371_SRC_RAM_DATAO(o) (((o)&0xffff)<<0)/* current value of the sample rate converter */ #define ES_1371_SRC_RAM_DATAM (0xffff<<0) /* mask for above */ #define ES_1371_SRC_RAM_DATAI(i) (((i)>>0)&0xffff)/* current value of the sample rate converter */ #define ES_REG_1371_LEGACY 0x18 /* W/R: Legacy control/status register */ #define ES_1371_JFAST (1<<31) /* fast joystick timing */ #define ES_1371_HIB (1<<30) /* host interrupt blocking enable */ #define ES_1371_VSB (1<<29) /* SB; 0 = addr 0x220xH, 1 = 0x22FxH */ #define ES_1371_VMPUO(o) (((o)&0x03)<<27)/* base register address; 0 = 0x320xH; 1 = 0x330xH; 2 = 0x340xH; 3 = 0x350xH */ #define ES_1371_VMPUM (0x03<<27) /* mask for above */ #define ES_1371_VMPUI(i) (((i)>>27)&0x03)/* base register address */ #define ES_1371_VCDCO(o) (((o)&0x03)<<25)/* CODEC; 0 = 0x530xH; 1 = undefined; 2 = 0xe80xH; 3 = 0xF40xH */ #define ES_1371_VCDCM (0x03<<25) /* mask for above */ #define ES_1371_VCDCI(i) (((i)>>25)&0x03)/* CODEC address */ #define ES_1371_FIRQ (1<<24) /* force an interrupt */ #define ES_1371_SDMACAP (1<<23) /* enable event capture for slave DMA controller */ #define ES_1371_SPICAP (1<<22) /* enable event capture for slave IRQ controller */ #define ES_1371_MDMACAP (1<<21) /* enable event capture for master DMA controller */ #define ES_1371_MPICAP (1<<20) /* enable event capture for master IRQ controller */ #define ES_1371_ADCAP (1<<19) /* enable event capture for ADLIB register; 0x388xH */ #define ES_1371_SVCAP (1<<18) /* enable event capture for SB registers */ #define ES_1371_CDCCAP (1<<17) /* enable event capture for CODEC registers */ #define ES_1371_BACAP (1<<16) /* enable event capture for SoundScape base address */ #define ES_1371_EXI(i) (((i)>>8)&0x07) /* event number */ #define ES_1371_AI(i) (((i)>>3)&0x1f) /* event significant I/O address */ #define ES_1371_WR (1<<2) /* event capture; 0 = read; 1 = write */ #define ES_1371_LEGINT (1<<0) /* interrupt for legacy events; 0 = interrupt did occur */ #define ES_REG_CHANNEL_STATUS 0x1c /* R/W: first 32-bits from S/PDIF channel status block, es1373 */ #define ES_REG_SERIAL 0x20 /* R/W: Serial interface control register */ #define ES_1371_DAC_TEST (1<<22) /* DAC test mode enable */ #define ES_P2_END_INCO(o) (((o)&0x07)<<19)/* binary offset value to increment / loop end */ #define ES_P2_END_INCM (0x07<<19) /* mask for above */ #define ES_P2_END_INCI(i) (((i)>>16)&0x07)/* binary offset value to increment / loop end */ #define ES_P2_ST_INCO(o) (((o)&0x07)<<16)/* binary offset value to increment / start */ #define ES_P2_ST_INCM (0x07<<16) /* mask for above */ #define ES_P2_ST_INCI(i) (((i)<<16)&0x07)/* binary offset value to increment / start */ #define ES_R1_LOOP_SEL (1<<15) /* ADC; 0 - loop mode; 1 = stop mode */ #define ES_P2_LOOP_SEL (1<<14) /* DAC2; 0 - loop mode; 1 = stop mode */ #define ES_P1_LOOP_SEL (1<<13) /* DAC1; 0 - loop mode; 1 = stop mode */ #define ES_P2_PAUSE (1<<12) /* DAC2; 0 - play mode; 1 = pause mode */ #define ES_P1_PAUSE (1<<11) /* DAC1; 0 - play mode; 1 = pause mode */ #define ES_R1_INT_EN (1<<10) /* ADC interrupt enable */ #define ES_P2_INT_EN (1<<9) /* DAC2 interrupt enable */ #define ES_P1_INT_EN (1<<8) /* DAC1 interrupt enable */ #define ES_P1_SCT_RLD (1<<7) /* force sample counter reload for DAC1 */ #define ES_P2_DAC_SEN (1<<6) /* when stop mode: 0 - DAC2 play back zeros; 1 = DAC2 play back last sample */ #define ES_R1_MODEO(o) (((o)&0x03)<<4) /* ADC mode; 0 = 8-bit mono; 1 = 8-bit stereo; 2 = 16-bit mono; 3 = 16-bit stereo */ #define ES_R1_MODEM (0x03<<4) /* mask for above */ #define ES_R1_MODEI(i) (((i)>>4)&0x03) #define ES_P2_MODEO(o) (((o)&0x03)<<2) /* DAC2 mode; -- '' -- */ #define ES_P2_MODEM (0x03<<2) /* mask for above */ #define ES_P2_MODEI(i) (((i)>>2)&0x03) #define ES_P1_MODEO(o) (((o)&0x03)<<0) /* DAC1 mode; -- '' -- */ #define ES_P1_MODEM (0x03<<0) /* mask for above */ #define ES_P1_MODEI(i) (((i)>>0)&0x03) #define ES_REG_DAC1_COUNT 0x24 /* R/W: DAC1 sample count register */ #define ES_REG_DAC2_COUNT 0x28 /* R/W: DAC2 sample count register */ #define ES_REG_ADC_COUNT 0x2c /* R/W: ADC sample count register */ #define ES_REG_CURR_COUNT(i) (((i)>>16)&0xffff) #define ES_REG_COUNTO(o) (((o)&0xffff)<<0) #define ES_REG_COUNTM (0xffff<<0) #define ES_REG_COUNTI(i) (((i)>>0)&0xffff) #define ES_REG_DAC1_FRAME 0x30 /* R/W: PAGE 0x0c; DAC1 frame address */ #define ES_REG_DAC1_SIZE 0x34 /* R/W: PAGE 0x0c; DAC1 frame size */ #define ES_REG_DAC2_FRAME 0x38 /* R/W: PAGE 0x0c; DAC2 frame address */ #define ES_REG_DAC2_SIZE 0x3c /* R/W: PAGE 0x0c; DAC2 frame size */ #define ES_REG_ADC_FRAME 0x30 /* R/W: PAGE 0x0d; ADC frame address */ #define ES_REG_ADC_SIZE 0x34 /* R/W: PAGE 0x0d; ADC frame size */ #define ES_REG_FCURR_COUNTO(o) (((o)&0xffff)<<16) #define ES_REG_FCURR_COUNTM (0xffff<<16) #define ES_REG_FCURR_COUNTI(i) (((i)>>14)&0x3fffc) #define ES_REG_FSIZEO(o) (((o)&0xffff)<<0) #define ES_REG_FSIZEM (0xffff<<0) #define ES_REG_FSIZEI(i) (((i)>>0)&0xffff) #define ES_REG_PHANTOM_FRAME 0x38 /* R/W: PAGE 0x0d: phantom frame address */ #define ES_REG_PHANTOM_COUNT 0x3c /* R/W: PAGE 0x0d: phantom frame count */ #define ES_REG_UART_FIFO 0x30 /* R/W: PAGE 0x0e; UART FIFO register */ #define ES_REG_UF_VALID (1<<8) #define ES_REG_UF_BYTEO(o) (((o)&0xff)<<0) #define ES_REG_UF_BYTEM (0xff<<0) #define ES_REG_UF_BYTEI(i) (((i)>>0)&0xff) /* * Pages */ #define ES_PAGE_DAC 0x0c #define ES_PAGE_ADC 0x0d #define ES_PAGE_UART 0x0e #define ES_PAGE_UART1 0x0f /* * Sample rate converter addresses */ #define ES_SMPREG_DAC1 0x70 #define ES_SMPREG_DAC2 0x74 #define ES_SMPREG_ADC 0x78 #define ES_SMPREG_VOL_ADC 0x6c #define ES_SMPREG_VOL_DAC1 0x7c #define ES_SMPREG_VOL_DAC2 0x7e #define ES_SMPREG_TRUNC_N 0x00 #define ES_SMPREG_INT_REGS 0x01 #define ES_SMPREG_ACCUM_FRAC 0x02 #define ES_SMPREG_VFREQ_FRAC 0x03 /* * Some contants */ #define ES_1370_SRCLOCK 1411200 #define ES_1370_SRTODIV(x) (ES_1370_SRCLOCK/(x)-2) /* * Open modes */ #define ES_MODE_PLAY1 0x0001 #define ES_MODE_PLAY2 0x0002 #define ES_MODE_CAPTURE 0x0004 #define ES_MODE_OUTPUT 0x0001 /* for MIDI */ #define ES_MODE_INPUT 0x0002 /* for MIDI */ /* */ struct ensoniq { spinlock_t reg_lock; struct mutex src_mutex; int irq; unsigned long playback1size; unsigned long playback2size; unsigned long capture3size; unsigned long port; unsigned int mode; unsigned int uartm; /* UART mode */ unsigned int ctrl; /* control register */ unsigned int sctrl; /* serial control register */ unsigned int cssr; /* control status register */ unsigned int uartc; /* uart control register */ unsigned int rev; /* chip revision */ union { #ifdef CHIP1371 struct { struct snd_ac97 *ac97; } es1371; #else struct { int pclkdiv_lock; struct snd_ak4531 *ak4531; } es1370; #endif } u; struct pci_dev *pci; struct snd_card *card; struct snd_pcm *pcm1; /* DAC1/ADC PCM */ struct snd_pcm *pcm2; /* DAC2 PCM */ struct snd_pcm_substream *playback1_substream; struct snd_pcm_substream *playback2_substream; struct snd_pcm_substream *capture_substream; unsigned int p1_dma_size; unsigned int p2_dma_size; unsigned int c_dma_size; unsigned int p1_period_size; unsigned int p2_period_size; unsigned int c_period_size; struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *midi_input; struct snd_rawmidi_substream *midi_output; unsigned int spdif; unsigned int spdif_default; unsigned int spdif_stream; #ifdef CHIP1370 struct snd_dma_buffer *dma_bug; #endif #ifdef SUPPORT_JOYSTICK struct gameport *gameport; #endif }; static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id); static const struct pci_device_id snd_audiopci_ids[] = { #ifdef CHIP1370 { PCI_VDEVICE(ENSONIQ, 0x5000), 0, }, /* ES1370 */ #endif #ifdef CHIP1371 { PCI_VDEVICE(ENSONIQ, 0x1371), 0, }, /* ES1371 */ { PCI_VDEVICE(ENSONIQ, 0x5880), 0, }, /* ES1373 - CT5880 */ { PCI_VDEVICE(ECTIVA, 0x8938), 0, }, /* Ectiva EV1938 */ #endif { 0, } }; MODULE_DEVICE_TABLE(pci, snd_audiopci_ids); /* * constants */ #define POLL_COUNT 0xa000 #ifdef CHIP1370 static const unsigned int snd_es1370_fixed_rates[] = {5512, 11025, 22050, 44100}; static const struct snd_pcm_hw_constraint_list snd_es1370_hw_constraints_rates = { .count = 4, .list = snd_es1370_fixed_rates, .mask = 0, }; static const struct snd_ratnum es1370_clock = { .num = ES_1370_SRCLOCK, .den_min = 29, .den_max = 353, .den_step = 1, }; static const struct snd_pcm_hw_constraint_ratnums snd_es1370_hw_constraints_clock = { .nrats = 1, .rats = &es1370_clock, }; #else static const struct snd_ratden es1371_dac_clock = { .num_min = 3000 * (1 << 15), .num_max = 48000 * (1 << 15), .num_step = 3000, .den = 1 << 15, }; static const struct snd_pcm_hw_constraint_ratdens snd_es1371_hw_constraints_dac_clock = { .nrats = 1, .rats = &es1371_dac_clock, }; static const struct snd_ratnum es1371_adc_clock = { .num = 48000 << 15, .den_min = 32768, .den_max = 393216, .den_step = 1, }; static const struct snd_pcm_hw_constraint_ratnums snd_es1371_hw_constraints_adc_clock = { .nrats = 1, .rats = &es1371_adc_clock, }; #endif static const unsigned int snd_ensoniq_sample_shift[] = {0, 1, 1, 2}; /* * common I/O routines */ #ifdef CHIP1371 static unsigned int snd_es1371_wait_src_ready(struct ensoniq * ensoniq) { unsigned int t, r = 0; for (t = 0; t < POLL_COUNT; t++) { r = inl(ES_REG(ensoniq, 1371_SMPRATE)); if ((r & ES_1371_SRC_RAM_BUSY) == 0) return r; cond_resched(); } dev_err(ensoniq->card->dev, "wait src ready timeout 0x%lx [0x%x]\n", ES_REG(ensoniq, 1371_SMPRATE), r); return 0; } static unsigned int snd_es1371_src_read(struct ensoniq * ensoniq, unsigned short reg) { unsigned int temp, i, orig, r; /* wait for ready */ temp = orig = snd_es1371_wait_src_ready(ensoniq); /* expose the SRC state bits */ r = temp & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1); r |= ES_1371_SRC_RAM_ADDRO(reg) | 0x10000; outl(r, ES_REG(ensoniq, 1371_SMPRATE)); /* now, wait for busy and the correct time to read */ temp = snd_es1371_wait_src_ready(ensoniq); if ((temp & 0x00870000) != 0x00010000) { /* wait for the right state */ for (i = 0; i < POLL_COUNT; i++) { temp = inl(ES_REG(ensoniq, 1371_SMPRATE)); if ((temp & 0x00870000) == 0x00010000) break; } } /* hide the state bits */ r = orig & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1); r |= ES_1371_SRC_RAM_ADDRO(reg); outl(r, ES_REG(ensoniq, 1371_SMPRATE)); return temp; } static void snd_es1371_src_write(struct ensoniq * ensoniq, unsigned short reg, unsigned short data) { unsigned int r; r = snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1); r |= ES_1371_SRC_RAM_ADDRO(reg) | ES_1371_SRC_RAM_DATAO(data); outl(r | ES_1371_SRC_RAM_WE, ES_REG(ensoniq, 1371_SMPRATE)); } #endif /* CHIP1371 */ #ifdef CHIP1370 static void snd_es1370_codec_write(struct snd_ak4531 *ak4531, unsigned short reg, unsigned short val) { struct ensoniq *ensoniq = ak4531->private_data; unsigned long end_time = jiffies + HZ / 10; #if 0 dev_dbg(ensoniq->card->dev, "CODEC WRITE: reg = 0x%x, val = 0x%x (0x%x), creg = 0x%x\n", reg, val, ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC)); #endif do { if (!(inl(ES_REG(ensoniq, STATUS)) & ES_1370_CSTAT)) { outw(ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC)); return; } schedule_timeout_uninterruptible(1); } while (time_after(end_time, jiffies)); dev_err(ensoniq->card->dev, "codec write timeout, status = 0x%x\n", inl(ES_REG(ensoniq, STATUS))); } #endif /* CHIP1370 */ #ifdef CHIP1371 static inline bool is_ev1938(struct ensoniq *ensoniq) { return ensoniq->pci->device == 0x8938; } static void snd_es1371_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct ensoniq *ensoniq = ac97->private_data; unsigned int t, x, flag; flag = is_ev1938(ensoniq) ? EV_1938_CODEC_MAGIC : 0; mutex_lock(&ensoniq->src_mutex); for (t = 0; t < POLL_COUNT; t++) { if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) { /* save the current state for latter */ x = snd_es1371_wait_src_ready(ensoniq); outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000, ES_REG(ensoniq, 1371_SMPRATE)); /* wait for not busy (state 0) first to avoid transition states */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00000000) break; } /* wait for a SAFE time to write addr/data and then do it, dammit */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00010000) break; } outl(ES_1371_CODEC_WRITE(reg, val) | flag, ES_REG(ensoniq, 1371_CODEC)); /* restore SRC reg */ snd_es1371_wait_src_ready(ensoniq); outl(x, ES_REG(ensoniq, 1371_SMPRATE)); mutex_unlock(&ensoniq->src_mutex); return; } } mutex_unlock(&ensoniq->src_mutex); dev_err(ensoniq->card->dev, "codec write timeout at 0x%lx [0x%x]\n", ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC))); } static unsigned short snd_es1371_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct ensoniq *ensoniq = ac97->private_data; unsigned int t, x, flag, fail = 0; flag = is_ev1938(ensoniq) ? EV_1938_CODEC_MAGIC : 0; __again: mutex_lock(&ensoniq->src_mutex); for (t = 0; t < POLL_COUNT; t++) { if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) { /* save the current state for latter */ x = snd_es1371_wait_src_ready(ensoniq); outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000, ES_REG(ensoniq, 1371_SMPRATE)); /* wait for not busy (state 0) first to avoid transition states */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00000000) break; } /* wait for a SAFE time to write addr/data and then do it, dammit */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00010000) break; } outl(ES_1371_CODEC_READS(reg) | flag, ES_REG(ensoniq, 1371_CODEC)); /* restore SRC reg */ snd_es1371_wait_src_ready(ensoniq); outl(x, ES_REG(ensoniq, 1371_SMPRATE)); /* wait for WIP again */ for (t = 0; t < POLL_COUNT; t++) { if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) break; } /* now wait for the stinkin' data (RDY) */ for (t = 0; t < POLL_COUNT; t++) { x = inl(ES_REG(ensoniq, 1371_CODEC)); if (x & ES_1371_CODEC_RDY) { if (is_ev1938(ensoniq)) { for (t = 0; t < 100; t++) inl(ES_REG(ensoniq, CONTROL)); x = inl(ES_REG(ensoniq, 1371_CODEC)); } mutex_unlock(&ensoniq->src_mutex); return ES_1371_CODEC_READ(x); } } mutex_unlock(&ensoniq->src_mutex); if (++fail > 10) { dev_err(ensoniq->card->dev, "codec read timeout (final) at 0x%lx, reg = 0x%x [0x%x]\n", ES_REG(ensoniq, 1371_CODEC), reg, inl(ES_REG(ensoniq, 1371_CODEC))); return 0; } goto __again; } } mutex_unlock(&ensoniq->src_mutex); dev_err(ensoniq->card->dev, "codec read timeout at 0x%lx [0x%x]\n", ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC))); return 0; } static void snd_es1371_codec_wait(struct snd_ac97 *ac97) { msleep(750); snd_es1371_codec_read(ac97, AC97_RESET); snd_es1371_codec_read(ac97, AC97_VENDOR_ID1); snd_es1371_codec_read(ac97, AC97_VENDOR_ID2); msleep(50); } static void snd_es1371_adc_rate(struct ensoniq * ensoniq, unsigned int rate) { unsigned int n, truncm, freq; mutex_lock(&ensoniq->src_mutex); n = rate / 3000; if ((1 << n) & ((1 << 15) | (1 << 13) | (1 << 11) | (1 << 9))) n--; truncm = (21 * n - 1) | 1; freq = ((48000UL << 15) / rate) * n; if (rate >= 24000) { if (truncm > 239) truncm = 239; snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N, (((239 - truncm) >> 1) << 9) | (n << 4)); } else { if (truncm > 119) truncm = 119; snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N, 0x8000 | (((119 - truncm) >> 1) << 9) | (n << 4)); } snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_INT_REGS, (snd_es1371_src_read(ensoniq, ES_SMPREG_ADC + ES_SMPREG_INT_REGS) & 0x00ff) | ((freq >> 5) & 0xfc00)); snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, n << 8); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, n << 8); mutex_unlock(&ensoniq->src_mutex); } static void snd_es1371_dac1_rate(struct ensoniq * ensoniq, unsigned int rate) { unsigned int freq, r; mutex_lock(&ensoniq->src_mutex); freq = DIV_ROUND_CLOSEST(rate << 15, 3000); r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P2 | ES_1371_DIS_R1)) | ES_1371_DIS_P1; outl(r, ES_REG(ensoniq, 1371_SMPRATE)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, (snd_es1371_src_read(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS) & 0x00ff) | ((freq >> 5) & 0xfc00)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P2 | ES_1371_DIS_R1)); outl(r, ES_REG(ensoniq, 1371_SMPRATE)); mutex_unlock(&ensoniq->src_mutex); } static void snd_es1371_dac2_rate(struct ensoniq * ensoniq, unsigned int rate) { unsigned int freq, r; mutex_lock(&ensoniq->src_mutex); freq = DIV_ROUND_CLOSEST(rate << 15, 3000); r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_R1)) | ES_1371_DIS_P2; outl(r, ES_REG(ensoniq, 1371_SMPRATE)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, (snd_es1371_src_read(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS) & 0x00ff) | ((freq >> 5) & 0xfc00)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_R1)); outl(r, ES_REG(ensoniq, 1371_SMPRATE)); mutex_unlock(&ensoniq->src_mutex); } #endif /* CHIP1371 */ static int snd_ensoniq_trigger(struct snd_pcm_substream *substream, int cmd) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: { unsigned int what = 0; struct snd_pcm_substream *s; snd_pcm_group_for_each_entry(s, substream) { if (s == ensoniq->playback1_substream) { what |= ES_P1_PAUSE; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->playback2_substream) { what |= ES_P2_PAUSE; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->capture_substream) return -EINVAL; } spin_lock(&ensoniq->reg_lock); if (cmd == SNDRV_PCM_TRIGGER_PAUSE_PUSH) ensoniq->sctrl |= what; else ensoniq->sctrl &= ~what; outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); spin_unlock(&ensoniq->reg_lock); break; } case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_STOP: { unsigned int what = 0; struct snd_pcm_substream *s; snd_pcm_group_for_each_entry(s, substream) { if (s == ensoniq->playback1_substream) { what |= ES_DAC1_EN; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->playback2_substream) { what |= ES_DAC2_EN; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->capture_substream) { what |= ES_ADC_EN; snd_pcm_trigger_done(s, substream); } } spin_lock(&ensoniq->reg_lock); if (cmd == SNDRV_PCM_TRIGGER_START) ensoniq->ctrl |= what; else ensoniq->ctrl &= ~what; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock(&ensoniq->reg_lock); break; } default: return -EINVAL; } return 0; } /* * PCM part */ static int snd_ensoniq_playback1_prepare(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int mode = 0; ensoniq->p1_dma_size = snd_pcm_lib_buffer_bytes(substream); ensoniq->p1_period_size = snd_pcm_lib_period_bytes(substream); if (snd_pcm_format_width(runtime->format) == 16) mode |= 0x02; if (runtime->channels > 1) mode |= 0x01; spin_lock_irq(&ensoniq->reg_lock); ensoniq->ctrl &= ~ES_DAC1_EN; #ifdef CHIP1371 /* 48k doesn't need SRC (it breaks AC3-passthru) */ if (runtime->rate == 48000) ensoniq->ctrl |= ES_1373_BYPASS_P1; else ensoniq->ctrl &= ~ES_1373_BYPASS_P1; #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); outl(runtime->dma_addr, ES_REG(ensoniq, DAC1_FRAME)); outl((ensoniq->p1_dma_size >> 2) - 1, ES_REG(ensoniq, DAC1_SIZE)); ensoniq->sctrl &= ~(ES_P1_LOOP_SEL | ES_P1_PAUSE | ES_P1_SCT_RLD | ES_P1_MODEM); ensoniq->sctrl |= ES_P1_INT_EN | ES_P1_MODEO(mode); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl((ensoniq->p1_period_size >> snd_ensoniq_sample_shift[mode]) - 1, ES_REG(ensoniq, DAC1_COUNT)); #ifdef CHIP1370 ensoniq->ctrl &= ~ES_1370_WTSRSELM; switch (runtime->rate) { case 5512: ensoniq->ctrl |= ES_1370_WTSRSEL(0); break; case 11025: ensoniq->ctrl |= ES_1370_WTSRSEL(1); break; case 22050: ensoniq->ctrl |= ES_1370_WTSRSEL(2); break; case 44100: ensoniq->ctrl |= ES_1370_WTSRSEL(3); break; default: snd_BUG(); } #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); #ifndef CHIP1370 snd_es1371_dac1_rate(ensoniq, runtime->rate); #endif return 0; } static int snd_ensoniq_playback2_prepare(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int mode = 0; ensoniq->p2_dma_size = snd_pcm_lib_buffer_bytes(substream); ensoniq->p2_period_size = snd_pcm_lib_period_bytes(substream); if (snd_pcm_format_width(runtime->format) == 16) mode |= 0x02; if (runtime->channels > 1) mode |= 0x01; spin_lock_irq(&ensoniq->reg_lock); ensoniq->ctrl &= ~ES_DAC2_EN; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); outl(runtime->dma_addr, ES_REG(ensoniq, DAC2_FRAME)); outl((ensoniq->p2_dma_size >> 2) - 1, ES_REG(ensoniq, DAC2_SIZE)); ensoniq->sctrl &= ~(ES_P2_LOOP_SEL | ES_P2_PAUSE | ES_P2_DAC_SEN | ES_P2_END_INCM | ES_P2_ST_INCM | ES_P2_MODEM); ensoniq->sctrl |= ES_P2_INT_EN | ES_P2_MODEO(mode) | ES_P2_END_INCO(mode & 2 ? 2 : 1) | ES_P2_ST_INCO(0); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl((ensoniq->p2_period_size >> snd_ensoniq_sample_shift[mode]) - 1, ES_REG(ensoniq, DAC2_COUNT)); #ifdef CHIP1370 if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_CAPTURE)) { ensoniq->ctrl &= ~ES_1370_PCLKDIVM; ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate)); ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_PLAY2; } #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); #ifndef CHIP1370 snd_es1371_dac2_rate(ensoniq, runtime->rate); #endif return 0; } static int snd_ensoniq_capture_prepare(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int mode = 0; ensoniq->c_dma_size = snd_pcm_lib_buffer_bytes(substream); ensoniq->c_period_size = snd_pcm_lib_period_bytes(substream); if (snd_pcm_format_width(runtime->format) == 16) mode |= 0x02; if (runtime->channels > 1) mode |= 0x01; spin_lock_irq(&ensoniq->reg_lock); ensoniq->ctrl &= ~ES_ADC_EN; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); outl(runtime->dma_addr, ES_REG(ensoniq, ADC_FRAME)); outl((ensoniq->c_dma_size >> 2) - 1, ES_REG(ensoniq, ADC_SIZE)); ensoniq->sctrl &= ~(ES_R1_LOOP_SEL | ES_R1_MODEM); ensoniq->sctrl |= ES_R1_INT_EN | ES_R1_MODEO(mode); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl((ensoniq->c_period_size >> snd_ensoniq_sample_shift[mode]) - 1, ES_REG(ensoniq, ADC_COUNT)); #ifdef CHIP1370 if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_PLAY2)) { ensoniq->ctrl &= ~ES_1370_PCLKDIVM; ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate)); ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_CAPTURE; } #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); #ifndef CHIP1370 snd_es1371_adc_rate(ensoniq, runtime->rate); #endif return 0; } static snd_pcm_uframes_t snd_ensoniq_playback1_pointer(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); size_t ptr; spin_lock(&ensoniq->reg_lock); if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC1_EN) { outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC1_SIZE))); ptr = bytes_to_frames(substream->runtime, ptr); } else { ptr = 0; } spin_unlock(&ensoniq->reg_lock); return ptr; } static snd_pcm_uframes_t snd_ensoniq_playback2_pointer(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); size_t ptr; spin_lock(&ensoniq->reg_lock); if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC2_EN) { outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC2_SIZE))); ptr = bytes_to_frames(substream->runtime, ptr); } else { ptr = 0; } spin_unlock(&ensoniq->reg_lock); return ptr; } static snd_pcm_uframes_t snd_ensoniq_capture_pointer(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); size_t ptr; spin_lock(&ensoniq->reg_lock); if (inl(ES_REG(ensoniq, CONTROL)) & ES_ADC_EN) { outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, ADC_SIZE))); ptr = bytes_to_frames(substream->runtime, ptr); } else { ptr = 0; } spin_unlock(&ensoniq->reg_lock); return ptr; } static const struct snd_pcm_hardware snd_ensoniq_playback1 = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = #ifndef CHIP1370 SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, #else (SNDRV_PCM_RATE_KNOT | /* 5512Hz rate */ SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_22050 | SNDRV_PCM_RATE_44100), #endif .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_ensoniq_playback2 = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_ensoniq_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static int snd_ensoniq_playback1_open(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; ensoniq->mode |= ES_MODE_PLAY1; ensoniq->playback1_substream = substream; runtime->hw = snd_ensoniq_playback1; snd_pcm_set_sync(substream); spin_lock_irq(&ensoniq->reg_lock); if (ensoniq->spdif && ensoniq->playback2_substream == NULL) ensoniq->spdif_stream = ensoniq->spdif_default; spin_unlock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1370_hw_constraints_rates); #else snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1371_hw_constraints_dac_clock); #endif return 0; } static int snd_ensoniq_playback2_open(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; ensoniq->mode |= ES_MODE_PLAY2; ensoniq->playback2_substream = substream; runtime->hw = snd_ensoniq_playback2; snd_pcm_set_sync(substream); spin_lock_irq(&ensoniq->reg_lock); if (ensoniq->spdif && ensoniq->playback1_substream == NULL) ensoniq->spdif_stream = ensoniq->spdif_default; spin_unlock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1370_hw_constraints_clock); #else snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1371_hw_constraints_dac_clock); #endif return 0; } static int snd_ensoniq_capture_open(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; ensoniq->mode |= ES_MODE_CAPTURE; ensoniq->capture_substream = substream; runtime->hw = snd_ensoniq_capture; snd_pcm_set_sync(substream); #ifdef CHIP1370 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1370_hw_constraints_clock); #else snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1371_hw_constraints_adc_clock); #endif return 0; } static int snd_ensoniq_playback1_close(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); ensoniq->playback1_substream = NULL; ensoniq->mode &= ~ES_MODE_PLAY1; return 0; } static int snd_ensoniq_playback2_close(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); ensoniq->playback2_substream = NULL; spin_lock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_PLAY2; #endif ensoniq->mode &= ~ES_MODE_PLAY2; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_capture_close(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); ensoniq->capture_substream = NULL; spin_lock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_CAPTURE; #endif ensoniq->mode &= ~ES_MODE_CAPTURE; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static const struct snd_pcm_ops snd_ensoniq_playback1_ops = { .open = snd_ensoniq_playback1_open, .close = snd_ensoniq_playback1_close, .prepare = snd_ensoniq_playback1_prepare, .trigger = snd_ensoniq_trigger, .pointer = snd_ensoniq_playback1_pointer, }; static const struct snd_pcm_ops snd_ensoniq_playback2_ops = { .open = snd_ensoniq_playback2_open, .close = snd_ensoniq_playback2_close, .prepare = snd_ensoniq_playback2_prepare, .trigger = snd_ensoniq_trigger, .pointer = snd_ensoniq_playback2_pointer, }; static const struct snd_pcm_ops snd_ensoniq_capture_ops = { .open = snd_ensoniq_capture_open, .close = snd_ensoniq_capture_close, .prepare = snd_ensoniq_capture_prepare, .trigger = snd_ensoniq_trigger, .pointer = snd_ensoniq_capture_pointer, }; static const struct snd_pcm_chmap_elem surround_map[] = { { .channels = 1, .map = { SNDRV_CHMAP_MONO } }, { .channels = 2, .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, { } }; static int snd_ensoniq_pcm(struct ensoniq *ensoniq, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(ensoniq->card, CHIP_NAME "/1", device, 1, 1, &pcm); if (err < 0) return err; #ifdef CHIP1370 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops); #else snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops); #endif snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ensoniq_capture_ops); pcm->private_data = ensoniq; pcm->info_flags = 0; strcpy(pcm->name, CHIP_NAME " DAC2/ADC"); ensoniq->pcm1 = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &ensoniq->pci->dev, 64*1024, 128*1024); #ifdef CHIP1370 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, surround_map, 2, 0, NULL); #else err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_std_chmaps, 2, 0, NULL); #endif return err; } static int snd_ensoniq_pcm2(struct ensoniq *ensoniq, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(ensoniq->card, CHIP_NAME "/2", device, 1, 0, &pcm); if (err < 0) return err; #ifdef CHIP1370 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops); #else snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops); #endif pcm->private_data = ensoniq; pcm->info_flags = 0; strcpy(pcm->name, CHIP_NAME " DAC1"); ensoniq->pcm2 = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &ensoniq->pci->dev, 64*1024, 128*1024); #ifdef CHIP1370 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_std_chmaps, 2, 0, NULL); #else err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, surround_map, 2, 0, NULL); #endif return err; } /* * Mixer section */ /* * ENS1371 mixer (including SPDIF interface) */ #ifdef CHIP1371 static int snd_ens1373_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ens1373_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.iec958.status[0] = (ensoniq->spdif_default >> 0) & 0xff; ucontrol->value.iec958.status[1] = (ensoniq->spdif_default >> 8) & 0xff; ucontrol->value.iec958.status[2] = (ensoniq->spdif_default >> 16) & 0xff; ucontrol->value.iec958.status[3] = (ensoniq->spdif_default >> 24) & 0xff; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ens1373_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ((u32)ucontrol->value.iec958.status[0] << 0) | ((u32)ucontrol->value.iec958.status[1] << 8) | ((u32)ucontrol->value.iec958.status[2] << 16) | ((u32)ucontrol->value.iec958.status[3] << 24); spin_lock_irq(&ensoniq->reg_lock); change = ensoniq->spdif_default != val; ensoniq->spdif_default = val; if (change && ensoniq->playback1_substream == NULL && ensoniq->playback2_substream == NULL) outl(val, ES_REG(ensoniq, CHANNEL_STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } static int snd_ens1373_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static int snd_ens1373_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.iec958.status[0] = (ensoniq->spdif_stream >> 0) & 0xff; ucontrol->value.iec958.status[1] = (ensoniq->spdif_stream >> 8) & 0xff; ucontrol->value.iec958.status[2] = (ensoniq->spdif_stream >> 16) & 0xff; ucontrol->value.iec958.status[3] = (ensoniq->spdif_stream >> 24) & 0xff; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ens1373_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ((u32)ucontrol->value.iec958.status[0] << 0) | ((u32)ucontrol->value.iec958.status[1] << 8) | ((u32)ucontrol->value.iec958.status[2] << 16) | ((u32)ucontrol->value.iec958.status[3] << 24); spin_lock_irq(&ensoniq->reg_lock); change = ensoniq->spdif_stream != val; ensoniq->spdif_stream = val; if (change && (ensoniq->playback1_substream != NULL || ensoniq->playback2_substream != NULL)) outl(val, ES_REG(ensoniq, CHANNEL_STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } #define ES1371_SPDIF(xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_es1371_spdif_info, \ .get = snd_es1371_spdif_get, .put = snd_es1371_spdif_put } #define snd_es1371_spdif_info snd_ctl_boolean_mono_info static int snd_es1371_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.integer.value[0] = ensoniq->ctrl & ES_1373_SPDIF_THRU ? 