python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include "inv_icm42600.h" #include "inv_icm42600_buffer.h" static const struct regmap_range_cfg inv_icm42600_regmap_ranges[] = { { .name = "user banks", .range_min = 0x0000, .range_max = 0x4FFF, .selector_reg = INV_ICM42600_REG_BANK_SEL, .selector_mask = INV_ICM42600_BANK_SEL_MASK, .selector_shift = 0, .window_start = 0, .window_len = 0x1000, }, }; const struct regmap_config inv_icm42600_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x4FFF, .ranges = inv_icm42600_regmap_ranges, .num_ranges = ARRAY_SIZE(inv_icm42600_regmap_ranges), }; EXPORT_SYMBOL_NS_GPL(inv_icm42600_regmap_config, IIO_ICM42600); struct inv_icm42600_hw { uint8_t whoami; const char *name; const struct inv_icm42600_conf *conf; }; /* chip initial default configuration */ static const struct inv_icm42600_conf inv_icm42600_default_conf = { .gyro = { .mode = INV_ICM42600_SENSOR_MODE_OFF, .fs = INV_ICM42600_GYRO_FS_2000DPS, .odr = INV_ICM42600_ODR_50HZ, .filter = INV_ICM42600_FILTER_BW_ODR_DIV_2, }, .accel = { .mode = INV_ICM42600_SENSOR_MODE_OFF, .fs = INV_ICM42600_ACCEL_FS_16G, .odr = INV_ICM42600_ODR_50HZ, .filter = INV_ICM42600_FILTER_BW_ODR_DIV_2, }, .temp_en = false, }; static const struct inv_icm42600_hw inv_icm42600_hw[INV_CHIP_NB] = { [INV_CHIP_ICM42600] = { .whoami = INV_ICM42600_WHOAMI_ICM42600, .name = "icm42600", .conf = &inv_icm42600_default_conf, }, [INV_CHIP_ICM42602] = { .whoami = INV_ICM42600_WHOAMI_ICM42602, .name = "icm42602", .conf = &inv_icm42600_default_conf, }, [INV_CHIP_ICM42605] = { .whoami = INV_ICM42600_WHOAMI_ICM42605, .name = "icm42605", .conf = &inv_icm42600_default_conf, }, [INV_CHIP_ICM42622] = { .whoami = INV_ICM42600_WHOAMI_ICM42622, .name = "icm42622", .conf = &inv_icm42600_default_conf, }, [INV_CHIP_ICM42631] = { .whoami = INV_ICM42600_WHOAMI_ICM42631, .name = "icm42631", .conf = &inv_icm42600_default_conf, }, }; const struct iio_mount_matrix * inv_icm42600_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { const struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); return &st->orientation; } uint32_t inv_icm42600_odr_to_period(enum inv_icm42600_odr odr) { static uint32_t odr_periods[INV_ICM42600_ODR_NB] = { /* reserved values */ 0, 0, 0, /* 8kHz */ 125000, /* 4kHz */ 250000, /* 2kHz */ 500000, /* 1kHz */ 1000000, /* 200Hz */ 5000000, /* 100Hz */ 10000000, /* 50Hz */ 20000000, /* 25Hz */ 40000000, /* 12.5Hz */ 80000000, /* 6.25Hz */ 160000000, /* 3.125Hz */ 320000000, /* 1.5625Hz */ 640000000, /* 500Hz */ 2000000, }; return odr_periods[odr]; } static int inv_icm42600_set_pwr_mgmt0(struct inv_icm42600_state *st, enum inv_icm42600_sensor_mode gyro, enum inv_icm42600_sensor_mode accel, bool temp, unsigned int *sleep_ms) { enum inv_icm42600_sensor_mode oldgyro = st->conf.gyro.mode; enum inv_icm42600_sensor_mode oldaccel = st->conf.accel.mode; bool oldtemp = st->conf.temp_en; unsigned int sleepval; unsigned int val; int ret; /* if nothing changed, exit */ if (gyro == oldgyro && accel == oldaccel && temp == oldtemp) return 0; val = INV_ICM42600_PWR_MGMT0_GYRO(gyro) | INV_ICM42600_PWR_MGMT0_ACCEL(accel); if (!temp) val |= INV_ICM42600_PWR_MGMT0_TEMP_DIS; ret = regmap_write(st->map, INV_ICM42600_REG_PWR_MGMT0, val); if (ret) return ret; st->conf.gyro.mode = gyro; st->conf.accel.mode = accel; st->conf.temp_en = temp; /* compute required wait time for sensors to stabilize */ sleepval = 0; /* temperature stabilization time */ if (temp && !oldtemp) { if (sleepval < INV_ICM42600_TEMP_STARTUP_TIME_MS) sleepval = INV_ICM42600_TEMP_STARTUP_TIME_MS; } /* accel startup time */ if (accel != oldaccel && oldaccel == INV_ICM42600_SENSOR_MODE_OFF) { /* block any register write for at least 200 µs */ usleep_range(200, 300); if (sleepval < INV_ICM42600_ACCEL_STARTUP_TIME_MS) sleepval = INV_ICM42600_ACCEL_STARTUP_TIME_MS; } if (gyro != oldgyro) { /* gyro startup time */ if (oldgyro == INV_ICM42600_SENSOR_MODE_OFF) { /* block any register write for at least 200 µs */ usleep_range(200, 300); if (sleepval < INV_ICM42600_GYRO_STARTUP_TIME_MS) sleepval = INV_ICM42600_GYRO_STARTUP_TIME_MS; /* gyro stop time */ } else if (gyro == INV_ICM42600_SENSOR_MODE_OFF) { if (sleepval < INV_ICM42600_GYRO_STOP_TIME_MS) sleepval = INV_ICM42600_GYRO_STOP_TIME_MS; } } /* deferred sleep value if sleep pointer is provided or direct sleep */ if (sleep_ms) *sleep_ms = sleepval; else if (sleepval) msleep(sleepval); return 0; } int inv_icm42600_set_accel_conf(struct inv_icm42600_state *st, struct inv_icm42600_sensor_conf *conf, unsigned int *sleep_ms) { struct inv_icm42600_sensor_conf *oldconf = &st->conf.accel; unsigned int val; int ret; /* Sanitize missing values with current values */ if (conf->mode < 0) conf->mode = oldconf->mode; if (conf->fs < 0) conf->fs = oldconf->fs; if (conf->odr < 0) conf->odr = oldconf->odr; if (conf->filter < 0) conf->filter = oldconf->filter; /* set ACCEL_CONFIG0 register (accel fullscale & odr) */ if (conf->fs != oldconf->fs || conf->odr != oldconf->odr) { val = INV_ICM42600_ACCEL_CONFIG0_FS(conf->fs) | INV_ICM42600_ACCEL_CONFIG0_ODR(conf->odr); ret = regmap_write(st->map, INV_ICM42600_REG_ACCEL_CONFIG0, val); if (ret) return ret; oldconf->fs = conf->fs; oldconf->odr = conf->odr; } /* set GYRO_ACCEL_CONFIG0 register (accel filter) */ if (conf->filter != oldconf->filter) { val = INV_ICM42600_GYRO_ACCEL_CONFIG0_ACCEL_FILT(conf->filter) | INV_ICM42600_GYRO_ACCEL_CONFIG0_GYRO_FILT(st->conf.gyro.filter); ret = regmap_write(st->map, INV_ICM42600_REG_GYRO_ACCEL_CONFIG0, val); if (ret) return ret; oldconf->filter = conf->filter; } /* set PWR_MGMT0 register (accel sensor mode) */ return inv_icm42600_set_pwr_mgmt0(st, st->conf.gyro.mode, conf->mode, st->conf.temp_en, sleep_ms); } int inv_icm42600_set_gyro_conf(struct inv_icm42600_state *st, struct inv_icm42600_sensor_conf *conf, unsigned int *sleep_ms) { struct inv_icm42600_sensor_conf *oldconf = &st->conf.gyro; unsigned int val; int ret; /* sanitize missing values with current values */ if (conf->mode < 0) conf->mode = oldconf->mode; if (conf->fs < 0) conf->fs = oldconf->fs; if (conf->odr < 0) conf->odr = oldconf->odr; if (conf->filter < 0) conf->filter = oldconf->filter; /* set GYRO_CONFIG0 register (gyro fullscale & odr) */ if (conf->fs != oldconf->fs || conf->odr != oldconf->odr) { val = INV_ICM42600_GYRO_CONFIG0_FS(conf->fs) | INV_ICM42600_GYRO_CONFIG0_ODR(conf->odr); ret = regmap_write(st->map, INV_ICM42600_REG_GYRO_CONFIG0, val); if (ret) return ret; oldconf->fs = conf->fs; oldconf->odr = conf->odr; } /* set GYRO_ACCEL_CONFIG0 register (gyro filter) */ if (conf->filter != oldconf->filter) { val = INV_ICM42600_GYRO_ACCEL_CONFIG0_ACCEL_FILT(st->conf.accel.filter) | INV_ICM42600_GYRO_ACCEL_CONFIG0_GYRO_FILT(conf->filter); ret = regmap_write(st->map, INV_ICM42600_REG_GYRO_ACCEL_CONFIG0, val); if (ret) return ret; oldconf->filter = conf->filter; } /* set PWR_MGMT0 register (gyro sensor mode) */ return inv_icm42600_set_pwr_mgmt0(st, conf->mode, st->conf.accel.mode, st->conf.temp_en, sleep_ms); return 0; } int inv_icm42600_set_temp_conf(struct inv_icm42600_state *st, bool enable, unsigned int *sleep_ms) { return inv_icm42600_set_pwr_mgmt0(st, st->conf.gyro.mode, st->conf.accel.mode, enable, sleep_ms); } int inv_icm42600_debugfs_reg(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; mutex_lock(&st->lock); if (readval) ret = regmap_read(st->map, reg, readval); else ret = regmap_write(st->map, reg, writeval); mutex_unlock(&st->lock); return ret; } static int inv_icm42600_set_conf(struct inv_icm42600_state *st, const struct inv_icm42600_conf *conf) { unsigned int val; int ret; /* set PWR_MGMT0 register (gyro & accel sensor mode, temp enabled) */ val = INV_ICM42600_PWR_MGMT0_GYRO(conf->gyro.mode) | INV_ICM42600_PWR_MGMT0_ACCEL(conf->accel.mode); if (!conf->temp_en) val |= INV_ICM42600_PWR_MGMT0_TEMP_DIS; ret = regmap_write(st->map, INV_ICM42600_REG_PWR_MGMT0, val); if (ret) return ret; /* set GYRO_CONFIG0 register (gyro fullscale & odr) */ val = INV_ICM42600_GYRO_CONFIG0_FS(conf->gyro.fs) | INV_ICM42600_GYRO_CONFIG0_ODR(conf->gyro.odr); ret = regmap_write(st->map, INV_ICM42600_REG_GYRO_CONFIG0, val); if (ret) return ret; /* set ACCEL_CONFIG0 register (accel fullscale & odr) */ val = INV_ICM42600_ACCEL_CONFIG0_FS(conf->accel.fs) | INV_ICM42600_ACCEL_CONFIG0_ODR(conf->accel.odr); ret = regmap_write(st->map, INV_ICM42600_REG_ACCEL_CONFIG0, val); if (ret) return ret; /* set GYRO_ACCEL_CONFIG0 register (gyro & accel filters) */ val = INV_ICM42600_GYRO_ACCEL_CONFIG0_ACCEL_FILT(conf->accel.filter) | INV_ICM42600_GYRO_ACCEL_CONFIG0_GYRO_FILT(conf->gyro.filter); ret = regmap_write(st->map, INV_ICM42600_REG_GYRO_ACCEL_CONFIG0, val); if (ret) return ret; /* update internal conf */ st->conf = *conf; return 0; } /** * inv_icm42600_setup() - check and setup chip * @st: driver internal state * @bus_setup: callback for setting up bus specific registers * * Returns 0 on success, a negative error code otherwise. */ static int inv_icm42600_setup(struct inv_icm42600_state *st, inv_icm42600_bus_setup bus_setup) { const struct inv_icm42600_hw *hw = &inv_icm42600_hw[st->chip]; const struct device *dev = regmap_get_device(st->map); unsigned int val; int ret; /* check chip self-identification value */ ret = regmap_read(st->map, INV_ICM42600_REG_WHOAMI, &val); if (ret) return ret; if (val != hw->whoami) { dev_err(dev, "invalid whoami %#02x expected %#02x (%s)\n", val, hw->whoami, hw->name); return -ENODEV; } st->name = hw->name; /* reset to make sure previous state are not there */ ret = regmap_write(st->map, INV_ICM42600_REG_DEVICE_CONFIG, INV_ICM42600_DEVICE_CONFIG_SOFT_RESET); if (ret) return ret; msleep(INV_ICM42600_RESET_TIME_MS); ret = regmap_read(st->map, INV_ICM42600_REG_INT_STATUS, &val); if (ret) return ret; if (!(val & INV_ICM42600_INT_STATUS_RESET_DONE)) { dev_err(dev, "reset error, reset done bit not set\n"); return -ENODEV; } /* set chip bus configuration */ ret = bus_setup(st); if (ret) return ret; /* sensor data in big-endian (default) */ ret = regmap_update_bits(st->map, INV_ICM42600_REG_INTF_CONFIG0, INV_ICM42600_INTF_CONFIG0_SENSOR_DATA_ENDIAN, INV_ICM42600_INTF_CONFIG0_SENSOR_DATA_ENDIAN); if (ret) return ret; return inv_icm42600_set_conf(st, hw->conf); } static irqreturn_t inv_icm42600_irq_timestamp(int irq, void *_data) { struct inv_icm42600_state *st = _data; st->timestamp.gyro = iio_get_time_ns(st->indio_gyro); st->timestamp.accel = iio_get_time_ns(st->indio_accel); return IRQ_WAKE_THREAD; } static irqreturn_t inv_icm42600_irq_handler(int irq, void *_data) { struct inv_icm42600_state *st = _data; struct device *dev = regmap_get_device(st->map); unsigned int status; int ret; mutex_lock(&st->lock); ret = regmap_read(st->map, INV_ICM42600_REG_INT_STATUS, &status); if (ret) goto out_unlock; /* FIFO full */ if (status & INV_ICM42600_INT_STATUS_FIFO_FULL) dev_warn(dev, "FIFO full data lost!\n"); /* FIFO threshold reached */ if (status & INV_ICM42600_INT_STATUS_FIFO_THS) { ret = inv_icm42600_buffer_fifo_read(st, 0); if (ret) { dev_err(dev, "FIFO read error %d\n", ret); goto out_unlock; } ret = inv_icm42600_buffer_fifo_parse(st); if (ret) dev_err(dev, "FIFO parsing error %d\n", ret); } out_unlock: mutex_unlock(&st->lock); return IRQ_HANDLED; } /** * inv_icm42600_irq_init() - initialize int pin and interrupt handler * @st: driver internal state * @irq: irq number * @irq_type: irq trigger type * @open_drain: true if irq is open drain, false for push-pull * * Returns 0 on success, a negative error code otherwise. */ static int inv_icm42600_irq_init(struct inv_icm42600_state *st, int irq, int irq_type, bool open_drain) { struct device *dev = regmap_get_device(st->map); unsigned int val; int ret; /* configure INT1 interrupt: default is active low on edge */ switch (irq_type) { case IRQF_TRIGGER_RISING: case IRQF_TRIGGER_HIGH: val = INV_ICM42600_INT_CONFIG_INT1_ACTIVE_HIGH; break; default: val = INV_ICM42600_INT_CONFIG_INT1_ACTIVE_LOW; break; } switch (irq_type) { case IRQF_TRIGGER_LOW: case IRQF_TRIGGER_HIGH: val |= INV_ICM42600_INT_CONFIG_INT1_LATCHED; break; default: break; } if (!open_drain) val |= INV_ICM42600_INT_CONFIG_INT1_PUSH_PULL; ret = regmap_write(st->map, INV_ICM42600_REG_INT_CONFIG, val); if (ret) return ret; /* Deassert async reset for proper INT pin operation (cf datasheet) */ ret = regmap_update_bits(st->map, INV_ICM42600_REG_INT_CONFIG1, INV_ICM42600_INT_CONFIG1_ASYNC_RESET, 0); if (ret) return ret; return devm_request_threaded_irq(dev, irq, inv_icm42600_irq_timestamp, inv_icm42600_irq_handler, irq_type, "inv_icm42600", st); } static int inv_icm42600_timestamp_setup(struct inv_icm42600_state *st) { unsigned int val; /* enable timestamp register */ val = INV_ICM42600_TMST_CONFIG_TMST_TO_REGS_EN | INV_ICM42600_TMST_CONFIG_TMST_EN; return regmap_update_bits(st->map, INV_ICM42600_REG_TMST_CONFIG, INV_ICM42600_TMST_CONFIG_MASK, val); } static int inv_icm42600_enable_regulator_vddio(struct inv_icm42600_state *st) { int ret; ret = regulator_enable(st->vddio_supply); if (ret) return ret; /* wait a little for supply ramp */ usleep_range(3000, 4000); return 0; } static void inv_icm42600_disable_vdd_reg(void *_data) { struct inv_icm42600_state *st = _data; const struct device *dev = regmap_get_device(st->map); int ret; ret = regulator_disable(st->vdd_supply); if (ret) dev_err(dev, "failed to disable vdd error %d\n", ret); } static void inv_icm42600_disable_vddio_reg(void *_data) { struct inv_icm42600_state *st = _data; const struct device *dev = regmap_get_device(st->map); int ret; ret = regulator_disable(st->vddio_supply); if (ret) dev_err(dev, "failed to disable vddio error %d\n", ret); } static void inv_icm42600_disable_pm(void *_data) { struct device *dev = _data; pm_runtime_put_sync(dev); pm_runtime_disable(dev); } int inv_icm42600_core_probe(struct regmap *regmap, int chip, int irq, inv_icm42600_bus_setup bus_setup) { struct device *dev = regmap_get_device(regmap); struct inv_icm42600_state *st; struct irq_data *irq_desc; int irq_type; bool open_drain; int ret; if (chip <= INV_CHIP_INVALID || chip >= INV_CHIP_NB) { dev_err(dev, "invalid chip = %d\n", chip); return -ENODEV; } /* get irq properties, set trigger falling by default */ irq_desc = irq_get_irq_data(irq); if (!irq_desc) { dev_err(dev, "could not find IRQ %d\n", irq); return -EINVAL; } irq_type = irqd_get_trigger_type(irq_desc); if (!irq_type) irq_type = IRQF_TRIGGER_FALLING; open_drain = device_property_read_bool(dev, "drive-open-drain"); st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; dev_set_drvdata(dev, st); mutex_init(&st->lock); st->chip = chip; st->map = regmap; ret = iio_read_mount_matrix(dev, &st->orientation); if (ret) { dev_err(dev, "failed to retrieve mounting matrix %d\n", ret); return ret; } st->vdd_supply = devm_regulator_get(dev, "vdd"); if (IS_ERR(st->vdd_supply)) return PTR_ERR(st->vdd_supply); st->vddio_supply = devm_regulator_get(dev, "vddio"); if (IS_ERR(st->vddio_supply)) return PTR_ERR(st->vddio_supply); ret = regulator_enable(st->vdd_supply); if (ret) return ret; msleep(INV_ICM42600_POWER_UP_TIME_MS); ret = devm_add_action_or_reset(dev, inv_icm42600_disable_vdd_reg, st); if (ret) return ret; ret = inv_icm42600_enable_regulator_vddio(st); if (ret) return ret; ret = devm_add_action_or_reset(dev, inv_icm42600_disable_vddio_reg, st); if (ret) return ret; /* setup chip registers */ ret = inv_icm42600_setup(st, bus_setup); if (ret) return ret; ret = inv_icm42600_timestamp_setup(st); if (ret) return ret; ret = inv_icm42600_buffer_init(st); if (ret) return ret; st->indio_gyro = inv_icm42600_gyro_init(st); if (IS_ERR(st->indio_gyro)) return PTR_ERR(st->indio_gyro); st->indio_accel = inv_icm42600_accel_init(st); if (IS_ERR(st->indio_accel)) return PTR_ERR(st->indio_accel); ret = inv_icm42600_irq_init(st, irq, irq_type, open_drain); if (ret) return ret; /* setup runtime power management */ ret = pm_runtime_set_active(dev); if (ret) return ret; pm_runtime_get_noresume(dev); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, INV_ICM42600_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); return devm_add_action_or_reset(dev, inv_icm42600_disable_pm, dev); } EXPORT_SYMBOL_NS_GPL(inv_icm42600_core_probe, IIO_ICM42600); /* * Suspend saves sensors state and turns everything off. * Check first if runtime suspend has not already done the job. */ static int inv_icm42600_suspend(struct device *dev) { struct inv_icm42600_state *st = dev_get_drvdata(dev); int ret; mutex_lock(&st->lock); st->suspended.gyro = st->conf.gyro.mode; st->suspended.accel = st->conf.accel.mode; st->suspended.temp = st->conf.temp_en; if (pm_runtime_suspended(dev)) { ret = 0; goto out_unlock; } /* disable FIFO data streaming */ if (st->fifo.on) { ret = regmap_write(st->map, INV_ICM42600_REG_FIFO_CONFIG, INV_ICM42600_FIFO_CONFIG_BYPASS); if (ret) goto out_unlock; } ret = inv_icm42600_set_pwr_mgmt0(st, INV_ICM42600_SENSOR_MODE_OFF, INV_ICM42600_SENSOR_MODE_OFF, false, NULL); if (ret) goto out_unlock; regulator_disable(st->vddio_supply); out_unlock: mutex_unlock(&st->lock); return ret; } /* * System resume gets the system back on and restores the sensors state. * Manually put runtime power management in system active state. */ static int inv_icm42600_resume(struct device *dev) { struct inv_icm42600_state *st = dev_get_drvdata(dev); int ret; mutex_lock(&st->lock); ret = inv_icm42600_enable_regulator_vddio(st); if (ret) goto out_unlock; pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); /* restore sensors state */ ret = inv_icm42600_set_pwr_mgmt0(st, st->suspended.gyro, st->suspended.accel, st->suspended.temp, NULL); if (ret) goto out_unlock; /* restore FIFO data streaming */ if (st->fifo.on) ret = regmap_write(st->map, INV_ICM42600_REG_FIFO_CONFIG, INV_ICM42600_FIFO_CONFIG_STREAM); out_unlock: mutex_unlock(&st->lock); return ret; } /* Runtime suspend will turn off sensors that are enabled by iio devices. */ static int inv_icm42600_runtime_suspend(struct device *dev) { struct inv_icm42600_state *st = dev_get_drvdata(dev); int ret; mutex_lock(&st->lock); /* disable all sensors */ ret = inv_icm42600_set_pwr_mgmt0(st, INV_ICM42600_SENSOR_MODE_OFF, INV_ICM42600_SENSOR_MODE_OFF, false, NULL); if (ret) goto error_unlock; regulator_disable(st->vddio_supply); error_unlock: mutex_unlock(&st->lock); return ret; } /* Sensors are enabled by iio devices, no need to turn them back on here. */ static int inv_icm42600_runtime_resume(struct device *dev) { struct inv_icm42600_state *st = dev_get_drvdata(dev); int ret; mutex_lock(&st->lock); ret = inv_icm42600_enable_regulator_vddio(st); mutex_unlock(&st->lock); return ret; } EXPORT_NS_GPL_DEV_PM_OPS(inv_icm42600_pm_ops, IIO_ICM42600) = { SYSTEM_SLEEP_PM_OPS(inv_icm42600_suspend, inv_icm42600_resume) RUNTIME_PM_OPS(inv_icm42600_runtime_suspend, inv_icm42600_runtime_resume, NULL) }; MODULE_AUTHOR("InvenSense, Inc."); MODULE_DESCRIPTION("InvenSense ICM-426xx device driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_INV_SENSORS_TIMESTAMP);
linux-master
drivers/iio/imu/inv_icm42600/inv_icm42600_core.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 InvenSense, Inc. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/property.h> #include "inv_icm42600.h" static int inv_icm42600_i2c_bus_setup(struct inv_icm42600_state *st) { unsigned int mask, val; int ret; /* * setup interface registers * This register write to REG_INTF_CONFIG6 enables a spike filter that * is impacting the line and can prevent the I2C ACK to be seen by the * controller. So we don't test the return value. */ regmap_update_bits(st->map, INV_ICM42600_REG_INTF_CONFIG6, INV_ICM42600_INTF_CONFIG6_MASK, INV_ICM42600_INTF_CONFIG6_I3C_EN); ret = regmap_update_bits(st->map, INV_ICM42600_REG_INTF_CONFIG4, INV_ICM42600_INTF_CONFIG4_I3C_BUS_ONLY, 0); if (ret) return ret; /* set slew rates for I2C and SPI */ mask = INV_ICM42600_DRIVE_CONFIG_I2C_MASK | INV_ICM42600_DRIVE_CONFIG_SPI_MASK; val = INV_ICM42600_DRIVE_CONFIG_I2C(INV_ICM42600_SLEW_RATE_12_36NS) | INV_ICM42600_DRIVE_CONFIG_SPI(INV_ICM42600_SLEW_RATE_12_36NS); ret = regmap_update_bits(st->map, INV_ICM42600_REG_DRIVE_CONFIG, mask, val); if (ret) return ret; /* disable SPI bus */ return regmap_update_bits(st->map, INV_ICM42600_REG_INTF_CONFIG0, INV_ICM42600_INTF_CONFIG0_UI_SIFS_CFG_MASK, INV_ICM42600_INTF_CONFIG0_UI_SIFS_CFG_SPI_DIS); } static int inv_icm42600_probe(struct i2c_client *client) { const void *match; enum inv_icm42600_chip chip; struct regmap *regmap; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) return -ENOTSUPP; match = device_get_match_data(&client->dev); if (!match) return -EINVAL; chip = (uintptr_t)match; regmap = devm_regmap_init_i2c(client, &inv_icm42600_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); return inv_icm42600_core_probe(regmap, chip, client->irq, inv_icm42600_i2c_bus_setup); } static const struct of_device_id inv_icm42600_of_matches[] = { { .compatible = "invensense,icm42600", .data = (void *)INV_CHIP_ICM42600, }, { .compatible = "invensense,icm42602", .data = (void *)INV_CHIP_ICM42602, }, { .compatible = "invensense,icm42605", .data = (void *)INV_CHIP_ICM42605, }, { .compatible = "invensense,icm42622", .data = (void *)INV_CHIP_ICM42622, }, { .compatible = "invensense,icm42631", .data = (void *)INV_CHIP_ICM42631, }, {} }; MODULE_DEVICE_TABLE(of, inv_icm42600_of_matches); static struct i2c_driver inv_icm42600_driver = { .driver = { .name = "inv-icm42600-i2c", .of_match_table = inv_icm42600_of_matches, .pm = pm_ptr(&inv_icm42600_pm_ops), }, .probe = inv_icm42600_probe, }; module_i2c_driver(inv_icm42600_driver); MODULE_AUTHOR("InvenSense, Inc."); MODULE_DESCRIPTION("InvenSense ICM-426xx I2C driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_ICM42600);
linux-master
drivers/iio/imu/inv_icm42600/inv_icm42600_i2c.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include "inv_icm42600.h" #include "inv_icm42600_temp.h" static int inv_icm42600_temp_read(struct inv_icm42600_state *st, int16_t *temp) { struct device *dev = regmap_get_device(st->map); __be16 *raw; int ret; pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = inv_icm42600_set_temp_conf(st, true, NULL); if (ret) goto exit; raw = (__be16 *)&st->buffer[0]; ret = regmap_bulk_read(st->map, INV_ICM42600_REG_TEMP_DATA, raw, sizeof(*raw)); if (ret) goto exit; *temp = (int16_t)be16_to_cpup(raw); if (*temp == INV_ICM42600_DATA_INVALID) ret = -EINVAL; exit: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } int inv_icm42600_temp_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int16_t temp; int ret; if (chan->type != IIO_TEMP) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_temp_read(st, &temp); iio_device_release_direct_mode(indio_dev); if (ret) return ret; *val = temp; return IIO_VAL_INT; /* * T°C = (temp / 132.48) + 25 * Tm°C = 1000 * ((temp * 100 / 13248) + 25) * scale: 100000 / 13248 ~= 7.548309 * offset: 25000 */ case IIO_CHAN_INFO_SCALE: *val = 7; *val2 = 548309; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OFFSET: *val = 25000; return IIO_VAL_INT; default: return -EINVAL; } }
linux-master
drivers/iio/imu/inv_icm42600/inv_icm42600_temp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/delay.h> #include <linux/math64.h> #include <linux/iio/buffer.h> #include <linux/iio/common/inv_sensors_timestamp.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include "inv_icm42600.h" #include "inv_icm42600_temp.h" #include "inv_icm42600_buffer.h" #define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info) \ { \ .type = IIO_ANGL_VEL, \ .modified = 1, \ .channel2 = _modifier, \ .info_mask_separate = \ BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_all = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ .ext_info = _ext_info, \ } enum inv_icm42600_gyro_scan { INV_ICM42600_GYRO_SCAN_X, INV_ICM42600_GYRO_SCAN_Y, INV_ICM42600_GYRO_SCAN_Z, INV_ICM42600_GYRO_SCAN_TEMP, INV_ICM42600_GYRO_SCAN_TIMESTAMP, }; static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix), {}, }; static const struct iio_chan_spec inv_icm42600_gyro_channels[] = { INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X, inv_icm42600_gyro_ext_infos), INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y, inv_icm42600_gyro_ext_infos), INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z, inv_icm42600_gyro_ext_infos), INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP), IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP), }; /* * IIO buffer data: size must be a power of 2 and timestamp aligned * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp */ struct inv_icm42600_gyro_buffer { struct inv_icm42600_fifo_sensor_data gyro; int16_t temp; int64_t timestamp __aligned(8); }; #define INV_ICM42600_SCAN_MASK_GYRO_3AXIS \ (BIT(INV_ICM42600_GYRO_SCAN_X) | \ BIT(INV_ICM42600_GYRO_SCAN_Y) | \ BIT(INV_ICM42600_GYRO_SCAN_Z)) #define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP) static const unsigned long inv_icm42600_gyro_scan_masks[] = { /* 3-axis gyro + temperature */ INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP, 0, }; /* enable gyroscope sensor and FIFO write */ static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); struct inv_sensors_timestamp *ts = iio_priv(indio_dev); struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; unsigned int fifo_en = 0; unsigned int sleep_gyro = 0; unsigned int sleep_temp = 0; unsigned int sleep; int ret; mutex_lock(&st->lock); if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) { /* enable temp sensor */ ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp); if (ret) goto out_unlock; fifo_en |= INV_ICM42600_SENSOR_TEMP; } if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) { /* enable gyro sensor */ conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE; ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro); if (ret) goto out_unlock; fifo_en |= INV_ICM42600_SENSOR_GYRO; } /* update data FIFO write */ inv_sensors_timestamp_apply_odr(ts, 0, 0, 0); ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en); if (ret) goto out_unlock; ret = inv_icm42600_buffer_update_watermark(st); out_unlock: mutex_unlock(&st->lock); /* sleep maximum required time */ if (sleep_gyro > sleep_temp) sleep = sleep_gyro; else sleep = sleep_temp; if (sleep) msleep(sleep); return ret; } static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st, struct iio_chan_spec const *chan, int16_t *val) { struct device *dev = regmap_get_device(st->map); struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; unsigned int reg; __be16 *data; int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: reg = INV_ICM42600_REG_GYRO_DATA_X; break; case IIO_MOD_Y: reg = INV_ICM42600_REG_GYRO_DATA_Y; break; case IIO_MOD_Z: reg = INV_ICM42600_REG_GYRO_DATA_Z; break; default: return -EINVAL; } pm_runtime_get_sync(dev); mutex_lock(&st->lock); /* enable gyro sensor */ conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE; ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); if (ret) goto exit; /* read gyro register data */ data = (__be16 *)&st->buffer[0]; ret = regmap_bulk_read(st->map, reg, data, sizeof(*data)); if (ret) goto exit; *val = (int16_t)be16_to_cpup(data); if (*val == INV_ICM42600_DATA_INVALID) ret = -EINVAL; exit: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /* IIO format int + nano */ static const int inv_icm42600_gyro_scale[] = { /* +/- 2000dps => 0.001065264 rad/s */ [2 * INV_ICM42600_GYRO_FS_2000DPS] = 0, [2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264, /* +/- 1000dps => 0.000532632 rad/s */ [2 * INV_ICM42600_GYRO_FS_1000DPS] = 0, [2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632, /* +/- 500dps => 0.000266316 rad/s */ [2 * INV_ICM42600_GYRO_FS_500DPS] = 0, [2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316, /* +/- 250dps => 0.000133158 rad/s */ [2 * INV_ICM42600_GYRO_FS_250DPS] = 0, [2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158, /* +/- 125dps => 0.000066579 rad/s */ [2 * INV_ICM42600_GYRO_FS_125DPS] = 0, [2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579, /* +/- 62.5dps => 0.000033290 rad/s */ [2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0, [2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290, /* +/- 31.25dps => 0.000016645 rad/s */ [2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0, [2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645, /* +/- 15.625dps => 0.000008322 rad/s */ [2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0, [2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322, }; static int inv_icm42600_gyro_read_scale(struct inv_icm42600_state *st, int *val, int *val2) { unsigned int idx; idx = st->conf.gyro.fs; *val = inv_icm42600_gyro_scale[2 * idx]; *val2 = inv_icm42600_gyro_scale[2 * idx + 1]; return IIO_VAL_INT_PLUS_NANO; } static int inv_icm42600_gyro_write_scale(struct inv_icm42600_state *st, int val, int val2) { struct device *dev = regmap_get_device(st->map); unsigned int idx; struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; int ret; for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_scale); idx += 2) { if (val == inv_icm42600_gyro_scale[idx] && val2 == inv_icm42600_gyro_scale[idx + 1]) break; } if (idx >= ARRAY_SIZE(inv_icm42600_gyro_scale)) return -EINVAL; conf.fs = idx / 2; pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /* IIO format int + micro */ static const int inv_icm42600_gyro_odr[] = { /* 12.5Hz */ 12, 500000, /* 25Hz */ 25, 0, /* 50Hz */ 50, 0, /* 100Hz */ 100, 0, /* 200Hz */ 200, 0, /* 1kHz */ 1000, 0, /* 2kHz */ 2000, 0, /* 4kHz */ 4000, 0, }; static const int inv_icm42600_gyro_odr_conv[] = { INV_ICM42600_ODR_12_5HZ, INV_ICM42600_ODR_25HZ, INV_ICM42600_ODR_50HZ, INV_ICM42600_ODR_100HZ, INV_ICM42600_ODR_200HZ, INV_ICM42600_ODR_1KHZ_LN, INV_ICM42600_ODR_2KHZ_LN, INV_ICM42600_ODR_4KHZ_LN, }; static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st, int *val, int *val2) { unsigned int odr; unsigned int i; odr = st->conf.gyro.odr; for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) { if (inv_icm42600_gyro_odr_conv[i] == odr) break; } if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv)) return -EINVAL; *val = inv_icm42600_gyro_odr[2 * i]; *val2 = inv_icm42600_gyro_odr[2 * i + 1]; return IIO_VAL_INT_PLUS_MICRO; } static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev, int val, int val2) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); struct inv_sensors_timestamp *ts = iio_priv(indio_dev); struct device *dev = regmap_get_device(st->map); unsigned int idx; struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; int ret; for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) { if (val == inv_icm42600_gyro_odr[idx] && val2 == inv_icm42600_gyro_odr[idx + 1]) break; } if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr)) return -EINVAL; conf.odr = inv_icm42600_gyro_odr_conv[idx / 2]; pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr), iio_buffer_enabled(indio_dev)); if (ret) goto out_unlock; ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); if (ret) goto out_unlock; inv_icm42600_buffer_update_fifo_period(st); inv_icm42600_buffer_update_watermark(st); out_unlock: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /* * Calibration bias values, IIO range format int + nano. * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps. */ static int inv_icm42600_gyro_calibbias[] = { -1, 117010721, /* min: -1.117010721 rad/s */ 0, 545415, /* step: 0.000545415 rad/s */ 1, 116465306, /* max: 1.116465306 rad/s */ }; static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st, struct iio_chan_spec const *chan, int *val, int *val2) { struct device *dev = regmap_get_device(st->map); int64_t val64; int32_t bias; unsigned int reg; int16_t offset; uint8_t data[2]; int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: reg = INV_ICM42600_REG_OFFSET_USER0; break; case IIO_MOD_Y: reg = INV_ICM42600_REG_OFFSET_USER1; break; case IIO_MOD_Z: reg = INV_ICM42600_REG_OFFSET_USER3; break; default: return -EINVAL; } pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data)); memcpy(data, st->buffer, sizeof(data)); mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (ret) return ret; /* 12 bits signed value */ switch (chan->channel2) { case IIO_MOD_X: offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11); break; case IIO_MOD_Y: offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11); break; case IIO_MOD_Z: offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11); break; default: return -EINVAL; } /* * convert raw offset to dps then to rad/s * 12 bits signed raw max 64 to dps: 64 / 2048 * dps to rad: Pi / 180 * result in nano (1000000000) * (offset * 64 * Pi * 1000000000) / (2048 * 180) */ val64 = (int64_t)offset * 64LL * 3141592653LL; /* for rounding, add + or - divisor (2048 * 180) divided by 2 */ if (val64 >= 0) val64 += 2048 * 180 / 2; else val64 -= 2048 * 180 / 2; bias = div_s64(val64, 2048 * 180); *val = bias / 1000000000L; *val2 = bias % 1000000000L; return IIO_VAL_INT_PLUS_NANO; } static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st, struct iio_chan_spec const *chan, int val, int val2) { struct device *dev = regmap_get_device(st->map); int64_t val64, min, max; unsigned int reg, regval; int16_t offset; int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: reg = INV_ICM42600_REG_OFFSET_USER0; break; case IIO_MOD_Y: reg = INV_ICM42600_REG_OFFSET_USER1; break; case IIO_MOD_Z: reg = INV_ICM42600_REG_OFFSET_USER3; break; default: return -EINVAL; } /* inv_icm42600_gyro_calibbias: min - step - max in nano */ min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL + (int64_t)inv_icm42600_gyro_calibbias[1]; max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL + (int64_t)inv_icm42600_gyro_calibbias[5]; val64 = (int64_t)val * 1000000000LL + (int64_t)val2; if (val64 < min || val64 > max) return -EINVAL; /* * convert rad/s to dps then to raw value * rad to dps: 180 / Pi * dps to raw 12 bits signed, max 64: 2048 / 64 * val in nano (1000000000) * val * 180 * 2048 / (Pi * 1000000000 * 64) */ val64 = val64 * 180LL * 2048LL; /* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */ if (val64 >= 0) val64 += 3141592653LL * 64LL / 2LL; else val64 -= 3141592653LL * 64LL / 2LL; offset = div64_s64(val64, 3141592653LL * 64LL); /* clamp value limited to 12 bits signed */ if (offset < -2048) offset = -2048; else if (offset > 2047) offset = 2047; pm_runtime_get_sync(dev); mutex_lock(&st->lock); switch (chan->channel2) { case IIO_MOD_X: /* OFFSET_USER1 register is shared */ ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1, &regval); if (ret) goto out_unlock; st->buffer[0] = offset & 0xFF; st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8); break; case IIO_MOD_Y: /* OFFSET_USER1 register is shared */ ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1, &regval); if (ret) goto out_unlock; st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F); st->buffer[1] = offset & 0xFF; break; case IIO_MOD_Z: /* OFFSET_USER4 register is shared */ ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4, &regval); if (ret) goto out_unlock; st->buffer[0] = offset & 0xFF; st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8); break; default: ret = -EINVAL; goto out_unlock; } ret = regmap_bulk_write(st->map, reg, st->buffer, 2); out_unlock: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int16_t data; int ret; switch (chan->type) { case IIO_ANGL_VEL: break; case IIO_TEMP: return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask); default: return -EINVAL; } switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_gyro_read_sensor(st, chan, &data); iio_device_release_direct_mode(indio_dev); if (ret) return ret; *val = data; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: return inv_icm42600_gyro_read_scale(st, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return inv_icm42600_gyro_read_odr(st, val, val2); case IIO_CHAN_INFO_CALIBBIAS: return inv_icm42600_gyro_read_offset(st, chan, val, val2); default: return -EINVAL; } } static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = inv_icm42600_gyro_scale; *type = IIO_VAL_INT_PLUS_NANO; *length = ARRAY_SIZE(inv_icm42600_gyro_scale); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *vals = inv_icm42600_gyro_odr; *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(inv_icm42600_gyro_odr); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_CALIBBIAS: *vals = inv_icm42600_gyro_calibbias; *type = IIO_VAL_INT_PLUS_NANO; return IIO_AVAIL_RANGE; default: return -EINVAL; } } static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_gyro_write_scale(st, val, val2); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: return inv_icm42600_gyro_write_odr(indio_dev, val, val2); case IIO_CHAN_INFO_CALIBBIAS: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_gyro_write_offset(st, chan, val, val2); iio_device_release_direct_mode(indio_dev); return ret; default: return -EINVAL; } } static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev, unsigned int val) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; mutex_lock(&st->lock); st->fifo.watermark.gyro = val; ret = inv_icm42600_buffer_update_watermark(st); mutex_unlock(&st->lock); return ret; } static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev, unsigned int count) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; if (count == 0) return 0; mutex_lock(&st->lock); ret = inv_icm42600_buffer_hwfifo_flush(st, count); if (!ret) ret = st->fifo.nb.gyro; mutex_unlock(&st->lock); return ret; } static const struct iio_info inv_icm42600_gyro_info = { .read_raw = inv_icm42600_gyro_read_raw, .read_avail = inv_icm42600_gyro_read_avail, .write_raw = inv_icm42600_gyro_write_raw, .write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt, .debugfs_reg_access = inv_icm42600_debugfs_reg, .update_scan_mode = inv_icm42600_gyro_update_scan_mode, .hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark, .hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush, }; struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st) { struct device *dev = regmap_get_device(st->map); const char *name; struct inv_sensors_timestamp_chip ts_chip; struct inv_sensors_timestamp *ts; struct iio_dev *indio_dev; int ret; name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name); if (!name) return ERR_PTR(-ENOMEM); indio_dev = devm_iio_device_alloc(dev, sizeof(*ts)); if (!indio_dev) return ERR_PTR(-ENOMEM); /* * clock period is 32kHz (31250ns) * jitter is +/- 2% (20 per mille) */ ts_chip.clock_period = 31250; ts_chip.jitter = 20; ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr); ts = iio_priv(indio_dev); inv_sensors_timestamp_init(ts, &ts_chip); iio_device_set_drvdata(indio_dev, st); indio_dev->name = name; indio_dev->info = &inv_icm42600_gyro_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = inv_icm42600_gyro_channels; indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels); indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks; indio_dev->setup_ops = &inv_icm42600_buffer_ops; ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &inv_icm42600_buffer_ops); if (ret) return ERR_PTR(ret); ret = devm_iio_device_register(dev, indio_dev); if (ret) return ERR_PTR(ret); return indio_dev; } int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); struct inv_sensors_timestamp *ts = iio_priv(indio_dev); ssize_t i, size; unsigned int no; const void *accel, *gyro, *timestamp; const int8_t *temp; unsigned int odr; int64_t ts_val; struct inv_icm42600_gyro_buffer buffer; /* parse all fifo packets */ for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) { size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i], &accel, &gyro, &temp, &timestamp, &odr); /* quit if error or FIFO is empty */ if (size <= 0) return size; /* skip packet if no gyro data or data is invalid */ if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro)) continue; /* update odr */ if (odr & INV_ICM42600_SENSOR_GYRO) inv_sensors_timestamp_apply_odr(ts, st->fifo.period, st->fifo.nb.total, no); /* buffer is copied to userspace, zeroing it to avoid any data leak */ memset(&buffer, 0, sizeof(buffer)); memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro)); /* convert 8 bits FIFO temperature in high resolution format */ buffer.temp = temp ? (*temp * 64) : 0; ts_val = inv_sensors_timestamp_pop(ts); iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val); } return 0; }
linux-master
drivers/iio/imu/inv_icm42600/inv_icm42600_gyro.c
// SPDX-License-Identifier: GPL-2.0 /* * BMI160 - Bosch IMU, I2C bits * * Copyright (c) 2016, Intel Corporation. * * 7-bit I2C slave address is: * - 0x68 if SDO is pulled to GND * - 0x69 if SDO is pulled to VDDIO */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include "bmi160.h" static int bmi160_i2c_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct regmap *regmap; const char *name; regmap = devm_regmap_init_i2c(client, &bmi160_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Failed to register i2c regmap: %pe\n", regmap); return PTR_ERR(regmap); } if (id) name = id->name; else name = dev_name(&client->dev); return bmi160_core_probe(&client->dev, regmap, name, false); } static const struct i2c_device_id bmi160_i2c_id[] = { {"bmi160", 0}, {} }; MODULE_DEVICE_TABLE(i2c, bmi160_i2c_id); static const struct acpi_device_id bmi160_acpi_match[] = { {"BMI0160", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, bmi160_acpi_match); static const struct of_device_id bmi160_of_match[] = { { .compatible = "bosch,bmi160" }, { }, }; MODULE_DEVICE_TABLE(of, bmi160_of_match); static struct i2c_driver bmi160_i2c_driver = { .driver = { .name = "bmi160_i2c", .acpi_match_table = bmi160_acpi_match, .of_match_table = bmi160_of_match, }, .probe = bmi160_i2c_probe, .id_table = bmi160_i2c_id, }; module_i2c_driver(bmi160_i2c_driver); MODULE_AUTHOR("Daniel Baluta <[email protected]>"); MODULE_DESCRIPTION("BMI160 I2C driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_BMI160);
linux-master
drivers/iio/imu/bmi160/bmi160_i2c.c
// SPDX-License-Identifier: GPL-2.0 /* * BMI160 - Bosch IMU, SPI bits * * Copyright (c) 2016, Intel Corporation. * */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include "bmi160.h" static int bmi160_spi_probe(struct spi_device *spi) { struct regmap *regmap; const struct spi_device_id *id = spi_get_device_id(spi); const char *name; regmap = devm_regmap_init_spi(spi, &bmi160_regmap_config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Failed to register spi regmap: %pe\n", regmap); return PTR_ERR(regmap); } if (id) name = id->name; else name = dev_name(&spi->dev); return bmi160_core_probe(&spi->dev, regmap, name, true); } static const struct spi_device_id bmi160_spi_id[] = { {"bmi160", 0}, {} }; MODULE_DEVICE_TABLE(spi, bmi160_spi_id); static const struct acpi_device_id bmi160_acpi_match[] = { {"BMI0160", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, bmi160_acpi_match); static const struct of_device_id bmi160_of_match[] = { { .compatible = "bosch,bmi160" }, { }, }; MODULE_DEVICE_TABLE(of, bmi160_of_match); static struct spi_driver bmi160_spi_driver = { .probe = bmi160_spi_probe, .id_table = bmi160_spi_id, .driver = { .acpi_match_table = bmi160_acpi_match, .of_match_table = bmi160_of_match, .name = "bmi160_spi", }, }; module_spi_driver(bmi160_spi_driver); MODULE_AUTHOR("Daniel Baluta <[email protected]"); MODULE_DESCRIPTION("Bosch BMI160 SPI driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_BMI160);
linux-master
drivers/iio/imu/bmi160/bmi160_spi.c
// SPDX-License-Identifier: GPL-2.0 /* * BMI160 - Bosch IMU (accel, gyro plus external magnetometer) * * Copyright (c) 2016, Intel Corporation. * Copyright (c) 2019, Martin Kelly. * * IIO core driver for BMI160, with support for I2C/SPI busses * * TODO: magnetometer, hardware FIFO */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/iio/iio.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/buffer.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include "bmi160.h" #define BMI160_REG_CHIP_ID 0x00 #define BMI160_CHIP_ID_VAL 0xD1 #define BMI160_REG_PMU_STATUS 0x03 /* X axis data low byte address, the rest can be obtained using axis offset */ #define BMI160_REG_DATA_MAGN_XOUT_L 0x04 #define BMI160_REG_DATA_GYRO_XOUT_L 0x0C #define BMI160_REG_DATA_ACCEL_XOUT_L 0x12 #define BMI160_REG_ACCEL_CONFIG 0x40 #define BMI160_ACCEL_CONFIG_ODR_MASK GENMASK(3, 0) #define BMI160_ACCEL_CONFIG_BWP_MASK GENMASK(6, 4) #define BMI160_REG_ACCEL_RANGE 0x41 #define BMI160_ACCEL_RANGE_2G 0x03 #define BMI160_ACCEL_RANGE_4G 0x05 #define BMI160_ACCEL_RANGE_8G 0x08 #define BMI160_ACCEL_RANGE_16G 0x0C #define BMI160_REG_GYRO_CONFIG 0x42 #define BMI160_GYRO_CONFIG_ODR_MASK GENMASK(3, 0) #define BMI160_GYRO_CONFIG_BWP_MASK GENMASK(5, 4) #define BMI160_REG_GYRO_RANGE 0x43 #define BMI160_GYRO_RANGE_2000DPS 0x00 #define BMI160_GYRO_RANGE_1000DPS 0x01 #define BMI160_GYRO_RANGE_500DPS 0x02 #define BMI160_GYRO_RANGE_250DPS 0x03 #define BMI160_GYRO_RANGE_125DPS 0x04 #define BMI160_REG_CMD 0x7E #define BMI160_CMD_ACCEL_PM_SUSPEND 0x10 #define BMI160_CMD_ACCEL_PM_NORMAL 0x11 #define BMI160_CMD_ACCEL_PM_LOW_POWER 0x12 #define BMI160_CMD_GYRO_PM_SUSPEND 0x14 #define BMI160_CMD_GYRO_PM_NORMAL 0x15 #define BMI160_CMD_GYRO_PM_FAST_STARTUP 0x17 #define BMI160_CMD_SOFTRESET 0xB6 #define BMI160_REG_INT_EN 0x51 #define BMI160_DRDY_INT_EN BIT(4) #define BMI160_REG_INT_OUT_CTRL 0x53 #define BMI160_INT_OUT_CTRL_MASK 0x0f #define BMI160_INT1_OUT_CTRL_SHIFT 0 #define BMI160_INT2_OUT_CTRL_SHIFT 4 #define BMI160_EDGE_TRIGGERED BIT(0) #define BMI160_ACTIVE_HIGH BIT(1) #define BMI160_OPEN_DRAIN BIT(2) #define BMI160_OUTPUT_EN BIT(3) #define BMI160_REG_INT_LATCH 0x54 #define BMI160_INT1_LATCH_MASK BIT(4) #define BMI160_INT2_LATCH_MASK BIT(5) /* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */ #define BMI160_REG_INT_MAP 0x56 #define BMI160_INT1_MAP_DRDY_EN 0x80 #define BMI160_INT2_MAP_DRDY_EN 0x08 #define BMI160_REG_DUMMY 0x7F #define BMI160_NORMAL_WRITE_USLEEP 2 #define BMI160_SUSPENDED_WRITE_USLEEP 450 #define BMI160_ACCEL_PMU_MIN_USLEEP 3800 #define BMI160_GYRO_PMU_MIN_USLEEP 80000 #define BMI160_SOFTRESET_USLEEP 1000 #define BMI160_CHANNEL(_type, _axis, _index) { \ .type = _type, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ .ext_info = bmi160_ext_info, \ } /* scan indexes follow DATA register order */ enum bmi160_scan_axis { BMI160_SCAN_EXT_MAGN_X = 0, BMI160_SCAN_EXT_MAGN_Y, BMI160_SCAN_EXT_MAGN_Z, BMI160_SCAN_RHALL, BMI160_SCAN_GYRO_X, BMI160_SCAN_GYRO_Y, BMI160_SCAN_GYRO_Z, BMI160_SCAN_ACCEL_X, BMI160_SCAN_ACCEL_Y, BMI160_SCAN_ACCEL_Z, BMI160_SCAN_TIMESTAMP, }; enum bmi160_sensor_type { BMI160_ACCEL = 0, BMI160_GYRO, BMI160_EXT_MAGN, BMI160_NUM_SENSORS /* must be last */ }; enum bmi160_int_pin { BMI160_PIN_INT1, BMI160_PIN_INT2 }; const struct regmap_config bmi160_regmap_config = { .reg_bits = 8, .val_bits = 8, }; EXPORT_SYMBOL_NS(bmi160_regmap_config, IIO_BMI160); struct bmi160_regs { u8 data; /* LSB byte register for X-axis */ u8 config; u8 config_odr_mask; u8 config_bwp_mask; u8 range; u8 pmu_cmd_normal; u8 pmu_cmd_suspend; }; static struct bmi160_regs bmi160_regs[] = { [BMI160_ACCEL] = { .data = BMI160_REG_DATA_ACCEL_XOUT_L, .config = BMI160_REG_ACCEL_CONFIG, .config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK, .config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK, .range = BMI160_REG_ACCEL_RANGE, .pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL, .pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND, }, [BMI160_GYRO] = { .data = BMI160_REG_DATA_GYRO_XOUT_L, .config = BMI160_REG_GYRO_CONFIG, .config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK, .config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK, .range = BMI160_REG_GYRO_RANGE, .pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL, .pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND, }, }; static unsigned long bmi160_pmu_time[] = { [BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP, [BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP, }; struct bmi160_scale { u8 bits; int uscale; }; struct bmi160_odr { u8 bits; int odr; int uodr; }; static const struct bmi160_scale bmi160_accel_scale[] = { { BMI160_ACCEL_RANGE_2G, 598}, { BMI160_ACCEL_RANGE_4G, 1197}, { BMI160_ACCEL_RANGE_8G, 2394}, { BMI160_ACCEL_RANGE_16G, 4788}, }; static const struct bmi160_scale bmi160_gyro_scale[] = { { BMI160_GYRO_RANGE_2000DPS, 1065}, { BMI160_GYRO_RANGE_1000DPS, 532}, { BMI160_GYRO_RANGE_500DPS, 266}, { BMI160_GYRO_RANGE_250DPS, 133}, { BMI160_GYRO_RANGE_125DPS, 66}, }; struct bmi160_scale_item { const struct bmi160_scale *tbl; int num; }; static const struct bmi160_scale_item bmi160_scale_table[] = { [BMI160_ACCEL] = { .tbl = bmi160_accel_scale, .num = ARRAY_SIZE(bmi160_accel_scale), }, [BMI160_GYRO] = { .tbl = bmi160_gyro_scale, .num = ARRAY_SIZE(bmi160_gyro_scale), }, }; static const struct bmi160_odr bmi160_accel_odr[] = { {0x01, 0, 781250}, {0x02, 1, 562500}, {0x03, 3, 125000}, {0x04, 6, 250000}, {0x05, 12, 500000}, {0x06, 25, 0}, {0x07, 50, 0}, {0x08, 100, 0}, {0x09, 200, 0}, {0x0A, 400, 0}, {0x0B, 800, 0}, {0x0C, 1600, 0}, }; static const struct bmi160_odr bmi160_gyro_odr[] = { {0x06, 25, 0}, {0x07, 50, 0}, {0x08, 100, 0}, {0x09, 200, 0}, {0x0A, 400, 0}, {0x0B, 800, 0}, {0x0C, 1600, 0}, {0x0D, 3200, 0}, }; struct bmi160_odr_item { const struct bmi160_odr *tbl; int num; }; static const struct bmi160_odr_item bmi160_odr_table[] = { [BMI160_ACCEL] = { .tbl = bmi160_accel_odr, .num = ARRAY_SIZE(bmi160_accel_odr), }, [BMI160_GYRO] = { .tbl = bmi160_gyro_odr, .num = ARRAY_SIZE(bmi160_gyro_odr), }, }; static const struct iio_mount_matrix * bmi160_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct bmi160_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info bmi160_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix), { } }; static const struct iio_chan_spec bmi160_channels[] = { BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X), BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y), BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z), BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X), BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y), BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z), IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP), }; static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type) { switch (iio_type) { case IIO_ACCEL: return BMI160_ACCEL; case IIO_ANGL_VEL: return BMI160_GYRO; default: return -EINVAL; } } static int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t, bool mode) { int ret; u8 cmd; if (mode) cmd = bmi160_regs[t].pmu_cmd_normal; else cmd = bmi160_regs[t].pmu_cmd_suspend; ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd); if (ret) return ret; usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000); return 0; } static int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t, int uscale) { int i; for (i = 0; i < bmi160_scale_table[t].num; i++) if (bmi160_scale_table[t].tbl[i].uscale == uscale) break; if (i == bmi160_scale_table[t].num) return -EINVAL; return regmap_write(data->regmap, bmi160_regs[t].range, bmi160_scale_table[t].tbl[i].bits); } static int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t, int *uscale) { int i, ret, val; ret = regmap_read(data->regmap, bmi160_regs[t].range, &val); if (ret) return ret; for (i = 0; i < bmi160_scale_table[t].num; i++) if (bmi160_scale_table[t].tbl[i].bits == val) { *uscale = bmi160_scale_table[t].tbl[i].uscale; return 0; } return -EINVAL; } static int bmi160_get_data(struct bmi160_data *data, int chan_type, int axis, int *val) { u8 reg; int ret; __le16 sample; enum bmi160_sensor_type t = bmi160_to_sensor(chan_type); reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample); ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample)); if (ret) return ret; *val = sign_extend32(le16_to_cpu(sample), 15); return 0; } static int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t, int odr, int uodr) { int i; for (i = 0; i < bmi160_odr_table[t].num; i++) if (bmi160_odr_table[t].tbl[i].odr == odr && bmi160_odr_table[t].tbl[i].uodr == uodr) break; if (i >= bmi160_odr_table[t].num) return -EINVAL; return regmap_update_bits(data->regmap, bmi160_regs[t].config, bmi160_regs[t].config_odr_mask, bmi160_odr_table[t].tbl[i].bits); } static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t, int *odr, int *uodr) { int i, val, ret; ret = regmap_read(data->regmap, bmi160_regs[t].config, &val); if (ret) return ret; val &= bmi160_regs[t].config_odr_mask; for (i = 0; i < bmi160_odr_table[t].num; i++) if (val == bmi160_odr_table[t].tbl[i].bits) break; if (i >= bmi160_odr_table[t].num) return -EINVAL; *odr = bmi160_odr_table[t].tbl[i].odr; *uodr = bmi160_odr_table[t].tbl[i].uodr; return 0; } static irqreturn_t bmi160_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmi160_data *data = iio_priv(indio_dev); int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L; __le16 sample; for_each_set_bit(i, indio_dev->active_scan_mask, indio_dev->masklength) { ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample), &sample, sizeof(sample)); if (ret) goto done; data->buf[j++] = sample; } iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bmi160_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct bmi160_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: ret = bmi160_get_data(data, chan->type, chan->channel2, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; ret = bmi160_get_scale(data, bmi160_to_sensor(chan->type), val2); return ret ? ret : IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type), val, val2); return ret ? ret : IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } return 0; } static int bmi160_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmi160_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: return bmi160_set_scale(data, bmi160_to_sensor(chan->type), val2); case IIO_CHAN_INFO_SAMP_FREQ: return bmi160_set_odr(data, bmi160_to_sensor(chan->type), val, val2); default: return -EINVAL; } return 0; } static IIO_CONST_ATTR(in_accel_sampling_frequency_available, "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600"); static IIO_CONST_ATTR(in_anglvel_sampling_frequency_available, "25 50 100 200 400 800 1600 3200"); static IIO_CONST_ATTR(in_accel_scale_available, "0.000598 0.001197 0.002394 0.004788"); static IIO_CONST_ATTR(in_anglvel_scale_available, "0.001065 0.000532 0.000266 0.000133 0.000066"); static struct attribute *bmi160_attrs[] = { &iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_accel_scale_available.dev_attr.attr, &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group bmi160_attrs_group = { .attrs = bmi160_attrs, }; static const struct iio_info bmi160_info = { .read_raw = bmi160_read_raw, .write_raw = bmi160_write_raw, .attrs = &bmi160_attrs_group, }; static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg, unsigned int mask, unsigned int bits, unsigned int write_usleep) { int ret; unsigned int val; ret = regmap_read(regmap, reg, &val); if (ret) return ret; val = (val & ~mask) | bits; ret = regmap_write(regmap, reg, val); if (ret) return ret; /* * We need to wait after writing before we can write again. See the * datasheet, page 93. */ usleep_range(write_usleep, write_usleep + 1000); return 0; } static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin, bool open_drain, u8 irq_mask, unsigned long write_usleep) { int ret; struct device *dev = regmap_get_device(regmap); u8 int_out_ctrl_shift; u8 int_latch_mask; u8 int_map_mask; u8 int_out_ctrl_mask; u8 int_out_ctrl_bits; const char *pin_name; switch (pin) { case BMI160_PIN_INT1: int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT; int_latch_mask = BMI160_INT1_LATCH_MASK; int_map_mask = BMI160_INT1_MAP_DRDY_EN; break; case BMI160_PIN_INT2: int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT; int_latch_mask = BMI160_INT2_LATCH_MASK; int_map_mask = BMI160_INT2_MAP_DRDY_EN; break; } int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift; /* * Enable the requested pin with the right settings: * - Push-pull/open-drain * - Active low/high * - Edge/level triggered */ int_out_ctrl_bits = BMI160_OUTPUT_EN; if (open_drain) /* Default is push-pull. */ int_out_ctrl_bits |= BMI160_OPEN_DRAIN; int_out_ctrl_bits |= irq_mask; int_out_ctrl_bits <<= int_out_ctrl_shift; ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL, int_out_ctrl_mask, int_out_ctrl_bits, write_usleep); if (ret) return ret; /* Set the pin to input mode with no latching. */ ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH, int_latch_mask, int_latch_mask, write_usleep); if (ret) return ret; /* Map interrupts to the requested pin. */ ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP, int_map_mask, int_map_mask, write_usleep); if (ret) { switch (pin) { case BMI160_PIN_INT1: pin_name = "INT1"; break; case BMI160_PIN_INT2: pin_name = "INT2"; break; } dev_err(dev, "Failed to configure %s IRQ pin", pin_name); } return ret; } int bmi160_enable_irq(struct regmap *regmap, bool enable) { unsigned int enable_bit = 0; if (enable) enable_bit = BMI160_DRDY_INT_EN; return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN, BMI160_DRDY_INT_EN, enable_bit, BMI160_NORMAL_WRITE_USLEEP); } EXPORT_SYMBOL_NS(bmi160_enable_irq, IIO_BMI160); static int bmi160_get_irq(struct fwnode_handle *fwnode, enum bmi160_int_pin *pin) { int irq; /* Use INT1 if possible, otherwise fall back to INT2. */ irq = fwnode_irq_get_byname(fwnode, "INT1"); if (irq > 0) { *pin = BMI160_PIN_INT1; return irq; } irq = fwnode_irq_get_byname(fwnode, "INT2"); if (irq > 0) *pin = BMI160_PIN_INT2; return irq; } static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type, enum bmi160_int_pin pin) { bool open_drain; u8 irq_mask; struct bmi160_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); /* Level-triggered, active-low is the default if we set all zeroes. */ if (irq_type == IRQF_TRIGGER_RISING) irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED; else if (irq_type == IRQF_TRIGGER_FALLING) irq_mask = BMI160_EDGE_TRIGGERED; else if (irq_type == IRQF_TRIGGER_HIGH) irq_mask = BMI160_ACTIVE_HIGH; else if (irq_type == IRQF_TRIGGER_LOW) irq_mask = 0; else { dev_err(&indio_dev->dev, "Invalid interrupt type 0x%x specified\n", irq_type); return -EINVAL; } open_drain = device_property_read_bool(dev, "drive-open-drain"); return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask, BMI160_NORMAL_WRITE_USLEEP); } static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq, enum bmi160_int_pin pin) { struct irq_data *desc; u32 irq_type; int ret; desc = irq_get_irq_data(irq); if (!desc) { dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq); return -EINVAL; } irq_type = irqd_get_trigger_type(desc); ret = bmi160_config_device_irq(indio_dev, irq_type, pin); if (ret) return ret; return bmi160_probe_trigger(indio_dev, irq, irq_type); } static int bmi160_chip_init(struct bmi160_data *data, bool use_spi) { int ret; unsigned int val; struct device *dev = regmap_get_device(data->regmap); ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies); if (ret) { dev_err(dev, "Failed to enable regulators: %d\n", ret); return ret; } ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET); if (ret) goto disable_regulator; usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1); /* * CS rising edge is needed before starting SPI, so do a dummy read * See Section 3.2.1, page 86 of the datasheet */ if (use_spi) { ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val); if (ret) goto disable_regulator; } ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val); if (ret) { dev_err(dev, "Error reading chip id\n"); goto disable_regulator; } if (val != BMI160_CHIP_ID_VAL) { dev_err(dev, "Wrong chip id, got %x expected %x\n", val, BMI160_CHIP_ID_VAL); ret = -ENODEV; goto disable_regulator; } ret = bmi160_set_mode(data, BMI160_ACCEL, true); if (ret) goto disable_regulator; ret = bmi160_set_mode(data, BMI160_GYRO, true); if (ret) goto disable_accel; return 0; disable_accel: bmi160_set_mode(data, BMI160_ACCEL, false); disable_regulator: regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies); return ret; } static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig, bool enable) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bmi160_data *data = iio_priv(indio_dev); return bmi160_enable_irq(data->regmap, enable); } static const struct iio_trigger_ops bmi160_trigger_ops = { .set_trigger_state = &bmi160_data_rdy_trigger_set_state, }; int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type) { struct bmi160_data *data = iio_priv(indio_dev); int ret; data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (data->trig == NULL) return -ENOMEM; ret = devm_request_irq(&indio_dev->dev, irq, &iio_trigger_generic_data_rdy_poll, irq_type, "bmi160", data->trig); if (ret) return ret; data->trig->dev.parent = regmap_get_device(data->regmap); data->trig->ops = &bmi160_trigger_ops; iio_trigger_set_drvdata(data->trig, indio_dev); ret = devm_iio_trigger_register(&indio_dev->dev, data->trig); if (ret) return ret; indio_dev->trig = iio_trigger_get(data->trig); return 0; } static void bmi160_chip_uninit(void *data) { struct bmi160_data *bmi_data = data; struct device *dev = regmap_get_device(bmi_data->regmap); int ret; bmi160_set_mode(bmi_data, BMI160_GYRO, false); bmi160_set_mode(bmi_data, BMI160_ACCEL, false); ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies), bmi_data->supplies); if (ret) dev_err(dev, "Failed to disable regulators: %d\n", ret); } int bmi160_core_probe(struct device *dev, struct regmap *regmap, const char *name, bool use_spi) { struct iio_dev *indio_dev; struct bmi160_data *data; int irq; enum bmi160_int_pin int_pin; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; data->supplies[0].supply = "vdd"; data->supplies[1].supply = "vddio"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies), data->supplies); if (ret) { dev_err(dev, "Failed to get regulators: %d\n", ret); return ret; } ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; ret = bmi160_chip_init(data, use_spi); if (ret) return ret; ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data); if (ret) return ret; indio_dev->channels = bmi160_channels; indio_dev->num_channels = ARRAY_SIZE(bmi160_channels); indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmi160_info; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, iio_pollfunc_store_time, bmi160_trigger_handler, NULL); if (ret) return ret; irq = bmi160_get_irq(dev_fwnode(dev), &int_pin); if (irq > 0) { ret = bmi160_setup_irq(indio_dev, irq, int_pin); if (ret) dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n", irq); } else { dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n"); } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(bmi160_core_probe, IIO_BMI160); MODULE_AUTHOR("Daniel Baluta <[email protected]>"); MODULE_DESCRIPTION("Bosch BMI160 driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/imu/bmi160/bmi160_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics st_lsm6dsx i2c driver * * Copyright 2016 STMicroelectronics Inc. * * Lorenzo Bianconi <[email protected]> * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/regmap.h> #include "st_lsm6dsx.h" static const struct regmap_config st_lsm6dsx_i2c_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static int st_lsm6dsx_i2c_probe(struct i2c_client *client) { int hw_id; struct regmap *regmap; hw_id = (kernel_ulong_t)device_get_match_data(&client->dev); if (!hw_id) hw_id = i2c_client_get_device_id(client)->driver_data; if (!hw_id) return -EINVAL; regmap = devm_regmap_init_i2c(client, &st_lsm6dsx_i2c_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Failed to register i2c regmap %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return st_lsm6dsx_probe(&client->dev, client->irq, hw_id, regmap); } static const struct of_device_id st_lsm6dsx_i2c_of_match[] = { { .compatible = "st,lsm6ds3", .data = (void *)ST_LSM6DS3_ID, }, { .compatible = "st,lsm6ds3h", .data = (void *)ST_LSM6DS3H_ID, }, { .compatible = "st,lsm6dsl", .data = (void *)ST_LSM6DSL_ID, }, { .compatible = "st,lsm6dsm", .data = (void *)ST_LSM6DSM_ID, }, { .compatible = "st,ism330dlc", .data = (void *)ST_ISM330DLC_ID, }, { .compatible = "st,lsm6dso", .data = (void *)ST_LSM6DSO_ID, }, { .compatible = "st,asm330lhh", .data = (void *)ST_ASM330LHH_ID, }, { .compatible = "st,lsm6dsox", .data = (void *)ST_LSM6DSOX_ID, }, { .compatible = "st,lsm6dsr", .data = (void *)ST_LSM6DSR_ID, }, { .compatible = "st,lsm6ds3tr-c", .data = (void *)ST_LSM6DS3TRC_ID, }, { .compatible = "st,ism330dhcx", .data = (void *)ST_ISM330DHCX_ID, }, { .compatible = "st,lsm9ds1-imu", .data = (void *)ST_LSM9DS1_ID, }, { .compatible = "st,lsm6ds0", .data = (void *)ST_LSM6DS0_ID, }, { .compatible = "st,lsm6dsrx", .data = (void *)ST_LSM6DSRX_ID, }, { .compatible = "st,lsm6dst", .data = (void *)ST_LSM6DST_ID, }, { .compatible = "st,lsm6dsop", .data = (void *)ST_LSM6DSOP_ID, }, { .compatible = "st,asm330lhhx", .data = (void *)ST_ASM330LHHX_ID, }, { .compatible = "st,lsm6dstx", .data = (void *)ST_LSM6DSTX_ID, }, { .compatible = "st,lsm6dsv", .data = (void *)ST_LSM6DSV_ID, }, { .compatible = "st,lsm6dsv16x", .data = (void *)ST_LSM6DSV16X_ID, }, { .compatible = "st,lsm6dso16is", .data = (void *)ST_LSM6DSO16IS_ID, }, { .compatible = "st,ism330is", .data = (void *)ST_ISM330IS_ID, }, { .compatible = "st,asm330lhb", .data = (void *)ST_ASM330LHB_ID, }, {}, }; MODULE_DEVICE_TABLE(of, st_lsm6dsx_i2c_of_match); static const struct acpi_device_id st_lsm6dsx_i2c_acpi_match[] = { { "SMO8B30", ST_LSM6DS3TRC_ID, }, {} }; MODULE_DEVICE_TABLE(acpi, st_lsm6dsx_i2c_acpi_match); static const struct i2c_device_id st_lsm6dsx_i2c_id_table[] = { { ST_LSM6DS3_DEV_NAME, ST_LSM6DS3_ID }, { ST_LSM6DS3H_DEV_NAME, ST_LSM6DS3H_ID }, { ST_LSM6DSL_DEV_NAME, ST_LSM6DSL_ID }, { ST_LSM6DSM_DEV_NAME, ST_LSM6DSM_ID }, { ST_ISM330DLC_DEV_NAME, ST_ISM330DLC_ID }, { ST_LSM6DSO_DEV_NAME, ST_LSM6DSO_ID }, { ST_ASM330LHH_DEV_NAME, ST_ASM330LHH_ID }, { ST_LSM6DSOX_DEV_NAME, ST_LSM6DSOX_ID }, { ST_LSM6DSR_DEV_NAME, ST_LSM6DSR_ID }, { ST_LSM6DS3TRC_DEV_NAME, ST_LSM6DS3TRC_ID }, { ST_ISM330DHCX_DEV_NAME, ST_ISM330DHCX_ID }, { ST_LSM9DS1_DEV_NAME, ST_LSM9DS1_ID }, { ST_LSM6DS0_DEV_NAME, ST_LSM6DS0_ID }, { ST_LSM6DSRX_DEV_NAME, ST_LSM6DSRX_ID }, { ST_LSM6DST_DEV_NAME, ST_LSM6DST_ID }, { ST_LSM6DSOP_DEV_NAME, ST_LSM6DSOP_ID }, { ST_ASM330LHHX_DEV_NAME, ST_ASM330LHHX_ID }, { ST_LSM6DSTX_DEV_NAME, ST_LSM6DSTX_ID }, { ST_LSM6DSV_DEV_NAME, ST_LSM6DSV_ID }, { ST_LSM6DSV16X_DEV_NAME, ST_LSM6DSV16X_ID }, { ST_LSM6DSO16IS_DEV_NAME, ST_LSM6DSO16IS_ID }, { ST_ISM330IS_DEV_NAME, ST_ISM330IS_ID }, { ST_ASM330LHB_DEV_NAME, ST_ASM330LHB_ID }, {}, }; MODULE_DEVICE_TABLE(i2c, st_lsm6dsx_i2c_id_table); static struct i2c_driver st_lsm6dsx_driver = { .driver = { .name = "st_lsm6dsx_i2c", .pm = pm_sleep_ptr(&st_lsm6dsx_pm_ops), .of_match_table = st_lsm6dsx_i2c_of_match, .acpi_match_table = st_lsm6dsx_i2c_acpi_match, }, .probe = st_lsm6dsx_i2c_probe, .id_table = st_lsm6dsx_i2c_id_table, }; module_i2c_driver(st_lsm6dsx_driver); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics st_lsm6dsx i2c driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_LSM6DSX);
linux-master
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_i2c.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018 Synopsys, Inc. and/or its affiliates. * * Author: Vitor Soares <[email protected]> */ #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/i3c/device.h> #include <linux/i3c/master.h> #include <linux/slab.h> #include <linux/regmap.h> #include "st_lsm6dsx.h" static const struct i3c_device_id st_lsm6dsx_i3c_ids[] = { I3C_DEVICE(0x0104, 0x006C, (void *)ST_LSM6DSO_ID), I3C_DEVICE(0x0104, 0x006B, (void *)ST_LSM6DSR_ID), { /* sentinel */ }, }; MODULE_DEVICE_TABLE(i3c, st_lsm6dsx_i3c_ids); static int st_lsm6dsx_i3c_probe(struct i3c_device *i3cdev) { struct regmap_config st_lsm6dsx_i3c_regmap_config = { .reg_bits = 8, .val_bits = 8, }; const struct i3c_device_id *id = i3c_device_match_id(i3cdev, st_lsm6dsx_i3c_ids); struct regmap *regmap; regmap = devm_regmap_init_i3c(i3cdev, &st_lsm6dsx_i3c_regmap_config); if (IS_ERR(regmap)) { dev_err(&i3cdev->dev, "Failed to register i3c regmap %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return st_lsm6dsx_probe(&i3cdev->dev, 0, (uintptr_t)id->data, regmap); } static struct i3c_driver st_lsm6dsx_driver = { .driver = { .name = "st_lsm6dsx_i3c", .pm = pm_sleep_ptr(&st_lsm6dsx_pm_ops), }, .probe = st_lsm6dsx_i3c_probe, .id_table = st_lsm6dsx_i3c_ids, }; module_i3c_driver(st_lsm6dsx_driver); MODULE_AUTHOR("Vitor Soares <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics st_lsm6dsx i3c driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_LSM6DSX);
linux-master
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_i3c.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics st_lsm6dsx spi driver * * Copyright 2016 STMicroelectronics Inc. * * Lorenzo Bianconi <[email protected]> * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/spi/spi.h> #include <linux/slab.h> #include <linux/regmap.h> #include "st_lsm6dsx.h" static const struct regmap_config st_lsm6dsx_spi_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static int st_lsm6dsx_spi_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); int hw_id = id->driver_data; struct regmap *regmap; regmap = devm_regmap_init_spi(spi, &st_lsm6dsx_spi_regmap_config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Failed to register spi regmap %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return st_lsm6dsx_probe(&spi->dev, spi->irq, hw_id, regmap); } static const struct of_device_id st_lsm6dsx_spi_of_match[] = { { .compatible = "st,lsm6ds3", .data = (void *)ST_LSM6DS3_ID, }, { .compatible = "st,lsm6ds3h", .data = (void *)ST_LSM6DS3H_ID, }, { .compatible = "st,lsm6dsl", .data = (void *)ST_LSM6DSL_ID, }, { .compatible = "st,lsm6dsm", .data = (void *)ST_LSM6DSM_ID, }, { .compatible = "st,ism330dlc", .data = (void *)ST_ISM330DLC_ID, }, { .compatible = "st,lsm6dso", .data = (void *)ST_LSM6DSO_ID, }, { .compatible = "st,asm330lhh", .data = (void *)ST_ASM330LHH_ID, }, { .compatible = "st,lsm6dsox", .data = (void *)ST_LSM6DSOX_ID, }, { .compatible = "st,lsm6dsr", .data = (void *)ST_LSM6DSR_ID, }, { .compatible = "st,lsm6ds3tr-c", .data = (void *)ST_LSM6DS3TRC_ID, }, { .compatible = "st,ism330dhcx", .data = (void *)ST_ISM330DHCX_ID, }, { .compatible = "st,lsm9ds1-imu", .data = (void *)ST_LSM9DS1_ID, }, { .compatible = "st,lsm6ds0", .data = (void *)ST_LSM6DS0_ID, }, { .compatible = "st,lsm6dsrx", .data = (void *)ST_LSM6DSRX_ID, }, { .compatible = "st,lsm6dst", .data = (void *)ST_LSM6DST_ID, }, { .compatible = "st,lsm6dsop", .data = (void *)ST_LSM6DSOP_ID, }, { .compatible = "st,asm330lhhx", .data = (void *)ST_ASM330LHHX_ID, }, { .compatible = "st,lsm6dstx", .data = (void *)ST_LSM6DSTX_ID, }, { .compatible = "st,lsm6dsv", .data = (void *)ST_LSM6DSV_ID, }, { .compatible = "st,lsm6dsv16x", .data = (void *)ST_LSM6DSV16X_ID, }, { .compatible = "st,lsm6dso16is", .data = (void *)ST_LSM6DSO16IS_ID, }, { .compatible = "st,ism330is", .data = (void *)ST_ISM330IS_ID, }, { .compatible = "st,asm330lhb", .data = (void *)ST_ASM330LHB_ID, }, {}, }; MODULE_DEVICE_TABLE(of, st_lsm6dsx_spi_of_match); static const struct spi_device_id st_lsm6dsx_spi_id_table[] = { { ST_LSM6DS3_DEV_NAME, ST_LSM6DS3_ID }, { ST_LSM6DS3H_DEV_NAME, ST_LSM6DS3H_ID }, { ST_LSM6DSL_DEV_NAME, ST_LSM6DSL_ID }, { ST_LSM6DSM_DEV_NAME, ST_LSM6DSM_ID }, { ST_ISM330DLC_DEV_NAME, ST_ISM330DLC_ID }, { ST_LSM6DSO_DEV_NAME, ST_LSM6DSO_ID }, { ST_ASM330LHH_DEV_NAME, ST_ASM330LHH_ID }, { ST_LSM6DSOX_DEV_NAME, ST_LSM6DSOX_ID }, { ST_LSM6DSR_DEV_NAME, ST_LSM6DSR_ID }, { ST_LSM6DS3TRC_DEV_NAME, ST_LSM6DS3TRC_ID }, { ST_ISM330DHCX_DEV_NAME, ST_ISM330DHCX_ID }, { ST_LSM9DS1_DEV_NAME, ST_LSM9DS1_ID }, { ST_LSM6DS0_DEV_NAME, ST_LSM6DS0_ID }, { ST_LSM6DSRX_DEV_NAME, ST_LSM6DSRX_ID }, { ST_LSM6DST_DEV_NAME, ST_LSM6DST_ID }, { ST_LSM6DSOP_DEV_NAME, ST_LSM6DSOP_ID }, { ST_ASM330LHHX_DEV_NAME, ST_ASM330LHHX_ID }, { ST_LSM6DSTX_DEV_NAME, ST_LSM6DSTX_ID }, { ST_LSM6DSV_DEV_NAME, ST_LSM6DSV_ID }, { ST_LSM6DSV16X_DEV_NAME, ST_LSM6DSV16X_ID }, { ST_LSM6DSO16IS_DEV_NAME, ST_LSM6DSO16IS_ID }, { ST_ISM330IS_DEV_NAME, ST_ISM330IS_ID }, { ST_ASM330LHB_DEV_NAME, ST_ASM330LHB_ID }, {}, }; MODULE_DEVICE_TABLE(spi, st_lsm6dsx_spi_id_table); static struct spi_driver st_lsm6dsx_driver = { .driver = { .name = "st_lsm6dsx_spi", .pm = pm_sleep_ptr(&st_lsm6dsx_pm_ops), .of_match_table = st_lsm6dsx_spi_of_match, }, .probe = st_lsm6dsx_spi_probe, .id_table = st_lsm6dsx_spi_id_table, }; module_spi_driver(st_lsm6dsx_driver); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics st_lsm6dsx spi driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_LSM6DSX);
linux-master
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics st_lsm6dsx FIFO buffer library driver * * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C: * The FIFO buffer can be configured to store data from gyroscope and * accelerometer. Samples are queued without any tag according to a * specific pattern based on 'FIFO data sets' (6 bytes each): * - 1st data set is reserved for gyroscope data * - 2nd data set is reserved for accelerometer data * The FIFO pattern changes depending on the ODRs and decimation factors * assigned to the FIFO data sets. The first sequence of data stored in FIFO * buffer contains the data of all the enabled FIFO data sets * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the * value of the decimation factor and ODR set for each FIFO data set. * * LSM6DSO/LSM6DSOX/ASM330LHH/ASM330LHHX/LSM6DSR/LSM6DSRX/ISM330DHCX/ * LSM6DST/LSM6DSOP/LSM6DSTX/LSM6DSV/ASM330LHB: * The FIFO buffer can be configured to store data from gyroscope and * accelerometer. Each sample is queued with a tag (1B) indicating data * source (gyroscope, accelerometer, hw timer). * * FIFO supported modes: * - BYPASS: FIFO disabled * - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index * restarts from the beginning and the oldest sample is overwritten * * Copyright 2016 STMicroelectronics Inc. * * Lorenzo Bianconi <[email protected]> * Denis Ciocca <[email protected]> */ #include <linux/module.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/regmap.h> #include <linux/bitfield.h> #include <linux/platform_data/st_sensors_pdata.h> #include "st_lsm6dsx.h" #define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a #define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0) #define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3) #define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12) #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR 0x78 #define ST_LSM6DSX_REG_TS_RESET_ADDR 0x42 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08 #define ST_LSM6DSX_TS_RESET_VAL 0xaa struct st_lsm6dsx_decimator_entry { u8 decimator; u8 val; }; enum st_lsm6dsx_fifo_tag { ST_LSM6DSX_GYRO_TAG = 0x01, ST_LSM6DSX_ACC_TAG = 0x02, ST_LSM6DSX_TS_TAG = 0x04, ST_LSM6DSX_EXT0_TAG = 0x0f, ST_LSM6DSX_EXT1_TAG = 0x10, ST_LSM6DSX_EXT2_TAG = 0x11, }; static const struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = { { 0, 0x0 }, { 1, 0x1 }, { 2, 0x2 }, { 3, 0x3 }, { 4, 0x4 }, { 8, 0x5 }, { 16, 0x6 }, { 32, 0x7 }, }; static int st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr) { const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table); u32 decimator = max_odr / sensor->odr; int i; if (decimator > 1) decimator = round_down(decimator, 2); for (i = 0; i < max_size; i++) { if (st_lsm6dsx_decimator_table[i].decimator == decimator) break; } sensor->decimator = decimator; return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val; } static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw, u32 *max_odr, u32 *min_odr) { struct st_lsm6dsx_sensor *sensor; int i; *max_odr = 0, *min_odr = ~0; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; sensor = iio_priv(hw->iio_devs[i]); if (!(hw->enable_mask & BIT(sensor->id))) continue; *max_odr = max_t(u32, *max_odr, sensor->odr); *min_odr = min_t(u32, *min_odr, sensor->odr); } } static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr) { u8 sip = sensor->odr / min_odr; return sip > 1 ? round_down(sip, 2) : sip; } static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw) { const struct st_lsm6dsx_reg *ts_dec_reg; struct st_lsm6dsx_sensor *sensor; u16 sip = 0, ts_sip = 0; u32 max_odr, min_odr; int err = 0, i; u8 data; st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr); for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { const struct st_lsm6dsx_reg *dec_reg; if (!hw->iio_devs[i]) continue; sensor = iio_priv(hw->iio_devs[i]); /* update fifo decimators and sample in pattern */ if (hw->enable_mask & BIT(sensor->id)) { sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr); data = st_lsm6dsx_get_decimator_val(sensor, max_odr); } else { sensor->sip = 0; data = 0; } ts_sip = max_t(u16, ts_sip, sensor->sip); dec_reg = &hw->settings->decimator[sensor->id]; if (dec_reg->addr) { int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask); err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr, dec_reg->mask, val); if (err < 0) return err; } sip += sensor->sip; } hw->sip = sip + ts_sip; hw->ts_sip = ts_sip; /* * update hw ts decimator if necessary. Decimator for hw timestamp * is always 1 or 0 in order to have a ts sample for each data * sample in FIFO */ ts_dec_reg = &hw->settings->ts_settings.decimator; if (ts_dec_reg->addr) { int val, ts_dec = !!hw->ts_sip; val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask); err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr, ts_dec_reg->mask, val); } return err; } static int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw, enum st_lsm6dsx_fifo_mode fifo_mode) { unsigned int data; data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode); return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR, ST_LSM6DSX_FIFO_MODE_MASK, data); } static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor, bool enable) { struct st_lsm6dsx_hw *hw = sensor->hw; const struct st_lsm6dsx_reg *batch_reg; u8 data; batch_reg = &hw->settings->batch[sensor->id]; if (batch_reg->addr) { int val; if (enable) { int err; err = st_lsm6dsx_check_odr(sensor, sensor->odr, &data); if (err < 0) return err; } else { data = 0; } val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask); return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr, batch_reg->mask, val); } else { data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0; return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR, ST_LSM6DSX_FIFO_ODR_MASK, FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK, data)); } } int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark) { u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask; struct st_lsm6dsx_hw *hw = sensor->hw; struct st_lsm6dsx_sensor *cur_sensor; int i, err, data; __le16 wdata; if (!hw->sip) return 0; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; cur_sensor = iio_priv(hw->iio_devs[i]); if (!(hw->enable_mask & BIT(cur_sensor->id))) continue; cur_watermark = (cur_sensor == sensor) ? watermark : cur_sensor->watermark; fifo_watermark = min_t(u16, fifo_watermark, cur_watermark); } fifo_watermark = max_t(u16, fifo_watermark, hw->sip); fifo_watermark = (fifo_watermark / hw->sip) * hw->sip; fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl; mutex_lock(&hw->page_lock); err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1, &data); if (err < 0) goto out; fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask; fifo_watermark = ((data << 8) & ~fifo_th_mask) | (fifo_watermark & fifo_th_mask); wdata = cpu_to_le16(fifo_watermark); err = regmap_bulk_write(hw->regmap, hw->settings->fifo_ops.fifo_th.addr, &wdata, sizeof(wdata)); out: mutex_unlock(&hw->page_lock); return err; } static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw) { struct st_lsm6dsx_sensor *sensor; int i, err; /* reset hw ts counter */ err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR, ST_LSM6DSX_TS_RESET_VAL); if (err < 0) return err; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; sensor = iio_priv(hw->iio_devs[i]); /* * store enable buffer timestamp as reference for * hw timestamp */ sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]); } return 0; } int st_lsm6dsx_resume_fifo(struct st_lsm6dsx_hw *hw) { int err; /* reset hw ts counter */ err = st_lsm6dsx_reset_hw_ts(hw); if (err < 0) return err; return st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT); } /* * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN * in order to avoid a kmalloc for each bus access */ static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr, u8 *data, unsigned int data_len, unsigned int max_word_len) { unsigned int word_len, read_len = 0; int err; while (read_len < data_len) { word_len = min_t(unsigned int, data_len - read_len, max_word_len); err = st_lsm6dsx_read_locked(hw, addr, data + read_len, word_len); if (err < 0) return err; read_len += word_len; } return 0; } #define ST_LSM6DSX_IIO_BUFF_SIZE (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \ sizeof(s64)) + sizeof(s64)) /** * st_lsm6dsx_read_fifo() - hw FIFO read routine * @hw: Pointer to instance of struct st_lsm6dsx_hw. * * Read samples from the hw FIFO and push them to IIO buffers. * * Return: Number of bytes read from the FIFO */ int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw) { struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL; int err, sip, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset; u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE; u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask; bool reset_ts = false; __le16 fifo_status; s64 ts = 0; err = st_lsm6dsx_read_locked(hw, hw->settings->fifo_ops.fifo_diff.addr, &fifo_status, sizeof(fifo_status)); if (err < 0) { dev_err(hw->dev, "failed to read fifo status (err=%d)\n", err); return err; } if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK)) return 0; fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) * ST_LSM6DSX_CHAN_SIZE; fifo_len = (fifo_len / pattern_len) * pattern_len; acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]); if (hw->iio_devs[ST_LSM6DSX_ID_EXT0]) ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]); for (read_len = 0; read_len < fifo_len; read_len += pattern_len) { err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR, hw->buff, pattern_len, ST_LSM6DSX_MAX_WORD_LEN); if (err < 0) { dev_err(hw->dev, "failed to read pattern from fifo (err=%d)\n", err); return err; } /* * Data are written to the FIFO with a specific pattern * depending on the configured ODRs. The first sequence of data * stored in FIFO contains the data of all enabled sensors * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated * depending on the value of the decimation factor set for each * sensor. * * Supposing the FIFO is storing data from gyroscope and * accelerometer at different ODRs: * - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz * Since the gyroscope ODR is twice the accelerometer one, the * following pattern is repeated every 9 samples: * - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, .. */ ext_sip = ext_sensor ? ext_sensor->sip : 0; gyro_sip = gyro_sensor->sip; acc_sip = acc_sensor->sip; ts_sip = hw->ts_sip; offset = 0; sip = 0; while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) { if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) { memcpy(hw->scan[ST_LSM6DSX_ID_GYRO].channels, &hw->buff[offset], sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels)); offset += sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels); } if (acc_sip > 0 && !(sip % acc_sensor->decimator)) { memcpy(hw->scan[ST_LSM6DSX_ID_ACC].channels, &hw->buff[offset], sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels)); offset += sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels); } if (ext_sip > 0 && !(sip % ext_sensor->decimator)) { memcpy(hw->scan[ST_LSM6DSX_ID_EXT0].channels, &hw->buff[offset], sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels)); offset += sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels); } if (ts_sip-- > 0) { u8 data[ST_LSM6DSX_SAMPLE_SIZE]; memcpy(data, &hw->buff[offset], sizeof(data)); /* * hw timestamp is 3B long and it is stored * in FIFO using 6B as 4th FIFO data set * according to this schema: * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0] */ ts = data[1] << 16 | data[0] << 8 | data[3]; /* * check if hw timestamp engine is going to * reset (the sensor generates an interrupt * to signal the hw timestamp will reset in * 1.638s) */ if (!reset_ts && ts >= 0xff0000) reset_ts = true; ts *= hw->ts_gain; offset += ST_LSM6DSX_SAMPLE_SIZE; } if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) { /* * We need to discards gyro samples during * filters settling time */ if (gyro_sensor->samples_to_discard > 0) gyro_sensor->samples_to_discard--; else iio_push_to_buffers_with_timestamp( hw->iio_devs[ST_LSM6DSX_ID_GYRO], &hw->scan[ST_LSM6DSX_ID_GYRO], gyro_sensor->ts_ref + ts); gyro_sip--; } if (acc_sip > 0 && !(sip % acc_sensor->decimator)) { /* * We need to discards accel samples during * filters settling time */ if (acc_sensor->samples_to_discard > 0) acc_sensor->samples_to_discard--; else iio_push_to_buffers_with_timestamp( hw->iio_devs[ST_LSM6DSX_ID_ACC], &hw->scan[ST_LSM6DSX_ID_ACC], acc_sensor->ts_ref + ts); acc_sip--; } if (ext_sip > 0 && !(sip % ext_sensor->decimator)) { iio_push_to_buffers_with_timestamp( hw->iio_devs[ST_LSM6DSX_ID_EXT0], &hw->scan[ST_LSM6DSX_ID_EXT0], ext_sensor->ts_ref + ts); ext_sip--; } sip++; } } if (unlikely(reset_ts)) { err = st_lsm6dsx_reset_hw_ts(hw); if (err < 0) { dev_err(hw->dev, "failed to reset hw ts (err=%d)\n", err); return err; } } return read_len; } #define ST_LSM6DSX_INVALID_SAMPLE 0x7ffd static int st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag, u8 *data, s64 ts) { s16 val = le16_to_cpu(*(__le16 *)data); struct st_lsm6dsx_sensor *sensor; struct iio_dev *iio_dev; /* invalid sample during bootstrap phase */ if (val >= ST_LSM6DSX_INVALID_SAMPLE) return -EINVAL; /* * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled * channel */ switch (tag) { case ST_LSM6DSX_GYRO_TAG: iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO]; break; case ST_LSM6DSX_ACC_TAG: iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC]; break; case ST_LSM6DSX_EXT0_TAG: if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0]; else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)) iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1]; else iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2]; break; case ST_LSM6DSX_EXT1_TAG: if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) && (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))) iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1]; else iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2]; break; case ST_LSM6DSX_EXT2_TAG: iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2]; break; default: return -EINVAL; } sensor = iio_priv(iio_dev); iio_push_to_buffers_with_timestamp(iio_dev, data, ts + sensor->ts_ref); return 0; } /** * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine * @hw: Pointer to instance of struct st_lsm6dsx_hw. * * Read samples from the hw FIFO and push them to IIO buffers. * * Return: Number of bytes read from the FIFO */ int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw) { u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE; u16 fifo_len, fifo_diff_mask; /* * Alignment needed as this can ultimately be passed to a * call to iio_push_to_buffers_with_timestamp() which * must be passed a buffer that is aligned to 8 bytes so * as to allow insertion of a naturally aligned timestamp. */ u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE] __aligned(8); u8 tag; bool reset_ts = false; int i, err, read_len; __le16 fifo_status; s64 ts = 0; err = st_lsm6dsx_read_locked(hw, hw->settings->fifo_ops.fifo_diff.addr, &fifo_status, sizeof(fifo_status)); if (err < 0) { dev_err(hw->dev, "failed to read fifo status (err=%d)\n", err); return err; } fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask; fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) * ST_LSM6DSX_TAGGED_SAMPLE_SIZE; if (!fifo_len) return 0; for (read_len = 0; read_len < fifo_len; read_len += pattern_len) { err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR, hw->buff, pattern_len, ST_LSM6DSX_MAX_TAGGED_WORD_LEN); if (err < 0) { dev_err(hw->dev, "failed to read pattern from fifo (err=%d)\n", err); return err; } for (i = 0; i < pattern_len; i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) { memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE], ST_LSM6DSX_SAMPLE_SIZE); tag = hw->buff[i] >> 3; if (tag == ST_LSM6DSX_TS_TAG) { /* * hw timestamp is 4B long and it is stored * in FIFO according to this schema: * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16], * B3 = ts[31:24] */ ts = le32_to_cpu(*((__le32 *)iio_buff)); /* * check if hw timestamp engine is going to * reset (the sensor generates an interrupt * to signal the hw timestamp will reset in * 1.638s) */ if (!reset_ts && ts >= 0xffff0000) reset_ts = true; ts *= hw->ts_gain; } else { st_lsm6dsx_push_tagged_data(hw, tag, iio_buff, ts); } } } if (unlikely(reset_ts)) { err = st_lsm6dsx_reset_hw_ts(hw); if (err < 0) return err; } return read_len; } int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw) { int err; if (!hw->settings->fifo_ops.read_fifo) return -ENOTSUPP; mutex_lock(&hw->fifo_lock); hw->settings->fifo_ops.read_fifo(hw); err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS); mutex_unlock(&hw->fifo_lock); return err; } static void st_lsm6dsx_update_samples_to_discard(struct st_lsm6dsx_sensor *sensor) { const struct st_lsm6dsx_samples_to_discard *data; struct st_lsm6dsx_hw *hw = sensor->hw; int i; if (sensor->id != ST_LSM6DSX_ID_GYRO && sensor->id != ST_LSM6DSX_ID_ACC) return; /* check if drdy mask is supported in hw */ if (hw->settings->drdy_mask.addr) return; data = &hw->settings->samples_to_discard[sensor->id]; for (i = 0; i < ST_LSM6DSX_ODR_LIST_SIZE; i++) { if (data->val[i].milli_hz == sensor->odr) { sensor->samples_to_discard = data->val[i].samples; return; } } } int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable) { struct st_lsm6dsx_hw *hw = sensor->hw; u8 fifo_mask; int err; mutex_lock(&hw->conf_lock); if (enable) fifo_mask = hw->fifo_mask | BIT(sensor->id); else fifo_mask = hw->fifo_mask & ~BIT(sensor->id); if (hw->fifo_mask) { err = st_lsm6dsx_flush_fifo(hw); if (err < 0) goto out; } if (enable) st_lsm6dsx_update_samples_to_discard(sensor); err = st_lsm6dsx_device_set_enable(sensor, enable); if (err < 0) goto out; err = st_lsm6dsx_set_fifo_odr(sensor, enable); if (err < 0) goto out; err = st_lsm6dsx_update_decimators(hw); if (err < 0) goto out; err = st_lsm6dsx_update_watermark(sensor, sensor->watermark); if (err < 0) goto out; if (fifo_mask) { err = st_lsm6dsx_resume_fifo(hw); if (err < 0) goto out; } hw->fifo_mask = fifo_mask; out: mutex_unlock(&hw->conf_lock); return err; } static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; if (!hw->settings->fifo_ops.update_fifo) return -ENOTSUPP; return hw->settings->fifo_ops.update_fifo(sensor, true); } static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; if (!hw->settings->fifo_ops.update_fifo) return -ENOTSUPP; return hw->settings->fifo_ops.update_fifo(sensor, false); } static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = { .preenable = st_lsm6dsx_buffer_preenable, .postdisable = st_lsm6dsx_buffer_postdisable, }; int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw) { int i, ret; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; ret = devm_iio_kfifo_buffer_setup(hw->dev, hw->iio_devs[i], &st_lsm6dsx_buffer_ops); if (ret) return ret; } return 0; }
linux-master
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_buffer.c
/* * STMicroelectronics st_lsm6dsx i2c controller driver * * i2c controller embedded in lsm6dx series can connect up to four * slave devices using accelerometer sensor as trigger for i2c * read/write operations. Current implementation relies on SLV0 channel * for slave configuration and SLV{1,2,3} to read data and push them into * the hw FIFO * * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/bitfield.h> #include "st_lsm6dsx.h" #define ST_LSM6DSX_SLV_ADDR(n, base) ((base) + (n) * 3) #define ST_LSM6DSX_SLV_SUB_ADDR(n, base) ((base) + 1 + (n) * 3) #define ST_LSM6DSX_SLV_CONFIG(n, base) ((base) + 2 + (n) * 3) #define ST_LS6DSX_READ_OP_MASK GENMASK(2, 0) static const struct st_lsm6dsx_ext_dev_settings st_lsm6dsx_ext_dev_table[] = { /* LIS2MDL */ { .i2c_addr = { 0x1e }, .wai = { .addr = 0x4f, .val = 0x40, }, .id = ST_LSM6DSX_ID_MAGN, .odr_table = { .reg = { .addr = 0x60, .mask = GENMASK(3, 2), }, .odr_avl[0] = { 10000, 0x0 }, .odr_avl[1] = { 20000, 0x1 }, .odr_avl[2] = { 50000, 0x2 }, .odr_avl[3] = { 100000, 0x3 }, .odr_len = 4, }, .fs_table = { .fs_avl[0] = { .gain = 1500, .val = 0x0, }, /* 1500 uG/LSB */ .fs_len = 1, }, .temp_comp = { .addr = 0x60, .mask = BIT(7), }, .pwr_table = { .reg = { .addr = 0x60, .mask = GENMASK(1, 0), }, .off_val = 0x2, .on_val = 0x0, }, .off_canc = { .addr = 0x61, .mask = BIT(1), }, .bdu = { .addr = 0x62, .mask = BIT(4), }, .out = { .addr = 0x68, .len = 6, }, }, /* LIS3MDL */ { .i2c_addr = { 0x1e }, .wai = { .addr = 0x0f, .val = 0x3d, }, .id = ST_LSM6DSX_ID_MAGN, .odr_table = { .reg = { .addr = 0x20, .mask = GENMASK(4, 2), }, .odr_avl[0] = { 1000, 0x0 }, .odr_avl[1] = { 2000, 0x1 }, .odr_avl[2] = { 3000, 0x2 }, .odr_avl[3] = { 5000, 0x3 }, .odr_avl[4] = { 10000, 0x4 }, .odr_avl[5] = { 20000, 0x5 }, .odr_avl[6] = { 40000, 0x6 }, .odr_avl[7] = { 80000, 0x7 }, .odr_len = 8, }, .fs_table = { .reg = { .addr = 0x21, .mask = GENMASK(6, 5), }, .fs_avl[0] = { .gain = 146, .val = 0x00, }, /* 4000 uG/LSB */ .fs_avl[1] = { .gain = 292, .val = 0x01, }, /* 8000 uG/LSB */ .fs_avl[2] = { .gain = 438, .val = 0x02, }, /* 12000 uG/LSB */ .fs_avl[3] = { .gain = 584, .val = 0x03, }, /* 16000 uG/LSB */ .fs_len = 4, }, .pwr_table = { .reg = { .addr = 0x22, .mask = GENMASK(1, 0), }, .off_val = 0x2, .on_val = 0x0, }, .bdu = { .addr = 0x24, .mask = BIT(6), }, .out = { .addr = 0x28, .len = 6, }, }, }; static void st_lsm6dsx_shub_wait_complete(struct st_lsm6dsx_hw *hw) { struct st_lsm6dsx_sensor *sensor; u32 odr, timeout; sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); odr = (hw->enable_mask & BIT(ST_LSM6DSX_ID_ACC)) ? sensor->odr : 12500; /* set 10ms as minimum timeout for i2c slave configuration */ timeout = max_t(u32, 2000000U / odr + 1, 10); msleep(timeout); } /* * st_lsm6dsx_shub_read_output - read i2c controller register * * Read st_lsm6dsx i2c controller register */ int st_lsm6dsx_shub_read_output(struct st_lsm6dsx_hw *hw, u8 *data, int len) { const struct st_lsm6dsx_shub_settings *hub_settings; int err; mutex_lock(&hw->page_lock); hub_settings = &hw->settings->shub_settings; if (hub_settings->shub_out.sec_page) { err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; } err = regmap_bulk_read(hw->regmap, hub_settings->shub_out.addr, data, len); if (hub_settings->shub_out.sec_page) st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } /* * st_lsm6dsx_shub_write_reg - write i2c controller register * * Write st_lsm6dsx i2c controller register */ static int st_lsm6dsx_shub_write_reg(struct st_lsm6dsx_hw *hw, u8 addr, u8 *data, int len) { int err; mutex_lock(&hw->page_lock); err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; err = regmap_bulk_write(hw->regmap, addr, data, len); st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } static int st_lsm6dsx_shub_write_reg_with_mask(struct st_lsm6dsx_hw *hw, u8 addr, u8 mask, u8 val) { int err; mutex_lock(&hw->page_lock); err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; err = regmap_update_bits(hw->regmap, addr, mask, val); st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } static int st_lsm6dsx_shub_master_enable(struct st_lsm6dsx_sensor *sensor, bool enable) { const struct st_lsm6dsx_shub_settings *hub_settings; struct st_lsm6dsx_hw *hw = sensor->hw; unsigned int data; int err; /* enable acc sensor as trigger */ err = st_lsm6dsx_sensor_set_enable(sensor, enable); if (err < 0) return err; mutex_lock(&hw->page_lock); hub_settings = &hw->settings->shub_settings; if (hub_settings->master_en.sec_page) { err = st_lsm6dsx_set_page(hw, true); if (err < 0) goto out; } data = ST_LSM6DSX_SHIFT_VAL(enable, hub_settings->master_en.mask); err = regmap_update_bits(hw->regmap, hub_settings->master_en.addr, hub_settings->master_en.mask, data); if (hub_settings->master_en.sec_page) st_lsm6dsx_set_page(hw, false); out: mutex_unlock(&hw->page_lock); return err; } /* * st_lsm6dsx_shub_read - read data from slave device register * * Read data from slave device register. SLV0 is used for * one-shot read operation */ static int st_lsm6dsx_shub_read(struct st_lsm6dsx_sensor *sensor, u8 addr, u8 *data, int len) { const struct st_lsm6dsx_shub_settings *hub_settings; u8 config[3], slv_addr, slv_config = 0; struct st_lsm6dsx_hw *hw = sensor->hw; const struct st_lsm6dsx_reg *aux_sens; int err; hub_settings = &hw->settings->shub_settings; slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr); aux_sens = &hw->settings->shub_settings.aux_sens; /* do not overwrite aux_sens */ if (slv_addr + 2 == aux_sens->addr) slv_config = ST_LSM6DSX_SHIFT_VAL(3, aux_sens->mask); config[0] = (sensor->ext_info.addr << 1) | 1; config[1] = addr; config[2] = (len & ST_LS6DSX_READ_OP_MASK) | slv_config; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; err = st_lsm6dsx_shub_master_enable(sensor, true); if (err < 0) return err; st_lsm6dsx_shub_wait_complete(hw); err = st_lsm6dsx_shub_read_output(hw, data, len & ST_LS6DSX_READ_OP_MASK); if (err < 0) return err; st_lsm6dsx_shub_master_enable(sensor, false); config[0] = hub_settings->pause; config[1] = 0; config[2] = slv_config; return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); } /* * st_lsm6dsx_shub_write - write data to slave device register * * Write data from slave device register. SLV0 is used for * one-shot write operation */ static int st_lsm6dsx_shub_write(struct st_lsm6dsx_sensor *sensor, u8 addr, u8 *data, int len) { const struct st_lsm6dsx_shub_settings *hub_settings; struct st_lsm6dsx_hw *hw = sensor->hw; u8 config[2], slv_addr; int err, i; hub_settings = &hw->settings->shub_settings; if (hub_settings->wr_once.addr) { unsigned int data; data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->wr_once.mask); err = st_lsm6dsx_shub_write_reg_with_mask(hw, hub_settings->wr_once.addr, hub_settings->wr_once.mask, data); if (err < 0) return err; } slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr); config[0] = sensor->ext_info.addr << 1; for (i = 0 ; i < len; i++) { config[1] = addr + i; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; err = st_lsm6dsx_shub_write_reg(hw, hub_settings->dw_slv0_addr, &data[i], 1); if (err < 0) return err; err = st_lsm6dsx_shub_master_enable(sensor, true); if (err < 0) return err; st_lsm6dsx_shub_wait_complete(hw); st_lsm6dsx_shub_master_enable(sensor, false); } config[0] = hub_settings->pause; config[1] = 0; return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); } static int st_lsm6dsx_shub_write_with_mask(struct st_lsm6dsx_sensor *sensor, u8 addr, u8 mask, u8 val) { int err; u8 data; err = st_lsm6dsx_shub_read(sensor, addr, &data, sizeof(data)); if (err < 0) return err; data = ((data & ~mask) | (val << __ffs(mask) & mask)); return st_lsm6dsx_shub_write(sensor, addr, &data, sizeof(data)); } static int st_lsm6dsx_shub_get_odr_val(struct st_lsm6dsx_sensor *sensor, u32 odr, u16 *val) { const struct st_lsm6dsx_ext_dev_settings *settings; int i; settings = sensor->ext_info.settings; for (i = 0; i < settings->odr_table.odr_len; i++) { if (settings->odr_table.odr_avl[i].milli_hz == odr) break; } if (i == settings->odr_table.odr_len) return -EINVAL; *val = settings->odr_table.odr_avl[i].val; return 0; } static int st_lsm6dsx_shub_set_odr(struct st_lsm6dsx_sensor *sensor, u32 odr) { const struct st_lsm6dsx_ext_dev_settings *settings; u16 val; int err; err = st_lsm6dsx_shub_get_odr_val(sensor, odr, &val); if (err < 0) return err; settings = sensor->ext_info.settings; return st_lsm6dsx_shub_write_with_mask(sensor, settings->odr_table.reg.addr, settings->odr_table.reg.mask, val); } /* use SLV{1,2,3} for FIFO read operations */ static int st_lsm6dsx_shub_config_channels(struct st_lsm6dsx_sensor *sensor, bool enable) { const struct st_lsm6dsx_shub_settings *hub_settings; const struct st_lsm6dsx_ext_dev_settings *settings; u8 config[9] = {}, enable_mask, slv_addr; struct st_lsm6dsx_hw *hw = sensor->hw; struct st_lsm6dsx_sensor *cur_sensor; int i, j = 0; hub_settings = &hw->settings->shub_settings; if (enable) enable_mask = hw->enable_mask | BIT(sensor->id); else enable_mask = hw->enable_mask & ~BIT(sensor->id); for (i = ST_LSM6DSX_ID_EXT0; i <= ST_LSM6DSX_ID_EXT2; i++) { if (!hw->iio_devs[i]) continue; cur_sensor = iio_priv(hw->iio_devs[i]); if (!(enable_mask & BIT(cur_sensor->id))) continue; settings = cur_sensor->ext_info.settings; config[j] = (sensor->ext_info.addr << 1) | 1; config[j + 1] = settings->out.addr; config[j + 2] = (settings->out.len & ST_LS6DSX_READ_OP_MASK) | hub_settings->batch_en; j += 3; } slv_addr = ST_LSM6DSX_SLV_ADDR(1, hub_settings->slv0_addr); return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); } int st_lsm6dsx_shub_set_enable(struct st_lsm6dsx_sensor *sensor, bool enable) { const struct st_lsm6dsx_ext_dev_settings *settings; int err; err = st_lsm6dsx_shub_config_channels(sensor, enable); if (err < 0) return err; settings = sensor->ext_info.settings; if (enable) { err = st_lsm6dsx_shub_set_odr(sensor, sensor->ext_info.slv_odr); if (err < 0) return err; } else { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->odr_table.reg.addr, settings->odr_table.reg.mask, 0); if (err < 0) return err; } if (settings->pwr_table.reg.addr) { u8 val; val = enable ? settings->pwr_table.on_val : settings->pwr_table.off_val; err = st_lsm6dsx_shub_write_with_mask(sensor, settings->pwr_table.reg.addr, settings->pwr_table.reg.mask, val); if (err < 0) return err; } return st_lsm6dsx_shub_master_enable(sensor, enable); } static int st_lsm6dsx_shub_read_oneshot(struct st_lsm6dsx_sensor *sensor, struct iio_chan_spec const *ch, int *val) { int err, delay, len; u8 data[4]; err = st_lsm6dsx_shub_set_enable(sensor, true); if (err < 0) return err; delay = 1000000000 / sensor->ext_info.slv_odr; usleep_range(delay, 2 * delay); len = min_t(int, sizeof(data), ch->scan_type.realbits >> 3); err = st_lsm6dsx_shub_read(sensor, ch->address, data, len); if (err < 0) return err; err = st_lsm6dsx_shub_set_enable(sensor, false); if (err < 0) return err; switch (len) { case 2: *val = (s16)le16_to_cpu(*((__le16 *)data)); break; default: return -EINVAL; } return IIO_VAL_INT; } static int st_lsm6dsx_shub_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(iio_dev); if (ret) break; ret = st_lsm6dsx_shub_read_oneshot(sensor, ch, val); iio_device_release_direct_mode(iio_dev); break; case IIO_CHAN_INFO_SAMP_FREQ: *val = sensor->ext_info.slv_odr / 1000; *val2 = (sensor->ext_info.slv_odr % 1000) * 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = sensor->gain; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; } return ret; } static int st_lsm6dsx_shub_set_full_scale(struct st_lsm6dsx_sensor *sensor, u32 gain) { const struct st_lsm6dsx_fs_table_entry *fs_table; int i, err; fs_table = &sensor->ext_info.settings->fs_table; if (!fs_table->reg.addr) return -ENOTSUPP; for (i = 0; i < fs_table->fs_len; i++) { if (fs_table->fs_avl[i].gain == gain) break; } if (i == fs_table->fs_len) return -EINVAL; err = st_lsm6dsx_shub_write_with_mask(sensor, fs_table->reg.addr, fs_table->reg.mask, fs_table->fs_avl[i].val); if (err < 0) return err; sensor->gain = gain; return 0; } static int st_lsm6dsx_shub_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); int err; err = iio_device_claim_direct_mode(iio_dev); if (err) return err; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: { u16 data; val = val * 1000 + val2 / 1000; err = st_lsm6dsx_shub_get_odr_val(sensor, val, &data); if (!err) { struct st_lsm6dsx_hw *hw = sensor->hw; struct st_lsm6dsx_sensor *ref_sensor; u8 odr_val; int odr; ref_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); odr = st_lsm6dsx_check_odr(ref_sensor, val, &odr_val); if (odr < 0) { err = odr; goto release; } sensor->ext_info.slv_odr = val; sensor->odr = odr; } break; } case IIO_CHAN_INFO_SCALE: err = st_lsm6dsx_shub_set_full_scale(sensor, val2); break; default: err = -EINVAL; break; } release: iio_device_release_direct_mode(iio_dev); return err; } static ssize_t st_lsm6dsx_shub_sampling_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev)); const struct st_lsm6dsx_ext_dev_settings *settings; int i, len = 0; settings = sensor->ext_info.settings; for (i = 0; i < settings->odr_table.odr_len; i++) { u32 val = settings->odr_table.odr_avl[i].milli_hz; len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%03d ", val / 1000, val % 1000); } buf[len - 1] = '\n'; return len; } static ssize_t st_lsm6dsx_shub_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev)); const struct st_lsm6dsx_ext_dev_settings *settings; int i, len = 0; settings = sensor->ext_info.settings; for (i = 0; i < settings->fs_table.fs_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "0.%06u ", settings->fs_table.fs_avl[i].gain); buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_lsm6dsx_shub_sampling_freq_avail); static IIO_DEVICE_ATTR(in_scale_available, 0444, st_lsm6dsx_shub_scale_avail, NULL, 0); static struct attribute *st_lsm6dsx_shub_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group st_lsm6dsx_shub_attribute_group = { .attrs = st_lsm6dsx_shub_attributes, }; static const struct iio_info st_lsm6dsx_shub_info = { .attrs = &st_lsm6dsx_shub_attribute_group, .read_raw = st_lsm6dsx_shub_read_raw, .write_raw = st_lsm6dsx_shub_write_raw, .hwfifo_set_watermark = st_lsm6dsx_set_watermark, }; static struct iio_dev * st_lsm6dsx_shub_alloc_iiodev(struct st_lsm6dsx_hw *hw, enum st_lsm6dsx_sensor_id id, const struct st_lsm6dsx_ext_dev_settings *info, u8 i2c_addr, const char *name) { enum st_lsm6dsx_sensor_id ref_id = ST_LSM6DSX_ID_ACC; struct iio_chan_spec *ext_channels; struct st_lsm6dsx_sensor *sensor; struct iio_dev *iio_dev; iio_dev = devm_iio_device_alloc(hw->dev, sizeof(*sensor)); if (!iio_dev) return NULL; iio_dev->modes = INDIO_DIRECT_MODE; iio_dev->info = &st_lsm6dsx_shub_info; sensor = iio_priv(iio_dev); sensor->id = id; sensor->hw = hw; sensor->odr = hw->settings->odr_table[ref_id].odr_avl[0].milli_hz; sensor->ext_info.slv_odr = info->odr_table.odr_avl[0].milli_hz; sensor->gain = info->fs_table.fs_avl[0].gain; sensor->ext_info.settings = info; sensor->ext_info.addr = i2c_addr; sensor->watermark = 1; switch (info->id) { case ST_LSM6DSX_ID_MAGN: { const struct iio_chan_spec magn_channels[] = { ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr, IIO_MOD_X, 0), ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr + 2, IIO_MOD_Y, 1), ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr + 4, IIO_MOD_Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; ext_channels = devm_kzalloc(hw->dev, sizeof(magn_channels), GFP_KERNEL); if (!ext_channels) return NULL; memcpy(ext_channels, magn_channels, sizeof(magn_channels)); iio_dev->available_scan_masks = st_lsm6dsx_available_scan_masks; iio_dev->channels = ext_channels; iio_dev->num_channels = ARRAY_SIZE(magn_channels); scnprintf(sensor->name, sizeof(sensor->name), "%s_magn", name); break; } default: return NULL; } iio_dev->name = sensor->name; return iio_dev; } static int st_lsm6dsx_shub_init_device(struct st_lsm6dsx_sensor *sensor) { const struct st_lsm6dsx_ext_dev_settings *settings; int err; settings = sensor->ext_info.settings; if (settings->bdu.addr) { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->bdu.addr, settings->bdu.mask, 1); if (err < 0) return err; } if (settings->temp_comp.addr) { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->temp_comp.addr, settings->temp_comp.mask, 1); if (err < 0) return err; } if (settings->off_canc.addr) { err = st_lsm6dsx_shub_write_with_mask(sensor, settings->off_canc.addr, settings->off_canc.mask, 1); if (err < 0) return err; } return 0; } static int st_lsm6dsx_shub_check_wai(struct st_lsm6dsx_hw *hw, u8 *i2c_addr, const struct st_lsm6dsx_ext_dev_settings *settings) { const struct st_lsm6dsx_shub_settings *hub_settings; u8 config[3], data, slv_addr, slv_config = 0; const struct st_lsm6dsx_reg *aux_sens; struct st_lsm6dsx_sensor *sensor; bool found = false; int i, err; sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); hub_settings = &hw->settings->shub_settings; aux_sens = &hw->settings->shub_settings.aux_sens; slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr); /* do not overwrite aux_sens */ if (slv_addr + 2 == aux_sens->addr) slv_config = ST_LSM6DSX_SHIFT_VAL(3, aux_sens->mask); for (i = 0; i < ARRAY_SIZE(settings->i2c_addr); i++) { if (!settings->i2c_addr[i]) continue; /* read wai slave register */ config[0] = (settings->i2c_addr[i] << 1) | 0x1; config[1] = settings->wai.addr; config[2] = 0x1 | slv_config; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; err = st_lsm6dsx_shub_master_enable(sensor, true); if (err < 0) return err; st_lsm6dsx_shub_wait_complete(hw); err = st_lsm6dsx_shub_read_output(hw, &data, sizeof(data)); st_lsm6dsx_shub_master_enable(sensor, false); if (err < 0) return err; if (data != settings->wai.val) continue; *i2c_addr = settings->i2c_addr[i]; found = true; break; } /* reset SLV0 channel */ config[0] = hub_settings->pause; config[1] = 0; config[2] = slv_config; err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config)); if (err < 0) return err; return found ? 0 : -ENODEV; } int st_lsm6dsx_shub_probe(struct st_lsm6dsx_hw *hw, const char *name) { enum st_lsm6dsx_sensor_id id = ST_LSM6DSX_ID_EXT0; struct st_lsm6dsx_sensor *sensor; int err, i, num_ext_dev = 0; u8 i2c_addr = 0; for (i = 0; i < ARRAY_SIZE(st_lsm6dsx_ext_dev_table); i++) { err = st_lsm6dsx_shub_check_wai(hw, &i2c_addr, &st_lsm6dsx_ext_dev_table[i]); if (err == -ENODEV) continue; else if (err < 0) return err; hw->iio_devs[id] = st_lsm6dsx_shub_alloc_iiodev(hw, id, &st_lsm6dsx_ext_dev_table[i], i2c_addr, name); if (!hw->iio_devs[id]) return -ENOMEM; sensor = iio_priv(hw->iio_devs[id]); err = st_lsm6dsx_shub_init_device(sensor); if (err < 0) return err; if (++num_ext_dev >= hw->settings->shub_settings.num_ext_dev) break; id++; } return 0; }