1 : 0; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_es1371_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int nval1, nval2; int change; nval1 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_THRU : 0; nval2 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_EN : 0; spin_lock_irq(&ensoniq->reg_lock); change = (ensoniq->ctrl & ES_1373_SPDIF_THRU) != nval1; ensoniq->ctrl &= ~ES_1373_SPDIF_THRU; ensoniq->ctrl |= nval1; ensoniq->cssr &= ~ES_1373_SPDIF_EN; ensoniq->cssr |= nval2; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } /* spdif controls */ static const struct snd_kcontrol_new snd_es1371_mixer_spdif[] = { ES1371_SPDIF(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH)), { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_ens1373_spdif_info, .get = snd_ens1373_spdif_default_get, .put = snd_ens1373_spdif_default_put, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), .info = snd_ens1373_spdif_info, .get = snd_ens1373_spdif_mask_get }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), .info = snd_ens1373_spdif_info, .get = snd_ens1373_spdif_stream_get, .put = snd_ens1373_spdif_stream_put }, }; #define snd_es1373_rear_info snd_ctl_boolean_mono_info static int snd_es1373_rear_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int val = 0; spin_lock_irq(&ensoniq->reg_lock); if ((ensoniq->cssr & (ES_1373_REAR_BIT27|ES_1373_REAR_BIT26| ES_1373_REAR_BIT24)) == ES_1373_REAR_BIT26) val = 1; ucontrol->value.integer.value[0] = val; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_es1373_rear_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int nval1; int change; nval1 = ucontrol->value.integer.value[0] ? ES_1373_REAR_BIT26 : (ES_1373_REAR_BIT27|ES_1373_REAR_BIT24); spin_lock_irq(&ensoniq->reg_lock); change = (ensoniq->cssr & (ES_1373_REAR_BIT27| ES_1373_REAR_BIT26|ES_1373_REAR_BIT24)) != nval1; ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT26|ES_1373_REAR_BIT24); ensoniq->cssr |= nval1; outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } static const struct snd_kcontrol_new snd_ens1373_rear = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "AC97 2ch->4ch Copy Switch", .info = snd_es1373_rear_info, .get = snd_es1373_rear_get, .put = snd_es1373_rear_put, }; #define snd_es1373_line_info snd_ctl_boolean_mono_info static int snd_es1373_line_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int val = 0; spin_lock_irq(&ensoniq->reg_lock); if (ensoniq->ctrl & ES_1371_GPIO_OUT(4)) val = 1; ucontrol->value.integer.value[0] = val; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_es1373_line_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int changed; unsigned int ctrl; spin_lock_irq(&ensoniq->reg_lock); ctrl = ensoniq->ctrl; if (ucontrol->value.integer.value[0]) ensoniq->ctrl |= ES_1371_GPIO_OUT(4); /* switch line-in -> rear out */ else ensoniq->ctrl &= ~ES_1371_GPIO_OUT(4); changed = (ctrl != ensoniq->ctrl); if (changed) outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); return changed; } static const struct snd_kcontrol_new snd_ens1373_line = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Line In->Rear Out Switch", .info = snd_es1373_line_info, .get = snd_es1373_line_get, .put = snd_es1373_line_put, }; static void snd_ensoniq_mixer_free_ac97(struct snd_ac97 *ac97) { struct ensoniq *ensoniq = ac97->private_data; ensoniq->u.es1371.ac97 = NULL; } struct es1371_quirk { unsigned short vid; /* vendor ID */ unsigned short did; /* device ID */ unsigned char rev; /* revision */ }; static int es1371_quirk_lookup(struct ensoniq *ensoniq, const struct es1371_quirk *list) { while (list->vid != (unsigned short)PCI_ANY_ID) { if (ensoniq->pci->vendor == list->vid && ensoniq->pci->device == list->did && ensoniq->rev == list->rev) return 1; list++; } return 0; } static const struct es1371_quirk es1371_spdif_present[] = { { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 }, { .vid = PCI_ANY_ID, .did = PCI_ANY_ID } }; static const struct snd_pci_quirk ens1373_line_quirk[] = { SND_PCI_QUIRK_ID(0x1274, 0x2000), /* GA-7DXR */ SND_PCI_QUIRK_ID(0x1458, 0xa000), /* GA-8IEXP */ { } /* end */ }; static int snd_ensoniq_1371_mixer(struct ensoniq *ensoniq, int has_spdif, int has_line) { struct snd_card *card = ensoniq->card; struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int err; static const struct snd_ac97_bus_ops ops = { .write = snd_es1371_codec_write, .read = snd_es1371_codec_read, .wait = snd_es1371_codec_wait, }; err = snd_ac97_bus(card, 0, &ops, NULL, &pbus); if (err < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = ensoniq; ac97.private_free = snd_ensoniq_mixer_free_ac97; ac97.pci = ensoniq->pci; ac97.scaps = AC97_SCAP_AUDIO; err = snd_ac97_mixer(pbus, &ac97, &ensoniq->u.es1371.ac97); if (err < 0) return err; if (has_spdif > 0 || (!has_spdif && es1371_quirk_lookup(ensoniq, es1371_spdif_present))) { struct snd_kcontrol *kctl; int i, is_spdif = 0; ensoniq->spdif_default = ensoniq->spdif_stream = SNDRV_PCM_DEFAULT_CON_SPDIF; outl(ensoniq->spdif_default, ES_REG(ensoniq, CHANNEL_STATUS)); if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SPDIF) is_spdif++; for (i = 0; i < ARRAY_SIZE(snd_es1371_mixer_spdif); i++) { kctl = snd_ctl_new1(&snd_es1371_mixer_spdif[i], ensoniq); if (!kctl) return -ENOMEM; kctl->id.index = is_spdif; err = snd_ctl_add(card, kctl); if (err < 0) return err; } } if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SDAC) { /* mirror rear to front speakers */ ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT24); ensoniq->cssr |= ES_1373_REAR_BIT26; err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_rear, ensoniq)); if (err < 0) return err; } if (has_line > 0 || snd_pci_quirk_lookup(ensoniq->pci, ens1373_line_quirk)) { err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_line, ensoniq)); if (err < 0) return err; } return 0; } #endif /* CHIP1371 */ /* generic control callbacks for ens1370 */ #ifdef CHIP1370 #define ENSONIQ_CONTROL(xname, mask) \ { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = xname, .info = snd_ensoniq_control_info, \ .get = snd_ensoniq_control_get, .put = snd_ensoniq_control_put, \ .private_value = mask } #define snd_ensoniq_control_info snd_ctl_boolean_mono_info static int snd_ensoniq_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int mask = kcontrol->private_value; spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.integer.value[0] = ensoniq->ctrl & mask ? 1 : 0; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_control_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int mask = kcontrol->private_value; unsigned int nval; int change; nval = ucontrol->value.integer.value[0] ? mask : 0; spin_lock_irq(&ensoniq->reg_lock); change = (ensoniq->ctrl & mask) != nval; ensoniq->ctrl &= ~mask; ensoniq->ctrl |= nval; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); return change; } /* * ENS1370 mixer */ static const struct snd_kcontrol_new snd_es1370_controls[2] = { ENSONIQ_CONTROL("PCM 0 Output also on Line-In Jack", ES_1370_XCTL0), ENSONIQ_CONTROL("Mic +5V bias", ES_1370_XCTL1) }; #define ES1370_CONTROLS ARRAY_SIZE(snd_es1370_controls) static void snd_ensoniq_mixer_free_ak4531(struct snd_ak4531 *ak4531) { struct ensoniq *ensoniq = ak4531->private_data; ensoniq->u.es1370.ak4531 = NULL; } static int snd_ensoniq_1370_mixer(struct ensoniq *ensoniq) { struct snd_card *card = ensoniq->card; struct snd_ak4531 ak4531; unsigned int idx; int err; /* try reset AK4531 */ outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); memset(&ak4531, 0, sizeof(ak4531)); ak4531.write = snd_es1370_codec_write; ak4531.private_data = ensoniq; ak4531.private_free = snd_ensoniq_mixer_free_ak4531; err = snd_ak4531_mixer(card, &ak4531, &ensoniq->u.es1370.ak4531); if (err < 0) return err; for (idx = 0; idx < ES1370_CONTROLS; idx++) { err = snd_ctl_add(card, snd_ctl_new1(&snd_es1370_controls[idx], ensoniq)); if (err < 0) return err; } return 0; } #endif /* CHIP1370 */ #ifdef SUPPORT_JOYSTICK #ifdef CHIP1371 static int snd_ensoniq_get_joystick_port(struct ensoniq *ensoniq, int dev) { switch (joystick_port[dev]) { case 0: /* disabled */ case 1: /* auto-detect */ case 0x200: case 0x208: case 0x210: case 0x218: return joystick_port[dev]; default: dev_err(ensoniq->card->dev, "invalid joystick port %#x", joystick_port[dev]); return 0; } } #else static int snd_ensoniq_get_joystick_port(struct ensoniq *ensoniq, int dev) { return joystick[dev] ? 0x200 : 0; } #endif static int snd_ensoniq_create_gameport(struct ensoniq *ensoniq, int dev) { struct gameport *gp; int io_port; io_port = snd_ensoniq_get_joystick_port(ensoniq, dev); switch (io_port) { case 0: return -ENOSYS; case 1: /* auto_detect */ for (io_port = 0x200; io_port <= 0x218; io_port += 8) if (request_region(io_port, 8, "ens137x: gameport")) break; if (io_port > 0x218) { dev_warn(ensoniq->card->dev, "no gameport ports available\n"); return -EBUSY; } break; default: if (!request_region(io_port, 8, "ens137x: gameport")) { dev_warn(ensoniq->card->dev, "gameport io port %#x in use\n", io_port); return -EBUSY; } break; } ensoniq->gameport = gp = gameport_allocate_port(); if (!gp) { dev_err(ensoniq->card->dev, "cannot allocate memory for gameport\n"); release_region(io_port, 8); return -ENOMEM; } gameport_set_name(gp, "ES137x"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(ensoniq->pci)); gameport_set_dev_parent(gp, &ensoniq->pci->dev); gp->io = io_port; ensoniq->ctrl |= ES_JYSTK_EN; #ifdef CHIP1371 ensoniq->ctrl &= ~ES_1371_JOY_ASELM; ensoniq->ctrl |= ES_1371_JOY_ASEL((io_port - 0x200) / 8); #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); gameport_register_port(ensoniq->gameport); return 0; } static void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) { if (ensoniq->gameport) { int port = ensoniq->gameport->io; gameport_unregister_port(ensoniq->gameport); ensoniq->gameport = NULL; ensoniq->ctrl &= ~ES_JYSTK_EN; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); release_region(port, 8); } } #else static inline int snd_ensoniq_create_gameport(struct ensoniq *ensoniq, long port) { return -ENOSYS; } static inline void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) { } #endif /* SUPPORT_JOYSTICK */ /* */ static void snd_ensoniq_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct ensoniq *ensoniq = entry->private_data; snd_iprintf(buffer, "Ensoniq AudioPCI " CHIP_NAME "\n\n"); snd_iprintf(buffer, "Joystick enable : %s\n", ensoniq->ctrl & ES_JYSTK_EN ? "on" : "off"); #ifdef CHIP1370 snd_iprintf(buffer, "MIC +5V bias : %s\n", ensoniq->ctrl & ES_1370_XCTL1 ? "on" : "off"); snd_iprintf(buffer, "Line In to AOUT : %s\n", ensoniq->ctrl & ES_1370_XCTL0 ? "on" : "off"); #else snd_iprintf(buffer, "Joystick port : 0x%x\n", (ES_1371_JOY_ASELI(ensoniq->ctrl) * 8) + 0x200); #endif } static void snd_ensoniq_proc_init(struct ensoniq *ensoniq) { snd_card_ro_proc_new(ensoniq->card, "audiopci", ensoniq, snd_ensoniq_proc_read); } /* */ static void snd_ensoniq_free(struct snd_card *card) { struct ensoniq *ensoniq = card->private_data; snd_ensoniq_free_gameport(ensoniq); #ifdef CHIP1370 outl(ES_1370_SERR_DISABLE, ES_REG(ensoniq, CONTROL)); /* switch everything off */ outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */ #else outl(0, ES_REG(ensoniq, CONTROL)); /* switch everything off */ outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */ #endif } #ifdef CHIP1371 static const struct snd_pci_quirk es1371_amplifier_hack[] = { SND_PCI_QUIRK_ID(0x107b, 0x2150), /* Gateway Solo 2150 */ SND_PCI_QUIRK_ID(0x13bd, 0x100c), /* EV1938 on Mebius PC-MJ100V */ SND_PCI_QUIRK_ID(0x1102, 0x5938), /* Targa Xtender300 */ SND_PCI_QUIRK_ID(0x1102, 0x8938), /* IPC Topnote G notebook */ { } /* end */ }; static const struct es1371_quirk es1371_ac97_reset_hack[] = { { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 }, { .vid = PCI_ANY_ID, .did = PCI_ANY_ID } }; #endif static void snd_ensoniq_chip_init(struct ensoniq *ensoniq) { #ifdef CHIP1371 int idx; #endif /* this code was part of snd_ensoniq_create before intruduction * of suspend/resume */ #ifdef CHIP1370 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); outl(ensoniq->dma_bug->addr, ES_REG(ensoniq, PHANTOM_FRAME)); outl(0, ES_REG(ensoniq, PHANTOM_COUNT)); #else outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl(0, ES_REG(ensoniq, 1371_LEGACY)); if (es1371_quirk_lookup(ensoniq, es1371_ac97_reset_hack)) { outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); /* need to delay around 20ms(bleech) to give some CODECs enough time to wakeup */ msleep(20); } /* AC'97 warm reset to start the bitclk */ outl(ensoniq->ctrl | ES_1371_SYNC_RES, ES_REG(ensoniq, CONTROL)); inl(ES_REG(ensoniq, CONTROL)); udelay(20); outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); /* Init the sample rate converter */ snd_es1371_wait_src_ready(ensoniq); outl(ES_1371_SRC_DISABLE, ES_REG(ensoniq, 1371_SMPRATE)); for (idx = 0; idx < 0x80; idx++) snd_es1371_src_write(ensoniq, idx, 0); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_TRUNC_N, 16 << 4); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, 16 << 10); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_TRUNC_N, 16 << 4); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, 16 << 10); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1 + 1, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2 + 1, 1 << 12); snd_es1371_adc_rate(ensoniq, 22050); snd_es1371_dac1_rate(ensoniq, 22050); snd_es1371_dac2_rate(ensoniq, 22050); /* WARNING: * enabling the sample rate converter without properly programming * its parameters causes the chip to lock up (the SRC busy bit will * be stuck high, and I've found no way to rectify this other than * power cycle) - Thomas Sailer */ snd_es1371_wait_src_ready(ensoniq); outl(0, ES_REG(ensoniq, 1371_SMPRATE)); /* try reset codec directly */ outl(ES_1371_CODEC_WRITE(0, 0), ES_REG(ensoniq, 1371_CODEC)); #endif outb(ensoniq->uartc = 0x00, ES_REG(ensoniq, UART_CONTROL)); outb(0x00, ES_REG(ensoniq, UART_RES)); outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); } #ifdef CONFIG_PM_SLEEP static int snd_ensoniq_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct ensoniq *ensoniq = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); #ifdef CHIP1371 snd_ac97_suspend(ensoniq->u.es1371.ac97); #else /* try to reset AK4531 */ outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); snd_ak4531_suspend(ensoniq->u.es1370.ak4531); #endif return 0; } static int snd_ensoniq_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct ensoniq *ensoniq = card->private_data; snd_ensoniq_chip_init(ensoniq); #ifdef CHIP1371 snd_ac97_resume(ensoniq->u.es1371.ac97); #else snd_ak4531_resume(ensoniq->u.es1370.ak4531); #endif snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_ensoniq_pm, snd_ensoniq_suspend, snd_ensoniq_resume); #define SND_ENSONIQ_PM_OPS &snd_ensoniq_pm #else #define SND_ENSONIQ_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static int snd_ensoniq_create(struct snd_card *card, struct pci_dev *pci) { struct ensoniq *ensoniq = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&ensoniq->reg_lock); mutex_init(&ensoniq->src_mutex); ensoniq->card = card; ensoniq->pci = pci; ensoniq->irq = -1; err = pci_request_regions(pci, "Ensoniq AudioPCI"); if (err < 0) return err; ensoniq->port = pci_resource_start(pci, 0); if (devm_request_irq(&pci->dev, pci->irq, snd_audiopci_interrupt, IRQF_SHARED, KBUILD_MODNAME, ensoniq)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } ensoniq->irq = pci->irq; card->sync_irq = ensoniq->irq; #ifdef CHIP1370 ensoniq->dma_bug = snd_devm_alloc_pages(&pci->dev, SNDRV_DMA_TYPE_DEV, 16); if (!ensoniq->dma_bug) return -ENOMEM; #endif pci_set_master(pci); ensoniq->rev = pci->revision; #ifdef CHIP1370 #if 0 ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_SERR_DISABLE | ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000)); #else /* get microphone working */ ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000)); #endif ensoniq->sctrl = 0; #else ensoniq->ctrl = 0; ensoniq->sctrl = 0; ensoniq->cssr = 0; if (snd_pci_quirk_lookup(pci, es1371_amplifier_hack)) ensoniq->ctrl |= ES_1371_GPIO_OUT(1); /* turn amplifier on */ if (es1371_quirk_lookup(ensoniq, es1371_ac97_reset_hack)) ensoniq->cssr |= ES_1371_ST_AC97_RST; #endif card->private_free = snd_ensoniq_free; snd_ensoniq_chip_init(ensoniq); snd_ensoniq_proc_init(ensoniq); return 0; } /* * MIDI section */ static void snd_ensoniq_midi_interrupt(struct ensoniq * ensoniq) { struct snd_rawmidi *rmidi = ensoniq->rmidi; unsigned char status, mask, byte; if (rmidi == NULL) return; /* do Rx at first */ spin_lock(&ensoniq->reg_lock); mask = ensoniq->uartm & ES_MODE_INPUT ? ES_RXRDY : 0; while (mask) { status = inb(ES_REG(ensoniq, UART_STATUS)); if ((status & mask) == 0) break; byte = inb(ES_REG(ensoniq, UART_DATA)); snd_rawmidi_receive(ensoniq->midi_input, &byte, 1); } spin_unlock(&ensoniq->reg_lock); /* do Tx at second */ spin_lock(&ensoniq->reg_lock); mask = ensoniq->uartm & ES_MODE_OUTPUT ? ES_TXRDY : 0; while (mask) { status = inb(ES_REG(ensoniq, UART_STATUS)); if ((status & mask) == 0) break; if (snd_rawmidi_transmit(ensoniq->midi_output, &byte, 1) != 1) { ensoniq->uartc &= ~ES_TXINTENM; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); mask &= ~ES_TXRDY; } else { outb(byte, ES_REG(ensoniq, UART_DATA)); } } spin_unlock(&ensoniq->reg_lock); } static int snd_ensoniq_midi_input_open(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); ensoniq->uartm |= ES_MODE_INPUT; ensoniq->midi_input = substream; if (!(ensoniq->uartm & ES_MODE_OUTPUT)) { outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL)); outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL)); } spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_midi_input_close(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); if (!(ensoniq->uartm & ES_MODE_OUTPUT)) { outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL)); } else { outb(ensoniq->uartc &= ~ES_RXINTEN, ES_REG(ensoniq, UART_CONTROL)); } ensoniq->midi_input = NULL; ensoniq->uartm &= ~ES_MODE_INPUT; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_midi_output_open(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); ensoniq->uartm |= ES_MODE_OUTPUT; ensoniq->midi_output = substream; if (!(ensoniq->uartm & ES_MODE_INPUT)) { outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL)); outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL)); } spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_midi_output_close(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); if (!(ensoniq->uartm & ES_MODE_INPUT)) { outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL)); } else { outb(ensoniq->uartc &= ~ES_TXINTENM, ES_REG(ensoniq, UART_CONTROL)); } ensoniq->midi_output = NULL; ensoniq->uartm &= ~ES_MODE_OUTPUT; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static void snd_ensoniq_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct ensoniq *ensoniq = substream->rmidi->private_data; int idx; spin_lock_irqsave(&ensoniq->reg_lock, flags); if (up) { if ((ensoniq->uartc & ES_RXINTEN) == 0) { /* empty input FIFO */ for (idx = 0; idx < 32; idx++) inb(ES_REG(ensoniq, UART_DATA)); ensoniq->uartc |= ES_RXINTEN; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } else { if (ensoniq->uartc & ES_RXINTEN) { ensoniq->uartc &= ~ES_RXINTEN; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } spin_unlock_irqrestore(&ensoniq->reg_lock, flags); } static void snd_ensoniq_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct ensoniq *ensoniq = substream->rmidi->private_data; unsigned char byte; spin_lock_irqsave(&ensoniq->reg_lock, flags); if (up) { if (ES_TXINTENI(ensoniq->uartc) == 0) { ensoniq->uartc |= ES_TXINTENO(1); /* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */ while (ES_TXINTENI(ensoniq->uartc) == 1 && (inb(ES_REG(ensoniq, UART_STATUS)) & ES_TXRDY)) { if (snd_rawmidi_transmit(substream, &byte, 1) != 1) { ensoniq->uartc &= ~ES_TXINTENM; } else { outb(byte, ES_REG(ensoniq, UART_DATA)); } } outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } else { if (ES_TXINTENI(ensoniq->uartc) == 1) { ensoniq->uartc &= ~ES_TXINTENM; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } spin_unlock_irqrestore(&ensoniq->reg_lock, flags); } static const struct snd_rawmidi_ops snd_ensoniq_midi_output = { .open = snd_ensoniq_midi_output_open, .close = snd_ensoniq_midi_output_close, .trigger = snd_ensoniq_midi_output_trigger, }; static const struct snd_rawmidi_ops snd_ensoniq_midi_input = { .open = snd_ensoniq_midi_input_open, .close = snd_ensoniq_midi_input_close, .trigger = snd_ensoniq_midi_input_trigger, }; static int snd_ensoniq_midi(struct ensoniq *ensoniq, int device) { struct snd_rawmidi *rmidi; int err; err = snd_rawmidi_new(ensoniq->card, "ES1370/1", device, 1, 1, &rmidi); if (err < 0) return err; strcpy(rmidi->name, CHIP_NAME); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_ensoniq_midi_output); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_ensoniq_midi_input); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = ensoniq; ensoniq->rmidi = rmidi; return 0; } /* * Interrupt handler */ static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id) { struct ensoniq *ensoniq = dev_id; unsigned int status, sctrl; if (ensoniq == NULL) return IRQ_NONE; status = inl(ES_REG(ensoniq, STATUS)); if (!(status & ES_INTR)) return IRQ_NONE; spin_lock(&ensoniq->reg_lock); sctrl = ensoniq->sctrl; if (status & ES_DAC1) sctrl &= ~ES_P1_INT_EN; if (status & ES_DAC2) sctrl &= ~ES_P2_INT_EN; if (status & ES_ADC) sctrl &= ~ES_R1_INT_EN; outl(sctrl, ES_REG(ensoniq, SERIAL)); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); spin_unlock(&ensoniq->reg_lock); if (status & ES_UART) snd_ensoniq_midi_interrupt(ensoniq); if ((status & ES_DAC2) && ensoniq->playback2_substream) snd_pcm_period_elapsed(ensoniq->playback2_substream); if ((status & ES_ADC) && ensoniq->capture_substream) snd_pcm_period_elapsed(ensoniq->capture_substream); if ((status & ES_DAC1) && ensoniq->playback1_substream) snd_pcm_period_elapsed(ensoniq->playback1_substream); return IRQ_HANDLED; } static int __snd_audiopci_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct ensoniq *ensoniq; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*ensoniq), &card); if (err < 0) return err; ensoniq = card->private_data; err = snd_ensoniq_create(card, pci); if (err < 0) return err; #ifdef CHIP1370 err = snd_ensoniq_1370_mixer(ensoniq); if (err < 0) return err; #endif #ifdef CHIP1371 err = snd_ensoniq_1371_mixer(ensoniq, spdif[dev], lineio[dev]); if (err < 0) return err; #endif err = snd_ensoniq_pcm(ensoniq, 0); if (err < 0) return err; err = snd_ensoniq_pcm2(ensoniq, 1); if (err < 0) return err; err = snd_ensoniq_midi(ensoniq, 0); if (err < 0) return err; snd_ensoniq_create_gameport(ensoniq, dev); strcpy(card->driver, DRIVER_NAME); strcpy(card->shortname, "Ensoniq AudioPCI"); sprintf(card->longname, "%s %s at 0x%lx, irq %i", card->shortname, card->driver, ensoniq->port, ensoniq->irq); err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); dev++; return 0; } static int snd_audiopci_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_audiopci_probe(pci, pci_id)); } static struct pci_driver ens137x_driver = { .name = KBUILD_MODNAME, .id_table = snd_audiopci_ids, .probe = snd_audiopci_probe, .driver = { .pm = SND_ENSONIQ_PM_OPS, }, }; module_pci_driver(ens137x_driver);
linux-master
sound/pci/ens1370.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA modem driver for VIA VT82xx (South Bridge) * * VT82C686A/B/C, VT8233A/C, VT8235 * * Copyright (c) 2000 Jaroslav Kysela <[email protected]> * Tjeerd.Mulder <[email protected]> * 2002 Takashi Iwai <[email protected]> */ /* * Changes: * * Sep. 2, 2004 Sasha Khapyorsky <[email protected]> * Modified from original audio driver 'via82xx.c' to support AC97 * modems. */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/info.h> #include <sound/ac97_codec.h> #include <sound/initval.h> #if 0 #define POINTER_DEBUG #endif MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("VIA VT82xx modem"); MODULE_LICENSE("GPL"); static int index = -2; /* Exclude the first card */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static int ac97_clock = 48000; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for VIA 82xx bridge."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for VIA 82xx bridge."); module_param(ac97_clock, int, 0444); MODULE_PARM_DESC(ac97_clock, "AC'97 codec clock (default 48000Hz)."); /* just for backward compatibility */ static bool enable; module_param(enable, bool, 0444); /* * Direct registers */ #define VIAREG(via, x) ((via)->port + VIA_REG_##x) #define VIADEV_REG(viadev, x) ((viadev)->port + VIA_REG_##x) /* common offsets */ #define VIA_REG_OFFSET_STATUS 0x00 /* byte - channel status */ #define VIA_REG_STAT_ACTIVE 0x80 /* RO */ #define VIA_REG_STAT_PAUSED 0x40 /* RO */ #define VIA_REG_STAT_TRIGGER_QUEUED 0x08 /* RO */ #define VIA_REG_STAT_STOPPED 0x04 /* RWC */ #define VIA_REG_STAT_EOL 0x02 /* RWC */ #define VIA_REG_STAT_FLAG 0x01 /* RWC */ #define VIA_REG_OFFSET_CONTROL 0x01 /* byte - channel control */ #define VIA_REG_CTRL_START 0x80 /* WO */ #define VIA_REG_CTRL_TERMINATE 0x40 /* WO */ #define VIA_REG_CTRL_AUTOSTART 0x20 #define VIA_REG_CTRL_PAUSE 0x08 /* RW */ #define VIA_REG_CTRL_INT_STOP 0x04 #define VIA_REG_CTRL_INT_EOL 0x02 #define VIA_REG_CTRL_INT_FLAG 0x01 #define VIA_REG_CTRL_RESET 0x01 /* RW - probably reset? undocumented */ #define VIA_REG_CTRL_INT (VIA_REG_CTRL_INT_FLAG | VIA_REG_CTRL_INT_EOL | VIA_REG_CTRL_AUTOSTART) #define VIA_REG_OFFSET_TYPE 0x02 /* byte - channel type (686 only) */ #define VIA_REG_TYPE_AUTOSTART 0x80 /* RW - autostart at EOL */ #define VIA_REG_TYPE_16BIT 0x20 /* RW */ #define VIA_REG_TYPE_STEREO 0x10 /* RW */ #define VIA_REG_TYPE_INT_LLINE 0x00 #define VIA_REG_TYPE_INT_LSAMPLE 0x04 #define VIA_REG_TYPE_INT_LESSONE 0x08 #define VIA_REG_TYPE_INT_MASK 0x0c #define VIA_REG_TYPE_INT_EOL 0x02 #define VIA_REG_TYPE_INT_FLAG 0x01 #define VIA_REG_OFFSET_TABLE_PTR 0x04 /* dword - channel table pointer */ #define VIA_REG_OFFSET_CURR_PTR 0x04 /* dword - channel current pointer */ #define VIA_REG_OFFSET_STOP_IDX 0x08 /* dword - stop index, channel type, sample rate */ #define VIA_REG_OFFSET_CURR_COUNT 0x0c /* dword - channel current count (24 bit) */ #define VIA_REG_OFFSET_CURR_INDEX 0x0f /* byte - channel current index (for via8233 only) */ #define DEFINE_VIA_REGSET(name,val) \ enum {\ VIA_REG_##name##_STATUS = (val),\ VIA_REG_##name##_CONTROL = (val) + 0x01,\ VIA_REG_##name##_TYPE = (val) + 0x02,\ VIA_REG_##name##_TABLE_PTR = (val) + 0x04,\ VIA_REG_##name##_CURR_PTR = (val) + 0x04,\ VIA_REG_##name##_STOP_IDX = (val) + 0x08,\ VIA_REG_##name##_CURR_COUNT = (val) + 0x0c,\ } /* modem block */ DEFINE_VIA_REGSET(MO, 0x40); DEFINE_VIA_REGSET(MI, 0x50); /* AC'97 */ #define VIA_REG_AC97 0x80 /* dword */ #define VIA_REG_AC97_CODEC_ID_MASK (3<<30) #define VIA_REG_AC97_CODEC_ID_SHIFT 30 #define VIA_REG_AC97_CODEC_ID_PRIMARY 0x00 #define VIA_REG_AC97_CODEC_ID_SECONDARY 0x01 #define VIA_REG_AC97_SECONDARY_VALID (1<<27) #define VIA_REG_AC97_PRIMARY_VALID (1<<25) #define VIA_REG_AC97_BUSY (1<<24) #define VIA_REG_AC97_READ (1<<23) #define VIA_REG_AC97_CMD_SHIFT 16 #define VIA_REG_AC97_CMD_MASK 0x7e #define VIA_REG_AC97_DATA_SHIFT 0 #define VIA_REG_AC97_DATA_MASK 0xffff #define VIA_REG_SGD_SHADOW 0x84 /* dword */ #define VIA_REG_SGD_STAT_PB_FLAG (1<<0) #define VIA_REG_SGD_STAT_CP_FLAG (1<<1) #define VIA_REG_SGD_STAT_FM_FLAG (1<<2) #define VIA_REG_SGD_STAT_PB_EOL (1<<4) #define VIA_REG_SGD_STAT_CP_EOL (1<<5) #define VIA_REG_SGD_STAT_FM_EOL (1<<6) #define VIA_REG_SGD_STAT_PB_STOP (1<<8) #define VIA_REG_SGD_STAT_CP_STOP (1<<9) #define VIA_REG_SGD_STAT_FM_STOP (1<<10) #define VIA_REG_SGD_STAT_PB_ACTIVE (1<<12) #define VIA_REG_SGD_STAT_CP_ACTIVE (1<<13) #define VIA_REG_SGD_STAT_FM_ACTIVE (1<<14) #define VIA_REG_SGD_STAT_MR_FLAG (1<<16) #define VIA_REG_SGD_STAT_MW_FLAG (1<<17) #define VIA_REG_SGD_STAT_MR_EOL (1<<20) #define VIA_REG_SGD_STAT_MW_EOL (1<<21) #define VIA_REG_SGD_STAT_MR_STOP (1<<24) #define VIA_REG_SGD_STAT_MW_STOP (1<<25) #define VIA_REG_SGD_STAT_MR_ACTIVE (1<<28) #define VIA_REG_SGD_STAT_MW_ACTIVE (1<<29) #define VIA_REG_GPI_STATUS 0x88 #define VIA_REG_GPI_INTR 0x8c #define VIA_TBL_BIT_FLAG 0x40000000 #define VIA_TBL_BIT_EOL 0x80000000 /* pci space */ #define VIA_ACLINK_STAT 0x40 #define VIA_ACLINK_C11_READY 0x20 #define VIA_ACLINK_C10_READY 0x10 #define VIA_ACLINK_C01_READY 0x04 /* secondary codec ready */ #define VIA_ACLINK_LOWPOWER 0x02 /* low-power state */ #define VIA_ACLINK_C00_READY 0x01 /* primary codec ready */ #define VIA_ACLINK_CTRL 0x41 #define VIA_ACLINK_CTRL_ENABLE 0x80 /* 0: disable, 1: enable */ #define VIA_ACLINK_CTRL_RESET 0x40 /* 0: assert, 1: de-assert */ #define VIA_ACLINK_CTRL_SYNC 0x20 /* 0: release SYNC, 1: force SYNC hi */ #define VIA_ACLINK_CTRL_SDO 0x10 /* 0: release SDO, 1: force SDO hi */ #define VIA_ACLINK_CTRL_VRA 0x08 /* 0: disable VRA, 1: enable VRA */ #define VIA_ACLINK_CTRL_PCM 0x04 /* 0: disable PCM, 1: enable PCM */ #define VIA_ACLINK_CTRL_FM 0x02 /* via686 only */ #define VIA_ACLINK_CTRL_SB 0x01 /* via686 only */ #define VIA_ACLINK_CTRL_INIT (VIA_ACLINK_CTRL_ENABLE|\ VIA_ACLINK_CTRL_RESET|\ VIA_ACLINK_CTRL_PCM) #define VIA_FUNC_ENABLE 0x42 #define VIA_FUNC_MIDI_PNP 0x80 /* FIXME: it's 0x40 in the datasheet! */ #define VIA_FUNC_MIDI_IRQMASK 0x40 /* FIXME: not documented! */ #define VIA_FUNC_RX2C_WRITE 0x20 #define VIA_FUNC_SB_FIFO_EMPTY 0x10 #define VIA_FUNC_ENABLE_GAME 0x08 #define VIA_FUNC_ENABLE_FM 0x04 #define VIA_FUNC_ENABLE_MIDI 0x02 #define VIA_FUNC_ENABLE_SB 0x01 #define VIA_PNP_CONTROL 0x43 #define VIA_MC97_CTRL 0x44 #define VIA_MC97_CTRL_ENABLE 0x80 #define VIA_MC97_CTRL_SECONDARY 0x40 #define VIA_MC97_CTRL_INIT (VIA_MC97_CTRL_ENABLE|\ VIA_MC97_CTRL_SECONDARY) /* * pcm stream */ struct snd_via_sg_table { unsigned int offset; unsigned int size; } ; #define VIA_TABLE_SIZE 255 struct viadev { unsigned int reg_offset; unsigned long port; int direction; /* playback = 0, capture = 1 */ struct snd_pcm_substream *substream; int running; unsigned int tbl_entries; /* # descriptors */ struct snd_dma_buffer table; struct snd_via_sg_table *idx_table; /* for recovery from the unexpected pointer */ unsigned int lastpos; unsigned int bufsize; unsigned int bufsize2; }; enum { TYPE_CARD_VIA82XX_MODEM = 1 }; #define VIA_MAX_MODEM_DEVS 2 struct via82xx_modem { int irq; unsigned long port; unsigned int intr_mask; /* SGD_SHADOW mask to check interrupts */ struct pci_dev *pci; struct snd_card *card; unsigned int num_devs; unsigned int playback_devno, capture_devno; struct viadev devs[VIA_MAX_MODEM_DEVS]; struct snd_pcm *pcms[2]; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; unsigned int ac97_clock; unsigned int ac97_secondary; /* secondary AC'97 codec is present */ spinlock_t reg_lock; struct snd_info_entry *proc_entry; }; static const struct pci_device_id snd_via82xx_modem_ids[] = { { PCI_VDEVICE(VIA, 0x3068), TYPE_CARD_VIA82XX_MODEM, }, { 0, } }; MODULE_DEVICE_TABLE(pci, snd_via82xx_modem_ids); /* */ /* * allocate and initialize the descriptor buffers * periods = number of periods * fragsize = period size in bytes */ static int build_via_table(struct viadev *dev, struct snd_pcm_substream *substream, struct pci_dev *pci, unsigned int periods, unsigned int fragsize) { unsigned int i, idx, ofs, rest; struct via82xx_modem *chip = snd_pcm_substream_chip(substream); __le32 *pgtbl; if (dev->table.area == NULL) { /* the start of each lists must be aligned to 8 bytes, * but the kernel pages are much bigger, so we don't care */ if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, PAGE_ALIGN(VIA_TABLE_SIZE * 2 * 8), &dev->table) < 0) return -ENOMEM; } if (! dev->idx_table) { dev->idx_table = kmalloc_array(VIA_TABLE_SIZE, sizeof(*dev->idx_table), GFP_KERNEL); if (! dev->idx_table) return -ENOMEM; } /* fill the entries */ idx = 0; ofs = 0; pgtbl = (__le32 *)dev->table.area; for (i = 0; i < periods; i++) { rest = fragsize; /* fill descriptors for a period. * a period can be split to several descriptors if it's * over page boundary. */ do { unsigned int r; unsigned int flag; unsigned int addr; if (idx >= VIA_TABLE_SIZE) { dev_err(&pci->dev, "too much table size!\n"); return -EINVAL; } addr = snd_pcm_sgbuf_get_addr(substream, ofs); pgtbl[idx << 1] = cpu_to_le32(addr); r = PAGE_SIZE - (ofs % PAGE_SIZE); if (rest < r) r = rest; rest -= r; if (! rest) { if (i == periods - 1) flag = VIA_TBL_BIT_EOL; /* buffer boundary */ else flag = VIA_TBL_BIT_FLAG; /* period boundary */ } else flag = 0; /* period continues to the next */ /* dev_dbg(&pci->dev, "tbl %d: at %d size %d (rest %d)\n", idx, ofs, r, rest); */ pgtbl[(idx<<1) + 1] = cpu_to_le32(r | flag); dev->idx_table[idx].offset = ofs; dev->idx_table[idx].size = r; ofs += r; idx++; } while (rest > 0); } dev->tbl_entries = idx; dev->bufsize = periods * fragsize; dev->bufsize2 = dev->bufsize / 2; return 0; } static int clean_via_table(struct viadev *dev, struct snd_pcm_substream *substream, struct pci_dev *pci) { if (dev->table.area) { snd_dma_free_pages(&dev->table); dev->table.area = NULL; } kfree(dev->idx_table); dev->idx_table = NULL; return 0; } /* * Basic I/O */ static inline unsigned int snd_via82xx_codec_xread(struct via82xx_modem *chip) { return inl(VIAREG(chip, AC97)); } static inline void snd_via82xx_codec_xwrite(struct via82xx_modem *chip, unsigned int val) { outl(val, VIAREG(chip, AC97)); } static int snd_via82xx_codec_ready(struct via82xx_modem *chip, int secondary) { unsigned int timeout = 1000; /* 1ms */ unsigned int val; while (timeout-- > 0) { udelay(1); val = snd_via82xx_codec_xread(chip); if (!