linux-master
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_shub.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics st_lsm6dsx sensor driver * * The ST LSM6DSx IMU MEMS series consists of 3D digital accelerometer * and 3D digital gyroscope system-in-package with a digital I2C/SPI serial * interface standard output. * LSM6DSx IMU MEMS series has a dynamic user-selectable full-scale * acceleration range of +-2/+-4/+-8/+-16 g and an angular rate range of * +-125/+-245/+-500/+-1000/+-2000 dps * LSM6DSx series has an integrated First-In-First-Out (FIFO) buffer * allowing dynamic batching of sensor data. * LSM9DSx series is similar but includes an additional magnetometer, handled * by a different driver. * * Supported sensors: * - LSM6DS3: * - Accelerometer/Gyroscope supported ODR [Hz]: 12.5, 26, 52, 104, 208, 416 * - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16 * - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000 * - FIFO size: 8KB * * - LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C: * - Accelerometer/Gyroscope supported ODR [Hz]: 12.5, 26, 52, 104, 208, 416 * - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16 * - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000 * - FIFO size: 4KB * * - LSM6DSO/LSM6DSOX/ASM330LHH/ASM330LHHX/LSM6DSR/ISM330DHCX/LSM6DST/LSM6DSOP/ * LSM6DSTX/LSM6DSO16IS/ISM330IS: * - Accelerometer/Gyroscope supported ODR [Hz]: 12.5, 26, 52, 104, 208, 416, * 833 * - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16 * - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000 * - FIFO size: 3KB * * - LSM6DSV/LSM6DSV16X: * - Accelerometer/Gyroscope supported ODR [Hz]: 7.5, 15, 30, 60, 120, 240, * 480, 960 * - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16 * - Gyroscope supported full-scale [dps]: +-125/+-250/+-500/+-1000/+-2000 * - FIFO size: 3KB * * - LSM9DS1/LSM6DS0: * - Accelerometer supported ODR [Hz]: 10, 50, 119, 238, 476, 952 * - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16 * - Gyroscope supported ODR [Hz]: 15, 60, 119, 238, 476, 952 * - Gyroscope supported full-scale [dps]: +-245/+-500/+-2000 * - FIFO size: 32 * * Copyright 2016 STMicroelectronics Inc. * * Lorenzo Bianconi <[email protected]> * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/acpi.h> #include <linux/delay.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/minmax.h> #include <linux/pm.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/bitfield.h> #include <linux/platform_data/st_sensors_pdata.h> #include "st_lsm6dsx.h" #define ST_LSM6DSX_REG_WHOAMI_ADDR 0x0f #define ST_LSM6DSX_TS_SENSITIVITY 25000UL /* 25us */ static const struct iio_chan_spec st_lsm6dsx_acc_channels[] = { ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x28, IIO_MOD_X, 0), ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x2a, IIO_MOD_Y, 1), ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x2c, IIO_MOD_Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_chan_spec st_lsm6dsx_gyro_channels[] = { ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x22, IIO_MOD_X, 0), ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x24, IIO_MOD_Y, 1), ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x26, IIO_MOD_Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_chan_spec st_lsm6ds0_gyro_channels[] = { ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x18, IIO_MOD_X, 0), ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x1a, IIO_MOD_Y, 1), ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x1c, IIO_MOD_Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct st_lsm6dsx_settings st_lsm6dsx_sensor_settings[] = { { .reset = { .addr = 0x22, .mask = BIT(0), }, .boot = { .addr = 0x22, .mask = BIT(7), }, .bdu = { .addr = 0x22, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM9DS1_ID, .name = ST_LSM9DS1_DEV_NAME, .wai = 0x68, }, { .hw_id = ST_LSM6DS0_ID, .name = ST_LSM6DS0_DEV_NAME, .wai = 0x68, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6ds0_gyro_channels, .len = ARRAY_SIZE(st_lsm6ds0_gyro_channels), }, }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x20, .mask = GENMASK(7, 5), }, .odr_avl[0] = { 10000, 0x01 }, .odr_avl[1] = { 50000, 0x02 }, .odr_avl[2] = { 119000, 0x03 }, .odr_avl[3] = { 238000, 0x04 }, .odr_avl[4] = { 476000, 0x05 }, .odr_avl[5] = { 952000, 0x06 }, .odr_len = 6, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 5), }, .odr_avl[0] = { 14900, 0x01 }, .odr_avl[1] = { 59500, 0x02 }, .odr_avl[2] = { 119000, 0x03 }, .odr_avl[3] = { 238000, 0x04 }, .odr_avl[4] = { 476000, 0x05 }, .odr_avl[5] = { 952000, 0x06 }, .odr_len = 6, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x20, .mask = GENMASK(4, 3), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(732000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x10, .mask = GENMASK(4, 3), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 3, }, }, .irq_config = { .irq1 = { .addr = 0x0c, .mask = BIT(3), }, .irq2 = { .addr = 0x0d, .mask = BIT(3), }, .hla = { .addr = 0x22, .mask = BIT(5), }, .od = { .addr = 0x22, .mask = BIT(4), }, }, .fifo_ops = { .max_size = 32, }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM6DS3_ID, .name = ST_LSM6DS3_DEV_NAME, .wai = 0x69, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_len = 6, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_len = 6, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 4, }, }, .irq_config = { .irq1 = { .addr = 0x0d, .mask = BIT(3), }, .irq2 = { .addr = 0x0e, .mask = BIT(3), }, .lir = { .addr = 0x58, .mask = BIT(0), }, .irq1_func = { .addr = 0x5e, .mask = BIT(5), }, .irq2_func = { .addr = 0x5f, .mask = BIT(5), }, .hla = { .addr = 0x12, .mask = BIT(5), }, .od = { .addr = 0x12, .mask = BIT(4), }, }, .decimator = { [ST_LSM6DSX_ID_ACC] = { .addr = 0x08, .mask = GENMASK(2, 0), }, [ST_LSM6DSX_ID_GYRO] = { .addr = 0x08, .mask = GENMASK(5, 3), }, }, .fifo_ops = { .update_fifo = st_lsm6dsx_update_fifo, .read_fifo = st_lsm6dsx_read_fifo, .fifo_th = { .addr = 0x06, .mask = GENMASK(11, 0), }, .fifo_diff = { .addr = 0x3a, .mask = GENMASK(11, 0), }, .max_size = 1365, .th_wl = 3, /* 1LSB = 2B */ }, .ts_settings = { .timer_en = { .addr = 0x58, .mask = BIT(7), }, .hr_timer = { .addr = 0x5c, .mask = BIT(4), }, .fifo_en = { .addr = 0x07, .mask = BIT(7), }, .decimator = { .addr = 0x09, .mask = GENMASK(5, 3), }, }, .event_settings = { .wakeup_reg = { .addr = 0x5B, .mask = GENMASK(5, 0), }, .wakeup_src_reg = 0x1b, .wakeup_src_status_mask = BIT(3), .wakeup_src_z_mask = BIT(0), .wakeup_src_y_mask = BIT(1), .wakeup_src_x_mask = BIT(2), }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM6DS3H_ID, .name = ST_LSM6DS3H_DEV_NAME, .wai = 0x69, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_len = 6, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_len = 6, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 4, }, }, .irq_config = { .irq1 = { .addr = 0x0d, .mask = BIT(3), }, .irq2 = { .addr = 0x0e, .mask = BIT(3), }, .lir = { .addr = 0x58, .mask = BIT(0), }, .irq1_func = { .addr = 0x5e, .mask = BIT(5), }, .irq2_func = { .addr = 0x5f, .mask = BIT(5), }, .hla = { .addr = 0x12, .mask = BIT(5), }, .od = { .addr = 0x12, .mask = BIT(4), }, }, .decimator = { [ST_LSM6DSX_ID_ACC] = { .addr = 0x08, .mask = GENMASK(2, 0), }, [ST_LSM6DSX_ID_GYRO] = { .addr = 0x08, .mask = GENMASK(5, 3), }, }, .fifo_ops = { .update_fifo = st_lsm6dsx_update_fifo, .read_fifo = st_lsm6dsx_read_fifo, .fifo_th = { .addr = 0x06, .mask = GENMASK(11, 0), }, .fifo_diff = { .addr = 0x3a, .mask = GENMASK(11, 0), }, .max_size = 682, .th_wl = 3, /* 1LSB = 2B */ }, .ts_settings = { .timer_en = { .addr = 0x58, .mask = BIT(7), }, .hr_timer = { .addr = 0x5c, .mask = BIT(4), }, .fifo_en = { .addr = 0x07, .mask = BIT(7), }, .decimator = { .addr = 0x09, .mask = GENMASK(5, 3), }, }, .event_settings = { .wakeup_reg = { .addr = 0x5B, .mask = GENMASK(5, 0), }, .wakeup_src_reg = 0x1b, .wakeup_src_status_mask = BIT(3), .wakeup_src_z_mask = BIT(0), .wakeup_src_y_mask = BIT(1), .wakeup_src_x_mask = BIT(2), }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM6DSL_ID, .name = ST_LSM6DSL_DEV_NAME, .wai = 0x6a, }, { .hw_id = ST_LSM6DSM_ID, .name = ST_LSM6DSM_DEV_NAME, .wai = 0x6a, }, { .hw_id = ST_ISM330DLC_ID, .name = ST_ISM330DLC_DEV_NAME, .wai = 0x6a, }, { .hw_id = ST_LSM6DS3TRC_ID, .name = ST_LSM6DS3TRC_DEV_NAME, .wai = 0x6a, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_len = 6, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_len = 6, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 4, }, }, .samples_to_discard = { [ST_LSM6DSX_ID_ACC] = { .val[0] = { 12500, 1 }, .val[1] = { 26000, 1 }, .val[2] = { 52000, 1 }, .val[3] = { 104000, 2 }, .val[4] = { 208000, 2 }, .val[5] = { 416000, 2 }, }, [ST_LSM6DSX_ID_GYRO] = { .val[0] = { 12500, 2 }, .val[1] = { 26000, 5 }, .val[2] = { 52000, 7 }, .val[3] = { 104000, 12 }, .val[4] = { 208000, 20 }, .val[5] = { 416000, 36 }, }, }, .irq_config = { .irq1 = { .addr = 0x0d, .mask = BIT(3), }, .irq2 = { .addr = 0x0e, .mask = BIT(3), }, .lir = { .addr = 0x58, .mask = BIT(0), }, .irq1_func = { .addr = 0x5e, .mask = BIT(5), }, .irq2_func = { .addr = 0x5f, .mask = BIT(5), }, .hla = { .addr = 0x12, .mask = BIT(5), }, .od = { .addr = 0x12, .mask = BIT(4), }, }, .decimator = { [ST_LSM6DSX_ID_ACC] = { .addr = 0x08, .mask = GENMASK(2, 0), }, [ST_LSM6DSX_ID_GYRO] = { .addr = 0x08, .mask = GENMASK(5, 3), }, [ST_LSM6DSX_ID_EXT0] = { .addr = 0x09, .mask = GENMASK(2, 0), }, }, .fifo_ops = { .update_fifo = st_lsm6dsx_update_fifo, .read_fifo = st_lsm6dsx_read_fifo, .fifo_th = { .addr = 0x06, .mask = GENMASK(10, 0), }, .fifo_diff = { .addr = 0x3a, .mask = GENMASK(10, 0), }, .max_size = 682, .th_wl = 3, /* 1LSB = 2B */ }, .ts_settings = { .timer_en = { .addr = 0x19, .mask = BIT(5), }, .hr_timer = { .addr = 0x5c, .mask = BIT(4), }, .fifo_en = { .addr = 0x07, .mask = BIT(7), }, .decimator = { .addr = 0x09, .mask = GENMASK(5, 3), }, }, .shub_settings = { .page_mux = { .addr = 0x01, .mask = BIT(7), }, .master_en = { .addr = 0x1a, .mask = BIT(0), }, .pullup_en = { .addr = 0x1a, .mask = BIT(3), }, .aux_sens = { .addr = 0x04, .mask = GENMASK(5, 4), }, .wr_once = { .addr = 0x07, .mask = BIT(5), }, .emb_func = { .addr = 0x19, .mask = BIT(2), }, .num_ext_dev = 1, .shub_out = { .addr = 0x2e, }, .slv0_addr = 0x02, .dw_slv0_addr = 0x0e, .pause = 0x7, }, .event_settings = { .enable_reg = { .addr = 0x58, .mask = BIT(7), }, .wakeup_reg = { .addr = 0x5B, .mask = GENMASK(5, 0), }, .wakeup_src_reg = 0x1b, .wakeup_src_status_mask = BIT(3), .wakeup_src_z_mask = BIT(0), .wakeup_src_y_mask = BIT(1), .wakeup_src_x_mask = BIT(2), }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM6DSR_ID, .name = ST_LSM6DSR_DEV_NAME, .wai = 0x6b, }, { .hw_id = ST_ISM330DHCX_ID, .name = ST_ISM330DHCX_DEV_NAME, .wai = 0x6b, }, { .hw_id = ST_LSM6DSRX_ID, .name = ST_LSM6DSRX_DEV_NAME, .wai = 0x6b, }, { .hw_id = ST_LSM6DSO_ID, .name = ST_LSM6DSO_DEV_NAME, .wai = 0x6c, }, { .hw_id = ST_LSM6DSOX_ID, .name = ST_LSM6DSOX_DEV_NAME, .wai = 0x6c, }, { .hw_id = ST_LSM6DST_ID, .name = ST_LSM6DST_DEV_NAME, .wai = 0x6d, }, { .hw_id = ST_ASM330LHHX_ID, .name = ST_ASM330LHHX_DEV_NAME, .wai = 0x6b, }, { .hw_id = ST_LSM6DSTX_ID, .name = ST_LSM6DSTX_DEV_NAME, .wai = 0x6d, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .drdy_mask = { .addr = 0x13, .mask = BIT(3), }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_avl[6] = { 833000, 0x07 }, .odr_len = 7, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_avl[6] = { 833000, 0x07 }, .odr_len = 7, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 4, }, }, .irq_config = { .irq1 = { .addr = 0x0d, .mask = BIT(3), }, .irq2 = { .addr = 0x0e, .mask = BIT(3), }, .lir = { .addr = 0x56, .mask = BIT(0), }, .clear_on_read = { .addr = 0x56, .mask = BIT(6), }, .irq1_func = { .addr = 0x5e, .mask = BIT(5), }, .irq2_func = { .addr = 0x5f, .mask = BIT(5), }, .hla = { .addr = 0x12, .mask = BIT(5), }, .od = { .addr = 0x12, .mask = BIT(4), }, }, .batch = { [ST_LSM6DSX_ID_ACC] = { .addr = 0x09, .mask = GENMASK(3, 0), }, [ST_LSM6DSX_ID_GYRO] = { .addr = 0x09, .mask = GENMASK(7, 4), }, }, .fifo_ops = { .update_fifo = st_lsm6dsx_update_fifo, .read_fifo = st_lsm6dsx_read_tagged_fifo, .fifo_th = { .addr = 0x07, .mask = GENMASK(8, 0), }, .fifo_diff = { .addr = 0x3a, .mask = GENMASK(9, 0), }, .max_size = 512, .th_wl = 1, }, .ts_settings = { .timer_en = { .addr = 0x19, .mask = BIT(5), }, .decimator = { .addr = 0x0a, .mask = GENMASK(7, 6), }, .freq_fine = 0x63, }, .shub_settings = { .page_mux = { .addr = 0x01, .mask = BIT(6), }, .master_en = { .sec_page = true, .addr = 0x14, .mask = BIT(2), }, .pullup_en = { .sec_page = true, .addr = 0x14, .mask = BIT(3), }, .aux_sens = { .addr = 0x14, .mask = GENMASK(1, 0), }, .wr_once = { .addr = 0x14, .mask = BIT(6), }, .num_ext_dev = 3, .shub_out = { .sec_page = true, .addr = 0x02, }, .slv0_addr = 0x15, .dw_slv0_addr = 0x21, .batch_en = BIT(3), }, .event_settings = { .enable_reg = { .addr = 0x58, .mask = BIT(7), }, .wakeup_reg = { .addr = 0x5b, .mask = GENMASK(5, 0), }, .wakeup_src_reg = 0x1b, .wakeup_src_status_mask = BIT(3), .wakeup_src_z_mask = BIT(0), .wakeup_src_y_mask = BIT(1), .wakeup_src_x_mask = BIT(2), }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_ASM330LHH_ID, .name = ST_ASM330LHH_DEV_NAME, .wai = 0x6b, }, { .hw_id = ST_LSM6DSOP_ID, .name = ST_LSM6DSOP_DEV_NAME, .wai = 0x6c, }, { .hw_id = ST_ASM330LHB_ID, .name = ST_ASM330LHB_DEV_NAME, .wai = 0x6b, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .drdy_mask = { .addr = 0x13, .mask = BIT(3), }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_avl[6] = { 833000, 0x07 }, .odr_len = 7, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_avl[6] = { 833000, 0x07 }, .odr_len = 7, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 4, }, }, .irq_config = { .irq1 = { .addr = 0x0d, .mask = BIT(3), }, .irq2 = { .addr = 0x0e, .mask = BIT(3), }, .lir = { .addr = 0x56, .mask = BIT(0), }, .clear_on_read = { .addr = 0x56, .mask = BIT(6), }, .irq1_func = { .addr = 0x5e, .mask = BIT(5), }, .irq2_func = { .addr = 0x5f, .mask = BIT(5), }, .hla = { .addr = 0x12, .mask = BIT(5), }, .od = { .addr = 0x12, .mask = BIT(4), }, }, .batch = { [ST_LSM6DSX_ID_ACC] = { .addr = 0x09, .mask = GENMASK(3, 0), }, [ST_LSM6DSX_ID_GYRO] = { .addr = 0x09, .mask = GENMASK(7, 4), }, }, .fifo_ops = { .update_fifo = st_lsm6dsx_update_fifo, .read_fifo = st_lsm6dsx_read_tagged_fifo, .fifo_th = { .addr = 0x07, .mask = GENMASK(8, 0), }, .fifo_diff = { .addr = 0x3a, .mask = GENMASK(9, 0), }, .max_size = 512, .th_wl = 1, }, .ts_settings = { .timer_en = { .addr = 0x19, .mask = BIT(5), }, .decimator = { .addr = 0x0a, .mask = GENMASK(7, 6), }, .freq_fine = 0x63, }, .event_settings = { .enable_reg = { .addr = 0x58, .mask = BIT(7), }, .wakeup_reg = { .addr = 0x5B, .mask = GENMASK(5, 0), }, .wakeup_src_reg = 0x1b, .wakeup_src_status_mask = BIT(3), .wakeup_src_z_mask = BIT(0), .wakeup_src_y_mask = BIT(1), .wakeup_src_x_mask = BIT(2), }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM6DSV_ID, .name = ST_LSM6DSV_DEV_NAME, .wai = 0x70, }, { .hw_id = ST_LSM6DSV16X_ID, .name = ST_LSM6DSV16X_DEV_NAME, .wai = 0x70, }, }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .drdy_mask = { .addr = 0x13, .mask = BIT(3), }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 0), }, .odr_avl[0] = { 7500, 0x02 }, .odr_avl[1] = { 15000, 0x03 }, .odr_avl[2] = { 30000, 0x04 }, .odr_avl[3] = { 60000, 0x05 }, .odr_avl[4] = { 120000, 0x06 }, .odr_avl[5] = { 240000, 0x07 }, .odr_avl[6] = { 480000, 0x08 }, .odr_avl[7] = { 960000, 0x09 }, .odr_len = 8, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 0), }, .odr_avl[0] = { 7500, 0x02 }, .odr_avl[1] = { 15000, 0x03 }, .odr_avl[2] = { 30000, 0x04 }, .odr_avl[3] = { 60000, 0x05 }, .odr_avl[4] = { 120000, 0x06 }, .odr_avl[5] = { 240000, 0x07 }, .odr_avl[6] = { 480000, 0x08 }, .odr_avl[7] = { 960000, 0x09 }, .odr_len = 8, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x17, .mask = GENMASK(1, 0), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x1 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x2 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x3 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x15, .mask = GENMASK(3, 0), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x1 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x2 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x3 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x4 }, .fs_len = 4, }, }, .irq_config = { .irq1 = { .addr = 0x0d, .mask = BIT(3), }, .irq2 = { .addr = 0x0e, .mask = BIT(3), }, .lir = { .addr = 0x56, .mask = BIT(0), }, .irq1_func = { .addr = 0x5e, .mask = BIT(5), }, .irq2_func = { .addr = 0x5f, .mask = BIT(5), }, .hla = { .addr = 0x03, .mask = BIT(4), }, .od = { .addr = 0x03, .mask = BIT(3), }, }, .batch = { [ST_LSM6DSX_ID_ACC] = { .addr = 0x09, .mask = GENMASK(3, 0), }, [ST_LSM6DSX_ID_GYRO] = { .addr = 0x09, .mask = GENMASK(7, 4), }, }, .fifo_ops = { .update_fifo = st_lsm6dsx_update_fifo, .read_fifo = st_lsm6dsx_read_tagged_fifo, .fifo_th = { .addr = 0x07, .mask = GENMASK(7, 0), }, .fifo_diff = { .addr = 0x1b, .mask = GENMASK(8, 0), }, .max_size = 512, .th_wl = 1, }, .ts_settings = { .timer_en = { .addr = 0x50, .mask = BIT(6), }, .decimator = { .addr = 0x0a, .mask = GENMASK(7, 6), }, .freq_fine = 0x4f, }, .shub_settings = { .page_mux = { .addr = 0x01, .mask = BIT(6), }, .master_en = { .sec_page = true, .addr = 0x14, .mask = BIT(2), }, .pullup_en = { .addr = 0x03, .mask = BIT(6), }, .aux_sens = { .addr = 0x14, .mask = GENMASK(1, 0), }, .wr_once = { .addr = 0x14, .mask = BIT(6), }, .num_ext_dev = 3, .shub_out = { .sec_page = true, .addr = 0x02, }, .slv0_addr = 0x15, .dw_slv0_addr = 0x21, .batch_en = BIT(3), }, .event_settings = { .enable_reg = { .addr = 0x50, .mask = BIT(7), }, .wakeup_reg = { .addr = 0x5b, .mask = GENMASK(5, 0), }, .wakeup_src_reg = 0x45, .wakeup_src_status_mask = BIT(3), .wakeup_src_z_mask = BIT(0), .wakeup_src_y_mask = BIT(1), .wakeup_src_x_mask = BIT(2), }, }, { .reset = { .addr = 0x12, .mask = BIT(0), }, .boot = { .addr = 0x12, .mask = BIT(7), }, .bdu = { .addr = 0x12, .mask = BIT(6), }, .id = { { .hw_id = ST_LSM6DSO16IS_ID, .name = ST_LSM6DSO16IS_DEV_NAME, .wai = 0x22, }, { .hw_id = ST_ISM330IS_ID, .name = ST_ISM330IS_DEV_NAME, .wai = 0x22, } }, .channels = { [ST_LSM6DSX_ID_ACC] = { .chan = st_lsm6dsx_acc_channels, .len = ARRAY_SIZE(st_lsm6dsx_acc_channels), }, [ST_LSM6DSX_ID_GYRO] = { .chan = st_lsm6dsx_gyro_channels, .len = ARRAY_SIZE(st_lsm6dsx_gyro_channels), }, }, .odr_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_avl[6] = { 833000, 0x07 }, .odr_len = 7, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(7, 4), }, .odr_avl[0] = { 12500, 0x01 }, .odr_avl[1] = { 26000, 0x02 }, .odr_avl[2] = { 52000, 0x03 }, .odr_avl[3] = { 104000, 0x04 }, .odr_avl[4] = { 208000, 0x05 }, .odr_avl[5] = { 416000, 0x06 }, .odr_avl[6] = { 833000, 0x07 }, .odr_len = 7, }, }, .fs_table = { [ST_LSM6DSX_ID_ACC] = { .reg = { .addr = 0x10, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_G_TO_M_S_2(61000), 0x0 }, .fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 }, .fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 }, .fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 }, .fs_len = 4, }, [ST_LSM6DSX_ID_GYRO] = { .reg = { .addr = 0x11, .mask = GENMASK(3, 2), }, .fs_avl[0] = { IIO_DEGREE_TO_RAD(8750000), 0x0 }, .fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 }, .fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 }, .fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 }, .fs_len = 4, }, }, .irq_config = { .hla = { .addr = 0x12, .mask = BIT(5), }, .od = { .addr = 0x12, .mask = BIT(4), }, }, .shub_settings = { .page_mux = { .addr = 0x01, .mask = BIT(6), }, .master_en = { .sec_page = true, .addr = 0x14, .mask = BIT(2), }, .pullup_en = { .sec_page = true, .addr = 0x14, .mask = BIT(3), }, .aux_sens = { .addr = 0x14, .mask = GENMASK(1, 0), }, .wr_once = { .addr = 0x14, .mask = BIT(6), }, .num_ext_dev = 3, .shub_out = { .sec_page = true, .addr = 0x02, }, .slv0_addr = 0x15, .dw_slv0_addr = 0x21, }, }, }; int st_lsm6dsx_set_page(struct st_lsm6dsx_hw *hw, bool enable) { const struct st_lsm6dsx_shub_settings *hub_settings; unsigned int data; int err; hub_settings = &hw->settings->shub_settings; data = ST_LSM6DSX_SHIFT_VAL(enable, hub_settings->page_mux.mask); err = regmap_update_bits(hw->regmap, hub_settings->page_mux.addr, hub_settings->page_mux.mask, data); usleep_range(100, 150); return err; } static int st_lsm6dsx_check_whoami(struct st_lsm6dsx_hw *hw, int id, const char **name) { int err, i, j, data; for (i = 0; i < ARRAY_SIZE(st_lsm6dsx_sensor_settings); i++) { for (j = 0; j < ST_LSM6DSX_MAX_ID; j++) { if (st_lsm6dsx_sensor_settings[i].id[j].name && id == st_lsm6dsx_sensor_settings[i].id[j].hw_id) break; } if (j < ST_LSM6DSX_MAX_ID) break; } if (i == ARRAY_SIZE(st_lsm6dsx_sensor_settings)) { dev_err(hw->dev, "unsupported hw id [%02x]\n", id); return -ENODEV; } err = regmap_read(hw->regmap, ST_LSM6DSX_REG_WHOAMI_ADDR, &data); if (err < 0) { dev_err(hw->dev, "failed to read whoami register\n"); return err; } if (data != st_lsm6dsx_sensor_settings[i].id[j].wai) { dev_err(hw->dev, "unsupported whoami [%02x]\n", data); return -ENODEV; } *name = st_lsm6dsx_sensor_settings[i].id[j].name; hw->settings = &st_lsm6dsx_sensor_settings[i]; return 0; } static int st_lsm6dsx_set_full_scale(struct st_lsm6dsx_sensor *sensor, u32 gain) { const struct st_lsm6dsx_fs_table_entry *fs_table; unsigned int data; int i, err; fs_table = &sensor->hw->settings->fs_table[sensor->id]; for (i = 0; i < fs_table->fs_len; i++) { if (fs_table->fs_avl[i].gain == gain) break; } if (i == fs_table->fs_len) return -EINVAL; data = ST_LSM6DSX_SHIFT_VAL(fs_table->fs_avl[i].val, fs_table->reg.mask); err = st_lsm6dsx_update_bits_locked(sensor->hw, fs_table->reg.addr, fs_table->reg.mask, data); if (err < 0) return err; sensor->gain = gain; return 0; } int st_lsm6dsx_check_odr(struct st_lsm6dsx_sensor *sensor, u32 odr, u8 *val) { const struct st_lsm6dsx_odr_table_entry *odr_table; int i; odr_table = &sensor->hw->settings->odr_table[sensor->id]; for (i = 0; i < odr_table->odr_len; i++) { /* * ext devices can run at different odr respect to * accel sensor */ if (odr_table->odr_avl[i].milli_hz >= odr) break; } if (i == odr_table->odr_len) return -EINVAL; *val = odr_table->odr_avl[i].val; return odr_table->odr_avl[i].milli_hz; } static int st_lsm6dsx_check_odr_dependency(struct st_lsm6dsx_hw *hw, u32 odr, enum st_lsm6dsx_sensor_id id) { struct st_lsm6dsx_sensor *ref = iio_priv(hw->iio_devs[id]); if (odr > 0) { if (hw->enable_mask & BIT(id)) return max_t(u32, ref->odr, odr); else return odr; } else { return (hw->enable_mask & BIT(id)) ? ref->odr : 0; } } static int st_lsm6dsx_set_odr(struct st_lsm6dsx_sensor *sensor, u32 req_odr) { struct st_lsm6dsx_sensor *ref_sensor = sensor; struct st_lsm6dsx_hw *hw = sensor->hw; const struct st_lsm6dsx_reg *reg; unsigned int data; u8 val = 0; int err; switch (sensor->id) { case ST_LSM6DSX_ID_GYRO: break; case ST_LSM6DSX_ID_EXT0: case ST_LSM6DSX_ID_EXT1: case ST_LSM6DSX_ID_EXT2: case ST_LSM6DSX_ID_ACC: { u32 odr; int i; /* * i2c embedded controller relies on the accelerometer sensor as * bus read/write trigger so we need to enable accel device * at odr = max(accel_odr, ext_odr) in order to properly * communicate with i2c slave devices */ ref_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); for (i = ST_LSM6DSX_ID_ACC; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i] || i == sensor->id) continue; odr = st_lsm6dsx_check_odr_dependency(hw, req_odr, i); if (odr != req_odr) /* device already configured */ return 0; } break; } default: /* should never occur */ return -EINVAL; } if (req_odr > 0) { err = st_lsm6dsx_check_odr(ref_sensor, req_odr, &val); if (err < 0) return err; } reg = &hw->settings->odr_table[ref_sensor->id].reg; data = ST_LSM6DSX_SHIFT_VAL(val, reg->mask); return st_lsm6dsx_update_bits_locked(hw, reg->addr, reg->mask, data); } static int __st_lsm6dsx_sensor_set_enable(struct st_lsm6dsx_sensor *sensor, bool enable) { struct st_lsm6dsx_hw *hw = sensor->hw; u32 odr = enable ? sensor->odr : 0; int err; err = st_lsm6dsx_set_odr(sensor, odr); if (err < 0) return err; if (enable) hw->enable_mask |= BIT(sensor->id); else hw->enable_mask &= ~BIT(sensor->id); return 0; } static int st_lsm6dsx_check_events(struct st_lsm6dsx_sensor *sensor, bool enable) { struct st_lsm6dsx_hw *hw = sensor->hw; if (sensor->id == ST_LSM6DSX_ID_GYRO || enable) return 0; return hw->enable_event; } int st_lsm6dsx_sensor_set_enable(struct st_lsm6dsx_sensor *sensor, bool enable) { if (st_lsm6dsx_check_events(sensor, enable)) return 0; return __st_lsm6dsx_sensor_set_enable(sensor, enable); } static int st_lsm6dsx_read_oneshot(struct st_lsm6dsx_sensor *sensor, u8 addr, int *val) { struct st_lsm6dsx_hw *hw = sensor->hw; int err, delay; __le16 data; err = st_lsm6dsx_sensor_set_enable(sensor, true); if (err < 0) return err; /* * we need to wait for sensor settling time before * reading data in order to avoid corrupted samples */ delay = 1000000000 / sensor->odr; usleep_range(3 * delay, 4 * delay); err = st_lsm6dsx_read_locked(hw, addr, &data, sizeof(data)); if (err < 0) return err; if (!hw->enable_event) { err = st_lsm6dsx_sensor_set_enable(sensor, false); if (err < 0) return err; } *val = (s16)le16_to_cpu(data); return IIO_VAL_INT; } static int st_lsm6dsx_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(iio_dev); if (ret) break; ret = st_lsm6dsx_read_oneshot(sensor, ch->address, val); iio_device_release_direct_mode(iio_dev); break; case IIO_CHAN_INFO_SAMP_FREQ: *val = sensor->odr / 1000; *val2 = (sensor->odr % 1000) * 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = sensor->gain; ret = IIO_VAL_INT_PLUS_NANO; break; default: ret = -EINVAL; break; } return ret; } static int st_lsm6dsx_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); int err; err = iio_device_claim_direct_mode(iio_dev); if (err) return err; switch (mask) { case IIO_CHAN_INFO_SCALE: err = st_lsm6dsx_set_full_scale(sensor, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: { u8 data; val = val * 1000 + val2 / 1000; val = st_lsm6dsx_check_odr(sensor, val, &data); if (val < 0) err = val; else sensor->odr = val; break; } default: err = -EINVAL; break; } iio_device_release_direct_mode(iio_dev); return err; } static int st_lsm6dsx_event_setup(struct st_lsm6dsx_hw *hw, int state) { const struct st_lsm6dsx_reg *reg; unsigned int data; int err; if (!hw->settings->irq_config.irq1_func.addr) return -ENOTSUPP; reg = &hw->settings->event_settings.enable_reg; if (reg->addr) { data = ST_LSM6DSX_SHIFT_VAL(state, reg->mask); err = st_lsm6dsx_update_bits_locked(hw, reg->addr, reg->mask, data); if (err < 0) return err; } /* Enable wakeup interrupt */ data = ST_LSM6DSX_SHIFT_VAL(state, hw->irq_routing->mask); return st_lsm6dsx_update_bits_locked(hw, hw->irq_routing->addr, hw->irq_routing->mask, data); } static int st_lsm6dsx_read_event(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; *val2 = 0; *val = hw->event_threshold; return IIO_VAL_INT; } static int st_lsm6dsx_write_event(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; const struct st_lsm6dsx_reg *reg; unsigned int data; int err; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; if (val < 0 || val > 31) return -EINVAL; reg = &hw->settings->event_settings.wakeup_reg; data = ST_LSM6DSX_SHIFT_VAL(val, reg->mask); err = st_lsm6dsx_update_bits_locked(hw, reg->addr, reg->mask, data); if (err < 0) return -EINVAL; hw->event_threshold = val; return 0; } static int st_lsm6dsx_read_event_config(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; return !!(hw->enable_event & BIT(chan->channel2)); } static int st_lsm6dsx_write_event_config(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; u8 enable_event; int err; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; if (state) { enable_event = hw->enable_event | BIT(chan->channel2); /* do not enable events if they are already enabled */ if (hw->enable_event) goto out; } else { enable_event = hw->enable_event & ~BIT(chan->channel2); /* only turn off sensor if no events is enabled */ if (enable_event) goto out; } /* stop here if no changes have been made */ if (hw->enable_event == enable_event) return 0; err = st_lsm6dsx_event_setup(hw, state); if (err < 0) return err; mutex_lock(&hw->conf_lock); if (enable_event || !(hw->fifo_mask & BIT(sensor->id))) err = __st_lsm6dsx_sensor_set_enable(sensor, state); mutex_unlock(&hw->conf_lock); if (err < 0) return err; out: hw->enable_event = enable_event; return 0; } int st_lsm6dsx_set_watermark(struct iio_dev *iio_dev, unsigned int val) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; int err; val = clamp_val(val, 1, hw->settings->fifo_ops.max_size); mutex_lock(&hw->conf_lock); err = st_lsm6dsx_update_watermark(sensor, val); mutex_unlock(&hw->conf_lock); if (err < 0) return err; sensor->watermark = val; return 0; } static ssize_t st_lsm6dsx_sysfs_sampling_frequency_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct st_lsm6dsx_sensor *sensor = iio_priv(dev_to_iio_dev(dev)); const struct st_lsm6dsx_odr_table_entry *odr_table; int i, len = 0; odr_table = &sensor->hw->settings->odr_table[sensor->id]; for (i = 0; i < odr_table->odr_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%03d ", odr_table->odr_avl[i].milli_hz / 1000, odr_table->odr_avl[i].milli_hz % 1000); buf[len - 1] = '\n'; return len; } static ssize_t st_lsm6dsx_sysfs_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct st_lsm6dsx_sensor *sensor = iio_priv(dev_to_iio_dev(dev)); const struct st_lsm6dsx_fs_table_entry *fs_table; struct st_lsm6dsx_hw *hw = sensor->hw; int i, len = 0; fs_table = &hw->settings->fs_table[sensor->id]; for (i = 0; i < fs_table->fs_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09u ", fs_table->fs_avl[i].gain); buf[len - 1] = '\n'; return len; } static int st_lsm6dsx_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: case IIO_ACCEL: return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } default: return IIO_VAL_INT_PLUS_MICRO; } } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_lsm6dsx_sysfs_sampling_frequency_avail); static IIO_DEVICE_ATTR(in_accel_scale_available, 0444, st_lsm6dsx_sysfs_scale_avail, NULL, 0); static IIO_DEVICE_ATTR(in_anglvel_scale_available, 0444, st_lsm6dsx_sysfs_scale_avail, NULL, 0); static struct attribute *st_lsm6dsx_acc_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group st_lsm6dsx_acc_attribute_group = { .attrs = st_lsm6dsx_acc_attributes, }; static const struct iio_info st_lsm6dsx_acc_info = { .attrs = &st_lsm6dsx_acc_attribute_group, .read_raw = st_lsm6dsx_read_raw, .write_raw = st_lsm6dsx_write_raw, .read_event_value = st_lsm6dsx_read_event, .write_event_value = st_lsm6dsx_write_event, .read_event_config = st_lsm6dsx_read_event_config, .write_event_config = st_lsm6dsx_write_event_config, .hwfifo_set_watermark = st_lsm6dsx_set_watermark, .write_raw_get_fmt = st_lsm6dsx_write_raw_get_fmt, }; static struct attribute *st_lsm6dsx_gyro_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_anglvel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group st_lsm6dsx_gyro_attribute_group = { .attrs = st_lsm6dsx_gyro_attributes, }; static const struct iio_info st_lsm6dsx_gyro_info = { .attrs = &st_lsm6dsx_gyro_attribute_group, .read_raw = st_lsm6dsx_read_raw, .write_raw = st_lsm6dsx_write_raw, .hwfifo_set_watermark = st_lsm6dsx_set_watermark, .write_raw_get_fmt = st_lsm6dsx_write_raw_get_fmt, }; static int st_lsm6dsx_get_drdy_pin(struct st_lsm6dsx_hw *hw, int *drdy_pin) { struct device *dev = hw->dev; if (!dev_fwnode(dev)) return -EINVAL; return device_property_read_u32(dev, "st,drdy-int-pin", drdy_pin); } static int st_lsm6dsx_get_drdy_reg(struct st_lsm6dsx_hw *hw, const struct st_lsm6dsx_reg **drdy_reg) { int err = 0, drdy_pin; if (st_lsm6dsx_get_drdy_pin(hw, &drdy_pin) < 0) { struct st_sensors_platform_data *pdata; struct device *dev = hw->dev; pdata = (struct st_sensors_platform_data *)dev->platform_data; drdy_pin = pdata ? pdata->drdy_int_pin : 1; } switch (drdy_pin) { case 1: hw->irq_routing = &hw->settings->irq_config.irq1_func; *drdy_reg = &hw->settings->irq_config.irq1; break; case 2: hw->irq_routing = &hw->settings->irq_config.irq2_func; *drdy_reg = &hw->settings->irq_config.irq2; break; default: dev_err(hw->dev, "unsupported data ready pin\n"); err = -EINVAL; break; } return err; } static int st_lsm6dsx_init_shub(struct st_lsm6dsx_hw *hw) { const struct st_lsm6dsx_shub_settings *hub_settings; struct st_sensors_platform_data *pdata; struct device *dev = hw->dev; unsigned int data; int err = 0; hub_settings = &hw->settings->shub_settings; pdata = (struct st_sensors_platform_data *)dev->platform_data; if ((dev_fwnode(dev) && device_property_read_bool(dev, "st,pullups")) || (pdata && pdata->pullups)) { if (hub_settings->pullup_en.sec_page) { err = st_lsm6dsx_set_page(hw, true); if (err < 0) return err; } data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->pullup_en.mask); err = regmap_update_bits(hw->regmap, hub_settings->pullup_en.addr, hub_settings->pullup_en.mask, data); if (hub_settings->pullup_en.sec_page) st_lsm6dsx_set_page(hw, false); if (err < 0) return err; } if (hub_settings->aux_sens.addr) { /* configure aux sensors */ err = st_lsm6dsx_set_page(hw, true); if (err < 0) return err; data = ST_LSM6DSX_SHIFT_VAL(3, hub_settings->aux_sens.mask); err = regmap_update_bits(hw->regmap, hub_settings->aux_sens.addr, hub_settings->aux_sens.mask, data); st_lsm6dsx_set_page(hw, false); if (err < 0) return err; } if (hub_settings->emb_func.addr) { data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->emb_func.mask); err = regmap_update_bits(hw->regmap, hub_settings->emb_func.addr, hub_settings->emb_func.mask, data); } return err; } static int st_lsm6dsx_init_hw_timer(struct st_lsm6dsx_hw *hw) { const struct st_lsm6dsx_hw_ts_settings *ts_settings; int err, val; ts_settings = &hw->settings->ts_settings; /* enable hw timestamp generation if necessary */ if (ts_settings->timer_en.addr) { val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->timer_en.mask); err = regmap_update_bits(hw->regmap, ts_settings->timer_en.addr, ts_settings->timer_en.mask, val); if (err < 0) return err; } /* enable high resolution for hw ts timer if necessary */ if (ts_settings->hr_timer.addr) { val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->hr_timer.mask); err = regmap_update_bits(hw->regmap, ts_settings->hr_timer.addr, ts_settings->hr_timer.mask, val); if (err < 0) return err; } /* enable ts queueing in FIFO if necessary */ if (ts_settings->fifo_en.addr) { val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->fifo_en.mask); err = regmap_update_bits(hw->regmap, ts_settings->fifo_en.addr, ts_settings->fifo_en.mask, val); if (err < 0) return err; } /* calibrate timestamp sensitivity */ hw->ts_gain = ST_LSM6DSX_TS_SENSITIVITY; if (ts_settings->freq_fine) { err = regmap_read(hw->regmap, ts_settings->freq_fine, &val); if (err < 0) return err; /* * linearize the AN5192 formula: * 1 / (1 + x) ~= 1 - x (Taylor’s Series) * ttrim[s] = 1 / (40000 * (1 + 0.0015 * val)) * ttrim[ns] ~= 25000 - 37.5 * val * ttrim[ns] ~= 25000 - (37500 * val) / 1000 */ hw->ts_gain -= ((s8)val * 37500) / 1000; } return 0; } static int st_lsm6dsx_reset_device(struct st_lsm6dsx_hw *hw) { const struct st_lsm6dsx_reg *reg; int err; /* * flush hw FIFO before device reset in order to avoid * possible races on interrupt line 1. If the first interrupt * line is asserted during hw reset the device will work in * I3C-only mode (if it is supported) */ err = st_lsm6dsx_flush_fifo(hw); if (err < 0 && err != -ENOTSUPP) return err; /* device sw reset */ reg = &hw->settings->reset; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; msleep(50); /* reload trimming parameter */ reg = &hw->settings->boot; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; msleep(50); return 0; } static int st_lsm6dsx_init_device(struct st_lsm6dsx_hw *hw) { const struct st_lsm6dsx_reg *reg; int err; err = st_lsm6dsx_reset_device(hw); if (err < 0) return err; /* enable Block Data Update */ reg = &hw->settings->bdu; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; /* enable FIFO watermak interrupt */ err = st_lsm6dsx_get_drdy_reg(hw, &reg); if (err < 0) return err; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; /* enable Latched interrupts for device events */ if (hw->settings->irq_config.lir.addr) { reg = &hw->settings->irq_config.lir; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; /* enable clear on read for latched interrupts */ if (hw->settings->irq_config.clear_on_read.addr) { reg = &hw->settings->irq_config.clear_on_read; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; } } /* enable drdy-mas if available */ if (hw->settings->drdy_mask.addr) { reg = &hw->settings->drdy_mask; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; } err = st_lsm6dsx_init_shub(hw); if (err < 0) return err; return st_lsm6dsx_init_hw_timer(hw); } static struct iio_dev *st_lsm6dsx_alloc_iiodev(struct st_lsm6dsx_hw *hw, enum st_lsm6dsx_sensor_id id, const char *name) { struct st_lsm6dsx_sensor *sensor; struct iio_dev *iio_dev; iio_dev = devm_iio_device_alloc(hw->dev, sizeof(*sensor)); if (!iio_dev) return NULL; iio_dev->modes = INDIO_DIRECT_MODE; iio_dev->available_scan_masks = st_lsm6dsx_available_scan_masks; iio_dev->channels = hw->settings->channels[id].chan; iio_dev->num_channels = hw->settings->channels[id].len; sensor = iio_priv(iio_dev); sensor->id = id; sensor->hw = hw; sensor->odr = hw->settings->odr_table[id].odr_avl[0].milli_hz; sensor->gain = hw->settings->fs_table[id].fs_avl[0].gain; sensor->watermark = 1; switch (id) { case ST_LSM6DSX_ID_ACC: iio_dev->info = &st_lsm6dsx_acc_info; scnprintf(sensor->name, sizeof(sensor->name), "%s_accel", name); break; case ST_LSM6DSX_ID_GYRO: iio_dev->info = &st_lsm6dsx_gyro_info; scnprintf(sensor->name, sizeof(sensor->name), "%s_gyro", name); break; default: return NULL; } iio_dev->name = sensor->name; return iio_dev; } static bool st_lsm6dsx_report_motion_event(struct st_lsm6dsx_hw *hw) { const struct st_lsm6dsx_event_settings *event_settings; int err, data; s64 timestamp; if (!hw->enable_event) return false; event_settings = &hw->settings->event_settings; err = st_lsm6dsx_read_locked(hw, event_settings->wakeup_src_reg, &data, sizeof(data)); if (err < 0) return false; timestamp = iio_get_time_ns(hw->iio_devs[ST_LSM6DSX_ID_ACC]); if ((data & hw->settings->event_settings.wakeup_src_z_mask) && (hw->enable_event & BIT(IIO_MOD_Z))) iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC], IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); if ((data & hw->settings->event_settings.wakeup_src_y_mask) && (hw->enable_event & BIT(IIO_MOD_Y))) iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC], IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); if ((data & hw->settings->event_settings.wakeup_src_x_mask) && (hw->enable_event & BIT(IIO_MOD_X))) iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC], IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); return data & event_settings->wakeup_src_status_mask; } static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private) { struct st_lsm6dsx_hw *hw = private; int fifo_len = 0, len; bool event; event = st_lsm6dsx_report_motion_event(hw); if (!hw->settings->fifo_ops.read_fifo) return event ? IRQ_HANDLED : IRQ_NONE; /* * If we are using edge IRQs, new samples can arrive while * processing current interrupt since there are no hw * guarantees the irq line stays "low" long enough to properly * detect the new interrupt. In this case the new sample will * be missed. * Polling FIFO status register allow us to read new * samples even if the interrupt arrives while processing * previous data and the timeslot where the line is "low" is * too short to be properly detected. */ do { mutex_lock(&hw->fifo_lock); len = hw->settings->fifo_ops.read_fifo(hw); mutex_unlock(&hw->fifo_lock); if (len > 0) fifo_len += len; } while (len > 0); return fifo_len || event ? IRQ_HANDLED : IRQ_NONE; } static irqreturn_t st_lsm6dsx_sw_trigger_handler_thread(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *iio_dev = pf->indio_dev; struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; if (sensor->id == ST_LSM6DSX_ID_EXT0 || sensor->id == ST_LSM6DSX_ID_EXT1 || sensor->id == ST_LSM6DSX_ID_EXT2) st_lsm6dsx_shub_read_output(hw, (u8 *)hw->scan[sensor->id].channels, sizeof(hw->scan[sensor->id].channels)); else st_lsm6dsx_read_locked(hw, iio_dev->channels[0].address, hw->scan[sensor->id].channels, sizeof(hw->scan[sensor->id].channels)); iio_push_to_buffers_with_timestamp(iio_dev, &hw->scan[sensor->id], iio_get_time_ns(iio_dev)); iio_trigger_notify_done(iio_dev->trig); return IRQ_HANDLED; } static int st_lsm6dsx_irq_setup(struct st_lsm6dsx_hw *hw) { struct st_sensors_platform_data *pdata; const struct st_lsm6dsx_reg *reg; struct device *dev = hw->dev; unsigned long irq_type; bool irq_active_low; int err; irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq)); switch (irq_type) { case IRQF_TRIGGER_HIGH: case IRQF_TRIGGER_RISING: irq_active_low = false; break; case IRQF_TRIGGER_LOW: case IRQF_TRIGGER_FALLING: irq_active_low = true; break; default: dev_info(hw->dev, "mode %lx unsupported\n", irq_type); return -EINVAL; } reg = &hw->settings->irq_config.hla; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(irq_active_low, reg->mask)); if (err < 0) return err; pdata = (struct st_sensors_platform_data *)dev->platform_data; if ((dev_fwnode(dev) && device_property_read_bool(dev, "drive-open-drain")) || (pdata && pdata->open_drain)) { reg = &hw->settings->irq_config.od; err = regmap_update_bits(hw->regmap, reg->addr, reg->mask, ST_LSM6DSX_SHIFT_VAL(1, reg->mask)); if (err < 0) return err; irq_type |= IRQF_SHARED; } err = devm_request_threaded_irq(hw->dev, hw->irq, NULL, st_lsm6dsx_handler_thread, irq_type | IRQF_ONESHOT, "lsm6dsx", hw); if (err) { dev_err(hw->dev, "failed to request trigger irq %d\n", hw->irq); return err; } return 0; } static int st_lsm6dsx_sw_buffer_preenable(struct iio_dev *iio_dev) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); return st_lsm6dsx_device_set_enable(sensor, true); } static int st_lsm6dsx_sw_buffer_postdisable(struct iio_dev *iio_dev) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); return st_lsm6dsx_device_set_enable(sensor, false); } static const struct iio_buffer_setup_ops st_lsm6dsx_sw_buffer_ops = { .preenable = st_lsm6dsx_sw_buffer_preenable, .postdisable = st_lsm6dsx_sw_buffer_postdisable, }; static int st_lsm6dsx_sw_buffers_setup(struct st_lsm6dsx_hw *hw) { int i; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { int err; if (!hw->iio_devs[i]) continue; err = devm_iio_triggered_buffer_setup(hw->dev, hw->iio_devs[i], NULL, st_lsm6dsx_sw_trigger_handler_thread, &st_lsm6dsx_sw_buffer_ops); if (err) return err; } return 0; } static int st_lsm6dsx_init_regulators(struct device *dev) { /* vdd-vddio power regulators */ static const char * const regulators[] = { "vdd", "vddio" }; int err; err = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulators), regulators); if (err) return dev_err_probe(dev, err, "failed to enable regulators\n"); msleep(50); return 0; } #ifdef CONFIG_ACPI static int lsm6dsx_get_acpi_mount_matrix(struct device *dev, struct iio_mount_matrix *orientation) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_device *adev = ACPI_COMPANION(dev); union acpi_object *obj, *elements; acpi_status status; int i, j, val[3]; char *str; if (!has_acpi_companion(dev)) return -EINVAL; if (!acpi_has_method(adev->handle, "ROTM")) return -EINVAL; status = acpi_evaluate_object(adev->handle, "ROTM", NULL, &buffer); if (ACPI_FAILURE(status)) { dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status); return -EINVAL; } obj = buffer.pointer; if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3) goto unknown_format; elements = obj->package.elements; for (i = 0; i < 3; i++) { if (elements[i].type != ACPI_TYPE_STRING) goto unknown_format; str = elements[i].string.pointer; if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3) goto unknown_format; for (j = 0; j < 3; j++) { switch (val[j]) { case -1: str = "-1"; break; case 0: str = "0"; break; case 1: str = "1"; break; default: goto unknown_format; } orientation->rotation[i * 3 + j] = str; } } kfree(buffer.pointer); return 0; unknown_format: dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n"); kfree(buffer.pointer); return -EINVAL; } #else static int lsm6dsx_get_acpi_mount_matrix(struct device *dev, struct iio_mount_matrix *orientation) { return -EOPNOTSUPP; } #endif int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id, struct regmap *regmap) { struct st_sensors_platform_data *pdata = dev->platform_data; const struct st_lsm6dsx_shub_settings *hub_settings; struct st_lsm6dsx_hw *hw; const char *name = NULL; int i, err; hw = devm_kzalloc(dev, sizeof(*hw), GFP_KERNEL); if (!hw) return -ENOMEM; dev_set_drvdata(dev, (void *)hw); mutex_init(&hw->fifo_lock); mutex_init(&hw->conf_lock); mutex_init(&hw->page_lock); err = st_lsm6dsx_init_regulators(dev); if (err) return err; hw->buff = devm_kzalloc(dev, ST_LSM6DSX_BUFF_SIZE, GFP_KERNEL); if (!hw->buff) return -ENOMEM; hw->dev = dev; hw->irq = irq; hw->regmap = regmap; err = st_lsm6dsx_check_whoami(hw, hw_id, &name); if (err < 0) return err; for (i = 0; i < ST_LSM6DSX_ID_EXT0; i++) { hw->iio_devs[i] = st_lsm6dsx_alloc_iiodev(hw, i, name); if (!hw->iio_devs[i]) return -ENOMEM; } err = st_lsm6dsx_init_device(hw); if (err < 0) return err; hub_settings = &hw->settings->shub_settings; if (hub_settings->master_en.addr && (!dev_fwnode(dev) || !device_property_read_bool(dev, "st,disable-sensor-hub"))) { err = st_lsm6dsx_shub_probe(hw, name); if (err < 0) return err; } if (hw->irq > 0) { err = st_lsm6dsx_irq_setup(hw); if (err < 0) return err; err = st_lsm6dsx_fifo_setup(hw); if (err < 0) return err; } if (!hw->irq || !hw->settings->fifo_ops.read_fifo) { /* * Rely on sw triggers (e.g. hr-timers) if irq pin is not * connected of if the device does not support HW FIFO */ err = st_lsm6dsx_sw_buffers_setup(hw); if (err) return err; } err = lsm6dsx_get_acpi_mount_matrix(hw->dev, &hw->orientation); if (err) { err = iio_read_mount_matrix(hw->dev, &hw->orientation); if (err) return err; } for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; err = devm_iio_device_register(hw->dev, hw->iio_devs[i]); if (err) return err; } if ((dev_fwnode(dev) && device_property_read_bool(dev, "wakeup-source")) || (pdata && pdata->wakeup_source)) device_init_wakeup(dev, true); return 0; } EXPORT_SYMBOL_NS(st_lsm6dsx_probe, IIO_LSM6DSX); static int st_lsm6dsx_suspend(struct device *dev) { struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev); struct st_lsm6dsx_sensor *sensor; int i, err = 0; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; sensor = iio_priv(hw->iio_devs[i]); if (!(hw->enable_mask & BIT(sensor->id))) continue; if (device_may_wakeup(dev) && sensor->id == ST_LSM6DSX_ID_ACC && hw->enable_event) { /* Enable wake from IRQ */ enable_irq_wake(hw->irq); continue; } err = st_lsm6dsx_device_set_enable(sensor, false); if (err < 0) return err; hw->suspend_mask |= BIT(sensor->id); } if (hw->fifo_mask) err = st_lsm6dsx_flush_fifo(hw); return err; } static int st_lsm6dsx_resume(struct device *dev) { struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev); struct st_lsm6dsx_sensor *sensor; int i, err = 0; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { if (!hw->iio_devs[i]) continue; sensor = iio_priv(hw->iio_devs[i]); if (device_may_wakeup(dev) && sensor->id == ST_LSM6DSX_ID_ACC && hw->enable_event) disable_irq_wake(hw->irq); if (!(hw->suspend_mask & BIT(sensor->id))) continue; err = st_lsm6dsx_device_set_enable(sensor, true); if (err < 0) return err; hw->suspend_mask &= ~BIT(sensor->id); } if (hw->fifo_mask) err = st_lsm6dsx_resume_fifo(hw); return err; } EXPORT_NS_SIMPLE_DEV_PM_OPS(st_lsm6dsx_pm_ops, st_lsm6dsx_suspend, st_lsm6dsx_resume, IIO_LSM6DSX); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics st_lsm6dsx driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Sensortek STK8BA50 3-Axis Accelerometer * * Copyright (c) 2015, Intel Corporation. * * STK8BA50 7-bit I2C address: 0x18. */ #include <linux/acpi.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #define STK8BA50_REG_XOUT 0x02 #define STK8BA50_REG_YOUT 0x04 #define STK8BA50_REG_ZOUT 0x06 #define STK8BA50_REG_RANGE 0x0F #define STK8BA50_REG_BWSEL 0x10 #define STK8BA50_REG_POWMODE 0x11 #define STK8BA50_REG_SWRST 0x14 #define STK8BA50_REG_INTEN2 0x17 #define STK8BA50_REG_INTMAP2 0x1A #define STK8BA50_MODE_NORMAL 0 #define STK8BA50_MODE_SUSPEND 1 #define STK8BA50_MODE_POWERBIT BIT(7) #define STK8BA50_DATA_SHIFT 6 #define STK8BA50_RESET_CMD 0xB6 #define STK8BA50_SR_1792HZ_IDX 7 #define STK8BA50_DREADY_INT_MASK 0x10 #define STK8BA50_DREADY_INT_MAP 0x81 #define STK8BA50_ALL_CHANNEL_MASK 7 #define STK8BA50_ALL_CHANNEL_SIZE 6 #define STK8BA50_DRIVER_NAME "stk8ba50" #define STK8BA50_IRQ_NAME "stk8ba50_event" #define STK8BA50_SCALE_AVAIL "0.0384 0.0767 0.1534 0.3069" /* * The accelerometer has four measurement ranges: * +/-2g; +/-4g; +/-8g; +/-16g * * Acceleration values are 10-bit, 2's complement. * Scales are calculated as following: * * scale1 = (2 + 2) * 9.81 / (2^10 - 1) = 0.0384 * scale2 = (4 + 4) * 9.81 / (2^10 - 1) = 0.0767 * etc. * * Scales are stored in this format: * { <register value>, <scale value> } * * Locally, the range is stored as a table index. */ static const struct { u8 reg_val; u32 scale_val; } stk8ba50_scale_table[] = { {3, 38400}, {5, 76700}, {8, 153400}, {12, 306900} }; /* Sample rates are stored as { <register value>, <Hz value> } */ static const struct { u8 reg_val; u16 samp_freq; } stk8ba50_samp_freq_table[] = { {0x08, 14}, {0x09, 25}, {0x0A, 56}, {0x0B, 112}, {0x0C, 224}, {0x0D, 448}, {0x0E, 896}, {0x0F, 1792} }; /* Used to map scan mask bits to their corresponding channel register. */ static const int stk8ba50_channel_table[] = { STK8BA50_REG_XOUT, STK8BA50_REG_YOUT, STK8BA50_REG_ZOUT }; struct stk8ba50_data { struct i2c_client *client; struct mutex lock; int range; u8 sample_rate_idx; struct iio_trigger *dready_trig; bool dready_trigger_on; /* Ensure timestamp is naturally aligned */ struct { s16 chans[3]; s64 timetamp __aligned(8); } scan; }; #define STK8BA50_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 10, \ .storagebits = 16, \ .shift = STK8BA50_DATA_SHIFT, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec stk8ba50_channels[] = { STK8BA50_ACCEL_CHANNEL(0, STK8BA50_REG_XOUT, X), STK8BA50_ACCEL_CHANNEL(1, STK8BA50_REG_YOUT, Y), STK8BA50_ACCEL_CHANNEL(2, STK8BA50_REG_ZOUT, Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static IIO_CONST_ATTR(in_accel_scale_available, STK8BA50_SCALE_AVAIL); static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("14 25 56 112 224 448 896 1792"); static struct attribute *stk8ba50_attributes[] = { &iio_const_attr_in_accel_scale_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group stk8ba50_attribute_group = { .attrs = stk8ba50_attributes }; static int stk8ba50_read_accel(struct stk8ba50_data *data, u8 reg) { int ret; struct i2c_client *client = data->client; ret = i2c_smbus_read_word_data(client, reg); if (ret < 0) { dev_err(&client->dev, "register read failed\n"); return ret; } return ret; } static int stk8ba50_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct stk8ba50_data *data = iio_priv(indio_dev); int ret; if (state) ret = i2c_smbus_write_byte_data(data->client, STK8BA50_REG_INTEN2, STK8BA50_DREADY_INT_MASK); else ret = i2c_smbus_write_byte_data(data->client, STK8BA50_REG_INTEN2, 0x00); if (ret < 0) dev_err(&data->client->dev, "failed to set trigger state\n"); else data->dready_trigger_on = state; return ret; } static const struct iio_trigger_ops stk8ba50_trigger_ops = { .set_trigger_state = stk8ba50_data_rdy_trigger_set_state, }; static int stk8ba50_set_power(struct stk8ba50_data *data, bool mode) { int ret; u8 masked_reg; struct i2c_client *client = data->client; ret = i2c_smbus_read_byte_data(client, STK8BA50_REG_POWMODE); if (ret < 0) goto exit_err; if (mode) masked_reg = ret | STK8BA50_MODE_POWERBIT; else masked_reg = ret & (~STK8BA50_MODE_POWERBIT); ret = i2c_smbus_write_byte_data(client, STK8BA50_REG_POWMODE, masked_reg); if (ret < 0) goto exit_err; return ret; exit_err: dev_err(&client->dev, "failed to change sensor mode\n"); return ret; } static int stk8ba50_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct stk8ba50_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; mutex_lock(&data->lock); ret = stk8ba50_set_power(data, STK8BA50_MODE_NORMAL); if (ret < 0) { mutex_unlock(&data->lock); return -EINVAL; } ret = stk8ba50_read_accel(data, chan->address); if (ret < 0) { stk8ba50_set_power(data, STK8BA50_MODE_SUSPEND); mutex_unlock(&data->lock); return -EINVAL; } *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); stk8ba50_set_power(data, STK8BA50_MODE_SUSPEND); mutex_unlock(&data->lock); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = stk8ba50_scale_table[data->range].scale_val; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: *val = stk8ba50_samp_freq_table [data->sample_rate_idx].samp_freq; *val2 = 0; return IIO_VAL_INT; } return -EINVAL; } static int stk8ba50_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret; int i; int index = -1; struct stk8ba50_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: if (val != 0) return -EINVAL; for (i = 0; i < ARRAY_SIZE(stk8ba50_scale_table); i++) if (val2 == stk8ba50_scale_table[i].scale_val) { index = i; break; } if (index < 0) return -EINVAL; ret = i2c_smbus_write_byte_data(data->client, STK8BA50_REG_RANGE, stk8ba50_scale_table[index].reg_val); if (ret < 0) dev_err(&data->client->dev, "failed to set measurement range\n"); else data->range = index; return ret; case IIO_CHAN_INFO_SAMP_FREQ: for (i = 0; i < ARRAY_SIZE(stk8ba50_samp_freq_table); i++) if (val == stk8ba50_samp_freq_table[i].samp_freq) { index = i; break; } if (index < 0) return -EINVAL; ret = i2c_smbus_write_byte_data(data->client, STK8BA50_REG_BWSEL, stk8ba50_samp_freq_table[index].reg_val); if (ret < 0) dev_err(&data->client->dev, "failed to set sampling rate\n"); else data->sample_rate_idx = index; return ret; } return -EINVAL; } static const struct iio_info stk8ba50_info = { .read_raw = stk8ba50_read_raw, .write_raw = stk8ba50_write_raw, .attrs = &stk8ba50_attribute_group, }; static irqreturn_t stk8ba50_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct stk8ba50_data *data = iio_priv(indio_dev); int bit, ret, i = 0; mutex_lock(&data->lock); /* * Do a bulk read if all channels are requested, * from 0x02 (XOUT1) to 0x07 (ZOUT2) */ if (*(indio_dev->active_scan_mask) == STK8BA50_ALL_CHANNEL_MASK) { ret = i2c_smbus_read_i2c_block_data(data->client, STK8BA50_REG_XOUT, STK8BA50_ALL_CHANNEL_SIZE, (u8 *)data->scan.chans); if (ret < STK8BA50_ALL_CHANNEL_SIZE) { dev_err(&data->client->dev, "register read failed\n"); goto err; } } else { for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = stk8ba50_read_accel(data, stk8ba50_channel_table[bit]); if (ret < 0) goto err; data->scan.chans[i++] = ret; } } iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, pf->timestamp); err: mutex_unlock(&data->lock); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t stk8ba50_data_rdy_trig_poll(int irq, void *private) { struct iio_dev *indio_dev = private; struct stk8ba50_data *data = iio_priv(indio_dev); if (data->dready_trigger_on) iio_trigger_poll(data->dready_trig); return IRQ_HANDLED; } static int stk8ba50_buffer_preenable(struct iio_dev *indio_dev) { struct stk8ba50_data *data = iio_priv(indio_dev); return stk8ba50_set_power(data, STK8BA50_MODE_NORMAL); } static int stk8ba50_buffer_postdisable(struct iio_dev *indio_dev) { struct stk8ba50_data *data = iio_priv(indio_dev); return stk8ba50_set_power(data, STK8BA50_MODE_SUSPEND); } static const struct iio_buffer_setup_ops stk8ba50_buffer_setup_ops = { .preenable = stk8ba50_buffer_preenable, .postdisable = stk8ba50_buffer_postdisable, }; static int stk8ba50_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct stk8ba50_data *data; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); indio_dev->info = &stk8ba50_info; indio_dev->name = STK8BA50_DRIVER_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = stk8ba50_channels; indio_dev->num_channels = ARRAY_SIZE(stk8ba50_channels); /* Reset all registers on startup */ ret = i2c_smbus_write_byte_data(client, STK8BA50_REG_SWRST, STK8BA50_RESET_CMD); if (ret < 0) { dev_err(&client->dev, "failed to reset sensor\n"); goto err_power_off; } /* The default range is +/-2g */ data->range = 0; /* The default sampling rate is 1792 Hz (maximum) */ data->sample_rate_idx = STK8BA50_SR_1792HZ_IDX; /* Set up interrupts */ ret = i2c_smbus_write_byte_data(client, STK8BA50_REG_INTEN2, STK8BA50_DREADY_INT_MASK); if (ret < 0) { dev_err(&client->dev, "failed to set up interrupts\n"); goto err_power_off; } ret = i2c_smbus_write_byte_data(client, STK8BA50_REG_INTMAP2, STK8BA50_DREADY_INT_MAP); if (ret < 0) { dev_err(&client->dev, "failed to set up interrupts\n"); goto err_power_off; } if (client->irq > 0) { ret = devm_request_threaded_irq(&client->dev, client->irq, stk8ba50_data_rdy_trig_poll, NULL, IRQF_TRIGGER_RISING | IRQF_ONESHOT, STK8BA50_IRQ_NAME, indio_dev); if (ret < 0) { dev_err(&client->dev, "request irq %d failed\n", client->irq); goto err_power_off; } data->dready_trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->dready_trig) { ret = -ENOMEM; goto err_power_off; } data->dready_trig->ops = &stk8ba50_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = iio_trigger_register(data->dready_trig); if (ret) { dev_err(&client->dev, "iio trigger register failed\n"); goto err_power_off; } } ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time, stk8ba50_trigger_handler, &stk8ba50_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); goto err_trigger_unregister; } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "device_register failed\n"); goto err_buffer_cleanup; } return ret; err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_trigger_unregister: if (data->dready_trig) iio_trigger_unregister(data->dready_trig); err_power_off: stk8ba50_set_power(data, STK8BA50_MODE_SUSPEND); return ret; } static void stk8ba50_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct stk8ba50_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (data->dready_trig) iio_trigger_unregister(data->dready_trig); stk8ba50_set_power(data, STK8BA50_MODE_SUSPEND); } static int stk8ba50_suspend(struct device *dev) { struct stk8ba50_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return stk8ba50_set_power(data, STK8BA50_MODE_SUSPEND); } static int stk8ba50_resume(struct device *dev) { struct stk8ba50_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return stk8ba50_set_power(data, STK8BA50_MODE_NORMAL); } static DEFINE_SIMPLE_DEV_PM_OPS(stk8ba50_pm_ops, stk8ba50_suspend, stk8ba50_resume); static const struct i2c_device_id stk8ba50_i2c_id[] = { {"stk8ba50", 0}, {} }; MODULE_DEVICE_TABLE(i2c, stk8ba50_i2c_id); static const struct acpi_device_id stk8ba50_acpi_id[] = { {"STK8BA50", 0}, {} }; MODULE_DEVICE_TABLE(acpi, stk8ba50_acpi_id); static struct i2c_driver stk8ba50_driver = { .driver = { .name = "stk8ba50", .pm = pm_sleep_ptr(&stk8ba50_pm_ops), .acpi_match_table = ACPI_PTR(stk8ba50_acpi_id), }, .probe = stk8ba50_probe, .remove = stk8ba50_remove, .id_table = stk8ba50_i2c_id, }; module_i2c_driver(stk8ba50_driver); MODULE_AUTHOR("Tiberiu Breana <[email protected]>"); MODULE_DESCRIPTION("STK8BA50 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/stk8ba50.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics accelerometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/common/st_sensors.h> #include "st_accel.h" int st_accel_trig_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); return st_sensors_set_dataready_irq(indio_dev, state); } static int st_accel_buffer_postenable(struct iio_dev *indio_dev) { int err; err = st_sensors_set_axis_enable(indio_dev, indio_dev->active_scan_mask[0]); if (err < 0) return err; err = st_sensors_set_enable(indio_dev, true); if (err < 0) goto st_accel_buffer_enable_all_axis; return 0; st_accel_buffer_enable_all_axis: st_sensors_set_axis_enable(indio_dev, ST_SENSORS_ENABLE_ALL_AXIS); return err; } static int st_accel_buffer_predisable(struct iio_dev *indio_dev) { int err; err = st_sensors_set_enable(indio_dev, false); if (err < 0) return err; return st_sensors_set_axis_enable(indio_dev, ST_SENSORS_ENABLE_ALL_AXIS); } static const struct iio_buffer_setup_ops st_accel_buffer_setup_ops = { .postenable = &st_accel_buffer_postenable, .predisable = &st_accel_buffer_predisable, }; int st_accel_allocate_ring(struct iio_dev *indio_dev) { return devm_iio_triggered_buffer_setup(indio_dev->dev.parent, indio_dev, NULL, &st_sensors_trigger_handler, &st_accel_buffer_setup_ops); }
linux-master
drivers/iio/accel/st_accel_buffer.c
// SPDX-License-Identifier: GPL-2.0 /* * NXP FXLS8962AF/FXLS8964AF Accelerometer Core Driver * * Copyright 2021 Connected Cars A/S * * Datasheet: * https://www.nxp.com/docs/en/data-sheet/FXLS8962AF.pdf * https://www.nxp.com/docs/en/data-sheet/FXLS8964AF.pdf * * Errata: * https://www.nxp.com/docs/en/errata/ES_FXLS8962AF.pdf */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/of_irq.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/regmap.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/sysfs.h> #include "fxls8962af.h" #define FXLS8962AF_INT_STATUS 0x00 #define FXLS8962AF_INT_STATUS_SRC_BOOT BIT(0) #define FXLS8962AF_INT_STATUS_SRC_SDCD_OT BIT(4) #define FXLS8962AF_INT_STATUS_SRC_BUF BIT(5) #define FXLS8962AF_INT_STATUS_SRC_DRDY BIT(7) #define FXLS8962AF_TEMP_OUT 0x01 #define FXLS8962AF_VECM_LSB 0x02 #define FXLS8962AF_OUT_X_LSB 0x04 #define FXLS8962AF_OUT_Y_LSB 0x06 #define FXLS8962AF_OUT_Z_LSB 0x08 #define FXLS8962AF_BUF_STATUS 0x0b #define FXLS8962AF_BUF_STATUS_BUF_CNT GENMASK(5, 0) #define FXLS8962AF_BUF_STATUS_BUF_OVF BIT(6) #define FXLS8962AF_BUF_STATUS_BUF_WMRK BIT(7) #define FXLS8962AF_BUF_X_LSB 0x0c #define FXLS8962AF_BUF_Y_LSB 0x0e #define FXLS8962AF_BUF_Z_LSB 0x10 #define FXLS8962AF_PROD_REV 0x12 #define FXLS8962AF_WHO_AM_I 0x13 #define FXLS8962AF_SYS_MODE 0x14 #define FXLS8962AF_SENS_CONFIG1 0x15 #define FXLS8962AF_SENS_CONFIG1_ACTIVE BIT(0) #define FXLS8962AF_SENS_CONFIG1_RST BIT(7) #define FXLS8962AF_SC1_FSR_MASK GENMASK(2, 1) #define FXLS8962AF_SC1_FSR_PREP(x) FIELD_PREP(FXLS8962AF_SC1_FSR_MASK, (x)) #define FXLS8962AF_SC1_FSR_GET(x) FIELD_GET(FXLS8962AF_SC1_FSR_MASK, (x)) #define FXLS8962AF_SENS_CONFIG2 0x16 #define FXLS8962AF_SENS_CONFIG3 0x17 #define FXLS8962AF_SC3_WAKE_ODR_MASK GENMASK(7, 4) #define FXLS8962AF_SC3_WAKE_ODR_PREP(x) FIELD_PREP(FXLS8962AF_SC3_WAKE_ODR_MASK, (x)) #define FXLS8962AF_SC3_WAKE_ODR_GET(x) FIELD_GET(FXLS8962AF_SC3_WAKE_ODR_MASK, (x)) #define FXLS8962AF_SENS_CONFIG4 0x18 #define FXLS8962AF_SC4_INT_PP_OD_MASK BIT(1) #define FXLS8962AF_SC4_INT_PP_OD_PREP(x) FIELD_PREP(FXLS8962AF_SC4_INT_PP_OD_MASK, (x)) #define FXLS8962AF_SC4_INT_POL_MASK BIT(0) #define FXLS8962AF_SC4_INT_POL_PREP(x) FIELD_PREP(FXLS8962AF_SC4_INT_POL_MASK, (x)) #define FXLS8962AF_SENS_CONFIG5 0x19 #define FXLS8962AF_WAKE_IDLE_LSB 0x1b #define FXLS8962AF_SLEEP_IDLE_LSB 0x1c #define FXLS8962AF_ASLP_COUNT_LSB 0x1e #define FXLS8962AF_INT_EN 0x20 #define FXLS8962AF_INT_EN_SDCD_OT_EN BIT(5) #define FXLS8962AF_INT_EN_BUF_EN BIT(6) #define FXLS8962AF_INT_PIN_SEL 0x21 #define FXLS8962AF_INT_PIN_SEL_MASK GENMASK(7, 0) #define FXLS8962AF_INT_PIN_SEL_INT1 0x00 #define FXLS8962AF_INT_PIN_SEL_INT2 GENMASK(7, 0) #define FXLS8962AF_OFF_X 0x22 #define FXLS8962AF_OFF_Y 0x23 #define FXLS8962AF_OFF_Z 0x24 #define FXLS8962AF_BUF_CONFIG1 0x26 #define FXLS8962AF_BC1_BUF_MODE_MASK GENMASK(6, 5) #define FXLS8962AF_BC1_BUF_MODE_PREP(x) FIELD_PREP(FXLS8962AF_BC1_BUF_MODE_MASK, (x)) #define FXLS8962AF_BUF_CONFIG2 0x27 #define FXLS8962AF_BUF_CONFIG2_BUF_WMRK GENMASK(5, 0) #define FXLS8962AF_ORIENT_STATUS 0x28 #define FXLS8962AF_ORIENT_CONFIG 0x29 #define FXLS8962AF_ORIENT_DBCOUNT 0x2a #define FXLS8962AF_ORIENT_BF_ZCOMP 0x2b #define FXLS8962AF_ORIENT_THS_REG 0x2c #define FXLS8962AF_SDCD_INT_SRC1 0x2d #define FXLS8962AF_SDCD_INT_SRC1_X_OT BIT(5) #define FXLS8962AF_SDCD_INT_SRC1_X_POL BIT(4) #define FXLS8962AF_SDCD_INT_SRC1_Y_OT BIT(3) #define FXLS8962AF_SDCD_INT_SRC1_Y_POL BIT(2) #define FXLS8962AF_SDCD_INT_SRC1_Z_OT BIT(1) #define FXLS8962AF_SDCD_INT_SRC1_Z_POL BIT(0) #define FXLS8962AF_SDCD_INT_SRC2 0x2e #define FXLS8962AF_SDCD_CONFIG1 0x2f #define FXLS8962AF_SDCD_CONFIG1_Z_OT_EN BIT(3) #define FXLS8962AF_SDCD_CONFIG1_Y_OT_EN BIT(4) #define FXLS8962AF_SDCD_CONFIG1_X_OT_EN BIT(5) #define FXLS8962AF_SDCD_CONFIG1_OT_ELE BIT(7) #define FXLS8962AF_SDCD_CONFIG2 0x30 #define FXLS8962AF_SDCD_CONFIG2_SDCD_EN BIT(7) #define FXLS8962AF_SC2_REF_UPDM_AC GENMASK(6, 5) #define FXLS8962AF_SDCD_OT_DBCNT 0x31 #define FXLS8962AF_SDCD_WT_DBCNT 0x32 #define FXLS8962AF_SDCD_LTHS_LSB 0x33 #define FXLS8962AF_SDCD_UTHS_LSB 0x35 #define FXLS8962AF_SELF_TEST_CONFIG1 0x37 #define FXLS8962AF_SELF_TEST_CONFIG2 0x38 #define FXLS8962AF_MAX_REG 0x38 #define FXLS8962AF_DEVICE_ID 0x62 #define FXLS8964AF_DEVICE_ID 0x84 /* Raw temp channel offset */ #define FXLS8962AF_TEMP_CENTER_VAL 25 #define FXLS8962AF_AUTO_SUSPEND_DELAY_MS 2000 #define FXLS8962AF_FIFO_LENGTH 32 #define FXLS8962AF_SCALE_TABLE_LEN 4 #define FXLS8962AF_SAMP_FREQ_TABLE_LEN 13 static const int fxls8962af_scale_table[FXLS8962AF_SCALE_TABLE_LEN][2] = { {0, IIO_G_TO_M_S_2(980000)}, {0, IIO_G_TO_M_S_2(1950000)}, {0, IIO_G_TO_M_S_2(3910000)}, {0, IIO_G_TO_M_S_2(7810000)}, }; static const int fxls8962af_samp_freq_table[FXLS8962AF_SAMP_FREQ_TABLE_LEN][2] = { {3200, 0}, {1600, 0}, {800, 0}, {400, 0}, {200, 0}, {100, 0}, {50, 0}, {25, 0}, {12, 500000}, {6, 250000}, {3, 125000}, {1, 563000}, {0, 781000}, }; struct fxls8962af_chip_info { const char *name; const struct iio_chan_spec *channels; int num_channels; u8 chip_id; }; struct fxls8962af_data { struct regmap *regmap; const struct fxls8962af_chip_info *chip_info; struct { __le16 channels[3]; s64 ts __aligned(8); } scan; int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */ struct iio_mount_matrix orientation; int irq; u8 watermark; u8 enable_event; u16 lower_thres; u16 upper_thres; }; const struct regmap_config fxls8962af_i2c_regmap_conf = { .reg_bits = 8, .val_bits = 8, .max_register = FXLS8962AF_MAX_REG, }; EXPORT_SYMBOL_NS_GPL(fxls8962af_i2c_regmap_conf, IIO_FXLS8962AF); const struct regmap_config fxls8962af_spi_regmap_conf = { .reg_bits = 8, .pad_bits = 8, .val_bits = 8, .max_register = FXLS8962AF_MAX_REG, }; EXPORT_SYMBOL_NS_GPL(fxls8962af_spi_regmap_conf, IIO_FXLS8962AF); enum { fxls8962af_idx_x, fxls8962af_idx_y, fxls8962af_idx_z, fxls8962af_idx_ts, }; enum fxls8962af_int_pin { FXLS8962AF_PIN_INT1, FXLS8962AF_PIN_INT2, }; static int fxls8962af_power_on(struct fxls8962af_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret; ret = pm_runtime_resume_and_get(dev); if (ret) dev_err(dev, "failed to power on\n"); return ret; } static int fxls8962af_power_off(struct fxls8962af_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret; pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); if (ret) dev_err(dev, "failed to power off\n"); return ret; } static int fxls8962af_standby(struct fxls8962af_data *data) { return regmap_update_bits(data->regmap, FXLS8962AF_SENS_CONFIG1, FXLS8962AF_SENS_CONFIG1_ACTIVE, 0); } static int fxls8962af_active(struct fxls8962af_data *data) { return regmap_update_bits(data->regmap, FXLS8962AF_SENS_CONFIG1, FXLS8962AF_SENS_CONFIG1_ACTIVE, 1); } static int fxls8962af_is_active(struct fxls8962af_data *data) { unsigned int reg; int ret; ret = regmap_read(data->regmap, FXLS8962AF_SENS_CONFIG1, &reg); if (ret) return ret; return reg & FXLS8962AF_SENS_CONFIG1_ACTIVE; } static int fxls8962af_get_out(struct fxls8962af_data *data, struct iio_chan_spec const *chan, int *val) { struct device *dev = regmap_get_device(data->regmap); __le16 raw_val; int is_active; int ret; is_active = fxls8962af_is_active(data); if (!is_active) { ret = fxls8962af_power_on(data); if (ret) return ret; } ret = regmap_bulk_read(data->regmap, chan->address, &raw_val, sizeof(data->lower_thres)); if (!is_active) fxls8962af_power_off(data); if (ret) { dev_err(dev, "failed to get out reg 0x%lx\n", chan->address); return ret; } *val = sign_extend32(le16_to_cpu(raw_val), chan->scan_type.realbits - 1); return IIO_VAL_INT; } static int fxls8962af_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: *type = IIO_VAL_INT_PLUS_NANO; *vals = (int *)fxls8962af_scale_table; *length = ARRAY_SIZE(fxls8962af_scale_table) * 2; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT_PLUS_MICRO; *vals = (int *)fxls8962af_samp_freq_table; *length = ARRAY_SIZE(fxls8962af_samp_freq_table) * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int fxls8962af_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_MICRO; default: return IIO_VAL_INT_PLUS_NANO; } } static int fxls8962af_update_config(struct fxls8962af_data *data, u8 reg, u8 mask, u8 val) { int ret; int is_active; is_active = fxls8962af_is_active(data); if (is_active) { ret = fxls8962af_standby(data); if (ret) return ret; } ret = regmap_update_bits(data->regmap, reg, mask, val); if (ret) return ret; if (is_active) { ret = fxls8962af_active(data); if (ret) return ret; } return 0; } static int fxls8962af_set_full_scale(struct fxls8962af_data *data, u32 scale) { int i; for (i = 0; i < ARRAY_SIZE(fxls8962af_scale_table); i++) if (scale == fxls8962af_scale_table[i][1]) break; if (i == ARRAY_SIZE(fxls8962af_scale_table)) return -EINVAL; return fxls8962af_update_config(data, FXLS8962AF_SENS_CONFIG1, FXLS8962AF_SC1_FSR_MASK, FXLS8962AF_SC1_FSR_PREP(i)); } static unsigned int fxls8962af_read_full_scale(struct fxls8962af_data *data, int *val) { int ret; unsigned int reg; u8 range_idx; ret = regmap_read(data->regmap, FXLS8962AF_SENS_CONFIG1, &reg); if (ret) return ret; range_idx = FXLS8962AF_SC1_FSR_GET(reg); *val = fxls8962af_scale_table[range_idx][1]; return IIO_VAL_INT_PLUS_NANO; } static int fxls8962af_set_samp_freq(struct fxls8962af_data *data, u32 val, u32 val2) { int i; for (i = 0; i < ARRAY_SIZE(fxls8962af_samp_freq_table); i++) if (val == fxls8962af_samp_freq_table[i][0] && val2 == fxls8962af_samp_freq_table[i][1]) break; if (i == ARRAY_SIZE(fxls8962af_samp_freq_table)) return -EINVAL; return fxls8962af_update_config(data, FXLS8962AF_SENS_CONFIG3, FXLS8962AF_SC3_WAKE_ODR_MASK, FXLS8962AF_SC3_WAKE_ODR_PREP(i)); } static unsigned int fxls8962af_read_samp_freq(struct fxls8962af_data *data, int *val, int *val2) { int ret; unsigned int reg; u8 range_idx; ret = regmap_read(data->regmap, FXLS8962AF_SENS_CONFIG3, &reg); if (ret) return ret; range_idx = FXLS8962AF_SC3_WAKE_ODR_GET(reg); *val = fxls8962af_samp_freq_table[range_idx][0]; *val2 = fxls8962af_samp_freq_table[range_idx][1]; return IIO_VAL_INT_PLUS_MICRO; } static int fxls8962af_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct fxls8962af_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: case IIO_ACCEL: return fxls8962af_get_out(data, chan, val); default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: if (chan->type != IIO_TEMP) return -EINVAL; *val = FXLS8962AF_TEMP_CENTER_VAL; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; return fxls8962af_read_full_scale(data, val2); case IIO_CHAN_INFO_SAMP_FREQ: return fxls8962af_read_samp_freq(data, val, val2); default: return -EINVAL; } } static int fxls8962af_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct fxls8962af_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: if (val != 0) return -EINVAL; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = fxls8962af_set_full_scale(data, val2); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = fxls8962af_set_samp_freq(data, val, val2); iio_device_release_direct_mode(indio_dev); return ret; default: return -EINVAL; } } static int fxls8962af_event_setup(struct fxls8962af_data *data, int state) { /* Enable wakeup interrupt */ int mask = FXLS8962AF_INT_EN_SDCD_OT_EN; int value = state ? mask : 0; return regmap_update_bits(data->regmap, FXLS8962AF_INT_EN, mask, value); } static int fxls8962af_set_watermark(struct iio_dev *indio_dev, unsigned val) { struct fxls8962af_data *data = iio_priv(indio_dev); if (val > FXLS8962AF_FIFO_LENGTH) val = FXLS8962AF_FIFO_LENGTH; data->watermark = val; return 0; } static int __fxls8962af_set_thresholds(struct fxls8962af_data *data, const struct iio_chan_spec *chan, enum iio_event_direction dir, int val) { switch (dir) { case IIO_EV_DIR_FALLING: data->lower_thres = val; return regmap_bulk_write(data->regmap, FXLS8962AF_SDCD_LTHS_LSB, &data->lower_thres, sizeof(data->lower_thres)); case IIO_EV_DIR_RISING: data->upper_thres = val; return regmap_bulk_write(data->regmap, FXLS8962AF_SDCD_UTHS_LSB, &data->upper_thres, sizeof(data->upper_thres)); default: return -EINVAL; } } static int fxls8962af_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct fxls8962af_data *data = iio_priv(indio_dev); int ret; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; switch (dir) { case IIO_EV_DIR_FALLING: ret = regmap_bulk_read(data->regmap, FXLS8962AF_SDCD_LTHS_LSB, &data->lower_thres, sizeof(data->lower_thres)); if (ret) return ret; *val = sign_extend32(data->lower_thres, chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_EV_DIR_RISING: ret = regmap_bulk_read(data->regmap, FXLS8962AF_SDCD_UTHS_LSB, &data->upper_thres, sizeof(data->upper_thres)); if (ret) return ret; *val = sign_extend32(data->upper_thres, chan->scan_type.realbits - 1); return IIO_VAL_INT; default: return -EINVAL; } } static int fxls8962af_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct fxls8962af_data *data = iio_priv(indio_dev); int ret, val_masked; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; if (val < -2048 || val > 2047) return -EINVAL; if (data->enable_event) return -EBUSY; val_masked = val & GENMASK(11, 0); if (fxls8962af_is_active(data)) { ret = fxls8962af_standby(data); if (ret) return ret; ret = __fxls8962af_set_thresholds(data, chan, dir, val_masked); if (ret) return ret; return fxls8962af_active(data); } else { return __fxls8962af_set_thresholds(data, chan, dir, val_masked); } } static int fxls8962af_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct fxls8962af_data *data = iio_priv(indio_dev); if (type != IIO_EV_TYPE_THRESH) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: return !!(FXLS8962AF_SDCD_CONFIG1_X_OT_EN & data->enable_event); case IIO_MOD_Y: return !!(FXLS8962AF_SDCD_CONFIG1_Y_OT_EN & data->enable_event); case IIO_MOD_Z: return !!(FXLS8962AF_SDCD_CONFIG1_Z_OT_EN & data->enable_event); default: return -EINVAL; } } static int fxls8962af_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct fxls8962af_data *data = iio_priv(indio_dev); u8 enable_event, enable_bits; int ret, value; if (type != IIO_EV_TYPE_THRESH) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: enable_bits = FXLS8962AF_SDCD_CONFIG1_X_OT_EN; break; case IIO_MOD_Y: enable_bits = FXLS8962AF_SDCD_CONFIG1_Y_OT_EN; break; case IIO_MOD_Z: enable_bits = FXLS8962AF_SDCD_CONFIG1_Z_OT_EN; break; default: return -EINVAL; } if (state) enable_event = data->enable_event | enable_bits; else enable_event = data->enable_event & ~enable_bits; if (data->enable_event == enable_event) return 0; ret = fxls8962af_standby(data); if (ret) return ret; /* Enable events */ value = enable_event | FXLS8962AF_SDCD_CONFIG1_OT_ELE; ret = regmap_write(data->regmap, FXLS8962AF_SDCD_CONFIG1, value); if (ret) return ret; /* * Enable update of SDCD_REF_X/Y/Z values with the current decimated and * trimmed X/Y/Z acceleration input data. This allows for acceleration * slope detection with Data(n) to Data(n–1) always used as the input * to the window comparator. */ value = enable_event ? FXLS8962AF_SDCD_CONFIG2_SDCD_EN | FXLS8962AF_SC2_REF_UPDM_AC : 0x00; ret = regmap_write(data->regmap, FXLS8962AF_SDCD_CONFIG2, value); if (ret) return ret; ret = fxls8962af_event_setup(data, state); if (ret) return ret; data->enable_event = enable_event; if (data->enable_event) { fxls8962af_active(data); ret = fxls8962af_power_on(data); } else { ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; /* Not in buffered mode so disable power */ ret = fxls8962af_power_off(data); iio_device_release_direct_mode(indio_dev); } return ret; } static const struct iio_event_spec fxls8962af_event[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, }; #define FXLS8962AF_CHANNEL(axis, reg, idx) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = idx, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ .event_spec = fxls8962af_event, \ .num_event_specs = ARRAY_SIZE(fxls8962af_event), \ } #define FXLS8962AF_TEMP_CHANNEL { \ .type = IIO_TEMP, \ .address = FXLS8962AF_TEMP_OUT, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET),\ .scan_index = -1, \ .scan_type = { \ .realbits = 8, \ .storagebits = 8, \ }, \ } static const struct iio_chan_spec fxls8962af_channels[] = { FXLS8962AF_CHANNEL(X, FXLS8962AF_OUT_X_LSB, fxls8962af_idx_x), FXLS8962AF_CHANNEL(Y, FXLS8962AF_OUT_Y_LSB, fxls8962af_idx_y), FXLS8962AF_CHANNEL(Z, FXLS8962AF_OUT_Z_LSB, fxls8962af_idx_z), IIO_CHAN_SOFT_TIMESTAMP(fxls8962af_idx_ts), FXLS8962AF_TEMP_CHANNEL, }; static const struct fxls8962af_chip_info fxls_chip_info_table[] = { [fxls8962af] = { .chip_id = FXLS8962AF_DEVICE_ID, .name = "fxls8962af", .channels = fxls8962af_channels, .num_channels = ARRAY_SIZE(fxls8962af_channels), }, [fxls8964af] = { .chip_id = FXLS8964AF_DEVICE_ID, .name = "fxls8964af", .channels = fxls8962af_channels, .num_channels = ARRAY_SIZE(fxls8962af_channels), }, }; static const struct iio_info fxls8962af_info = { .read_raw = &fxls8962af_read_raw, .write_raw = &fxls8962af_write_raw, .write_raw_get_fmt = fxls8962af_write_raw_get_fmt, .read_event_value = fxls8962af_read_event, .write_event_value = fxls8962af_write_event, .read_event_config = fxls8962af_read_event_config, .write_event_config = fxls8962af_write_event_config, .read_avail = fxls8962af_read_avail, .hwfifo_set_watermark = fxls8962af_set_watermark, }; static int fxls8962af_reset(struct fxls8962af_data *data) { struct device *dev = regmap_get_device(data->regmap); unsigned int reg; int ret; ret = regmap_update_bits(data->regmap, FXLS8962AF_SENS_CONFIG1, FXLS8962AF_SENS_CONFIG1_RST, FXLS8962AF_SENS_CONFIG1_RST); if (ret) return ret; /* TBOOT1, TBOOT2, specifies we have to wait between 1 - 17.7ms */ ret = regmap_read_poll_timeout(data->regmap, FXLS8962AF_INT_STATUS, reg, (reg & FXLS8962AF_INT_STATUS_SRC_BOOT), 1000, 18000); if (ret == -ETIMEDOUT) dev_err(dev, "reset timeout, int_status = 0x%x\n", reg); return ret; } static int __fxls8962af_fifo_set_mode(struct fxls8962af_data *data, bool onoff) { int ret; /* Enable watermark at max fifo size */ ret = regmap_update_bits(data->regmap, FXLS8962AF_BUF_CONFIG2, FXLS8962AF_BUF_CONFIG2_BUF_WMRK, data->watermark); if (ret) return ret; return regmap_update_bits(data->regmap, FXLS8962AF_BUF_CONFIG1, FXLS8962AF_BC1_BUF_MODE_MASK, FXLS8962AF_BC1_BUF_MODE_PREP(onoff)); } static int fxls8962af_buffer_preenable(struct iio_dev *indio_dev) { return fxls8962af_power_on(iio_priv(indio_dev)); } static int fxls8962af_buffer_postenable(struct iio_dev *indio_dev) { struct fxls8962af_data *data = iio_priv(indio_dev); int ret; fxls8962af_standby(data); /* Enable buffer interrupt */ ret = regmap_update_bits(data->regmap, FXLS8962AF_INT_EN, FXLS8962AF_INT_EN_BUF_EN, FXLS8962AF_INT_EN_BUF_EN); if (ret) return ret; ret = __fxls8962af_fifo_set_mode(data, true); fxls8962af_active(data); return ret; } static int fxls8962af_buffer_predisable(struct iio_dev *indio_dev) { struct fxls8962af_data *data = iio_priv(indio_dev); int ret; fxls8962af_standby(data); /* Disable buffer interrupt */ ret = regmap_update_bits(data->regmap, FXLS8962AF_INT_EN, FXLS8962AF_INT_EN_BUF_EN, 0); if (ret) return ret; ret = __fxls8962af_fifo_set_mode(data, false); if (data->enable_event) fxls8962af_active(data); return ret; } static int fxls8962af_buffer_postdisable(struct iio_dev *indio_dev) { struct fxls8962af_data *data = iio_priv(indio_dev); if (!data->enable_event) fxls8962af_power_off(data); return 0; } static const struct iio_buffer_setup_ops fxls8962af_buffer_ops = { .preenable = fxls8962af_buffer_preenable, .postenable = fxls8962af_buffer_postenable, .predisable = fxls8962af_buffer_predisable, .postdisable = fxls8962af_buffer_postdisable, }; static int fxls8962af_i2c_raw_read_errata3(struct fxls8962af_data *data, u16 *buffer, int samples, int sample_length) { int i, ret; for (i = 0; i < samples; i++) { ret = regmap_raw_read(data->regmap, FXLS8962AF_BUF_X_LSB, &buffer[i * 3], sample_length); if (ret) return ret; } return 0; } static int fxls8962af_fifo_transfer(struct fxls8962af_data *data, u16 *buffer, int samples) { struct device *dev = regmap_get_device(data->regmap); int sample_length = 3 * sizeof(*buffer); int total_length = samples * sample_length; int ret; if (i2c_verify_client(dev) && data->chip_info->chip_id == FXLS8962AF_DEVICE_ID) /* * Due to errata bug (only applicable on fxls8962af): * E3: FIFO burst read operation error using I2C interface * We have to avoid burst reads on I2C.. */ ret = fxls8962af_i2c_raw_read_errata3(data, buffer, samples, sample_length); else ret = regmap_raw_read(data->regmap, FXLS8962AF_BUF_X_LSB, buffer, total_length); if (ret) dev_err(dev, "Error transferring data from fifo: %d\n", ret); return ret; } static int fxls8962af_fifo_flush(struct iio_dev *indio_dev) { struct fxls8962af_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); u16 buffer[FXLS8962AF_FIFO_LENGTH * 3]; uint64_t sample_period; unsigned int reg; int64_t tstamp; int ret, i; u8 count; ret = regmap_read(data->regmap, FXLS8962AF_BUF_STATUS, &reg); if (ret) return ret; if (reg & FXLS8962AF_BUF_STATUS_BUF_OVF) { dev_err(dev, "Buffer overflow"); return -EOVERFLOW; } count = reg & FXLS8962AF_BUF_STATUS_BUF_CNT; if (!count) return 0; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(indio_dev); /* * Approximate timestamps for each of the sample based on the sampling, * frequency, timestamp for last sample and number of samples. */ sample_period = (data->timestamp - data->old_timestamp); do_div(sample_period, count); tstamp = data->timestamp - (count - 1) * sample_period; ret = fxls8962af_fifo_transfer(data, buffer, count); if (ret) return ret; /* Demux hw FIFO into kfifo. */ for (i = 0; i < count; i++) { int j, bit; j = 0; for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit], sizeof(data->scan.channels[0])); } iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, tstamp); tstamp += sample_period; } return count; } static int fxls8962af_event_interrupt(struct iio_dev *indio_dev) { struct fxls8962af_data *data = iio_priv(indio_dev); s64 ts = iio_get_time_ns(indio_dev); unsigned int reg; u64 ev_code; int ret; ret = regmap_read(data->regmap, FXLS8962AF_SDCD_INT_SRC1, &reg); if (ret) return ret; if (reg & FXLS8962AF_SDCD_INT_SRC1_X_OT) { ev_code = reg & FXLS8962AF_SDCD_INT_SRC1_X_POL ? IIO_EV_DIR_RISING : IIO_EV_DIR_FALLING; iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, ev_code), ts); } if (reg & FXLS8962AF_SDCD_INT_SRC1_Y_OT) { ev_code = reg & FXLS8962AF_SDCD_INT_SRC1_Y_POL ? IIO_EV_DIR_RISING : IIO_EV_DIR_FALLING; iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, ev_code), ts); } if (reg & FXLS8962AF_SDCD_INT_SRC1_Z_OT) { ev_code = reg & FXLS8962AF_SDCD_INT_SRC1_Z_POL ? IIO_EV_DIR_RISING : IIO_EV_DIR_FALLING; iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, ev_code), ts); } return 0; } static irqreturn_t fxls8962af_interrupt(int irq, void *p) { struct iio_dev *indio_dev = p; struct fxls8962af_data *data = iio_priv(indio_dev); unsigned int reg; int ret; ret = regmap_read(data->regmap, FXLS8962AF_INT_STATUS, &reg); if (ret) return IRQ_NONE; if (reg & FXLS8962AF_INT_STATUS_SRC_BUF) { ret = fxls8962af_fifo_flush(indio_dev); if (ret < 0) return IRQ_NONE; return IRQ_HANDLED; } if (reg & FXLS8962AF_INT_STATUS_SRC_SDCD_OT) { ret = fxls8962af_event_interrupt(indio_dev); if (ret < 0) return IRQ_NONE; return IRQ_HANDLED; } return IRQ_NONE; } static void fxls8962af_pm_disable(void *dev_ptr) { struct device *dev = dev_ptr; struct iio_dev *indio_dev = dev_get_drvdata(dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_put_noidle(dev); fxls8962af_standby(iio_priv(indio_dev)); } static void fxls8962af_get_irq(struct device_node *of_node, enum fxls8962af_int_pin *pin) { int irq; irq = of_irq_get_byname(of_node, "INT2"); if (irq > 0) { *pin = FXLS8962AF_PIN_INT2; return; } *pin = FXLS8962AF_PIN_INT1; } static int fxls8962af_irq_setup(struct iio_dev *indio_dev, int irq) { struct fxls8962af_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); unsigned long irq_type; bool irq_active_high; enum fxls8962af_int_pin int_pin; u8 int_pin_sel; int ret; fxls8962af_get_irq(dev->of_node, &int_pin); switch (int_pin) { case FXLS8962AF_PIN_INT1: int_pin_sel = FXLS8962AF_INT_PIN_SEL_INT1; break; case FXLS8962AF_PIN_INT2: int_pin_sel = FXLS8962AF_INT_PIN_SEL_INT2; break; default: dev_err(dev, "unsupported int pin selected\n"); return -EINVAL; } ret = regmap_update_bits(data->regmap, FXLS8962AF_INT_PIN_SEL, FXLS8962AF_INT_PIN_SEL_MASK, int_pin_sel); if (ret) return ret; irq_type = irqd_get_trigger_type(irq_get_irq_data(irq)); switch (irq_type) { case IRQF_TRIGGER_HIGH: case IRQF_TRIGGER_RISING: irq_active_high = true; break; case IRQF_TRIGGER_LOW: case IRQF_TRIGGER_FALLING: irq_active_high = false; break; default: dev_info(dev, "mode %lx unsupported\n", irq_type); return -EINVAL; } ret = regmap_update_bits(data->regmap, FXLS8962AF_SENS_CONFIG4, FXLS8962AF_SC4_INT_POL_MASK, FXLS8962AF_SC4_INT_POL_PREP(irq_active_high)); if (ret) return ret; if (device_property_read_bool(dev, "drive-open-drain")) { ret = regmap_update_bits(data->regmap, FXLS8962AF_SENS_CONFIG4, FXLS8962AF_SC4_INT_PP_OD_MASK, FXLS8962AF_SC4_INT_PP_OD_PREP(1)); if (ret) return ret; irq_type |= IRQF_SHARED; } return devm_request_threaded_irq(dev, irq, NULL, fxls8962af_interrupt, irq_type | IRQF_ONESHOT, indio_dev->name, indio_dev); } int fxls8962af_core_probe(struct device *dev, struct regmap *regmap, int irq) { struct fxls8962af_data *data; struct iio_dev *indio_dev; unsigned int reg; int ret, i; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; data->irq = irq; ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; ret = devm_regulator_get_enable(dev, "vdd"); if (ret) return dev_err_probe(dev, ret, "Failed to get vdd regulator\n"); ret = regmap_read(data->regmap, FXLS8962AF_WHO_AM_I, &reg); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(fxls_chip_info_table); i++) { if (fxls_chip_info_table[i].chip_id == reg) { data->chip_info = &fxls_chip_info_table[i]; break; } } if (i == ARRAY_SIZE(fxls_chip_info_table)) { dev_err(dev, "failed to match device in table\n"); return -ENXIO; } indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->name = data->chip_info->name; indio_dev->info = &fxls8962af_info; indio_dev->modes = INDIO_DIRECT_MODE; ret = fxls8962af_reset(data); if (ret) return ret; if (irq) { ret = fxls8962af_irq_setup(indio_dev, irq); if (ret) return ret; ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &fxls8962af_buffer_ops); if (ret) return ret; } ret = pm_runtime_set_active(dev); if (ret) return ret; pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, FXLS8962AF_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); ret = devm_add_action_or_reset(dev, fxls8962af_pm_disable, dev); if (ret) return ret; if (device_property_read_bool(dev, "wakeup-source")) device_init_wakeup(dev, true); return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(fxls8962af_core_probe, IIO_FXLS8962AF); static int fxls8962af_runtime_suspend(struct device *dev) { struct fxls8962af_data *data = iio_priv(dev_get_drvdata(dev)); int ret; ret = fxls8962af_standby(data); if (ret) { dev_err(dev, "powering off device failed\n"); return ret; } return 0; } static int fxls8962af_runtime_resume(struct device *dev) { struct fxls8962af_data *data = iio_priv(dev_get_drvdata(dev)); return fxls8962af_active(data); } static int fxls8962af_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct fxls8962af_data *data = iio_priv(indio_dev); if (device_may_wakeup(dev) && data->enable_event) { enable_irq_wake(data->irq); /* * Disable buffer, as the buffer is so small the device will wake * almost immediately. */ if (iio_buffer_enabled(indio_dev)) fxls8962af_buffer_predisable(indio_dev); } else { fxls8962af_runtime_suspend(dev); } return 0; } static int fxls8962af_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct fxls8962af_data *data = iio_priv(indio_dev); if (device_may_wakeup(dev) && data->enable_event) { disable_irq_wake(data->irq); if (iio_buffer_enabled(indio_dev)) fxls8962af_buffer_postenable(indio_dev); } else { fxls8962af_runtime_resume(dev); } return 0; } EXPORT_NS_GPL_DEV_PM_OPS(fxls8962af_pm_ops, IIO_FXLS8962AF) = { SYSTEM_SLEEP_PM_OPS(fxls8962af_suspend, fxls8962af_resume) RUNTIME_PM_OPS(fxls8962af_runtime_suspend, fxls8962af_runtime_resume, NULL) }; MODULE_AUTHOR("Sean Nyekjaer <[email protected]>"); MODULE_DESCRIPTION("NXP FXLS8962AF/FXLS8964AF accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/fxls8962af-core.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2021 Analog Devices, Inc. * Author: Cosmin Tanislav <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/sysfs.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/mod_devicetable.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <asm/unaligned.h> #include "adxl367.h" #define ADXL367_REG_DEVID 0x00 #define ADXL367_DEVID_AD 0xAD #define ADXL367_REG_STATUS 0x0B #define ADXL367_STATUS_INACT_MASK BIT(5) #define ADXL367_STATUS_ACT_MASK BIT(4) #define ADXL367_STATUS_FIFO_FULL_MASK BIT(2) #define ADXL367_FIFO_ENT_H_MASK GENMASK(1, 0) #define ADXL367_REG_X_DATA_H 0x0E #define ADXL367_REG_Y_DATA_H 0x10 #define ADXL367_REG_Z_DATA_H 0x12 #define ADXL367_REG_TEMP_DATA_H 0x14 #define ADXL367_REG_EX_ADC_DATA_H 0x16 #define ADXL367_DATA_MASK GENMASK(15, 2) #define ADXL367_TEMP_25C 165 #define ADXL367_TEMP_PER_C 54 #define ADXL367_VOLTAGE_OFFSET 8192 #define ADXL367_VOLTAGE_MAX_MV 1000 #define ADXL367_VOLTAGE_MAX_RAW GENMASK(13, 0) #define ADXL367_REG_RESET 0x1F #define ADXL367_RESET_CODE 0x52 #define ADXL367_REG_THRESH_ACT_H 0x20 #define ADXL367_REG_THRESH_INACT_H 0x23 #define ADXL367_THRESH_MAX GENMASK(12, 0) #define ADXL367_THRESH_VAL_H_MASK GENMASK(12, 6) #define ADXL367_THRESH_H_MASK GENMASK(6, 0) #define ADXL367_THRESH_VAL_L_MASK GENMASK(5, 0) #define ADXL367_THRESH_L_MASK GENMASK(7, 2) #define ADXL367_REG_TIME_ACT 0x22 #define ADXL367_REG_TIME_INACT_H 0x25 #define ADXL367_TIME_ACT_MAX GENMASK(7, 0) #define ADXL367_TIME_INACT_MAX GENMASK(15, 0) #define ADXL367_TIME_INACT_VAL_H_MASK GENMASK(15, 8) #define ADXL367_TIME_INACT_H_MASK GENMASK(7, 0) #define ADXL367_TIME_INACT_VAL_L_MASK GENMASK(7, 0) #define ADXL367_TIME_INACT_L_MASK GENMASK(7, 0) #define ADXL367_REG_ACT_INACT_CTL 0x27 #define ADXL367_ACT_EN_MASK GENMASK(1, 0) #define ADXL367_ACT_LINKLOOP_MASK GENMASK(5, 4) #define ADXL367_REG_FIFO_CTL 0x28 #define ADXL367_FIFO_CTL_FORMAT_MASK GENMASK(6, 3) #define ADXL367_FIFO_CTL_MODE_MASK GENMASK(1, 0) #define ADXL367_REG_FIFO_SAMPLES 0x29 #define ADXL367_FIFO_SIZE 512 #define ADXL367_FIFO_MAX_WATERMARK 511 #define ADXL367_SAMPLES_VAL_H_MASK BIT(8) #define ADXL367_SAMPLES_H_MASK BIT(2) #define ADXL367_SAMPLES_VAL_L_MASK GENMASK(7, 0) #define ADXL367_SAMPLES_L_MASK GENMASK(7, 0) #define ADXL367_REG_INT1_MAP 0x2A #define ADXL367_INT_INACT_MASK BIT(5) #define ADXL367_INT_ACT_MASK BIT(4) #define ADXL367_INT_FIFO_WATERMARK_MASK BIT(2) #define ADXL367_REG_FILTER_CTL 0x2C #define ADXL367_FILTER_CTL_RANGE_MASK GENMASK(7, 6) #define ADXL367_2G_RANGE_1G 4095 #define ADXL367_2G_RANGE_100MG 409 #define ADXL367_FILTER_CTL_ODR_MASK GENMASK(2, 0) #define ADXL367_REG_POWER_CTL 0x2D #define ADXL367_POWER_CTL_MODE_MASK GENMASK(1, 0) #define ADXL367_REG_ADC_CTL 0x3C #define ADXL367_REG_TEMP_CTL 0x3D #define ADXL367_ADC_EN_MASK BIT(0) enum adxl367_range { ADXL367_2G_RANGE, ADXL367_4G_RANGE, ADXL367_8G_RANGE, }; enum adxl367_fifo_mode { ADXL367_FIFO_MODE_DISABLED = 0b00, ADXL367_FIFO_MODE_STREAM = 0b10, }; enum adxl367_fifo_format { ADXL367_FIFO_FORMAT_XYZ, ADXL367_FIFO_FORMAT_X, ADXL367_FIFO_FORMAT_Y, ADXL367_FIFO_FORMAT_Z, ADXL367_FIFO_FORMAT_XYZT, ADXL367_FIFO_FORMAT_XT, ADXL367_FIFO_FORMAT_YT, ADXL367_FIFO_FORMAT_ZT, ADXL367_FIFO_FORMAT_XYZA, ADXL367_FIFO_FORMAT_XA, ADXL367_FIFO_FORMAT_YA, ADXL367_FIFO_FORMAT_ZA, }; enum adxl367_op_mode { ADXL367_OP_STANDBY = 0b00, ADXL367_OP_MEASURE = 0b10, }; enum adxl367_act_proc_mode { ADXL367_LOOPED = 0b11, }; enum adxl367_act_en_mode { ADXL367_ACT_DISABLED = 0b00, ADCL367_ACT_REF_ENABLED = 0b11, }; enum adxl367_activity_type { ADXL367_ACTIVITY, ADXL367_INACTIVITY, }; enum adxl367_odr { ADXL367_ODR_12P5HZ, ADXL367_ODR_25HZ, ADXL367_ODR_50HZ, ADXL367_ODR_100HZ, ADXL367_ODR_200HZ, ADXL367_ODR_400HZ, }; struct adxl367_state { const struct adxl367_ops *ops; void *context; struct device *dev; struct regmap *regmap; /* * Synchronize access to members of driver state, and ensure atomicity * of consecutive regmap operations. */ struct mutex lock; enum adxl367_odr odr; enum adxl367_range range; unsigned int act_threshold; unsigned int act_time_ms; unsigned int inact_threshold; unsigned int inact_time_ms; unsigned int fifo_set_size; unsigned int fifo_watermark; __be16 fifo_buf[ADXL367_FIFO_SIZE] __aligned(IIO_DMA_MINALIGN); __be16 sample_buf; u8 act_threshold_buf[2]; u8 inact_time_buf[2]; u8 status_buf[3]; }; static const unsigned int adxl367_threshold_h_reg_tbl[] = { [ADXL367_ACTIVITY] = ADXL367_REG_THRESH_ACT_H, [ADXL367_INACTIVITY] = ADXL367_REG_THRESH_INACT_H, }; static const unsigned int adxl367_act_en_shift_tbl[] = { [ADXL367_ACTIVITY] = 0, [ADXL367_INACTIVITY] = 2, }; static const unsigned int adxl367_act_int_mask_tbl[] = { [ADXL367_ACTIVITY] = ADXL367_INT_ACT_MASK, [ADXL367_INACTIVITY] = ADXL367_INT_INACT_MASK, }; static const int adxl367_samp_freq_tbl[][2] = { [ADXL367_ODR_12P5HZ] = {12, 500000}, [ADXL367_ODR_25HZ] = {25, 0}, [ADXL367_ODR_50HZ] = {50, 0}, [ADXL367_ODR_100HZ] = {100, 0}, [ADXL367_ODR_200HZ] = {200, 0}, [ADXL367_ODR_400HZ] = {400, 0}, }; /* (g * 2) * 9.80665 * 1000000 / (2^14 - 1) */ static const int adxl367_range_scale_tbl[][2] = { [ADXL367_2G_RANGE] = {0, 2394347}, [ADXL367_4G_RANGE] = {0, 4788695}, [ADXL367_8G_RANGE] = {0, 9577391}, }; static const int adxl367_range_scale_factor_tbl[] = { [ADXL367_2G_RANGE] = 1, [ADXL367_4G_RANGE] = 2, [ADXL367_8G_RANGE] = 4, }; enum { ADXL367_X_CHANNEL_INDEX, ADXL367_Y_CHANNEL_INDEX, ADXL367_Z_CHANNEL_INDEX, ADXL367_TEMP_CHANNEL_INDEX, ADXL367_EX_ADC_CHANNEL_INDEX }; #define ADXL367_X_CHANNEL_MASK BIT(ADXL367_X_CHANNEL_INDEX) #define ADXL367_Y_CHANNEL_MASK BIT(ADXL367_Y_CHANNEL_INDEX) #define ADXL367_Z_CHANNEL_MASK BIT(ADXL367_Z_CHANNEL_INDEX) #define ADXL367_TEMP_CHANNEL_MASK BIT(ADXL367_TEMP_CHANNEL_INDEX) #define ADXL367_EX_ADC_CHANNEL_MASK BIT(ADXL367_EX_ADC_CHANNEL_INDEX) static const enum adxl367_fifo_format adxl367_fifo_formats[] = { ADXL367_FIFO_FORMAT_X, ADXL367_FIFO_FORMAT_Y, ADXL367_FIFO_FORMAT_Z, ADXL367_FIFO_FORMAT_XT, ADXL367_FIFO_FORMAT_YT, ADXL367_FIFO_FORMAT_ZT, ADXL367_FIFO_FORMAT_XA, ADXL367_FIFO_FORMAT_YA, ADXL367_FIFO_FORMAT_ZA, ADXL367_FIFO_FORMAT_XYZ, ADXL367_FIFO_FORMAT_XYZT, ADXL367_FIFO_FORMAT_XYZA, }; static const unsigned long adxl367_channel_masks[] = { ADXL367_X_CHANNEL_MASK, ADXL367_Y_CHANNEL_MASK, ADXL367_Z_CHANNEL_MASK, ADXL367_X_CHANNEL_MASK | ADXL367_TEMP_CHANNEL_MASK, ADXL367_Y_CHANNEL_MASK | ADXL367_TEMP_CHANNEL_MASK, ADXL367_Z_CHANNEL_MASK | ADXL367_TEMP_CHANNEL_MASK, ADXL367_X_CHANNEL_MASK | ADXL367_EX_ADC_CHANNEL_MASK, ADXL367_Y_CHANNEL_MASK | ADXL367_EX_ADC_CHANNEL_MASK, ADXL367_Z_CHANNEL_MASK | ADXL367_EX_ADC_CHANNEL_MASK, ADXL367_X_CHANNEL_MASK | ADXL367_Y_CHANNEL_MASK | ADXL367_Z_CHANNEL_MASK, ADXL367_X_CHANNEL_MASK | ADXL367_Y_CHANNEL_MASK | ADXL367_Z_CHANNEL_MASK | ADXL367_TEMP_CHANNEL_MASK, ADXL367_X_CHANNEL_MASK | ADXL367_Y_CHANNEL_MASK | ADXL367_Z_CHANNEL_MASK | ADXL367_EX_ADC_CHANNEL_MASK, 0, }; static int adxl367_set_measure_en(struct adxl367_state *st, bool en) { enum adxl367_op_mode op_mode = en ? ADXL367_OP_MEASURE : ADXL367_OP_STANDBY; int ret; ret = regmap_update_bits(st->regmap, ADXL367_REG_POWER_CTL, ADXL367_POWER_CTL_MODE_MASK, FIELD_PREP(ADXL367_POWER_CTL_MODE_MASK, op_mode)); if (ret) return ret; /* * Wait for acceleration output to settle after entering * measure mode. */ if (en) msleep(100); return 0; } static void adxl367_scale_act_thresholds(struct adxl367_state *st, enum adxl367_range old_range, enum adxl367_range new_range) { st->act_threshold = st->act_threshold * adxl367_range_scale_factor_tbl[old_range] / adxl367_range_scale_factor_tbl[new_range]; st->inact_threshold = st->inact_threshold * adxl367_range_scale_factor_tbl[old_range] / adxl367_range_scale_factor_tbl[new_range]; } static int _adxl367_set_act_threshold(struct adxl367_state *st, enum adxl367_activity_type act, unsigned int threshold) { u8 reg = adxl367_threshold_h_reg_tbl[act]; int ret; if (threshold > ADXL367_THRESH_MAX) return -EINVAL; st->act_threshold_buf[0] = FIELD_PREP(ADXL367_THRESH_H_MASK, FIELD_GET(ADXL367_THRESH_VAL_H_MASK, threshold)); st->act_threshold_buf[1] = FIELD_PREP(ADXL367_THRESH_L_MASK, FIELD_GET(ADXL367_THRESH_VAL_L_MASK, threshold)); ret = regmap_bulk_write(st->regmap, reg, st->act_threshold_buf, sizeof(st->act_threshold_buf)); if (ret) return ret; if (act == ADXL367_ACTIVITY) st->act_threshold = threshold; else st->inact_threshold = threshold; return 0; } static int adxl367_set_act_threshold(struct adxl367_state *st, enum adxl367_activity_type act, unsigned int threshold) { int ret; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = _adxl367_set_act_threshold(st, act, threshold); if (ret) goto out; ret = adxl367_set_measure_en(st, true); out: mutex_unlock(&st->lock); return ret; } static int adxl367_set_act_proc_mode(struct adxl367_state *st, enum adxl367_act_proc_mode mode) { return regmap_update_bits(st->regmap, ADXL367_REG_ACT_INACT_CTL, ADXL367_ACT_LINKLOOP_MASK, FIELD_PREP(ADXL367_ACT_LINKLOOP_MASK, mode)); } static int adxl367_set_act_interrupt_en(struct adxl367_state *st, enum adxl367_activity_type act, bool en) { unsigned int mask = adxl367_act_int_mask_tbl[act]; return regmap_update_bits(st->regmap, ADXL367_REG_INT1_MAP, mask, en ? mask : 0); } static int adxl367_get_act_interrupt_en(struct adxl367_state *st, enum adxl367_activity_type act, bool *en) { unsigned int mask = adxl367_act_int_mask_tbl[act]; unsigned int val; int ret; ret = regmap_read(st->regmap, ADXL367_REG_INT1_MAP, &val); if (ret) return ret; *en = !!