(val & VIA_REG_AC97_BUSY)) return val & 0xffff; } dev_err(chip->card->dev, "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_via82xx_codec_xread(chip)); return -EIO; } static int snd_via82xx_codec_valid(struct via82xx_modem *chip, int secondary) { unsigned int timeout = 1000; /* 1ms */ unsigned int val, val1; unsigned int stat = !secondary ? VIA_REG_AC97_PRIMARY_VALID : VIA_REG_AC97_SECONDARY_VALID; while (timeout-- > 0) { val = snd_via82xx_codec_xread(chip); val1 = val & (VIA_REG_AC97_BUSY | stat); if (val1 == stat) return val & 0xffff; udelay(1); } return -EIO; } static void snd_via82xx_codec_wait(struct snd_ac97 *ac97) { struct via82xx_modem *chip = ac97->private_data; __always_unused int err; err = snd_via82xx_codec_ready(chip, ac97->num); /* here we need to wait fairly for long time.. */ msleep(500); } static void snd_via82xx_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct via82xx_modem *chip = ac97->private_data; unsigned int xval; if(reg == AC97_GPIO_STATUS) { outl(val, VIAREG(chip, GPI_STATUS)); return; } xval = !ac97->num ? VIA_REG_AC97_CODEC_ID_PRIMARY : VIA_REG_AC97_CODEC_ID_SECONDARY; xval <<= VIA_REG_AC97_CODEC_ID_SHIFT; xval |= reg << VIA_REG_AC97_CMD_SHIFT; xval |= val << VIA_REG_AC97_DATA_SHIFT; snd_via82xx_codec_xwrite(chip, xval); snd_via82xx_codec_ready(chip, ac97->num); } static unsigned short snd_via82xx_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct via82xx_modem *chip = ac97->private_data; unsigned int xval, val = 0xffff; int again = 0; xval = ac97->num << VIA_REG_AC97_CODEC_ID_SHIFT; xval |= ac97->num ? VIA_REG_AC97_SECONDARY_VALID : VIA_REG_AC97_PRIMARY_VALID; xval |= VIA_REG_AC97_READ; xval |= (reg & 0x7f) << VIA_REG_AC97_CMD_SHIFT; while (1) { if (again++ > 3) { dev_err(chip->card->dev, "codec_read: codec %i is not valid [0x%x]\n", ac97->num, snd_via82xx_codec_xread(chip)); return 0xffff; } snd_via82xx_codec_xwrite(chip, xval); udelay (20); if (snd_via82xx_codec_valid(chip, ac97->num) >= 0) { udelay(25); val = snd_via82xx_codec_xread(chip); break; } } return val & 0xffff; } static void snd_via82xx_channel_reset(struct via82xx_modem *chip, struct viadev *viadev) { outb(VIA_REG_CTRL_PAUSE | VIA_REG_CTRL_TERMINATE | VIA_REG_CTRL_RESET, VIADEV_REG(viadev, OFFSET_CONTROL)); inb(VIADEV_REG(viadev, OFFSET_CONTROL)); udelay(50); /* disable interrupts */ outb(0x00, VIADEV_REG(viadev, OFFSET_CONTROL)); /* clear interrupts */ outb(0x03, VIADEV_REG(viadev, OFFSET_STATUS)); outb(0x00, VIADEV_REG(viadev, OFFSET_TYPE)); /* for via686 */ // outl(0, VIADEV_REG(viadev, OFFSET_CURR_PTR)); viadev->lastpos = 0; } /* * Interrupt handler */ static irqreturn_t snd_via82xx_interrupt(int irq, void *dev_id) { struct via82xx_modem *chip = dev_id; unsigned int status; unsigned int i; status = inl(VIAREG(chip, SGD_SHADOW)); if (! (status & chip->intr_mask)) { return IRQ_NONE; } // _skip_sgd: /* check status for each stream */ spin_lock(&chip->reg_lock); for (i = 0; i < chip->num_devs; i++) { struct viadev *viadev = &chip->devs[i]; unsigned char c_status = inb(VIADEV_REG(viadev, OFFSET_STATUS)); c_status &= (VIA_REG_STAT_EOL|VIA_REG_STAT_FLAG|VIA_REG_STAT_STOPPED); if (! c_status) continue; if (viadev->substream && viadev->running) { spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(viadev->substream); spin_lock(&chip->reg_lock); } outb(c_status, VIADEV_REG(viadev, OFFSET_STATUS)); /* ack */ } spin_unlock(&chip->reg_lock); return IRQ_HANDLED; } /* * PCM callbacks */ /* * trigger callback */ static int snd_via82xx_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = substream->runtime->private_data; unsigned char val = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_SUSPEND: val |= VIA_REG_CTRL_START; viadev->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: val = VIA_REG_CTRL_TERMINATE; viadev->running = 0; break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: val |= VIA_REG_CTRL_PAUSE; viadev->running = 0; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: viadev->running = 1; break; default: return -EINVAL; } outb(val, VIADEV_REG(viadev, OFFSET_CONTROL)); if (cmd == SNDRV_PCM_TRIGGER_STOP) snd_via82xx_channel_reset(chip, viadev); return 0; } /* * pointer callbacks */ /* * calculate the linear position at the given sg-buffer index and the rest count */ #define check_invalid_pos(viadev,pos) \ ((pos) < viadev->lastpos && ((pos) >= viadev->bufsize2 ||\ viadev->lastpos < viadev->bufsize2)) static inline unsigned int calc_linear_pos(struct via82xx_modem *chip, struct viadev *viadev, unsigned int idx, unsigned int count) { unsigned int size, res; size = viadev->idx_table[idx].size; res = viadev->idx_table[idx].offset + size - count; /* check the validity of the calculated position */ if (size < count) { dev_err(chip->card->dev, "invalid via82xx_cur_ptr (size = %d, count = %d)\n", (int)size, (int)count); res = viadev->lastpos; } else if (check_invalid_pos(viadev, res)) { #ifdef POINTER_DEBUG dev_dbg(chip->card->dev, "fail: idx = %i/%i, lastpos = 0x%x, bufsize2 = 0x%x, offsize = 0x%x, size = 0x%x, count = 0x%x\n", idx, viadev->tbl_entries, viadev->lastpos, viadev->bufsize2, viadev->idx_table[idx].offset, viadev->idx_table[idx].size, count); #endif if (count && size < count) { dev_dbg(chip->card->dev, "invalid via82xx_cur_ptr, using last valid pointer\n"); res = viadev->lastpos; } else { if (! count) /* bogus count 0 on the DMA boundary? */ res = viadev->idx_table[idx].offset; else /* count register returns full size * when end of buffer is reached */ res = viadev->idx_table[idx].offset + size; if (check_invalid_pos(viadev, res)) { dev_dbg(chip->card->dev, "invalid via82xx_cur_ptr (2), using last valid pointer\n"); res = viadev->lastpos; } } } viadev->lastpos = res; /* remember the last position */ if (res >= viadev->bufsize) res -= viadev->bufsize; return res; } /* * get the current pointer on via686 */ static snd_pcm_uframes_t snd_via686_pcm_pointer(struct snd_pcm_substream *substream) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = substream->runtime->private_data; unsigned int idx, ptr, count, res; if (snd_BUG_ON(!viadev->tbl_entries)) return 0; if (!(inb(VIADEV_REG(viadev, OFFSET_STATUS)) & VIA_REG_STAT_ACTIVE)) return 0; spin_lock(&chip->reg_lock); count = inl(VIADEV_REG(viadev, OFFSET_CURR_COUNT)) & 0xffffff; /* The via686a does not have the current index register, * so we need to calculate the index from CURR_PTR. */ ptr = inl(VIADEV_REG(viadev, OFFSET_CURR_PTR)); if (ptr <= (unsigned int)viadev->table.addr) idx = 0; else /* CURR_PTR holds the address + 8 */ idx = ((ptr - (unsigned int)viadev->table.addr) / 8 - 1) % viadev->tbl_entries; res = calc_linear_pos(chip, viadev, idx, count); spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, res); } /* * hw_params callback: * allocate the buffer and build up the buffer description table */ static int snd_via82xx_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = substream->runtime->private_data; int err; err = build_via_table(viadev, substream, chip->pci, params_periods(hw_params), params_period_bytes(hw_params)); if (err < 0) return err; snd_ac97_write(chip->ac97, AC97_LINE1_RATE, params_rate(hw_params)); snd_ac97_write(chip->ac97, AC97_LINE1_LEVEL, 0); return 0; } /* * hw_free callback: * clean up the buffer description table and release the buffer */ static int snd_via82xx_hw_free(struct snd_pcm_substream *substream) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = substream->runtime->private_data; clean_via_table(viadev, substream, chip->pci); return 0; } /* * set up the table pointer */ static void snd_via82xx_set_table_ptr(struct via82xx_modem *chip, struct viadev *viadev) { snd_via82xx_codec_ready(chip, chip->ac97_secondary); outl((u32)viadev->table.addr, VIADEV_REG(viadev, OFFSET_TABLE_PTR)); udelay(20); snd_via82xx_codec_ready(chip, chip->ac97_secondary); } /* * prepare callback for playback and capture */ static int snd_via82xx_pcm_prepare(struct snd_pcm_substream *substream) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = substream->runtime->private_data; snd_via82xx_channel_reset(chip, viadev); /* this must be set after channel_reset */ snd_via82xx_set_table_ptr(chip, viadev); outb(VIA_REG_TYPE_AUTOSTART|VIA_REG_TYPE_INT_EOL|VIA_REG_TYPE_INT_FLAG, VIADEV_REG(viadev, OFFSET_TYPE)); return 0; } /* * pcm hardware definition, identical for both playback and capture */ static const struct snd_pcm_hardware snd_via82xx_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | /* SNDRV_PCM_INFO_RESUME | */ SNDRV_PCM_INFO_PAUSE), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_KNOT, .rate_min = 8000, .rate_max = 16000, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = 128 * 1024, .period_bytes_min = 32, .period_bytes_max = 128 * 1024, .periods_min = 2, .periods_max = VIA_TABLE_SIZE / 2, .fifo_size = 0, }; /* * open callback skeleton */ static int snd_via82xx_modem_pcm_open(struct via82xx_modem *chip, struct viadev *viadev, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; int err; static const unsigned int rates[] = { 8000, 9600, 12000, 16000 }; static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; runtime->hw = snd_via82xx_hw; err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (err < 0) return err; /* we may remove following constaint when we modify table entries in interrupt */ err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; runtime->private_data = viadev; viadev->substream = substream; return 0; } /* * open callback for playback */ static int snd_via82xx_playback_open(struct snd_pcm_substream *substream) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = &chip->devs[chip->playback_devno + substream->number]; return snd_via82xx_modem_pcm_open(chip, viadev, substream); } /* * open callback for capture */ static int snd_via82xx_capture_open(struct snd_pcm_substream *substream) { struct via82xx_modem *chip = snd_pcm_substream_chip(substream); struct viadev *viadev = &chip->devs[chip->capture_devno + substream->pcm->device]; return snd_via82xx_modem_pcm_open(chip, viadev, substream); } /* * close callback */ static int snd_via82xx_pcm_close(struct snd_pcm_substream *substream) { struct viadev *viadev = substream->runtime->private_data; viadev->substream = NULL; return 0; } /* via686 playback callbacks */ static const struct snd_pcm_ops snd_via686_playback_ops = { .open = snd_via82xx_playback_open, .close = snd_via82xx_pcm_close, .hw_params = snd_via82xx_hw_params, .hw_free = snd_via82xx_hw_free, .prepare = snd_via82xx_pcm_prepare, .trigger = snd_via82xx_pcm_trigger, .pointer = snd_via686_pcm_pointer, }; /* via686 capture callbacks */ static const struct snd_pcm_ops snd_via686_capture_ops = { .open = snd_via82xx_capture_open, .close = snd_via82xx_pcm_close, .hw_params = snd_via82xx_hw_params, .hw_free = snd_via82xx_hw_free, .prepare = snd_via82xx_pcm_prepare, .trigger = snd_via82xx_pcm_trigger, .pointer = snd_via686_pcm_pointer, }; static void init_viadev(struct via82xx_modem *chip, int idx, unsigned int reg_offset, int direction) { chip->devs[idx].reg_offset = reg_offset; chip->devs[idx].direction = direction; chip->devs[idx].port = chip->port + reg_offset; } /* * create a pcm instance for via686a/b */ static int snd_via686_pcm_new(struct via82xx_modem *chip) { struct snd_pcm *pcm; int err; chip->playback_devno = 0; chip->capture_devno = 1; chip->num_devs = 2; chip->intr_mask = 0x330000; /* FLAGS | EOL for MR, MW */ err = snd_pcm_new(chip->card, chip->card->shortname, 0, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_via686_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_via686_capture_ops); pcm->dev_class = SNDRV_PCM_CLASS_MODEM; pcm->private_data = chip; strcpy(pcm->name, chip->card->shortname); chip->pcms[0] = pcm; init_viadev(chip, 0, VIA_REG_MO_STATUS, 0); init_viadev(chip, 1, VIA_REG_MI_STATUS, 1); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_SG, &chip->pci->dev, 64*1024, 128*1024); return 0; } /* * Mixer part */ static void snd_via82xx_mixer_free_ac97_bus(struct snd_ac97_bus *bus) { struct via82xx_modem *chip = bus->private_data; chip->ac97_bus = NULL; } static void snd_via82xx_mixer_free_ac97(struct snd_ac97 *ac97) { struct via82xx_modem *chip = ac97->private_data; chip->ac97 = NULL; } static int snd_via82xx_mixer_new(struct via82xx_modem *chip) { struct snd_ac97_template ac97; int err; static const struct snd_ac97_bus_ops ops = { .write = snd_via82xx_codec_write, .read = snd_via82xx_codec_read, .wait = snd_via82xx_codec_wait, }; err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus); if (err < 0) return err; chip->ac97_bus->private_free = snd_via82xx_mixer_free_ac97_bus; chip->ac97_bus->clock = chip->ac97_clock; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.private_free = snd_via82xx_mixer_free_ac97; ac97.pci = chip->pci; ac97.scaps = AC97_SCAP_SKIP_AUDIO | AC97_SCAP_POWER_SAVE; ac97.num = chip->ac97_secondary; err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97); if (err < 0) return err; return 0; } /* * proc interface */ static void snd_via82xx_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct via82xx_modem *chip = entry->private_data; int i; snd_iprintf(buffer, "%s\n\n", chip->card->longname); for (i = 0; i < 0xa0; i += 4) { snd_iprintf(buffer, "%02x: %08x\n", i, inl(chip->port + i)); } } static void snd_via82xx_proc_init(struct via82xx_modem *chip) { snd_card_ro_proc_new(chip->card, "via82xx", chip, snd_via82xx_proc_read); } /* * */ static int snd_via82xx_chip_init(struct via82xx_modem *chip) { unsigned int val; unsigned long end_time; unsigned char pval; pci_read_config_byte(chip->pci, VIA_MC97_CTRL, &pval); if((pval & VIA_MC97_CTRL_INIT) != VIA_MC97_CTRL_INIT) { pci_write_config_byte(chip->pci, 0x44, pval|VIA_MC97_CTRL_INIT); udelay(100); } pci_read_config_byte(chip->pci, VIA_ACLINK_STAT, &pval); if (! (pval & VIA_ACLINK_C00_READY)) { /* codec not ready? */ /* deassert ACLink reset, force SYNC */ pci_write_config_byte(chip->pci, VIA_ACLINK_CTRL, VIA_ACLINK_CTRL_ENABLE | VIA_ACLINK_CTRL_RESET | VIA_ACLINK_CTRL_SYNC); udelay(100); #if 1 /* FIXME: should we do full reset here for all chip models? */ pci_write_config_byte(chip->pci, VIA_ACLINK_CTRL, 0x00); udelay(100); #else /* deassert ACLink reset, force SYNC (warm AC'97 reset) */ pci_write_config_byte(chip->pci, VIA_ACLINK_CTRL, VIA_ACLINK_CTRL_RESET|VIA_ACLINK_CTRL_SYNC); udelay(2); #endif /* ACLink on, deassert ACLink reset, VSR, SGD data out */ pci_write_config_byte(chip->pci, VIA_ACLINK_CTRL, VIA_ACLINK_CTRL_INIT); udelay(100); } pci_read_config_byte(chip->pci, VIA_ACLINK_CTRL, &pval); if ((pval & VIA_ACLINK_CTRL_INIT) != VIA_ACLINK_CTRL_INIT) { /* ACLink on, deassert ACLink reset, VSR, SGD data out */ pci_write_config_byte(chip->pci, VIA_ACLINK_CTRL, VIA_ACLINK_CTRL_INIT); udelay(100); } /* wait until codec ready */ end_time = jiffies + msecs_to_jiffies(750); do { pci_read_config_byte(chip->pci, VIA_ACLINK_STAT, &pval); if (pval & VIA_ACLINK_C00_READY) /* primary codec ready */ break; schedule_timeout_uninterruptible(1); } while (time_before(jiffies, end_time)); val = snd_via82xx_codec_xread(chip); if (val & VIA_REG_AC97_BUSY) dev_err(chip->card->dev, "AC'97 codec is not ready [0x%x]\n", val); snd_via82xx_codec_xwrite(chip, VIA_REG_AC97_READ | VIA_REG_AC97_SECONDARY_VALID | (VIA_REG_AC97_CODEC_ID_SECONDARY << VIA_REG_AC97_CODEC_ID_SHIFT)); end_time = jiffies + msecs_to_jiffies(750); snd_via82xx_codec_xwrite(chip, VIA_REG_AC97_READ | VIA_REG_AC97_SECONDARY_VALID | (VIA_REG_AC97_CODEC_ID_SECONDARY << VIA_REG_AC97_CODEC_ID_SHIFT)); do { val = snd_via82xx_codec_xread(chip); if (val & VIA_REG_AC97_SECONDARY_VALID) { chip->ac97_secondary = 1; goto __ac97_ok2; } schedule_timeout_uninterruptible(1); } while (time_before(jiffies, end_time)); /* This is ok, the most of motherboards have only one codec */ __ac97_ok2: /* route FM trap to IRQ, disable FM trap */ // pci_write_config_byte(chip->pci, VIA_FM_NMI_CTRL, 0); /* disable all GPI interrupts */ outl(0, VIAREG(chip, GPI_INTR)); return 0; } #ifdef CONFIG_PM_SLEEP /* * power management */ static int snd_via82xx_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct via82xx_modem *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < chip->num_devs; i++) snd_via82xx_channel_reset(chip, &chip->devs[i]); snd_ac97_suspend(chip->ac97); return 0; } static int snd_via82xx_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct via82xx_modem *chip = card->private_data; int i; snd_via82xx_chip_init(chip); snd_ac97_resume(chip->ac97); for (i = 0; i < chip->num_devs; i++) snd_via82xx_channel_reset(chip, &chip->devs[i]); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_via82xx_pm, snd_via82xx_suspend, snd_via82xx_resume); #define SND_VIA82XX_PM_OPS &snd_via82xx_pm #else #define SND_VIA82XX_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static void snd_via82xx_free(struct snd_card *card) { struct via82xx_modem *chip = card->private_data; unsigned int i; /* disable interrupts */ for (i = 0; i < chip->num_devs; i++) snd_via82xx_channel_reset(chip, &chip->devs[i]); } static int snd_via82xx_create(struct snd_card *card, struct pci_dev *pci, int chip_type, int revision, unsigned int ac97_clock) { struct via82xx_modem *chip = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&chip->reg_lock); chip->card = card; chip->pci = pci; chip->irq = -1; err = pci_request_regions(pci, card->driver); if (err < 0) return err; chip->port = pci_resource_start(pci, 0); if (devm_request_irq(&pci->dev, pci->irq, snd_via82xx_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; card->private_free = snd_via82xx_free; if (ac97_clock >= 8000 && ac97_clock <= 48000) chip->ac97_clock = ac97_clock; err = snd_via82xx_chip_init(chip); if (err < 0) return err; /* The 8233 ac97 controller does not implement the master bit * in the pci command register. IMHO this is a violation of the PCI spec. * We call pci_set_master here because it does not hurt. */ pci_set_master(pci); return 0; } static int __snd_via82xx_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; struct via82xx_modem *chip; int chip_type = 0, card_type; unsigned int i; int err; err = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; card_type = pci_id->driver_data; switch (card_type) { case TYPE_CARD_VIA82XX_MODEM: strcpy(card->driver, "VIA82XX-MODEM"); sprintf(card->shortname, "VIA 82XX modem"); break; default: dev_err(card->dev, "invalid card type %d\n", card_type); return -EINVAL; } err = snd_via82xx_create(card, pci, chip_type, pci->revision, ac97_clock); if (err < 0) return err; err = snd_via82xx_mixer_new(chip); if (err < 0) return err; err = snd_via686_pcm_new(chip); if (err < 0) return err; /* disable interrupts */ for (i = 0; i < chip->num_devs; i++) snd_via82xx_channel_reset(chip, &chip->devs[i]); sprintf(card->longname, "%s at 0x%lx, irq %d", card->shortname, chip->port, chip->irq); snd_via82xx_proc_init(chip); err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); return 0; } static int snd_via82xx_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_via82xx_probe(pci, pci_id)); } static struct pci_driver via82xx_modem_driver = { .name = KBUILD_MODNAME, .id_table = snd_via82xx_modem_ids, .probe = snd_via82xx_probe, .driver = { .pm = SND_VIA82XX_PM_OPS, }, }; module_pci_driver(via82xx_modem_driver);
linux-master
sound/pci/via82xx_modem.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * cs5530.c - Initialisation code for Cyrix/NatSemi VSA1 softaudio * * (C) Copyright 2007 Ash Willis <[email protected]> * (C) Copyright 2003 Red Hat Inc <[email protected]> * * This driver was ported (shamelessly ripped ;) from oss/kahlua.c but I did * mess with it a bit. The chip seems to have to have trouble with full duplex * mode. If we're recording in 8bit 8000kHz, say, and we then attempt to * simultaneously play back audio at 16bit 44100kHz, the device actually plays * back in the same format in which it is capturing. By forcing the chip to * always play/capture in 16/44100, we can let alsa-lib convert the samples and * that way we can hack up some full duplex audio. * * XpressAudio(tm) is used on the Cyrix MediaGX (now NatSemi Geode) systems. * The older version (VSA1) provides fairly good soundblaster emulation * although there are a couple of bugs: large DMA buffers break record, * and the MPU event handling seems suspect. VSA2 allows the native driver * to control the AC97 audio engine directly and requires a different driver. * * Thanks to National Semiconductor for providing the needed information * on the XpressAudio(tm) internals. * * TO DO: * Investigate whether we can portably support Cognac (5520) in the * same manner. */ #include <linux/delay.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/sb.h> #include <sound/initval.h> MODULE_AUTHOR("Ash Willis"); MODULE_DESCRIPTION("CS5530 Audio"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for CS5530 Audio driver."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for CS5530 Audio driver."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable CS5530 Audio driver."); struct snd_cs5530 { struct snd_card *card; struct pci_dev *pci; struct snd_sb *sb; unsigned long pci_base; }; static const struct pci_device_id snd_cs5530_ids[] = { {PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5530_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, snd_cs5530_ids); static u8 snd_cs5530_mixer_read(unsigned long io, u8 reg) { outb(reg, io + 4); udelay(20); reg = inb(io + 5); udelay(20); return reg; } static int snd_cs5530_create(struct snd_card *card, struct pci_dev *pci) { struct snd_cs5530 *chip = card->private_data; unsigned long sb_base; u8 irq, dma8, dma16 = 0; u16 map; void __iomem *mem; int err; err = pcim_enable_device(pci); if (err < 0) return err; chip->card = card; chip->pci = pci; err = pcim_iomap_regions(pci, 1 << 0, "CS5530"); if (err < 0) return err; chip->pci_base = pci_resource_start(pci, 0); mem = pcim_iomap_table(pci)[0]; map = readw(mem + 0x18); /* Map bits 0:1 * 0x20 + 0x200 = sb base 2 sb enable 3 adlib enable 5 MPU enable 0x330 6 MPU enable 0x300 The other bits may be used internally so must be masked */ sb_base = 0x220 + 0x20 * (map & 3); if (map & (1<<2)) dev_info(card->dev, "XpressAudio at 0x%lx\n", sb_base); else { dev_err(card->dev, "Could not find XpressAudio!\n"); return -ENODEV; } if (map & (1<<5)) dev_info(card->dev, "MPU at 0x300\n"); else if (map & (1<<6)) dev_info(card->dev, "MPU at 0x330\n"); irq = snd_cs5530_mixer_read(sb_base, 0x80) & 0x0F; dma8 = snd_cs5530_mixer_read(sb_base, 0x81); if (dma8 & 0x20) dma16 = 5; else if (dma8 & 0x40) dma16 = 6; else if (dma8 & 0x80) dma16 = 7; else { dev_err(card->dev, "No 16bit DMA enabled\n"); return -ENODEV; } if (dma8 & 0x01) dma8 = 0; else if (dma8 & 02) dma8 = 1; else if (dma8 & 0x08) dma8 = 3; else { dev_err(card->dev, "No 8bit DMA enabled\n"); return -ENODEV; } if (irq & 1) irq = 9; else if (irq & 2) irq = 5; else if (irq & 4) irq = 7; else if (irq & 8) irq = 10; else { dev_err(card->dev, "SoundBlaster IRQ not set\n"); return -ENODEV; } dev_info(card->dev, "IRQ: %d DMA8: %d DMA16: %d\n", irq, dma8, dma16); err = snd_sbdsp_create(card, sb_base, irq, snd_sb16dsp_interrupt, dma8, dma16, SB_HW_CS5530, &chip->sb); if (err < 0) { dev_err(card->dev, "Could not create SoundBlaster\n"); return err; } err = snd_sb16dsp_pcm(chip->sb, 0); if (err < 0) { dev_err(card->dev, "Could not create PCM\n"); return err; } err = snd_sbmixer_new(chip->sb); if (err < 0) { dev_err(card->dev, "Could not create Mixer\n"); return err; } return 0; } static int snd_cs5530_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct snd_cs5530 *chip; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; err = snd_cs5530_create(card, pci); if (err < 0) return err; strcpy(card->driver, "CS5530"); strcpy(card->shortname, "CS5530 Audio"); sprintf(card->longname, "%s at 0x%lx", card->shortname, chip->pci_base); err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); dev++; return 0; } static struct pci_driver cs5530_driver = { .name = KBUILD_MODNAME, .id_table = snd_cs5530_ids, .probe = snd_cs5530_probe, }; module_pci_driver(cs5530_driver);
linux-master
sound/pci/cs5530.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA driver for ATI IXP 150/200/250/300 AC97 controllers * * Copyright (c) 2004 Takashi Iwai <[email protected]> */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/info.h> #include <sound/ac97_codec.h> #include <sound/initval.h> MODULE_AUTHOR("Takashi Iwai <[email protected]>"); MODULE_DESCRIPTION("ATI IXP AC97 controller"); MODULE_LICENSE("GPL"); static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static int ac97_clock = 48000; static char *ac97_quirk; static bool spdif_aclink = 1; static int ac97_codec = -1; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for ATI IXP controller."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for ATI IXP controller."); module_param(ac97_clock, int, 0444); MODULE_PARM_DESC(ac97_clock, "AC'97 codec clock (default 48000Hz)."); module_param(ac97_quirk, charp, 0444); MODULE_PARM_DESC(ac97_quirk, "AC'97 workaround for strange hardware."); module_param(ac97_codec, int, 0444); MODULE_PARM_DESC(ac97_codec, "Specify codec instead of probing."); module_param(spdif_aclink, bool, 0444); MODULE_PARM_DESC(spdif_aclink, "S/PDIF over AC-link."); /* just for backward compatibility */ static bool enable; module_param(enable, bool, 0444); /* */ #define ATI_REG_ISR 0x00 /* interrupt source */ #define ATI_REG_ISR_IN_XRUN (1U<<0) #define ATI_REG_ISR_IN_STATUS (1U<<1) #define ATI_REG_ISR_OUT_XRUN (1U<<2) #define ATI_REG_ISR_OUT_STATUS (1U<<3) #define ATI_REG_ISR_SPDF_XRUN (1U<<4) #define ATI_REG_ISR_SPDF_STATUS (1U<<5) #define ATI_REG_ISR_PHYS_INTR (1U<<8) #define ATI_REG_ISR_PHYS_MISMATCH (1U<<9) #define ATI_REG_ISR_CODEC0_NOT_READY (1U<<10) #define ATI_REG_ISR_CODEC1_NOT_READY (1U<<11) #define ATI_REG_ISR_CODEC2_NOT_READY (1U<<12) #define ATI_REG_ISR_NEW_FRAME (1U<<13) #define ATI_REG_IER 0x04 /* interrupt enable */ #define ATI_REG_IER_IN_XRUN_EN (1U<<0) #define ATI_REG_IER_IO_STATUS_EN (1U<<1) #define ATI_REG_IER_OUT_XRUN_EN (1U<<2) #define ATI_REG_IER_OUT_XRUN_COND (1U<<3) #define ATI_REG_IER_SPDF_XRUN_EN (1U<<4) #define ATI_REG_IER_SPDF_STATUS_EN (1U<<5) #define ATI_REG_IER_PHYS_INTR_EN (1U<<8) #define ATI_REG_IER_PHYS_MISMATCH_EN (1U<<9) #define ATI_REG_IER_CODEC0_INTR_EN (1U<<10) #define ATI_REG_IER_CODEC1_INTR_EN (1U<<11) #define ATI_REG_IER_CODEC2_INTR_EN (1U<<12) #define ATI_REG_IER_NEW_FRAME_EN (1U<<13) /* (RO */ #define ATI_REG_IER_SET_BUS_BUSY (1U<<14) /* (WO) audio is running */ #define ATI_REG_CMD 0x08 /* command */ #define ATI_REG_CMD_POWERDOWN (1U<<0) #define ATI_REG_CMD_RECEIVE_EN (1U<<1) #define ATI_REG_CMD_SEND_EN (1U<<2) #define ATI_REG_CMD_STATUS_MEM (1U<<3) #define ATI_REG_CMD_SPDF_OUT_EN (1U<<4) #define ATI_REG_CMD_SPDF_STATUS_MEM (1U<<5) #define ATI_REG_CMD_SPDF_THRESHOLD (3U<<6) #define ATI_REG_CMD_SPDF_THRESHOLD_SHIFT 6 #define ATI_REG_CMD_IN_DMA_EN (1U<<8) #define ATI_REG_CMD_OUT_DMA_EN (1U<<9) #define ATI_REG_CMD_SPDF_DMA_EN (1U<<10) #define ATI_REG_CMD_SPDF_OUT_STOPPED (1U<<11) #define ATI_REG_CMD_SPDF_CONFIG_MASK (7U<<12) #define ATI_REG_CMD_SPDF_CONFIG_34 (1U<<12) #define ATI_REG_CMD_SPDF_CONFIG_78 (2U<<12) #define ATI_REG_CMD_SPDF_CONFIG_69 (3U<<12) #define ATI_REG_CMD_SPDF_CONFIG_01 (4U<<12) #define ATI_REG_CMD_INTERLEAVE_SPDF (1U<<16) #define ATI_REG_CMD_AUDIO_PRESENT (1U<<20) #define ATI_REG_CMD_INTERLEAVE_IN (1U<<21) #define ATI_REG_CMD_INTERLEAVE_OUT (1U<<22) #define ATI_REG_CMD_LOOPBACK_EN (1U<<23) #define ATI_REG_CMD_PACKED_DIS (1U<<24) #define ATI_REG_CMD_BURST_EN (1U<<25) #define ATI_REG_CMD_PANIC_EN (1U<<26) #define ATI_REG_CMD_MODEM_PRESENT (1U<<27) #define ATI_REG_CMD_ACLINK_ACTIVE (1U<<28) #define ATI_REG_CMD_AC_SOFT_RESET (1U<<29) #define ATI_REG_CMD_AC_SYNC (1U<<30) #define ATI_REG_CMD_AC_RESET (1U<<31) #define ATI_REG_PHYS_OUT_ADDR 0x0c #define ATI_REG_PHYS_OUT_CODEC_MASK (3U<<0) #define ATI_REG_PHYS_OUT_RW (1U<<2) #define ATI_REG_PHYS_OUT_ADDR_EN (1U<<8) #define ATI_REG_PHYS_OUT_ADDR_SHIFT 9 #define ATI_REG_PHYS_OUT_DATA_SHIFT 16 #define ATI_REG_PHYS_IN_ADDR 0x10 #define ATI_REG_PHYS_IN_READ_FLAG (1U<<8) #define ATI_REG_PHYS_IN_ADDR_SHIFT 9 #define ATI_REG_PHYS_IN_DATA_SHIFT 16 #define ATI_REG_SLOTREQ 0x14 #define ATI_REG_COUNTER 0x18 #define ATI_REG_COUNTER_SLOT (3U<<0) /* slot # */ #define ATI_REG_COUNTER_BITCLOCK (31U<<8) #define ATI_REG_IN_FIFO_THRESHOLD 0x1c #define ATI_REG_IN_DMA_LINKPTR 0x20 #define ATI_REG_IN_DMA_DT_START 0x24 /* RO */ #define ATI_REG_IN_DMA_DT_NEXT 0x28 /* RO */ #define ATI_REG_IN_DMA_DT_CUR 0x2c /* RO */ #define ATI_REG_IN_DMA_DT_SIZE 0x30 #define ATI_REG_OUT_DMA_SLOT 0x34 #define ATI_REG_OUT_DMA_SLOT_BIT(x) (1U << ((x) - 3)) #define ATI_REG_OUT_DMA_SLOT_MASK 0x1ff #define ATI_REG_OUT_DMA_THRESHOLD_MASK 0xf800 #define ATI_REG_OUT_DMA_THRESHOLD_SHIFT 11 #define ATI_REG_OUT_DMA_LINKPTR 0x38 #define ATI_REG_OUT_DMA_DT_START 0x3c /* RO */ #define ATI_REG_OUT_DMA_DT_NEXT 0x40 /* RO */ #define ATI_REG_OUT_DMA_DT_CUR 0x44 /* RO */ #define ATI_REG_OUT_DMA_DT_SIZE 0x48 #define ATI_REG_SPDF_CMD 0x4c #define ATI_REG_SPDF_CMD_LFSR (1U<<4) #define ATI_REG_SPDF_CMD_SINGLE_CH (1U<<5) #define ATI_REG_SPDF_CMD_LFSR_ACC (0xff<<8) /* RO */ #define ATI_REG_SPDF_DMA_LINKPTR 0x50 #define ATI_REG_SPDF_DMA_DT_START 0x54 /* RO */ #define ATI_REG_SPDF_DMA_DT_NEXT 0x58 /* RO */ #define ATI_REG_SPDF_DMA_DT_CUR 0x5c /* RO */ #define ATI_REG_SPDF_DMA_DT_SIZE 0x60 #define ATI_REG_MODEM_MIRROR 0x7c #define ATI_REG_AUDIO_MIRROR 0x80 #define ATI_REG_6CH_REORDER 0x84 /* reorder slots for 6ch */ #define ATI_REG_6CH_REORDER_EN (1U<<0) /* 3,4,7,8,6,9 -> 3,4,6,9,7,8 */ #define ATI_REG_FIFO_FLUSH 0x88 #define ATI_REG_FIFO_OUT_FLUSH (1U<<0) #define ATI_REG_FIFO_IN_FLUSH (1U<<1) /* LINKPTR */ #define ATI_REG_LINKPTR_EN (1U<<0) /* [INT|OUT|SPDIF]_DMA_DT_SIZE */ #define ATI_REG_DMA_DT_SIZE (0xffffU<<0) #define ATI_REG_DMA_FIFO_USED (0x1fU<<16) #define ATI_REG_DMA_FIFO_FREE (0x1fU<<21) #define ATI_REG_DMA_STATE (7U<<26) #define ATI_MAX_DESCRIPTORS 256 /* max number of descriptor packets */ struct atiixp; /* * DMA packate descriptor */ struct atiixp_dma_desc { __le32 addr; /* DMA buffer address */ u16 status; /* status bits */ u16 size; /* size of the packet in dwords */ __le32 next; /* address of the next packet descriptor */ }; /* * stream enum */ enum { ATI_DMA_PLAYBACK, ATI_DMA_CAPTURE, ATI_DMA_SPDIF, NUM_ATI_DMAS }; /* DMAs */ enum { ATI_PCM_OUT, ATI_PCM_IN, ATI_PCM_SPDIF, NUM_ATI_PCMS }; /* AC97 pcm slots */ enum { ATI_PCMDEV_ANALOG, ATI_PCMDEV_DIGITAL, NUM_ATI_PCMDEVS }; /* pcm devices */ #define NUM_ATI_CODECS 3 /* * constants and callbacks for each DMA type */ struct atiixp_dma_ops { int type; /* ATI_DMA_XXX */ unsigned int llp_offset; /* LINKPTR offset */ unsigned int dt_cur; /* DT_CUR offset */ /* called from open callback */ void (*enable_dma)(struct atiixp *chip, int on); /* called from trigger (START/STOP) */ void (*enable_transfer)(struct atiixp *chip, int on); /* called from trigger (STOP only) */ void (*flush_dma)(struct atiixp *chip); }; /* * DMA stream */ struct atiixp_dma { const struct atiixp_dma_ops *ops; struct snd_dma_buffer desc_buf; struct snd_pcm_substream *substream; /* assigned PCM substream */ unsigned int buf_addr, buf_bytes; /* DMA buffer address, bytes */ unsigned int period_bytes, periods; int opened; int running; int suspended; int pcm_open_flag; int ac97_pcm_type; /* index # of ac97_pcm to access, -1 = not used */ unsigned int saved_curptr; }; /* * ATI IXP chip */ struct atiixp { struct snd_card *card; struct pci_dev *pci; unsigned long addr; void __iomem *remap_addr; int irq; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97[NUM_ATI_CODECS]; spinlock_t reg_lock; struct atiixp_dma dmas[NUM_ATI_DMAS]; struct ac97_pcm *pcms[NUM_ATI_PCMS]; struct snd_pcm *pcmdevs[NUM_ATI_PCMDEVS]; int max_channels; /* max. channels for PCM out */ unsigned int codec_not_ready_bits; /* for codec detection */ int spdif_over_aclink; /* passed from the module option */ struct mutex open_mutex; /* playback open mutex */ }; /* */ static const struct pci_device_id snd_atiixp_ids[] = { { PCI_VDEVICE(ATI, 0x4341), 0 }, /* SB200 */ { PCI_VDEVICE(ATI, 0x4361), 0 }, /* SB300 */ { PCI_VDEVICE(ATI, 0x4370), 0 }, /* SB400 */ { PCI_VDEVICE(ATI, 0x4382), 0 }, /* SB600 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_atiixp_ids); static const struct snd_pci_quirk atiixp_quirks[] = { SND_PCI_QUIRK(0x105b, 0x0c81, "Foxconn RC4107MA-RS2", 0), SND_PCI_QUIRK(0x15bd, 0x3100, "DFI RS482", 0), { } /* terminator */ }; /* * lowlevel functions */ /* * update the bits of the given register. * return 1 if the bits changed. */ static int snd_atiixp_update_bits(struct atiixp *chip, unsigned int reg, unsigned int mask, unsigned int value) { void __iomem *addr = chip->remap_addr + reg; unsigned int data, old_data; old_data = data = readl(addr); data &= ~mask; data |= value; if (old_data == data) return 0; writel(data, addr); return 1; } /* * macros for easy use */ #define atiixp_write(chip,reg,value) \ writel(value, chip->remap_addr + ATI_REG_##reg) #define atiixp_read(chip,reg) \ readl(chip->remap_addr + ATI_REG_##reg) #define atiixp_update(chip,reg,mask,val) \ snd_atiixp_update_bits(chip, ATI_REG_##reg, mask, val) /* * handling DMA packets * * we allocate a linear buffer for the DMA, and split it to each packet. * in a future version, a scatter-gather buffer should be implemented. */ #define ATI_DESC_LIST_SIZE \ PAGE_ALIGN(ATI_MAX_DESCRIPTORS * sizeof(struct atiixp_dma_desc)) /* * build packets ring for the given buffer size. * * IXP handles the buffer descriptors, which are connected as a linked * list. although we can change the list dynamically, in this version, * a static RING of buffer descriptors is used. * * the ring is built in this function, and is set up to the hardware. */ static int atiixp_build_dma_packets(struct atiixp *chip, struct atiixp_dma *dma, struct snd_pcm_substream *substream, unsigned int periods, unsigned int period_bytes) { unsigned int i; u32 addr, desc_addr; unsigned long flags; if (periods > ATI_MAX_DESCRIPTORS) return -ENOMEM; if (dma->desc_buf.area == NULL) { if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, ATI_DESC_LIST_SIZE, &dma->desc_buf) < 0) return -ENOMEM; dma->period_bytes = dma->periods = 0; /* clear */ } if (dma->periods == periods && dma->period_bytes == period_bytes) return 0; /* reset DMA before changing the descriptor table */ spin_lock_irqsave(&chip->reg_lock, flags); writel(0, chip->remap_addr + dma->ops->llp_offset); dma->ops->enable_dma(chip, 0); dma->ops->enable_dma(chip, 1); spin_unlock_irqrestore(&chip->reg_lock, flags); /* fill the entries */ addr = (u32)substream->runtime->dma_addr; desc_addr = (u32)dma->desc_buf.addr; for (i = 0; i < periods; i++) { struct atiixp_dma_desc *desc; desc = &((struct atiixp_dma_desc *)dma->desc_buf.area)[i]; desc->addr = cpu_to_le32(addr); desc->status = 0; desc->size = period_bytes >> 2; /* in dwords */ desc_addr += sizeof(struct atiixp_dma_desc); if (i == periods - 1) desc->next = cpu_to_le32((u32)dma->desc_buf.addr); else desc->next = cpu_to_le32(desc_addr); addr += period_bytes; } writel((u32)dma->desc_buf.addr | ATI_REG_LINKPTR_EN, chip->remap_addr + dma->ops->llp_offset); dma->period_bytes = period_bytes; dma->periods = periods; return 0; } /* * remove the ring buffer and release it if assigned */ static void atiixp_clear_dma_packets(struct atiixp *chip, struct atiixp_dma *dma, struct snd_pcm_substream *substream) { if (dma->desc_buf.area) { writel(0, chip->remap_addr + dma->ops->llp_offset); snd_dma_free_pages(&dma->desc_buf); dma->desc_buf.area = NULL; } } /* * AC97 interface */ static int snd_atiixp_acquire_codec(struct atiixp *chip) { int timeout = 1000; while (atiixp_read(chip, PHYS_OUT_ADDR) & ATI_REG_PHYS_OUT_ADDR_EN) { if (! timeout--) { dev_warn(chip->card->dev, "codec acquire timeout\n"); return -EBUSY; } udelay(1); } return 0; } static unsigned short snd_atiixp_codec_read(struct atiixp *chip, unsigned short codec, unsigned short reg) { unsigned int data; int timeout; if (snd_atiixp_acquire_codec(chip) < 0) return 0xffff; data = (reg << ATI_REG_PHYS_OUT_ADDR_SHIFT) | ATI_REG_PHYS_OUT_ADDR_EN | ATI_REG_PHYS_OUT_RW | codec; atiixp_write(chip, PHYS_OUT_ADDR, data); if (snd_atiixp_acquire_codec(chip) < 0) return 0xffff; timeout = 1000; do { data = atiixp_read(chip, PHYS_IN_ADDR); if (data & ATI_REG_PHYS_IN_READ_FLAG) return data >> ATI_REG_PHYS_IN_DATA_SHIFT; udelay(1); } while (--timeout); /* time out may happen during reset */ if (reg < 0x7c) dev_warn(chip->card->dev, "codec read timeout (reg %x)\n", reg); return 0xffff; } static void snd_atiixp_codec_write(struct atiixp *chip, unsigned short codec, unsigned short reg, unsigned short val) { unsigned int data; if (snd_atiixp_acquire_codec(chip) < 0) return; data = ((unsigned int)val << ATI_REG_PHYS_OUT_DATA_SHIFT) | ((unsigned int)reg << ATI_REG_PHYS_OUT_ADDR_SHIFT) | ATI_REG_PHYS_OUT_ADDR_EN | codec; atiixp_write(chip, PHYS_OUT_ADDR, data); } static unsigned short snd_atiixp_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct atiixp *chip = ac97->private_data; return snd_atiixp_codec_read(chip, ac97->num, reg); } static void snd_atiixp_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct atiixp *chip = ac97->private_data; snd_atiixp_codec_write(chip, ac97->num, reg, val); } /* * reset AC link */ static int snd_atiixp_aclink_reset(struct atiixp *chip) { int timeout; /* reset powerdoewn */ if (atiixp_update(chip, CMD, ATI_REG_CMD_POWERDOWN, 0)) udelay(10); /* perform a software reset */ atiixp_update(chip, CMD, ATI_REG_CMD_AC_SOFT_RESET, ATI_REG_CMD_AC_SOFT_RESET); atiixp_read(chip, CMD); udelay(10); atiixp_update(chip, CMD, ATI_REG_CMD_AC_SOFT_RESET, 0); timeout = 10; while (! (atiixp_read(chip, CMD) & ATI_REG_CMD_ACLINK_ACTIVE)) { /* do a hard reset */ atiixp_update(chip, CMD, ATI_REG_CMD_AC_SYNC|ATI_REG_CMD_AC_RESET, ATI_REG_CMD_AC_SYNC); atiixp_read(chip, CMD); mdelay(1); atiixp_update(chip, CMD, ATI_REG_CMD_AC_RESET, ATI_REG_CMD_AC_RESET); if (!--timeout) { dev_err(chip->card->dev, "codec reset timeout\n"); break; } } /* deassert RESET and assert SYNC to make sure */ atiixp_update(chip, CMD, ATI_REG_CMD_AC_SYNC|ATI_REG_CMD_AC_RESET, ATI_REG_CMD_AC_SYNC|ATI_REG_CMD_AC_RESET); return 0; } #ifdef CONFIG_PM_SLEEP static int snd_atiixp_aclink_down(struct atiixp *chip) { // if (atiixp_read(chip, MODEM_MIRROR) & 0x1) /* modem running, too? */ // return -EBUSY; atiixp_update(chip, CMD, ATI_REG_CMD_POWERDOWN | ATI_REG_CMD_AC_RESET, ATI_REG_CMD_POWERDOWN); return 0; } #endif /* * auto-detection of codecs * * the IXP chip can generate interrupts for the non-existing codecs. * NEW_FRAME interrupt is used to make sure that the interrupt is generated * even if all three codecs are connected. */ #define ALL_CODEC_NOT_READY \ (ATI_REG_ISR_CODEC0_NOT_READY |\ ATI_REG_ISR_CODEC1_NOT_READY |\ ATI_REG_ISR_CODEC2_NOT_READY) #define CODEC_CHECK_BITS (ALL_CODEC_NOT_READY|ATI_REG_ISR_NEW_FRAME) static int ac97_probing_bugs(struct pci_dev *pci) { const struct snd_pci_quirk *q; q = snd_pci_quirk_lookup(pci, atiixp_quirks); if (q) { dev_dbg(&pci->dev, "atiixp quirk for %s. Forcing codec %d\n", snd_pci_quirk_name(q), q->value); return q->value; } /* this hardware doesn't need workarounds. Probe for codec */ return -1; } static int snd_atiixp_codec_detect(struct atiixp *chip) { int timeout; chip->codec_not_ready_bits = 0; if (ac97_codec == -1) ac97_codec = ac97_probing_bugs(chip->pci); if (ac97_codec >= 0) { chip->codec_not_ready_bits |= CODEC_CHECK_BITS ^ (1 << (ac97_codec + 10)); return 0; } atiixp_write(chip, IER, CODEC_CHECK_BITS); /* wait for the interrupts */ timeout = 50; while (timeout-- > 0) { mdelay(1); if (chip->codec_not_ready_bits) break; } atiixp_write(chip, IER, 0); /* disable irqs */ if ((chip->codec_not_ready_bits & ALL_CODEC_NOT_READY) == ALL_CODEC_NOT_READY) { dev_err(chip->card->dev, "no codec detected!\n"); return -ENXIO; } return 0; } /* * enable DMA and irqs */ static int snd_atiixp_chip_start(struct atiixp *chip) { unsigned int reg; /* set up spdif, enable burst mode */ reg = atiixp_read(chip, CMD); reg |= 0x02 << ATI_REG_CMD_SPDF_THRESHOLD_SHIFT; reg |= ATI_REG_CMD_BURST_EN; atiixp_write(chip, CMD, reg); reg = atiixp_read(chip, SPDF_CMD); reg &= ~(ATI_REG_SPDF_CMD_LFSR|ATI_REG_SPDF_CMD_SINGLE_CH); atiixp_write(chip, SPDF_CMD, reg); /* clear all interrupt source */ atiixp_write(chip, ISR, 0xffffffff); /* enable irqs */ atiixp_write(chip, IER, ATI_REG_IER_IO_STATUS_EN | ATI_REG_IER_IN_XRUN_EN | ATI_REG_IER_OUT_XRUN_EN | ATI_REG_IER_SPDF_XRUN_EN | ATI_REG_IER_SPDF_STATUS_EN); return 0; } /* * disable DMA and IRQs */ static int snd_atiixp_chip_stop(struct atiixp *chip) { /* clear interrupt source */ atiixp_write(chip, ISR, atiixp_read(chip, ISR)); /* disable irqs */ atiixp_write(chip, IER, 0); return 0; } /* * PCM section */ /* * pointer callback simplly reads XXX_DMA_DT_CUR register as the current * position. when SG-buffer is implemented, the offset must be calculated * correctly... */ static snd_pcm_uframes_t snd_atiixp_pcm_pointer(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct atiixp_dma *dma = runtime->private_data; unsigned int curptr; int timeout = 1000; while (timeout--) { curptr = readl(chip->remap_addr + dma->ops->dt_cur); if (curptr < dma->buf_addr) continue; curptr -= dma->buf_addr; if (curptr >= dma->buf_bytes) continue; return bytes_to_frames(runtime, curptr); } dev_dbg(chip->card->dev, "invalid DMA pointer read 0x%x (buf=%x)\n", readl(chip->remap_addr + dma->ops->dt_cur), dma->buf_addr); return 0; } /* * XRUN detected, and stop the PCM substream */ static void snd_atiixp_xrun_dma(struct atiixp *chip, struct atiixp_dma *dma) { if (! dma->substream || ! dma->running) return; dev_dbg(chip->card->dev, "XRUN detected (DMA %d)\n", dma->ops->type); snd_pcm_stop_xrun(dma->substream); } /* * the period ack. update the substream. */ static void snd_atiixp_update_dma(struct atiixp *chip, struct atiixp_dma *dma) { if (! dma->substream || ! dma->running) return; snd_pcm_period_elapsed(dma->substream); } /* set BUS_BUSY interrupt bit if any DMA is running */ /* call with spinlock held */ static void snd_atiixp_check_bus_busy(struct atiixp *chip) { unsigned int bus_busy; if (atiixp_read(chip, CMD) & (ATI_REG_CMD_SEND_EN | ATI_REG_CMD_RECEIVE_EN | ATI_REG_CMD_SPDF_OUT_EN)) bus_busy = ATI_REG_IER_SET_BUS_BUSY; else bus_busy = 0; atiixp_update(chip, IER, ATI_REG_IER_SET_BUS_BUSY, bus_busy); } /* common trigger callback * calling the lowlevel callbacks in it */ static int snd_atiixp_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct atiixp *chip = snd_pcm_substream_chip(substream); struct atiixp_dma *dma = substream->runtime->private_data; int err = 0; if (snd_BUG_ON(!dma->ops->enable_transfer || !dma->ops->flush_dma)) return -EINVAL; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: if (dma->running && dma->suspended && cmd == SNDRV_PCM_TRIGGER_RESUME) writel(dma->saved_curptr, chip->remap_addr + dma->ops->dt_cur); dma->ops->enable_transfer(chip, 1); dma->running = 1; dma->suspended = 0; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: dma->suspended = cmd == SNDRV_PCM_TRIGGER_SUSPEND; if (dma->running && dma->suspended) dma->saved_curptr = readl(chip->remap_addr + dma->ops->dt_cur); dma->ops->enable_transfer(chip, 0); dma->running = 0; break; default: err = -EINVAL; break; } if (! err) { snd_atiixp_check_bus_busy(chip); if (cmd == SNDRV_PCM_TRIGGER_STOP) { dma->ops->flush_dma(chip); snd_atiixp_check_bus_busy(chip); } } spin_unlock(&chip->reg_lock); return err; } /* * lowlevel callbacks for each DMA type * * every callback is supposed to be called in chip->reg_lock spinlock */ /* flush FIFO of analog OUT DMA */ static void atiixp_out_flush_dma(struct atiixp *chip) { atiixp_write(chip, FIFO_FLUSH, ATI_REG_FIFO_OUT_FLUSH); } /* enable/disable analog OUT DMA */ static void atiixp_out_enable_dma(struct atiixp *chip, int on) { unsigned int data; data = atiixp_read(chip, CMD); if (on) { if (data & ATI_REG_CMD_OUT_DMA_EN) return; atiixp_out_flush_dma(chip); data |= ATI_REG_CMD_OUT_DMA_EN; } else data &= ~ATI_REG_CMD_OUT_DMA_EN; atiixp_write(chip, CMD, data); } /* start/stop transfer over OUT DMA */ static void atiixp_out_enable_transfer(struct atiixp *chip, int on) { atiixp_update(chip, CMD, ATI_REG_CMD_SEND_EN, on ? ATI_REG_CMD_SEND_EN : 0); } /* enable/disable analog IN DMA */ static void atiixp_in_enable_dma(struct atiixp *chip, int on) { atiixp_update(chip, CMD, ATI_REG_CMD_IN_DMA_EN, on ? ATI_REG_CMD_IN_DMA_EN : 0); } /* start/stop analog IN DMA */ static void atiixp_in_enable_transfer(struct atiixp *chip, int on) { if (on) { unsigned int data = atiixp_read(chip, CMD); if (! (data & ATI_REG_CMD_RECEIVE_EN)) { data |= ATI_REG_CMD_RECEIVE_EN; #if 0 /* FIXME: this causes the endless loop */ /* wait until slot 3/4 are finished */ while ((atiixp_read(chip, COUNTER) & ATI_REG_COUNTER_SLOT) != 5) ; #endif atiixp_write(chip, CMD, data); } } else atiixp_update(chip, CMD, ATI_REG_CMD_RECEIVE_EN, 0); } /* flush FIFO of analog IN DMA */ static void atiixp_in_flush_dma(struct atiixp *chip) { atiixp_write(chip, FIFO_FLUSH, ATI_REG_FIFO_IN_FLUSH); } /* enable/disable SPDIF OUT DMA */ static void atiixp_spdif_enable_dma(struct atiixp *chip, int on) { atiixp_update(chip, CMD, ATI_REG_CMD_SPDF_DMA_EN, on ? ATI_REG_CMD_SPDF_DMA_EN : 0); } /* start/stop SPDIF OUT DMA */ static void atiixp_spdif_enable_transfer(struct atiixp *chip, int on) { unsigned int data; data = atiixp_read(chip, CMD); if (on) data |= ATI_REG_CMD_SPDF_OUT_EN; else data &= ~ATI_REG_CMD_SPDF_OUT_EN; atiixp_write(chip, CMD, data); } /* flush FIFO of SPDIF OUT DMA */ static void atiixp_spdif_flush_dma(struct atiixp *chip) { int timeout; /* DMA off, transfer on */ atiixp_spdif_enable_dma(chip, 0); atiixp_spdif_enable_transfer(chip, 1); timeout = 100; do { if (! (atiixp_read(chip, SPDF_DMA_DT_SIZE) & ATI_REG_DMA_FIFO_USED)) break; udelay(1); } while (timeout-- > 0); atiixp_spdif_enable_transfer(chip, 0); } /* set up slots and formats for SPDIF OUT */ static int snd_atiixp_spdif_prepare(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); if (chip->spdif_over_aclink) { unsigned int data; /* enable slots 10/11 */ atiixp_update(chip, CMD, ATI_REG_CMD_SPDF_CONFIG_MASK, ATI_REG_CMD_SPDF_CONFIG_01); data = atiixp_read(chip, OUT_DMA_SLOT) & ~ATI_REG_OUT_DMA_SLOT_MASK; data |= ATI_REG_OUT_DMA_SLOT_BIT(10) | ATI_REG_OUT_DMA_SLOT_BIT(11); data |= 0x04 << ATI_REG_OUT_DMA_THRESHOLD_SHIFT; atiixp_write(chip, OUT_DMA_SLOT, data); atiixp_update(chip, CMD, ATI_REG_CMD_INTERLEAVE_OUT, substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE ? ATI_REG_CMD_INTERLEAVE_OUT : 0); } else { atiixp_update(chip, CMD, ATI_REG_CMD_SPDF_CONFIG_MASK, 0); atiixp_update(chip, CMD, ATI_REG_CMD_INTERLEAVE_SPDF, 0); } spin_unlock_irq(&chip->reg_lock); return 0; } /* set up slots and formats for analog OUT */ static int snd_atiixp_playback_prepare(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); unsigned int data; spin_lock_irq(&chip->reg_lock); data = atiixp_read(chip, OUT_DMA_SLOT) & ~ATI_REG_OUT_DMA_SLOT_MASK; switch (substream->runtime->channels) { case 8: data |= ATI_REG_OUT_DMA_SLOT_BIT(10) | ATI_REG_OUT_DMA_SLOT_BIT(11); fallthrough; case 6: data |= ATI_REG_OUT_DMA_SLOT_BIT(7) | ATI_REG_OUT_DMA_SLOT_BIT(8); fallthrough; case 4: data |= ATI_REG_OUT_DMA_SLOT_BIT(6) | ATI_REG_OUT_DMA_SLOT_BIT(9); fallthrough; default: data |= ATI_REG_OUT_DMA_SLOT_BIT(3) | ATI_REG_OUT_DMA_SLOT_BIT(4); break; } /* set output threshold */ data |= 0x04 << ATI_REG_OUT_DMA_THRESHOLD_SHIFT; atiixp_write(chip, OUT_DMA_SLOT, data); atiixp_update(chip, CMD, ATI_REG_CMD_INTERLEAVE_OUT, substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE ? ATI_REG_CMD_INTERLEAVE_OUT : 0); /* * enable 6 channel re-ordering bit if needed */ atiixp_update(chip, 6CH_REORDER, ATI_REG_6CH_REORDER_EN, substream->runtime->channels >= 6 ? ATI_REG_6CH_REORDER_EN: 0); spin_unlock_irq(&chip->reg_lock); return 0; } /* set up slots and formats for analog IN */ static int snd_atiixp_capture_prepare(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); atiixp_update(chip, CMD, ATI_REG_CMD_INTERLEAVE_IN, substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE ? ATI_REG_CMD_INTERLEAVE_IN : 0); spin_unlock_irq(&chip->reg_lock); return 0; } /* * hw_params - allocate the buffer and set up buffer descriptors */ static int snd_atiixp_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct atiixp *chip = snd_pcm_substream_chip(substream); struct atiixp_dma *dma = substream->runtime->private_data; int err; dma->buf_addr = substream->runtime->dma_addr; dma->buf_bytes = params_buffer_bytes(hw_params); err = atiixp_build_dma_packets(chip, dma, substream, params_periods(hw_params), params_period_bytes(hw_params)); if (err < 0) return err; if (dma->ac97_pcm_type >= 0) { struct ac97_pcm *pcm = chip->pcms[dma->ac97_pcm_type]; /* PCM is bound to AC97 codec(s) * set up the AC97 codecs */ if (dma->pcm_open_flag) { snd_ac97_pcm_close(pcm); dma->pcm_open_flag = 0; } err = snd_ac97_pcm_open(pcm, params_rate(hw_params), params_channels(hw_params), pcm->r[0].slots); if (err >= 0) dma->pcm_open_flag = 1; } return err; } static int snd_atiixp_pcm_hw_free(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); struct atiixp_dma *dma = substream->runtime->private_data; if (dma->pcm_open_flag) { struct ac97_pcm *pcm = chip->pcms[dma->ac97_pcm_type]; snd_ac97_pcm_close(pcm); dma->pcm_open_flag = 0; } atiixp_clear_dma_packets(chip, dma, substream); return 0; } /* * pcm hardware definition, identical for all DMA types */ static const struct snd_pcm_hardware snd_atiixp_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 256 * 1024, .period_bytes_min = 32, .period_bytes_max = 128 * 1024, .periods_min = 2, .periods_max = ATI_MAX_DESCRIPTORS, }; static int snd_atiixp_pcm_open(struct snd_pcm_substream *substream, struct atiixp_dma *dma, int pcm_type) { struct atiixp *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if (snd_BUG_ON(!dma->ops || !dma->ops->enable_dma)) return -EINVAL; if (dma->opened) return -EBUSY; dma->substream = substream; runtime->hw = snd_atiixp_pcm_hw; dma->ac97_pcm_type = pcm_type; if (pcm_type >= 0) { runtime->hw.rates = chip->pcms[pcm_type]->rates; snd_pcm_limit_hw_rates(runtime); } else { /* direct SPDIF */ runtime->hw.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE; } err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; runtime->private_data = dma; /* enable DMA bits */ spin_lock_irq(&chip->reg_lock); dma->ops->enable_dma(chip, 1); spin_unlock_irq(&chip->reg_lock); dma->opened = 1; return 0; } static int snd_atiixp_pcm_close(struct snd_pcm_substream *substream, struct atiixp_dma *dma) { struct atiixp *chip = snd_pcm_substream_chip(substream); /* disable DMA bits */ if (snd_BUG_ON(!dma->ops || !dma->ops->enable_dma)) return -EINVAL; spin_lock_irq(&chip->reg_lock); dma->ops->enable_dma(chip, 0); spin_unlock_irq(&chip->reg_lock); dma->substream = NULL; dma->opened = 0; return 0; } /* */ static int snd_atiixp_playback_open(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); int err; mutex_lock(&chip->open_mutex); err = snd_atiixp_pcm_open(substream, &chip->dmas[ATI_DMA_PLAYBACK], 0); mutex_unlock(&chip->open_mutex); if (err < 0) return err; substream->runtime->hw.channels_max = chip->max_channels; if (chip->max_channels > 2) /* channels must be even */ snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 2); return 0; } static int snd_atiixp_playback_close(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); int err; mutex_lock(&chip->open_mutex); err = snd_atiixp_pcm_close(substream, &chip->dmas[ATI_DMA_PLAYBACK]); mutex_unlock(&chip->open_mutex); return err; } static int snd_atiixp_capture_open(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); return snd_atiixp_pcm_open(substream, &chip->dmas[ATI_DMA_CAPTURE], 1); } static int snd_atiixp_capture_close(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); return snd_atiixp_pcm_close(substream, &chip->dmas[ATI_DMA_CAPTURE]); } static int snd_atiixp_spdif_open(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); int err; mutex_lock(&chip->open_mutex); if (chip->spdif_over_aclink) /* share DMA_PLAYBACK */ err = snd_atiixp_pcm_open(substream, &chip->dmas[ATI_DMA_PLAYBACK], 2); else err = snd_atiixp_pcm_open(substream, &chip->dmas[ATI_DMA_SPDIF], -1); mutex_unlock(&chip->open_mutex); return err; } static int snd_atiixp_spdif_close(struct snd_pcm_substream *substream) { struct atiixp *chip = snd_pcm_substream_chip(substream); int err; mutex_lock(&chip->open_mutex); if (chip->spdif_over_aclink) err = snd_atiixp_pcm_close(substream, &chip->dmas[ATI_DMA_PLAYBACK]); else err = snd_atiixp_pcm_close(substream, &chip->dmas[ATI_DMA_SPDIF]); mutex_unlock(&chip->open_mutex); return err; } /* AC97 playback */ static const struct snd_pcm_ops snd_atiixp_playback_ops = { .open = snd_atiixp_playback_open, .close = snd_atiixp_playback_close, .hw_params = snd_atiixp_pcm_hw_params, .hw_free = snd_atiixp_pcm_hw_free, .prepare = snd_atiixp_playback_prepare, .trigger = snd_atiixp_pcm_trigger, .pointer = snd_atiixp_pcm_pointer, }; /* AC97 capture */ static const struct snd_pcm_ops snd_atiixp_capture_ops = { .open = snd_atiixp_capture_open, .close = snd_atiixp_capture_close, .hw_params = snd_atiixp_pcm_hw_params, .hw_free = snd_atiixp_pcm_hw_free, .prepare = snd_atiixp_capture_prepare, .trigger = snd_atiixp_pcm_trigger, .pointer = snd_atiixp_pcm_pointer, }; /* SPDIF playback */ static const struct snd_pcm_ops snd_atiixp_spdif_ops = { .open = snd_atiixp_spdif_open, .close = snd_atiixp_spdif_close, .hw_params = snd_atiixp_pcm_hw_params, .hw_free = snd_atiixp_pcm_hw_free, .prepare = snd_atiixp_spdif_prepare, .trigger = snd_atiixp_pcm_trigger, .pointer = snd_atiixp_pcm_pointer, }; static const struct ac97_pcm atiixp_pcm_defs[] = { /* front PCM */ { .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) | (1 << AC97_SLOT_PCM_CENTER) | (1 << AC97_SLOT_PCM_SLEFT) | (1 << AC97_SLOT_PCM_SRIGHT) | (1 << AC97_SLOT_LFE) } } }, /* PCM IN #1 */ { .stream = 1, .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) } } }, /* S/PDIF OUT (optional) */ { .exclusive = 1, .spdif = 1, .r = { { .slots = (1 << AC97_SLOT_SPDIF_LEFT2) | (1 << AC97_SLOT_SPDIF_RIGHT2) } } }, }; static const struct atiixp_dma_ops snd_atiixp_playback_dma_ops = { .type = ATI_DMA_PLAYBACK, .llp_offset = ATI_REG_OUT_DMA_LINKPTR, .dt_cur = ATI_REG_OUT_DMA_DT_CUR, .enable_dma = atiixp_out_enable_dma, .enable_transfer = atiixp_out_enable_transfer, .flush_dma = atiixp_out_flush_dma, }; static const struct atiixp_dma_ops snd_atiixp_capture_dma_ops = { .type = ATI_DMA_CAPTURE, .llp_offset = ATI_REG_IN_DMA_LINKPTR, .dt_cur = ATI_REG_IN_DMA_DT_CUR, .enable_dma = atiixp_in_enable_dma, .enable_transfer = atiixp_in_enable_transfer, .flush_dma = atiixp_in_flush_dma, }; static const struct atiixp_dma_ops snd_atiixp_spdif_dma_ops = { .type = ATI_DMA_SPDIF, .llp_offset = ATI_REG_SPDF_DMA_LINKPTR, .dt_cur = ATI_REG_SPDF_DMA_DT_CUR, .enable_dma = atiixp_spdif_enable_dma, .enable_transfer = atiixp_spdif_enable_transfer, .flush_dma = atiixp_spdif_flush_dma, }; static int snd_atiixp_pcm_new(struct atiixp *chip) { struct snd_pcm *pcm; struct snd_pcm_chmap *chmap; struct snd_ac97_bus *pbus = chip->ac97_bus; int err, i, num_pcms; /* initialize constants */ chip->dmas[ATI_DMA_PLAYBACK].ops = &snd_atiixp_playback_dma_ops; chip->dmas[ATI_DMA_CAPTURE].ops = &snd_atiixp_capture_dma_ops; if (! chip->spdif_over_aclink) chip->dmas[ATI_DMA_SPDIF].ops = &snd_atiixp_spdif_dma_ops; /* assign AC97 pcm */ if (chip->spdif_over_aclink) num_pcms = 3; else num_pcms = 2; err = snd_ac97_pcm_assign(pbus, num_pcms, atiixp_pcm_defs); if (err < 0) return err; for (i = 0; i < num_pcms; i++) chip->pcms[i] = &pbus->pcms[i]; chip->max_channels = 2; if (pbus->pcms[ATI_PCM_OUT].r[0].slots & (1 << AC97_SLOT_PCM_SLEFT)) { if (pbus->pcms[ATI_PCM_OUT].r[0].slots & (1 << AC97_SLOT_LFE)) chip->max_channels = 6; else chip->max_channels = 4; } /* PCM #0: analog I/O */ err = snd_pcm_new(chip->card, "ATI IXP AC97", ATI_PCMDEV_ANALOG, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_atiixp_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_atiixp_capture_ops); pcm->private_data = chip; strcpy(pcm->name, "ATI IXP AC97"); chip->pcmdevs[ATI_PCMDEV_ANALOG] = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 64*1024, 128*1024); err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_alt_chmaps, chip->max_channels, 0, &chmap); if (err < 0) return err; chmap->channel_mask = SND_PCM_CHMAP_MASK_2468; chip->ac97[0]->chmaps[SNDRV_PCM_STREAM_PLAYBACK] = chmap; /* no SPDIF support on codec? */ if (chip->pcms[ATI_PCM_SPDIF] && ! chip->pcms[ATI_PCM_SPDIF]->rates) return 0; /* FIXME: non-48k sample rate doesn't work on my test machine with AD1888 */ if (chip->pcms[ATI_PCM_SPDIF]) chip->pcms[ATI_PCM_SPDIF]->rates = SNDRV_PCM_RATE_48000; /* PCM #1: spdif playback */ err = snd_pcm_new(chip->card, "ATI IXP IEC958", ATI_PCMDEV_DIGITAL, 1, 0, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_atiixp_spdif_ops); pcm->private_data = chip; if (chip->spdif_over_aclink) strcpy(pcm->name, "ATI IXP IEC958 (AC97)"); else strcpy(pcm->name, "ATI IXP IEC958 (Direct)"); chip->pcmdevs[ATI_PCMDEV_DIGITAL] = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 64*1024, 128*1024); /* pre-select AC97 SPDIF slots 10/11 */ for (i = 0; i < NUM_ATI_CODECS; i++) { if (chip->ac97[i]) snd_ac97_update_bits(chip->ac97[i], AC97_EXTENDED_STATUS, 0x03 << 4, 0x03 << 4); } return 0; } /* * interrupt handler */ static irqreturn_t snd_atiixp_interrupt(int irq, void *dev_id) { struct atiixp *chip = dev_id; unsigned int status; status = atiixp_read(chip, ISR); if (! status) return IRQ_NONE; /* process audio DMA */ if (status & ATI_REG_ISR_OUT_XRUN) snd_atiixp_xrun_dma(chip, &chip->dmas[ATI_DMA_PLAYBACK]); else if (status & ATI_REG_ISR_OUT_STATUS) snd_atiixp_update_dma(chip, &chip->dmas[ATI_DMA_PLAYBACK]); if (status & ATI_REG_ISR_IN_XRUN) snd_atiixp_xrun_dma(chip, &chip->dmas[ATI_DMA_CAPTURE]); else if (status & ATI_REG_ISR_IN_STATUS) snd_atiixp_update_dma(chip, &chip->dmas[ATI_DMA_CAPTURE]); if (! chip->spdif_over_aclink) { if (status & ATI_REG_ISR_SPDF_XRUN) snd_atiixp_xrun_dma(chip, &chip->dmas[ATI_DMA_SPDIF]); else if (status & ATI_REG_ISR_SPDF_STATUS) snd_atiixp_update_dma(chip, &chip->dmas[ATI_DMA_SPDIF]); } /* for codec detection */ if (status & CODEC_CHECK_BITS) { unsigned int detected; detected = status & CODEC_CHECK_BITS; spin_lock(&chip->reg_lock); chip->codec_not_ready_bits |= detected; atiixp_update(chip, IER, detected, 0); /* disable the detected irqs */ spin_unlock(&chip->reg_lock); } /* ack */ atiixp_write(chip, ISR, status); return IRQ_HANDLED; } /* * ac97 mixer section */ static const struct ac97_quirk ac97_quirks[] = { { .subvendor = 0x103c, .subdevice = 0x006b, .name = "HP Pavilion ZV5030US", .type = AC97_TUNE_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x308b, .name = "HP nx6125", .type = AC97_TUNE_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x3091, .name = "unknown HP", .type = AC97_TUNE_MUTE_LED }, { } /* terminator */ }; static int snd_atiixp_mixer_new(struct atiixp *chip, int clock, const char *quirk_override) { struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int i, err; int codec_count; static const struct snd_ac97_bus_ops ops = { .write = snd_atiixp_ac97_write, .read = snd_atiixp_ac97_read, }; static const unsigned int codec_skip[NUM_ATI_CODECS] = { ATI_REG_ISR_CODEC0_NOT_READY, ATI_REG_ISR_CODEC1_NOT_READY, ATI_REG_ISR_CODEC2_NOT_READY, }; if (snd_atiixp_codec_detect(chip) < 0) return -ENXIO; err = snd_ac97_bus(chip->card, 0, &ops, chip, &pbus); if (err < 0) return err; pbus->clock = clock; chip->ac97_bus = pbus; codec_count = 0; for (i = 0; i < NUM_ATI_CODECS; i++) { if (chip->codec_not_ready_bits & codec_skip[i]) continue; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.pci = chip->pci; ac97.num = i; ac97.scaps = AC97_SCAP_SKIP_MODEM | AC97_SCAP_POWER_SAVE; if (! chip->spdif_over_aclink) ac97.scaps |= AC97_SCAP_NO_SPDIF; err = snd_ac97_mixer(pbus, &ac97, &chip->ac97[i]); if (err < 0) { chip->ac97[i] = NULL; /* to be sure */ dev_dbg(chip->card->dev, "codec %d not available for audio\n", i); continue; } codec_count++; } if (! codec_count) { dev_err(chip->card->dev, "no codec available\n"); return -ENODEV; } snd_ac97_tune_hardware(chip->ac97[0], ac97_quirks, quirk_override); return 0; } #ifdef CONFIG_PM_SLEEP /* * power management */ static int snd_atiixp_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct atiixp *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < NUM_ATI_CODECS; i++) snd_ac97_suspend(chip->ac97[i]); snd_atiixp_aclink_down(chip); snd_atiixp_chip_stop(chip); return 0; } static int snd_atiixp_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct atiixp *chip = card->private_data; int i; snd_atiixp_aclink_reset(chip); snd_atiixp_chip_start(chip); for (i = 0; i < NUM_ATI_CODECS; i++) snd_ac97_resume(chip->ac97[i]); for (i = 0; i < NUM_ATI_PCMDEVS; i++) if (chip->pcmdevs[i]) { struct atiixp_dma *dma = &chip->dmas[i]; if (dma->substream && dma->suspended) { dma->ops->enable_dma(chip, 1); dma->substream->ops->prepare(dma->substream); writel((u32)dma->desc_buf.addr | ATI_REG_LINKPTR_EN, chip->remap_addr + dma->ops->llp_offset); } } snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_atiixp_pm, snd_atiixp_suspend, snd_atiixp_resume); #define SND_ATIIXP_PM_OPS &snd_atiixp_pm #else #define SND_ATIIXP_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ /* * proc interface for register dump */ static void snd_atiixp_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct atiixp *chip = entry->private_data; int i; for (i = 0; i < 256; i += 4) snd_iprintf(buffer, "%02x: %08x\n", i, readl(chip->remap_addr + i)); } static void snd_atiixp_proc_init(struct atiixp *chip) { snd_card_ro_proc_new(chip->card, "atiixp", chip, snd_atiixp_proc_read); } /* * destructor */ static void snd_atiixp_free(struct snd_card *card) { snd_atiixp_chip_stop(card->private_data); } /* * constructor for chip instance */ static int snd_atiixp_init(struct snd_card *card, struct pci_dev *pci) { struct atiixp *chip = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&chip->reg_lock); mutex_init(&chip->open_mutex); chip->card = card; chip->pci = pci; chip->irq = -1; err = pcim_iomap_regions(pci, 1 << 0, "ATI IXP AC97"); if (err < 0) return err; chip->addr = pci_resource_start(pci, 0); chip->remap_addr = pcim_iomap_table(pci)[0]; if (devm_request_irq(&pci->dev, pci->irq, snd_atiixp_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; card->private_free = snd_atiixp_free; pci_set_master(pci); return 0; } static int __snd_atiixp_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; struct atiixp *chip; int err; err = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; strcpy(card->driver, spdif_aclink ? "ATIIXP" : "ATIIXP-SPDMA"); strcpy(card->shortname, "ATI IXP"); err = snd_atiixp_init(card, pci); if (err < 0) return err; err = snd_atiixp_aclink_reset(chip); if (err < 0) return err; chip->spdif_over_aclink = spdif_aclink; err = snd_atiixp_mixer_new(chip, ac97_clock, ac97_quirk); if (err < 0) return err; err = snd_atiixp_pcm_new(chip); if (err < 0) return err; snd_atiixp_proc_init(chip); snd_atiixp_chip_start(chip); snprintf(card->longname, sizeof(card->longname), "%s rev %x with %s at %#lx, irq %i", card->shortname, pci->revision, chip->ac97[0] ? snd_ac97_get_short_name(chip->ac97[0]) : "?", chip->addr, chip->irq); err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); return 0; } static int snd_atiixp_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_atiixp_probe(pci, pci_id)); } static struct pci_driver atiixp_driver = { .name = KBUILD_MODNAME, .id_table = snd_atiixp_ids, .probe = snd_atiixp_probe, .driver = { .pm = SND_ATIIXP_PM_OPS, }, }; module_pci_driver(atiixp_driver);