(val & mask); return 0; } static int adxl367_set_act_en(struct adxl367_state *st, enum adxl367_activity_type act, enum adxl367_act_en_mode en) { unsigned int ctl_shift = adxl367_act_en_shift_tbl[act]; return regmap_update_bits(st->regmap, ADXL367_REG_ACT_INACT_CTL, ADXL367_ACT_EN_MASK << ctl_shift, en << ctl_shift); } static int adxl367_set_fifo_watermark_interrupt_en(struct adxl367_state *st, bool en) { return regmap_update_bits(st->regmap, ADXL367_REG_INT1_MAP, ADXL367_INT_FIFO_WATERMARK_MASK, en ? ADXL367_INT_FIFO_WATERMARK_MASK : 0); } static int adxl367_get_fifo_mode(struct adxl367_state *st, enum adxl367_fifo_mode *fifo_mode) { unsigned int val; int ret; ret = regmap_read(st->regmap, ADXL367_REG_FIFO_CTL, &val); if (ret) return ret; *fifo_mode = FIELD_GET(ADXL367_FIFO_CTL_MODE_MASK, val); return 0; } static int adxl367_set_fifo_mode(struct adxl367_state *st, enum adxl367_fifo_mode fifo_mode) { return regmap_update_bits(st->regmap, ADXL367_REG_FIFO_CTL, ADXL367_FIFO_CTL_MODE_MASK, FIELD_PREP(ADXL367_FIFO_CTL_MODE_MASK, fifo_mode)); } static int adxl367_set_fifo_format(struct adxl367_state *st, enum adxl367_fifo_format fifo_format) { return regmap_update_bits(st->regmap, ADXL367_REG_FIFO_CTL, ADXL367_FIFO_CTL_FORMAT_MASK, FIELD_PREP(ADXL367_FIFO_CTL_FORMAT_MASK, fifo_format)); } static int adxl367_set_fifo_watermark(struct adxl367_state *st, unsigned int fifo_watermark) { unsigned int fifo_samples = fifo_watermark * st->fifo_set_size; unsigned int fifo_samples_h, fifo_samples_l; int ret; if (fifo_samples > ADXL367_FIFO_MAX_WATERMARK) fifo_samples = ADXL367_FIFO_MAX_WATERMARK; fifo_samples /= st->fifo_set_size; fifo_samples_h = FIELD_PREP(ADXL367_SAMPLES_H_MASK, FIELD_GET(ADXL367_SAMPLES_VAL_H_MASK, fifo_samples)); fifo_samples_l = FIELD_PREP(ADXL367_SAMPLES_L_MASK, FIELD_GET(ADXL367_SAMPLES_VAL_L_MASK, fifo_samples)); ret = regmap_update_bits(st->regmap, ADXL367_REG_FIFO_CTL, ADXL367_SAMPLES_H_MASK, fifo_samples_h); if (ret) return ret; ret = regmap_update_bits(st->regmap, ADXL367_REG_FIFO_SAMPLES, ADXL367_SAMPLES_L_MASK, fifo_samples_l); if (ret) return ret; st->fifo_watermark = fifo_watermark; return 0; } static int adxl367_set_range(struct iio_dev *indio_dev, enum adxl367_range range) { struct adxl367_state *st = iio_priv(indio_dev); int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = regmap_update_bits(st->regmap, ADXL367_REG_FILTER_CTL, ADXL367_FILTER_CTL_RANGE_MASK, FIELD_PREP(ADXL367_FILTER_CTL_RANGE_MASK, range)); if (ret) goto out; adxl367_scale_act_thresholds(st, st->range, range); /* Activity thresholds depend on range */ ret = _adxl367_set_act_threshold(st, ADXL367_ACTIVITY, st->act_threshold); if (ret) goto out; ret = _adxl367_set_act_threshold(st, ADXL367_INACTIVITY, st->inact_threshold); if (ret) goto out; ret = adxl367_set_measure_en(st, true); if (ret) goto out; st->range = range; out: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret; } static int adxl367_time_ms_to_samples(struct adxl367_state *st, unsigned int ms) { int freq_hz = adxl367_samp_freq_tbl[st->odr][0]; int freq_microhz = adxl367_samp_freq_tbl[st->odr][1]; /* Scale to decihertz to prevent precision loss in 12.5Hz case. */ int freq_dhz = freq_hz * 10 + freq_microhz / 100000; return DIV_ROUND_CLOSEST(ms * freq_dhz, 10000); } static int _adxl367_set_act_time_ms(struct adxl367_state *st, unsigned int ms) { unsigned int val = adxl367_time_ms_to_samples(st, ms); int ret; if (val > ADXL367_TIME_ACT_MAX) val = ADXL367_TIME_ACT_MAX; ret = regmap_write(st->regmap, ADXL367_REG_TIME_ACT, val); if (ret) return ret; st->act_time_ms = ms; return 0; } static int _adxl367_set_inact_time_ms(struct adxl367_state *st, unsigned int ms) { unsigned int val = adxl367_time_ms_to_samples(st, ms); int ret; if (val > ADXL367_TIME_INACT_MAX) val = ADXL367_TIME_INACT_MAX; st->inact_time_buf[0] = FIELD_PREP(ADXL367_TIME_INACT_H_MASK, FIELD_GET(ADXL367_TIME_INACT_VAL_H_MASK, val)); st->inact_time_buf[1] = FIELD_PREP(ADXL367_TIME_INACT_L_MASK, FIELD_GET(ADXL367_TIME_INACT_VAL_L_MASK, val)); ret = regmap_bulk_write(st->regmap, ADXL367_REG_TIME_INACT_H, st->inact_time_buf, sizeof(st->inact_time_buf)); if (ret) return ret; st->inact_time_ms = ms; return 0; } static int adxl367_set_act_time_ms(struct adxl367_state *st, enum adxl367_activity_type act, unsigned int ms) { int ret; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; if (act == ADXL367_ACTIVITY) ret = _adxl367_set_act_time_ms(st, ms); else ret = _adxl367_set_inact_time_ms(st, ms); if (ret) goto out; ret = adxl367_set_measure_en(st, true); out: mutex_unlock(&st->lock); return ret; } static int _adxl367_set_odr(struct adxl367_state *st, enum adxl367_odr odr) { int ret; ret = regmap_update_bits(st->regmap, ADXL367_REG_FILTER_CTL, ADXL367_FILTER_CTL_ODR_MASK, FIELD_PREP(ADXL367_FILTER_CTL_ODR_MASK, odr)); if (ret) return ret; /* Activity timers depend on ODR */ ret = _adxl367_set_act_time_ms(st, st->act_time_ms); if (ret) return ret; ret = _adxl367_set_inact_time_ms(st, st->inact_time_ms); if (ret) return ret; st->odr = odr; return 0; } static int adxl367_set_odr(struct iio_dev *indio_dev, enum adxl367_odr odr) { struct adxl367_state *st = iio_priv(indio_dev); int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = _adxl367_set_odr(st, odr); if (ret) goto out; ret = adxl367_set_measure_en(st, true); out: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret; } static int adxl367_set_temp_adc_en(struct adxl367_state *st, unsigned int reg, bool en) { return regmap_update_bits(st->regmap, reg, ADXL367_ADC_EN_MASK, en ? ADXL367_ADC_EN_MASK : 0); } static int adxl367_set_temp_adc_reg_en(struct adxl367_state *st, unsigned int reg, bool en) { int ret; switch (reg) { case ADXL367_REG_TEMP_DATA_H: ret = adxl367_set_temp_adc_en(st, ADXL367_REG_TEMP_CTL, en); break; case ADXL367_REG_EX_ADC_DATA_H: ret = adxl367_set_temp_adc_en(st, ADXL367_REG_ADC_CTL, en); break; default: return 0; } if (ret) return ret; if (en) msleep(100); return 0; } static int adxl367_set_temp_adc_mask_en(struct adxl367_state *st, const unsigned long *active_scan_mask, bool en) { if (*active_scan_mask & ADXL367_TEMP_CHANNEL_MASK) return adxl367_set_temp_adc_en(st, ADXL367_REG_TEMP_CTL, en); else if (*active_scan_mask & ADXL367_EX_ADC_CHANNEL_MASK) return adxl367_set_temp_adc_en(st, ADXL367_REG_ADC_CTL, en); return 0; } static int adxl367_find_odr(struct adxl367_state *st, int val, int val2, enum adxl367_odr *odr) { size_t size = ARRAY_SIZE(adxl367_samp_freq_tbl); int i; for (i = 0; i < size; i++) if (val == adxl367_samp_freq_tbl[i][0] && val2 == adxl367_samp_freq_tbl[i][1]) break; if (i == size) return -EINVAL; *odr = i; return 0; } static int adxl367_find_range(struct adxl367_state *st, int val, int val2, enum adxl367_range *range) { size_t size = ARRAY_SIZE(adxl367_range_scale_tbl); int i; for (i = 0; i < size; i++) if (val == adxl367_range_scale_tbl[i][0] && val2 == adxl367_range_scale_tbl[i][1]) break; if (i == size) return -EINVAL; *range = i; return 0; } static int adxl367_read_sample(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct adxl367_state *st = iio_priv(indio_dev); u16 sample; int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = adxl367_set_temp_adc_reg_en(st, chan->address, true); if (ret) goto out; ret = regmap_bulk_read(st->regmap, chan->address, &st->sample_buf, sizeof(st->sample_buf)); if (ret) goto out; sample = FIELD_GET(ADXL367_DATA_MASK, be16_to_cpu(st->sample_buf)); *val = sign_extend32(sample, chan->scan_type.realbits - 1); ret = adxl367_set_temp_adc_reg_en(st, chan->address, false); out: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret ?: IIO_VAL_INT; } static int adxl367_get_status(struct adxl367_state *st, u8 *status, u16 *fifo_entries) { int ret; /* Read STATUS, FIFO_ENT_L and FIFO_ENT_H */ ret = regmap_bulk_read(st->regmap, ADXL367_REG_STATUS, st->status_buf, sizeof(st->status_buf)); if (ret) return ret; st->status_buf[2] &= ADXL367_FIFO_ENT_H_MASK; *status = st->status_buf[0]; *fifo_entries = get_unaligned_le16(&st->status_buf[1]); return 0; } static bool adxl367_push_event(struct iio_dev *indio_dev, u8 status) { unsigned int ev_dir; if (FIELD_GET(ADXL367_STATUS_ACT_MASK, status)) ev_dir = IIO_EV_DIR_RISING; else if (FIELD_GET(ADXL367_STATUS_INACT_MASK, status)) ev_dir = IIO_EV_DIR_FALLING; else return false; iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, IIO_EV_TYPE_THRESH, ev_dir), iio_get_time_ns(indio_dev)); return true; } static bool adxl367_push_fifo_data(struct iio_dev *indio_dev, u8 status, u16 fifo_entries) { struct adxl367_state *st = iio_priv(indio_dev); int ret; int i; if (!FIELD_GET(ADXL367_STATUS_FIFO_FULL_MASK, status)) return false; fifo_entries -= fifo_entries % st->fifo_set_size; ret = st->ops->read_fifo(st->context, st->fifo_buf, fifo_entries); if (ret) { dev_err(st->dev, "Failed to read FIFO: %d\n", ret); return true; } for (i = 0; i < fifo_entries; i += st->fifo_set_size) iio_push_to_buffers(indio_dev, &st->fifo_buf[i]); return true; } static irqreturn_t adxl367_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct adxl367_state *st = iio_priv(indio_dev); u16 fifo_entries; bool handled; u8 status; int ret; ret = adxl367_get_status(st, &status, &fifo_entries); if (ret) return IRQ_NONE; handled = adxl367_push_event(indio_dev, status); handled |= adxl367_push_fifo_data(indio_dev, status, fifo_entries); return handled ? IRQ_HANDLED : IRQ_NONE; } static int adxl367_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct adxl367_state *st = iio_priv(indio_dev); if (readval) return regmap_read(st->regmap, reg, readval); else return regmap_write(st->regmap, reg, writeval); } static int adxl367_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct adxl367_state *st = iio_priv(indio_dev); switch (info) { case IIO_CHAN_INFO_RAW: return adxl367_read_sample(indio_dev, chan, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ACCEL: mutex_lock(&st->lock); *val = adxl367_range_scale_tbl[st->range][0]; *val2 = adxl367_range_scale_tbl[st->range][1]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; case IIO_TEMP: *val = 1000; *val2 = ADXL367_TEMP_PER_C; return IIO_VAL_FRACTIONAL; case IIO_VOLTAGE: *val = ADXL367_VOLTAGE_MAX_MV; *val2 = ADXL367_VOLTAGE_MAX_RAW; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: *val = 25 * ADXL367_TEMP_PER_C - ADXL367_TEMP_25C; return IIO_VAL_INT; case IIO_VOLTAGE: *val = ADXL367_VOLTAGE_OFFSET; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&st->lock); *val = adxl367_samp_freq_tbl[st->odr][0]; *val2 = adxl367_samp_freq_tbl[st->odr][1]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int adxl367_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct adxl367_state *st = iio_priv(indio_dev); int ret; switch (info) { case IIO_CHAN_INFO_SAMP_FREQ: { enum adxl367_odr odr; ret = adxl367_find_odr(st, val, val2, &odr); if (ret) return ret; return adxl367_set_odr(indio_dev, odr); } case IIO_CHAN_INFO_SCALE: { enum adxl367_range range; ret = adxl367_find_range(st, val, val2, &range); if (ret) return ret; return adxl367_set_range(indio_dev, range); } default: return -EINVAL; } } static int adxl367_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long info) { switch (info) { case IIO_CHAN_INFO_SCALE: if (chan->type != IIO_ACCEL) return -EINVAL; return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } } static int adxl367_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long info) { switch (info) { case IIO_CHAN_INFO_SCALE: if (chan->type != IIO_ACCEL) return -EINVAL; *vals = (int *)adxl367_range_scale_tbl; *type = IIO_VAL_INT_PLUS_NANO; *length = ARRAY_SIZE(adxl367_range_scale_tbl) * 2; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *vals = (int *)adxl367_samp_freq_tbl; *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(adxl367_samp_freq_tbl) * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int adxl367_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct adxl367_state *st = iio_priv(indio_dev); switch (info) { case IIO_EV_INFO_VALUE: { switch (dir) { case IIO_EV_DIR_RISING: mutex_lock(&st->lock); *val = st->act_threshold; mutex_unlock(&st->lock); return IIO_VAL_INT; case IIO_EV_DIR_FALLING: mutex_lock(&st->lock); *val = st->inact_threshold; mutex_unlock(&st->lock); return IIO_VAL_INT; default: return -EINVAL; } } case IIO_EV_INFO_PERIOD: switch (dir) { case IIO_EV_DIR_RISING: mutex_lock(&st->lock); *val = st->act_time_ms; mutex_unlock(&st->lock); *val2 = 1000; return IIO_VAL_FRACTIONAL; case IIO_EV_DIR_FALLING: mutex_lock(&st->lock); *val = st->inact_time_ms; mutex_unlock(&st->lock); *val2 = 1000; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } default: return -EINVAL; } } static int adxl367_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct adxl367_state *st = iio_priv(indio_dev); switch (info) { case IIO_EV_INFO_VALUE: if (val < 0) return -EINVAL; switch (dir) { case IIO_EV_DIR_RISING: return adxl367_set_act_threshold(st, ADXL367_ACTIVITY, val); case IIO_EV_DIR_FALLING: return adxl367_set_act_threshold(st, ADXL367_INACTIVITY, val); default: return -EINVAL; } case IIO_EV_INFO_PERIOD: if (val < 0) return -EINVAL; val = val * 1000 + DIV_ROUND_UP(val2, 1000); switch (dir) { case IIO_EV_DIR_RISING: return adxl367_set_act_time_ms(st, ADXL367_ACTIVITY, val); case IIO_EV_DIR_FALLING: return adxl367_set_act_time_ms(st, ADXL367_INACTIVITY, val); default: return -EINVAL; } default: return -EINVAL; } } static int adxl367_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct adxl367_state *st = iio_priv(indio_dev); bool en; int ret; switch (dir) { case IIO_EV_DIR_RISING: ret = adxl367_get_act_interrupt_en(st, ADXL367_ACTIVITY, &en); return ret ?: en; case IIO_EV_DIR_FALLING: ret = adxl367_get_act_interrupt_en(st, ADXL367_INACTIVITY, &en); return ret ?: en; default: return -EINVAL; } } static int adxl367_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct adxl367_state *st = iio_priv(indio_dev); enum adxl367_activity_type act; int ret; switch (dir) { case IIO_EV_DIR_RISING: act = ADXL367_ACTIVITY; break; case IIO_EV_DIR_FALLING: act = ADXL367_INACTIVITY; break; default: return -EINVAL; } ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = adxl367_set_act_interrupt_en(st, act, state); if (ret) goto out; ret = adxl367_set_act_en(st, act, state ? ADCL367_ACT_REF_ENABLED : ADXL367_ACT_DISABLED); if (ret) goto out; ret = adxl367_set_measure_en(st, true); out: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret; } static ssize_t adxl367_get_fifo_enabled(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl367_state *st = iio_priv(dev_to_iio_dev(dev)); enum adxl367_fifo_mode fifo_mode; int ret; ret = adxl367_get_fifo_mode(st, &fifo_mode); if (ret) return ret; return sysfs_emit(buf, "%d\n", fifo_mode != ADXL367_FIFO_MODE_DISABLED); } static ssize_t adxl367_get_fifo_watermark(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl367_state *st = iio_priv(dev_to_iio_dev(dev)); unsigned int fifo_watermark; mutex_lock(&st->lock); fifo_watermark = st->fifo_watermark; mutex_unlock(&st->lock); return sysfs_emit(buf, "%d\n", fifo_watermark); } IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1"); IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, __stringify(ADXL367_FIFO_MAX_WATERMARK)); static IIO_DEVICE_ATTR(hwfifo_watermark, 0444, adxl367_get_fifo_watermark, NULL, 0); static IIO_DEVICE_ATTR(hwfifo_enabled, 0444, adxl367_get_fifo_enabled, NULL, 0); static const struct iio_dev_attr *adxl367_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark_min, &iio_dev_attr_hwfifo_watermark_max, &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL, }; static int adxl367_set_watermark(struct iio_dev *indio_dev, unsigned int val) { struct adxl367_state *st = iio_priv(indio_dev); int ret; if (val > ADXL367_FIFO_MAX_WATERMARK) return -EINVAL; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = adxl367_set_fifo_watermark(st, val); if (ret) goto out; ret = adxl367_set_measure_en(st, true); out: mutex_unlock(&st->lock); return ret; } static bool adxl367_find_mask_fifo_format(const unsigned long *scan_mask, enum adxl367_fifo_format *fifo_format) { size_t size = ARRAY_SIZE(adxl367_fifo_formats); int i; for (i = 0; i < size; i++) if (*scan_mask == adxl367_channel_masks[i]) break; if (i == size) return false; *fifo_format = adxl367_fifo_formats[i]; return true; } static int adxl367_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *active_scan_mask) { struct adxl367_state *st = iio_priv(indio_dev); enum adxl367_fifo_format fifo_format; int ret; if (!adxl367_find_mask_fifo_format(active_scan_mask, &fifo_format)) return -EINVAL; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = adxl367_set_fifo_format(st, fifo_format); if (ret) goto out; ret = adxl367_set_measure_en(st, true); if (ret) goto out; st->fifo_set_size = bitmap_weight(active_scan_mask, indio_dev->masklength); out: mutex_unlock(&st->lock); return ret; } static int adxl367_buffer_postenable(struct iio_dev *indio_dev) { struct adxl367_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); ret = adxl367_set_temp_adc_mask_en(st, indio_dev->active_scan_mask, true); if (ret) goto out; ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = adxl367_set_fifo_watermark_interrupt_en(st, true); if (ret) goto out; ret = adxl367_set_fifo_mode(st, ADXL367_FIFO_MODE_STREAM); if (ret) goto out; ret = adxl367_set_measure_en(st, true); out: mutex_unlock(&st->lock); return ret; } static int adxl367_buffer_predisable(struct iio_dev *indio_dev) { struct adxl367_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); ret = adxl367_set_measure_en(st, false); if (ret) goto out; ret = adxl367_set_fifo_mode(st, ADXL367_FIFO_MODE_DISABLED); if (ret) goto out; ret = adxl367_set_fifo_watermark_interrupt_en(st, false); if (ret) goto out; ret = adxl367_set_measure_en(st, true); if (ret) goto out; ret = adxl367_set_temp_adc_mask_en(st, indio_dev->active_scan_mask, false); out: mutex_unlock(&st->lock); return ret; } static const struct iio_buffer_setup_ops adxl367_buffer_ops = { .postenable = adxl367_buffer_postenable, .predisable = adxl367_buffer_predisable, }; static const struct iio_info adxl367_info = { .read_raw = adxl367_read_raw, .write_raw = adxl367_write_raw, .write_raw_get_fmt = adxl367_write_raw_get_fmt, .read_avail = adxl367_read_avail, .read_event_config = adxl367_read_event_config, .write_event_config = adxl367_write_event_config, .read_event_value = adxl367_read_event_value, .write_event_value = adxl367_write_event_value, .debugfs_reg_access = adxl367_reg_access, .hwfifo_set_watermark = adxl367_set_watermark, .update_scan_mode = adxl367_update_scan_mode, }; static const struct iio_event_spec adxl367_events[] = { { .type = IIO_EV_TYPE_MAG_REFERENCED, .dir = IIO_EV_DIR_RISING, .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_MAG_REFERENCED, .dir = IIO_EV_DIR_FALLING, .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_VALUE), }, }; #define ADXL367_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = (reg), \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .event_spec = adxl367_events, \ .num_event_specs = ARRAY_SIZE(adxl367_events), \ .scan_index = (index), \ .scan_type = { \ .sign = 's', \ .realbits = 14, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } #define ADXL367_CHANNEL(index, reg, _type) { \ .type = (_type), \ .address = (reg), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = (index), \ .scan_type = { \ .sign = 's', \ .realbits = 14, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec adxl367_channels[] = { ADXL367_ACCEL_CHANNEL(ADXL367_X_CHANNEL_INDEX, ADXL367_REG_X_DATA_H, X), ADXL367_ACCEL_CHANNEL(ADXL367_Y_CHANNEL_INDEX, ADXL367_REG_Y_DATA_H, Y), ADXL367_ACCEL_CHANNEL(ADXL367_Z_CHANNEL_INDEX, ADXL367_REG_Z_DATA_H, Z), ADXL367_CHANNEL(ADXL367_TEMP_CHANNEL_INDEX, ADXL367_REG_TEMP_DATA_H, IIO_TEMP), ADXL367_CHANNEL(ADXL367_EX_ADC_CHANNEL_INDEX, ADXL367_REG_EX_ADC_DATA_H, IIO_VOLTAGE), }; static int adxl367_verify_devid(struct adxl367_state *st) { unsigned int val; int ret; ret = regmap_read_poll_timeout(st->regmap, ADXL367_REG_DEVID, val, val == ADXL367_DEVID_AD, 1000, 10000); if (ret) return dev_err_probe(st->dev, -ENODEV, "Invalid dev id 0x%02X, expected 0x%02X\n", val, ADXL367_DEVID_AD); return 0; } static int adxl367_setup(struct adxl367_state *st) { int ret; ret = _adxl367_set_act_threshold(st, ADXL367_ACTIVITY, ADXL367_2G_RANGE_1G); if (ret) return ret; ret = _adxl367_set_act_threshold(st, ADXL367_INACTIVITY, ADXL367_2G_RANGE_100MG); if (ret) return ret; ret = adxl367_set_act_proc_mode(st, ADXL367_LOOPED); if (ret) return ret; ret = _adxl367_set_odr(st, ADXL367_ODR_400HZ); if (ret) return ret; ret = _adxl367_set_act_time_ms(st, 10); if (ret) return ret; ret = _adxl367_set_inact_time_ms(st, 10000); if (ret) return ret; return adxl367_set_measure_en(st, true); } int adxl367_probe(struct device *dev, const struct adxl367_ops *ops, void *context, struct regmap *regmap, int irq) { static const char * const regulator_names[] = { "vdd", "vddio" }; struct iio_dev *indio_dev; struct adxl367_state *st; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->dev = dev; st->regmap = regmap; st->context = context; st->ops = ops; mutex_init(&st->lock); indio_dev->channels = adxl367_channels; indio_dev->num_channels = ARRAY_SIZE(adxl367_channels); indio_dev->available_scan_masks = adxl367_channel_masks; indio_dev->name = "adxl367"; indio_dev->info = &adxl367_info; indio_dev->modes = INDIO_DIRECT_MODE; ret = devm_regulator_bulk_get_enable(st->dev, ARRAY_SIZE(regulator_names), regulator_names); if (ret) return dev_err_probe(st->dev, ret, "Failed to get regulators\n"); ret = regmap_write(st->regmap, ADXL367_REG_RESET, ADXL367_RESET_CODE); if (ret) return ret; ret = adxl367_verify_devid(st); if (ret) return ret; ret = adxl367_setup(st); if (ret) return ret; ret = devm_iio_kfifo_buffer_setup_ext(st->dev, indio_dev, &adxl367_buffer_ops, adxl367_fifo_attributes); if (ret) return ret; ret = devm_request_threaded_irq(st->dev, irq, NULL, adxl367_irq_handler, IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return dev_err_probe(st->dev, ret, "Failed to request irq\n"); return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(adxl367_probe, IIO_ADXL367); MODULE_AUTHOR("Cosmin Tanislav <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADXL367 3-axis accelerometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/adxl367.c
// SPDX-License-Identifier: GPL-2.0-only /* * Freescale MMA9553L Intelligent Pedometer driver * Copyright (c) 2014, Intel Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/pm_runtime.h> #include "mma9551_core.h" #define MMA9553_DRV_NAME "mma9553" #define MMA9553_IRQ_NAME "mma9553_event" /* Pedometer configuration registers (R/W) */ #define MMA9553_REG_CONF_SLEEPMIN 0x00 #define MMA9553_REG_CONF_SLEEPMAX 0x02 #define MMA9553_REG_CONF_SLEEPTHD 0x04 #define MMA9553_MASK_CONF_WORD GENMASK(15, 0) #define MMA9553_REG_CONF_CONF_STEPLEN 0x06 #define MMA9553_MASK_CONF_CONFIG BIT(15) #define MMA9553_MASK_CONF_ACT_DBCNTM BIT(14) #define MMA9553_MASK_CONF_SLP_DBCNTM BIT(13) #define MMA9553_MASK_CONF_STEPLEN GENMASK(7, 0) #define MMA9553_REG_CONF_HEIGHT_WEIGHT 0x08 #define MMA9553_MASK_CONF_HEIGHT GENMASK(15, 8) #define MMA9553_MASK_CONF_WEIGHT GENMASK(7, 0) #define MMA9553_REG_CONF_FILTER 0x0A #define MMA9553_MASK_CONF_FILTSTEP GENMASK(15, 8) #define MMA9553_MASK_CONF_MALE BIT(7) #define MMA9553_MASK_CONF_FILTTIME GENMASK(6, 0) #define MMA9553_REG_CONF_SPEED_STEP 0x0C #define MMA9553_MASK_CONF_SPDPRD GENMASK(15, 8) #define MMA9553_MASK_CONF_STEPCOALESCE GENMASK(7, 0) #define MMA9553_REG_CONF_ACTTHD 0x0E #define MMA9553_MAX_ACTTHD GENMASK(15, 0) /* Pedometer status registers (R-only) */ #define MMA9553_REG_STATUS 0x00 #define MMA9553_MASK_STATUS_MRGFL BIT(15) #define MMA9553_MASK_STATUS_SUSPCHG BIT(14) #define MMA9553_MASK_STATUS_STEPCHG BIT(13) #define MMA9553_MASK_STATUS_ACTCHG BIT(12) #define MMA9553_MASK_STATUS_SUSP BIT(11) #define MMA9553_MASK_STATUS_ACTIVITY GENMASK(10, 8) #define MMA9553_MASK_STATUS_VERSION GENMASK(7, 0) #define MMA9553_REG_STEPCNT 0x02 #define MMA9553_REG_DISTANCE 0x04 #define MMA9553_REG_SPEED 0x06 #define MMA9553_REG_CALORIES 0x08 #define MMA9553_REG_SLEEPCNT 0x0A /* Pedometer events are always mapped to this pin. */ #define MMA9553_DEFAULT_GPIO_PIN mma9551_gpio6 #define MMA9553_DEFAULT_GPIO_POLARITY 0 /* Bitnum used for GPIO configuration = bit number in high status byte */ #define MMA9553_STATUS_TO_BITNUM(bit) (ffs(bit) - 9) #define MMA9553_MAX_BITNUM MMA9553_STATUS_TO_BITNUM(BIT(16)) #define MMA9553_DEFAULT_SAMPLE_RATE 30 /* Hz */ /* * The internal activity level must be stable for ACTTHD samples before * ACTIVITY is updated. The ACTIVITY variable contains the current activity * level and is updated every time a step is detected or once a second * if there are no steps. */ #define MMA9553_ACTIVITY_THD_TO_SEC(thd) ((thd) / MMA9553_DEFAULT_SAMPLE_RATE) #define MMA9553_ACTIVITY_SEC_TO_THD(sec) ((sec) * MMA9553_DEFAULT_SAMPLE_RATE) /* * Autonomously suspend pedometer if acceleration vector magnitude * is near 1g (4096 at 0.244 mg/LSB resolution) for 30 seconds. */ #define MMA9553_DEFAULT_SLEEPMIN 3688 /* 0,9 g */ #define MMA9553_DEFAULT_SLEEPMAX 4508 /* 1,1 g */ #define MMA9553_DEFAULT_SLEEPTHD (MMA9553_DEFAULT_SAMPLE_RATE * 30) #define MMA9553_CONFIG_RETRIES 2 /* Status register - activity field */ enum activity_level { ACTIVITY_UNKNOWN, ACTIVITY_REST, ACTIVITY_WALKING, ACTIVITY_JOGGING, ACTIVITY_RUNNING, }; static struct mma9553_event_info { enum iio_chan_type type; enum iio_modifier mod; enum iio_event_direction dir; } mma9553_events_info[] = { { .type = IIO_STEPS, .mod = IIO_NO_MOD, .dir = IIO_EV_DIR_NONE, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_STILL, .dir = IIO_EV_DIR_RISING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_STILL, .dir = IIO_EV_DIR_FALLING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_WALKING, .dir = IIO_EV_DIR_RISING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_WALKING, .dir = IIO_EV_DIR_FALLING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_JOGGING, .dir = IIO_EV_DIR_RISING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_JOGGING, .dir = IIO_EV_DIR_FALLING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_RUNNING, .dir = IIO_EV_DIR_RISING, }, { .type = IIO_ACTIVITY, .mod = IIO_MOD_RUNNING, .dir = IIO_EV_DIR_FALLING, }, }; #define MMA9553_EVENTS_INFO_SIZE ARRAY_SIZE(mma9553_events_info) struct mma9553_event { struct mma9553_event_info *info; bool enabled; }; struct mma9553_conf_regs { u16 sleepmin; u16 sleepmax; u16 sleepthd; u16 config; u16 height_weight; u16 filter; u16 speed_step; u16 actthd; } __packed; struct mma9553_data { struct i2c_client *client; /* * 1. Serialize access to HW (requested by mma9551_core API). * 2. Serialize sequences that power on/off the device and access HW. */ struct mutex mutex; struct mma9553_conf_regs conf; struct mma9553_event events[MMA9553_EVENTS_INFO_SIZE]; int num_events; u8 gpio_bitnum; /* * This is used for all features that depend on step count: * step count, distance, speed, calories. */ bool stepcnt_enabled; u16 stepcnt; u8 activity; s64 timestamp; }; static u8 mma9553_get_bits(u16 val, u16 mask) { return (val & mask) >> (ffs(mask) - 1); } static u16 mma9553_set_bits(u16 current_val, u16 val, u16 mask) { return (current_val & ~mask) | (val << (ffs(mask) - 1)); } static enum iio_modifier mma9553_activity_to_mod(enum activity_level activity) { switch (activity) { case ACTIVITY_RUNNING: return IIO_MOD_RUNNING; case ACTIVITY_JOGGING: return IIO_MOD_JOGGING; case ACTIVITY_WALKING: return IIO_MOD_WALKING; case ACTIVITY_REST: return IIO_MOD_STILL; case ACTIVITY_UNKNOWN: default: return IIO_NO_MOD; } } static void mma9553_init_events(struct mma9553_data *data) { int i; data->num_events = MMA9553_EVENTS_INFO_SIZE; for (i = 0; i < data->num_events; i++) { data->events[i].info = &mma9553_events_info[i]; data->events[i].enabled = false; } } static struct mma9553_event *mma9553_get_event(struct mma9553_data *data, enum iio_chan_type type, enum iio_modifier mod, enum iio_event_direction dir) { int i; for (i = 0; i < data->num_events; i++) if (data->events[i].info->type == type && data->events[i].info->mod == mod && data->events[i].info->dir == dir) return &data->events[i]; return NULL; } static bool mma9553_is_any_event_enabled(struct mma9553_data *data, bool check_type, enum iio_chan_type type) { int i; for (i = 0; i < data->num_events; i++) if ((check_type && data->events[i].info->type == type && data->events[i].enabled) || (!check_type && data->events[i].enabled)) return true; return false; } static int mma9553_set_config(struct mma9553_data *data, u16 reg, u16 *p_reg_val, u16 val, u16 mask) { int ret, retries; u16 reg_val, config; reg_val = *p_reg_val; if (val == mma9553_get_bits(reg_val, mask)) return 0; reg_val = mma9553_set_bits(reg_val, val, mask); ret = mma9551_write_config_word(data->client, MMA9551_APPID_PEDOMETER, reg, reg_val); if (ret < 0) { dev_err(&data->client->dev, "error writing config register 0x%x\n", reg); return ret; } *p_reg_val = reg_val; /* Reinitializes the pedometer with current configuration values */ config = mma9553_set_bits(data->conf.config, 1, MMA9553_MASK_CONF_CONFIG); ret = mma9551_write_config_word(data->client, MMA9551_APPID_PEDOMETER, MMA9553_REG_CONF_CONF_STEPLEN, config); if (ret < 0) { dev_err(&data->client->dev, "error writing config register 0x%x\n", MMA9553_REG_CONF_CONF_STEPLEN); return ret; } retries = MMA9553_CONFIG_RETRIES; do { mma9551_sleep(MMA9553_DEFAULT_SAMPLE_RATE); ret = mma9551_read_config_word(data->client, MMA9551_APPID_PEDOMETER, MMA9553_REG_CONF_CONF_STEPLEN, &config); if (ret < 0) return ret; } while (mma9553_get_bits(config, MMA9553_MASK_CONF_CONFIG) && --retries > 0); return 0; } static int mma9553_read_activity_stepcnt(struct mma9553_data *data, u8 *activity, u16 *stepcnt) { u16 buf[2]; int ret; ret = mma9551_read_status_words(data->client, MMA9551_APPID_PEDOMETER, MMA9553_REG_STATUS, ARRAY_SIZE(buf), buf); if (ret < 0) { dev_err(&data->client->dev, "error reading status and stepcnt\n"); return ret; } *activity = mma9553_get_bits(buf[0], MMA9553_MASK_STATUS_ACTIVITY); *stepcnt = buf[1]; return 0; } static int mma9553_conf_gpio(struct mma9553_data *data) { u8 bitnum = 0, appid = MMA9551_APPID_PEDOMETER; int ret; struct mma9553_event *ev_step_detect; bool activity_enabled; activity_enabled = mma9553_is_any_event_enabled(data, true, IIO_ACTIVITY); ev_step_detect = mma9553_get_event(data, IIO_STEPS, IIO_NO_MOD, IIO_EV_DIR_NONE); /* * If both step detector and activity are enabled, use the MRGFL bit. * This bit is the logical OR of the SUSPCHG, STEPCHG, and ACTCHG flags. */ if (activity_enabled && ev_step_detect->enabled) bitnum = MMA9553_STATUS_TO_BITNUM(MMA9553_MASK_STATUS_MRGFL); else if (ev_step_detect->enabled) bitnum = MMA9553_STATUS_TO_BITNUM(MMA9553_MASK_STATUS_STEPCHG); else if (activity_enabled) bitnum = MMA9553_STATUS_TO_BITNUM(MMA9553_MASK_STATUS_ACTCHG); else /* Reset */ appid = MMA9551_APPID_NONE; if (data->gpio_bitnum == bitnum) return 0; /* Save initial values for activity and stepcnt */ if (activity_enabled || ev_step_detect->enabled) { ret = mma9553_read_activity_stepcnt(data, &data->activity, &data->stepcnt); if (ret < 0) return ret; } ret = mma9551_gpio_config(data->client, MMA9553_DEFAULT_GPIO_PIN, appid, bitnum, MMA9553_DEFAULT_GPIO_POLARITY); if (ret < 0) return ret; data->gpio_bitnum = bitnum; return 0; } static int mma9553_init(struct mma9553_data *data) { int ret; ret = mma9551_read_version(data->client); if (ret) return ret; /* * Read all the pedometer configuration registers. This is used as * a device identification command to differentiate the MMA9553L * from the MMA9550L. */ ret = mma9551_read_config_words(data->client, MMA9551_APPID_PEDOMETER, MMA9553_REG_CONF_SLEEPMIN, sizeof(data->conf) / sizeof(u16), (u16 *)&data->conf); if (ret < 0) { dev_err(&data->client->dev, "failed to read configuration registers\n"); return ret; } /* Reset GPIO */ data->gpio_bitnum = MMA9553_MAX_BITNUM; ret = mma9553_conf_gpio(data); if (ret < 0) return ret; ret = mma9551_app_reset(data->client, MMA9551_RSC_PED); if (ret < 0) return ret; /* Init config registers */ data->conf.sleepmin = MMA9553_DEFAULT_SLEEPMIN; data->conf.sleepmax = MMA9553_DEFAULT_SLEEPMAX; data->conf.sleepthd = MMA9553_DEFAULT_SLEEPTHD; data->conf.config = mma9553_set_bits(data->conf.config, 1, MMA9553_MASK_CONF_CONFIG); /* * Clear the activity debounce counter when the activity level changes, * so that the confidence level applies for any activity level. */ data->conf.config = mma9553_set_bits(data->conf.config, 1, MMA9553_MASK_CONF_ACT_DBCNTM); ret = mma9551_write_config_words(data->client, MMA9551_APPID_PEDOMETER, MMA9553_REG_CONF_SLEEPMIN, sizeof(data->conf) / sizeof(u16), (u16 *)&data->conf); if (ret < 0) { dev_err(&data->client->dev, "failed to write configuration registers\n"); return ret; } return mma9551_set_device_state(data->client, true); } static int mma9553_read_status_word(struct mma9553_data *data, u16 reg, u16 *tmp) { bool powered_on; int ret; /* * The HW only counts steps and other dependent * parameters (speed, distance, calories, activity) * if power is on (from enabling an event or the * step counter). */ powered_on = mma9553_is_any_event_enabled(data, false, 0) || data->stepcnt_enabled; if (!powered_on) { dev_err(&data->client->dev, "No channels enabled\n"); return -EINVAL; } mutex_lock(&data->mutex); ret = mma9551_read_status_word(data->client, MMA9551_APPID_PEDOMETER, reg, tmp); mutex_unlock(&data->mutex); return ret; } static int mma9553_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mma9553_data *data = iio_priv(indio_dev); int ret; u16 tmp; u8 activity; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_STEPS: ret = mma9553_read_status_word(data, MMA9553_REG_STEPCNT, &tmp); if (ret < 0) return ret; *val = tmp; return IIO_VAL_INT; case IIO_DISTANCE: ret = mma9553_read_status_word(data, MMA9553_REG_DISTANCE, &tmp); if (ret < 0) return ret; *val = tmp; return IIO_VAL_INT; case IIO_ACTIVITY: ret = mma9553_read_status_word(data, MMA9553_REG_STATUS, &tmp); if (ret < 0) return ret; activity = mma9553_get_bits(tmp, MMA9553_MASK_STATUS_ACTIVITY); /* * The device does not support confidence value levels, * so we will always have 100% for current activity and * 0% for the others. */ if (chan->channel2 == mma9553_activity_to_mod(activity)) *val = 100; else *val = 0; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_VELOCITY: /* m/h */ if (chan->channel2 != IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z) return -EINVAL; ret = mma9553_read_status_word(data, MMA9553_REG_SPEED, &tmp); if (ret < 0) return ret; *val = tmp; return IIO_VAL_INT; case IIO_ENERGY: /* Cal or kcal */ ret = mma9553_read_status_word(data, MMA9553_REG_CALORIES, &tmp); if (ret < 0) return ret; *val = tmp; return IIO_VAL_INT; case IIO_ACCEL: mutex_lock(&data->mutex); ret = mma9551_read_accel_chan(data->client, chan, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VELOCITY: /* m/h to m/s */ if (chan->channel2 != IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z) return -EINVAL; *val = 0; *val2 = 277; /* 0.000277 */ return IIO_VAL_INT_PLUS_MICRO; case IIO_ENERGY: /* Cal or kcal to J */ *val = 4184; return IIO_VAL_INT; case IIO_ACCEL: return mma9551_read_accel_scale(val, val2); default: return -EINVAL; } case IIO_CHAN_INFO_ENABLE: *val = data->stepcnt_enabled; return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBHEIGHT: tmp = mma9553_get_bits(data->conf.height_weight, MMA9553_MASK_CONF_HEIGHT); *val = tmp / 100; /* cm to m */ *val2 = (tmp % 100) * 10000; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBWEIGHT: *val = mma9553_get_bits(data->conf.height_weight, MMA9553_MASK_CONF_WEIGHT); return IIO_VAL_INT; case IIO_CHAN_INFO_DEBOUNCE_COUNT: switch (chan->type) { case IIO_STEPS: *val = mma9553_get_bits(data->conf.filter, MMA9553_MASK_CONF_FILTSTEP); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_DEBOUNCE_TIME: switch (chan->type) { case IIO_STEPS: *val = mma9553_get_bits(data->conf.filter, MMA9553_MASK_CONF_FILTTIME); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_VELOCITY: if (chan->channel2 != IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z) return -EINVAL; *val = mma9553_get_bits(data->conf.speed_step, MMA9553_MASK_CONF_SPDPRD); return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int mma9553_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mma9553_data *data = iio_priv(indio_dev); int ret, tmp; switch (mask) { case IIO_CHAN_INFO_ENABLE: if (data->stepcnt_enabled == !!val) return 0; mutex_lock(&data->mutex); ret = mma9551_set_power_state(data->client, val); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } data->stepcnt_enabled = val; mutex_unlock(&data->mutex); return 0; case IIO_CHAN_INFO_CALIBHEIGHT: /* m to cm */ tmp = val * 100 + val2 / 10000; if (tmp < 0 || tmp > 255) return -EINVAL; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_HEIGHT_WEIGHT, &data->conf.height_weight, tmp, MMA9553_MASK_CONF_HEIGHT); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_CALIBWEIGHT: if (val < 0 || val > 255) return -EINVAL; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_HEIGHT_WEIGHT, &data->conf.height_weight, val, MMA9553_MASK_CONF_WEIGHT); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_DEBOUNCE_COUNT: switch (chan->type) { case IIO_STEPS: /* * Set to 0 to disable step filtering. If the value * specified is greater than 6, then 6 will be used. */ if (val < 0) return -EINVAL; if (val > 6) val = 6; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_FILTER, &data->conf.filter, val, MMA9553_MASK_CONF_FILTSTEP); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_CHAN_INFO_DEBOUNCE_TIME: switch (chan->type) { case IIO_STEPS: if (val < 0 || val > 127) return -EINVAL; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_FILTER, &data->conf.filter, val, MMA9553_MASK_CONF_FILTTIME); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_VELOCITY: if (chan->channel2 != IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z) return -EINVAL; /* * If set to a value greater than 5, then 5 will be * used. Warning: Do not set SPDPRD to 0 or 1 as * this may cause undesirable behavior. */ if (val < 2) return -EINVAL; if (val > 5) val = 5; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_SPEED_STEP, &data->conf.speed_step, val, MMA9553_MASK_CONF_SPDPRD); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } default: return -EINVAL; } } static int mma9553_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct mma9553_data *data = iio_priv(indio_dev); struct mma9553_event *event; event = mma9553_get_event(data, chan->type, chan->channel2, dir); if (!event) return -EINVAL; return event->enabled; } static int mma9553_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct mma9553_data *data = iio_priv(indio_dev); struct mma9553_event *event; int ret; event = mma9553_get_event(data, chan->type, chan->channel2, dir); if (!event) return -EINVAL; if (event->enabled == state) return 0; mutex_lock(&data->mutex); ret = mma9551_set_power_state(data->client, state); if (ret < 0) goto err_out; event->enabled = state; ret = mma9553_conf_gpio(data); if (ret < 0) goto err_conf_gpio; mutex_unlock(&data->mutex); return 0; err_conf_gpio: if (state) { event->enabled = false; mma9551_set_power_state(data->client, false); } err_out: mutex_unlock(&data->mutex); return ret; } static int mma9553_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct mma9553_data *data = iio_priv(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: switch (chan->type) { case IIO_STEPS: *val = mma9553_get_bits(data->conf.speed_step, MMA9553_MASK_CONF_STEPCOALESCE); return IIO_VAL_INT; case IIO_ACTIVITY: /* * The device does not support confidence value levels. * We set an average of 50%. */ *val = 50; return IIO_VAL_INT; default: return -EINVAL; } case IIO_EV_INFO_PERIOD: switch (chan->type) { case IIO_ACTIVITY: *val = MMA9553_ACTIVITY_THD_TO_SEC(data->conf.actthd); return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int mma9553_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct mma9553_data *data = iio_priv(indio_dev); int ret; switch (info) { case IIO_EV_INFO_VALUE: switch (chan->type) { case IIO_STEPS: if (val < 0 || val > 255) return -EINVAL; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_SPEED_STEP, &data->conf.speed_step, val, MMA9553_MASK_CONF_STEPCOALESCE); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_EV_INFO_PERIOD: switch (chan->type) { case IIO_ACTIVITY: if (val < 0 || val > MMA9553_ACTIVITY_THD_TO_SEC( MMA9553_MAX_ACTTHD)) return -EINVAL; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_ACTTHD, &data->conf.actthd, MMA9553_ACTIVITY_SEC_TO_THD (val), MMA9553_MASK_CONF_WORD); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } default: return -EINVAL; } } static int mma9553_get_calibgender_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct mma9553_data *data = iio_priv(indio_dev); u8 gender; gender = mma9553_get_bits(data->conf.filter, MMA9553_MASK_CONF_MALE); /* * HW expects 0 for female and 1 for male, * while iio index is 0 for male and 1 for female. */ return !gender; } static int mma9553_set_calibgender_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int mode) { struct mma9553_data *data = iio_priv(indio_dev); u8 gender = !mode; int ret; if ((mode != 0) && (mode != 1)) return -EINVAL; mutex_lock(&data->mutex); ret = mma9553_set_config(data, MMA9553_REG_CONF_FILTER, &data->conf.filter, gender, MMA9553_MASK_CONF_MALE); mutex_unlock(&data->mutex); return ret; } static const struct iio_event_spec mma9553_step_event = { .type = IIO_EV_TYPE_CHANGE, .dir = IIO_EV_DIR_NONE, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE), }; static const struct iio_event_spec mma9553_activity_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD), }, }; static const char * const mma9553_calibgender_modes[] = { "male", "female" }; static const struct iio_enum mma9553_calibgender_enum = { .items = mma9553_calibgender_modes, .num_items = ARRAY_SIZE(mma9553_calibgender_modes), .get = mma9553_get_calibgender_mode, .set = mma9553_set_calibgender_mode, }; static const struct iio_chan_spec_ext_info mma9553_ext_info[] = { IIO_ENUM("calibgender", IIO_SHARED_BY_TYPE, &mma9553_calibgender_enum), IIO_ENUM_AVAILABLE("calibgender", IIO_SHARED_BY_TYPE, &mma9553_calibgender_enum), {}, }; #define MMA9553_PEDOMETER_CHANNEL(_type, _mask) { \ .type = _type, \ .info_mask_separate = BIT(IIO_CHAN_INFO_ENABLE) | \ BIT(IIO_CHAN_INFO_CALIBHEIGHT) | \ _mask, \ .ext_info = mma9553_ext_info, \ } #define MMA9553_ACTIVITY_CHANNEL(_chan2) { \ .type = IIO_ACTIVITY, \ .modified = 1, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_CALIBHEIGHT) | \ BIT(IIO_CHAN_INFO_ENABLE), \ .event_spec = mma9553_activity_events, \ .num_event_specs = ARRAY_SIZE(mma9553_activity_events), \ .ext_info = mma9553_ext_info, \ } static const struct iio_chan_spec mma9553_channels[] = { MMA9551_ACCEL_CHANNEL(IIO_MOD_X), MMA9551_ACCEL_CHANNEL(IIO_MOD_Y), MMA9551_ACCEL_CHANNEL(IIO_MOD_Z), { .type = IIO_STEPS, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_ENABLE) | BIT(IIO_CHAN_INFO_DEBOUNCE_COUNT) | BIT(IIO_CHAN_INFO_DEBOUNCE_TIME), .event_spec = &mma9553_step_event, .num_event_specs = 1, }, MMA9553_PEDOMETER_CHANNEL(IIO_DISTANCE, BIT(IIO_CHAN_INFO_PROCESSED)), { .type = IIO_VELOCITY, .modified = 1, .channel2 = IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_ENABLE), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_CALIBHEIGHT), .ext_info = mma9553_ext_info, }, MMA9553_PEDOMETER_CHANNEL(IIO_ENERGY, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_CALIBWEIGHT)), MMA9553_ACTIVITY_CHANNEL(IIO_MOD_RUNNING), MMA9553_ACTIVITY_CHANNEL(IIO_MOD_JOGGING), MMA9553_ACTIVITY_CHANNEL(IIO_MOD_WALKING), MMA9553_ACTIVITY_CHANNEL(IIO_MOD_STILL), }; static const struct iio_info mma9553_info = { .read_raw = mma9553_read_raw, .write_raw = mma9553_write_raw, .read_event_config = mma9553_read_event_config, .write_event_config = mma9553_write_event_config, .read_event_value = mma9553_read_event_value, .write_event_value = mma9553_write_event_value, }; static irqreturn_t mma9553_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct mma9553_data *data = iio_priv(indio_dev); data->timestamp = iio_get_time_ns(indio_dev); /* * Since we only configure the interrupt pin when an * event is enabled, we are sure we have at least * one event enabled at this point. */ return IRQ_WAKE_THREAD; } static irqreturn_t mma9553_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct mma9553_data *data = iio_priv(indio_dev); u16 stepcnt; u8 activity; struct mma9553_event *ev_activity, *ev_prev_activity, *ev_step_detect; int ret; mutex_lock(&data->mutex); ret = mma9553_read_activity_stepcnt(data, &activity, &stepcnt); if (ret < 0) { mutex_unlock(&data->mutex); return IRQ_HANDLED; } ev_prev_activity = mma9553_get_event(data, IIO_ACTIVITY, mma9553_activity_to_mod( data->activity), IIO_EV_DIR_FALLING); ev_activity = mma9553_get_event(data, IIO_ACTIVITY, mma9553_activity_to_mod(activity), IIO_EV_DIR_RISING); ev_step_detect = mma9553_get_event(data, IIO_STEPS, IIO_NO_MOD, IIO_EV_DIR_NONE); if (ev_step_detect->enabled && (stepcnt != data->stepcnt)) { data->stepcnt = stepcnt; iio_push_event(indio_dev, IIO_EVENT_CODE(IIO_STEPS, 0, IIO_NO_MOD, IIO_EV_DIR_NONE, IIO_EV_TYPE_CHANGE, 0, 0, 0), data->timestamp); } if (activity != data->activity) { data->activity = activity; /* ev_activity can be NULL if activity == ACTIVITY_UNKNOWN */ if (ev_prev_activity && ev_prev_activity->enabled) iio_push_event(indio_dev, IIO_EVENT_CODE(IIO_ACTIVITY, 0, ev_prev_activity->info->mod, IIO_EV_DIR_FALLING, IIO_EV_TYPE_THRESH, 0, 0, 0), data->timestamp); if (ev_activity && ev_activity->enabled) iio_push_event(indio_dev, IIO_EVENT_CODE(IIO_ACTIVITY, 0, ev_activity->info->mod, IIO_EV_DIR_RISING, IIO_EV_TYPE_THRESH, 0, 0, 0), data->timestamp); } mutex_unlock(&data->mutex); return IRQ_HANDLED; } static const char *mma9553_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; return dev_name(dev); } static int mma9553_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct mma9553_data *data; struct iio_dev *indio_dev; const char *name = NULL; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; if (id) name = id->name; else if (ACPI_HANDLE(&client->dev)) name = mma9553_match_acpi_device(&client->dev); else return -ENOSYS; mutex_init(&data->mutex); mma9553_init_events(data); ret = mma9553_init(data); if (ret < 0) return ret; indio_dev->channels = mma9553_channels; indio_dev->num_channels = ARRAY_SIZE(mma9553_channels); indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mma9553_info; if (client->irq > 0) { ret = devm_request_threaded_irq(&client->dev, client->irq, mma9553_irq_handler, mma9553_event_handler, IRQF_TRIGGER_RISING, MMA9553_IRQ_NAME, indio_dev); if (ret < 0) { dev_err(&client->dev, "request irq %d failed\n", client->irq); goto out_poweroff; } } ret = pm_runtime_set_active(&client->dev); if (ret < 0) goto out_poweroff; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, MMA9551_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "unable to register iio device\n"); goto err_pm_cleanup; } dev_dbg(&indio_dev->dev, "Registered device %s\n", name); return 0; err_pm_cleanup: pm_runtime_dont_use_autosuspend(&client->dev); pm_runtime_disable(&client->dev); out_poweroff: mma9551_set_device_state(client, false); return ret; } static void mma9553_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mma9553_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); mutex_lock(&data->mutex); mma9551_set_device_state(data->client, false); mutex_unlock(&data->mutex); } static int mma9553_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9553_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = mma9551_set_device_state(data->client, false); mutex_unlock(&data->mutex); if (ret < 0) { dev_err(&data->client->dev, "powering off device failed\n"); return -EAGAIN; } return 0; } static int mma9553_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9553_data *data = iio_priv(indio_dev); int ret; ret = mma9551_set_device_state(data->client, true); if (ret < 0) return ret; mma9551_sleep(MMA9553_DEFAULT_SAMPLE_RATE); return 0; } static int mma9553_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9553_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = mma9551_set_device_state(data->client, false); mutex_unlock(&data->mutex); return ret; } static int mma9553_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9553_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = mma9551_set_device_state(data->client, true); mutex_unlock(&data->mutex); return ret; } static const struct dev_pm_ops mma9553_pm_ops = { SYSTEM_SLEEP_PM_OPS(mma9553_suspend, mma9553_resume) RUNTIME_PM_OPS(mma9553_runtime_suspend, mma9553_runtime_resume, NULL) }; static const struct acpi_device_id mma9553_acpi_match[] = { {"MMA9553", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, mma9553_acpi_match); static const struct i2c_device_id mma9553_id[] = { {"mma9553", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, mma9553_id); static struct i2c_driver mma9553_driver = { .driver = { .name = MMA9553_DRV_NAME, .acpi_match_table = ACPI_PTR(mma9553_acpi_match), .pm = pm_ptr(&mma9553_pm_ops), }, .probe = mma9553_probe, .remove = mma9553_remove, .id_table = mma9553_id, }; module_i2c_driver(mma9553_driver); MODULE_AUTHOR("Irina Tirdea <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MMA9553L pedometer platform driver"); MODULE_IMPORT_NS(IIO_MMA9551);
linux-master
drivers/iio/accel/mma9553.c
// SPDX-License-Identifier: GPL-2.0-only /* * kxsd9.c simple support for the Kionix KXSD9 3D * accelerometer. * * Copyright (c) 2008-2009 Jonathan Cameron <[email protected]> * * The i2c interface is very similar, so shouldn't be a problem once * I have a suitable wire made up. * * TODO: Support the motion detector */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/sysfs.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include "kxsd9.h" #define KXSD9_REG_X 0x00 #define KXSD9_REG_Y 0x02 #define KXSD9_REG_Z 0x04 #define KXSD9_REG_AUX 0x06 #define KXSD9_REG_RESET 0x0a #define KXSD9_REG_CTRL_C 0x0c #define KXSD9_CTRL_C_FS_MASK 0x03 #define KXSD9_CTRL_C_FS_8G 0x00 #define KXSD9_CTRL_C_FS_6G 0x01 #define KXSD9_CTRL_C_FS_4G 0x02 #define KXSD9_CTRL_C_FS_2G 0x03 #define KXSD9_CTRL_C_MOT_LAT BIT(3) #define KXSD9_CTRL_C_MOT_LEV BIT(4) #define KXSD9_CTRL_C_LP_MASK 0xe0 #define KXSD9_CTRL_C_LP_NONE 0x00 #define KXSD9_CTRL_C_LP_2000HZC BIT(5) #define KXSD9_CTRL_C_LP_2000HZB BIT(6) #define KXSD9_CTRL_C_LP_2000HZA (BIT(5)|BIT(6)) #define KXSD9_CTRL_C_LP_1000HZ BIT(7) #define KXSD9_CTRL_C_LP_500HZ (BIT(7)|BIT(5)) #define KXSD9_CTRL_C_LP_100HZ (BIT(7)|BIT(6)) #define KXSD9_CTRL_C_LP_50HZ (BIT(7)|BIT(6)|BIT(5)) #define KXSD9_REG_CTRL_B 0x0d #define KXSD9_CTRL_B_CLK_HLD BIT(7) #define KXSD9_CTRL_B_ENABLE BIT(6) #define KXSD9_CTRL_B_ST BIT(5) /* Self-test */ #define KXSD9_REG_CTRL_A 0x0e /** * struct kxsd9_state - device related storage * @dev: pointer to the parent device * @map: regmap to the device * @orientation: mounting matrix, flipped axis etc * @regs: regulators for this device, VDD and IOVDD * @scale: the current scaling setting */ struct kxsd9_state { struct device *dev; struct regmap *map; struct iio_mount_matrix orientation; struct regulator_bulk_data regs[2]; u8 scale; }; #define KXSD9_SCALE_2G "0.011978" #define KXSD9_SCALE_4G "0.023927" #define KXSD9_SCALE_6G "0.035934" #define KXSD9_SCALE_8G "0.047853" /* reverse order */ static const int kxsd9_micro_scales[4] = { 47853, 35934, 23927, 11978 }; #define KXSD9_ZERO_G_OFFSET -2048 /* * Regulator names */ static const char kxsd9_reg_vdd[] = "vdd"; static const char kxsd9_reg_iovdd[] = "iovdd"; static int kxsd9_write_scale(struct iio_dev *indio_dev, int micro) { int ret, i; struct kxsd9_state *st = iio_priv(indio_dev); bool foundit = false; for (i = 0; i < 4; i++) if (micro == kxsd9_micro_scales[i]) { foundit = true; break; } if (!foundit) return -EINVAL; ret = regmap_update_bits(st->map, KXSD9_REG_CTRL_C, KXSD9_CTRL_C_FS_MASK, i); if (ret < 0) goto error_ret; /* Cached scale when the sensor is powered down */ st->scale = i; error_ret: return ret; } static IIO_CONST_ATTR(accel_scale_available, KXSD9_SCALE_2G " " KXSD9_SCALE_4G " " KXSD9_SCALE_6G " " KXSD9_SCALE_8G); static struct attribute *kxsd9_attributes[] = { &iio_const_attr_accel_scale_available.dev_attr.attr, NULL, }; static int kxsd9_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret = -EINVAL; struct kxsd9_state *st = iio_priv(indio_dev); pm_runtime_get_sync(st->dev); if (mask == IIO_CHAN_INFO_SCALE) { /* Check no integer component */ if (val) return -EINVAL; ret = kxsd9_write_scale(indio_dev, val2); } pm_runtime_mark_last_busy(st->dev); pm_runtime_put_autosuspend(st->dev); return ret; } static int kxsd9_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret = -EINVAL; struct kxsd9_state *st = iio_priv(indio_dev); unsigned int regval; __be16 raw_val; u16 nval; pm_runtime_get_sync(st->dev); switch (mask) { case IIO_CHAN_INFO_RAW: ret = regmap_bulk_read(st->map, chan->address, &raw_val, sizeof(raw_val)); if (ret) goto error_ret; nval = be16_to_cpu(raw_val); /* Only 12 bits are valid */ nval >>= 4; *val = nval; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_OFFSET: /* This has a bias of -2048 */ *val = KXSD9_ZERO_G_OFFSET; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: ret = regmap_read(st->map, KXSD9_REG_CTRL_C, &regval); if (ret < 0) goto error_ret; *val = 0; *val2 = kxsd9_micro_scales[regval & KXSD9_CTRL_C_FS_MASK]; ret = IIO_VAL_INT_PLUS_MICRO; break; } error_ret: pm_runtime_mark_last_busy(st->dev); pm_runtime_put_autosuspend(st->dev); return ret; }; static irqreturn_t kxsd9_trigger_handler(int irq, void *p) { const struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct kxsd9_state *st = iio_priv(indio_dev); /* * Ensure correct positioning and alignment of timestamp. * No need to zero initialize as all elements written. */ struct { __be16 chan[4]; s64 ts __aligned(8); } hw_values; int ret; ret = regmap_bulk_read(st->map, KXSD9_REG_X, hw_values.chan, sizeof(hw_values.chan)); if (ret) { dev_err(st->dev, "error reading data: %d\n", ret); goto out; } iio_push_to_buffers_with_timestamp(indio_dev, &hw_values, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int kxsd9_buffer_preenable(struct iio_dev *indio_dev) { struct kxsd9_state *st = iio_priv(indio_dev); pm_runtime_get_sync(st->dev); return 0; } static int kxsd9_buffer_postdisable(struct iio_dev *indio_dev) { struct kxsd9_state *st = iio_priv(indio_dev); pm_runtime_mark_last_busy(st->dev); pm_runtime_put_autosuspend(st->dev); return 0; } static const struct iio_buffer_setup_ops kxsd9_buffer_setup_ops = { .preenable = kxsd9_buffer_preenable, .postdisable = kxsd9_buffer_postdisable, }; static const struct iio_mount_matrix * kxsd9_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct kxsd9_state *st = iio_priv(indio_dev); return &st->orientation; } static const struct iio_chan_spec_ext_info kxsd9_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kxsd9_get_mount_matrix), { }, }; #define KXSD9_ACCEL_CHAN(axis, index) \ { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .ext_info = kxsd9_ext_info, \ .address = KXSD9_REG_##axis, \ .scan_index = index, \ .scan_type = { \ .sign = 'u', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec kxsd9_channels[] = { KXSD9_ACCEL_CHAN(X, 0), KXSD9_ACCEL_CHAN(Y, 1), KXSD9_ACCEL_CHAN(Z, 2), { .type = IIO_VOLTAGE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .indexed = 1, .address = KXSD9_REG_AUX, .scan_index = 3, .scan_type = { .sign = 'u', .realbits = 12, .storagebits = 16, .shift = 4, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct attribute_group kxsd9_attribute_group = { .attrs = kxsd9_attributes, }; static int kxsd9_power_up(struct kxsd9_state *st) { int ret; /* Enable the regulators */ ret = regulator_bulk_enable(ARRAY_SIZE(st->regs), st->regs); if (ret) { dev_err(st->dev, "Cannot enable regulators\n"); return ret; } /* Power up */ ret = regmap_write(st->map, KXSD9_REG_CTRL_B, KXSD9_CTRL_B_ENABLE); if (ret) return ret; /* * Set 1000Hz LPF, 2g fullscale, motion wakeup threshold 1g, * latched wakeup */ ret = regmap_write(st->map, KXSD9_REG_CTRL_C, KXSD9_CTRL_C_LP_1000HZ | KXSD9_CTRL_C_MOT_LEV | KXSD9_CTRL_C_MOT_LAT | st->scale); if (ret) return ret; /* * Power-up time depends on the LPF setting, but typ 15.9 ms, let's * set 20 ms to allow for some slack. */ msleep(20); return 0; }; static int kxsd9_power_down(struct kxsd9_state *st) { int ret; /* * Set into low power mode - since there may be more users of the * regulators this is the first step of the power saving: it will * make sure we conserve power even if there are others users on the * regulators. */ ret = regmap_update_bits(st->map, KXSD9_REG_CTRL_B, KXSD9_CTRL_B_ENABLE, 0); if (ret) return ret; /* Disable the regulators */ ret = regulator_bulk_disable(ARRAY_SIZE(st->regs), st->regs); if (ret) { dev_err(st->dev, "Cannot disable regulators\n"); return ret; } return 0; } static const struct iio_info kxsd9_info = { .read_raw = &kxsd9_read_raw, .write_raw = &kxsd9_write_raw, .attrs = &kxsd9_attribute_group, }; /* Four channels apart from timestamp, scan mask = 0x0f */ static const unsigned long kxsd9_scan_masks[] = { 0xf, 0 }; int kxsd9_common_probe(struct device *dev, struct regmap *map, const char *name) { struct iio_dev *indio_dev; struct kxsd9_state *st; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->dev = dev; st->map = map; indio_dev->channels = kxsd9_channels; indio_dev->num_channels = ARRAY_SIZE(kxsd9_channels); indio_dev->name = name; indio_dev->info = &kxsd9_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->available_scan_masks = kxsd9_scan_masks; /* Read the mounting matrix, if present */ ret = iio_read_mount_matrix(dev, &st->orientation); if (ret) return ret; /* Fetch and turn on regulators */ st->regs[0].supply = kxsd9_reg_vdd; st->regs[1].supply = kxsd9_reg_iovdd; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regs), st->regs); if (ret) { dev_err(dev, "Cannot get regulators\n"); return ret; } /* Default scaling */ st->scale = KXSD9_CTRL_C_FS_2G; kxsd9_power_up(st); ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time, kxsd9_trigger_handler, &kxsd9_buffer_setup_ops); if (ret) { dev_err(dev, "triggered buffer setup failed\n"); goto err_power_down; } ret = iio_device_register(indio_dev); if (ret) goto err_cleanup_buffer; dev_set_drvdata(dev, indio_dev); /* Enable runtime PM */ pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Set autosuspend to two orders of magnitude larger than the * start-up time. 20ms start-up time means 2000ms autosuspend, * i.e. 2 seconds. */ pm_runtime_set_autosuspend_delay(dev, 2000); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); return 0; err_cleanup_buffer: iio_triggered_buffer_cleanup(indio_dev); err_power_down: kxsd9_power_down(st); return ret; } EXPORT_SYMBOL_NS(kxsd9_common_probe, IIO_KXSD9); void kxsd9_common_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct kxsd9_state *st = iio_priv(indio_dev); iio_triggered_buffer_cleanup(indio_dev); iio_device_unregister(indio_dev); pm_runtime_get_sync(dev); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); kxsd9_power_down(st); } EXPORT_SYMBOL_NS(kxsd9_common_remove, IIO_KXSD9); static int kxsd9_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct kxsd9_state *st = iio_priv(indio_dev); return kxsd9_power_down(st); } static int kxsd9_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct kxsd9_state *st = iio_priv(indio_dev); return kxsd9_power_up(st); } EXPORT_NS_RUNTIME_DEV_PM_OPS(kxsd9_dev_pm_ops, kxsd9_runtime_suspend, kxsd9_runtime_resume, NULL, IIO_KXSD9); MODULE_AUTHOR("Jonathan Cameron <[email protected]>"); MODULE_DESCRIPTION("Kionix KXSD9 driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/kxsd9.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 ROHM Semiconductors * * ROHM/KIONIX KX022A accelerometer driver */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include "kionix-kx022a.h" static int kx022a_spi_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct regmap *regmap; if (!spi->irq) { dev_err(dev, "No IRQ configured\n"); return -EINVAL; } regmap = devm_regmap_init_spi(spi, &kx022a_regmap); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to initialize Regmap\n"); return kx022a_probe_internal(dev); } static const struct spi_device_id kx022a_id[] = { { "kx022a" }, { } }; MODULE_DEVICE_TABLE(spi, kx022a_id); static const struct of_device_id kx022a_of_match[] = { { .compatible = "kionix,kx022a", }, { } }; MODULE_DEVICE_TABLE(of, kx022a_of_match); static struct spi_driver kx022a_spi_driver = { .driver = { .name = "kx022a-spi", .of_match_table = kx022a_of_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = kx022a_spi_probe, .id_table = kx022a_id, }; module_spi_driver(kx022a_spi_driver); MODULE_DESCRIPTION("ROHM/Kionix kx022A accelerometer driver"); MODULE_AUTHOR("Matti Vaittinen <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_KX022A);
linux-master
drivers/iio/accel/kionix-kx022a-spi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * 3-axis accelerometer driver supporting SPI Bosch-Sensortec accelerometer chip * Copyright © 2015 Pengutronix, Markus Pargmann <[email protected]> */ #include <linux/device.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/acpi.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include "bmc150-accel.h" static int bmc150_accel_probe(struct spi_device *spi) { struct regmap *regmap; const char *name = NULL; enum bmc150_type type = BOSCH_UNKNOWN; const struct spi_device_id *id = spi_get_device_id(spi); regmap = devm_regmap_init_spi(spi, &bmc150_regmap_conf); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Failed to initialize spi regmap\n"); return PTR_ERR(regmap); } if (id) { name = id->name; type = id->driver_data; } return bmc150_accel_core_probe(&spi->dev, regmap, spi->irq, type, name, true); } static void bmc150_accel_remove(struct spi_device *spi) { bmc150_accel_core_remove(&spi->dev); } static const struct acpi_device_id bmc150_accel_acpi_match[] = { {"BMA0255"}, {"BMA0280"}, {"BMA222"}, {"BMA222E"}, {"BMA250E"}, {"BMC150A"}, {"BMI055A"}, {"BSBA0150"}, { }, }; MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match); static const struct spi_device_id bmc150_accel_id[] = { {"bma222"}, {"bma222e"}, {"bma250e"}, {"bma253"}, {"bma255"}, {"bma280"}, {"bmc150_accel"}, {"bmc156_accel", BOSCH_BMC156}, {"bmi055_accel"}, {} }; MODULE_DEVICE_TABLE(spi, bmc150_accel_id); static struct spi_driver bmc150_accel_driver = { .driver = { .name = "bmc150_accel_spi", .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match), .pm = &bmc150_accel_pm_ops, }, .probe = bmc150_accel_probe, .remove = bmc150_accel_remove, .id_table = bmc150_accel_id, }; module_spi_driver(bmc150_accel_driver); MODULE_AUTHOR("Markus Pargmann <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 SPI accelerometer driver"); MODULE_IMPORT_NS(IIO_BMC150);
linux-master
drivers/iio/accel/bmc150-accel-spi.c
// SPDX-License-Identifier: GPL-2.0 /* * NXP FXLS8962AF/FXLS8964AF Accelerometer SPI Driver * * Copyright 2021 Connected Cars A/S */ #include <linux/dev_printk.h> #include <linux/err.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/spi/spi.h> #include <linux/regmap.h> #include "fxls8962af.h" static int fxls8962af_probe(struct spi_device *spi) { struct regmap *regmap; regmap = devm_regmap_init_spi(spi, &fxls8962af_spi_regmap_conf); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Failed to initialize spi regmap\n"); return PTR_ERR(regmap); } return fxls8962af_core_probe(&spi->dev, regmap, spi->irq); } static const struct of_device_id fxls8962af_spi_of_match[] = { { .compatible = "nxp,fxls8962af" }, { .compatible = "nxp,fxls8964af" }, {} }; MODULE_DEVICE_TABLE(of, fxls8962af_spi_of_match); static const struct spi_device_id fxls8962af_spi_id_table[] = { { "fxls8962af", fxls8962af }, { "fxls8964af", fxls8964af }, {} }; MODULE_DEVICE_TABLE(spi, fxls8962af_spi_id_table); static struct spi_driver fxls8962af_driver = { .driver = { .name = "fxls8962af_spi", .pm = pm_ptr(&fxls8962af_pm_ops), .of_match_table = fxls8962af_spi_of_match, }, .probe = fxls8962af_probe, .id_table = fxls8962af_spi_id_table, }; module_spi_driver(fxls8962af_driver); MODULE_AUTHOR("Sean Nyekjaer <[email protected]>"); MODULE_DESCRIPTION("NXP FXLS8962AF/FXLS8964AF accelerometer spi driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_FXLS8962AF);
linux-master
drivers/iio/accel/fxls8962af-spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * 3-axis accelerometer driver for MXC4005XC Memsic sensor * * Copyright (c) 2014, Intel Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/acpi.h> #include <linux/regmap.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/buffer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #define MXC4005_DRV_NAME "mxc4005" #define MXC4005_IRQ_NAME "mxc4005_event" #define MXC4005_REGMAP_NAME "mxc4005_regmap" #define MXC4005_REG_XOUT_UPPER 0x03 #define MXC4005_REG_XOUT_LOWER 0x04 #define MXC4005_REG_YOUT_UPPER 0x05 #define MXC4005_REG_YOUT_LOWER 0x06 #define MXC4005_REG_ZOUT_UPPER 0x07 #define MXC4005_REG_ZOUT_LOWER 0x08 #define MXC4005_REG_INT_MASK1 0x0B #define MXC4005_REG_INT_MASK1_BIT_DRDYE 0x01 #define MXC4005_REG_INT_CLR1 0x01 #define MXC4005_REG_INT_CLR1_BIT_DRDYC 0x01 #define MXC4005_REG_CONTROL 0x0D #define MXC4005_REG_CONTROL_MASK_FSR GENMASK(6, 5) #define MXC4005_CONTROL_FSR_SHIFT 5 #define MXC4005_REG_DEVICE_ID 0x0E enum mxc4005_axis { AXIS_X, AXIS_Y, AXIS_Z, }; enum mxc4005_range { MXC4005_RANGE_2G, MXC4005_RANGE_4G, MXC4005_RANGE_8G, }; struct mxc4005_data { struct device *dev; struct mutex mutex; struct regmap *regmap; struct iio_trigger *dready_trig; /* Ensure timestamp is naturally aligned */ struct { __be16 chans[3]; s64 timestamp __aligned(8); } scan; bool trigger_enabled; }; /* * MXC4005 can operate in the following ranges: * +/- 2G, 4G, 8G (the default +/-2G) * * (2 + 2) * 9.81 / (2^12 - 1) = 0.009582 * (4 + 4) * 9.81 / (2^12 - 1) = 0.019164 * (8 + 8) * 9.81 / (2^12 - 1) = 0.038329 */ static const struct { u8 range; int scale; } mxc4005_scale_table[] = { {MXC4005_RANGE_2G, 9582}, {MXC4005_RANGE_4G, 19164}, {MXC4005_RANGE_8G, 38329}, }; static IIO_CONST_ATTR(in_accel_scale_available, "0.009582 0.019164 0.038329"); static struct attribute *mxc4005_attributes[] = { &iio_const_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group mxc4005_attrs_group = { .attrs = mxc4005_attributes, }; static bool mxc4005_is_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MXC4005_REG_XOUT_UPPER: case MXC4005_REG_XOUT_LOWER: case MXC4005_REG_YOUT_UPPER: case MXC4005_REG_YOUT_LOWER: case MXC4005_REG_ZOUT_UPPER: case MXC4005_REG_ZOUT_LOWER: case MXC4005_REG_DEVICE_ID: case MXC4005_REG_CONTROL: return true; default: return false; } } static bool mxc4005_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MXC4005_REG_INT_CLR1: case MXC4005_REG_INT_MASK1: case MXC4005_REG_CONTROL: return true; default: return false; } } static const struct regmap_config mxc4005_regmap_config = { .name = MXC4005_REGMAP_NAME, .reg_bits = 8, .val_bits = 8, .max_register = MXC4005_REG_DEVICE_ID, .readable_reg = mxc4005_is_readable_reg, .writeable_reg = mxc4005_is_writeable_reg, }; static int mxc4005_read_xyz(struct mxc4005_data *data) { int ret; ret = regmap_bulk_read(data->regmap, MXC4005_REG_XOUT_UPPER, data->scan.chans, sizeof(data->scan.chans)); if (ret < 0) { dev_err(data->dev, "failed to read axes\n"); return ret; } return 0; } static int mxc4005_read_axis(struct mxc4005_data *data, unsigned int addr) { __be16 reg; int ret; ret = regmap_bulk_read(data->regmap, addr, &reg, sizeof(reg)); if (ret < 0) { dev_err(data->dev, "failed to read reg %02x\n", addr); return ret; } return be16_to_cpu(reg); } static int mxc4005_read_scale(struct mxc4005_data *data) { unsigned int reg; int ret; int i; ret = regmap_read(data->regmap, MXC4005_REG_CONTROL, &reg); if (ret < 0) { dev_err(data->dev, "failed to read reg_control\n"); return ret; } i = reg >> MXC4005_CONTROL_FSR_SHIFT; if (i < 0 || i >= ARRAY_SIZE(mxc4005_scale_table)) return -EINVAL; return mxc4005_scale_table[i].scale; } static int mxc4005_set_scale(struct mxc4005_data *data, int val) { unsigned int reg; int i; int ret; for (i = 0; i < ARRAY_SIZE(mxc4005_scale_table); i++) { if (mxc4005_scale_table[i].scale == val) { reg = i << MXC4005_CONTROL_FSR_SHIFT; ret = regmap_update_bits(data->regmap, MXC4005_REG_CONTROL, MXC4005_REG_CONTROL_MASK_FSR, reg); if (ret < 0) dev_err(data->dev, "failed to write reg_control\n"); return ret; } } return -EINVAL; } static int mxc4005_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mxc4005_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_ACCEL: if (iio_buffer_enabled(indio_dev)) return -EBUSY; ret = mxc4005_read_axis(data, chan->address); if (ret < 0) return ret; *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: ret = mxc4005_read_scale(data); if (ret < 0) return ret; *val = 0; *val2 = ret; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int mxc4005_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mxc4005_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: if (val != 0) return -EINVAL; return mxc4005_set_scale(data, val2); default: return -EINVAL; } } static const struct iio_info mxc4005_info = { .read_raw = mxc4005_read_raw, .write_raw = mxc4005_write_raw, .attrs = &mxc4005_attrs_group, }; static const unsigned long mxc4005_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; #define MXC4005_CHANNEL(_axis, _addr) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .address = _addr, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec mxc4005_channels[] = { MXC4005_CHANNEL(X, MXC4005_REG_XOUT_UPPER), MXC4005_CHANNEL(Y, MXC4005_REG_YOUT_UPPER), MXC4005_CHANNEL(Z, MXC4005_REG_ZOUT_UPPER), IIO_CHAN_SOFT_TIMESTAMP(3), }; static irqreturn_t mxc4005_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct mxc4005_data *data = iio_priv(indio_dev); int ret; ret = mxc4005_read_xyz(data); if (ret < 0) goto err; iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, pf->timestamp); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static void mxc4005_clr_intr(struct mxc4005_data *data) { int ret; /* clear interrupt */ ret = regmap_write(data->regmap, MXC4005_REG_INT_CLR1, MXC4005_REG_INT_CLR1_BIT_DRDYC); if (ret < 0) dev_err(data->dev, "failed to write to reg_int_clr1\n"); } static int mxc4005_set_trigger_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct mxc4005_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); if (state) { ret = regmap_write(data->regmap, MXC4005_REG_INT_MASK1, MXC4005_REG_INT_MASK1_BIT_DRDYE); } else { ret = regmap_write(data->regmap, MXC4005_REG_INT_MASK1, ~MXC4005_REG_INT_MASK1_BIT_DRDYE); } if (ret < 0) { mutex_unlock(&data->mutex); dev_err(data->dev, "failed to update reg_int_mask1"); return ret; } data->trigger_enabled = state; mutex_unlock(&data->mutex); return 0; } static void mxc4005_trigger_reen(struct iio_trigger *trig) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct mxc4005_data *data = iio_priv(indio_dev); if (!data->dready_trig) return; mxc4005_clr_intr(data); } static const struct iio_trigger_ops mxc4005_trigger_ops = { .set_trigger_state = mxc4005_set_trigger_state, .reenable = mxc4005_trigger_reen, }; static int mxc4005_chip_init(struct mxc4005_data *data) { int ret; unsigned int reg; ret = regmap_read(data->regmap, MXC4005_REG_DEVICE_ID, &reg); if (ret < 0) { dev_err(data->dev, "failed to read chip id\n"); return ret; } dev_dbg(data->dev, "MXC4005 chip id %02x\n", reg); return 0; } static int mxc4005_probe(struct i2c_client *client) { struct mxc4005_data *data; struct iio_dev *indio_dev; struct regmap *regmap; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; regmap = devm_regmap_init_i2c(client, &mxc4005_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "failed to initialize regmap\n"); return PTR_ERR(regmap); } data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->dev = &client->dev; data->regmap = regmap; ret = mxc4005_chip_init(data); if (ret < 0) { dev_err(&client->dev, "failed to initialize chip\n"); return ret; } mutex_init(&data->mutex); indio_dev->channels = mxc4005_channels; indio_dev->num_channels = ARRAY_SIZE(mxc4005_channels); indio_dev->available_scan_masks = mxc4005_scan_masks; indio_dev->name = MXC4005_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mxc4005_info; ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, iio_pollfunc_store_time, mxc4005_trigger_handler, NULL); if (ret < 0) { dev_err(&client->dev, "failed to setup iio triggered buffer\n"); return ret; } if (client->irq > 0) { data->dready_trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->dready_trig) return -ENOMEM; ret = devm_request_threaded_irq(&client->dev, client->irq, iio_trigger_generic_data_rdy_poll, NULL, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, MXC4005_IRQ_NAME, data->dready_trig); if (ret) { dev_err(&client->dev, "failed to init threaded irq\n"); return ret; } data->dready_trig->ops = &mxc4005_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = devm_iio_trigger_register(&client->dev, data->dready_trig); if (ret) { dev_err(&client->dev, "failed to register trigger\n"); return ret; } indio_dev->trig = iio_trigger_get(data->dready_trig); } return devm_iio_device_register(&client->dev, indio_dev); } static const struct acpi_device_id mxc4005_acpi_match[] = { {"MXC4005", 0}, {"MXC6655", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, mxc4005_acpi_match); static const struct i2c_device_id mxc4005_id[] = { {"mxc4005", 0}, {"mxc6655", 0}, { }, }; MODULE_DEVICE_TABLE(i2c, mxc4005_id); static struct i2c_driver mxc4005_driver = { .driver = { .name = MXC4005_DRV_NAME, .acpi_match_table = ACPI_PTR(mxc4005_acpi_match), }, .probe = mxc4005_probe, .id_table = mxc4005_id, }; module_i2c_driver(mxc4005_driver); MODULE_AUTHOR("Teodora Baluta <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MXC4005 3-axis accelerometer driver");
linux-master
drivers/iio/accel/mxc4005.c
// SPDX-License-Identifier: GPL-2.0+ /* * ADXL372 3-Axis Digital Accelerometer I2C driver * * Copyright 2018 Analog Devices Inc. */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include "adxl372.h" static const struct regmap_config adxl372_regmap_config = { .reg_bits = 8, .val_bits = 8, .readable_noinc_reg = adxl372_readable_noinc_reg, }; static int adxl372_i2c_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct regmap *regmap; unsigned int regval; int ret; regmap = devm_regmap_init_i2c(client, &adxl372_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); ret = regmap_read(regmap, ADXL372_REVID, &regval); if (ret < 0) return ret; /* Starting with the 3rd revision an I2C chip bug was fixed */ if (regval < 3) dev_warn(&client->dev, "I2C might not work properly with other devices on the bus"); return adxl372_probe(&client->dev, regmap, client->irq, id->name); } static const struct i2c_device_id adxl372_i2c_id[] = { { "adxl372", 0 }, {} }; MODULE_DEVICE_TABLE(i2c, adxl372_i2c_id); static const struct of_device_id adxl372_of_match[] = { { .compatible = "adi,adxl372" }, { } }; MODULE_DEVICE_TABLE(of, adxl372_of_match); static struct i2c_driver adxl372_i2c_driver = { .driver = { .name = "adxl372_i2c", .of_match_table = adxl372_of_match, }, .probe = adxl372_i2c_probe, .id_table = adxl372_i2c_id, }; module_i2c_driver(adxl372_i2c_driver); MODULE_AUTHOR("Stefan Popa <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer I2C driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_ADXL372);
linux-master
drivers/iio/accel/adxl372_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics accelerometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/iio/common/st_sensors.h> #include <linux/iio/common/st_sensors_spi.h> #include "st_accel.h" /* * For new single-chip sensors use <device_name> as compatible string. * For old single-chip devices keep <device_name>-accel to maintain * compatibility */ static const struct of_device_id st_accel_of_match[] = { { /* An older compatible */ .compatible = "st,lis302dl-spi", .data = LIS3LV02DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis3lv02dl-accel", .data = LIS3LV02DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis3dh-accel", .data = LIS3DH_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330d-accel", .data = LSM330D_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330dl-accel", .data = LSM330DL_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330dlc-accel", .data = LSM330DLC_ACCEL_DEV_NAME, }, { .compatible = "st,lis331dlh-accel", .data = LIS331DLH_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330-accel", .data = LSM330_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303agr-accel", .data = LSM303AGR_ACCEL_DEV_NAME, }, { .compatible = "st,lis2dh12-accel", .data = LIS2DH12_ACCEL_DEV_NAME, }, { .compatible = "st,lis3l02dq", .data = LIS3L02DQ_ACCEL_DEV_NAME, }, { .compatible = "st,lng2dm-accel", .data = LNG2DM_ACCEL_DEV_NAME, }, { .compatible = "st,h3lis331dl-accel", .data = H3LIS331DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis331dl-accel", .data = LIS331DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis2dw12", .data = LIS2DW12_ACCEL_DEV_NAME, }, { .compatible = "st,lis3dhh", .data = LIS3DHH_ACCEL_DEV_NAME, }, { .compatible = "st,lis3de", .data = LIS3DE_ACCEL_DEV_NAME, }, { .compatible = "st,lis302dl", .data = LIS302DL_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303c-accel", .data = LSM303C_ACCEL_DEV_NAME, }, { .compatible = "st,iis328dq", .data = IIS328DQ_ACCEL_DEV_NAME, }, {} }; MODULE_DEVICE_TABLE(of, st_accel_of_match); static int st_accel_spi_probe(struct spi_device *spi) { const struct st_sensor_settings *settings; struct st_sensor_data *adata; struct iio_dev *indio_dev; int err; st_sensors_dev_name_probe(&spi->dev, spi->modalias, sizeof(spi->modalias)); settings = st_accel_get_settings(spi->modalias); if (!settings) { dev_err(&spi->dev, "device name %s not recognized.\n", spi->modalias); return -ENODEV; } indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*adata)); if (!indio_dev) return -ENOMEM; adata = iio_priv(indio_dev); adata->sensor_settings = (struct st_sensor_settings *)settings; err = st_sensors_spi_configure(indio_dev, spi); if (err < 0) return err; err = st_sensors_power_enable(indio_dev); if (err) return err; return st_accel_common_probe(indio_dev); } static const struct spi_device_id st_accel_id_table[] = { { LIS3DH_ACCEL_DEV_NAME }, { LSM330D_ACCEL_DEV_NAME }, { LSM330DL_ACCEL_DEV_NAME }, { LSM330DLC_ACCEL_DEV_NAME }, { LIS331DLH_ACCEL_DEV_NAME }, { LSM330_ACCEL_DEV_NAME }, { LSM303AGR_ACCEL_DEV_NAME }, { LIS2DH12_ACCEL_DEV_NAME }, { LIS3L02DQ_ACCEL_DEV_NAME }, { LNG2DM_ACCEL_DEV_NAME }, { H3LIS331DL_ACCEL_DEV_NAME }, { LIS331DL_ACCEL_DEV_NAME }, { LIS3LV02DL_ACCEL_DEV_NAME }, { LIS2DW12_ACCEL_DEV_NAME }, { LIS3DHH_ACCEL_DEV_NAME }, { LIS3DE_ACCEL_DEV_NAME }, { LIS302DL_ACCEL_DEV_NAME }, { LSM303C_ACCEL_DEV_NAME }, { IIS328DQ_ACCEL_DEV_NAME }, {}, }; MODULE_DEVICE_TABLE(spi, st_accel_id_table); static struct spi_driver st_accel_driver = { .driver = { .name = "st-accel-spi", .of_match_table = st_accel_of_match, }, .probe = st_accel_spi_probe, .id_table = st_accel_id_table, }; module_spi_driver(st_accel_driver); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics accelerometers spi driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ST_SENSORS);
linux-master
drivers/iio/accel/st_accel_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL355 3-Axis Digital Accelerometer SPI driver * * Copyright (c) 2021 Puranjay Mohan <[email protected]> */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/property.h> #include "adxl355.h" static const struct regmap_config adxl355_spi_regmap_config = { .reg_bits = 7, .pad_bits = 1, .val_bits = 8, .read_flag_mask = BIT(0), .max_register = 0x2F, .rd_table = &adxl355_readable_regs_tbl, .wr_table = &adxl355_writeable_regs_tbl, }; static int adxl355_spi_probe(struct spi_device *spi) { const struct adxl355_chip_info *chip_data; struct regmap *regmap; chip_data = device_get_match_data(&spi->dev); if (!chip_data) { chip_data = (void *)spi_get_device_id(spi)->driver_data; if (!chip_data) return -EINVAL; } regmap = devm_regmap_init_spi(spi, &adxl355_spi_regmap_config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Error initializing spi regmap: %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return adxl355_core_probe(&spi->dev, regmap, chip_data); } static const struct spi_device_id adxl355_spi_id[] = { { "adxl355", (kernel_ulong_t)&adxl35x_chip_info[ADXL355] }, { "adxl359", (kernel_ulong_t)&adxl35x_chip_info[ADXL359] }, { } }; MODULE_DEVICE_TABLE(spi, adxl355_spi_id); static const struct of_device_id adxl355_of_match[] = { { .compatible = "adi,adxl355", .data = &adxl35x_chip_info[ADXL355] }, { .compatible = "adi,adxl359", .data = &adxl35x_chip_info[ADXL359] }, { } }; MODULE_DEVICE_TABLE(of, adxl355_of_match); static struct spi_driver adxl355_spi_driver = { .driver = { .name = "adxl355_spi", .of_match_table = adxl355_of_match, }, .probe = adxl355_spi_probe, .id_table = adxl355_spi_id, }; module_spi_driver(adxl355_spi_driver); MODULE_AUTHOR("Puranjay Mohan <[email protected]>"); MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer SPI driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADXL355);
linux-master
drivers/iio/accel/adxl355_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * KXCJK-1013 3-axis accelerometer driver * Copyright (c) 2014, Intel Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/acpi.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/events.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/accel/kxcjk_1013.h> #define KXCJK1013_DRV_NAME "kxcjk1013" #define KXCJK1013_IRQ_NAME "kxcjk1013_event" #define KXTF9_REG_HP_XOUT_L 0x00 #define KXTF9_REG_HP_XOUT_H 0x01 #define KXTF9_REG_HP_YOUT_L 0x02 #define KXTF9_REG_HP_YOUT_H 0x03 #define KXTF9_REG_HP_ZOUT_L 0x04 #define KXTF9_REG_HP_ZOUT_H 0x05 #define KXCJK1013_REG_XOUT_L 0x06 /* * From low byte X axis register, all the other addresses of Y and Z can be * obtained by just applying axis offset. The following axis defines are just * provide clarity, but not used. */ #define KXCJK1013_REG_XOUT_H 0x07 #define KXCJK1013_REG_YOUT_L 0x08 #define KXCJK1013_REG_YOUT_H 0x09 #define KXCJK1013_REG_ZOUT_L 0x0A #define KXCJK1013_REG_ZOUT_H 0x0B #define KXCJK1013_REG_DCST_RESP 0x0C #define KXCJK1013_REG_WHO_AM_I 0x0F #define KXTF9_REG_TILT_POS_CUR 0x10 #define KXTF9_REG_TILT_POS_PREV 0x11 #define KXTF9_REG_INT_SRC1 0x15 #define KXTF9_REG_INT_SRC2 0x16 #define KXCJK1013_REG_INT_SRC1 0x16 #define KXCJK1013_REG_INT_SRC2 0x17 #define KXCJK1013_REG_STATUS_REG 0x18 #define KXCJK1013_REG_INT_REL 0x1A #define KXCJK1013_REG_CTRL1 0x1B #define KXTF9_REG_CTRL2 0x1C #define KXTF9_REG_CTRL3 0x1D #define KXCJK1013_REG_CTRL2 0x1D #define KXCJK1013_REG_INT_CTRL1 0x1E #define KXCJK1013_REG_INT_CTRL2 0x1F #define KXTF9_REG_INT_CTRL3 0x20 #define KXCJK1013_REG_DATA_CTRL 0x21 #define KXTF9_REG_TILT_TIMER 0x28 #define KXCJK1013_REG_WAKE_TIMER 0x29 #define KXTF9_REG_TDT_TIMER 0x2B #define KXTF9_REG_TDT_THRESH_H 0x2C #define KXTF9_REG_TDT_THRESH_L 0x2D #define KXTF9_REG_TDT_TAP_TIMER 0x2E #define KXTF9_REG_TDT_TOTAL_TIMER 0x2F #define KXTF9_REG_TDT_LATENCY_TIMER 0x30 #define KXTF9_REG_TDT_WINDOW_TIMER 0x31 #define KXCJK1013_REG_SELF_TEST 0x3A #define KXTF9_REG_WAKE_THRESH 0x5A #define KXTF9_REG_TILT_ANGLE 0x5C #define KXTF9_REG_HYST_SET 0x5F #define KXCJK1013_REG_WAKE_THRES 0x6A /* Everything up to 0x11 is equal to KXCJK1013/KXTF9 above */ #define KX023_REG_INS1 0x12 #define KX023_REG_INS2 0x13 #define KX023_REG_INS3 0x14 #define KX023_REG_STAT 0x15 #define KX023_REG_INT_REL 0x17 #define KX023_REG_CNTL1 0x18 #define KX023_REG_CNTL2 0x19 #define KX023_REG_CNTL3 0x1A #define KX023_REG_ODCNTL 0x1B #define KX023_REG_INC1 0x1C #define KX023_REG_INC2 0x1D #define KX023_REG_INC3 0x1E #define KX023_REG_INC4 0x1F #define KX023_REG_INC5 0x20 #define KX023_REG_INC6 0x21 #define KX023_REG_TILT_TIMER 0x22 #define KX023_REG_WUFC 0x23 #define KX023_REG_TDTRC 0x24 #define KX023_REG_TDTC 0x25 #define KX023_REG_TTH 0x26 #define KX023_REG_TTL 0x27 #define KX023_REG_FTD 0x28 #define KX023_REG_STD 0x29 #define KX023_REG_TLT 0x2A #define KX023_REG_TWS 0x2B #define KX023_REG_ATH 0x30 #define KX023_REG_TILT_ANGLE_LL 0x32 #define KX023_REG_TILT_ANGLE_HL 0x33 #define KX023_REG_HYST_SET 0x34 #define KX023_REG_LP_CNTL 0x35 #define KX023_REG_BUF_CNTL1 0x3A #define KX023_REG_BUF_CNTL2 0x3B #define KX023_REG_BUF_STATUS_1 0x3C #define KX023_REG_BUF_STATUS_2 0x3D #define KX023_REG_BUF_CLEAR 0x3E #define KX023_REG_BUF_READ 0x3F #define KX023_REG_SELF_TEST 0x60 #define KXCJK1013_REG_CTRL1_BIT_PC1 BIT(7) #define KXCJK1013_REG_CTRL1_BIT_RES BIT(6) #define KXCJK1013_REG_CTRL1_BIT_DRDY BIT(5) #define KXCJK1013_REG_CTRL1_BIT_GSEL1 BIT(4) #define KXCJK1013_REG_CTRL1_BIT_GSEL0 BIT(3) #define KXCJK1013_REG_CTRL1_BIT_WUFE BIT(1) #define KXCJK1013_REG_INT_CTRL1_BIT_IEU BIT(2) /* KXTF9 */ #define KXCJK1013_REG_INT_CTRL1_BIT_IEL BIT(3) #define KXCJK1013_REG_INT_CTRL1_BIT_IEA BIT(4) #define KXCJK1013_REG_INT_CTRL1_BIT_IEN BIT(5) #define KXTF9_REG_TILT_BIT_LEFT_EDGE BIT(5) #define KXTF9_REG_TILT_BIT_RIGHT_EDGE BIT(4) #define KXTF9_REG_TILT_BIT_LOWER_EDGE BIT(3) #define KXTF9_REG_TILT_BIT_UPPER_EDGE BIT(2) #define KXTF9_REG_TILT_BIT_FACE_DOWN BIT(1) #define KXTF9_REG_TILT_BIT_FACE_UP BIT(0) #define KXCJK1013_DATA_MASK_12_BIT 0x0FFF #define KXCJK1013_MAX_STARTUP_TIME_US 100000 #define KXCJK1013_SLEEP_DELAY_MS 2000 #define KXCJK1013_REG_INT_SRC1_BIT_TPS BIT(0) /* KXTF9 */ #define KXCJK1013_REG_INT_SRC1_BIT_WUFS BIT(1) #define KXCJK1013_REG_INT_SRC1_MASK_TDTS (BIT(2) | BIT(3)) /* KXTF9 */ #define KXCJK1013_REG_INT_SRC1_TAP_NONE 0 #define KXCJK1013_REG_INT_SRC1_TAP_SINGLE BIT(2) #define KXCJK1013_REG_INT_SRC1_TAP_DOUBLE BIT(3) #define KXCJK1013_REG_INT_SRC1_BIT_DRDY BIT(4) /* KXCJK: INT_SOURCE2: motion detect, KXTF9: INT_SRC_REG1: tap detect */ #define KXCJK1013_REG_INT_SRC2_BIT_ZP BIT(0) #define KXCJK1013_REG_INT_SRC2_BIT_ZN BIT(1) #define KXCJK1013_REG_INT_SRC2_BIT_YP BIT(2) #define KXCJK1013_REG_INT_SRC2_BIT_YN BIT(3) #define KXCJK1013_REG_INT_SRC2_BIT_XP BIT(4) #define KXCJK1013_REG_INT_SRC2_BIT_XN BIT(5) /* KX023 interrupt routing to INT1. INT2 can be configured with INC6 */ #define KX023_REG_INC4_BFI1 BIT(6) #define KX023_REG_INC4_WMI1 BIT(5) #define KX023_REG_INC4_DRDY1 BIT(4) #define KX023_REG_INC4_TDTI1 BIT(2) #define KX023_REG_INC4_WUFI1 BIT(1) #define KX023_REG_INC4_TPI1 BIT(0) #define KXCJK1013_DEFAULT_WAKE_THRES 1 enum kx_chipset { KXCJK1013, KXCJ91008, KXTJ21009, KXTF9, KX0231025, KX_MAX_CHIPS /* this must be last */ }; enum kx_acpi_type { ACPI_GENERIC, ACPI_SMO8500, ACPI_KIOX010A, }; struct kx_chipset_regs { u8 int_src1; u8 int_src2; u8 int_rel; u8 ctrl1; u8 wuf_ctrl; u8 int_ctrl1; u8 data_ctrl; u8 wake_timer; u8 wake_thres; }; static const struct kx_chipset_regs kxcjk1013_regs = { .int_src1 = KXCJK1013_REG_INT_SRC1, .int_src2 = KXCJK1013_REG_INT_SRC2, .int_rel = KXCJK1013_REG_INT_REL, .ctrl1 = KXCJK1013_REG_CTRL1, .wuf_ctrl = KXCJK1013_REG_CTRL2, .int_ctrl1 = KXCJK1013_REG_INT_CTRL1, .data_ctrl = KXCJK1013_REG_DATA_CTRL, .wake_timer = KXCJK1013_REG_WAKE_TIMER, .wake_thres = KXCJK1013_REG_WAKE_THRES, }; static const struct kx_chipset_regs kxtf9_regs = { /* .int_src1 was moved to INT_SRC2 on KXTF9 */ .int_src1 = KXTF9_REG_INT_SRC2, /* .int_src2 is not available */ .int_rel = KXCJK1013_REG_INT_REL, .ctrl1 = KXCJK1013_REG_CTRL1, .wuf_ctrl = KXTF9_REG_CTRL3, .int_ctrl1 = KXCJK1013_REG_INT_CTRL1, .data_ctrl = KXCJK1013_REG_DATA_CTRL, .wake_timer = KXCJK1013_REG_WAKE_TIMER, .wake_thres = KXTF9_REG_WAKE_THRESH, }; /* The registers have totally different names but the bits are compatible */ static const struct kx_chipset_regs kx0231025_regs = { .int_src1 = KX023_REG_INS2, .int_src2 = KX023_REG_INS3, .int_rel = KX023_REG_INT_REL, .ctrl1 = KX023_REG_CNTL1, .wuf_ctrl = KX023_REG_CNTL3, .int_ctrl1 = KX023_REG_INC1, .data_ctrl = KX023_REG_ODCNTL, .wake_timer = KX023_REG_WUFC, .wake_thres = KX023_REG_ATH, }; enum kxcjk1013_axis { AXIS_X, AXIS_Y, AXIS_Z, AXIS_MAX }; struct kxcjk1013_data { struct i2c_client *client; struct iio_trigger *dready_trig; struct iio_trigger *motion_trig; struct iio_mount_matrix orientation; struct mutex mutex; /* Ensure timestamp naturally aligned */ struct { s16 chans[AXIS_MAX]; s64 timestamp __aligned(8); } scan; u8 odr_bits; u8 range; int wake_thres; int wake_dur; bool active_high_intr; bool dready_trigger_on; int ev_enable_state; bool motion_trigger_on; int64_t timestamp; enum kx_chipset chipset; enum kx_acpi_type acpi_type; const struct kx_chipset_regs *regs; }; enum kxcjk1013_mode { STANDBY, OPERATION, }; enum kxcjk1013_range { KXCJK1013_RANGE_2G, KXCJK1013_RANGE_4G, KXCJK1013_RANGE_8G, }; struct kx_odr_map { int val; int val2; int odr_bits; int wuf_bits; }; static const struct kx_odr_map samp_freq_table[] = { { 0, 781000, 0x08, 0x00 }, { 1, 563000, 0x09, 0x01 }, { 3, 125000, 0x0A, 0x02 }, { 6, 250000, 0x0B, 0x03 }, { 12, 500000, 0x00, 0x04 }, { 25, 0, 0x01, 0x05 }, { 50, 0, 0x02, 0x06 }, { 100, 0, 0x03, 0x06 }, { 200, 0, 0x04, 0x06 }, { 400, 0, 0x05, 0x06 }, { 800, 0, 0x06, 0x06 }, { 1600, 0, 0x07, 0x06 }, }; static const char *const kxcjk1013_samp_freq_avail = "0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800 1600"; static const struct kx_odr_map kxtf9_samp_freq_table[] = { { 25, 0, 0x01, 0x00 }, { 50, 0, 0x02, 0x01 }, { 100, 0, 0x03, 0x01 }, { 200, 0, 0x04, 0x01 }, { 400, 0, 0x05, 0x01 }, { 800, 0, 0x06, 0x01 }, }; static const char *const kxtf9_samp_freq_avail = "25 50 100 200 400 800"; /* Refer to section 4 of the specification */ static __maybe_unused const struct { int odr_bits; int usec; } odr_start_up_times[KX_MAX_CHIPS][12] = { /* KXCJK-1013 */ { {0x08, 100000}, {0x09, 100000}, {0x0A, 100000}, {0x0B, 100000}, {0, 80000}, {0x01, 41000}, {0x02, 21000}, {0x03, 11000}, {0x04, 6400}, {0x05, 3900}, {0x06, 2700}, {0x07, 2100}, }, /* KXCJ9-1008 */ { {0x08, 100000}, {0x09, 100000}, {0x0A, 100000}, {0x0B, 100000}, {0, 80000}, {0x01, 41000}, {0x02, 21000}, {0x03, 11000}, {0x04, 6400}, {0x05, 3900}, {0x06, 2700}, {0x07, 2100}, }, /* KXCTJ2-1009 */ { {0x08, 1240000}, {0x09, 621000}, {0x0A, 309000}, {0x0B, 151000}, {0, 80000}, {0x01, 41000}, {0x02, 21000}, {0x03, 11000}, {0x04, 6000}, {0x05, 4000}, {0x06, 3000}, {0x07, 2000}, }, /* KXTF9 */ { {0x01, 81000}, {0x02, 41000}, {0x03, 21000}, {0x04, 11000}, {0x05, 5100}, {0x06, 2700}, }, /* KX023-1025 */ { /* First 4 are not in datasheet, taken from KXCTJ2-1009 */ {0x08, 1240000}, {0x09, 621000}, {0x0A, 309000}, {0x0B, 151000}, {0, 81000}, {0x01, 40000}, {0x02, 22000}, {0x03, 12000}, {0x04, 7000}, {0x05, 4400}, {0x06, 3000}, {0x07, 3000}, }, }; static const struct { u16 scale; u8 gsel_0; u8 gsel_1; } KXCJK1013_scale_table[] = { {9582, 0, 0}, {19163, 1, 0}, {38326, 0, 1} }; #ifdef CONFIG_ACPI enum kiox010a_fn_index { KIOX010A_SET_LAPTOP_MODE = 1, KIOX010A_SET_TABLET_MODE = 2, }; static int kiox010a_dsm(struct device *dev, int fn_index) { acpi_handle handle = ACPI_HANDLE(dev); guid_t kiox010a_dsm_guid; union acpi_object *obj; if (!handle) return -ENODEV; guid_parse("1f339696-d475-4e26-8cad-2e9f8e6d7a91", &kiox010a_dsm_guid); obj = acpi_evaluate_dsm(handle, &kiox010a_dsm_guid, 1, fn_index, NULL); if (!obj) return -EIO; ACPI_FREE(obj); return 0; } #endif static int kxcjk1013_set_mode(struct kxcjk1013_data *data, enum kxcjk1013_mode mode) { int ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (mode == STANDBY) ret &= ~KXCJK1013_REG_CTRL1_BIT_PC1; else ret |= KXCJK1013_REG_CTRL1_BIT_PC1; ret = i2c_smbus_write_byte_data(data->client, data->regs->ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } return 0; } static int kxcjk1013_get_mode(struct kxcjk1013_data *data, enum kxcjk1013_mode *mode) { int ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (ret & KXCJK1013_REG_CTRL1_BIT_PC1) *mode = OPERATION; else *mode = STANDBY; return 0; } static int kxcjk1013_set_range(struct kxcjk1013_data *data, int range_index) { int ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } ret &= ~(KXCJK1013_REG_CTRL1_BIT_GSEL0 | KXCJK1013_REG_CTRL1_BIT_GSEL1); ret |= (KXCJK1013_scale_table[range_index].gsel_0 << 3); ret |= (KXCJK1013_scale_table[range_index].gsel_1 << 4); ret = i2c_smbus_write_byte_data(data->client, data->regs->ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } data->range = range_index; return 0; } static int kxcjk1013_chip_init(struct kxcjk1013_data *data) { int ret; #ifdef CONFIG_ACPI if (data->acpi_type == ACPI_KIOX010A) { /* Make sure the kbd and touchpad on 2-in-1s using 2 KXCJ91008-s work */ kiox010a_dsm(&data->client->dev, KIOX010A_SET_LAPTOP_MODE); } #endif ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_WHO_AM_I); if (ret < 0) { dev_err(&data->client->dev, "Error reading who_am_i\n"); return ret; } dev_dbg(&data->client->dev, "KXCJK1013 Chip Id %x\n", ret); ret = kxcjk1013_set_mode(data, STANDBY); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } /* Set 12 bit mode */ ret |= KXCJK1013_REG_CTRL1_BIT_RES; ret = i2c_smbus_write_byte_data(data->client, data->regs->ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl\n"); return ret; } /* Setting range to 4G */ ret = kxcjk1013_set_range(data, KXCJK1013_RANGE_4G); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->data_ctrl); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_data_ctrl\n"); return ret; } data->odr_bits = ret; /* Set up INT polarity */ ret = i2c_smbus_read_byte_data(data->client, data->regs->int_ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_ctrl1\n"); return ret; } if (data->active_high_intr) ret |= KXCJK1013_REG_INT_CTRL1_BIT_IEA; else ret &= ~KXCJK1013_REG_INT_CTRL1_BIT_IEA; ret = i2c_smbus_write_byte_data(data->client, data->regs->int_ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n"); return ret; } /* On KX023, route all used interrupts to INT1 for now */ if (data->chipset == KX0231025 && data->client->irq > 0) { ret = i2c_smbus_write_byte_data(data->client, KX023_REG_INC4, KX023_REG_INC4_DRDY1 | KX023_REG_INC4_WUFI1); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_inc4\n"); return ret; } } ret = kxcjk1013_set_mode(data, OPERATION); if (ret < 0) return ret; data->wake_thres = KXCJK1013_DEFAULT_WAKE_THRES; return 0; } #ifdef CONFIG_PM static int kxcjk1013_get_startup_times(struct kxcjk1013_data *data) { int i; int idx = data->chipset; for (i = 0; i < ARRAY_SIZE(odr_start_up_times[idx]); ++i) { if (odr_start_up_times[idx][i].odr_bits == data->odr_bits) return odr_start_up_times[idx][i].usec; } return KXCJK1013_MAX_STARTUP_TIME_US; } #endif static int kxcjk1013_set_power_state(struct kxcjk1013_data *data, bool on) { #ifdef CONFIG_PM int ret; if (on) ret = pm_runtime_resume_and_get(&data->client->dev); else { pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); } if (ret < 0) { dev_err(&data->client->dev, "Failed: %s for %d\n", __func__, on); return ret; } #endif return 0; } static int kxcjk1013_chip_update_thresholds(struct kxcjk1013_data *data) { int ret; ret = i2c_smbus_write_byte_data(data->client, data->regs->wake_timer, data->wake_dur); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_wake_timer\n"); return ret; } ret = i2c_smbus_write_byte_data(data->client, data->regs->wake_thres, data->wake_thres); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_wake_thres\n"); return ret; } return 0; } static int kxcjk1013_setup_any_motion_interrupt(struct kxcjk1013_data *data, bool status) { int ret; enum kxcjk1013_mode store_mode; ret = kxcjk1013_get_mode(data, &store_mode); if (ret < 0) return ret; /* This is requirement by spec to change state to STANDBY */ ret = kxcjk1013_set_mode(data, STANDBY); if (ret < 0) return ret; ret = kxcjk1013_chip_update_thresholds(data); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->int_ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_ctrl1\n"); return ret; } if (status) ret |= KXCJK1013_REG_INT_CTRL1_BIT_IEN; else ret &= ~KXCJK1013_REG_INT_CTRL1_BIT_IEN; ret = i2c_smbus_write_byte_data(data->client, data->regs->int_ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n"); return ret; } ret = i2c_smbus_read_byte_data(data->client, data->regs->ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (status) ret |= KXCJK1013_REG_CTRL1_BIT_WUFE; else ret &= ~KXCJK1013_REG_CTRL1_BIT_WUFE; ret = i2c_smbus_write_byte_data(data->client, data->regs->ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } if (store_mode == OPERATION) { ret = kxcjk1013_set_mode(data, OPERATION); if (ret < 0) return ret; } return 0; } static int kxcjk1013_setup_new_data_interrupt(struct kxcjk1013_data *data, bool status) { int ret; enum kxcjk1013_mode store_mode; ret = kxcjk1013_get_mode(data, &store_mode); if (ret < 0) return ret; /* This is requirement by spec to change state to STANDBY */ ret = kxcjk1013_set_mode(data, STANDBY); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->int_ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_ctrl1\n"); return ret; } if (status) ret |= KXCJK1013_REG_INT_CTRL1_BIT_IEN; else ret &= ~KXCJK1013_REG_INT_CTRL1_BIT_IEN; ret = i2c_smbus_write_byte_data(data->client, data->regs->int_ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n"); return ret; } ret = i2c_smbus_read_byte_data(data->client, data->regs->ctrl1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (status) ret |= KXCJK1013_REG_CTRL1_BIT_DRDY; else ret &= ~KXCJK1013_REG_CTRL1_BIT_DRDY; ret = i2c_smbus_write_byte_data(data->client, data->regs->ctrl1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } if (store_mode == OPERATION) { ret = kxcjk1013_set_mode(data, OPERATION); if (ret < 0) return ret; } return 0; } static const struct kx_odr_map *kxcjk1013_find_odr_value( const struct kx_odr_map *map, size_t map_size, int val, int val2) { int i; for (i = 0; i < map_size; ++i) { if (map[i].val == val && map[i].val2 == val2) return &map[i]; } return ERR_PTR(-EINVAL); } static int kxcjk1013_convert_odr_value(const struct kx_odr_map *map, size_t map_size, int odr_bits, int *val, int *val2) { int i; for (i = 0; i < map_size; ++i) { if (map[i].odr_bits == odr_bits) { *val = map[i].val; *val2 = map[i].val2; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } static int kxcjk1013_set_odr(struct kxcjk1013_data *data, int val, int val2) { int ret; enum kxcjk1013_mode store_mode; const struct kx_odr_map *odr_setting; ret = kxcjk1013_get_mode(data, &store_mode); if (ret < 0) return ret; if (data->chipset == KXTF9) odr_setting = kxcjk1013_find_odr_value(kxtf9_samp_freq_table, ARRAY_SIZE(kxtf9_samp_freq_table), val, val2); else odr_setting = kxcjk1013_find_odr_value(samp_freq_table, ARRAY_SIZE(samp_freq_table), val, val2); if (IS_ERR(odr_setting)) return PTR_ERR(odr_setting); /* To change ODR, the chip must be set to STANDBY as per spec */ ret = kxcjk1013_set_mode(data, STANDBY); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(data->client, data->regs->data_ctrl, odr_setting->odr_bits); if (ret < 0) { dev_err(&data->client->dev, "Error writing data_ctrl\n"); return ret; } data->odr_bits = odr_setting->odr_bits; ret = i2c_smbus_write_byte_data(data->client, data->regs->wuf_ctrl, odr_setting->wuf_bits); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl2\n"); return ret; } if (store_mode == OPERATION) { ret = kxcjk1013_set_mode(data, OPERATION); if (ret < 0) return ret; } return 0; } static int kxcjk1013_get_odr(struct kxcjk1013_data *data, int *val, int *val2) { if (data->chipset == KXTF9) return kxcjk1013_convert_odr_value(kxtf9_samp_freq_table, ARRAY_SIZE(kxtf9_samp_freq_table), data->odr_bits, val, val2); else return kxcjk1013_convert_odr_value(samp_freq_table, ARRAY_SIZE(samp_freq_table), data->odr_bits, val, val2); } static int kxcjk1013_get_acc_reg(struct kxcjk1013_data *data, int axis) { u8 reg = KXCJK1013_REG_XOUT_L + axis * 2; int ret; ret = i2c_smbus_read_word_data(data->client, reg); if (ret < 0) { dev_err(&data->client->dev, "failed to read accel_%c registers\n", 'x' + axis); return ret; } return ret; } static int kxcjk1013_set_scale(struct kxcjk1013_data *data, int val) { int ret, i; enum kxcjk1013_mode store_mode; for (i = 0; i < ARRAY_SIZE(KXCJK1013_scale_table); ++i) { if (KXCJK1013_scale_table[i].scale == val) { ret = kxcjk1013_get_mode(data, &store_mode); if (ret < 0) return ret; ret = kxcjk1013_set_mode(data, STANDBY); if (ret < 0) return ret; ret = kxcjk1013_set_range(data, i); if (ret < 0) return ret; if (store_mode == OPERATION) { ret = kxcjk1013_set_mode(data, OPERATION); if (ret) return ret; } return 0; } } return -EINVAL; } static int kxcjk1013_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&data->mutex); if (iio_buffer_enabled(indio_dev)) ret = -EBUSY; else { ret = kxcjk1013_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = kxcjk1013_get_acc_reg(data, chan->scan_index); if (ret < 0) { kxcjk1013_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); ret = kxcjk1013_set_power_state(data, false); } mutex_unlock(&data->mutex); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = KXCJK1013_scale_table[data->range].scale; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = kxcjk1013_get_odr(data, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int kxcjk1013_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = kxcjk1013_set_odr(data, val, val2); mutex_unlock(&data->mutex); break; case IIO_CHAN_INFO_SCALE: if (val) return -EINVAL; mutex_lock(&data->mutex); ret = kxcjk1013_set_scale(data, val2); mutex_unlock(&data->mutex); break; default: ret = -EINVAL; } return ret; } static int kxcjk1013_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct kxcjk1013_data *data = iio_priv(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: *val = data->wake_thres; break; case IIO_EV_INFO_PERIOD: *val = data->wake_dur; break; default: return -EINVAL; } return IIO_VAL_INT; } static int kxcjk1013_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct kxcjk1013_data *data = iio_priv(indio_dev); if (data->ev_enable_state) return -EBUSY; switch (info) { case IIO_EV_INFO_VALUE: data->wake_thres = val; break; case IIO_EV_INFO_PERIOD: data->wake_dur = val; break; default: return -EINVAL; } return 0; } static int kxcjk1013_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct kxcjk1013_data *data = iio_priv(indio_dev); return data->ev_enable_state; } static int kxcjk1013_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; if (state && data->ev_enable_state) return 0; mutex_lock(&data->mutex); if (!state && data->motion_trigger_on) { data->ev_enable_state = 0; mutex_unlock(&data->mutex); return 0; } /* * We will expect the enable and disable to do operation in * reverse order. This will happen here anyway as our * resume operation uses sync mode runtime pm calls, the * suspend operation will be delayed by autosuspend delay * So the disable operation will still happen in reverse of * enable operation. When runtime pm is disabled the mode * is always on so sequence doesn't matter */ ret = kxcjk1013_set_power_state(data, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = kxcjk1013_setup_any_motion_interrupt(data, state); if (ret < 0) { kxcjk1013_set_power_state(data, false); data->ev_enable_state = 0; mutex_unlock(&data->mutex); return ret; } data->ev_enable_state = state; mutex_unlock(&data->mutex); return 0; } static int kxcjk1013_buffer_preenable(struct iio_dev *indio_dev) { struct kxcjk1013_data *data = iio_priv(indio_dev); return kxcjk1013_set_power_state(data, true); } static int kxcjk1013_buffer_postdisable(struct iio_dev *indio_dev) { struct kxcjk1013_data *data = iio_priv(indio_dev); return kxcjk1013_set_power_state(data, false); } static ssize_t kxcjk1013_get_samp_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct kxcjk1013_data *data = iio_priv(indio_dev); const char *str; if (data->chipset == KXTF9) str = kxtf9_samp_freq_avail; else str = kxcjk1013_samp_freq_avail; return sprintf(buf, "%s\n", str); } static IIO_DEVICE_ATTR(in_accel_sampling_frequency_available, S_IRUGO, kxcjk1013_get_samp_freq_avail, NULL, 0); static IIO_CONST_ATTR(in_accel_scale_available, "0.009582 0.019163 0.038326"); static struct attribute *kxcjk1013_attributes[] = { &iio_dev_attr_in_accel_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group kxcjk1013_attrs_group = { .attrs = kxcjk1013_attributes, }; static const struct iio_event_spec kxcjk1013_event = { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) }; static const struct iio_mount_matrix * kxcjk1013_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct kxcjk1013_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info kxcjk1013_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kxcjk1013_get_mount_matrix), { } }; #define KXCJK1013_CHANNEL(_axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_LE, \ }, \ .event_spec = &kxcjk1013_event, \ .ext_info = kxcjk1013_ext_info, \ .num_event_specs = 1 \ } static const struct iio_chan_spec kxcjk1013_channels[] = { KXCJK1013_CHANNEL(X), KXCJK1013_CHANNEL(Y), KXCJK1013_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_buffer_setup_ops kxcjk1013_buffer_setup_ops = { .preenable = kxcjk1013_buffer_preenable, .postdisable = kxcjk1013_buffer_postdisable, }; static const struct iio_info kxcjk1013_info = { .attrs = &kxcjk1013_attrs_group, .read_raw = kxcjk1013_read_raw, .write_raw = kxcjk1013_write_raw, .read_event_value = kxcjk1013_read_event, .write_event_value = kxcjk1013_write_event, .write_event_config = kxcjk1013_write_event_config, .read_event_config = kxcjk1013_read_event_config, }; static const unsigned long kxcjk1013_scan_masks[] = {0x7, 0}; static irqreturn_t kxcjk1013_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = i2c_smbus_read_i2c_block_data_or_emulated(data->client, KXCJK1013_REG_XOUT_L, AXIS_MAX * 2, (u8 *)data->scan.chans); mutex_unlock(&data->mutex); if (ret < 0) goto err; iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, data->timestamp); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static void kxcjk1013_trig_reen(struct iio_trigger *trig) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->int_rel); if (ret < 0) dev_err(&data->client->dev, "Error reading reg_int_rel\n"); } static int kxcjk1013_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); if (!state && data->ev_enable_state && data->motion_trigger_on) { data->motion_trigger_on = false; mutex_unlock(&data->mutex); return 0; } ret = kxcjk1013_set_power_state(data, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } if (data->motion_trig == trig) ret = kxcjk1013_setup_any_motion_interrupt(data, state); else ret = kxcjk1013_setup_new_data_interrupt(data, state); if (ret < 0) { kxcjk1013_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } if (data->motion_trig == trig) data->motion_trigger_on = state; else data->dready_trigger_on = state; mutex_unlock(&data->mutex); return 0; } static const struct iio_trigger_ops kxcjk1013_trigger_ops = { .set_trigger_state = kxcjk1013_data_rdy_trigger_set_state, .reenable = kxcjk1013_trig_reen, }; static void kxcjk1013_report_motion_event(struct iio_dev *indio_dev) { struct kxcjk1013_data *data = iio_priv(indio_dev); int ret = i2c_smbus_read_byte_data(data->client, data->regs->int_src2); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_src2\n"); return; } if (ret & KXCJK1013_REG_INT_SRC2_BIT_XN) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), data->timestamp); if (ret & KXCJK1013_REG_INT_SRC2_BIT_XP) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), data->timestamp); if (ret & KXCJK1013_REG_INT_SRC2_BIT_YN) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), data->timestamp); if (ret & KXCJK1013_REG_INT_SRC2_BIT_YP) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), data->timestamp); if (ret & KXCJK1013_REG_INT_SRC2_BIT_ZN) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), data->timestamp); if (ret & KXCJK1013_REG_INT_SRC2_BIT_ZP) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), data->timestamp); } static irqreturn_t kxcjk1013_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; ret = i2c_smbus_read_byte_data(data->client, data->regs->int_src1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_src1\n"); goto ack_intr; } if (ret & KXCJK1013_REG_INT_SRC1_BIT_WUFS) { if (data->chipset == KXTF9) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_AND_Y_AND_Z, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), data->timestamp); else kxcjk1013_report_motion_event(indio_dev); } ack_intr: if (data->dready_trigger_on) return IRQ_HANDLED; ret = i2c_smbus_read_byte_data(data->client, data->regs->int_rel); if (ret < 0) dev_err(&data->client->dev, "Error reading reg_int_rel\n"); return IRQ_HANDLED; } static irqreturn_t kxcjk1013_data_rdy_trig_poll(int irq, void *private) { struct iio_dev *indio_dev = private; struct kxcjk1013_data *data = iio_priv(indio_dev); data->timestamp = iio_get_time_ns(indio_dev); if (data->dready_trigger_on) iio_trigger_poll(data->dready_trig); else if (data->motion_trigger_on) iio_trigger_poll(data->motion_trig); if (data->ev_enable_state) return IRQ_WAKE_THREAD; else return IRQ_HANDLED; } static const char *kxcjk1013_match_acpi_device(struct device *dev, enum kx_chipset *chipset, enum kx_acpi_type *acpi_type, const char **label) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; if (strcmp(id->id, "SMO8500") == 0) { *acpi_type = ACPI_SMO8500; } else if (strcmp(id->id, "KIOX010A") == 0) { *acpi_type = ACPI_KIOX010A; *label = "accel-display"; } else if (strcmp(id->id, "KIOX020A") == 0) { *label = "accel-base"; } *chipset = (enum kx_chipset)id->driver_data; return dev_name(dev); } static int kxcjk1013_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); static const char * const regulator_names[] = { "vdd", "vddio" }; struct kxcjk1013_data *data; struct iio_dev *indio_dev; struct kxcjk_1013_platform_data *pdata; const char *name; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; pdata = dev_get_platdata(&client->dev); if (pdata) { data->active_high_intr = pdata->active_high_intr; data->orientation = pdata->orientation; } else { data->active_high_intr = true; /* default polarity */ ret = iio_read_mount_matrix(&client->dev, &data->orientation); if (ret) return ret; } ret = devm_regulator_bulk_get_enable(&client->dev, ARRAY_SIZE(regulator_names), regulator_names); if (ret) return dev_err_probe(&client->dev, ret, "Failed to get regulators\n"); /* * A typical delay of 10ms is required for powering up * according to the data sheets of supported chips. * Hence double that to play safe. */ msleep(20); if (id) { data->chipset = (enum kx_chipset)(id->driver_data); name = id->name; } else if (ACPI_HANDLE(&client->dev)) { name = kxcjk1013_match_acpi_device(&client->dev, &data->chipset, &data->acpi_type, &indio_dev->label); } else return -ENODEV; switch (data->chipset) { case KXCJK1013: case KXCJ91008: case KXTJ21009: data->regs = &kxcjk1013_regs; break; case KXTF9: data->regs = &kxtf9_regs; break; case KX0231025: data->regs = &kx0231025_regs; break; default: return -EINVAL; } ret = kxcjk1013_chip_init(data); if (ret < 0) return ret; mutex_init(&data->mutex); indio_dev->channels = kxcjk1013_channels; indio_dev->num_channels = ARRAY_SIZE(kxcjk1013_channels); indio_dev->available_scan_masks = kxcjk1013_scan_masks; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &kxcjk1013_info; if (client->irq > 0 && data->acpi_type != ACPI_SMO8500) { ret = devm_request_threaded_irq(&client->dev, client->irq, kxcjk1013_data_rdy_trig_poll, kxcjk1013_event_handler, IRQF_TRIGGER_RISING, KXCJK1013_IRQ_NAME, indio_dev); if (ret) goto err_poweroff; data->dready_trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->dready_trig) { ret = -ENOMEM; goto err_poweroff; } data->motion_trig = devm_iio_trigger_alloc(&client->dev, "%s-any-motion-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->motion_trig) { ret = -ENOMEM; goto err_poweroff; } data->dready_trig->ops = &kxcjk1013_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = iio_trigger_register(data->dready_trig); if (ret) goto err_poweroff; indio_dev->trig = iio_trigger_get(data->dready_trig); data->motion_trig->ops = &kxcjk1013_trigger_ops; iio_trigger_set_drvdata(data->motion_trig, indio_dev); ret = iio_trigger_register(data->motion_trig); if (ret) { data->motion_trig = NULL; goto err_trigger_unregister; } } ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, kxcjk1013_trigger_handler, &kxcjk1013_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); goto err_trigger_unregister; } ret = pm_runtime_set_active(&client->dev); if (ret) goto err_buffer_cleanup; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, KXCJK1013_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "unable to register iio device\n"); goto err_pm_cleanup; } return 0; err_pm_cleanup: pm_runtime_dont_use_autosuspend(&client->dev); pm_runtime_disable(&client->dev); err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_trigger_unregister: if (data->dready_trig) iio_trigger_unregister(data->dready_trig); if (data->motion_trig) iio_trigger_unregister(data->motion_trig); err_poweroff: kxcjk1013_set_mode(data, STANDBY); return ret; } static void kxcjk1013_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct kxcjk1013_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); iio_triggered_buffer_cleanup(indio_dev); if (data->dready_trig) { iio_trigger_unregister(data->dready_trig); iio_trigger_unregister(data->motion_trig); } mutex_lock(&data->mutex); kxcjk1013_set_mode(data, STANDBY); mutex_unlock(&data->mutex); } #ifdef CONFIG_PM_SLEEP static int kxcjk1013_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = kxcjk1013_set_mode(data, STANDBY); mutex_unlock(&data->mutex); return ret; } static int kxcjk1013_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct kxcjk1013_data *data = iio_priv(indio_dev); int ret = 0; mutex_lock(&data->mutex); ret = kxcjk1013_set_mode(data, OPERATION); if (ret == 0) ret = kxcjk1013_set_range(data, data->range); mutex_unlock(&data->mutex); return ret; } #endif #ifdef CONFIG_PM static int kxcjk1013_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; ret = kxcjk1013_set_mode(data, STANDBY); if (ret < 0) { dev_err(&data->client->dev, "powering off device failed\n"); return -EAGAIN; } return 0; } static int kxcjk1013_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct kxcjk1013_data *data = iio_priv(indio_dev); int ret; int sleep_val; ret = kxcjk1013_set_mode(data, OPERATION); if (ret < 0) return ret; sleep_val = kxcjk1013_get_startup_times(data); if (sleep_val < 20000) usleep_range(sleep_val, 20000); else msleep_interruptible(sleep_val/1000); return 0; } #endif static const struct dev_pm_ops kxcjk1013_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(kxcjk1013_suspend, kxcjk1013_resume) SET_RUNTIME_PM_OPS(kxcjk1013_runtime_suspend, kxcjk1013_runtime_resume, NULL) }; static const struct acpi_device_id kx_acpi_match[] = { {"KXCJ1013", KXCJK1013}, {"KXCJ1008", KXCJ91008}, {"KXCJ9000", KXCJ91008}, {"KIOX0008", KXCJ91008}, {"KIOX0009", KXTJ21009}, {"KIOX000A", KXCJ91008}, {"KIOX010A", KXCJ91008}, /* KXCJ91008 in the display of a yoga 2-in-1 */ {"KIOX020A", KXCJ91008}, /* KXCJ91008 in the base of a yoga 2-in-1 */ {"KXTJ1009", KXTJ21009}, {"KXJ2109", KXTJ21009}, {"SMO8500", KXCJ91008}, { }, }; MODULE_DEVICE_TABLE(acpi, kx_acpi_match); static const struct i2c_device_id kxcjk1013_id[] = { {"kxcjk1013", KXCJK1013}, {"kxcj91008", KXCJ91008}, {"kxtj21009", KXTJ21009}, {"kxtf9", KXTF9}, {"kx023-1025", KX0231025}, {"SMO8500", KXCJ91008}, {} }; MODULE_DEVICE_TABLE(i2c, kxcjk1013_id); static const struct of_device_id kxcjk1013_of_match[] = { { .compatible = "kionix,kxcjk1013", }, { .compatible = "kionix,kxcj91008", }, { .compatible = "kionix,kxtj21009", }, { .compatible = "kionix,kxtf9", }, { .compatible = "kionix,kx023-1025", }, { } }; MODULE_DEVICE_TABLE(of, kxcjk1013_of_match); static struct i2c_driver kxcjk1013_driver = { .driver = { .name = KXCJK1013_DRV_NAME, .acpi_match_table = ACPI_PTR(kx_acpi_match), .of_match_table = kxcjk1013_of_match, .pm = &kxcjk1013_pm_ops, }, .probe = kxcjk1013_probe, .remove = kxcjk1013_remove, .id_table = kxcjk1013_id, }; module_i2c_driver(kxcjk1013_driver); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("KXCJK1013 accelerometer driver");