linux-master
sound/pci/atiixp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA driver for Intel ICH (i8x0) chipsets * * Copyright (c) 2000 Jaroslav Kysela <[email protected]> * * This code also contains alpha support for SiS 735 chipsets provided * by Mike Pieper <[email protected]>. We have no datasheet * for SiS735, so the code is not fully functional. * */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/ac97_codec.h> #include <sound/info.h> #include <sound/initval.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("Intel 82801AA,82901AB,i810,i820,i830,i840,i845,MX440; SiS 7012; Ali 5455"); MODULE_LICENSE("GPL"); static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static int ac97_clock; static char *ac97_quirk; static bool buggy_semaphore; static int buggy_irq = -1; /* auto-check */ static bool xbox; static int spdif_aclink = -1; static int inside_vm = -1; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for Intel i8x0 soundcard."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for Intel i8x0 soundcard."); module_param(ac97_clock, int, 0444); MODULE_PARM_DESC(ac97_clock, "AC'97 codec clock (0 = allowlist + auto-detect, 1 = force autodetect)."); module_param(ac97_quirk, charp, 0444); MODULE_PARM_DESC(ac97_quirk, "AC'97 workaround for strange hardware."); module_param(buggy_semaphore, bool, 0444); MODULE_PARM_DESC(buggy_semaphore, "Enable workaround for hardwares with problematic codec semaphores."); module_param(buggy_irq, bint, 0444); MODULE_PARM_DESC(buggy_irq, "Enable workaround for buggy interrupts on some motherboards."); module_param(xbox, bool, 0444); MODULE_PARM_DESC(xbox, "Set to 1 for Xbox, if you have problems with the AC'97 codec detection."); module_param(spdif_aclink, int, 0444); MODULE_PARM_DESC(spdif_aclink, "S/PDIF over AC-link."); module_param(inside_vm, bint, 0444); MODULE_PARM_DESC(inside_vm, "KVM/Parallels optimization."); /* just for backward compatibility */ static bool enable; module_param(enable, bool, 0444); static int joystick; module_param(joystick, int, 0444); /* * Direct registers */ enum { DEVICE_INTEL, DEVICE_INTEL_ICH4, DEVICE_SIS, DEVICE_ALI, DEVICE_NFORCE }; #define ICHREG(x) ICH_REG_##x #define DEFINE_REGSET(name,base) \ enum { \ ICH_REG_##name##_BDBAR = base + 0x0, /* dword - buffer descriptor list base address */ \ ICH_REG_##name##_CIV = base + 0x04, /* byte - current index value */ \ ICH_REG_##name##_LVI = base + 0x05, /* byte - last valid index */ \ ICH_REG_##name##_SR = base + 0x06, /* byte - status register */ \ ICH_REG_##name##_PICB = base + 0x08, /* word - position in current buffer */ \ ICH_REG_##name##_PIV = base + 0x0a, /* byte - prefetched index value */ \ ICH_REG_##name##_CR = base + 0x0b, /* byte - control register */ \ } /* busmaster blocks */ DEFINE_REGSET(OFF, 0); /* offset */ DEFINE_REGSET(PI, 0x00); /* PCM in */ DEFINE_REGSET(PO, 0x10); /* PCM out */ DEFINE_REGSET(MC, 0x20); /* Mic in */ /* ICH4 busmaster blocks */ DEFINE_REGSET(MC2, 0x40); /* Mic in 2 */ DEFINE_REGSET(PI2, 0x50); /* PCM in 2 */ DEFINE_REGSET(SP, 0x60); /* SPDIF out */ /* values for each busmaster block */ /* LVI */ #define ICH_REG_LVI_MASK 0x1f /* SR */ #define ICH_FIFOE 0x10 /* FIFO error */ #define ICH_BCIS 0x08 /* buffer completion interrupt status */ #define ICH_LVBCI 0x04 /* last valid buffer completion interrupt */ #define ICH_CELV 0x02 /* current equals last valid */ #define ICH_DCH 0x01 /* DMA controller halted */ /* PIV */ #define ICH_REG_PIV_MASK 0x1f /* mask */ /* CR */ #define ICH_IOCE 0x10 /* interrupt on completion enable */ #define ICH_FEIE 0x08 /* fifo error interrupt enable */ #define ICH_LVBIE 0x04 /* last valid buffer interrupt enable */ #define ICH_RESETREGS 0x02 /* reset busmaster registers */ #define ICH_STARTBM 0x01 /* start busmaster operation */ /* global block */ #define ICH_REG_GLOB_CNT 0x2c /* dword - global control */ #define ICH_PCM_SPDIF_MASK 0xc0000000 /* s/pdif pcm slot mask (ICH4) */ #define ICH_PCM_SPDIF_NONE 0x00000000 /* reserved - undefined */ #define ICH_PCM_SPDIF_78 0x40000000 /* s/pdif pcm on slots 7&8 */ #define ICH_PCM_SPDIF_69 0x80000000 /* s/pdif pcm on slots 6&9 */ #define ICH_PCM_SPDIF_1011 0xc0000000 /* s/pdif pcm on slots 10&11 */ #define ICH_PCM_20BIT 0x00400000 /* 20-bit samples (ICH4) */ #define ICH_PCM_246_MASK 0x00300000 /* chan mask (not all chips) */ #define ICH_PCM_8 0x00300000 /* 8 channels (not all chips) */ #define ICH_PCM_6 0x00200000 /* 6 channels (not all chips) */ #define ICH_PCM_4 0x00100000 /* 4 channels (not all chips) */ #define ICH_PCM_2 0x00000000 /* 2 channels (stereo) */ #define ICH_SIS_PCM_246_MASK 0x000000c0 /* 6 channels (SIS7012) */ #define ICH_SIS_PCM_6 0x00000080 /* 6 channels (SIS7012) */ #define ICH_SIS_PCM_4 0x00000040 /* 4 channels (SIS7012) */ #define ICH_SIS_PCM_2 0x00000000 /* 2 channels (SIS7012) */ #define ICH_TRIE 0x00000040 /* tertiary resume interrupt enable */ #define ICH_SRIE 0x00000020 /* secondary resume interrupt enable */ #define ICH_PRIE 0x00000010 /* primary resume interrupt enable */ #define ICH_ACLINK 0x00000008 /* AClink shut off */ #define ICH_AC97WARM 0x00000004 /* AC'97 warm reset */ #define ICH_AC97COLD 0x00000002 /* AC'97 cold reset */ #define ICH_GIE 0x00000001 /* GPI interrupt enable */ #define ICH_REG_GLOB_STA 0x30 /* dword - global status */ #define ICH_TRI 0x20000000 /* ICH4: tertiary (AC_SDIN2) resume interrupt */ #define ICH_TCR 0x10000000 /* ICH4: tertiary (AC_SDIN2) codec ready */ #define ICH_BCS 0x08000000 /* ICH4: bit clock stopped */ #define ICH_SPINT 0x04000000 /* ICH4: S/PDIF interrupt */ #define ICH_P2INT 0x02000000 /* ICH4: PCM2-In interrupt */ #define ICH_M2INT 0x01000000 /* ICH4: Mic2-In interrupt */ #define ICH_SAMPLE_CAP 0x00c00000 /* ICH4: sample capability bits (RO) */ #define ICH_SAMPLE_16_20 0x00400000 /* ICH4: 16- and 20-bit samples */ #define ICH_MULTICHAN_CAP 0x00300000 /* ICH4: multi-channel capability bits (RO) */ #define ICH_SIS_TRI 0x00080000 /* SIS: tertiary resume irq */ #define ICH_SIS_TCR 0x00040000 /* SIS: tertiary codec ready */ #define ICH_MD3 0x00020000 /* modem power down semaphore */ #define ICH_AD3 0x00010000 /* audio power down semaphore */ #define ICH_RCS 0x00008000 /* read completion status */ #define ICH_BIT3 0x00004000 /* bit 3 slot 12 */ #define ICH_BIT2 0x00002000 /* bit 2 slot 12 */ #define ICH_BIT1 0x00001000 /* bit 1 slot 12 */ #define ICH_SRI 0x00000800 /* secondary (AC_SDIN1) resume interrupt */ #define ICH_PRI 0x00000400 /* primary (AC_SDIN0) resume interrupt */ #define ICH_SCR 0x00000200 /* secondary (AC_SDIN1) codec ready */ #define ICH_PCR 0x00000100 /* primary (AC_SDIN0) codec ready */ #define ICH_MCINT 0x00000080 /* MIC capture interrupt */ #define ICH_POINT 0x00000040 /* playback interrupt */ #define ICH_PIINT 0x00000020 /* capture interrupt */ #define ICH_NVSPINT 0x00000010 /* nforce spdif interrupt */ #define ICH_MOINT 0x00000004 /* modem playback interrupt */ #define ICH_MIINT 0x00000002 /* modem capture interrupt */ #define ICH_GSCI 0x00000001 /* GPI status change interrupt */ #define ICH_REG_ACC_SEMA 0x34 /* byte - codec write semaphore */ #define ICH_CAS 0x01 /* codec access semaphore */ #define ICH_REG_SDM 0x80 #define ICH_DI2L_MASK 0x000000c0 /* PCM In 2, Mic In 2 data in line */ #define ICH_DI2L_SHIFT 6 #define ICH_DI1L_MASK 0x00000030 /* PCM In 1, Mic In 1 data in line */ #define ICH_DI1L_SHIFT 4 #define ICH_SE 0x00000008 /* steer enable */ #define ICH_LDI_MASK 0x00000003 /* last codec read data input */ #define ICH_MAX_FRAGS 32 /* max hw frags */ /* * registers for Ali5455 */ /* ALi 5455 busmaster blocks */ DEFINE_REGSET(AL_PI, 0x40); /* ALi PCM in */ DEFINE_REGSET(AL_PO, 0x50); /* Ali PCM out */ DEFINE_REGSET(AL_MC, 0x60); /* Ali Mic in */ DEFINE_REGSET(AL_CDC_SPO, 0x70); /* Ali Codec SPDIF out */ DEFINE_REGSET(AL_CENTER, 0x80); /* Ali center out */ DEFINE_REGSET(AL_LFE, 0x90); /* Ali center out */ DEFINE_REGSET(AL_CLR_SPI, 0xa0); /* Ali Controller SPDIF in */ DEFINE_REGSET(AL_CLR_SPO, 0xb0); /* Ali Controller SPDIF out */ DEFINE_REGSET(AL_I2S, 0xc0); /* Ali I2S in */ DEFINE_REGSET(AL_PI2, 0xd0); /* Ali PCM2 in */ DEFINE_REGSET(AL_MC2, 0xe0); /* Ali Mic2 in */ enum { ICH_REG_ALI_SCR = 0x00, /* System Control Register */ ICH_REG_ALI_SSR = 0x04, /* System Status Register */ ICH_REG_ALI_DMACR = 0x08, /* DMA Control Register */ ICH_REG_ALI_FIFOCR1 = 0x0c, /* FIFO Control Register 1 */ ICH_REG_ALI_INTERFACECR = 0x10, /* Interface Control Register */ ICH_REG_ALI_INTERRUPTCR = 0x14, /* Interrupt control Register */ ICH_REG_ALI_INTERRUPTSR = 0x18, /* Interrupt Status Register */ ICH_REG_ALI_FIFOCR2 = 0x1c, /* FIFO Control Register 2 */ ICH_REG_ALI_CPR = 0x20, /* Command Port Register */ ICH_REG_ALI_CPR_ADDR = 0x22, /* ac97 addr write */ ICH_REG_ALI_SPR = 0x24, /* Status Port Register */ ICH_REG_ALI_SPR_ADDR = 0x26, /* ac97 addr read */ ICH_REG_ALI_FIFOCR3 = 0x2c, /* FIFO Control Register 3 */ ICH_REG_ALI_TTSR = 0x30, /* Transmit Tag Slot Register */ ICH_REG_ALI_RTSR = 0x34, /* Receive Tag Slot Register */ ICH_REG_ALI_CSPSR = 0x38, /* Command/Status Port Status Register */ ICH_REG_ALI_CAS = 0x3c, /* Codec Write Semaphore Register */ ICH_REG_ALI_HWVOL = 0xf0, /* hardware volume control/status */ ICH_REG_ALI_I2SCR = 0xf4, /* I2S control/status */ ICH_REG_ALI_SPDIFCSR = 0xf8, /* spdif channel status register */ ICH_REG_ALI_SPDIFICS = 0xfc, /* spdif interface control/status */ }; #define ALI_CAS_SEM_BUSY 0x80000000 #define ALI_CPR_ADDR_SECONDARY 0x100 #define ALI_CPR_ADDR_READ 0x80 #define ALI_CSPSR_CODEC_READY 0x08 #define ALI_CSPSR_READ_OK 0x02 #define ALI_CSPSR_WRITE_OK 0x01 /* interrupts for the whole chip by interrupt status register finish */ #define ALI_INT_MICIN2 (1<<26) #define ALI_INT_PCMIN2 (1<<25) #define ALI_INT_I2SIN (1<<24) #define ALI_INT_SPDIFOUT (1<<23) /* controller spdif out INTERRUPT */ #define ALI_INT_SPDIFIN (1<<22) #define ALI_INT_LFEOUT (1<<21) #define ALI_INT_CENTEROUT (1<<20) #define ALI_INT_CODECSPDIFOUT (1<<19) #define ALI_INT_MICIN (1<<18) #define ALI_INT_PCMOUT (1<<17) #define ALI_INT_PCMIN (1<<16) #define ALI_INT_CPRAIS (1<<7) /* command port available */ #define ALI_INT_SPRAIS (1<<5) /* status port available */ #define ALI_INT_GPIO (1<<1) #define ALI_INT_MASK (ALI_INT_SPDIFOUT|ALI_INT_CODECSPDIFOUT|\ ALI_INT_MICIN|ALI_INT_PCMOUT|ALI_INT_PCMIN) #define ICH_ALI_SC_RESET (1<<31) /* master reset */ #define ICH_ALI_SC_AC97_DBL (1<<30) #define ICH_ALI_SC_CODEC_SPDF (3<<20) /* 1=7/8, 2=6/9, 3=10/11 */ #define ICH_ALI_SC_IN_BITS (3<<18) #define ICH_ALI_SC_OUT_BITS (3<<16) #define ICH_ALI_SC_6CH_CFG (3<<14) #define ICH_ALI_SC_PCM_4 (1<<8) #define ICH_ALI_SC_PCM_6 (2<<8) #define ICH_ALI_SC_PCM_246_MASK (3<<8) #define ICH_ALI_SS_SEC_ID (3<<5) #define ICH_ALI_SS_PRI_ID (3<<3) #define ICH_ALI_IF_AC97SP (1<<21) #define ICH_ALI_IF_MC (1<<20) #define ICH_ALI_IF_PI (1<<19) #define ICH_ALI_IF_MC2 (1<<18) #define ICH_ALI_IF_PI2 (1<<17) #define ICH_ALI_IF_LINE_SRC (1<<15) /* 0/1 = slot 3/6 */ #define ICH_ALI_IF_MIC_SRC (1<<14) /* 0/1 = slot 3/6 */ #define ICH_ALI_IF_SPDF_SRC (3<<12) /* 00 = PCM, 01 = AC97-in, 10 = spdif-in, 11 = i2s */ #define ICH_ALI_IF_AC97_OUT (3<<8) /* 00 = PCM, 10 = spdif-in, 11 = i2s */ #define ICH_ALI_IF_PO_SPDF (1<<3) #define ICH_ALI_IF_PO (1<<1) /* * */ enum { ICHD_PCMIN, ICHD_PCMOUT, ICHD_MIC, ICHD_MIC2, ICHD_PCM2IN, ICHD_SPBAR, ICHD_LAST = ICHD_SPBAR }; enum { NVD_PCMIN, NVD_PCMOUT, NVD_MIC, NVD_SPBAR, NVD_LAST = NVD_SPBAR }; enum { ALID_PCMIN, ALID_PCMOUT, ALID_MIC, ALID_AC97SPDIFOUT, ALID_SPDIFIN, ALID_SPDIFOUT, ALID_LAST = ALID_SPDIFOUT }; #define get_ichdev(substream) (substream->runtime->private_data) struct ichdev { unsigned int ichd; /* ich device number */ unsigned long reg_offset; /* offset to bmaddr */ __le32 *bdbar; /* CPU address (32bit) */ unsigned int bdbar_addr; /* PCI bus address (32bit) */ struct snd_pcm_substream *substream; unsigned int physbuf; /* physical address (32bit) */ unsigned int size; unsigned int fragsize; unsigned int fragsize1; unsigned int position; unsigned int pos_shift; unsigned int last_pos; int frags; int lvi; int lvi_frag; int civ; int ack; int ack_reload; unsigned int ack_bit; unsigned int roff_sr; unsigned int roff_picb; unsigned int int_sta_mask; /* interrupt status mask */ unsigned int ali_slot; /* ALI DMA slot */ struct ac97_pcm *pcm; int pcm_open_flag; unsigned int prepared:1; unsigned int suspended: 1; }; struct intel8x0 { unsigned int device_type; int irq; void __iomem *addr; void __iomem *bmaddr; struct pci_dev *pci; struct snd_card *card; int pcm_devs; struct snd_pcm *pcm[6]; struct ichdev ichd[6]; unsigned multi4: 1, multi6: 1, multi8 :1, dra: 1, smp20bit: 1; unsigned in_ac97_init: 1, in_sdin_init: 1; unsigned in_measurement: 1; /* during ac97 clock measurement */ unsigned fix_nocache: 1; /* workaround for 440MX */ unsigned buggy_irq: 1; /* workaround for buggy mobos */ unsigned xbox: 1; /* workaround for Xbox AC'97 detection */ unsigned buggy_semaphore: 1; /* workaround for buggy codec semaphore */ unsigned inside_vm: 1; /* enable VM optimization */ int spdif_idx; /* SPDIF BAR index; *_SPBAR or -1 if use PCMOUT */ unsigned int sdm_saved; /* SDM reg value */ struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97[3]; unsigned int ac97_sdin[3]; unsigned int max_codecs, ncodecs; const unsigned int *codec_bit; unsigned int codec_isr_bits; unsigned int codec_ready_bits; spinlock_t reg_lock; u32 bdbars_count; struct snd_dma_buffer *bdbars; u32 int_sta_reg; /* interrupt status register */ u32 int_sta_mask; /* interrupt status mask */ }; static const struct pci_device_id snd_intel8x0_ids[] = { { PCI_VDEVICE(INTEL, 0x2415), DEVICE_INTEL }, /* 82801AA */ { PCI_VDEVICE(INTEL, 0x2425), DEVICE_INTEL }, /* 82901AB */ { PCI_VDEVICE(INTEL, 0x2445), DEVICE_INTEL }, /* 82801BA */ { PCI_VDEVICE(INTEL, 0x2485), DEVICE_INTEL }, /* ICH3 */ { PCI_VDEVICE(INTEL, 0x24c5), DEVICE_INTEL_ICH4 }, /* ICH4 */ { PCI_VDEVICE(INTEL, 0x24d5), DEVICE_INTEL_ICH4 }, /* ICH5 */ { PCI_VDEVICE(INTEL, 0x25a6), DEVICE_INTEL_ICH4 }, /* ESB */ { PCI_VDEVICE(INTEL, 0x266e), DEVICE_INTEL_ICH4 }, /* ICH6 */ { PCI_VDEVICE(INTEL, 0x27de), DEVICE_INTEL_ICH4 }, /* ICH7 */ { PCI_VDEVICE(INTEL, 0x2698), DEVICE_INTEL_ICH4 }, /* ESB2 */ { PCI_VDEVICE(INTEL, 0x7195), DEVICE_INTEL }, /* 440MX */ { PCI_VDEVICE(SI, 0x7012), DEVICE_SIS }, /* SI7012 */ { PCI_VDEVICE(NVIDIA, 0x01b1), DEVICE_NFORCE }, /* NFORCE */ { PCI_VDEVICE(NVIDIA, 0x003a), DEVICE_NFORCE }, /* MCP04 */ { PCI_VDEVICE(NVIDIA, 0x006a), DEVICE_NFORCE }, /* NFORCE2 */ { PCI_VDEVICE(NVIDIA, 0x0059), DEVICE_NFORCE }, /* CK804 */ { PCI_VDEVICE(NVIDIA, 0x008a), DEVICE_NFORCE }, /* CK8 */ { PCI_VDEVICE(NVIDIA, 0x00da), DEVICE_NFORCE }, /* NFORCE3 */ { PCI_VDEVICE(NVIDIA, 0x00ea), DEVICE_NFORCE }, /* CK8S */ { PCI_VDEVICE(NVIDIA, 0x026b), DEVICE_NFORCE }, /* MCP51 */ { PCI_VDEVICE(AMD, 0x746d), DEVICE_INTEL }, /* AMD8111 */ { PCI_VDEVICE(AMD, 0x7445), DEVICE_INTEL }, /* AMD768 */ { PCI_VDEVICE(AL, 0x5455), DEVICE_ALI }, /* Ali5455 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_intel8x0_ids); /* * Lowlevel I/O - busmaster */ static inline u8 igetbyte(struct intel8x0 *chip, u32 offset) { return ioread8(chip->bmaddr + offset); } static inline u16 igetword(struct intel8x0 *chip, u32 offset) { return ioread16(chip->bmaddr + offset); } static inline u32 igetdword(struct intel8x0 *chip, u32 offset) { return ioread32(chip->bmaddr + offset); } static inline void iputbyte(struct intel8x0 *chip, u32 offset, u8 val) { iowrite8(val, chip->bmaddr + offset); } static inline void iputword(struct intel8x0 *chip, u32 offset, u16 val) { iowrite16(val, chip->bmaddr + offset); } static inline void iputdword(struct intel8x0 *chip, u32 offset, u32 val) { iowrite32(val, chip->bmaddr + offset); } /* * Lowlevel I/O - AC'97 registers */ static inline u16 iagetword(struct intel8x0 *chip, u32 offset) { return ioread16(chip->addr + offset); } static inline void iaputword(struct intel8x0 *chip, u32 offset, u16 val) { iowrite16(val, chip->addr + offset); } /* * Basic I/O */ /* * access to AC97 codec via normal i/o (for ICH and SIS7012) */ static int snd_intel8x0_codec_semaphore(struct intel8x0 *chip, unsigned int codec) { int time; if (codec > 2) return -EIO; if (chip->in_sdin_init) { /* we don't know the ready bit assignment at the moment */ /* so we check any */ codec = chip->codec_isr_bits; } else { codec = chip->codec_bit[chip->ac97_sdin[codec]]; } /* codec ready ? */ if ((igetdword(chip, ICHREG(GLOB_STA)) & codec) == 0) return -EIO; if (chip->buggy_semaphore) return 0; /* just ignore ... */ /* Anyone holding a semaphore for 1 msec should be shot... */ time = 100; do { if (!(igetbyte(chip, ICHREG(ACC_SEMA)) & ICH_CAS)) return 0; udelay(10); } while (time--); /* access to some forbidden (non existent) ac97 registers will not * reset the semaphore. So even if you don't get the semaphore, still * continue the access. We don't need the semaphore anyway. */ dev_err(chip->card->dev, "codec_semaphore: semaphore is not ready [0x%x][0x%x]\n", igetbyte(chip, ICHREG(ACC_SEMA)), igetdword(chip, ICHREG(GLOB_STA))); iagetword(chip, 0); /* clear semaphore flag */ /* I don't care about the semaphore */ return -EBUSY; } static void snd_intel8x0_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct intel8x0 *chip = ac97->private_data; if (snd_intel8x0_codec_semaphore(chip, ac97->num) < 0) { if (! chip->in_ac97_init) dev_err(chip->card->dev, "codec_write %d: semaphore is not ready for register 0x%x\n", ac97->num, reg); } iaputword(chip, reg + ac97->num * 0x80, val); } static unsigned short snd_intel8x0_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct intel8x0 *chip = ac97->private_data; unsigned short res; unsigned int tmp; if (snd_intel8x0_codec_semaphore(chip, ac97->num) < 0) { if (! chip->in_ac97_init) dev_err(chip->card->dev, "codec_read %d: semaphore is not ready for register 0x%x\n", ac97->num, reg); res = 0xffff; } else { res = iagetword(chip, reg + ac97->num * 0x80); tmp = igetdword(chip, ICHREG(GLOB_STA)); if (tmp & ICH_RCS) { /* reset RCS and preserve other R/WC bits */ iputdword(chip, ICHREG(GLOB_STA), tmp & ~(chip->codec_ready_bits | ICH_GSCI)); if (! chip->in_ac97_init) dev_err(chip->card->dev, "codec_read %d: read timeout for register 0x%x\n", ac97->num, reg); res = 0xffff; } } return res; } static void snd_intel8x0_codec_read_test(struct intel8x0 *chip, unsigned int codec) { unsigned int tmp; if (snd_intel8x0_codec_semaphore(chip, codec) >= 0) { iagetword(chip, codec * 0x80); tmp = igetdword(chip, ICHREG(GLOB_STA)); if (tmp & ICH_RCS) { /* reset RCS and preserve other R/WC bits */ iputdword(chip, ICHREG(GLOB_STA), tmp & ~(chip->codec_ready_bits | ICH_GSCI)); } } } /* * access to AC97 for Ali5455 */ static int snd_intel8x0_ali_codec_ready(struct intel8x0 *chip, int mask) { int count = 0; for (count = 0; count < 0x7f; count++) { int val = igetbyte(chip, ICHREG(ALI_CSPSR)); if (val & mask) return 0; } if (! chip->in_ac97_init) dev_warn(chip->card->dev, "AC97 codec ready timeout.\n"); return -EBUSY; } static int snd_intel8x0_ali_codec_semaphore(struct intel8x0 *chip) { int time = 100; if (chip->buggy_semaphore) return 0; /* just ignore ... */ while (--time && (igetdword(chip, ICHREG(ALI_CAS)) & ALI_CAS_SEM_BUSY)) udelay(1); if (! time && ! chip->in_ac97_init) dev_warn(chip->card->dev, "ali_codec_semaphore timeout\n"); return snd_intel8x0_ali_codec_ready(chip, ALI_CSPSR_CODEC_READY); } static unsigned short snd_intel8x0_ali_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct intel8x0 *chip = ac97->private_data; unsigned short data = 0xffff; if (snd_intel8x0_ali_codec_semaphore(chip)) goto __err; reg |= ALI_CPR_ADDR_READ; if (ac97->num) reg |= ALI_CPR_ADDR_SECONDARY; iputword(chip, ICHREG(ALI_CPR_ADDR), reg); if (snd_intel8x0_ali_codec_ready(chip, ALI_CSPSR_READ_OK)) goto __err; data = igetword(chip, ICHREG(ALI_SPR)); __err: return data; } static void snd_intel8x0_ali_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct intel8x0 *chip = ac97->private_data; if (snd_intel8x0_ali_codec_semaphore(chip)) return; iputword(chip, ICHREG(ALI_CPR), val); if (ac97->num) reg |= ALI_CPR_ADDR_SECONDARY; iputword(chip, ICHREG(ALI_CPR_ADDR), reg); snd_intel8x0_ali_codec_ready(chip, ALI_CSPSR_WRITE_OK); } /* * DMA I/O */ static void snd_intel8x0_setup_periods(struct intel8x0 *chip, struct ichdev *ichdev) { int idx; __le32 *bdbar = ichdev->bdbar; unsigned long port = ichdev->reg_offset; iputdword(chip, port + ICH_REG_OFF_BDBAR, ichdev->bdbar_addr); if (ichdev->size == ichdev->fragsize) { ichdev->ack_reload = ichdev->ack = 2; ichdev->fragsize1 = ichdev->fragsize >> 1; for (idx = 0; idx < (ICH_REG_LVI_MASK + 1) * 2; idx += 4) { bdbar[idx + 0] = cpu_to_le32(ichdev->physbuf); bdbar[idx + 1] = cpu_to_le32(0x80000000 | /* interrupt on completion */ ichdev->fragsize1 >> ichdev->pos_shift); bdbar[idx + 2] = cpu_to_le32(ichdev->physbuf + (ichdev->size >> 1)); bdbar[idx + 3] = cpu_to_le32(0x80000000 | /* interrupt on completion */ ichdev->fragsize1 >> ichdev->pos_shift); } ichdev->frags = 2; } else { ichdev->ack_reload = ichdev->ack = 1; ichdev->fragsize1 = ichdev->fragsize; for (idx = 0; idx < (ICH_REG_LVI_MASK + 1) * 2; idx += 2) { bdbar[idx + 0] = cpu_to_le32(ichdev->physbuf + (((idx >> 1) * ichdev->fragsize) % ichdev->size)); bdbar[idx + 1] = cpu_to_le32(0x80000000 | /* interrupt on completion */ ichdev->fragsize >> ichdev->pos_shift); #if 0 dev_dbg(chip->card->dev, "bdbar[%i] = 0x%x [0x%x]\n", idx + 0, bdbar[idx + 0], bdbar[idx + 1]); #endif } ichdev->frags = ichdev->size / ichdev->fragsize; } iputbyte(chip, port + ICH_REG_OFF_LVI, ichdev->lvi = ICH_REG_LVI_MASK); ichdev->civ = 0; iputbyte(chip, port + ICH_REG_OFF_CIV, 0); ichdev->lvi_frag = ICH_REG_LVI_MASK % ichdev->frags; ichdev->position = 0; #if 0 dev_dbg(chip->card->dev, "lvi_frag = %i, frags = %i, period_size = 0x%x, period_size1 = 0x%x\n", ichdev->lvi_frag, ichdev->frags, ichdev->fragsize, ichdev->fragsize1); #endif /* clear interrupts */ iputbyte(chip, port + ichdev->roff_sr, ICH_FIFOE | ICH_BCIS | ICH_LVBCI); } /* * Interrupt handler */ static inline void snd_intel8x0_update(struct intel8x0 *chip, struct ichdev *ichdev) { unsigned long port = ichdev->reg_offset; unsigned long flags; int status, civ, i, step; int ack = 0; if (!(ichdev->prepared || chip->in_measurement) || ichdev->suspended) return; spin_lock_irqsave(&chip->reg_lock, flags); status = igetbyte(chip, port + ichdev->roff_sr); civ = igetbyte(chip, port + ICH_REG_OFF_CIV); if (!(status & ICH_BCIS)) { step = 0; } else if (civ == ichdev->civ) { // snd_printd("civ same %d\n", civ); step = 1; ichdev->civ++; ichdev->civ &= ICH_REG_LVI_MASK; } else { step = civ - ichdev->civ; if (step < 0) step += ICH_REG_LVI_MASK + 1; // if (step != 1) // snd_printd("step = %d, %d -> %d\n", step, ichdev->civ, civ); ichdev->civ = civ; } ichdev->position += step * ichdev->fragsize1; if (! chip->in_measurement) ichdev->position %= ichdev->size; ichdev->lvi += step; ichdev->lvi &= ICH_REG_LVI_MASK; iputbyte(chip, port + ICH_REG_OFF_LVI, ichdev->lvi); for (i = 0; i < step; i++) { ichdev->lvi_frag++; ichdev->lvi_frag %= ichdev->frags; ichdev->bdbar[ichdev->lvi * 2] = cpu_to_le32(ichdev->physbuf + ichdev->lvi_frag * ichdev->fragsize1); #if 0 dev_dbg(chip->card->dev, "new: bdbar[%i] = 0x%x [0x%x], prefetch = %i, all = 0x%x, 0x%x\n", ichdev->lvi * 2, ichdev->bdbar[ichdev->lvi * 2], ichdev->bdbar[ichdev->lvi * 2 + 1], inb(ICH_REG_OFF_PIV + port), inl(port + 4), inb(port + ICH_REG_OFF_CR)); #endif if (--ichdev->ack == 0) { ichdev->ack = ichdev->ack_reload; ack = 1; } } spin_unlock_irqrestore(&chip->reg_lock, flags); if (ack && ichdev->substream) { snd_pcm_period_elapsed(ichdev->substream); } iputbyte(chip, port + ichdev->roff_sr, status & (ICH_FIFOE | ICH_BCIS | ICH_LVBCI)); } static irqreturn_t snd_intel8x0_interrupt(int irq, void *dev_id) { struct intel8x0 *chip = dev_id; struct ichdev *ichdev; unsigned int status; unsigned int i; status = igetdword(chip, chip->int_sta_reg); if (status == 0xffffffff) /* we are not yet resumed */ return IRQ_NONE; if ((status & chip->int_sta_mask) == 0) { if (status) { /* ack */ iputdword(chip, chip->int_sta_reg, status); if (! chip->buggy_irq) status = 0; } return IRQ_RETVAL(status); } for (i = 0; i < chip->bdbars_count; i++) { ichdev = &chip->ichd[i]; if (status & ichdev->int_sta_mask) snd_intel8x0_update(chip, ichdev); } /* ack them */ iputdword(chip, chip->int_sta_reg, status & chip->int_sta_mask); return IRQ_HANDLED; } /* * PCM part */ static int snd_intel8x0_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct ichdev *ichdev = get_ichdev(substream); unsigned char val = 0; unsigned long port = ichdev->reg_offset; switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: ichdev->suspended = 0; fallthrough; case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: val = ICH_IOCE | ICH_STARTBM; ichdev->last_pos = ichdev->position; break; case SNDRV_PCM_TRIGGER_SUSPEND: ichdev->suspended = 1; fallthrough; case SNDRV_PCM_TRIGGER_STOP: val = 0; break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: val = ICH_IOCE; break; default: return -EINVAL; } iputbyte(chip, port + ICH_REG_OFF_CR, val); if (cmd == SNDRV_PCM_TRIGGER_STOP) { /* wait until DMA stopped */ while (!(igetbyte(chip, port + ichdev->roff_sr) & ICH_DCH)) ; /* reset whole DMA things */ iputbyte(chip, port + ICH_REG_OFF_CR, ICH_RESETREGS); } return 0; } static int snd_intel8x0_ali_trigger(struct snd_pcm_substream *substream, int cmd) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct ichdev *ichdev = get_ichdev(substream); unsigned long port = ichdev->reg_offset; static const int fiforeg[] = { ICHREG(ALI_FIFOCR1), ICHREG(ALI_FIFOCR2), ICHREG(ALI_FIFOCR3) }; unsigned int val, fifo; val = igetdword(chip, ICHREG(ALI_DMACR)); switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: ichdev->suspended = 0; fallthrough; case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* clear FIFO for synchronization of channels */ fifo = igetdword(chip, fiforeg[ichdev->ali_slot / 4]); fifo &= ~(0xff << (ichdev->ali_slot % 4)); fifo |= 0x83 << (ichdev->ali_slot % 4); iputdword(chip, fiforeg[ichdev->ali_slot / 4], fifo); } iputbyte(chip, port + ICH_REG_OFF_CR, ICH_IOCE); val &= ~(1 << (ichdev->ali_slot + 16)); /* clear PAUSE flag */ /* start DMA */ iputdword(chip, ICHREG(ALI_DMACR), val | (1 << ichdev->ali_slot)); break; case SNDRV_PCM_TRIGGER_SUSPEND: ichdev->suspended = 1; fallthrough; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: /* pause */ iputdword(chip, ICHREG(ALI_DMACR), val | (1 << (ichdev->ali_slot + 16))); iputbyte(chip, port + ICH_REG_OFF_CR, 0); while (igetbyte(chip, port + ICH_REG_OFF_CR)) ; if (cmd == SNDRV_PCM_TRIGGER_PAUSE_PUSH) break; /* reset whole DMA things */ iputbyte(chip, port + ICH_REG_OFF_CR, ICH_RESETREGS); /* clear interrupts */ iputbyte(chip, port + ICH_REG_OFF_SR, igetbyte(chip, port + ICH_REG_OFF_SR) | 0x1e); iputdword(chip, ICHREG(ALI_INTERRUPTSR), igetdword(chip, ICHREG(ALI_INTERRUPTSR)) & ichdev->int_sta_mask); break; default: return -EINVAL; } return 0; } static int snd_intel8x0_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct ichdev *ichdev = get_ichdev(substream); int dbl = params_rate(hw_params) > 48000; int err; if (ichdev->pcm_open_flag) { snd_ac97_pcm_close(ichdev->pcm); ichdev->pcm_open_flag = 0; ichdev->prepared = 0; } err = snd_ac97_pcm_open(ichdev->pcm, params_rate(hw_params), params_channels(hw_params), ichdev->pcm->r[dbl].slots); if (err >= 0) { ichdev->pcm_open_flag = 1; /* Force SPDIF setting */ if (ichdev->ichd == ICHD_PCMOUT && chip->spdif_idx < 0) snd_ac97_set_rate(ichdev->pcm->r[0].codec[0], AC97_SPDIF, params_rate(hw_params)); } return err; } static int snd_intel8x0_hw_free(struct snd_pcm_substream *substream) { struct ichdev *ichdev = get_ichdev(substream); if (ichdev->pcm_open_flag) { snd_ac97_pcm_close(ichdev->pcm); ichdev->pcm_open_flag = 0; ichdev->prepared = 0; } return 0; } static void snd_intel8x0_setup_pcm_out(struct intel8x0 *chip, struct snd_pcm_runtime *runtime) { unsigned int cnt; int dbl = runtime->rate > 48000; spin_lock_irq(&chip->reg_lock); switch (chip->device_type) { case DEVICE_ALI: cnt = igetdword(chip, ICHREG(ALI_SCR)); cnt &= ~ICH_ALI_SC_PCM_246_MASK; if (runtime->channels == 4 || dbl) cnt |= ICH_ALI_SC_PCM_4; else if (runtime->channels == 6) cnt |= ICH_ALI_SC_PCM_6; iputdword(chip, ICHREG(ALI_SCR), cnt); break; case DEVICE_SIS: cnt = igetdword(chip, ICHREG(GLOB_CNT)); cnt &= ~ICH_SIS_PCM_246_MASK; if (runtime->channels == 4 || dbl) cnt |= ICH_SIS_PCM_4; else if (runtime->channels == 6) cnt |= ICH_SIS_PCM_6; iputdword(chip, ICHREG(GLOB_CNT), cnt); break; default: cnt = igetdword(chip, ICHREG(GLOB_CNT)); cnt &= ~(ICH_PCM_246_MASK | ICH_PCM_20BIT); if (runtime->channels == 4 || dbl) cnt |= ICH_PCM_4; else if (runtime->channels == 6) cnt |= ICH_PCM_6; else if (runtime->channels == 8) cnt |= ICH_PCM_8; if (chip->device_type == DEVICE_NFORCE) { /* reset to 2ch once to keep the 6 channel data in alignment, * to start from Front Left always */ if (cnt & ICH_PCM_246_MASK) { iputdword(chip, ICHREG(GLOB_CNT), cnt & ~ICH_PCM_246_MASK); spin_unlock_irq(&chip->reg_lock); msleep(50); /* grrr... */ spin_lock_irq(&chip->reg_lock); } } else if (chip->device_type == DEVICE_INTEL_ICH4) { if (runtime->sample_bits > 16) cnt |= ICH_PCM_20BIT; } iputdword(chip, ICHREG(GLOB_CNT), cnt); break; } spin_unlock_irq(&chip->reg_lock); } static int snd_intel8x0_pcm_prepare(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct ichdev *ichdev = get_ichdev(substream); ichdev->physbuf = runtime->dma_addr; ichdev->size = snd_pcm_lib_buffer_bytes(substream); ichdev->fragsize = snd_pcm_lib_period_bytes(substream); if (ichdev->ichd == ICHD_PCMOUT) { snd_intel8x0_setup_pcm_out(chip, runtime); if (chip->device_type == DEVICE_INTEL_ICH4) ichdev->pos_shift = (runtime->sample_bits > 16) ? 2 : 1; } snd_intel8x0_setup_periods(chip, ichdev); ichdev->prepared = 1; return 0; } static snd_pcm_uframes_t snd_intel8x0_pcm_pointer(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct ichdev *ichdev = get_ichdev(substream); size_t ptr1, ptr; int civ, timeout = 10; unsigned int position; spin_lock(&chip->reg_lock); do { civ = igetbyte(chip, ichdev->reg_offset + ICH_REG_OFF_CIV); ptr1 = igetword(chip, ichdev->reg_offset + ichdev->roff_picb); position = ichdev->position; if (ptr1 == 0) { udelay(10); continue; } if (civ != igetbyte(chip, ichdev->reg_offset + ICH_REG_OFF_CIV)) continue; /* IO read operation is very expensive inside virtual machine * as it is emulated. The probability that subsequent PICB read * will return different result is high enough to loop till * timeout here. * Same CIV is strict enough condition to be sure that PICB * is valid inside VM on emulated card. */ if (chip->inside_vm) break; if (ptr1 == igetword(chip, ichdev->reg_offset + ichdev->roff_picb)) break; } while (timeout--); ptr = ichdev->last_pos; if (ptr1 != 0) { ptr1 <<= ichdev->pos_shift; ptr = ichdev->fragsize1 - ptr1; ptr += position; if (ptr < ichdev->last_pos) { unsigned int pos_base, last_base; pos_base = position / ichdev->fragsize1; last_base = ichdev->last_pos / ichdev->fragsize1; /* another sanity check; ptr1 can go back to full * before the base position is updated */ if (pos_base == last_base) ptr = ichdev->last_pos; } } ichdev->last_pos = ptr; spin_unlock(&chip->reg_lock); if (ptr >= ichdev->size) return 0; return bytes_to_frames(substream->runtime, ptr); } static const struct snd_pcm_hardware snd_intel8x0_stream = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 128 * 1024, .period_bytes_min = 32, .period_bytes_max = 128 * 1024, .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static const unsigned int channels4[] = { 2, 4, }; static const struct snd_pcm_hw_constraint_list hw_constraints_channels4 = { .count = ARRAY_SIZE(channels4), .list = channels4, .mask = 0, }; static const unsigned int channels6[] = { 2, 4, 6, }; static const struct snd_pcm_hw_constraint_list hw_constraints_channels6 = { .count = ARRAY_SIZE(channels6), .list = channels6, .mask = 0, }; static const unsigned int channels8[] = { 2, 4, 6, 8, }; static const struct snd_pcm_hw_constraint_list hw_constraints_channels8 = { .count = ARRAY_SIZE(channels8), .list = channels8, .mask = 0, }; static int snd_intel8x0_pcm_open(struct snd_pcm_substream *substream, struct ichdev *ichdev) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; ichdev->substream = substream; runtime->hw = snd_intel8x0_stream; runtime->hw.rates = ichdev->pcm->rates; snd_pcm_limit_hw_rates(runtime); if (chip->device_type == DEVICE_SIS) { runtime->hw.buffer_bytes_max = 64*1024; runtime->hw.period_bytes_max = 64*1024; } err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; runtime->private_data = ichdev; return 0; } static int snd_intel8x0_playback_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; err = snd_intel8x0_pcm_open(substream, &chip->ichd[ICHD_PCMOUT]); if (err < 0) return err; if (chip->multi8) { runtime->hw.channels_max = 8; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels8); } else if (chip->multi6) { runtime->hw.channels_max = 6; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels6); } else if (chip->multi4) { runtime->hw.channels_max = 4; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels4); } if (chip->dra) { snd_ac97_pcm_double_rate_rules(runtime); } if (chip->smp20bit) { runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20); } return 0; } static int snd_intel8x0_playback_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ICHD_PCMOUT].substream = NULL; return 0; } static int snd_intel8x0_capture_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); return snd_intel8x0_pcm_open(substream, &chip->ichd[ICHD_PCMIN]); } static int snd_intel8x0_capture_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ICHD_PCMIN].substream = NULL; return 0; } static int snd_intel8x0_mic_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); return snd_intel8x0_pcm_open(substream, &chip->ichd[ICHD_MIC]); } static int snd_intel8x0_mic_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ICHD_MIC].substream = NULL; return 0; } static int snd_intel8x0_mic2_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); return snd_intel8x0_pcm_open(substream, &chip->ichd[ICHD_MIC2]); } static int snd_intel8x0_mic2_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ICHD_MIC2].substream = NULL; return 0; } static int snd_intel8x0_capture2_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); return snd_intel8x0_pcm_open(substream, &chip->ichd[ICHD_PCM2IN]); } static int snd_intel8x0_capture2_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ICHD_PCM2IN].substream = NULL; return 0; } static int snd_intel8x0_spdif_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); int idx = chip->device_type == DEVICE_NFORCE ? NVD_SPBAR : ICHD_SPBAR; return snd_intel8x0_pcm_open(substream, &chip->ichd[idx]); } static int snd_intel8x0_spdif_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); int idx = chip->device_type == DEVICE_NFORCE ? NVD_SPBAR : ICHD_SPBAR; chip->ichd[idx].substream = NULL; return 0; } static int snd_intel8x0_ali_ac97spdifout_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); unsigned int val; spin_lock_irq(&chip->reg_lock); val = igetdword(chip, ICHREG(ALI_INTERFACECR)); val |= ICH_ALI_IF_AC97SP; iputdword(chip, ICHREG(ALI_INTERFACECR), val); /* also needs to set ALI_SC_CODEC_SPDF correctly */ spin_unlock_irq(&chip->reg_lock); return snd_intel8x0_pcm_open(substream, &chip->ichd[ALID_AC97SPDIFOUT]); } static int snd_intel8x0_ali_ac97spdifout_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); unsigned int val; chip->ichd[ALID_AC97SPDIFOUT].substream = NULL; spin_lock_irq(&chip->reg_lock); val = igetdword(chip, ICHREG(ALI_INTERFACECR)); val &= ~ICH_ALI_IF_AC97SP; iputdword(chip, ICHREG(ALI_INTERFACECR), val); spin_unlock_irq(&chip->reg_lock); return 0; } #if 0 // NYI static int snd_intel8x0_ali_spdifin_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); return snd_intel8x0_pcm_open(substream, &chip->ichd[ALID_SPDIFIN]); } static int snd_intel8x0_ali_spdifin_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ALID_SPDIFIN].substream = NULL; return 0; } static int snd_intel8x0_ali_spdifout_open(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); return snd_intel8x0_pcm_open(substream, &chip->ichd[ALID_SPDIFOUT]); } static int snd_intel8x0_ali_spdifout_close(struct snd_pcm_substream *substream) { struct intel8x0 *chip = snd_pcm_substream_chip(substream); chip->ichd[ALID_SPDIFOUT].substream = NULL; return 0; } #endif static const struct snd_pcm_ops snd_intel8x0_playback_ops = { .open = snd_intel8x0_playback_open, .close = snd_intel8x0_playback_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_capture_ops = { .open = snd_intel8x0_capture_open, .close = snd_intel8x0_capture_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_capture_mic_ops = { .open = snd_intel8x0_mic_open, .close = snd_intel8x0_mic_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_capture_mic2_ops = { .open = snd_intel8x0_mic2_open, .close = snd_intel8x0_mic2_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_capture2_ops = { .open = snd_intel8x0_capture2_open, .close = snd_intel8x0_capture2_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_spdif_ops = { .open = snd_intel8x0_spdif_open, .close = snd_intel8x0_spdif_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_ali_playback_ops = { .open = snd_intel8x0_playback_open, .close = snd_intel8x0_playback_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_ali_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_ali_capture_ops = { .open = snd_intel8x0_capture_open, .close = snd_intel8x0_capture_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_ali_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_ali_capture_mic_ops = { .open = snd_intel8x0_mic_open, .close = snd_intel8x0_mic_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_ali_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static const struct snd_pcm_ops snd_intel8x0_ali_ac97spdifout_ops = { .open = snd_intel8x0_ali_ac97spdifout_open, .close = snd_intel8x0_ali_ac97spdifout_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_ali_trigger, .pointer = snd_intel8x0_pcm_pointer, }; #if 0 // NYI static struct snd_pcm_ops snd_intel8x0_ali_spdifin_ops = { .open = snd_intel8x0_ali_spdifin_open, .close = snd_intel8x0_ali_spdifin_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; static struct snd_pcm_ops snd_intel8x0_ali_spdifout_ops = { .open = snd_intel8x0_ali_spdifout_open, .close = snd_intel8x0_ali_spdifout_close, .hw_params = snd_intel8x0_hw_params, .hw_free = snd_intel8x0_hw_free, .prepare = snd_intel8x0_pcm_prepare, .trigger = snd_intel8x0_pcm_trigger, .pointer = snd_intel8x0_pcm_pointer, }; #endif // NYI struct ich_pcm_table { char *suffix; const struct snd_pcm_ops *playback_ops; const struct snd_pcm_ops *capture_ops; size_t prealloc_size; size_t prealloc_max_size; int ac97_idx; }; #define intel8x0_dma_type(chip) \ ((chip)->fix_nocache ? SNDRV_DMA_TYPE_DEV_WC : SNDRV_DMA_TYPE_DEV) static int snd_intel8x0_pcm1(struct intel8x0 *chip, int device, const struct ich_pcm_table *rec) { struct snd_pcm *pcm; int err; char name[32]; if (rec->suffix) sprintf(name, "Intel ICH - %s", rec->suffix); else strcpy(name, "Intel ICH"); err = snd_pcm_new(chip->card, name, device, rec->playback_ops ? 1 : 0, rec->capture_ops ? 1 : 0, &pcm); if (err < 0) return err; if (rec->playback_ops) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, rec->playback_ops); if (rec->capture_ops) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, rec->capture_ops); pcm->private_data = chip; pcm->info_flags = 0; if (rec->suffix) sprintf(pcm->name, "%s - %s", chip->card->shortname, rec->suffix); else strcpy(pcm->name, chip->card->shortname); chip->pcm[device] = pcm; snd_pcm_set_managed_buffer_all(pcm, intel8x0_dma_type(chip), &chip->pci->dev, rec->prealloc_size, rec->prealloc_max_size); if (rec->playback_ops && rec->playback_ops->open == snd_intel8x0_playback_open) { struct snd_pcm_chmap *chmap; int chs = 2; if (chip->multi8) chs = 8; else if (chip->multi6) chs = 6; else if (chip->multi4) chs = 4; err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_alt_chmaps, chs, 0, &chmap); if (err < 0) return err; chmap->channel_mask = SND_PCM_CHMAP_MASK_2468; chip->ac97[0]->chmaps[SNDRV_PCM_STREAM_PLAYBACK] = chmap; } return 0; } static const struct ich_pcm_table intel_pcms[] = { { .playback_ops = &snd_intel8x0_playback_ops, .capture_ops = &snd_intel8x0_capture_ops, .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, }, { .suffix = "MIC ADC", .capture_ops = &snd_intel8x0_capture_mic_ops, .prealloc_size = 0, .prealloc_max_size = 128 * 1024, .ac97_idx = ICHD_MIC, }, { .suffix = "MIC2 ADC", .capture_ops = &snd_intel8x0_capture_mic2_ops, .prealloc_size = 0, .prealloc_max_size = 128 * 1024, .ac97_idx = ICHD_MIC2, }, { .suffix = "ADC2", .capture_ops = &snd_intel8x0_capture2_ops, .prealloc_size = 0, .prealloc_max_size = 128 * 1024, .ac97_idx = ICHD_PCM2IN, }, { .suffix = "IEC958", .playback_ops = &snd_intel8x0_spdif_ops, .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, .ac97_idx = ICHD_SPBAR, }, }; static const struct ich_pcm_table nforce_pcms[] = { { .playback_ops = &snd_intel8x0_playback_ops, .capture_ops = &snd_intel8x0_capture_ops, .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, }, { .suffix = "MIC ADC", .capture_ops = &snd_intel8x0_capture_mic_ops, .prealloc_size = 0, .prealloc_max_size = 128 * 1024, .ac97_idx = NVD_MIC, }, { .suffix = "IEC958", .playback_ops = &snd_intel8x0_spdif_ops, .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, .ac97_idx = NVD_SPBAR, }, }; static const struct ich_pcm_table ali_pcms[] = { { .playback_ops = &snd_intel8x0_ali_playback_ops, .capture_ops = &snd_intel8x0_ali_capture_ops, .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, }, { .suffix = "MIC ADC", .capture_ops = &snd_intel8x0_ali_capture_mic_ops, .prealloc_size = 0, .prealloc_max_size = 128 * 1024, .ac97_idx = ALID_MIC, }, { .suffix = "IEC958", .playback_ops = &snd_intel8x0_ali_ac97spdifout_ops, /* .capture_ops = &snd_intel8x0_ali_spdifin_ops, */ .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, .ac97_idx = ALID_AC97SPDIFOUT, }, #if 0 // NYI { .suffix = "HW IEC958", .playback_ops = &snd_intel8x0_ali_spdifout_ops, .prealloc_size = 64 * 1024, .prealloc_max_size = 128 * 1024, }, #endif }; static int snd_intel8x0_pcm(struct intel8x0 *chip) { int i, tblsize, device, err; const struct ich_pcm_table *tbl, *rec; switch (chip->device_type) { case DEVICE_INTEL_ICH4: tbl = intel_pcms; tblsize = ARRAY_SIZE(intel_pcms); if (spdif_aclink) tblsize--; break; case DEVICE_NFORCE: tbl = nforce_pcms; tblsize = ARRAY_SIZE(nforce_pcms); if (spdif_aclink) tblsize--; break; case DEVICE_ALI: tbl = ali_pcms; tblsize = ARRAY_SIZE(ali_pcms); break; default: tbl = intel_pcms; tblsize = 2; break; } device = 0; for (i = 0; i < tblsize; i++) { rec = tbl + i; if (i > 0 && rec->ac97_idx) { /* activate PCM only when associated AC'97 codec */ if (! chip->ichd[rec->ac97_idx].pcm) continue; } err = snd_intel8x0_pcm1(chip, device, rec); if (err < 0) return err; device++; } chip->pcm_devs = device; return 0; } /* * Mixer part */ static void snd_intel8x0_mixer_free_ac97_bus(struct snd_ac97_bus *bus) { struct intel8x0 *chip = bus->private_data; chip->ac97_bus = NULL; } static void snd_intel8x0_mixer_free_ac97(struct snd_ac97 *ac97) { struct intel8x0 *chip = ac97->private_data; chip->ac97[ac97->num] = NULL; } static const struct ac97_pcm ac97_pcm_defs[] = { /* front PCM */ { .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) | (1 << AC97_SLOT_PCM_CENTER) | (1 << AC97_SLOT_PCM_SLEFT) | (1 << AC97_SLOT_PCM_SRIGHT) | (1 << AC97_SLOT_LFE) }, { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) | (1 << AC97_SLOT_PCM_LEFT_0) | (1 << AC97_SLOT_PCM_RIGHT_0) } } }, /* PCM IN #1 */ { .stream = 1, .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) } } }, /* MIC IN #1 */ { .stream = 1, .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_MIC) } } }, /* S/PDIF PCM */ { .exclusive = 1, .spdif = 1, .r = { { .slots = (1 << AC97_SLOT_SPDIF_LEFT2) | (1 << AC97_SLOT_SPDIF_RIGHT2) } } }, /* PCM IN #2 */ { .stream = 1, .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) } } }, /* MIC IN #2 */ { .stream = 1, .exclusive = 1, .r = { { .slots = (1 << AC97_SLOT_MIC) } } }, }; static const struct ac97_quirk ac97_quirks[] = { { .subvendor = 0x0e11, .subdevice = 0x000e, .name = "Compaq Deskpro EN", /* AD1885 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x0e11, .subdevice = 0x008a, .name = "Compaq Evo W4000", /* AD1885 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x0e11, .subdevice = 0x00b8, .name = "Compaq Evo D510C", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x0e11, .subdevice = 0x0860, .name = "HP/Compaq nx7010", .type = AC97_TUNE_MUTE_LED }, { .subvendor = 0x1014, .subdevice = 0x0534, .name = "ThinkPad X31", .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x1014, .subdevice = 0x1f00, .name = "MS-9128", .type = AC97_TUNE_ALC_JACK }, { .subvendor = 0x1014, .subdevice = 0x0267, .name = "IBM NetVista A30p", /* AD1981B */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1025, .subdevice = 0x0082, .name = "Acer Travelmate 2310", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1025, .subdevice = 0x0083, .name = "Acer Aspire 3003LCi", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x00d8, .name = "Dell Precision 530", /* AD1885 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x010d, .name = "Dell", /* which model? AD1885 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x0126, .name = "Dell Optiplex GX260", /* AD1981A */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x012c, .name = "Dell Precision 650", /* AD1981A */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x012d, .name = "Dell Precision 450", /* AD1981B*/ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x0147, .name = "Dell", /* which model? AD1981B*/ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x0151, .name = "Dell Optiplex GX270", /* AD1981B */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x014e, .name = "Dell D800", /* STAC9750/51 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x0163, .name = "Dell Unknown", /* STAC9750/51 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x016a, .name = "Dell Inspiron 8600", /* STAC9750/51 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x0182, .name = "Dell Latitude D610", /* STAC9750/51 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1028, .subdevice = 0x0186, .name = "Dell Latitude D810", /* cf. Malone #41015 */ .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x1028, .subdevice = 0x0188, .name = "Dell Inspiron 6000", .type = AC97_TUNE_HP_MUTE_LED /* cf. Malone #41015 */ }, { .subvendor = 0x1028, .subdevice = 0x0189, .name = "Dell Inspiron 9300", .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x1028, .subdevice = 0x0191, .name = "Dell Inspiron 8600", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x103c, .subdevice = 0x006d, .name = "HP zv5000", .type = AC97_TUNE_MUTE_LED /*AD1981B*/ }, { /* FIXME: which codec? */ .subvendor = 0x103c, .subdevice = 0x00c3, .name = "HP xw6000", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x103c, .subdevice = 0x088c, .name = "HP nc8000", .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x0890, .name = "HP nc6000", .type = AC97_TUNE_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x129d, .name = "HP xw8000", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x103c, .subdevice = 0x0938, .name = "HP nc4200", .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x099c, .name = "HP nx6110/nc6120", .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x0944, .name = "HP nc6220", .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x0934, .name = "HP nc8220", .type = AC97_TUNE_HP_MUTE_LED }, { .subvendor = 0x103c, .subdevice = 0x12f1, .name = "HP xw8200", /* AD1981B*/ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x103c, .subdevice = 0x12f2, .name = "HP xw6200", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x103c, .subdevice = 0x3008, .name = "HP xw4200", /* AD1981B*/ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x104d, .subdevice = 0x8144, .name = "Sony", .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x104d, .subdevice = 0x8197, .name = "Sony S1XP", .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x104d, .subdevice = 0x81c0, .name = "Sony VAIO VGN-T350P", /*AD1981B*/ .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x104d, .subdevice = 0x81c5, .name = "Sony VAIO VGN-B1VP", /*AD1981B*/ .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x1043, .subdevice = 0x80f3, .name = "ASUS ICH5/AD1985", .type = AC97_TUNE_AD_SHARING }, { .subvendor = 0x10cf, .subdevice = 0x11c3, .name = "Fujitsu-Siemens E4010", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10cf, .subdevice = 0x1225, .name = "Fujitsu-Siemens T3010", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10cf, .subdevice = 0x1253, .name = "Fujitsu S6210", /* STAC9750/51 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10cf, .subdevice = 0x127d, .name = "Fujitsu Lifebook P7010", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10cf, .subdevice = 0x127e, .name = "Fujitsu Lifebook C1211D", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10cf, .subdevice = 0x12ec, .name = "Fujitsu-Siemens 4010", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10cf, .subdevice = 0x12f2, .name = "Fujitsu-Siemens Celsius H320", .type = AC97_TUNE_SWAP_HP }, { .subvendor = 0x10f1, .subdevice = 0x2665, .name = "Fujitsu-Siemens Celsius", /* AD1981? */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10f1, .subdevice = 0x2885, .name = "AMD64 Mobo", /* ALC650 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10f1, .subdevice = 0x2895, .name = "Tyan Thunder K8WE", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x10f7, .subdevice = 0x834c, .name = "Panasonic CF-R4", .type = AC97_TUNE_HP_ONLY, }, { .subvendor = 0x110a, .subdevice = 0x0056, .name = "Fujitsu-Siemens Scenic", /* AD1981? */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x11d4, .subdevice = 0x5375, .name = "ADI AD1985 (discrete)", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x1462, .subdevice = 0x5470, .name = "MSI P4 ATX 645 Ultra", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x161f, .subdevice = 0x202f, .name = "Gateway M520", .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x161f, .subdevice = 0x203a, .name = "Gateway 4525GZ", /* AD1981B */ .type = AC97_TUNE_INV_EAPD }, { .subvendor = 0x1734, .subdevice = 0x0088, .name = "Fujitsu-Siemens D1522", /* AD1981 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x8086, .subdevice = 0x2000, .mask = 0xfff0, .name = "Intel ICH5/AD1985", .type = AC97_TUNE_AD_SHARING }, { .subvendor = 0x8086, .subdevice = 0x4000, .mask = 0xfff0, .name = "Intel ICH5/AD1985", .type = AC97_TUNE_AD_SHARING }, { .subvendor = 0x8086, .subdevice = 0x4856, .name = "Intel D845WN (82801BA)", .type = AC97_TUNE_SWAP_HP }, { .subvendor = 0x8086, .subdevice = 0x4d44, .name = "Intel D850EMV2", /* AD1885 */ .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x8086, .subdevice = 0x4d56, .name = "Intel ICH/AD1885", .type = AC97_TUNE_HP_ONLY }, { .subvendor = 0x8086, .subdevice = 0x6000, .mask = 0xfff0, .name = "Intel ICH5/AD1985", .type = AC97_TUNE_AD_SHARING }, { .subvendor = 0x8086, .subdevice = 0xe000, .mask = 0xfff0, .name = "Intel ICH5/AD1985", .type = AC97_TUNE_AD_SHARING }, #if 0 /* FIXME: this seems wrong on most boards */ { .subvendor = 0x8086, .subdevice = 0xa000, .mask = 0xfff0, .name = "Intel ICH5/AD1985", .type = AC97_TUNE_HP_ONLY }, #endif { } /* terminator */ }; static int snd_intel8x0_mixer(struct intel8x0 *chip, int ac97_clock, const char *quirk_override) { struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int err; unsigned int i, codecs; unsigned int glob_sta = 0; const struct snd_ac97_bus_ops *ops; static const struct snd_ac97_bus_ops standard_bus_ops = { .write = snd_intel8x0_codec_write, .read = snd_intel8x0_codec_read, }; static const struct snd_ac97_bus_ops ali_bus_ops = { .write = snd_intel8x0_ali_codec_write, .read = snd_intel8x0_ali_codec_read, }; chip->spdif_idx = -1; /* use PCMOUT (or disabled) */ if (!spdif_aclink) { switch (chip->device_type) { case DEVICE_NFORCE: chip->spdif_idx = NVD_SPBAR; break; case DEVICE_ALI: chip->spdif_idx = ALID_AC97SPDIFOUT; break; case DEVICE_INTEL_ICH4: chip->spdif_idx = ICHD_SPBAR; break; } } chip->in_ac97_init = 1; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.private_free = snd_intel8x0_mixer_free_ac97; ac97.scaps = AC97_SCAP_SKIP_MODEM | AC97_SCAP_POWER_SAVE; if (chip->xbox) ac97.scaps |= AC97_SCAP_DETECT_BY_VENDOR; if (chip->device_type != DEVICE_ALI) { glob_sta = igetdword(chip, ICHREG(GLOB_STA)); ops = &standard_bus_ops; chip->in_sdin_init = 1; codecs = 0; for (i = 0; i < chip->max_codecs; i++) { if (! (glob_sta & chip->codec_bit[i])) continue; if (chip->device_type == DEVICE_INTEL_ICH4) { snd_intel8x0_codec_read_test(chip, codecs); chip->ac97_sdin[codecs] = igetbyte(chip, ICHREG(SDM)) & ICH_LDI_MASK; if (snd_BUG_ON(chip->ac97_sdin[codecs] >= 3)) chip->ac97_sdin[codecs] = 0; } else chip->ac97_sdin[codecs] = i; codecs++; } chip->in_sdin_init = 0; if (! codecs) codecs = 1; } else { ops = &ali_bus_ops; codecs = 1; /* detect the secondary codec */ for (i = 0; i < 100; i++) { unsigned int reg = igetdword(chip, ICHREG(ALI_RTSR)); if (reg & 0x40) { codecs = 2; break; } iputdword(chip, ICHREG(ALI_RTSR), reg | 0x40); udelay(1); } } err = snd_ac97_bus(chip->card, 0, ops, chip, &pbus); if (err < 0) goto __err; pbus->private_free = snd_intel8x0_mixer_free_ac97_bus; if (ac97_clock >= 8000 && ac97_clock <= 48000) pbus->clock = ac97_clock; /* FIXME: my test board doesn't work well with VRA... */ if (chip->device_type == DEVICE_ALI) pbus->no_vra = 1; else pbus->dra = 1; chip->ac97_bus = pbus; chip->ncodecs = codecs; ac97.pci = chip->pci; for (i = 0; i < codecs; i++) { ac97.num = i; err = snd_ac97_mixer(pbus, &ac97, &chip->ac97[i]); if (err < 0) { if (err != -EACCES) dev_err(chip->card->dev, "Unable to initialize codec #%d\n", i); if (i == 0) goto __err; } } /* tune up the primary codec */ snd_ac97_tune_hardware(chip->ac97[0], ac97_quirks, quirk_override); /* enable separate SDINs for ICH4 */ if (chip->device_type == DEVICE_INTEL_ICH4) pbus->isdin = 1; /* find the available PCM streams */ i = ARRAY_SIZE(ac97_pcm_defs); if (chip->device_type != DEVICE_INTEL_ICH4) i -= 2; /* do not allocate PCM2IN and MIC2 */ if (chip->spdif_idx < 0) i--; /* do not allocate S/PDIF */ err = snd_ac97_pcm_assign(pbus, i, ac97_pcm_defs); if (err < 0) goto __err; chip->ichd[ICHD_PCMOUT].pcm = &pbus->pcms[0]; chip->ichd[ICHD_PCMIN].pcm = &pbus->pcms[1]; chip->ichd[ICHD_MIC].pcm = &pbus->pcms[2]; if (chip->spdif_idx >= 0) chip->ichd[chip->spdif_idx].pcm = &pbus->pcms[3]; if (chip->device_type == DEVICE_INTEL_ICH4) { chip->ichd[ICHD_PCM2IN].pcm = &pbus->pcms[4]; chip->ichd[ICHD_MIC2].pcm = &pbus->pcms[5]; } /* enable separate SDINs for ICH4 */ if (chip->device_type == DEVICE_INTEL_ICH4) { struct ac97_pcm *pcm = chip->ichd[ICHD_PCM2IN].pcm; u8 tmp = igetbyte(chip, ICHREG(SDM)); tmp &= ~(ICH_DI2L_MASK|ICH_DI1L_MASK); if (pcm) { tmp |= ICH_SE; /* steer enable for multiple SDINs */ tmp |= chip->ac97_sdin[0] << ICH_DI1L_SHIFT; for (i = 1; i < 4; i++) { if (pcm->r[0].codec[i]) { tmp |= chip->ac97_sdin[pcm->r[0].codec[1]->num] << ICH_DI2L_SHIFT; break; } } } else { tmp &= ~ICH_SE; /* steer disable */ } iputbyte(chip, ICHREG(SDM), tmp); } if (pbus->pcms[0].r[0].slots & (1 << AC97_SLOT_PCM_SLEFT)) { chip->multi4 = 1; if (pbus->pcms[0].r[0].slots & (1 << AC97_SLOT_LFE)) { chip->multi6 = 1; if (chip->ac97[0]->flags & AC97_HAS_8CH) chip->multi8 = 1; } } if (pbus->pcms[0].r[1].rslots[0]) { chip->dra = 1; } if (chip->device_type == DEVICE_INTEL_ICH4) { if ((igetdword(chip, ICHREG(GLOB_STA)) & ICH_SAMPLE_CAP) == ICH_SAMPLE_16_20) chip->smp20bit = 1; } if (chip->device_type == DEVICE_NFORCE && !spdif_aclink) { /* 48kHz only */ chip->ichd[chip->spdif_idx].pcm->rates = SNDRV_PCM_RATE_48000; } if (chip->device_type == DEVICE_INTEL_ICH4 && !spdif_aclink) { /* use slot 10/11 for SPDIF */ u32 val; val = igetdword(chip, ICHREG(GLOB_CNT)) & ~ICH_PCM_SPDIF_MASK; val |= ICH_PCM_SPDIF_1011; iputdword(chip, ICHREG(GLOB_CNT), val); snd_ac97_update_bits(chip->ac97[0], AC97_EXTENDED_STATUS, 0x03 << 4, 0x03 << 4); } chip->in_ac97_init = 0; return 0; __err: /* clear the cold-reset bit for the next chance */ if (chip->device_type != DEVICE_ALI) iputdword(chip, ICHREG(GLOB_CNT), igetdword(chip, ICHREG(GLOB_CNT)) & ~ICH_AC97COLD); return err; } /* * */ static void do_ali_reset(struct intel8x0 *chip) { iputdword(chip, ICHREG(ALI_SCR), ICH_ALI_SC_RESET); iputdword(chip, ICHREG(ALI_FIFOCR1), 0x83838383); iputdword(chip, ICHREG(ALI_FIFOCR2), 0x83838383); iputdword(chip, ICHREG(ALI_FIFOCR3), 0x83838383); iputdword(chip, ICHREG(ALI_INTERFACECR), ICH_ALI_IF_PI|ICH_ALI_IF_PO); iputdword(chip, ICHREG(ALI_INTERRUPTCR), 0x00000000); iputdword(chip, ICHREG(ALI_INTERRUPTSR), 0x00000000); } #ifdef CONFIG_SND_AC97_POWER_SAVE static const struct snd_pci_quirk ich_chip_reset_mode[] = { SND_PCI_QUIRK(0x1014, 0x051f, "Thinkpad R32", 1), { } /* end */ }; static int snd_intel8x0_ich_chip_cold_reset(struct intel8x0 *chip) { unsigned int cnt; /* ACLink on, 2 channels */ if (snd_pci_quirk_lookup(chip->pci, ich_chip_reset_mode)) return -EIO; cnt = igetdword(chip, ICHREG(GLOB_CNT)); cnt &= ~(ICH_ACLINK | ICH_PCM_246_MASK); /* do cold reset - the full ac97 powerdown may leave the controller * in a warm state but actually it cannot communicate with the codec. */ iputdword(chip, ICHREG(GLOB_CNT), cnt & ~ICH_AC97COLD); cnt = igetdword(chip, ICHREG(GLOB_CNT)); udelay(10); iputdword(chip, ICHREG(GLOB_CNT), cnt | ICH_AC97COLD); msleep(1); return 0; } #define snd_intel8x0_ich_chip_can_cold_reset(chip) \ (!snd_pci_quirk_lookup(chip->pci, ich_chip_reset_mode)) #else #define snd_intel8x0_ich_chip_cold_reset(chip) 0 #define snd_intel8x0_ich_chip_can_cold_reset(chip) (0) #endif static int snd_intel8x0_ich_chip_reset(struct intel8x0 *chip) { unsigned long end_time; unsigned int cnt; /* ACLink on, 2 channels */ cnt = igetdword(chip, ICHREG(GLOB_CNT)); cnt &= ~(ICH_ACLINK | ICH_PCM_246_MASK); /* finish cold or do warm reset */ cnt |= (cnt & ICH_AC97COLD) == 0 ? ICH_AC97COLD : ICH_AC97WARM; iputdword(chip, ICHREG(GLOB_CNT), cnt); end_time = (jiffies + (HZ / 4)) + 1; do { if ((igetdword(chip, ICHREG(GLOB_CNT)) & ICH_AC97WARM) == 0) return 0; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); dev_err(chip->card->dev, "AC'97 warm reset still in progress? [0x%x]\n", igetdword(chip, ICHREG(GLOB_CNT))); return -EIO; } static int snd_intel8x0_ich_chip_init(struct intel8x0 *chip, int probing) { unsigned long end_time; unsigned int status, nstatus; unsigned int cnt; int err; /* put logic to right state */ /* first clear status bits */ status = ICH_RCS | ICH_MCINT | ICH_POINT | ICH_PIINT; if (chip->device_type == DEVICE_NFORCE) status |= ICH_NVSPINT; cnt = igetdword(chip, ICHREG(GLOB_STA)); iputdword(chip, ICHREG(GLOB_STA), cnt & status); if (snd_intel8x0_ich_chip_can_cold_reset(chip)) err = snd_intel8x0_ich_chip_cold_reset(chip); else err = snd_intel8x0_ich_chip_reset(chip); if (err < 0) return err; if (probing) { /* wait for any codec ready status. * Once it becomes ready it should remain ready * as long as we do not disable the ac97 link. */ end_time = jiffies + HZ; do { status = igetdword(chip, ICHREG(GLOB_STA)) & chip->codec_isr_bits; if (status) break; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); if (! status) { /* no codec is found */ dev_err(chip->card->dev, "codec_ready: codec is not ready [0x%x]\n", igetdword(chip, ICHREG(GLOB_STA))); return -EIO; } /* wait for other codecs ready status. */ end_time = jiffies + HZ / 4; while (status != chip->codec_isr_bits && time_after_eq(end_time, jiffies)) { schedule_timeout_uninterruptible(1); status |= igetdword(chip, ICHREG(GLOB_STA)) & chip->codec_isr_bits; } } else { /* resume phase */ int i; status = 0; for (i = 0; i < chip->ncodecs; i++) if (chip->ac97[i]) status |= chip->codec_bit[chip->ac97_sdin[i]]; /* wait until all the probed codecs are ready */ end_time = jiffies + HZ; do { nstatus = igetdword(chip, ICHREG(GLOB_STA)) & chip->codec_isr_bits; if (status == nstatus) break; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); } if (chip->device_type == DEVICE_SIS) { /* unmute the output on SIS7012 */ iputword(chip, 0x4c, igetword(chip, 0x4c) | 1); } if (chip->device_type == DEVICE_NFORCE && !spdif_aclink) { /* enable SPDIF interrupt */ unsigned int val; pci_read_config_dword(chip->pci, 0x4c, &val); val |= 0x1000000; pci_write_config_dword(chip->pci, 0x4c, val); } return 0; } static int snd_intel8x0_ali_chip_init(struct intel8x0 *chip, int probing) { u32 reg; int i = 0; reg = igetdword(chip, ICHREG(ALI_SCR)); if ((reg & 2) == 0) /* Cold required */ reg |= 2; else reg |= 1; /* Warm */ reg &= ~0x80000000; /* ACLink on */ iputdword(chip, ICHREG(ALI_SCR), reg); for (i = 0; i < HZ / 2; i++) { if (! (igetdword(chip, ICHREG(ALI_INTERRUPTSR)) & ALI_INT_GPIO)) goto __ok; schedule_timeout_uninterruptible(1); } dev_err(chip->card->dev, "AC'97 reset failed.\n"); if (probing) return -EIO; __ok: for (i = 0; i < HZ / 2; i++) { reg = igetdword(chip, ICHREG(ALI_RTSR)); if (reg & 0x80) /* primary codec */ break; iputdword(chip, ICHREG(ALI_RTSR), reg | 0x80); schedule_timeout_uninterruptible(1); } do_ali_reset(chip); return 0; } static int snd_intel8x0_chip_init(struct intel8x0 *chip, int probing) { unsigned int i, timeout; int err; if (chip->device_type != DEVICE_ALI) { err = snd_intel8x0_ich_chip_init(chip, probing); if (err < 0) return err; iagetword(chip, 0); /* clear semaphore flag */ } else { err = snd_intel8x0_ali_chip_init(chip, probing); if (err < 0) return err; } /* disable interrupts */ for (i = 0; i < chip->bdbars_count; i++) iputbyte(chip, ICH_REG_OFF_CR + chip->ichd[i].reg_offset, 0x00); /* reset channels */ for (i = 0; i < chip->bdbars_count; i++) iputbyte(chip, ICH_REG_OFF_CR + chip->ichd[i].reg_offset, ICH_RESETREGS); for (i = 0; i < chip->bdbars_count; i++) { timeout = 100000; while (--timeout != 0) { if ((igetbyte(chip, ICH_REG_OFF_CR + chip->ichd[i].reg_offset) & ICH_RESETREGS) == 0) break; } if (timeout == 0) dev_err(chip->card->dev, "reset of registers failed?