linux-master
drivers/iio/accel/kxcjk-1013.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL313 3-Axis Digital Accelerometer * * Copyright (c) 2021 Lucas Stankus <[email protected]> * * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL313.pdf */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include "adxl313.h" static const struct regmap_config adxl31x_i2c_regmap_config[] = { [ADXL312] = { .reg_bits = 8, .val_bits = 8, .rd_table = &adxl312_readable_regs_table, .wr_table = &adxl312_writable_regs_table, .max_register = 0x39, }, [ADXL313] = { .reg_bits = 8, .val_bits = 8, .rd_table = &adxl313_readable_regs_table, .wr_table = &adxl313_writable_regs_table, .max_register = 0x39, }, [ADXL314] = { .reg_bits = 8, .val_bits = 8, .rd_table = &adxl314_readable_regs_table, .wr_table = &adxl314_writable_regs_table, .max_register = 0x39, }, }; static const struct i2c_device_id adxl313_i2c_id[] = { { .name = "adxl312", .driver_data = (kernel_ulong_t)&adxl31x_chip_info[ADXL312] }, { .name = "adxl313", .driver_data = (kernel_ulong_t)&adxl31x_chip_info[ADXL313] }, { .name = "adxl314", .driver_data = (kernel_ulong_t)&adxl31x_chip_info[ADXL314] }, { } }; MODULE_DEVICE_TABLE(i2c, adxl313_i2c_id); static const struct of_device_id adxl313_of_match[] = { { .compatible = "adi,adxl312", .data = &adxl31x_chip_info[ADXL312] }, { .compatible = "adi,adxl313", .data = &adxl31x_chip_info[ADXL313] }, { .compatible = "adi,adxl314", .data = &adxl31x_chip_info[ADXL314] }, { } }; MODULE_DEVICE_TABLE(of, adxl313_of_match); static int adxl313_i2c_probe(struct i2c_client *client) { const struct adxl313_chip_info *chip_data; struct regmap *regmap; /* * Retrieves device specific data as a pointer to a * adxl313_chip_info structure */ chip_data = i2c_get_match_data(client); regmap = devm_regmap_init_i2c(client, &adxl31x_i2c_regmap_config[chip_data->type]); if (IS_ERR(regmap)) { dev_err(&client->dev, "Error initializing i2c regmap: %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return adxl313_core_probe(&client->dev, regmap, chip_data, NULL); } static struct i2c_driver adxl313_i2c_driver = { .driver = { .name = "adxl313_i2c", .of_match_table = adxl313_of_match, }, .probe = adxl313_i2c_probe, .id_table = adxl313_i2c_id, }; module_i2c_driver(adxl313_i2c_driver); MODULE_AUTHOR("Lucas Stankus <[email protected]>"); MODULE_DESCRIPTION("ADXL313 3-Axis Digital Accelerometer I2C driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADXL313);
linux-master
drivers/iio/accel/adxl313_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * Murata SCA3300 3-axis industrial accelerometer * * Copyright (c) 2021 Vaisala Oyj. All rights reserved. */ #include <linux/bitops.h> #include <linux/crc8.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/spi/spi.h> #include <asm/unaligned.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define SCA3300_ALIAS "sca3300" #define SCA3300_CRC8_POLYNOMIAL 0x1d /* Device mode register */ #define SCA3300_REG_MODE 0xd #define SCA3300_MODE_SW_RESET 0x20 /* Last register in map */ #define SCA3300_REG_SELBANK 0x1f /* Device status and mask */ #define SCA3300_REG_STATUS 0x6 #define SCA3300_STATUS_MASK GENMASK(8, 0) /* Device ID */ #define SCA3300_REG_WHOAMI 0x10 #define SCA3300_WHOAMI_ID 0x51 #define SCL3300_WHOAMI_ID 0xC1 /* Device return status and mask */ #define SCA3300_VALUE_RS_ERROR 0x3 #define SCA3300_MASK_RS_STATUS GENMASK(1, 0) #define SCL3300_REG_ANG_CTRL 0x0C #define SCL3300_ANG_ENABLE 0x1F enum sca3300_scan_indexes { SCA3300_ACC_X = 0, SCA3300_ACC_Y, SCA3300_ACC_Z, SCA3300_TEMP, SCA3300_INCLI_X, SCA3300_INCLI_Y, SCA3300_INCLI_Z, SCA3300_SCAN_MAX }; /* * Buffer size max case: * Three accel channels, two bytes per channel. * Temperature channel, two bytes. * Three incli channels, two bytes per channel. * Timestamp channel, eight bytes. */ #define SCA3300_MAX_BUFFER_SIZE (ALIGN(sizeof(s16) * SCA3300_SCAN_MAX, sizeof(s64)) + sizeof(s64)) #define SCA3300_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ } #define SCA3300_INCLI_CHANNEL(index, reg, axis) { \ .type = IIO_INCLI, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ } #define SCA3300_TEMP_CHANNEL(index, reg) { \ .type = IIO_TEMP, \ .address = reg, \ .scan_index = index, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec sca3300_channels[] = { SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z), SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05), IIO_CHAN_SOFT_TIMESTAMP(4), }; static const int sca3300_lp_freq[] = {70, 10}; static const int sca3300_lp_freq_map[] = {0, 0, 0, 1}; static const int scl3300_lp_freq[] = {40, 70, 10}; static const int scl3300_lp_freq_map[] = {0, 1, 2}; static const int sca3300_accel_scale[][2] = {{0, 370}, {0, 741}, {0, 185}}; static const int sca3300_accel_scale_map[] = {0, 1, 2, 2}; static const int scl3300_accel_scale[][2] = {{0, 167}, {0, 333}, {0, 83}}; static const int scl3300_accel_scale_map[] = {0, 1, 2}; static const int scl3300_incli_scale[][2] = {{0, 5495}}; static const int scl3300_incli_scale_map[] = {0, 0, 0}; static const int sca3300_avail_modes_map[] = {0, 1, 2, 3}; static const int scl3300_avail_modes_map[] = {0, 1, 3}; static const struct iio_chan_spec scl3300_channels[] = { SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y), SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z), SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05), SCA3300_INCLI_CHANNEL(SCA3300_INCLI_X, 0x09, X), SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Y, 0x0A, Y), SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Z, 0x0B, Z), IIO_CHAN_SOFT_TIMESTAMP(7), }; static const unsigned long sca3300_scan_masks[] = { BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) | BIT(SCA3300_TEMP), 0 }; static const unsigned long scl3300_scan_masks[] = { BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) | BIT(SCA3300_TEMP) | BIT(SCA3300_INCLI_X) | BIT(SCA3300_INCLI_Y) | BIT(SCA3300_INCLI_Z), 0 }; struct sca3300_chip_info { const char *name; const unsigned long *scan_masks; const struct iio_chan_spec *channels; u8 num_channels; u8 num_accel_scales; const int (*accel_scale)[2]; const int *accel_scale_map; const int (*incli_scale)[2]; const int *incli_scale_map; u8 num_incli_scales; u8 num_freqs; const int *freq_table; const int *freq_map; const int *avail_modes_table; u8 num_avail_modes; u8 chip_id; bool angle_supported; }; /** * struct sca3300_data - device data * @spi: SPI device structure * @lock: Data buffer lock * @chip: Sensor chip specific information * @buffer: Triggered buffer: * -SCA3300: 4 channel 16-bit data + 64-bit timestamp * -SCL3300: 7 channel 16-bit data + 64-bit timestamp * @txbuf: Transmit buffer * @rxbuf: Receive buffer */ struct sca3300_data { struct spi_device *spi; struct mutex lock; const struct sca3300_chip_info *chip; u8 buffer[SCA3300_MAX_BUFFER_SIZE] __aligned(sizeof(s64)); u8 txbuf[4] __aligned(IIO_DMA_MINALIGN); u8 rxbuf[4]; }; static const struct sca3300_chip_info sca3300_chip_tbl[] = { { .name = "sca3300", .scan_masks = sca3300_scan_masks, .channels = sca3300_channels, .num_channels = ARRAY_SIZE(sca3300_channels), .num_accel_scales = ARRAY_SIZE(sca3300_accel_scale)*2, .accel_scale = sca3300_accel_scale, .accel_scale_map = sca3300_accel_scale_map, .num_freqs = ARRAY_SIZE(sca3300_lp_freq), .freq_table = sca3300_lp_freq, .freq_map = sca3300_lp_freq_map, .avail_modes_table = sca3300_avail_modes_map, .num_avail_modes = 4, .chip_id = SCA3300_WHOAMI_ID, .angle_supported = false, }, { .name = "scl3300", .scan_masks = scl3300_scan_masks, .channels = scl3300_channels, .num_channels = ARRAY_SIZE(scl3300_channels), .num_accel_scales = ARRAY_SIZE(scl3300_accel_scale)*2, .accel_scale = scl3300_accel_scale, .accel_scale_map = scl3300_accel_scale_map, .incli_scale = scl3300_incli_scale, .incli_scale_map = scl3300_incli_scale_map, .num_incli_scales = ARRAY_SIZE(scl3300_incli_scale)*2, .num_freqs = ARRAY_SIZE(scl3300_lp_freq), .freq_table = scl3300_lp_freq, .freq_map = scl3300_lp_freq_map, .avail_modes_table = scl3300_avail_modes_map, .num_avail_modes = 3, .chip_id = SCL3300_WHOAMI_ID, .angle_supported = true, }, }; DECLARE_CRC8_TABLE(sca3300_crc_table); static int sca3300_transfer(struct sca3300_data *sca_data, int *val) { /* Consecutive requests min. 10 us delay (Datasheet section 5.1.2) */ struct spi_delay delay = { .value = 10, .unit = SPI_DELAY_UNIT_USECS }; int32_t ret; int rs; u8 crc; struct spi_transfer xfers[2] = { { .tx_buf = sca_data->txbuf, .len = ARRAY_SIZE(sca_data->txbuf), .delay = delay, .cs_change = 1, }, { .rx_buf = sca_data->rxbuf, .len = ARRAY_SIZE(sca_data->rxbuf), .delay = delay, } }; /* inverted crc value as described in device data sheet */ crc = ~crc8(sca3300_crc_table, &sca_data->txbuf[0], 3, CRC8_INIT_VALUE); sca_data->txbuf[3] = crc; ret = spi_sync_transfer(sca_data->spi, xfers, ARRAY_SIZE(xfers)); if (ret) { dev_err(&sca_data->spi->dev, "transfer error, error: %d\n", ret); return -EIO; } crc = ~crc8(sca3300_crc_table, &sca_data->rxbuf[0], 3, CRC8_INIT_VALUE); if (sca_data->rxbuf[3] != crc) { dev_err(&sca_data->spi->dev, "CRC checksum mismatch"); return -EIO; } /* get return status */ rs = sca_data->rxbuf[0] & SCA3300_MASK_RS_STATUS; if (rs == SCA3300_VALUE_RS_ERROR) ret = -EINVAL; *val = sign_extend32(get_unaligned_be16(&sca_data->rxbuf[1]), 15); return ret; } static int sca3300_error_handler(struct sca3300_data *sca_data) { int ret; int val; mutex_lock(&sca_data->lock); sca_data->txbuf[0] = SCA3300_REG_STATUS << 2; ret = sca3300_transfer(sca_data, &val); mutex_unlock(&sca_data->lock); /* * Return status error is cleared after reading status register once, * expect EINVAL here. */ if (ret != -EINVAL) { dev_err(&sca_data->spi->dev, "error reading device status: %d\n", ret); return ret; } dev_err(&sca_data->spi->dev, "device status: 0x%lx\n", val & SCA3300_STATUS_MASK); return 0; } static int sca3300_read_reg(struct sca3300_data *sca_data, u8 reg, int *val) { int ret; mutex_lock(&sca_data->lock); sca_data->txbuf[0] = reg << 2; ret = sca3300_transfer(sca_data, val); mutex_unlock(&sca_data->lock); if (ret != -EINVAL) return ret; return sca3300_error_handler(sca_data); } static int sca3300_write_reg(struct sca3300_data *sca_data, u8 reg, int val) { int reg_val = 0; int ret; mutex_lock(&sca_data->lock); /* BIT(7) for write operation */ sca_data->txbuf[0] = BIT(7) | (reg << 2); put_unaligned_be16(val, &sca_data->txbuf[1]); ret = sca3300_transfer(sca_data, &reg_val); mutex_unlock(&sca_data->lock); if (ret != -EINVAL) return ret; return sca3300_error_handler(sca_data); } static int sca3300_set_op_mode(struct sca3300_data *sca_data, int index) { if ((index < 0) || (index >= sca_data->chip->num_avail_modes)) return -EINVAL; return sca3300_write_reg(sca_data, SCA3300_REG_MODE, sca_data->chip->avail_modes_table[index]); } static int sca3300_get_op_mode(struct sca3300_data *sca_data, int *index) { int reg_val; int ret; int i; ret = sca3300_read_reg(sca_data, SCA3300_REG_MODE, &reg_val); if (ret) return ret; for (i = 0; i < sca_data->chip->num_avail_modes; i++) { if (sca_data->chip->avail_modes_table[i] == reg_val) break; } if (i == sca_data->chip->num_avail_modes) return -EINVAL; *index = i; return 0; } static int sca3300_set_frequency(struct sca3300_data *data, int val) { const struct sca3300_chip_info *chip = data->chip; unsigned int index; int *opmode_scale; int *new_scale; unsigned int i; if (sca3300_get_op_mode(data, &index)) return -EINVAL; /* * Find a mode in which the requested sampling frequency is available * and the scaling currently set is retained. */ opmode_scale = (int *)chip->accel_scale[chip->accel_scale_map[index]]; for (i = 0; i < chip->num_avail_modes; i++) { new_scale = (int *)chip->accel_scale[chip->accel_scale_map[i]]; if ((val == chip->freq_table[chip->freq_map[i]]) && (opmode_scale[1] == new_scale[1]) && (opmode_scale[0] == new_scale[0])) break; } if (i == chip->num_avail_modes) return -EINVAL; return sca3300_set_op_mode(data, i); } static int sca3300_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct sca3300_data *data = iio_priv(indio_dev); int index; int i; switch (mask) { case IIO_CHAN_INFO_SCALE: if (chan->type != IIO_ACCEL) return -EINVAL; /* * Letting scale take priority over sampling frequency. * That makes sense given we can only ever end up increasing * the sampling frequency which is unlikely to be a problem. */ for (i = 0; i < data->chip->num_avail_modes; i++) { index = data->chip->accel_scale_map[i]; if ((val == data->chip->accel_scale[index][0]) && (val2 == data->chip->accel_scale[index][1])) return sca3300_set_op_mode(data, i); } return -EINVAL; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return sca3300_set_frequency(data, val); default: return -EINVAL; } } static int sca3300_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sca3300_data *data = iio_priv(indio_dev); int index; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = sca3300_read_reg(data, chan->address, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = sca3300_get_op_mode(data, &index); if (ret) return ret; switch (chan->type) { case IIO_INCLI: index = data->chip->incli_scale_map[index]; *val = data->chip->incli_scale[index][0]; *val2 = data->chip->incli_scale[index][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: index = data->chip->accel_scale_map[index]; *val = data->chip->accel_scale[index][0]; *val2 = data->chip->accel_scale[index][1]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: ret = sca3300_get_op_mode(data, &index); if (ret) return ret; index = data->chip->freq_map[index]; *val = data->chip->freq_table[index]; return IIO_VAL_INT; default: return -EINVAL; } } static irqreturn_t sca3300_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct sca3300_data *data = iio_priv(indio_dev); int bit, ret, val, i = 0; s16 *channels = (s16 *)data->buffer; for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = sca3300_read_reg(data, indio_dev->channels[bit].address, &val); if (ret) { dev_err_ratelimited(&data->spi->dev, "failed to read register, error: %d\n", ret); /* handled, but bailing out due to errors */ goto out; } channels[i++] = val; } iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } /* * sca3300_init - Device init sequence. See datasheet rev 2 section * 4.2 Start-Up Sequence for details. */ static int sca3300_init(struct sca3300_data *sca_data, struct iio_dev *indio_dev) { int value = 0; int ret; int i; ret = sca3300_write_reg(sca_data, SCA3300_REG_MODE, SCA3300_MODE_SW_RESET); if (ret) return ret; /* * Wait 1ms after SW-reset command. * Wait for the settling of signal paths, * 15ms for SCA3300 and 25ms for SCL3300, */ usleep_range(26e3, 50e3); ret = sca3300_read_reg(sca_data, SCA3300_REG_WHOAMI, &value); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(sca3300_chip_tbl); i++) { if (sca3300_chip_tbl[i].chip_id == value) break; } if (i == ARRAY_SIZE(sca3300_chip_tbl)) { dev_err(&sca_data->spi->dev, "unknown chip id %x\n", value); return -ENODEV; } sca_data->chip = &sca3300_chip_tbl[i]; if (sca_data->chip->angle_supported) { ret = sca3300_write_reg(sca_data, SCL3300_REG_ANG_CTRL, SCL3300_ANG_ENABLE); if (ret) return ret; } return 0; } static int sca3300_debugfs_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct sca3300_data *data = iio_priv(indio_dev); int value; int ret; if (reg > SCA3300_REG_SELBANK) return -EINVAL; if (!readval) return sca3300_write_reg(data, reg, writeval); ret = sca3300_read_reg(data, reg, &value); if (ret) return ret; *readval = value; return 0; } static int sca3300_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct sca3300_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_INCLI: *vals = (const int *)data->chip->incli_scale; *length = data->chip->num_incli_scales; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_ACCEL: *vals = (const int *)data->chip->accel_scale; *length = data->chip->num_accel_scales; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; default: return -EINVAL; } case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *vals = (const int *)data->chip->freq_table; *length = data->chip->num_freqs; *type = IIO_VAL_INT; return IIO_AVAIL_LIST; default: return -EINVAL; } } static const struct iio_info sca3300_info = { .read_raw = sca3300_read_raw, .write_raw = sca3300_write_raw, .debugfs_reg_access = &sca3300_debugfs_reg_access, .read_avail = sca3300_read_avail, }; static int sca3300_probe(struct spi_device *spi) { struct sca3300_data *sca_data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*sca_data)); if (!indio_dev) return -ENOMEM; sca_data = iio_priv(indio_dev); mutex_init(&sca_data->lock); sca_data->spi = spi; crc8_populate_msb(sca3300_crc_table, SCA3300_CRC8_POLYNOMIAL); indio_dev->info = &sca3300_info; ret = sca3300_init(sca_data, indio_dev); if (ret) { dev_err(&spi->dev, "failed to init device, error: %d\n", ret); return ret; } indio_dev->name = sca_data->chip->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = sca_data->chip->channels; indio_dev->num_channels = sca_data->chip->num_channels; indio_dev->available_scan_masks = sca_data->chip->scan_masks; ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, iio_pollfunc_store_time, sca3300_trigger_handler, NULL); if (ret) { dev_err(&spi->dev, "iio triggered buffer setup failed, error: %d\n", ret); return ret; } ret = devm_iio_device_register(&spi->dev, indio_dev); if (ret) { dev_err(&spi->dev, "iio device register failed, error: %d\n", ret); } return ret; } static const struct of_device_id sca3300_dt_ids[] = { { .compatible = "murata,sca3300"}, { .compatible = "murata,scl3300"}, {} }; MODULE_DEVICE_TABLE(of, sca3300_dt_ids); static const struct spi_device_id sca3300_ids[] = { { "sca3300" }, { "scl3300" }, {} }; MODULE_DEVICE_TABLE(spi, sca3300_ids); static struct spi_driver sca3300_driver = { .driver = { .name = SCA3300_ALIAS, .of_match_table = sca3300_dt_ids, }, .probe = sca3300_probe, .id_table = sca3300_ids, }; module_spi_driver(sca3300_driver); MODULE_AUTHOR("Tomas Melin <[email protected]>"); MODULE_DESCRIPTION("Murata SCA3300 SPI Accelerometer"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/sca3300.c
// SPDX-License-Identifier: GPL-2.0-only /* * BMA220 Digital triaxial acceleration sensor driver * * Copyright (c) 2016,2020 Intel Corporation. */ #include <linux/bits.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/spi/spi.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define BMA220_REG_ID 0x00 #define BMA220_REG_ACCEL_X 0x02 #define BMA220_REG_ACCEL_Y 0x03 #define BMA220_REG_ACCEL_Z 0x04 #define BMA220_REG_RANGE 0x11 #define BMA220_REG_SUSPEND 0x18 #define BMA220_CHIP_ID 0xDD #define BMA220_READ_MASK BIT(7) #define BMA220_RANGE_MASK GENMASK(1, 0) #define BMA220_SUSPEND_SLEEP 0xFF #define BMA220_SUSPEND_WAKE 0x00 #define BMA220_DEVICE_NAME "bma220" #define BMA220_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 6, \ .storagebits = 8, \ .shift = 2, \ .endianness = IIO_CPU, \ }, \ } enum bma220_axis { AXIS_X, AXIS_Y, AXIS_Z, }; static const int bma220_scale_table[][2] = { {0, 623000}, {1, 248000}, {2, 491000}, {4, 983000}, }; struct bma220_data { struct spi_device *spi_device; struct mutex lock; struct { s8 chans[3]; /* Ensure timestamp is naturally aligned. */ s64 timestamp __aligned(8); } scan; u8 tx_buf[2] __aligned(IIO_DMA_MINALIGN); }; static const struct iio_chan_spec bma220_channels[] = { BMA220_ACCEL_CHANNEL(0, BMA220_REG_ACCEL_X, X), BMA220_ACCEL_CHANNEL(1, BMA220_REG_ACCEL_Y, Y), BMA220_ACCEL_CHANNEL(2, BMA220_REG_ACCEL_Z, Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static inline int bma220_read_reg(struct spi_device *spi, u8 reg) { return spi_w8r8(spi, reg | BMA220_READ_MASK); } static const unsigned long bma220_accel_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; static irqreturn_t bma220_trigger_handler(int irq, void *p) { int ret; struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bma220_data *data = iio_priv(indio_dev); struct spi_device *spi = data->spi_device; mutex_lock(&data->lock); data->tx_buf[0] = BMA220_REG_ACCEL_X | BMA220_READ_MASK; ret = spi_write_then_read(spi, data->tx_buf, 1, &data->scan.chans, ARRAY_SIZE(bma220_channels) - 1); if (ret < 0) goto err; iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, pf->timestamp); err: mutex_unlock(&data->lock); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bma220_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; u8 range_idx; struct bma220_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: ret = bma220_read_reg(data->spi_device, chan->address); if (ret < 0) return -EINVAL; *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = bma220_read_reg(data->spi_device, BMA220_REG_RANGE); if (ret < 0) return ret; range_idx = ret & BMA220_RANGE_MASK; *val = bma220_scale_table[range_idx][0]; *val2 = bma220_scale_table[range_idx][1]; return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static int bma220_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int i; int ret; int index = -1; struct bma220_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: for (i = 0; i < ARRAY_SIZE(bma220_scale_table); i++) if (val == bma220_scale_table[i][0] && val2 == bma220_scale_table[i][1]) { index = i; break; } if (index < 0) return -EINVAL; mutex_lock(&data->lock); data->tx_buf[0] = BMA220_REG_RANGE; data->tx_buf[1] = index; ret = spi_write(data->spi_device, data->tx_buf, sizeof(data->tx_buf)); if (ret < 0) dev_err(&data->spi_device->dev, "failed to set measurement range\n"); mutex_unlock(&data->lock); return 0; } return -EINVAL; } static int bma220_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = (int *)bma220_scale_table; *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(bma220_scale_table) * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static const struct iio_info bma220_info = { .read_raw = bma220_read_raw, .write_raw = bma220_write_raw, .read_avail = bma220_read_avail, }; static int bma220_init(struct spi_device *spi) { int ret; ret = bma220_read_reg(spi, BMA220_REG_ID); if (ret != BMA220_CHIP_ID) return -ENODEV; /* Make sure the chip is powered on */ ret = bma220_read_reg(spi, BMA220_REG_SUSPEND); if (ret == BMA220_SUSPEND_WAKE) ret = bma220_read_reg(spi, BMA220_REG_SUSPEND); if (ret < 0) return ret; if (ret == BMA220_SUSPEND_WAKE) return -EBUSY; return 0; } static int bma220_power(struct spi_device *spi, bool up) { int i, ret; /** * The chip can be suspended/woken up by a simple register read. * So, we need up to 2 register reads of the suspend register * to make sure that the device is in the desired state. */ for (i = 0; i < 2; i++) { ret = bma220_read_reg(spi, BMA220_REG_SUSPEND); if (ret < 0) return ret; if (up && ret == BMA220_SUSPEND_SLEEP) return 0; if (!up && ret == BMA220_SUSPEND_WAKE) return 0; } return -EBUSY; } static void bma220_deinit(void *spi) { bma220_power(spi, false); } static int bma220_probe(struct spi_device *spi) { int ret; struct iio_dev *indio_dev; struct bma220_data *data; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*data)); if (!indio_dev) { dev_err(&spi->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->spi_device = spi; mutex_init(&data->lock); indio_dev->info = &bma220_info; indio_dev->name = BMA220_DEVICE_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = bma220_channels; indio_dev->num_channels = ARRAY_SIZE(bma220_channels); indio_dev->available_scan_masks = bma220_accel_scan_masks; ret = bma220_init(data->spi_device); if (ret) return ret; ret = devm_add_action_or_reset(&spi->dev, bma220_deinit, spi); if (ret) return ret; ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, iio_pollfunc_store_time, bma220_trigger_handler, NULL); if (ret < 0) { dev_err(&spi->dev, "iio triggered buffer setup failed\n"); return ret; } return devm_iio_device_register(&spi->dev, indio_dev); } static int bma220_suspend(struct device *dev) { struct spi_device *spi = to_spi_device(dev); return bma220_power(spi, false); } static int bma220_resume(struct device *dev) { struct spi_device *spi = to_spi_device(dev); return bma220_power(spi, true); } static DEFINE_SIMPLE_DEV_PM_OPS(bma220_pm_ops, bma220_suspend, bma220_resume); static const struct spi_device_id bma220_spi_id[] = { {"bma220", 0}, {} }; static const struct acpi_device_id bma220_acpi_id[] = { {"BMA0220", 0}, {} }; MODULE_DEVICE_TABLE(spi, bma220_spi_id); static struct spi_driver bma220_driver = { .driver = { .name = "bma220_spi", .pm = pm_sleep_ptr(&bma220_pm_ops), .acpi_match_table = bma220_acpi_id, }, .probe = bma220_probe, .id_table = bma220_spi_id, }; module_spi_driver(bma220_driver); MODULE_AUTHOR("Tiberiu Breana <[email protected]>"); MODULE_DESCRIPTION("BMA220 acceleration sensor driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/bma220_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO accel core driver for Freescale MMA7455L 3-axis 10-bit accelerometer * Copyright 2015 Joachim Eastwood <[email protected]> * * UNSUPPORTED hardware features: * - 8-bit mode with different scales * - INT1/INT2 interrupts * - Offset calibration * - Events */ #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/module.h> #include <linux/regmap.h> #include "mma7455.h" #define MMA7455_REG_XOUTL 0x00 #define MMA7455_REG_XOUTH 0x01 #define MMA7455_REG_YOUTL 0x02 #define MMA7455_REG_YOUTH 0x03 #define MMA7455_REG_ZOUTL 0x04 #define MMA7455_REG_ZOUTH 0x05 #define MMA7455_REG_STATUS 0x09 #define MMA7455_STATUS_DRDY BIT(0) #define MMA7455_REG_WHOAMI 0x0f #define MMA7455_WHOAMI_ID 0x55 #define MMA7455_REG_MCTL 0x16 #define MMA7455_MCTL_MODE_STANDBY 0x00 #define MMA7455_MCTL_MODE_MEASURE 0x01 #define MMA7455_REG_CTL1 0x18 #define MMA7455_CTL1_DFBW_MASK BIT(7) #define MMA7455_CTL1_DFBW_125HZ BIT(7) #define MMA7455_CTL1_DFBW_62_5HZ 0 #define MMA7455_REG_TW 0x1e /* * When MMA7455 is used in 10-bit it has a fullscale of -8g * corresponding to raw value -512. The userspace interface * uses m/s^2 and we declare micro units. * So scale factor is given by: * g * 8 * 1e6 / 512 = 153228.90625, with g = 9.80665 */ #define MMA7455_10BIT_SCALE 153229 struct mma7455_data { struct regmap *regmap; /* * Used to reorganize data. Will ensure correct alignment of * the timestamp if present */ struct { __le16 channels[3]; s64 ts __aligned(8); } scan; }; static int mma7455_drdy(struct mma7455_data *mma7455) { struct device *dev = regmap_get_device(mma7455->regmap); unsigned int reg; int tries = 3; int ret; while (tries-- > 0) { ret = regmap_read(mma7455->regmap, MMA7455_REG_STATUS, &reg); if (ret) return ret; if (reg & MMA7455_STATUS_DRDY) return 0; msleep(20); } dev_warn(dev, "data not ready\n"); return -EIO; } static irqreturn_t mma7455_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct mma7455_data *mma7455 = iio_priv(indio_dev); int ret; ret = mma7455_drdy(mma7455); if (ret) goto done; ret = regmap_bulk_read(mma7455->regmap, MMA7455_REG_XOUTL, mma7455->scan.channels, sizeof(mma7455->scan.channels)); if (ret) goto done; iio_push_to_buffers_with_timestamp(indio_dev, &mma7455->scan, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int mma7455_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mma7455_data *mma7455 = iio_priv(indio_dev); unsigned int reg; __le16 data; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; ret = mma7455_drdy(mma7455); if (ret) return ret; ret = regmap_bulk_read(mma7455->regmap, chan->address, &data, sizeof(data)); if (ret) return ret; *val = sign_extend32(le16_to_cpu(data), chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = MMA7455_10BIT_SCALE; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(mma7455->regmap, MMA7455_REG_CTL1, &reg); if (ret) return ret; if (reg & MMA7455_CTL1_DFBW_MASK) *val = 250; else *val = 125; return IIO_VAL_INT; } return -EINVAL; } static int mma7455_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mma7455_data *mma7455 = iio_priv(indio_dev); int i; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (val == 250 && val2 == 0) i = MMA7455_CTL1_DFBW_125HZ; else if (val == 125 && val2 == 0) i = MMA7455_CTL1_DFBW_62_5HZ; else return -EINVAL; return regmap_update_bits(mma7455->regmap, MMA7455_REG_CTL1, MMA7455_CTL1_DFBW_MASK, i); case IIO_CHAN_INFO_SCALE: /* In 10-bit mode there is only one scale available */ if (val == 0 && val2 == MMA7455_10BIT_SCALE) return 0; break; } return -EINVAL; } static IIO_CONST_ATTR(sampling_frequency_available, "125 250"); static struct attribute *mma7455_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group mma7455_group = { .attrs = mma7455_attributes, }; static const struct iio_info mma7455_info = { .attrs = &mma7455_group, .read_raw = mma7455_read_raw, .write_raw = mma7455_write_raw, }; #define MMA7455_CHANNEL(axis, idx) { \ .type = IIO_ACCEL, \ .modified = 1, \ .address = MMA7455_REG_##axis##OUTL,\ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = idx, \ .scan_type = { \ .sign = 's', \ .realbits = 10, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } static const struct iio_chan_spec mma7455_channels[] = { MMA7455_CHANNEL(X, 0), MMA7455_CHANNEL(Y, 1), MMA7455_CHANNEL(Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const unsigned long mma7455_scan_masks[] = {0x7, 0}; const struct regmap_config mma7455_core_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = MMA7455_REG_TW, }; EXPORT_SYMBOL_NS_GPL(mma7455_core_regmap, IIO_MMA7455); int mma7455_core_probe(struct device *dev, struct regmap *regmap, const char *name) { struct mma7455_data *mma7455; struct iio_dev *indio_dev; unsigned int reg; int ret; ret = regmap_read(regmap, MMA7455_REG_WHOAMI, &reg); if (ret) { dev_err(dev, "unable to read reg\n"); return ret; } if (reg != MMA7455_WHOAMI_ID) { dev_err(dev, "device id mismatch\n"); return -ENODEV; } indio_dev = devm_iio_device_alloc(dev, sizeof(*mma7455)); if (!indio_dev) return -ENOMEM; dev_set_drvdata(dev, indio_dev); mma7455 = iio_priv(indio_dev); mma7455->regmap = regmap; indio_dev->info = &mma7455_info; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = mma7455_channels; indio_dev->num_channels = ARRAY_SIZE(mma7455_channels); indio_dev->available_scan_masks = mma7455_scan_masks; regmap_write(mma7455->regmap, MMA7455_REG_MCTL, MMA7455_MCTL_MODE_MEASURE); ret = iio_triggered_buffer_setup(indio_dev, NULL, mma7455_trigger_handler, NULL); if (ret) { dev_err(dev, "unable to setup triggered buffer\n"); return ret; } ret = iio_device_register(indio_dev); if (ret) { dev_err(dev, "unable to register device\n"); iio_triggered_buffer_cleanup(indio_dev); return ret; } return 0; } EXPORT_SYMBOL_NS_GPL(mma7455_core_probe, IIO_MMA7455); void mma7455_core_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct mma7455_data *mma7455 = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); regmap_write(mma7455->regmap, MMA7455_REG_MCTL, MMA7455_MCTL_MODE_STANDBY); } EXPORT_SYMBOL_NS_GPL(mma7455_core_remove, IIO_MMA7455); MODULE_AUTHOR("Joachim Eastwood <[email protected]>"); MODULE_DESCRIPTION("Freescale MMA7455L core accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/mma7455_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL345 3-Axis Digital Accelerometer IIO core driver * * Copyright (c) 2017 Eva Rachel Retuya <[email protected]> * * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf */ #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/units.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include "adxl345.h" #define ADXL345_REG_DEVID 0x00 #define ADXL345_REG_OFSX 0x1e #define ADXL345_REG_OFSY 0x1f #define ADXL345_REG_OFSZ 0x20 #define ADXL345_REG_OFS_AXIS(index) (ADXL345_REG_OFSX + (index)) #define ADXL345_REG_BW_RATE 0x2C #define ADXL345_REG_POWER_CTL 0x2D #define ADXL345_REG_DATA_FORMAT 0x31 #define ADXL345_REG_DATAX0 0x32 #define ADXL345_REG_DATAY0 0x34 #define ADXL345_REG_DATAZ0 0x36 #define ADXL345_REG_DATA_AXIS(index) \ (ADXL345_REG_DATAX0 + (index) * sizeof(__le16)) #define ADXL345_BW_RATE GENMASK(3, 0) #define ADXL345_BASE_RATE_NANO_HZ 97656250LL #define ADXL345_POWER_CTL_MEASURE BIT(3) #define ADXL345_POWER_CTL_STANDBY 0x00 #define ADXL345_DATA_FORMAT_FULL_RES BIT(3) /* Up to 13-bits resolution */ #define ADXL345_DATA_FORMAT_2G 0 #define ADXL345_DATA_FORMAT_4G 1 #define ADXL345_DATA_FORMAT_8G 2 #define ADXL345_DATA_FORMAT_16G 3 #define ADXL345_DEVID 0xE5 /* * In full-resolution mode, scale factor is maintained at ~4 mg/LSB * in all g ranges. * * At +/- 16g with 13-bit resolution, scale is computed as: * (16 + 16) * 9.81 / (2^13 - 1) = 0.0383 */ static const int adxl345_uscale = 38300; /* * The Datasheet lists a resolution of Resolution is ~49 mg per LSB. That's * ~480mm/s**2 per LSB. */ static const int adxl375_uscale = 480000; struct adxl345_data { struct regmap *regmap; u8 data_range; enum adxl345_device_type type; }; #define ADXL345_CHANNEL(index, axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .address = index, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ } static const struct iio_chan_spec adxl345_channels[] = { ADXL345_CHANNEL(0, X), ADXL345_CHANNEL(1, Y), ADXL345_CHANNEL(2, Z), }; static int adxl345_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adxl345_data *data = iio_priv(indio_dev); __le16 accel; long long samp_freq_nhz; unsigned int regval; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: /* * Data is stored in adjacent registers: * ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte * and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte */ ret = regmap_bulk_read(data->regmap, ADXL345_REG_DATA_AXIS(chan->address), &accel, sizeof(accel)); if (ret < 0) return ret; *val = sign_extend32(le16_to_cpu(accel), 12); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; switch (data->type) { case ADXL345: *val2 = adxl345_uscale; break; case ADXL375: *val2 = adxl375_uscale; break; } return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: ret = regmap_read(data->regmap, ADXL345_REG_OFS_AXIS(chan->address), &regval); if (ret < 0) return ret; /* * 8-bit resolution at +/- 2g, that is 4x accel data scale * factor */ *val = sign_extend32(regval, 7) * 4; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(data->regmap, ADXL345_REG_BW_RATE, &regval); if (ret < 0) return ret; samp_freq_nhz = ADXL345_BASE_RATE_NANO_HZ << (regval & ADXL345_BW_RATE); *val = div_s64_rem(samp_freq_nhz, NANOHZ_PER_HZ, val2); return IIO_VAL_INT_PLUS_NANO; } return -EINVAL; } static int adxl345_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adxl345_data *data = iio_priv(indio_dev); s64 n; switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: /* * 8-bit resolution at +/- 2g, that is 4x accel data scale * factor */ return regmap_write(data->regmap, ADXL345_REG_OFS_AXIS(chan->address), val / 4); case IIO_CHAN_INFO_SAMP_FREQ: n = div_s64(val * NANOHZ_PER_HZ + val2, ADXL345_BASE_RATE_NANO_HZ); return regmap_update_bits(data->regmap, ADXL345_REG_BW_RATE, ADXL345_BW_RATE, clamp_val(ilog2(n), 0, ADXL345_BW_RATE)); } return -EINVAL; } static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "0.09765625 0.1953125 0.390625 0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600 3200" ); static struct attribute *adxl345_attrs[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group adxl345_attrs_group = { .attrs = adxl345_attrs, }; static const struct iio_info adxl345_info = { .attrs = &adxl345_attrs_group, .read_raw = adxl345_read_raw, .write_raw = adxl345_write_raw, .write_raw_get_fmt = adxl345_write_raw_get_fmt, }; static int adxl345_powerup(void *regmap) { return regmap_write(regmap, ADXL345_REG_POWER_CTL, ADXL345_POWER_CTL_MEASURE); } static void adxl345_powerdown(void *regmap) { regmap_write(regmap, ADXL345_REG_POWER_CTL, ADXL345_POWER_CTL_STANDBY); } int adxl345_core_probe(struct device *dev, struct regmap *regmap) { enum adxl345_device_type type; struct adxl345_data *data; struct iio_dev *indio_dev; const char *name; u32 regval; int ret; type = (uintptr_t)device_get_match_data(dev); switch (type) { case ADXL345: name = "adxl345"; break; case ADXL375: name = "adxl375"; break; default: return -EINVAL; } ret = regmap_read(regmap, ADXL345_REG_DEVID, &regval); if (ret < 0) return dev_err_probe(dev, ret, "Error reading device ID\n"); if (regval != ADXL345_DEVID) return dev_err_probe(dev, -ENODEV, "Invalid device ID: %x, expected %x\n", regval, ADXL345_DEVID); indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->regmap = regmap; data->type = type; /* Enable full-resolution mode */ data->data_range = ADXL345_DATA_FORMAT_FULL_RES; ret = regmap_write(data->regmap, ADXL345_REG_DATA_FORMAT, data->data_range); if (ret < 0) return dev_err_probe(dev, ret, "Failed to set data range\n"); indio_dev->name = name; indio_dev->info = &adxl345_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = adxl345_channels; indio_dev->num_channels = ARRAY_SIZE(adxl345_channels); /* Enable measurement mode */ ret = adxl345_powerup(data->regmap); if (ret < 0) return dev_err_probe(dev, ret, "Failed to enable measurement mode\n"); ret = devm_add_action_or_reset(dev, adxl345_powerdown, data->regmap); if (ret < 0) return ret; return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(adxl345_core_probe, IIO_ADXL345); MODULE_AUTHOR("Eva Rachel Retuya <[email protected]>"); MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer core driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/adxl345_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI * * Copyright (c) 2009 Jonathan Cameron <[email protected]> * * See industrialio/accels/sca3000.h for comments. */ #include <linux/interrupt.h> #include <linux/fs.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/spi/spi.h> #include <linux/sysfs.h> #include <linux/module.h> #include <linux/uaccess.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/iio/buffer.h> #include <linux/iio/kfifo_buf.h> #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02) #define SCA3000_READ_REG(a) ((a) << 2) #define SCA3000_REG_REVID_ADDR 0x00 #define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4) #define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0) #define SCA3000_REG_STATUS_ADDR 0x02 #define SCA3000_LOCKED BIT(5) #define SCA3000_EEPROM_CS_ERROR BIT(1) #define SCA3000_SPI_FRAME_ERROR BIT(0) /* All reads done using register decrement so no need to directly access LSBs */ #define SCA3000_REG_X_MSB_ADDR 0x05 #define SCA3000_REG_Y_MSB_ADDR 0x07 #define SCA3000_REG_Z_MSB_ADDR 0x09 #define SCA3000_REG_RING_OUT_ADDR 0x0f /* Temp read untested - the e05 doesn't have the sensor */ #define SCA3000_REG_TEMP_MSB_ADDR 0x13 #define SCA3000_REG_MODE_ADDR 0x14 #define SCA3000_MODE_PROT_MASK 0x28 #define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7) #define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6) /* * Free fall detection triggers an interrupt if the acceleration * is below a threshold for equivalent of 25cm drop */ #define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4) #define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00 #define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01 #define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02 /* * In motion detection mode the accelerations are band pass filtered * (approx 1 - 25Hz) and then a programmable threshold used to trigger * and interrupt. */ #define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03 #define SCA3000_REG_MODE_MODE_MASK 0x03 #define SCA3000_REG_BUF_COUNT_ADDR 0x15 #define SCA3000_REG_INT_STATUS_ADDR 0x16 #define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7) #define SCA3000_REG_INT_STATUS_HALF BIT(6) #define SCA3000_INT_STATUS_FREE_FALL BIT(3) #define SCA3000_INT_STATUS_Y_TRIGGER BIT(2) #define SCA3000_INT_STATUS_X_TRIGGER BIT(1) #define SCA3000_INT_STATUS_Z_TRIGGER BIT(0) /* Used to allow access to multiplexed registers */ #define SCA3000_REG_CTRL_SEL_ADDR 0x18 /* Only available for SCA3000-D03 and SCA3000-D01 */ #define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01 #define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02 #define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03 #define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04 #define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05 /* * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device * will not function */ #define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B #define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0 #define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10 #define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08 #define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04 #define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03 #define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02 #define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01 /* * Control which motion detector interrupts are on. * For now only OR combinations are supported. */ #define SCA3000_MD_CTRL_PROT_MASK 0xC0 #define SCA3000_MD_CTRL_OR_Y BIT(0) #define SCA3000_MD_CTRL_OR_X BIT(1) #define SCA3000_MD_CTRL_OR_Z BIT(2) /* Currently unsupported */ #define SCA3000_MD_CTRL_AND_Y BIT(3) #define SCA3000_MD_CTRL_AND_X BIT(4) #define SCA3000_MD_CTRL_AND_Z BIT(5) /* * Some control registers of complex access methods requiring this register to * be used to remove a lock. */ #define SCA3000_REG_UNLOCK_ADDR 0x1e #define SCA3000_REG_INT_MASK_ADDR 0x21 #define SCA3000_REG_INT_MASK_PROT_MASK 0x1C #define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7) #define SCA3000_REG_INT_MASK_RING_HALF BIT(6) #define SCA3000_REG_INT_MASK_ALL_INTS 0x02 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01 #define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00 /* Values of multiplexed registers (write to ctrl_data after select) */ #define SCA3000_REG_CTRL_DATA_ADDR 0x22 /* * Measurement modes available on some sca3000 series chips. Code assumes others * may become available in the future. * * Bypass - Bypass the low-pass filter in the signal channel so as to increase * signal bandwidth. * * Narrow - Narrow low-pass filtering of the signal channel and half output * data rate by decimation. * * Wide - Widen low-pass filtering of signal channel to increase bandwidth */ #define SCA3000_OP_MODE_BYPASS 0x01 #define SCA3000_OP_MODE_NARROW 0x02 #define SCA3000_OP_MODE_WIDE 0x04 #define SCA3000_MAX_TX 6 #define SCA3000_MAX_RX 2 /** * struct sca3000_state - device instance state information * @us: the associated spi device * @info: chip variant information * @last_timestamp: the timestamp of the last event * @mo_det_use_count: reference counter for the motion detection unit * @lock: lock used to protect elements of sca3000_state * and the underlying device state. * @tx: dma-able transmit buffer * @rx: dma-able receive buffer **/ struct sca3000_state { struct spi_device *us; const struct sca3000_chip_info *info; s64 last_timestamp; int mo_det_use_count; struct mutex lock; /* Can these share a cacheline ? */ u8 rx[384] __aligned(IIO_DMA_MINALIGN); u8 tx[6] __aligned(IIO_DMA_MINALIGN); }; /** * struct sca3000_chip_info - model dependent parameters * @scale: scale * 10^-6 * @temp_output: some devices have temperature sensors. * @measurement_mode_freq: normal mode sampling frequency * @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for * the normal measurement mode. * @option_mode_1: first optional mode. Not all models have one * @option_mode_1_freq: option mode 1 sampling frequency * @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for * the first option mode. * @option_mode_2: second optional mode. Not all chips have one * @option_mode_2_freq: option mode 2 sampling frequency * @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for * the second option mode. * @mot_det_mult_xz: Bit wise multipliers to calculate the threshold * for motion detection in the x and z axis. * @mot_det_mult_y: Bit wise multipliers to calculate the threshold * for motion detection in the y axis. * * This structure is used to hold information about the functionality of a given * sca3000 variant. **/ struct sca3000_chip_info { unsigned int scale; bool temp_output; int measurement_mode_freq; int measurement_mode_3db_freq; int option_mode_1; int option_mode_1_freq; int option_mode_1_3db_freq; int option_mode_2; int option_mode_2_freq; int option_mode_2_3db_freq; int mot_det_mult_xz[6]; int mot_det_mult_y[7]; }; enum sca3000_variant { d01, e02, e04, e05, }; /* * Note where option modes are not defined, the chip simply does not * support any. * Other chips in the sca3000 series use i2c and are not included here. * * Some of these devices are only listed in the family data sheet and * do not actually appear to be available. */ static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = { [d01] = { .scale = 7357, .temp_output = true, .measurement_mode_freq = 250, .measurement_mode_3db_freq = 45, .option_mode_1 = SCA3000_OP_MODE_BYPASS, .option_mode_1_freq = 250, .option_mode_1_3db_freq = 70, .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300}, .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750}, }, [e02] = { .scale = 9810, .measurement_mode_freq = 125, .measurement_mode_3db_freq = 40, .option_mode_1 = SCA3000_OP_MODE_NARROW, .option_mode_1_freq = 63, .option_mode_1_3db_freq = 11, .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050}, .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700}, }, [e04] = { .scale = 19620, .measurement_mode_freq = 100, .measurement_mode_3db_freq = 38, .option_mode_1 = SCA3000_OP_MODE_NARROW, .option_mode_1_freq = 50, .option_mode_1_3db_freq = 9, .option_mode_2 = SCA3000_OP_MODE_WIDE, .option_mode_2_freq = 400, .option_mode_2_3db_freq = 70, .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100}, .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000}, }, [e05] = { .scale = 61313, .measurement_mode_freq = 200, .measurement_mode_3db_freq = 60, .option_mode_1 = SCA3000_OP_MODE_NARROW, .option_mode_1_freq = 50, .option_mode_1_3db_freq = 9, .option_mode_2 = SCA3000_OP_MODE_WIDE, .option_mode_2_freq = 400, .option_mode_2_3db_freq = 75, .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900}, .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600}, }, }; static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val) { st->tx[0] = SCA3000_WRITE_REG(address); st->tx[1] = val; return spi_write(st->us, st->tx, 2); } static int sca3000_read_data_short(struct sca3000_state *st, u8 reg_address_high, int len) { struct spi_transfer xfer[2] = { { .len = 1, .tx_buf = st->tx, }, { .len = len, .rx_buf = st->rx, } }; st->tx[0] = SCA3000_READ_REG(reg_address_high); return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); } /** * sca3000_reg_lock_on() - test if the ctrl register lock is on * @st: Driver specific device instance data. * * Lock must be held. **/ static int sca3000_reg_lock_on(struct sca3000_state *st) { int ret; ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1); if (ret < 0) return ret; return !