\n"); } /* initialize Buffer Descriptor Lists */ for (i = 0; i < chip->bdbars_count; i++) iputdword(chip, ICH_REG_OFF_BDBAR + chip->ichd[i].reg_offset, chip->ichd[i].bdbar_addr); return 0; } static void snd_intel8x0_free(struct snd_card *card) { struct intel8x0 *chip = card->private_data; unsigned int i; if (chip->irq < 0) goto __hw_end; /* disable interrupts */ for (i = 0; i < chip->bdbars_count; i++) iputbyte(chip, ICH_REG_OFF_CR + chip->ichd[i].reg_offset, 0x00); /* reset channels */ for (i = 0; i < chip->bdbars_count; i++) iputbyte(chip, ICH_REG_OFF_CR + chip->ichd[i].reg_offset, ICH_RESETREGS); if (chip->device_type == DEVICE_NFORCE && !spdif_aclink) { /* stop the spdif interrupt */ unsigned int val; pci_read_config_dword(chip->pci, 0x4c, &val); val &= ~0x1000000; pci_write_config_dword(chip->pci, 0x4c, val); } /* --- */ __hw_end: if (chip->irq >= 0) free_irq(chip->irq, chip); } #ifdef CONFIG_PM_SLEEP /* * power management */ static int intel8x0_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct intel8x0 *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < chip->ncodecs; i++) snd_ac97_suspend(chip->ac97[i]); if (chip->device_type == DEVICE_INTEL_ICH4) chip->sdm_saved = igetbyte(chip, ICHREG(SDM)); if (chip->irq >= 0) { free_irq(chip->irq, chip); chip->irq = -1; card->sync_irq = -1; } return 0; } static int intel8x0_resume(struct device *dev) { struct pci_dev *pci = to_pci_dev(dev); struct snd_card *card = dev_get_drvdata(dev); struct intel8x0 *chip = card->private_data; int i; snd_intel8x0_chip_init(chip, 0); if (request_irq(pci->irq, snd_intel8x0_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(dev, "unable to grab IRQ %d, disabling device\n", pci->irq); snd_card_disconnect(card); return -EIO; } chip->irq = pci->irq; card->sync_irq = chip->irq; /* re-initialize mixer stuff */ if (chip->device_type == DEVICE_INTEL_ICH4 && !spdif_aclink) { /* enable separate SDINs for ICH4 */ iputbyte(chip, ICHREG(SDM), chip->sdm_saved); /* use slot 10/11 for SPDIF */ iputdword(chip, ICHREG(GLOB_CNT), (igetdword(chip, ICHREG(GLOB_CNT)) & ~ICH_PCM_SPDIF_MASK) | ICH_PCM_SPDIF_1011); } for (i = 0; i < chip->ncodecs; i++) snd_ac97_resume(chip->ac97[i]); /* resume status */ for (i = 0; i < chip->bdbars_count; i++) { struct ichdev *ichdev = &chip->ichd[i]; unsigned long port = ichdev->reg_offset; if (! ichdev->substream || ! ichdev->suspended) continue; if (ichdev->ichd == ICHD_PCMOUT) snd_intel8x0_setup_pcm_out(chip, ichdev->substream->runtime); iputdword(chip, port + ICH_REG_OFF_BDBAR, ichdev->bdbar_addr); iputbyte(chip, port + ICH_REG_OFF_LVI, ichdev->lvi); iputbyte(chip, port + ICH_REG_OFF_CIV, ichdev->civ); iputbyte(chip, port + ichdev->roff_sr, ICH_FIFOE | ICH_BCIS | ICH_LVBCI); } snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(intel8x0_pm, intel8x0_suspend, intel8x0_resume); #define INTEL8X0_PM_OPS &intel8x0_pm #else #define INTEL8X0_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ #define INTEL8X0_TESTBUF_SIZE 32768 /* enough large for one shot */ static void intel8x0_measure_ac97_clock(struct intel8x0 *chip) { struct snd_pcm_substream *subs; struct ichdev *ichdev; unsigned long port; unsigned long pos, pos1, t; int civ, timeout = 1000, attempt = 1; ktime_t start_time, stop_time; if (chip->ac97_bus->clock != 48000) return; /* specified in module option */ if (chip->inside_vm && !ac97_clock) return; /* no measurement on VM */ __again: subs = chip->pcm[0]->streams[0].substream; if (! subs || subs->dma_buffer.bytes < INTEL8X0_TESTBUF_SIZE) { dev_warn(chip->card->dev, "no playback buffer allocated - aborting measure ac97 clock\n"); return; } ichdev = &chip->ichd[ICHD_PCMOUT]; ichdev->physbuf = subs->dma_buffer.addr; ichdev->size = ichdev->fragsize = INTEL8X0_TESTBUF_SIZE; ichdev->substream = NULL; /* don't process interrupts */ /* set rate */ if (snd_ac97_set_rate(chip->ac97[0], AC97_PCM_FRONT_DAC_RATE, 48000) < 0) { dev_err(chip->card->dev, "cannot set ac97 rate: clock = %d\n", chip->ac97_bus->clock); return; } snd_intel8x0_setup_periods(chip, ichdev); port = ichdev->reg_offset; spin_lock_irq(&chip->reg_lock); chip->in_measurement = 1; /* trigger */ if (chip->device_type != DEVICE_ALI) iputbyte(chip, port + ICH_REG_OFF_CR, ICH_IOCE | ICH_STARTBM); else { iputbyte(chip, port + ICH_REG_OFF_CR, ICH_IOCE); iputdword(chip, ICHREG(ALI_DMACR), 1 << ichdev->ali_slot); } start_time = ktime_get(); spin_unlock_irq(&chip->reg_lock); msleep(50); spin_lock_irq(&chip->reg_lock); /* check the position */ do { civ = igetbyte(chip, ichdev->reg_offset + ICH_REG_OFF_CIV); pos1 = igetword(chip, ichdev->reg_offset + ichdev->roff_picb); if (pos1 == 0) { udelay(10); continue; } if (civ == igetbyte(chip, ichdev->reg_offset + ICH_REG_OFF_CIV) && pos1 == igetword(chip, ichdev->reg_offset + ichdev->roff_picb)) break; } while (timeout--); if (pos1 == 0) { /* oops, this value is not reliable */ pos = 0; } else { pos = ichdev->fragsize1; pos -= pos1 << ichdev->pos_shift; pos += ichdev->position; } chip->in_measurement = 0; stop_time = ktime_get(); /* stop */ if (chip->device_type == DEVICE_ALI) { iputdword(chip, ICHREG(ALI_DMACR), 1 << (ichdev->ali_slot + 16)); iputbyte(chip, port + ICH_REG_OFF_CR, 0); while (igetbyte(chip, port + ICH_REG_OFF_CR)) ; } else { iputbyte(chip, port + ICH_REG_OFF_CR, 0); while (!(igetbyte(chip, port + ichdev->roff_sr) & ICH_DCH)) ; } iputbyte(chip, port + ICH_REG_OFF_CR, ICH_RESETREGS); spin_unlock_irq(&chip->reg_lock); if (pos == 0) { dev_err(chip->card->dev, "measure - unreliable DMA position..\n"); __retry: if (attempt < 3) { msleep(300); attempt++; goto __again; } goto __end; } pos /= 4; t = ktime_us_delta(stop_time, start_time); dev_info(chip->card->dev, "%s: measured %lu usecs (%lu samples)\n", __func__, t, pos); if (t == 0) { dev_err(chip->card->dev, "?? calculation error..\n"); goto __retry; } pos *= 1000; pos = (pos / t) * 1000 + ((pos % t) * 1000) / t; if (pos < 40000 || pos >= 60000) { /* abnormal value. hw problem? */ dev_info(chip->card->dev, "measured clock %ld rejected\n", pos); goto __retry; } else if (pos > 40500 && pos < 41500) /* first exception - 41000Hz reference clock */ chip->ac97_bus->clock = 41000; else if (pos > 43600 && pos < 44600) /* second exception - 44100HZ reference clock */ chip->ac97_bus->clock = 44100; else if (pos < 47500 || pos > 48500) /* not 48000Hz, tuning the clock.. */ chip->ac97_bus->clock = (chip->ac97_bus->clock * 48000) / pos; __end: dev_info(chip->card->dev, "clocking to %d\n", chip->ac97_bus->clock); snd_ac97_update_power(chip->ac97[0], AC97_PCM_FRONT_DAC_RATE, 0); } static const struct snd_pci_quirk intel8x0_clock_list[] = { SND_PCI_QUIRK(0x0e11, 0x008a, "AD1885", 41000), SND_PCI_QUIRK(0x1014, 0x0581, "AD1981B", 48000), SND_PCI_QUIRK(0x1028, 0x00be, "AD1885", 44100), SND_PCI_QUIRK(0x1028, 0x0177, "AD1980", 48000), SND_PCI_QUIRK(0x1028, 0x01ad, "AD1981B", 48000), SND_PCI_QUIRK(0x1043, 0x80f3, "AD1985", 48000), { } /* terminator */ }; static int intel8x0_in_clock_list(struct intel8x0 *chip) { struct pci_dev *pci = chip->pci; const struct snd_pci_quirk *wl; wl = snd_pci_quirk_lookup(pci, intel8x0_clock_list); if (!wl) return 0; dev_info(chip->card->dev, "allow list rate for %04x:%04x is %i\n", pci->subsystem_vendor, pci->subsystem_device, wl->value); chip->ac97_bus->clock = wl->value; return 1; } static void snd_intel8x0_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) { struct intel8x0 *chip = entry->private_data; unsigned int tmp; snd_iprintf(buffer, "Intel8x0\n\n"); if (chip->device_type == DEVICE_ALI) return; tmp = igetdword(chip, ICHREG(GLOB_STA)); snd_iprintf(buffer, "Global control : 0x%08x\n", igetdword(chip, ICHREG(GLOB_CNT))); snd_iprintf(buffer, "Global status : 0x%08x\n", tmp); if (chip->device_type == DEVICE_INTEL_ICH4) snd_iprintf(buffer, "SDM : 0x%08x\n", igetdword(chip, ICHREG(SDM))); snd_iprintf(buffer, "AC'97 codecs ready :"); if (tmp & chip->codec_isr_bits) { int i; static const char *codecs[3] = { "primary", "secondary", "tertiary" }; for (i = 0; i < chip->max_codecs; i++) if (tmp & chip->codec_bit[i]) snd_iprintf(buffer, " %s", codecs[i]); } else snd_iprintf(buffer, " none"); snd_iprintf(buffer, "\n"); if (chip->device_type == DEVICE_INTEL_ICH4 || chip->device_type == DEVICE_SIS) snd_iprintf(buffer, "AC'97 codecs SDIN : %i %i %i\n", chip->ac97_sdin[0], chip->ac97_sdin[1], chip->ac97_sdin[2]); } static void snd_intel8x0_proc_init(struct intel8x0 *chip) { snd_card_ro_proc_new(chip->card, "intel8x0", chip, snd_intel8x0_proc_read); } struct ich_reg_info { unsigned int int_sta_mask; unsigned int offset; }; static const unsigned int ich_codec_bits[3] = { ICH_PCR, ICH_SCR, ICH_TCR }; static const unsigned int sis_codec_bits[3] = { ICH_PCR, ICH_SCR, ICH_SIS_TCR }; static int snd_intel8x0_inside_vm(struct pci_dev *pci) { int result = inside_vm; char *msg = NULL; /* check module parameter first (override detection) */ if (result >= 0) { msg = result ? "enable (forced) VM" : "disable (forced) VM"; goto fini; } /* check for known (emulated) devices */ result = 0; if (pci->subsystem_vendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET && pci->subsystem_device == PCI_SUBDEVICE_ID_QEMU) { /* KVM emulated sound, PCI SSID: 1af4:1100 */ msg = "enable KVM"; result = 1; } else if (pci->subsystem_vendor == 0x1ab8) { /* Parallels VM emulated sound, PCI SSID: 1ab8:xxxx */ msg = "enable Parallels VM"; result = 1; } fini: if (msg != NULL) dev_info(&pci->dev, "%s optimization\n", msg); return result; } static int snd_intel8x0_init(struct snd_card *card, struct pci_dev *pci, unsigned long device_type) { struct intel8x0 *chip = card->private_data; int err; unsigned int i; unsigned int int_sta_masks; struct ichdev *ichdev; static const unsigned int bdbars[] = { 3, /* DEVICE_INTEL */ 6, /* DEVICE_INTEL_ICH4 */ 3, /* DEVICE_SIS */ 6, /* DEVICE_ALI */ 4, /* DEVICE_NFORCE */ }; static const struct ich_reg_info intel_regs[6] = { { ICH_PIINT, 0 }, { ICH_POINT, 0x10 }, { ICH_MCINT, 0x20 }, { ICH_M2INT, 0x40 }, { ICH_P2INT, 0x50 }, { ICH_SPINT, 0x60 }, }; static const struct ich_reg_info nforce_regs[4] = { { ICH_PIINT, 0 }, { ICH_POINT, 0x10 }, { ICH_MCINT, 0x20 }, { ICH_NVSPINT, 0x70 }, }; static const struct ich_reg_info ali_regs[6] = { { ALI_INT_PCMIN, 0x40 }, { ALI_INT_PCMOUT, 0x50 }, { ALI_INT_MICIN, 0x60 }, { ALI_INT_CODECSPDIFOUT, 0x70 }, { ALI_INT_SPDIFIN, 0xa0 }, { ALI_INT_SPDIFOUT, 0xb0 }, }; const struct ich_reg_info *tbl; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&chip->reg_lock); chip->device_type = device_type; chip->card = card; chip->pci = pci; chip->irq = -1; /* module parameters */ chip->buggy_irq = buggy_irq; chip->buggy_semaphore = buggy_semaphore; if (xbox) chip->xbox = 1; chip->inside_vm = snd_intel8x0_inside_vm(pci); /* * Intel 82443MX running a 100MHz processor system bus has a hardware * bug, which aborts PCI busmaster for audio transfer. A workaround * is to set the pages as non-cached. For details, see the errata in * http://download.intel.com/design/chipsets/specupdt/24505108.pdf */ if (pci->vendor == PCI_VENDOR_ID_INTEL && pci->device == PCI_DEVICE_ID_INTEL_440MX) chip->fix_nocache = 1; /* enable workaround */ err = pci_request_regions(pci, card->shortname); if (err < 0) return err; if (device_type == DEVICE_ALI) { /* ALI5455 has no ac97 region */ chip->bmaddr = pcim_iomap(pci, 0, 0); } else { if (pci_resource_flags(pci, 2) & IORESOURCE_MEM) /* ICH4 and Nforce */ chip->addr = pcim_iomap(pci, 2, 0); else chip->addr = pcim_iomap(pci, 0, 0); if (pci_resource_flags(pci, 3) & IORESOURCE_MEM) /* ICH4 */ chip->bmaddr = pcim_iomap(pci, 3, 0); else chip->bmaddr = pcim_iomap(pci, 1, 0); } chip->bdbars_count = bdbars[device_type]; /* initialize offsets */ switch (device_type) { case DEVICE_NFORCE: tbl = nforce_regs; break; case DEVICE_ALI: tbl = ali_regs; break; default: tbl = intel_regs; break; } for (i = 0; i < chip->bdbars_count; i++) { ichdev = &chip->ichd[i]; ichdev->ichd = i; ichdev->reg_offset = tbl[i].offset; ichdev->int_sta_mask = tbl[i].int_sta_mask; if (device_type == DEVICE_SIS) { /* SiS 7012 swaps the registers */ ichdev->roff_sr = ICH_REG_OFF_PICB; ichdev->roff_picb = ICH_REG_OFF_SR; } else { ichdev->roff_sr = ICH_REG_OFF_SR; ichdev->roff_picb = ICH_REG_OFF_PICB; } if (device_type == DEVICE_ALI) ichdev->ali_slot = (ichdev->reg_offset - 0x40) / 0x10; /* SIS7012 handles the pcm data in bytes, others are in samples */ ichdev->pos_shift = (device_type == DEVICE_SIS) ? 0 : 1; } /* allocate buffer descriptor lists */ /* the start of each lists must be aligned to 8 bytes */ chip->bdbars = snd_devm_alloc_pages(&pci->dev, intel8x0_dma_type(chip), chip->bdbars_count * sizeof(u32) * ICH_MAX_FRAGS * 2); if (!chip->bdbars) return -ENOMEM; /* tables must be aligned to 8 bytes here, but the kernel pages are much bigger, so we don't care (on i386) */ int_sta_masks = 0; for (i = 0; i < chip->bdbars_count; i++) { ichdev = &chip->ichd[i]; ichdev->bdbar = ((__le32 *)chip->bdbars->area) + (i * ICH_MAX_FRAGS * 2); ichdev->bdbar_addr = chip->bdbars->addr + (i * sizeof(u32) * ICH_MAX_FRAGS * 2); int_sta_masks |= ichdev->int_sta_mask; } chip->int_sta_reg = device_type == DEVICE_ALI ? ICH_REG_ALI_INTERRUPTSR : ICH_REG_GLOB_STA; chip->int_sta_mask = int_sta_masks; pci_set_master(pci); switch(chip->device_type) { case DEVICE_INTEL_ICH4: /* ICH4 can have three codecs */ chip->max_codecs = 3; chip->codec_bit = ich_codec_bits; chip->codec_ready_bits = ICH_PRI | ICH_SRI | ICH_TRI; break; case DEVICE_SIS: /* recent SIS7012 can have three codecs */ chip->max_codecs = 3; chip->codec_bit = sis_codec_bits; chip->codec_ready_bits = ICH_PRI | ICH_SRI | ICH_SIS_TRI; break; default: /* others up to two codecs */ chip->max_codecs = 2; chip->codec_bit = ich_codec_bits; chip->codec_ready_bits = ICH_PRI | ICH_SRI; break; } for (i = 0; i < chip->max_codecs; i++) chip->codec_isr_bits |= chip->codec_bit[i]; err = snd_intel8x0_chip_init(chip, 1); if (err < 0) return err; /* request irq after initializaing int_sta_mask, etc */ /* NOTE: we don't use devm version here since it's released / * re-acquired in PM callbacks. * It's released explicitly in snd_intel8x0_free(), too. */ if (request_irq(pci->irq, snd_intel8x0_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; card->private_free = snd_intel8x0_free; return 0; } static struct shortname_table { unsigned int id; const char *s; } shortnames[] = { { PCI_DEVICE_ID_INTEL_82801AA_5, "Intel 82801AA-ICH" }, { PCI_DEVICE_ID_INTEL_82801AB_5, "Intel 82901AB-ICH0" }, { PCI_DEVICE_ID_INTEL_82801BA_4, "Intel 82801BA-ICH2" }, { PCI_DEVICE_ID_INTEL_440MX, "Intel 440MX" }, { PCI_DEVICE_ID_INTEL_82801CA_5, "Intel 82801CA-ICH3" }, { PCI_DEVICE_ID_INTEL_82801DB_5, "Intel 82801DB-ICH4" }, { PCI_DEVICE_ID_INTEL_82801EB_5, "Intel ICH5" }, { PCI_DEVICE_ID_INTEL_ESB_5, "Intel 6300ESB" }, { PCI_DEVICE_ID_INTEL_ICH6_18, "Intel ICH6" }, { PCI_DEVICE_ID_INTEL_ICH7_20, "Intel ICH7" }, { PCI_DEVICE_ID_INTEL_ESB2_14, "Intel ESB2" }, { PCI_DEVICE_ID_SI_7012, "SiS SI7012" }, { PCI_DEVICE_ID_NVIDIA_MCP1_AUDIO, "NVidia nForce" }, { PCI_DEVICE_ID_NVIDIA_MCP2_AUDIO, "NVidia nForce2" }, { PCI_DEVICE_ID_NVIDIA_MCP3_AUDIO, "NVidia nForce3" }, { PCI_DEVICE_ID_NVIDIA_CK8S_AUDIO, "NVidia CK8S" }, { PCI_DEVICE_ID_NVIDIA_CK804_AUDIO, "NVidia CK804" }, { PCI_DEVICE_ID_NVIDIA_CK8_AUDIO, "NVidia CK8" }, { 0x003a, "NVidia MCP04" }, { 0x746d, "AMD AMD8111" }, { 0x7445, "AMD AMD768" }, { 0x5455, "ALi M5455" }, { 0, NULL }, }; static const struct snd_pci_quirk spdif_aclink_defaults[] = { SND_PCI_QUIRK(0x147b, 0x1c1a, "ASUS KN8", 1), { } /* end */ }; /* look up allow/deny list for SPDIF over ac-link */ static int check_default_spdif_aclink(struct pci_dev *pci) { const struct snd_pci_quirk *w; w = snd_pci_quirk_lookup(pci, spdif_aclink_defaults); if (w) { if (w->value) dev_dbg(&pci->dev, "Using SPDIF over AC-Link for %s\n", snd_pci_quirk_name(w)); else dev_dbg(&pci->dev, "Using integrated SPDIF DMA for %s\n", snd_pci_quirk_name(w)); return w->value; } return 0; } static int __snd_intel8x0_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; struct intel8x0 *chip; int err; struct shortname_table *name; err = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; if (spdif_aclink < 0) spdif_aclink = check_default_spdif_aclink(pci); strcpy(card->driver, "ICH"); if (!spdif_aclink) { switch (pci_id->driver_data) { case DEVICE_NFORCE: strcpy(card->driver, "NFORCE"); break; case DEVICE_INTEL_ICH4: strcpy(card->driver, "ICH4"); } } strcpy(card->shortname, "Intel ICH"); for (name = shortnames; name->id; name++) { if (pci->device == name->id) { strcpy(card->shortname, name->s); break; } } if (buggy_irq < 0) { /* some Nforce[2] and ICH boards have problems with IRQ handling. * Needs to return IRQ_HANDLED for unknown irqs. */ if (pci_id->driver_data == DEVICE_NFORCE) buggy_irq = 1; else buggy_irq = 0; } err = snd_intel8x0_init(card, pci, pci_id->driver_data); if (err < 0) return err; err = snd_intel8x0_mixer(chip, ac97_clock, ac97_quirk); if (err < 0) return err; err = snd_intel8x0_pcm(chip); if (err < 0) return err; snd_intel8x0_proc_init(chip); snprintf(card->longname, sizeof(card->longname), "%s with %s at irq %i", card->shortname, snd_ac97_get_short_name(chip->ac97[0]), chip->irq); if (ac97_clock == 0 || ac97_clock == 1) { if (ac97_clock == 0) { if (intel8x0_in_clock_list(chip) == 0) intel8x0_measure_ac97_clock(chip); } else { intel8x0_measure_ac97_clock(chip); } } err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); return 0; } static int snd_intel8x0_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_intel8x0_probe(pci, pci_id)); } static struct pci_driver intel8x0_driver = { .name = KBUILD_MODNAME, .id_table = snd_intel8x0_ids, .probe = snd_intel8x0_probe, .driver = { .pm = INTEL8X0_PM_OPS, }, }; module_pci_driver(intel8x0_driver);
linux-master
sound/pci/intel8x0.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA driver for ATI IXP 150/200/250 AC97 modem controllers * * Copyright (c) 2004 Takashi Iwai <[email protected]> */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/info.h> #include <sound/ac97_codec.h> #include <sound/initval.h> MODULE_AUTHOR("Takashi Iwai <[email protected]>"); MODULE_DESCRIPTION("ATI IXP MC97 controller"); MODULE_LICENSE("GPL"); static int index = -2; /* Exclude the first card */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static int ac97_clock = 48000; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for ATI IXP controller."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for ATI IXP controller."); module_param(ac97_clock, int, 0444); MODULE_PARM_DESC(ac97_clock, "AC'97 codec clock (default 48000Hz)."); /* just for backward compatibility */ static bool enable; module_param(enable, bool, 0444); /* */ #define ATI_REG_ISR 0x00 /* interrupt source */ #define ATI_REG_ISR_MODEM_IN_XRUN (1U<<0) #define ATI_REG_ISR_MODEM_IN_STATUS (1U<<1) #define ATI_REG_ISR_MODEM_OUT1_XRUN (1U<<2) #define ATI_REG_ISR_MODEM_OUT1_STATUS (1U<<3) #define ATI_REG_ISR_MODEM_OUT2_XRUN (1U<<4) #define ATI_REG_ISR_MODEM_OUT2_STATUS (1U<<5) #define ATI_REG_ISR_MODEM_OUT3_XRUN (1U<<6) #define ATI_REG_ISR_MODEM_OUT3_STATUS (1U<<7) #define ATI_REG_ISR_PHYS_INTR (1U<<8) #define ATI_REG_ISR_PHYS_MISMATCH (1U<<9) #define ATI_REG_ISR_CODEC0_NOT_READY (1U<<10) #define ATI_REG_ISR_CODEC1_NOT_READY (1U<<11) #define ATI_REG_ISR_CODEC2_NOT_READY (1U<<12) #define ATI_REG_ISR_NEW_FRAME (1U<<13) #define ATI_REG_ISR_MODEM_GPIO_DATA (1U<<14) #define ATI_REG_IER 0x04 /* interrupt enable */ #define ATI_REG_IER_MODEM_IN_XRUN_EN (1U<<0) #define ATI_REG_IER_MODEM_STATUS_EN (1U<<1) #define ATI_REG_IER_MODEM_OUT1_XRUN_EN (1U<<2) #define ATI_REG_IER_MODEM_OUT2_XRUN_EN (1U<<4) #define ATI_REG_IER_MODEM_OUT3_XRUN_EN (1U<<6) #define ATI_REG_IER_PHYS_INTR_EN (1U<<8) #define ATI_REG_IER_PHYS_MISMATCH_EN (1U<<9) #define ATI_REG_IER_CODEC0_INTR_EN (1U<<10) #define ATI_REG_IER_CODEC1_INTR_EN (1U<<11) #define ATI_REG_IER_CODEC2_INTR_EN (1U<<12) #define ATI_REG_IER_NEW_FRAME_EN (1U<<13) /* (RO */ #define ATI_REG_IER_MODEM_GPIO_DATA_EN (1U<<14) /* (WO) modem is running */ #define ATI_REG_IER_MODEM_SET_BUS_BUSY (1U<<15) #define ATI_REG_CMD 0x08 /* command */ #define ATI_REG_CMD_POWERDOWN (1U<<0) #define ATI_REG_CMD_MODEM_RECEIVE_EN (1U<<1) /* modem only */ #define ATI_REG_CMD_MODEM_SEND1_EN (1U<<2) /* modem only */ #define ATI_REG_CMD_MODEM_SEND2_EN (1U<<3) /* modem only */ #define ATI_REG_CMD_MODEM_SEND3_EN (1U<<4) /* modem only */ #define ATI_REG_CMD_MODEM_STATUS_MEM (1U<<5) /* modem only */ #define ATI_REG_CMD_MODEM_IN_DMA_EN (1U<<8) /* modem only */ #define ATI_REG_CMD_MODEM_OUT_DMA1_EN (1U<<9) /* modem only */ #define ATI_REG_CMD_MODEM_OUT_DMA2_EN (1U<<10) /* modem only */ #define ATI_REG_CMD_MODEM_OUT_DMA3_EN (1U<<11) /* modem only */ #define ATI_REG_CMD_AUDIO_PRESENT (1U<<20) #define ATI_REG_CMD_MODEM_GPIO_THRU_DMA (1U<<22) /* modem only */ #define ATI_REG_CMD_LOOPBACK_EN (1U<<23) #define ATI_REG_CMD_PACKED_DIS (1U<<24) #define ATI_REG_CMD_BURST_EN (1U<<25) #define ATI_REG_CMD_PANIC_EN (1U<<26) #define ATI_REG_CMD_MODEM_PRESENT (1U<<27) #define ATI_REG_CMD_ACLINK_ACTIVE (1U<<28) #define ATI_REG_CMD_AC_SOFT_RESET (1U<<29) #define ATI_REG_CMD_AC_SYNC (1U<<30) #define ATI_REG_CMD_AC_RESET (1U<<31) #define ATI_REG_PHYS_OUT_ADDR 0x0c #define ATI_REG_PHYS_OUT_CODEC_MASK (3U<<0) #define ATI_REG_PHYS_OUT_RW (1U<<2) #define ATI_REG_PHYS_OUT_ADDR_EN (1U<<8) #define ATI_REG_PHYS_OUT_ADDR_SHIFT 9 #define ATI_REG_PHYS_OUT_DATA_SHIFT 16 #define ATI_REG_PHYS_IN_ADDR 0x10 #define ATI_REG_PHYS_IN_READ_FLAG (1U<<8) #define ATI_REG_PHYS_IN_ADDR_SHIFT 9 #define ATI_REG_PHYS_IN_DATA_SHIFT 16 #define ATI_REG_SLOTREQ 0x14 #define ATI_REG_COUNTER 0x18 #define ATI_REG_COUNTER_SLOT (3U<<0) /* slot # */ #define ATI_REG_COUNTER_BITCLOCK (31U<<8) #define ATI_REG_IN_FIFO_THRESHOLD 0x1c #define ATI_REG_MODEM_IN_DMA_LINKPTR 0x20 #define ATI_REG_MODEM_IN_DMA_DT_START 0x24 /* RO */ #define ATI_REG_MODEM_IN_DMA_DT_NEXT 0x28 /* RO */ #define ATI_REG_MODEM_IN_DMA_DT_CUR 0x2c /* RO */ #define ATI_REG_MODEM_IN_DMA_DT_SIZE 0x30 #define ATI_REG_MODEM_OUT_FIFO 0x34 /* output threshold */ #define ATI_REG_MODEM_OUT1_DMA_THRESHOLD_MASK (0xf<<16) #define ATI_REG_MODEM_OUT1_DMA_THRESHOLD_SHIFT 16 #define ATI_REG_MODEM_OUT_DMA1_LINKPTR 0x38 #define ATI_REG_MODEM_OUT_DMA2_LINKPTR 0x3c #define ATI_REG_MODEM_OUT_DMA3_LINKPTR 0x40 #define ATI_REG_MODEM_OUT_DMA1_DT_START 0x44 #define ATI_REG_MODEM_OUT_DMA1_DT_NEXT 0x48 #define ATI_REG_MODEM_OUT_DMA1_DT_CUR 0x4c #define ATI_REG_MODEM_OUT_DMA2_DT_START 0x50 #define ATI_REG_MODEM_OUT_DMA2_DT_NEXT 0x54 #define ATI_REG_MODEM_OUT_DMA2_DT_CUR 0x58 #define ATI_REG_MODEM_OUT_DMA3_DT_START 0x5c #define ATI_REG_MODEM_OUT_DMA3_DT_NEXT 0x60 #define ATI_REG_MODEM_OUT_DMA3_DT_CUR 0x64 #define ATI_REG_MODEM_OUT_DMA12_DT_SIZE 0x68 #define ATI_REG_MODEM_OUT_DMA3_DT_SIZE 0x6c #define ATI_REG_MODEM_OUT_FIFO_USED 0x70 #define ATI_REG_MODEM_OUT_GPIO 0x74 #define ATI_REG_MODEM_OUT_GPIO_EN 1 #define ATI_REG_MODEM_OUT_GPIO_DATA_SHIFT 5 #define ATI_REG_MODEM_IN_GPIO 0x78 #define ATI_REG_MODEM_MIRROR 0x7c #define ATI_REG_AUDIO_MIRROR 0x80 #define ATI_REG_MODEM_FIFO_FLUSH 0x88 #define ATI_REG_MODEM_FIFO_OUT1_FLUSH (1U<<0) #define ATI_REG_MODEM_FIFO_OUT2_FLUSH (1U<<1) #define ATI_REG_MODEM_FIFO_OUT3_FLUSH (1U<<2) #define ATI_REG_MODEM_FIFO_IN_FLUSH (1U<<3) /* LINKPTR */ #define ATI_REG_LINKPTR_EN (1U<<0) #define ATI_MAX_DESCRIPTORS 256 /* max number of descriptor packets */ struct atiixp_modem; /* * DMA packate descriptor */ struct atiixp_dma_desc { __le32 addr; /* DMA buffer address */ u16 status; /* status bits */ u16 size; /* size of the packet in dwords */ __le32 next; /* address of the next packet descriptor */ }; /* * stream enum */ enum { ATI_DMA_PLAYBACK, ATI_DMA_CAPTURE, NUM_ATI_DMAS }; /* DMAs */ enum { ATI_PCM_OUT, ATI_PCM_IN, NUM_ATI_PCMS }; /* AC97 pcm slots */ enum { ATI_PCMDEV_ANALOG, NUM_ATI_PCMDEVS }; /* pcm devices */ #define NUM_ATI_CODECS 3 /* * constants and callbacks for each DMA type */ struct atiixp_dma_ops { int type; /* ATI_DMA_XXX */ unsigned int llp_offset; /* LINKPTR offset */ unsigned int dt_cur; /* DT_CUR offset */ /* called from open callback */ void (*enable_dma)(struct atiixp_modem *chip, int on); /* called from trigger (START/STOP) */ void (*enable_transfer)(struct atiixp_modem *chip, int on); /* called from trigger (STOP only) */ void (*flush_dma)(struct atiixp_modem *chip); }; /* * DMA stream */ struct atiixp_dma { const struct atiixp_dma_ops *ops; struct snd_dma_buffer desc_buf; struct snd_pcm_substream *substream; /* assigned PCM substream */ unsigned int buf_addr, buf_bytes; /* DMA buffer address, bytes */ unsigned int period_bytes, periods; int opened; int running; int pcm_open_flag; int ac97_pcm_type; /* index # of ac97_pcm to access, -1 = not used */ }; /* * ATI IXP chip */ struct atiixp_modem { struct snd_card *card; struct pci_dev *pci; struct resource *res; /* memory i/o */ unsigned long addr; void __iomem *remap_addr; int irq; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97[NUM_ATI_CODECS]; spinlock_t reg_lock; struct atiixp_dma dmas[NUM_ATI_DMAS]; struct ac97_pcm *pcms[NUM_ATI_PCMS]; struct snd_pcm *pcmdevs[NUM_ATI_PCMDEVS]; int max_channels; /* max. channels for PCM out */ unsigned int codec_not_ready_bits; /* for codec detection */ int spdif_over_aclink; /* passed from the module option */ struct mutex open_mutex; /* playback open mutex */ }; /* */ static const struct pci_device_id snd_atiixp_ids[] = { { PCI_VDEVICE(ATI, 0x434d), 0 }, /* SB200 */ { PCI_VDEVICE(ATI, 0x4378), 0 }, /* SB400 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_atiixp_ids); /* * lowlevel functions */ /* * update the bits of the given register. * return 1 if the bits changed. */ static int snd_atiixp_update_bits(struct atiixp_modem *chip, unsigned int reg, unsigned int mask, unsigned int value) { void __iomem *addr = chip->remap_addr + reg; unsigned int data, old_data; old_data = data = readl(addr); data &= ~mask; data |= value; if (old_data == data) return 0; writel(data, addr); return 1; } /* * macros for easy use */ #define atiixp_write(chip,reg,value) \ writel(value, chip->remap_addr + ATI_REG_##reg) #define atiixp_read(chip,reg) \ readl(chip->remap_addr + ATI_REG_##reg) #define atiixp_update(chip,reg,mask,val) \ snd_atiixp_update_bits(chip, ATI_REG_##reg, mask, val) /* * handling DMA packets * * we allocate a linear buffer for the DMA, and split it to each packet. * in a future version, a scatter-gather buffer should be implemented. */ #define ATI_DESC_LIST_SIZE \ PAGE_ALIGN(ATI_MAX_DESCRIPTORS * sizeof(struct atiixp_dma_desc)) /* * build packets ring for the given buffer size. * * IXP handles the buffer descriptors, which are connected as a linked * list. although we can change the list dynamically, in this version, * a static RING of buffer descriptors is used. * * the ring is built in this function, and is set up to the hardware. */ static int atiixp_build_dma_packets(struct atiixp_modem *chip, struct atiixp_dma *dma, struct snd_pcm_substream *substream, unsigned int periods, unsigned int period_bytes) { unsigned int i; u32 addr, desc_addr; unsigned long flags; if (periods > ATI_MAX_DESCRIPTORS) return -ENOMEM; if (dma->desc_buf.area == NULL) { if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, ATI_DESC_LIST_SIZE, &dma->desc_buf) < 0) return -ENOMEM; dma->period_bytes = dma->periods = 0; /* clear */ } if (dma->periods == periods && dma->period_bytes == period_bytes) return 0; /* reset DMA before changing the descriptor table */ spin_lock_irqsave(&chip->reg_lock, flags); writel(0, chip->remap_addr + dma->ops->llp_offset); dma->ops->enable_dma(chip, 0); dma->ops->enable_dma(chip, 1); spin_unlock_irqrestore(&chip->reg_lock, flags); /* fill the entries */ addr = (u32)substream->runtime->dma_addr; desc_addr = (u32)dma->desc_buf.addr; for (i = 0; i < periods; i++) { struct atiixp_dma_desc *desc; desc = &((struct atiixp_dma_desc *)dma->desc_buf.area)[i]; desc->addr = cpu_to_le32(addr); desc->status = 0; desc->size = period_bytes >> 2; /* in dwords */ desc_addr += sizeof(struct atiixp_dma_desc); if (i == periods - 1) desc->next = cpu_to_le32((u32)dma->desc_buf.addr); else desc->next = cpu_to_le32(desc_addr); addr += period_bytes; } writel((u32)dma->desc_buf.addr | ATI_REG_LINKPTR_EN, chip->remap_addr + dma->ops->llp_offset); dma->period_bytes = period_bytes; dma->periods = periods; return 0; } /* * remove the ring buffer and release it if assigned */ static void atiixp_clear_dma_packets(struct atiixp_modem *chip, struct atiixp_dma *dma, struct snd_pcm_substream *substream) { if (dma->desc_buf.area) { writel(0, chip->remap_addr + dma->ops->llp_offset); snd_dma_free_pages(&dma->desc_buf); dma->desc_buf.area = NULL; } } /* * AC97 interface */ static int snd_atiixp_acquire_codec(struct atiixp_modem *chip) { int timeout = 1000; while (atiixp_read(chip, PHYS_OUT_ADDR) & ATI_REG_PHYS_OUT_ADDR_EN) { if (! timeout--) { dev_warn(chip->card->dev, "codec acquire timeout\n"); return -EBUSY; } udelay(1); } return 0; } static unsigned short snd_atiixp_codec_read(struct atiixp_modem *chip, unsigned short codec, unsigned short reg) { unsigned int data; int timeout; if (snd_atiixp_acquire_codec(chip) < 0) return 0xffff; data = (reg << ATI_REG_PHYS_OUT_ADDR_SHIFT) | ATI_REG_PHYS_OUT_ADDR_EN | ATI_REG_PHYS_OUT_RW | codec; atiixp_write(chip, PHYS_OUT_ADDR, data); if (snd_atiixp_acquire_codec(chip) < 0) return 0xffff; timeout = 1000; do { data = atiixp_read(chip, PHYS_IN_ADDR); if (data & ATI_REG_PHYS_IN_READ_FLAG) return data >> ATI_REG_PHYS_IN_DATA_SHIFT; udelay(1); } while (--timeout); /* time out may happen during reset */ if (reg < 0x7c) dev_warn(chip->card->dev, "codec read timeout (reg %x)\n", reg); return 0xffff; } static void snd_atiixp_codec_write(struct atiixp_modem *chip, unsigned short codec, unsigned short reg, unsigned short val) { unsigned int data; if (snd_atiixp_acquire_codec(chip) < 0) return; data = ((unsigned int)val << ATI_REG_PHYS_OUT_DATA_SHIFT) | ((unsigned int)reg << ATI_REG_PHYS_OUT_ADDR_SHIFT) | ATI_REG_PHYS_OUT_ADDR_EN | codec; atiixp_write(chip, PHYS_OUT_ADDR, data); } static unsigned short snd_atiixp_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct atiixp_modem *chip = ac97->private_data; return snd_atiixp_codec_read(chip, ac97->num, reg); } static void snd_atiixp_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct atiixp_modem *chip = ac97->private_data; if (reg == AC97_GPIO_STATUS) { atiixp_write(chip, MODEM_OUT_GPIO, (val << ATI_REG_MODEM_OUT_GPIO_DATA_SHIFT) | ATI_REG_MODEM_OUT_GPIO_EN); return; } snd_atiixp_codec_write(chip, ac97->num, reg, val); } /* * reset AC link */ static int snd_atiixp_aclink_reset(struct atiixp_modem *chip) { int timeout; /* reset powerdoewn */ if (atiixp_update(chip, CMD, ATI_REG_CMD_POWERDOWN, 0)) udelay(10); /* perform a software reset */ atiixp_update(chip, CMD, ATI_REG_CMD_AC_SOFT_RESET, ATI_REG_CMD_AC_SOFT_RESET); atiixp_read(chip, CMD); udelay(10); atiixp_update(chip, CMD, ATI_REG_CMD_AC_SOFT_RESET, 0); timeout = 10; while (! (atiixp_read(chip, CMD) & ATI_REG_CMD_ACLINK_ACTIVE)) { /* do a hard reset */ atiixp_update(chip, CMD, ATI_REG_CMD_AC_SYNC|ATI_REG_CMD_AC_RESET, ATI_REG_CMD_AC_SYNC); atiixp_read(chip, CMD); msleep(1); atiixp_update(chip, CMD, ATI_REG_CMD_AC_RESET, ATI_REG_CMD_AC_RESET); if (!--timeout) { dev_err(chip->card->dev, "codec reset timeout\n"); break; } } /* deassert RESET and assert SYNC to make sure */ atiixp_update(chip, CMD, ATI_REG_CMD_AC_SYNC|ATI_REG_CMD_AC_RESET, ATI_REG_CMD_AC_SYNC|ATI_REG_CMD_AC_RESET); return 0; } #ifdef CONFIG_PM_SLEEP static int snd_atiixp_aclink_down(struct atiixp_modem *chip) { // if (atiixp_read(chip, MODEM_MIRROR) & 0x1) /* modem running, too? */ // return -EBUSY; atiixp_update(chip, CMD, ATI_REG_CMD_POWERDOWN | ATI_REG_CMD_AC_RESET, ATI_REG_CMD_POWERDOWN); return 0; } #endif /* * auto-detection of codecs * * the IXP chip can generate interrupts for the non-existing codecs. * NEW_FRAME interrupt is used to make sure that the interrupt is generated * even if all three codecs are connected. */ #define ALL_CODEC_NOT_READY \ (ATI_REG_ISR_CODEC0_NOT_READY |\ ATI_REG_ISR_CODEC1_NOT_READY |\ ATI_REG_ISR_CODEC2_NOT_READY) #define CODEC_CHECK_BITS (ALL_CODEC_NOT_READY|ATI_REG_ISR_NEW_FRAME) static int snd_atiixp_codec_detect(struct atiixp_modem *chip) { int timeout; chip->codec_not_ready_bits = 0; atiixp_write(chip, IER, CODEC_CHECK_BITS); /* wait for the interrupts */ timeout = 50; while (timeout-- > 0) { msleep(1); if (chip->codec_not_ready_bits) break; } atiixp_write(chip, IER, 0); /* disable irqs */ if ((chip->codec_not_ready_bits & ALL_CODEC_NOT_READY) == ALL_CODEC_NOT_READY) { dev_err(chip->card->dev, "no codec detected!\n"); return -ENXIO; } return 0; } /* * enable DMA and irqs */ static int snd_atiixp_chip_start(struct atiixp_modem *chip) { unsigned int reg; /* set up spdif, enable burst mode */ reg = atiixp_read(chip, CMD); reg |= ATI_REG_CMD_BURST_EN; if(!(reg & ATI_REG_CMD_MODEM_PRESENT)) reg |= ATI_REG_CMD_MODEM_PRESENT; atiixp_write(chip, CMD, reg); /* clear all interrupt source */ atiixp_write(chip, ISR, 0xffffffff); /* enable irqs */ atiixp_write(chip, IER, ATI_REG_IER_MODEM_STATUS_EN | ATI_REG_IER_MODEM_IN_XRUN_EN | ATI_REG_IER_MODEM_OUT1_XRUN_EN); return 0; } /* * disable DMA and IRQs */ static int snd_atiixp_chip_stop(struct atiixp_modem *chip) { /* clear interrupt source */ atiixp_write(chip, ISR, atiixp_read(chip, ISR)); /* disable irqs */ atiixp_write(chip, IER, 0); return 0; } /* * PCM section */ /* * pointer callback simplly reads XXX_DMA_DT_CUR register as the current * position. when SG-buffer is implemented, the offset must be calculated * correctly... */ static snd_pcm_uframes_t snd_atiixp_pcm_pointer(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct atiixp_dma *dma = runtime->private_data; unsigned int curptr; int timeout = 1000; while (timeout--) { curptr = readl(chip->remap_addr + dma->ops->dt_cur); if (curptr < dma->buf_addr) continue; curptr -= dma->buf_addr; if (curptr >= dma->buf_bytes) continue; return bytes_to_frames(runtime, curptr); } dev_dbg(chip->card->dev, "invalid DMA pointer read 0x%x (buf=%x)\n", readl(chip->remap_addr + dma->ops->dt_cur), dma->buf_addr); return 0; } /* * XRUN detected, and stop the PCM substream */ static void snd_atiixp_xrun_dma(struct atiixp_modem *chip, struct atiixp_dma *dma) { if (! dma->substream || ! dma->running) return; dev_dbg(chip->card->dev, "XRUN detected (DMA %d)\n", dma->ops->type); snd_pcm_stop_xrun(dma->substream); } /* * the period ack. update the substream. */ static void snd_atiixp_update_dma(struct atiixp_modem *chip, struct atiixp_dma *dma) { if (! dma->substream || ! dma->running) return; snd_pcm_period_elapsed(dma->substream); } /* set BUS_BUSY interrupt bit if any DMA is running */ /* call with spinlock held */ static void snd_atiixp_check_bus_busy(struct atiixp_modem *chip) { unsigned int bus_busy; if (atiixp_read(chip, CMD) & (ATI_REG_CMD_MODEM_SEND1_EN | ATI_REG_CMD_MODEM_RECEIVE_EN)) bus_busy = ATI_REG_IER_MODEM_SET_BUS_BUSY; else bus_busy = 0; atiixp_update(chip, IER, ATI_REG_IER_MODEM_SET_BUS_BUSY, bus_busy); } /* common trigger callback * calling the lowlevel callbacks in it */ static int snd_atiixp_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); struct atiixp_dma *dma = substream->runtime->private_data; int err = 0; if (snd_BUG_ON(!dma->ops->enable_transfer || !dma->ops->flush_dma)) return -EINVAL; spin_lock(&chip->reg_lock); switch(cmd) { case SNDRV_PCM_TRIGGER_START: dma->ops->enable_transfer(chip, 1); dma->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: dma->ops->enable_transfer(chip, 0); dma->running = 0; break; default: err = -EINVAL; break; } if (! err) { snd_atiixp_check_bus_busy(chip); if (cmd == SNDRV_PCM_TRIGGER_STOP) { dma->ops->flush_dma(chip); snd_atiixp_check_bus_busy(chip); } } spin_unlock(&chip->reg_lock); return err; } /* * lowlevel callbacks for each DMA type * * every callback is supposed to be called in chip->reg_lock spinlock */ /* flush FIFO of analog OUT DMA */ static void atiixp_out_flush_dma(struct atiixp_modem *chip) { atiixp_write(chip, MODEM_FIFO_FLUSH, ATI_REG_MODEM_FIFO_OUT1_FLUSH); } /* enable/disable analog OUT DMA */ static void atiixp_out_enable_dma(struct atiixp_modem *chip, int on) { unsigned int data; data = atiixp_read(chip, CMD); if (on) { if (data & ATI_REG_CMD_MODEM_OUT_DMA1_EN) return; atiixp_out_flush_dma(chip); data |= ATI_REG_CMD_MODEM_OUT_DMA1_EN; } else data &= ~ATI_REG_CMD_MODEM_OUT_DMA1_EN; atiixp_write(chip, CMD, data); } /* start/stop transfer over OUT DMA */ static void atiixp_out_enable_transfer(struct atiixp_modem *chip, int on) { atiixp_update(chip, CMD, ATI_REG_CMD_MODEM_SEND1_EN, on ? ATI_REG_CMD_MODEM_SEND1_EN : 0); } /* enable/disable analog IN DMA */ static void atiixp_in_enable_dma(struct atiixp_modem *chip, int on) { atiixp_update(chip, CMD, ATI_REG_CMD_MODEM_IN_DMA_EN, on ? ATI_REG_CMD_MODEM_IN_DMA_EN : 0); } /* start/stop analog IN DMA */ static void atiixp_in_enable_transfer(struct atiixp_modem *chip, int on) { if (on) { unsigned int data = atiixp_read(chip, CMD); if (! (data & ATI_REG_CMD_MODEM_RECEIVE_EN)) { data |= ATI_REG_CMD_MODEM_RECEIVE_EN; atiixp_write(chip, CMD, data); } } else atiixp_update(chip, CMD, ATI_REG_CMD_MODEM_RECEIVE_EN, 0); } /* flush FIFO of analog IN DMA */ static void atiixp_in_flush_dma(struct atiixp_modem *chip) { atiixp_write(chip, MODEM_FIFO_FLUSH, ATI_REG_MODEM_FIFO_IN_FLUSH); } /* set up slots and formats for analog OUT */ static int snd_atiixp_playback_prepare(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); unsigned int data; spin_lock_irq(&chip->reg_lock); /* set output threshold */ data = atiixp_read(chip, MODEM_OUT_FIFO); data &= ~ATI_REG_MODEM_OUT1_DMA_THRESHOLD_MASK; data |= 0x04 << ATI_REG_MODEM_OUT1_DMA_THRESHOLD_SHIFT; atiixp_write(chip, MODEM_OUT_FIFO, data); spin_unlock_irq(&chip->reg_lock); return 0; } /* set up slots and formats for analog IN */ static int snd_atiixp_capture_prepare(struct snd_pcm_substream *substream) { return 0; } /* * hw_params - allocate the buffer and set up buffer descriptors */ static int snd_atiixp_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); struct atiixp_dma *dma = substream->runtime->private_data; int err; int i; dma->buf_addr = substream->runtime->dma_addr; dma->buf_bytes = params_buffer_bytes(hw_params); err = atiixp_build_dma_packets(chip, dma, substream, params_periods(hw_params), params_period_bytes(hw_params)); if (err < 0) return err; /* set up modem rate */ for (i = 0; i < NUM_ATI_CODECS; i++) { if (! chip->ac97[i]) continue; snd_ac97_write(chip->ac97[i], AC97_LINE1_RATE, params_rate(hw_params)); snd_ac97_write(chip->ac97[i], AC97_LINE1_LEVEL, 0); } return err; } static int snd_atiixp_pcm_hw_free(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); struct atiixp_dma *dma = substream->runtime->private_data; atiixp_clear_dma_packets(chip, dma, substream); return 0; } /* * pcm hardware definition, identical for all DMA types */ static const struct snd_pcm_hardware snd_atiixp_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_KNOT), .rate_min = 8000, .rate_max = 16000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 256 * 1024, .period_bytes_min = 32, .period_bytes_max = 128 * 1024, .periods_min = 2, .periods_max = ATI_MAX_DESCRIPTORS, }; static int snd_atiixp_pcm_open(struct snd_pcm_substream *substream, struct atiixp_dma *dma, int pcm_type) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; static const unsigned int rates[] = { 8000, 9600, 12000, 16000 }; static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; if (snd_BUG_ON(!dma->ops || !dma->ops->enable_dma)) return -EINVAL; if (dma->opened) return -EBUSY; dma->substream = substream; runtime->hw = snd_atiixp_pcm_hw; dma->ac97_pcm_type = pcm_type; err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (err < 0) return err; err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; runtime->private_data = dma; /* enable DMA bits */ spin_lock_irq(&chip->reg_lock); dma->ops->enable_dma(chip, 1); spin_unlock_irq(&chip->reg_lock); dma->opened = 1; return 0; } static int snd_atiixp_pcm_close(struct snd_pcm_substream *substream, struct atiixp_dma *dma) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); /* disable DMA bits */ if (snd_BUG_ON(!dma->ops || !dma->ops->enable_dma)) return -EINVAL; spin_lock_irq(&chip->reg_lock); dma->ops->enable_dma(chip, 0); spin_unlock_irq(&chip->reg_lock); dma->substream = NULL; dma->opened = 0; return 0; } /* */ static int snd_atiixp_playback_open(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); int err; mutex_lock(&chip->open_mutex); err = snd_atiixp_pcm_open(substream, &chip->dmas[ATI_DMA_PLAYBACK], 0); mutex_unlock(&chip->open_mutex); if (err < 0) return err; return 0; } static int snd_atiixp_playback_close(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); int err; mutex_lock(&chip->open_mutex); err = snd_atiixp_pcm_close(substream, &chip->dmas[ATI_DMA_PLAYBACK]); mutex_unlock(&chip->open_mutex); return err; } static int snd_atiixp_capture_open(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); return snd_atiixp_pcm_open(substream, &chip->dmas[ATI_DMA_CAPTURE], 1); } static int snd_atiixp_capture_close(struct snd_pcm_substream *substream) { struct atiixp_modem *chip = snd_pcm_substream_chip(substream); return snd_atiixp_pcm_close(substream, &chip->dmas[ATI_DMA_CAPTURE]); } /* AC97 playback */ static const struct snd_pcm_ops snd_atiixp_playback_ops = { .open = snd_atiixp_playback_open, .close = snd_atiixp_playback_close, .hw_params = snd_atiixp_pcm_hw_params, .hw_free = snd_atiixp_pcm_hw_free, .prepare = snd_atiixp_playback_prepare, .trigger = snd_atiixp_pcm_trigger, .pointer = snd_atiixp_pcm_pointer, }; /* AC97 capture */ static const struct snd_pcm_ops snd_atiixp_capture_ops = { .open = snd_atiixp_capture_open, .close = snd_atiixp_capture_close, .hw_params = snd_atiixp_pcm_hw_params, .hw_free = snd_atiixp_pcm_hw_free, .prepare = snd_atiixp_capture_prepare, .trigger = snd_atiixp_pcm_trigger, .pointer = snd_atiixp_pcm_pointer, }; static const struct atiixp_dma_ops snd_atiixp_playback_dma_ops = { .type = ATI_DMA_PLAYBACK, .llp_offset = ATI_REG_MODEM_OUT_DMA1_LINKPTR, .dt_cur = ATI_REG_MODEM_OUT_DMA1_DT_CUR, .enable_dma = atiixp_out_enable_dma, .enable_transfer = atiixp_out_enable_transfer, .flush_dma = atiixp_out_flush_dma, }; static const struct atiixp_dma_ops snd_atiixp_capture_dma_ops = { .type = ATI_DMA_CAPTURE, .llp_offset = ATI_REG_MODEM_IN_DMA_LINKPTR, .dt_cur = ATI_REG_MODEM_IN_DMA_DT_CUR, .enable_dma = atiixp_in_enable_dma, .enable_transfer = atiixp_in_enable_transfer, .flush_dma = atiixp_in_flush_dma, }; static int snd_atiixp_pcm_new(struct atiixp_modem *chip) { struct snd_pcm *pcm; int err; /* initialize constants */ chip->dmas[ATI_DMA_PLAYBACK].ops = &snd_atiixp_playback_dma_ops; chip->dmas[ATI_DMA_CAPTURE].ops = &snd_atiixp_capture_dma_ops; /* PCM #0: analog I/O */ err = snd_pcm_new(chip->card, "ATI IXP MC97", ATI_PCMDEV_ANALOG, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_atiixp_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_atiixp_capture_ops); pcm->dev_class = SNDRV_PCM_CLASS_MODEM; pcm->private_data = chip; strcpy(pcm->name, "ATI IXP MC97"); chip->pcmdevs[ATI_PCMDEV_ANALOG] = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 64*1024, 128*1024); return 0; } /* * interrupt handler */ static irqreturn_t snd_atiixp_interrupt(int irq, void *dev_id) { struct atiixp_modem *chip = dev_id; unsigned int status; status = atiixp_read(chip, ISR); if (! status) return IRQ_NONE; /* process audio DMA */ if (status & ATI_REG_ISR_MODEM_OUT1_XRUN) snd_atiixp_xrun_dma(chip, &chip->dmas[ATI_DMA_PLAYBACK]); else if (status & ATI_REG_ISR_MODEM_OUT1_STATUS) snd_atiixp_update_dma(chip, &chip->dmas[ATI_DMA_PLAYBACK]); if (status & ATI_REG_ISR_MODEM_IN_XRUN) snd_atiixp_xrun_dma(chip, &chip->dmas[ATI_DMA_CAPTURE]); else if (status & ATI_REG_ISR_MODEM_IN_STATUS) snd_atiixp_update_dma(chip, &chip->dmas[ATI_DMA_CAPTURE]); /* for codec detection */ if (status & CODEC_CHECK_BITS) { unsigned int detected; detected = status & CODEC_CHECK_BITS; spin_lock(&chip->reg_lock); chip->codec_not_ready_bits |= detected; atiixp_update(chip, IER, detected, 0); /* disable the detected irqs */ spin_unlock(&chip->reg_lock); } /* ack */ atiixp_write(chip, ISR, status); return IRQ_HANDLED; } /* * ac97 mixer section */ static int snd_atiixp_mixer_new(struct atiixp_modem *chip, int clock) { struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int i, err; int codec_count; static const struct snd_ac97_bus_ops ops = { .write = snd_atiixp_ac97_write, .read = snd_atiixp_ac97_read, }; static const unsigned int codec_skip[NUM_ATI_CODECS] = { ATI_REG_ISR_CODEC0_NOT_READY, ATI_REG_ISR_CODEC1_NOT_READY, ATI_REG_ISR_CODEC2_NOT_READY, }; if (snd_atiixp_codec_detect(chip) < 0) return -ENXIO; err = snd_ac97_bus(chip->card, 0, &ops, chip, &pbus); if (err < 0) return err; pbus->clock = clock; chip->ac97_bus = pbus; codec_count = 0; for (i = 0; i < NUM_ATI_CODECS; i++) { if (chip->codec_not_ready_bits & codec_skip[i]) continue; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.pci = chip->pci; ac97.num = i; ac97.scaps = AC97_SCAP_SKIP_AUDIO | AC97_SCAP_POWER_SAVE; err = snd_ac97_mixer(pbus, &ac97, &chip->ac97[i]); if (err < 0) { chip->ac97[i] = NULL; /* to be sure */ dev_dbg(chip->card->dev, "codec %d not available for modem\n", i); continue; } codec_count++; } if (! codec_count) { dev_err(chip->card->dev, "no codec available\n"); return -ENODEV; } /* snd_ac97_tune_hardware(chip->ac97, ac97_quirks); */ return 0; } #ifdef CONFIG_PM_SLEEP /* * power management */ static int snd_atiixp_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct atiixp_modem *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < NUM_ATI_CODECS; i++) snd_ac97_suspend(chip->ac97[i]); snd_atiixp_aclink_down(chip); snd_atiixp_chip_stop(chip); return 0; } static int snd_atiixp_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct atiixp_modem *chip = card->private_data; int i; snd_atiixp_aclink_reset(chip); snd_atiixp_chip_start(chip); for (i = 0; i < NUM_ATI_CODECS; i++) snd_ac97_resume(chip->ac97[i]); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_atiixp_pm, snd_atiixp_suspend, snd_atiixp_resume); #define SND_ATIIXP_PM_OPS &snd_atiixp_pm #else #define SND_ATIIXP_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ /* * proc interface for register dump */ static void snd_atiixp_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct atiixp_modem *chip = entry->private_data; int i; for (i = 0; i < 256; i += 4) snd_iprintf(buffer, "%02x: %08x\n", i, readl(chip->remap_addr + i)); } static void snd_atiixp_proc_init(struct atiixp_modem *chip) { snd_card_ro_proc_new(chip->card, "atiixp-modem", chip, snd_atiixp_proc_read); } /* * destructor */ static void snd_atiixp_free(struct snd_card *card) { snd_atiixp_chip_stop(card->private_data); } /* * constructor for chip instance */ static int snd_atiixp_init(struct snd_card *card, struct pci_dev *pci) { struct atiixp_modem *chip = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&chip->reg_lock); mutex_init(&chip->open_mutex); chip->card = card; chip->pci = pci; chip->irq = -1; err = pcim_iomap_regions(pci, 1 << 0, "ATI IXP MC97"); if (err < 0) return err; chip->addr = pci_resource_start(pci, 0); chip->remap_addr = pcim_iomap_table(pci)[0]; if (devm_request_irq(&pci->dev, pci->irq, snd_atiixp_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; card->private_free = snd_atiixp_free; pci_set_master(pci); return 0; } static int __snd_atiixp_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; struct atiixp_modem *chip; int err; err = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; strcpy(card->driver, "ATIIXP-MODEM"); strcpy(card->shortname, "ATI IXP Modem"); err = snd_atiixp_init(card, pci); if (err < 0) return err; err = snd_atiixp_aclink_reset(chip); if (err < 0) return err; err = snd_atiixp_mixer_new(chip, ac97_clock); if (err < 0) return err; err = snd_atiixp_pcm_new(chip); if (err < 0) return err; snd_atiixp_proc_init(chip); snd_atiixp_chip_start(chip); sprintf(card->longname, "%s rev %x at 0x%lx, irq %i", card->shortname, pci->revision, chip->addr, chip->irq); err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); return 0; } static int snd_atiixp_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_atiixp_probe(pci, pci_id)); } static struct pci_driver atiixp_modem_driver = { .name = KBUILD_MODNAME, .id_table = snd_atiixp_ids, .probe = snd_atiixp_probe, .driver = { .pm = SND_ATIIXP_PM_OPS, }, }; module_pci_driver(atiixp_modem_driver);
linux-master
sound/pci/atiixp_modem.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * als300.c - driver for Avance Logic ALS300/ALS300+ soundcards. * Copyright (C) 2005 by Ash Willis <[email protected]> * * TODO * 4 channel playback for ALS300+ * gameport * mpu401 * opl3 * * NOTES * The BLOCK_COUNTER registers for the ALS300(+) return a figure related to * the position in the current period, NOT the whole buffer. It is important * to know which period we are in so we can calculate the correct pointer. * This is why we always use 2 periods. We can then use a flip-flop variable * to keep track of what period we are in. */ #include <linux/delay.h> #include <linux/init.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/io.h> #include <sound/core.h> #include <sound/control.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/ac97_codec.h> #include <sound/opl3.h> /* snd_als300_set_irq_flag */ #define IRQ_DISABLE 0 #define IRQ_ENABLE 1 /* I/O port layout */ #define AC97_ACCESS 0x00 #define AC97_READ 0x04 #define AC97_STATUS 0x06 #define AC97_DATA_AVAIL (1<<6) #define AC97_BUSY (1<<7) #define ALS300_IRQ_STATUS 0x07 /* ALS300 Only */ #define IRQ_PLAYBACK (1<<3) #define IRQ_CAPTURE (1<<2) #define GCR_DATA 0x08 #define GCR_INDEX 0x0C #define ALS300P_DRAM_IRQ_STATUS 0x0D /* ALS300+ Only */ #define MPU_IRQ_STATUS 0x0E /* ALS300 Rev. E+, ALS300+ */ #define ALS300P_IRQ_STATUS 0x0F /* ALS300+ Only */ /* General Control Registers */ #define PLAYBACK_START 0x80 #define PLAYBACK_END 0x81 #define PLAYBACK_CONTROL 0x82 #define TRANSFER_START (1<<16) #define FIFO_PAUSE (1<<17) #define RECORD_START 0x83 #define RECORD_END 0x84 #define RECORD_CONTROL 0x85 #define DRAM_WRITE_CONTROL 0x8B #define WRITE_TRANS_START (1<<16) #define DRAM_MODE_2 (1<<17) #define MISC_CONTROL 0x8C #define IRQ_SET_BIT (1<<15) #define VMUTE_NORMAL (1<<20) #define MMUTE_NORMAL (1<<21) #define MUS_VOC_VOL 0x8E #define PLAYBACK_BLOCK_COUNTER 0x9A #define RECORD_BLOCK_COUNTER 0x9B #define DEBUG_PLAY_REC 0 #if DEBUG_PLAY_REC #define snd_als300_dbgplay(format, args...) printk(KERN_ERR format, ##args) #else #define snd_als300_dbgplay(format, args...) #endif enum {DEVICE_ALS300, DEVICE_ALS300_PLUS}; MODULE_AUTHOR("Ash Willis <[email protected]>"); MODULE_DESCRIPTION("Avance Logic ALS300"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for ALS300 sound card."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for ALS300 sound card."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable ALS300 sound card."); struct snd_als300 { unsigned long port; spinlock_t reg_lock; struct snd_card *card; struct pci_dev *pci; struct snd_pcm *pcm; struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; struct snd_ac97 *ac97; struct snd_opl3 *opl3; struct resource *res_port; int irq; int chip_type; /* ALS300 or ALS300+ */ char revision; }; struct snd_als300_substream_data { int period_flipflop; int control_register; int block_counter_register; }; static const struct pci_device_id snd_als300_ids[] = { { 0x4005, 0x0300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DEVICE_ALS300 }, { 0x4005, 0x0308, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DEVICE_ALS300_PLUS }, { 0, } }; MODULE_DEVICE_TABLE(pci, snd_als300_ids); static inline u32 snd_als300_gcr_read(unsigned long port, unsigned short reg) { outb(reg, port+GCR_INDEX); return inl(port+GCR_DATA); } static inline void snd_als300_gcr_write(unsigned long port, unsigned short reg, u32 val) { outb(reg, port+GCR_INDEX); outl(val, port+GCR_DATA); } /* Enable/Disable Interrupts */ static void snd_als300_set_irq_flag(struct snd_als300 *chip, int cmd) { u32 tmp = snd_als300_gcr_read(chip->port, MISC_CONTROL); /* boolean XOR check, since old vs. new hardware have directly reversed bit setting for ENABLE and DISABLE. ALS300+ acts like newer versions of ALS300 */ if (((chip->revision > 5 || chip->chip_type == DEVICE_ALS300_PLUS) ^ (cmd == IRQ_ENABLE)) == 0) tmp |= IRQ_SET_BIT; else tmp &= ~IRQ_SET_BIT; snd_als300_gcr_write(chip->port, MISC_CONTROL, tmp); } static void snd_als300_free(struct snd_card *card) { struct snd_als300 *chip = card->private_data; snd_als300_set_irq_flag(chip, IRQ_DISABLE); } static irqreturn_t snd_als300_interrupt(int irq, void *dev_id) { u8 status; struct snd_als300 *chip = dev_id; struct snd_als300_substream_data *data; status = inb(chip->port+ALS300_IRQ_STATUS); if (!status) /* shared IRQ, for different device?? Exit ASAP! */ return IRQ_NONE; /* ACK everything ASAP */ outb(status, chip->port+ALS300_IRQ_STATUS); if (status & IRQ_PLAYBACK) { if (chip->pcm && chip->playback_substream) { data = chip->playback_substream->runtime->private_data; data->period_flipflop ^= 1; snd_pcm_period_elapsed(chip->playback_substream); snd_als300_dbgplay("IRQ_PLAYBACK\n"); } } if (status & IRQ_CAPTURE) { if (chip->pcm && chip->capture_substream) { data = chip->capture_substream->runtime->private_data; data->period_flipflop ^= 1; snd_pcm_period_elapsed(chip->capture_substream); snd_als300_dbgplay("IRQ_CAPTURE\n"); } } return IRQ_HANDLED; } static irqreturn_t snd_als300plus_interrupt(int irq, void *dev_id) { u8 general, mpu, dram; struct snd_als300 *chip = dev_id; struct snd_als300_substream_data *data; general = inb(chip->port+ALS300P_IRQ_STATUS); mpu = inb(chip->port+MPU_IRQ_STATUS); dram = inb(chip->port+ALS300P_DRAM_IRQ_STATUS); /* shared IRQ, for different device?? Exit ASAP! */ if ((general == 0) && ((mpu & 0x80) == 0) && ((dram & 0x01) == 0)) return IRQ_NONE; if (general & IRQ_PLAYBACK) { if (chip->pcm && chip->playback_substream) { outb(IRQ_PLAYBACK, chip->port+ALS300P_IRQ_STATUS); data = chip->playback_substream->runtime->private_data; data->period_flipflop ^= 1; snd_pcm_period_elapsed(chip->playback_substream); snd_als300_dbgplay("IRQ_PLAYBACK\n"); } } if (general & IRQ_CAPTURE) { if (chip->pcm && chip->capture_substream) { outb(IRQ_CAPTURE, chip->port+ALS300P_IRQ_STATUS); data = chip->capture_substream->runtime->private_data; data->period_flipflop ^= 1; snd_pcm_period_elapsed(chip->capture_substream); snd_als300_dbgplay("IRQ_CAPTURE\n"); } } /* FIXME: Ack other interrupt types. Not important right now as * those other devices aren't enabled. */ return IRQ_HANDLED; } static unsigned short snd_als300_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { int i; struct snd_als300 *chip = ac97->private_data; for (i = 0; i < 1000; i++) { if ((inb(chip->port+AC97_STATUS) & (AC97_BUSY)) == 0) break; udelay(10); } outl((reg << 24) | (1 << 31), chip->port+AC97_ACCESS); for (i = 0; i < 1000; i++) { if ((inb(chip->port+AC97_STATUS) & (AC97_DATA_AVAIL)) != 0) break; udelay(10); } return inw(chip->port+AC97_READ); } static void snd_als300_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { int i; struct snd_als300 *chip = ac97->private_data; for (i = 0; i < 1000; i++) { if ((inb(chip->port+AC97_STATUS) & (AC97_BUSY)) == 0) break; udelay(10); } outl((reg << 24) | val, chip->port+AC97_ACCESS); } static int snd_als300_ac97(struct snd_als300 *chip) { struct snd_ac97_bus *bus; struct snd_ac97_template ac97; int err; static const struct snd_ac97_bus_ops ops = { .write = snd_als300_ac97_write, .read = snd_als300_ac97_read, }; err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); if (err < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; return snd_ac97_mixer(bus, &ac97, &chip->ac97); } /* hardware definition * * In AC97 mode, we always use 48k/16bit/stereo. * Any request to change data type is ignored by * the card when it is running outside of legacy * mode. */ static const struct snd_pcm_hardware snd_als300_playback_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 64, .period_bytes_max = 32 * 1024, .periods_min = 2, .periods_max = 2, }; static const struct snd_pcm_hardware snd_als300_capture_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 64, .period_bytes_max = 32 * 1024, .periods_min = 2, .periods_max = 2, }; static int snd_als300_playback_open(struct snd_pcm_substream *substream) { struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_als300_substream_data *data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; chip->playback_substream = substream; runtime->hw = snd_als300_playback_hw; runtime->private_data = data; data->control_register = PLAYBACK_CONTROL; data->block_counter_register = PLAYBACK_BLOCK_COUNTER; return 0; } static int snd_als300_playback_close(struct snd_pcm_substream *substream) { struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_als300_substream_data *data; data = substream->runtime->private_data; kfree(data); chip->playback_substream = NULL; return 0; } static int snd_als300_capture_open(struct snd_pcm_substream *substream) { struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_als300_substream_data *data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; chip->capture_substream = substream; runtime->hw = snd_als300_capture_hw; runtime->private_data = data; data->control_register = RECORD_CONTROL; data->block_counter_register = RECORD_BLOCK_COUNTER; return 0; } static int snd_als300_capture_close(struct snd_pcm_substream *substream) { struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_als300_substream_data *data; data = substream->runtime->private_data; kfree(data); chip->capture_substream = NULL; return 0; } static int snd_als300_playback_prepare(struct snd_pcm_substream *substream) { u32 tmp; struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned short period_bytes = snd_pcm_lib_period_bytes(substream); unsigned short buffer_bytes = snd_pcm_lib_buffer_bytes(substream); spin_lock_irq(&chip->reg_lock); tmp = snd_als300_gcr_read(chip->port, PLAYBACK_CONTROL); tmp &= ~TRANSFER_START; snd_als300_dbgplay("Period bytes: %d Buffer bytes %d\n", period_bytes, buffer_bytes); /* set block size */ tmp &= 0xffff0000; tmp |= period_bytes - 1; snd_als300_gcr_write(chip->port, PLAYBACK_CONTROL, tmp); /* set dma area */ snd_als300_gcr_write(chip->port, PLAYBACK_START, runtime->dma_addr); snd_als300_gcr_write(chip->port, PLAYBACK_END, runtime->dma_addr + buffer_bytes - 1); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_als300_capture_prepare(struct snd_pcm_substream *substream) { u32 tmp; struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned short period_bytes = snd_pcm_lib_period_bytes(substream); unsigned short buffer_bytes = snd_pcm_lib_buffer_bytes(substream); spin_lock_irq(&chip->reg_lock); tmp = snd_als300_gcr_read(chip->port, RECORD_CONTROL); tmp &= ~TRANSFER_START; snd_als300_dbgplay("Period bytes: %d Buffer bytes %d\n", period_bytes, buffer_bytes); /* set block size */ tmp &= 0xffff0000; tmp |= period_bytes - 1; /* set dma area */ snd_als300_gcr_write(chip->port, RECORD_CONTROL, tmp); snd_als300_gcr_write(chip->port, RECORD_START, runtime->dma_addr); snd_als300_gcr_write(chip->port, RECORD_END, runtime->dma_addr + buffer_bytes - 1); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_als300_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_als300 *chip = snd_pcm_substream_chip(substream); u32 tmp; struct snd_als300_substream_data *data; unsigned short reg; int ret = 0; data = substream->runtime->private_data; reg = data->control_register; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: tmp = snd_als300_gcr_read(chip->port, reg); data->period_flipflop = 1; snd_als300_gcr_write(chip->port, reg, tmp | TRANSFER_START); snd_als300_dbgplay("TRIGGER START\n"); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: tmp = snd_als300_gcr_read(chip->port, reg); snd_als300_gcr_write(chip->port, reg, tmp & ~TRANSFER_START); snd_als300_dbgplay("TRIGGER STOP\n"); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: tmp = snd_als300_gcr_read(chip->port, reg); snd_als300_gcr_write(chip->port, reg, tmp | FIFO_PAUSE); snd_als300_dbgplay("TRIGGER PAUSE\n"); break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: tmp = snd_als300_gcr_read(chip->port, reg); snd_als300_gcr_write(chip->port, reg, tmp & ~FIFO_PAUSE); snd_als300_dbgplay("TRIGGER RELEASE\n"); break; default: snd_als300_dbgplay("TRIGGER INVALID\n"); ret = -EINVAL; } spin_unlock(&chip->reg_lock); return ret; } static snd_pcm_uframes_t snd_als300_pointer(struct snd_pcm_substream *substream) { u16 current_ptr; struct snd_als300 *chip = snd_pcm_substream_chip(substream); struct snd_als300_substream_data *data; unsigned short period_bytes; data = substream->runtime->private_data; period_bytes = snd_pcm_lib_period_bytes(substream); spin_lock(&chip->reg_lock); current_ptr = (u16) snd_als300_gcr_read(chip->port, data->block_counter_register) + 4; spin_unlock(&chip->reg_lock); if (current_ptr > period_bytes) current_ptr = 0; else current_ptr = period_bytes - current_ptr; if (data->period_flipflop == 0) current_ptr += period_bytes; snd_als300_dbgplay("Pointer (bytes): %d\n", current_ptr); return bytes_to_frames(substream->runtime, current_ptr); } static const struct snd_pcm_ops snd_als300_playback_ops = { .open = snd_als300_playback_open, .close = snd_als300_playback_close, .prepare = snd_als300_playback_prepare, .trigger = snd_als300_trigger, .pointer = snd_als300_pointer, }; static const struct snd_pcm_ops snd_als300_capture_ops = { .open = snd_als300_capture_open, .close = snd_als300_capture_close, .prepare = snd_als300_capture_prepare, .trigger = snd_als300_trigger, .pointer = snd_als300_pointer, }; static int snd_als300_new_pcm(struct snd_als300 *chip) { struct snd_pcm *pcm; int err; err = snd_pcm_new(chip->card, "ALS300", 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, "ALS300"); chip->pcm = pcm; /* set operators */ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_als300_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_als300_capture_ops); /* pre-allocation of buffers */ snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 64*1024, 64*1024); return 0; } static void snd_als300_init(struct snd_als300 *chip) { unsigned long flags; u32 tmp; spin_lock_irqsave(&chip->reg_lock, flags); chip->revision = (snd_als300_gcr_read(chip->port, MISC_CONTROL) >> 16) & 0x0000000F; /* Setup DRAM */ tmp = snd_als300_gcr_read(chip->port, DRAM_WRITE_CONTROL); snd_als300_gcr_write(chip->port, DRAM_WRITE_CONTROL, (tmp | DRAM_MODE_2) & ~WRITE_TRANS_START); /* Enable IRQ output */ snd_als300_set_irq_flag(chip, IRQ_ENABLE); /* Unmute hardware devices so their outputs get routed to * the onboard mixer */ tmp = snd_als300_gcr_read(chip->port, MISC_CONTROL); snd_als300_gcr_write(chip->port, MISC_CONTROL, tmp | VMUTE_NORMAL | MMUTE_NORMAL); /* Reset volumes */ snd_als300_gcr_write(chip->port, MUS_VOC_VOL, 0); /* Make sure playback transfer is stopped */ tmp = snd_als300_gcr_read(chip->port, PLAYBACK_CONTROL); snd_als300_gcr_write(chip->port, PLAYBACK_CONTROL, tmp & ~TRANSFER_START); spin_unlock_irqrestore(&chip->reg_lock, flags); } static int snd_als300_create(struct snd_card *card, struct pci_dev *pci, int chip_type) { struct snd_als300 *chip = card->private_data; void *irq_handler; int err; err = pcim_enable_device(pci); if (err < 0) return err; if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(28))) { dev_err(card->dev, "error setting 28bit DMA mask\n"); return -ENXIO; } pci_set_master(pci); chip->card = card; chip->pci = pci; chip->irq = -1; chip->chip_type = chip_type; spin_lock_init(&chip->reg_lock); err = pci_request_regions(pci, "ALS300"); if (err < 0) return err; chip->port = pci_resource_start(pci, 0); if (chip->chip_type == DEVICE_ALS300_PLUS) irq_handler = snd_als300plus_interrupt; else irq_handler = snd_als300_interrupt; if (devm_request_irq(&pci->dev, pci->irq, irq_handler, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; card->private_free = snd_als300_free; snd_als300_init(chip); err = snd_als300_ac97(chip); if (err < 0) { dev_err(card->dev, "Could not create ac97\n"); return err; } err = snd_als300_new_pcm(chip); if (err < 0) { dev_err(card->dev, "Could not create PCM\n"); return err; } return 0; } #ifdef CONFIG_PM_SLEEP static int snd_als300_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct snd_als300 *chip = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_ac97_suspend(chip->ac97); return 0; } static int snd_als300_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct snd_als300 *chip = card->private_data; snd_als300_init(chip); snd_ac97_resume(chip->ac97); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_als300_pm, snd_als300_suspend, snd_als300_resume); #define SND_ALS300_PM_OPS &snd_als300_pm #else #define SND_ALS300_PM_OPS NULL #endif static int snd_als300_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct snd_als300 *chip; int err, chip_type; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; chip_type = pci_id->driver_data; err = snd_als300_create(card, pci, chip_type); if (err < 0) goto error; strcpy(card->driver, "ALS300"); if (chip->chip_type == DEVICE_ALS300_PLUS) /* don't know much about ALS300+ yet * print revision number for now */ sprintf(card->shortname, "ALS300+ (Rev. %d)", chip->revision); else sprintf(card->shortname, "ALS300 (Rev. %c)", 'A' + chip->revision - 1); sprintf(card->longname, "%s at 0x%lx irq %i", card->shortname, chip->port, chip->irq); err = snd_card_register(card); if (err < 0) goto error; pci_set_drvdata(pci, card); dev++; return 0; error: snd_card_free(card); return err; } static struct pci_driver als300_driver = { .name = KBUILD_MODNAME, .id_table = snd_als300_ids, .probe = snd_als300_probe, .driver = { .pm = SND_ALS300_PM_OPS, }, }; module_pci_driver(als300_driver);
linux-master
sound/pci/als300.c