(st->rx[0] & SCA3000_LOCKED); } /** * __sca3000_unlock_reg_lock() - unlock the control registers * @st: Driver specific device instance data. * * Note the device does not appear to support doing this in a single transfer. * This should only ever be used as part of ctrl reg read. * Lock must be held before calling this */ static int __sca3000_unlock_reg_lock(struct sca3000_state *st) { struct spi_transfer xfer[3] = { { .len = 2, .cs_change = 1, .tx_buf = st->tx, }, { .len = 2, .cs_change = 1, .tx_buf = st->tx + 2, }, { .len = 2, .tx_buf = st->tx + 4, }, }; st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); st->tx[1] = 0x00; st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); st->tx[3] = 0x50; st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); st->tx[5] = 0xA0; return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); } /** * sca3000_write_ctrl_reg() - write to a lock protect ctrl register * @st: Driver specific device instance data. * @sel: selects which registers we wish to write to * @val: the value to be written * * Certain control registers are protected against overwriting by the lock * register and use a shared write address. This function allows writing of * these registers. * Lock must be held. */ static int sca3000_write_ctrl_reg(struct sca3000_state *st, u8 sel, uint8_t val) { int ret; ret = sca3000_reg_lock_on(st); if (ret < 0) goto error_ret; if (ret) { ret = __sca3000_unlock_reg_lock(st); if (ret) goto error_ret; } /* Set the control select register */ ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel); if (ret) goto error_ret; /* Write the actual value into the register */ ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val); error_ret: return ret; } /** * sca3000_read_ctrl_reg() - read from lock protected control register. * @st: Driver specific device instance data. * @ctrl_reg: Which ctrl register do we want to read. * * Lock must be held. */ static int sca3000_read_ctrl_reg(struct sca3000_state *st, u8 ctrl_reg) { int ret; ret = sca3000_reg_lock_on(st); if (ret < 0) goto error_ret; if (ret) { ret = __sca3000_unlock_reg_lock(st); if (ret) goto error_ret; } /* Set the control select register */ ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg); if (ret) goto error_ret; ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1); if (ret) goto error_ret; return st->rx[0]; error_ret: return ret; } /** * sca3000_print_rev() - sysfs interface to read the chip revision number * @indio_dev: Device instance specific generic IIO data. * Driver specific device instance data can be obtained via * iio_priv(indio_dev) */ static int sca3000_print_rev(struct iio_dev *indio_dev) { int ret; struct sca3000_state *st = iio_priv(indio_dev); mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1); if (ret < 0) goto error_ret; dev_info(&indio_dev->dev, "sca3000 revision major=%lu, minor=%lu\n", st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK, st->rx[0] & SCA3000_REG_REVID_MINOR_MASK); error_ret: mutex_unlock(&st->lock); return ret; } static ssize_t sca3000_show_available_3db_freqs(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sca3000_state *st = iio_priv(indio_dev); int len; len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq); if (st->info->option_mode_1) len += sprintf(buf + len, " %d", st->info->option_mode_1_3db_freq); if (st->info->option_mode_2) len += sprintf(buf + len, " %d", st->info->option_mode_2_3db_freq); len += sprintf(buf + len, "\n"); return len; } static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, S_IRUGO, sca3000_show_available_3db_freqs, NULL, 0); static const struct iio_event_spec sca3000_event = { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }; /* * Note the hack in the number of bits to pretend we have 2 more than * we do in the fifo. */ #define SCA3000_CHAN(index, mod) \ { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = mod, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ .address = index, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 13, \ .storagebits = 16, \ .shift = 3, \ .endianness = IIO_BE, \ }, \ .event_spec = &sca3000_event, \ .num_event_specs = 1, \ } static const struct iio_event_spec sca3000_freefall_event_spec = { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }; static const struct iio_chan_spec sca3000_channels[] = { SCA3000_CHAN(0, IIO_MOD_X), SCA3000_CHAN(1, IIO_MOD_Y), SCA3000_CHAN(2, IIO_MOD_Z), { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X_AND_Y_AND_Z, .scan_index = -1, /* Fake channel */ .event_spec = &sca3000_freefall_event_spec, .num_event_specs = 1, }, }; static const struct iio_chan_spec sca3000_channels_with_temp[] = { SCA3000_CHAN(0, IIO_MOD_X), SCA3000_CHAN(1, IIO_MOD_Y), SCA3000_CHAN(2, IIO_MOD_Z), { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), /* No buffer support */ .scan_index = -1, .scan_type = { .sign = 'u', .realbits = 9, .storagebits = 16, .shift = 5, .endianness = IIO_BE, }, }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X_AND_Y_AND_Z, .scan_index = -1, /* Fake channel */ .event_spec = &sca3000_freefall_event_spec, .num_event_specs = 1, }, }; static u8 sca3000_addresses[3][3] = { [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH, SCA3000_MD_CTRL_OR_X}, [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH, SCA3000_MD_CTRL_OR_Y}, [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH, SCA3000_MD_CTRL_OR_Z}, }; /** * __sca3000_get_base_freq() - obtain mode specific base frequency * @st: Private driver specific device instance specific state. * @info: chip type specific information. * @base_freq: Base frequency for the current measurement mode. * * lock must be held */ static inline int __sca3000_get_base_freq(struct sca3000_state *st, const struct sca3000_chip_info *info, int *base_freq) { int ret; ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) goto error_ret; switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) { case SCA3000_REG_MODE_MEAS_MODE_NORMAL: *base_freq = info->measurement_mode_freq; break; case SCA3000_REG_MODE_MEAS_MODE_OP_1: *base_freq = info->option_mode_1_freq; break; case SCA3000_REG_MODE_MEAS_MODE_OP_2: *base_freq = info->option_mode_2_freq; break; default: ret = -EINVAL; } error_ret: return ret; } /** * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ * @st: Private driver specific device instance specific state. * @val: The frequency read back. * * lock must be held **/ static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val) { int ret; ret = __sca3000_get_base_freq(st, st->info, val); if (ret) return ret; ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); if (ret < 0) return ret; if (*val > 0) { ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; switch (ret) { case SCA3000_REG_OUT_CTRL_BUF_DIV_2: *val /= 2; break; case SCA3000_REG_OUT_CTRL_BUF_DIV_4: *val /= 4; break; } } return 0; } /** * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ * @st: Private driver specific device instance specific state. * @val: The frequency desired. * * lock must be held */ static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val) { int ret, base_freq, ctrlval; ret = __sca3000_get_base_freq(st, st->info, &base_freq); if (ret) return ret; ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); if (ret < 0) return ret; ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; if (val == base_freq / 2) ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2; if (val == base_freq / 4) ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4; else if (val != base_freq) return -EINVAL; return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, ctrlval); } static int sca3000_read_3db_freq(struct sca3000_state *st, int *val) { int ret; ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) return ret; /* mask bottom 2 bits - only ones that are relevant */ st->rx[0] &= SCA3000_REG_MODE_MODE_MASK; switch (st->rx[0]) { case SCA3000_REG_MODE_MEAS_MODE_NORMAL: *val = st->info->measurement_mode_3db_freq; return IIO_VAL_INT; case SCA3000_REG_MODE_MEAS_MODE_MOT_DET: return -EBUSY; case SCA3000_REG_MODE_MEAS_MODE_OP_1: *val = st->info->option_mode_1_3db_freq; return IIO_VAL_INT; case SCA3000_REG_MODE_MEAS_MODE_OP_2: *val = st->info->option_mode_2_3db_freq; return IIO_VAL_INT; default: return -EINVAL; } } static int sca3000_write_3db_freq(struct sca3000_state *st, int val) { int ret; int mode; if (val == st->info->measurement_mode_3db_freq) mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL; else if (st->info->option_mode_1 && (val == st->info->option_mode_1_3db_freq)) mode = SCA3000_REG_MODE_MEAS_MODE_OP_1; else if (st->info->option_mode_2 && (val == st->info->option_mode_2_3db_freq)) mode = SCA3000_REG_MODE_MEAS_MODE_OP_2; else return -EINVAL; ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) return ret; st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK; st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK); return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]); } static int sca3000_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sca3000_state *st = iio_priv(indio_dev); int ret; u8 address; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); if (chan->type == IIO_ACCEL) { if (st->mo_det_use_count) { mutex_unlock(&st->lock); return -EBUSY; } address = sca3000_addresses[chan->address][0]; ret = sca3000_read_data_short(st, address, 2); if (ret < 0) { mutex_unlock(&st->lock); return ret; } *val = sign_extend32(be16_to_cpup((__be16 *)st->rx) >> chan->scan_type.shift, chan->scan_type.realbits - 1); } else { /* get the temperature when available */ ret = sca3000_read_data_short(st, SCA3000_REG_TEMP_MSB_ADDR, 2); if (ret < 0) { mutex_unlock(&st->lock); return ret; } *val = (be16_to_cpup((__be16 *)st->rx) >> chan->scan_type.shift) & GENMASK(chan->scan_type.realbits - 1, 0); } mutex_unlock(&st->lock); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; if (chan->type == IIO_ACCEL) *val2 = st->info->scale; else /* temperature */ *val2 = 555556; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OFFSET: *val = -214; *val2 = 600000; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&st->lock); ret = sca3000_read_raw_samp_freq(st, val); mutex_unlock(&st->lock); return ret ? ret : IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: mutex_lock(&st->lock); ret = sca3000_read_3db_freq(st, val); mutex_unlock(&st->lock); return ret; default: return -EINVAL; } } static int sca3000_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct sca3000_state *st = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (val2) return -EINVAL; mutex_lock(&st->lock); ret = sca3000_write_raw_samp_freq(st, val); mutex_unlock(&st->lock); return ret; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: if (val2) return -EINVAL; mutex_lock(&st->lock); ret = sca3000_write_3db_freq(st, val); mutex_unlock(&st->lock); return ret; default: return -EINVAL; } return ret; } /** * sca3000_read_av_freq() - sysfs function to get available frequencies * @dev: Device structure for this device. * @attr: Description of the attribute. * @buf: Incoming string * * The later modes are only relevant to the ring buffer - and depend on current * mode. Note that data sheet gives rather wide tolerances for these so integer * division will give good enough answer and not all chips have them specified * at all. **/ static ssize_t sca3000_read_av_freq(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sca3000_state *st = iio_priv(indio_dev); int len = 0, ret, val; mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); val = st->rx[0]; mutex_unlock(&st->lock); if (ret) goto error_ret; switch (val & SCA3000_REG_MODE_MODE_MASK) { case SCA3000_REG_MODE_MEAS_MODE_NORMAL: len += sprintf(buf + len, "%d %d %d\n", st->info->measurement_mode_freq, st->info->measurement_mode_freq / 2, st->info->measurement_mode_freq / 4); break; case SCA3000_REG_MODE_MEAS_MODE_OP_1: len += sprintf(buf + len, "%d %d %d\n", st->info->option_mode_1_freq, st->info->option_mode_1_freq / 2, st->info->option_mode_1_freq / 4); break; case SCA3000_REG_MODE_MEAS_MODE_OP_2: len += sprintf(buf + len, "%d %d %d\n", st->info->option_mode_2_freq, st->info->option_mode_2_freq / 2, st->info->option_mode_2_freq / 4); break; } return len; error_ret: return ret; } /* * Should only really be registered if ring buffer support is compiled in. * Does no harm however and doing it right would add a fair bit of complexity */ static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq); /* * sca3000_read_event_value() - query of a threshold or period */ static int sca3000_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct sca3000_state *st = iio_priv(indio_dev); long ret; int i; switch (info) { case IIO_EV_INFO_VALUE: mutex_lock(&st->lock); ret = sca3000_read_ctrl_reg(st, sca3000_addresses[chan->address][1]); mutex_unlock(&st->lock); if (ret < 0) return ret; *val = 0; if (chan->channel2 == IIO_MOD_Y) for_each_set_bit(i, &ret, ARRAY_SIZE(st->info->mot_det_mult_y)) *val += st->info->mot_det_mult_y[i]; else for_each_set_bit(i, &ret, ARRAY_SIZE(st->info->mot_det_mult_xz)) *val += st->info->mot_det_mult_xz[i]; return IIO_VAL_INT; case IIO_EV_INFO_PERIOD: *val = 0; *val2 = 226000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } /** * sca3000_write_event_value() - control of threshold and period * @indio_dev: Device instance specific IIO information. * @chan: Description of the channel for which the event is being * configured. * @type: The type of event being configured, here magnitude rising * as everything else is read only. * @dir: Direction of the event (here rising) * @info: What information about the event are we configuring. * Here the threshold only. * @val: Integer part of the value being written.. * @val2: Non integer part of the value being written. Here always 0. */ static int sca3000_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct sca3000_state *st = iio_priv(indio_dev); int ret; int i; u8 nonlinear = 0; if (chan->channel2 == IIO_MOD_Y) { i = ARRAY_SIZE(st->info->mot_det_mult_y); while (i > 0) if (val >= st->info->mot_det_mult_y[--i]) { nonlinear |= (1 << i); val -= st->info->mot_det_mult_y[i]; } } else { i = ARRAY_SIZE(st->info->mot_det_mult_xz); while (i > 0) if (val >= st->info->mot_det_mult_xz[--i]) { nonlinear |= (1 << i); val -= st->info->mot_det_mult_xz[i]; } } mutex_lock(&st->lock); ret = sca3000_write_ctrl_reg(st, sca3000_addresses[chan->address][1], nonlinear); mutex_unlock(&st->lock); return ret; } static struct attribute *sca3000_attributes[] = { &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr, &iio_dev_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group sca3000_attribute_group = { .attrs = sca3000_attributes, }; static int sca3000_read_data(struct sca3000_state *st, u8 reg_address_high, u8 *rx, int len) { int ret; struct spi_transfer xfer[2] = { { .len = 1, .tx_buf = st->tx, }, { .len = len, .rx_buf = rx, } }; st->tx[0] = SCA3000_READ_REG(reg_address_high); ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); if (ret) { dev_err(&st->us->dev, "problem reading register\n"); return ret; } return 0; } /** * sca3000_ring_int_process() - ring specific interrupt handling. * @val: Value of the interrupt status register. * @indio_dev: Device instance specific IIO device structure. */ static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev) { struct sca3000_state *st = iio_priv(indio_dev); int ret, i, num_available; mutex_lock(&st->lock); if (val & SCA3000_REG_INT_STATUS_HALF) { ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR, 1); if (ret) goto error_ret; num_available = st->rx[0]; /* * num_available is the total number of samples available * i.e. number of time points * number of channels. */ ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx, num_available * 2); if (ret) goto error_ret; for (i = 0; i < num_available / 3; i++) { /* * Dirty hack to cover for 11 bit in fifo, 13 bit * direct reading. * * In theory the bottom two bits are undefined. * In reality they appear to always be 0. */ iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2); } } error_ret: mutex_unlock(&st->lock); } /** * sca3000_event_handler() - handling ring and non ring events * @irq: The irq being handled. * @private: struct iio_device pointer for the device. * * Ring related interrupt handler. Depending on event, push to * the ring buffer event chrdev or the event one. * * This function is complicated by the fact that the devices can signify ring * and non ring events via the same interrupt line and they can only * be distinguished via a read of the relevant status register. */ static irqreturn_t sca3000_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct sca3000_state *st = iio_priv(indio_dev); int ret, val; s64 last_timestamp = iio_get_time_ns(indio_dev); /* * Could lead if badly timed to an extra read of status reg, * but ensures no interrupt is missed. */ mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); val = st->rx[0]; mutex_unlock(&st->lock); if (ret) goto done; sca3000_ring_int_process(val, indio_dev); if (val & SCA3000_INT_STATUS_FREE_FALL) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_AND_Y_AND_Z, IIO_EV_TYPE_MAG, IIO_EV_DIR_FALLING), last_timestamp); if (val & SCA3000_INT_STATUS_Y_TRIGGER) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), last_timestamp); if (val & SCA3000_INT_STATUS_X_TRIGGER) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), last_timestamp); if (val & SCA3000_INT_STATUS_Z_TRIGGER) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), last_timestamp); done: return IRQ_HANDLED; } /* * sca3000_read_event_config() what events are enabled */ static int sca3000_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct sca3000_state *st = iio_priv(indio_dev); int ret; /* read current value of mode register */ mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) goto error_ret; switch (chan->channel2) { case IIO_MOD_X_AND_Y_AND_Z: ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT); break; case IIO_MOD_X: case IIO_MOD_Y: case IIO_MOD_Z: /* * Motion detection mode cannot run at the same time as * acceleration data being read. */ if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) { ret = 0; } else { ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); if (ret < 0) goto error_ret; /* only supporting logical or's for now */ ret = !!(ret & sca3000_addresses[chan->address][2]); } break; default: ret = -EINVAL; } error_ret: mutex_unlock(&st->lock); return ret; } static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state) { struct sca3000_state *st = iio_priv(indio_dev); int ret; /* read current value of mode register */ ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) return ret; /* if off and should be on */ if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT); /* if on and should be off */ else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT); else return 0; } static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis, int state) { struct sca3000_state *st = iio_priv(indio_dev); int ret, ctrlval; /* * First read the motion detector config to find out if * this axis is on */ ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); if (ret < 0) return ret; ctrlval = ret; /* if off and should be on */ if (state && !(ctrlval & sca3000_addresses[axis][2])) { ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL, ctrlval | sca3000_addresses[axis][2]); if (ret) return ret; st->mo_det_use_count++; } else if (!state && (ctrlval & sca3000_addresses[axis][2])) { ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL, ctrlval & ~(sca3000_addresses[axis][2])); if (ret) return ret; st->mo_det_use_count--; } /* read current value of mode register */ ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) return ret; /* if off and should be on */ if ((st->mo_det_use_count) && ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) != SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK) | SCA3000_REG_MODE_MEAS_MODE_MOT_DET); /* if on and should be off */ else if (!(st->mo_det_use_count) && ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) == SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0] & SCA3000_REG_MODE_MODE_MASK); else return 0; } /** * sca3000_write_event_config() - simple on off control for motion detector * @indio_dev: IIO device instance specific structure. Data specific to this * particular driver may be accessed via iio_priv(indio_dev). * @chan: Description of the channel whose event we are configuring. * @type: The type of event. * @dir: The direction of the event. * @state: Desired state of event being configured. * * This is a per axis control, but enabling any will result in the * motion detector unit being enabled. * N.B. enabling motion detector stops normal data acquisition. * There is a complexity in knowing which mode to return to when * this mode is disabled. Currently normal mode is assumed. **/ static int sca3000_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct sca3000_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); switch (chan->channel2) { case IIO_MOD_X_AND_Y_AND_Z: ret = sca3000_freefall_set_state(indio_dev, state); break; case IIO_MOD_X: case IIO_MOD_Y: case IIO_MOD_Z: ret = sca3000_motion_detect_set_state(indio_dev, chan->address, state); break; default: ret = -EINVAL; break; } mutex_unlock(&st->lock); return ret; } static inline int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state) { struct sca3000_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) goto error_ret; if (state) { dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n"); ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE)); } else ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE)); error_ret: mutex_unlock(&st->lock); return ret; } /** * sca3000_hw_ring_preenable() - hw ring buffer preenable function * @indio_dev: structure representing the IIO device. Device instance * specific state can be accessed via iio_priv(indio_dev). * * Very simple enable function as the chip will allows normal reads * during ring buffer operation so as long as it is indeed running * before we notify the core, the precise ordering does not matter. */ static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev) { int ret; struct sca3000_state *st = iio_priv(indio_dev); mutex_lock(&st->lock); /* Enable the 50% full interrupt */ ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); if (ret) goto error_unlock; ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF); if (ret) goto error_unlock; mutex_unlock(&st->lock); return __sca3000_hw_ring_state_set(indio_dev, 1); error_unlock: mutex_unlock(&st->lock); return ret; } static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev) { int ret; struct sca3000_state *st = iio_priv(indio_dev); ret = __sca3000_hw_ring_state_set(indio_dev, 0); if (ret) return ret; /* Disable the 50% full interrupt */ mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); if (ret) goto unlock; ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF); unlock: mutex_unlock(&st->lock); return ret; } static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = { .preenable = &sca3000_hw_ring_preenable, .postdisable = &sca3000_hw_ring_postdisable, }; /** * sca3000_clean_setup() - get the device into a predictable state * @st: Device instance specific private data structure * * Devices use flash memory to store many of the register values * and hence can come up in somewhat unpredictable states. * Hence reset everything on driver load. */ static int sca3000_clean_setup(struct sca3000_state *st) { int ret; mutex_lock(&st->lock); /* Ensure all interrupts have been acknowledged */ ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); if (ret) goto error_ret; /* Turn off all motion detection channels */ ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); if (ret < 0) goto error_ret; ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL, ret & SCA3000_MD_CTRL_PROT_MASK); if (ret) goto error_ret; /* Disable ring buffer */ ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); if (ret < 0) goto error_ret; ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, (ret & SCA3000_REG_OUT_CTRL_PROT_MASK) | SCA3000_REG_OUT_CTRL_BUF_X_EN | SCA3000_REG_OUT_CTRL_BUF_Y_EN | SCA3000_REG_OUT_CTRL_BUF_Z_EN | SCA3000_REG_OUT_CTRL_BUF_DIV_4); if (ret) goto error_ret; /* Enable interrupts, relevant to mode and set up as active low */ ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); if (ret) goto error_ret; ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, (ret & SCA3000_REG_INT_MASK_PROT_MASK) | SCA3000_REG_INT_MASK_ACTIVE_LOW); if (ret) goto error_ret; /* * Select normal measurement mode, free fall off, ring off * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5 * as that occurs in one of the example on the datasheet */ ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); if (ret) goto error_ret; ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, (st->rx[0] & SCA3000_MODE_PROT_MASK)); error_ret: mutex_unlock(&st->lock); return ret; } static const struct iio_info sca3000_info = { .attrs = &sca3000_attribute_group, .read_raw = &sca3000_read_raw, .write_raw = &sca3000_write_raw, .read_event_value = &sca3000_read_event_value, .write_event_value = &sca3000_write_event_value, .read_event_config = &sca3000_read_event_config, .write_event_config = &sca3000_write_event_config, }; static int sca3000_probe(struct spi_device *spi) { int ret; struct sca3000_state *st; struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); spi_set_drvdata(spi, indio_dev); st->us = spi; mutex_init(&st->lock); st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi) ->driver_data]; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &sca3000_info; if (st->info->temp_output) { indio_dev->channels = sca3000_channels_with_temp; indio_dev->num_channels = ARRAY_SIZE(sca3000_channels_with_temp); } else { indio_dev->channels = sca3000_channels; indio_dev->num_channels = ARRAY_SIZE(sca3000_channels); } indio_dev->modes = INDIO_DIRECT_MODE; ret = devm_iio_kfifo_buffer_setup(&spi->dev, indio_dev, &sca3000_ring_setup_ops); if (ret) return ret; if (spi->irq) { ret = request_threaded_irq(spi->irq, NULL, &sca3000_event_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "sca3000", indio_dev); if (ret) return ret; } ret = sca3000_clean_setup(st); if (ret) goto error_free_irq; ret = sca3000_print_rev(indio_dev); if (ret) goto error_free_irq; return iio_device_register(indio_dev); error_free_irq: if (spi->irq) free_irq(spi->irq, indio_dev); return ret; } static int sca3000_stop_all_interrupts(struct sca3000_state *st) { int ret; mutex_lock(&st->lock); ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); if (ret) goto error_ret; ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, (st->rx[0] & ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER | SCA3000_REG_INT_MASK_RING_HALF | SCA3000_REG_INT_MASK_ALL_INTS))); error_ret: mutex_unlock(&st->lock); return ret; } static void sca3000_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct sca3000_state *st = iio_priv(indio_dev); iio_device_unregister(indio_dev); /* Must ensure no interrupts can be generated after this! */ sca3000_stop_all_interrupts(st); if (spi->irq) free_irq(spi->irq, indio_dev); } static const struct spi_device_id sca3000_id[] = { {"sca3000_d01", d01}, {"sca3000_e02", e02}, {"sca3000_e04", e04}, {"sca3000_e05", e05}, {} }; MODULE_DEVICE_TABLE(spi, sca3000_id); static struct spi_driver sca3000_driver = { .driver = { .name = "sca3000", }, .probe = sca3000_probe, .remove = sca3000_remove, .id_table = sca3000_id, }; module_spi_driver(sca3000_driver); MODULE_AUTHOR("Jonathan Cameron <[email protected]>"); MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/sca3000.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 ROHM Semiconductors * * ROHM/KIONIX KX022A accelerometer driver */ #include <linux/delay.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/string_helpers.h> #include <linux/units.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "kionix-kx022a.h" /* * The KX022A has FIFO which can store 43 samples of HiRes data from 2 * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to * 258 bytes of sample data. The quirk to know is that the amount of bytes in * the FIFO is advertised via 8 bit register (max value 255). The thing to note * is that full 258 bytes of data is indicated using the max value 255. */ #define KX022A_FIFO_LENGTH 43 #define KX022A_FIFO_FULL_VALUE 255 #define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC) #define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC) /* 3 axis, 2 bytes of data for each of the axis */ #define KX022A_FIFO_SAMPLES_SIZE_BYTES 6 #define KX022A_FIFO_MAX_BYTES \ (KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES) enum { KX022A_STATE_SAMPLE, KX022A_STATE_FIFO, }; /* Regmap configs */ static const struct regmap_range kx022a_volatile_ranges[] = { { .range_min = KX022A_REG_XHP_L, .range_max = KX022A_REG_COTR, }, { .range_min = KX022A_REG_TSCP, .range_max = KX022A_REG_INT_REL, }, { /* The reset bit will be cleared by sensor */ .range_min = KX022A_REG_CNTL2, .range_max = KX022A_REG_CNTL2, }, { .range_min = KX022A_REG_BUF_STATUS_1, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_volatile_regs = { .yes_ranges = &kx022a_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges), }; static const struct regmap_range kx022a_precious_ranges[] = { { .range_min = KX022A_REG_INT_REL, .range_max = KX022A_REG_INT_REL, }, }; static const struct regmap_access_table kx022a_precious_regs = { .yes_ranges = &kx022a_precious_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges), }; /* * The HW does not set WHO_AM_I reg as read-only but we don't want to write it * so we still include it in the read-only ranges. */ static const struct regmap_range kx022a_read_only_ranges[] = { { .range_min = KX022A_REG_XHP_L, .range_max = KX022A_REG_INT_REL, }, { .range_min = KX022A_REG_BUF_STATUS_1, .range_max = KX022A_REG_BUF_STATUS_2, }, { .range_min = KX022A_REG_BUF_READ, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_ro_regs = { .no_ranges = &kx022a_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges), }; static const struct regmap_range kx022a_write_only_ranges[] = { { .range_min = KX022A_REG_BTS_WUF_TH, .range_max = KX022A_REG_BTS_WUF_TH, }, { .range_min = KX022A_REG_MAN_WAKE, .range_max = KX022A_REG_MAN_WAKE, }, { .range_min = KX022A_REG_SELF_TEST, .range_max = KX022A_REG_SELF_TEST, }, { .range_min = KX022A_REG_BUF_CLEAR, .range_max = KX022A_REG_BUF_CLEAR, }, }; static const struct regmap_access_table kx022a_wo_regs = { .no_ranges = &kx022a_write_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges), }; static const struct regmap_range kx022a_noinc_read_ranges[] = { { .range_min = KX022A_REG_BUF_READ, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_nir_regs = { .yes_ranges = &kx022a_noinc_read_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges), }; const struct regmap_config kx022a_regmap = { .reg_bits = 8, .val_bits = 8, .volatile_table = &kx022a_volatile_regs, .rd_table = &kx022a_wo_regs, .wr_table = &kx022a_ro_regs, .rd_noinc_table = &kx022a_nir_regs, .precious_table = &kx022a_precious_regs, .max_register = KX022A_MAX_REGISTER, .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_NS_GPL(kx022a_regmap, IIO_KX022A); struct kx022a_data { struct regmap *regmap; struct iio_trigger *trig; struct device *dev; struct iio_mount_matrix orientation; int64_t timestamp, old_timestamp; int irq; int inc_reg; int ien_reg; unsigned int state; unsigned int odr_ns; bool trigger_enabled; /* * Prevent toggling the sensor stby/active state (PC1 bit) in the * middle of a configuration, or when the fifo is enabled. Also, * protect the data stored/retrieved from this structure from * concurrent accesses. */ struct mutex mutex; u8 watermark; /* 3 x 16bit accel data + timestamp */ __le16 buffer[8] __aligned(IIO_DMA_MINALIGN); struct { __le16 channels[3]; s64 ts __aligned(8); } scan; }; static const struct iio_mount_matrix * kx022a_get_mount_matrix(const struct iio_dev *idev, const struct iio_chan_spec *chan) { struct kx022a_data *data = iio_priv(idev); return &data->orientation; } enum { AXIS_X, AXIS_Y, AXIS_Z, AXIS_MAX }; static const unsigned long kx022a_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; static const struct iio_chan_spec_ext_info kx022a_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix), { } }; #define KX022A_ACCEL_CHAN(axis, index) \ { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .ext_info = kx022a_ext_info, \ .address = KX022A_REG_##axis##OUT_L, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } static const struct iio_chan_spec kx022a_channels[] = { KX022A_ACCEL_CHAN(X, 0), KX022A_ACCEL_CHAN(Y, 1), KX022A_ACCEL_CHAN(Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; /* * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the * Linux CPUs can handle without dropping samples. Also, the low power mode is * not available for higher sample rates. Thus, the driver only supports 200 Hz * and slower ODRs. The slowest is 0.78 Hz. */ static const int kx022a_accel_samp_freq_table[][2] = { { 0, 780000 }, { 1, 563000 }, { 3, 125000 }, { 6, 250000 }, { 12, 500000 }, { 25, 0 }, { 50, 0 }, { 100, 0 }, { 200, 0 }, }; static const unsigned int kx022a_odrs[] = { 1282051282, 639795266, 320 * MEGA, 160 * MEGA, 80 * MEGA, 40 * MEGA, 20 * MEGA, 10 * MEGA, 5 * MEGA, }; /* * range is typically +-2G/4G/8G/16G, distributed over the amount of bits. * The scale table can be calculated using * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 * => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed * in low-power mode(?) ) * => +/-2G => 4 / 2^16 * 9,80665 * 10^6 (to scale to micro) * => +/-2G - 598.550415 * +/-4G - 1197.10083 * +/-8G - 2394.20166 * +/-16G - 4788.40332 */ static const int kx022a_scale_table[][2] = { { 598, 550415 }, { 1197, 100830 }, { 2394, 201660 }, { 4788, 403320 }, }; static int kx022a_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (const int *)kx022a_accel_samp_freq_table; *length = ARRAY_SIZE(kx022a_accel_samp_freq_table) * ARRAY_SIZE(kx022a_accel_samp_freq_table[0]); *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *vals = (const int *)kx022a_scale_table; *length = ARRAY_SIZE(kx022a_scale_table) * ARRAY_SIZE(kx022a_scale_table[0]); *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; default: return -EINVAL; } } #define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC) static void kx022a_reg2freq(unsigned int val, int *val1, int *val2) { *val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0]; *val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1]; } static void kx022a_reg2scale(unsigned int val, unsigned int *val1, unsigned int *val2) { val &= KX022A_MASK_GSEL; val >>= KX022A_GSEL_SHIFT; *val1 = kx022a_scale_table[val][0]; *val2 = kx022a_scale_table[val][1]; } static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on) { int ret; if (on) ret = regmap_set_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_PC1); else ret = regmap_clear_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_PC1); if (ret) dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret); return ret; } static int kx022a_turn_off_lock(struct kx022a_data *data) { int ret; mutex_lock(&data->mutex); ret = kx022a_turn_on_off_unlocked(data, false); if (ret) mutex_unlock(&data->mutex); return ret; } static int kx022a_turn_on_unlock(struct kx022a_data *data) { int ret; ret = kx022a_turn_on_off_unlocked(data, true); mutex_unlock(&data->mutex); return ret; } static int kx022a_write_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct kx022a_data *data = iio_priv(idev); int ret, n; /* * We should not allow changing scale or frequency when FIFO is running * as it will mess the timestamp/scale for samples existing in the * buffer. If this turns out to be an issue we can later change logic * to internally flush the fifo before reconfiguring so the samples in * fifo keep matching the freq/scale settings. (Such setup could cause * issues if users trust the watermark to be reached within known * time-limit). */ ret = iio_device_claim_direct_mode(idev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: n = ARRAY_SIZE(kx022a_accel_samp_freq_table); while (n--) if (val == kx022a_accel_samp_freq_table[n][0] && val2 == kx022a_accel_samp_freq_table[n][1]) break; if (n < 0) { ret = -EINVAL; goto unlock_out; } ret = kx022a_turn_off_lock(data); if (ret) break; ret = regmap_update_bits(data->regmap, KX022A_REG_ODCNTL, KX022A_MASK_ODR, n); data->odr_ns = kx022a_odrs[n]; kx022a_turn_on_unlock(data); break; case IIO_CHAN_INFO_SCALE: n = ARRAY_SIZE(kx022a_scale_table); while (n-- > 0) if (val == kx022a_scale_table[n][0] && val2 == kx022a_scale_table[n][1]) break; if (n < 0) { ret = -EINVAL; goto unlock_out; } ret = kx022a_turn_off_lock(data); if (ret) break; ret = regmap_update_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_GSEL, n << KX022A_GSEL_SHIFT); kx022a_turn_on_unlock(data); break; default: ret = -EINVAL; break; } unlock_out: iio_device_release_direct_mode(idev); return ret; } static int kx022a_fifo_set_wmi(struct kx022a_data *data) { u8 threshold; threshold = data->watermark; return regmap_update_bits(data->regmap, KX022A_REG_BUF_CNTL1, KX022A_MASK_WM_TH, threshold); } static int kx022a_get_axis(struct kx022a_data *data, struct iio_chan_spec const *chan, int *val) { int ret; ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0], sizeof(__le16)); if (ret) return ret; *val = le16_to_cpu(data->buffer[0]); return IIO_VAL_INT; } static int kx022a_read_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct kx022a_data *data = iio_priv(idev); unsigned int regval; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(idev); if (ret) return ret; mutex_lock(&data->mutex); ret = kx022a_get_axis(data, chan, val); mutex_unlock(&data->mutex); iio_device_release_direct_mode(idev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(data->regmap, KX022A_REG_ODCNTL, &regval); if (ret) return ret; if ((regval & KX022A_MASK_ODR) > ARRAY_SIZE(kx022a_accel_samp_freq_table)) { dev_err(data->dev, "Invalid ODR\n"); return -EINVAL; } kx022a_reg2freq(regval, val, val2); return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SCALE: ret = regmap_read(data->regmap, KX022A_REG_CNTL, &regval); if (ret < 0) return ret; kx022a_reg2scale(regval, val, val2); return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; }; static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val) { struct kx022a_data *data = iio_priv(idev); if (val > KX022A_FIFO_LENGTH) val = KX022A_FIFO_LENGTH; mutex_lock(&data->mutex); data->watermark = val; mutex_unlock(&data->mutex); return 0; } static ssize_t hwfifo_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *idev = dev_to_iio_dev(dev); struct kx022a_data *data = iio_priv(idev); bool state; mutex_lock(&data->mutex); state = data->state; mutex_unlock(&data->mutex); return sysfs_emit(buf, "%d\n", state); } static ssize_t hwfifo_watermark_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *idev = dev_to_iio_dev(dev); struct kx022a_data *data = iio_priv(idev); int wm; mutex_lock(&data->mutex); wm = data->watermark; mutex_unlock(&data->mutex); return sysfs_emit(buf, "%d\n", wm); } static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0); static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0); static const struct iio_dev_attr *kx022a_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL }; static int kx022a_drop_fifo_contents(struct kx022a_data *data) { /* * We must clear the old time-stamp to avoid computing the timestamps * based on samples acquired when buffer was last enabled. * * We don't need to protect the timestamp as long as we are only * called from fifo-disable where we can guarantee the sensor is not * triggering interrupts and where the mutex is locked to prevent the * user-space access. */ data->timestamp = 0; return regmap_write(data->regmap, KX022A_REG_BUF_CLEAR, 0x0); } static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples, bool irq) { struct kx022a_data *data = iio_priv(idev); struct device *dev = regmap_get_device(data->regmap); __le16 buffer[KX022A_FIFO_LENGTH * 3]; uint64_t sample_period; int count, fifo_bytes; bool renable = false; int64_t tstamp; int ret, i; ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes); if (ret) { dev_err(dev, "Error reading buffer status\n"); return ret; } /* Let's not overflow if we for some reason get bogus value from i2c */ if (fifo_bytes == KX022A_FIFO_FULL_VALUE) fifo_bytes = KX022A_FIFO_MAX_BYTES; if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES) dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n"); count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES; if (!count) return 0; /* * If we are being called from IRQ handler we know the stored timestamp * is fairly accurate for the last stored sample. Otherwise, if we are * called as a result of a read operation from userspace and hence * before the watermark interrupt was triggered, take a timestamp * now. We can fall anywhere in between two samples so the error in this * case is at most one sample period. */ if (!irq) { /* * We need to have the IRQ disabled or we risk of messing-up * the timestamps. If we are ran from IRQ, then the * IRQF_ONESHOT has us covered - but if we are ran by the * user-space read we need to disable the IRQ to be on a safe * side. We do this usng synchronous disable so that if the * IRQ thread is being ran on other CPU we wait for it to be * finished. */ disable_irq(data->irq); renable = true; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(idev); } /* * Approximate timestamps for each of the sample based on the sampling * frequency, timestamp for last sample and number of samples. * * We'd better not use the current bandwidth settings to compute the * sample period. The real sample rate varies with the device and * small variation adds when we store a large number of samples. * * To avoid this issue we compute the actual sample period ourselves * based on the timestamp delta between the last two flush operations. */ if (data->old_timestamp) { sample_period = data->timestamp - data->old_timestamp; do_div(sample_period, count); } else { sample_period = data->odr_ns; } tstamp = data->timestamp - (count - 1) * sample_period; if (samples && count > samples) { /* * Here we leave some old samples to the buffer. We need to * adjust the timestamp to match the first sample in the buffer * or we will miscalculate the sample_period at next round. */ data->timestamp -= (count - samples) * sample_period; count = samples; } fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES; ret = regmap_noinc_read(data->regmap, KX022A_REG_BUF_READ, &buffer[0], fifo_bytes); if (ret) goto renable_out; for (i = 0; i < count; i++) { __le16 *sam = &buffer[i * 3]; __le16 *chs; int bit; chs = &data->scan.channels[0]; for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX) chs[bit] = sam[bit]; iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); tstamp += sample_period; } ret = count; renable_out: if (renable) enable_irq(data->irq); return ret; } static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples) { struct kx022a_data *data = iio_priv(idev); int ret; mutex_lock(&data->mutex); ret = __kx022a_fifo_flush(idev, samples, false); mutex_unlock(&data->mutex); return ret; } static const struct iio_info kx022a_info = { .read_raw = &kx022a_read_raw, .write_raw = &kx022a_write_raw, .read_avail = &kx022a_read_avail, .validate_trigger = iio_validate_own_trigger, .hwfifo_set_watermark = kx022a_set_watermark, .hwfifo_flush_to_buffer = kx022a_fifo_flush, }; static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en) { if (en) return regmap_set_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_DRDY); return regmap_clear_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_DRDY); } static int kx022a_prepare_irq_pin(struct kx022a_data *data) { /* Enable IRQ1 pin. Set polarity to active low */ int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL | KX022A_MASK_ITYP; int val = KX022A_MASK_IEN | KX022A_IPOL_LOW | KX022A_ITYP_LEVEL; int ret; ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val); if (ret) return ret; /* We enable WMI to IRQ pin only at buffer_enable */ mask = KX022A_MASK_INS2_DRDY; return regmap_set_bits(data->regmap, data->ien_reg, mask); } static int kx022a_fifo_disable(struct kx022a_data *data) { int ret = 0; ret = kx022a_turn_off_lock(data); if (ret) return ret; ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); if (ret) goto unlock_out; ret = regmap_clear_bits(data->regmap, KX022A_REG_BUF_CNTL2, KX022A_MASK_BUF_EN); if (ret) goto unlock_out; data->state &= ~KX022A_STATE_FIFO; kx022a_drop_fifo_contents(data); return kx022a_turn_on_unlock(data); unlock_out: mutex_unlock(&data->mutex); return ret; } static int kx022a_buffer_predisable(struct iio_dev *idev) { struct kx022a_data *data = iio_priv(idev); if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) return 0; return kx022a_fifo_disable(data); } static int kx022a_fifo_enable(struct kx022a_data *data) { int ret; ret = kx022a_turn_off_lock(data); if (ret) return ret; /* Update watermark to HW */ ret = kx022a_fifo_set_wmi(data); if (ret) goto unlock_out; /* Enable buffer */ ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, KX022A_MASK_BUF_EN); if (ret) goto unlock_out; data->state |= KX022A_STATE_FIFO; ret = regmap_set_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); if (ret) goto unlock_out; return kx022a_turn_on_unlock(data); unlock_out: mutex_unlock(&data->mutex); return ret; } static int kx022a_buffer_postenable(struct iio_dev *idev) { struct kx022a_data *data = iio_priv(idev); /* * If we use data-ready trigger, then the IRQ masks should be handled by * trigger enable and the hardware buffer is not used but we just update * results to the IIO fifo when data-ready triggers. */ if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) return 0; return kx022a_fifo_enable(data); } static const struct iio_buffer_setup_ops kx022a_buffer_ops = { .postenable = kx022a_buffer_postenable, .predisable = kx022a_buffer_predisable, }; static irqreturn_t kx022a_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *idev = pf->indio_dev; struct kx022a_data *data = iio_priv(idev); int ret; ret = regmap_bulk_read(data->regmap, KX022A_REG_XOUT_L, data->buffer, KX022A_FIFO_SAMPLES_SIZE_BYTES); if (ret < 0) goto err_read; iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp); err_read: iio_trigger_notify_done(idev->trig); return IRQ_HANDLED; } /* Get timestamps and wake the thread if we need to read data */ static irqreturn_t kx022a_irq_handler(int irq, void *private) { struct iio_dev *idev = private; struct kx022a_data *data = iio_priv(idev); data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(idev); if (data->state & KX022A_STATE_FIFO || data->trigger_enabled) return IRQ_WAKE_THREAD; return IRQ_NONE; } /* * WMI and data-ready IRQs are acked when results are read. If we add * TILT/WAKE or other IRQs - then we may need to implement the acking * (which is racy). */ static irqreturn_t kx022a_irq_thread_handler(int irq, void *private) { struct iio_dev *idev = private; struct kx022a_data *data = iio_priv(idev); irqreturn_t ret = IRQ_NONE; mutex_lock(&data->mutex); if (data->trigger_enabled) { iio_trigger_poll_nested(data->trig); ret = IRQ_HANDLED; } if (data->state & KX022A_STATE_FIFO) { int ok; ok = __kx022a_fifo_flush(idev, KX022A_FIFO_LENGTH, true); if (ok > 0) ret = IRQ_HANDLED; } mutex_unlock(&data->mutex); return ret; } static int kx022a_trigger_set_state(struct iio_trigger *trig, bool state) { struct kx022a_data *data = iio_trigger_get_drvdata(trig); int ret = 0; mutex_lock(&data->mutex); if (data->trigger_enabled == state) goto unlock_out; if (data->state & KX022A_STATE_FIFO) { dev_warn(data->dev, "Can't set trigger when FIFO enabled\n"); ret = -EBUSY; goto unlock_out; } ret = kx022a_turn_on_off_unlocked(data, false); if (ret) goto unlock_out; data->trigger_enabled = state; ret = kx022a_set_drdy_irq(data, state); if (ret) goto unlock_out; ret = kx022a_turn_on_off_unlocked(data, true); unlock_out: mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops kx022a_trigger_ops = { .set_trigger_state = kx022a_trigger_set_state, }; static int kx022a_chip_init(struct kx022a_data *data) { int ret, val; /* Reset the senor */ ret = regmap_write(data->regmap, KX022A_REG_CNTL2, KX022A_MASK_SRST); if (ret) return ret; /* * I've seen I2C read failures if we poll too fast after the sensor * reset. Slight delay gives I2C block the time to recover. */ msleep(1); ret = regmap_read_poll_timeout(data->regmap, KX022A_REG_CNTL2, val, !(val & KX022A_MASK_SRST), KX022A_SOFT_RESET_WAIT_TIME_US, KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US); if (ret) { dev_err(data->dev, "Sensor reset %s\n", val & KX022A_MASK_SRST ? "timeout" : "fail#"); return ret; } ret = regmap_reinit_cache(data->regmap, &kx022a_regmap); if (ret) { dev_err(data->dev, "Failed to reinit reg cache\n"); return ret; } /* set data res 16bit */ ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, KX022A_MASK_BRES16); if (ret) { dev_err(data->dev, "Failed to set data resolution\n"); return ret; } return kx022a_prepare_irq_pin(data); } int kx022a_probe_internal(struct device *dev) { static const char * const regulator_names[] = {"io-vdd", "vdd"}; struct iio_trigger *indio_trig; struct fwnode_handle *fwnode; struct kx022a_data *data; struct regmap *regmap; unsigned int chip_id; struct iio_dev *idev; int ret, irq; char *name; regmap = dev_get_regmap(dev, NULL); if (!regmap) { dev_err(dev, "no regmap\n"); return -EINVAL; } fwnode = dev_fwnode(dev); if (!fwnode) return -ENODEV; idev = devm_iio_device_alloc(dev, sizeof(*data)); if (!idev) return -ENOMEM; data = iio_priv(idev); /* * VDD is the analog and digital domain voltage supply and * IO_VDD is the digital I/O voltage supply. */ ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names), regulator_names); if (ret && ret != -ENODEV) return dev_err_probe(dev, ret, "failed to enable regulator\n"); ret = regmap_read(regmap, KX022A_REG_WHO, &chip_id); if (ret) return dev_err_probe(dev, ret, "Failed to access sensor\n"); if (chip_id != KX022A_ID) { dev_err(dev, "unsupported device 0x%x\n", chip_id); return -EINVAL; } irq = fwnode_irq_get_byname(fwnode, "INT1"); if (irq > 0) { data->inc_reg = KX022A_REG_INC1; data->ien_reg = KX022A_REG_INC4; } else { irq = fwnode_irq_get_byname(fwnode, "INT2"); if (irq < 0) return dev_err_probe(dev, irq, "No suitable IRQ\n"); data->inc_reg = KX022A_REG_INC5; data->ien_reg = KX022A_REG_INC6; } data->regmap = regmap; data->dev = dev; data->irq = irq; data->odr_ns = KX022A_DEFAULT_PERIOD_NS; mutex_init(&data->mutex); idev->channels = kx022a_channels; idev->num_channels = ARRAY_SIZE(kx022a_channels); idev->name = "kx022-accel"; idev->info = &kx022a_info; idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; idev->available_scan_masks = kx022a_scan_masks; /* Read the mounting matrix, if present */ ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; /* The sensor must be turned off for configuration */ ret = kx022a_turn_off_lock(data); if (ret) return ret; ret = kx022a_chip_init(data); if (ret) { mutex_unlock(&data->mutex); return ret; } ret = kx022a_turn_on_unlock(data); if (ret) return ret; ret = devm_iio_triggered_buffer_setup_ext(dev, idev, &iio_pollfunc_store_time, kx022a_trigger_handler, IIO_BUFFER_DIRECTION_IN, &kx022a_buffer_ops, kx022a_fifo_attributes); if (ret) return dev_err_probe(data->dev, ret, "iio_triggered_buffer_setup_ext FAIL\n"); indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name, iio_device_id(idev)); if (!indio_trig) return -ENOMEM; data->trig = indio_trig; indio_trig->ops = &kx022a_trigger_ops; iio_trigger_set_drvdata(indio_trig, data); /* * No need to check for NULL. request_threaded_irq() defaults to * dev_name() should the alloc fail. */ name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a", dev_name(data->dev)); ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler, &kx022a_irq_thread_handler, IRQF_ONESHOT, name, idev); if (ret) return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); ret = devm_iio_trigger_register(dev, indio_trig); if (ret) return dev_err_probe(data->dev, ret, "Trigger registration failed\n"); ret = devm_iio_device_register(data->dev, idev); if (ret < 0) return dev_err_probe(dev, ret, "Unable to register iio device\n"); return ret; } EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A); MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); MODULE_AUTHOR("Matti Vaittinen <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/kionix-kx022a.c
// SPDX-License-Identifier: GPL-2.0-only /* * bma180.c - IIO driver for Bosch BMA180 triaxial acceleration sensor * * Copyright 2013 Oleksandr Kravchenko <[email protected]> * * Support for BMA250 (c) Peter Meerwald <[email protected]> * * SPI is not supported by driver * BMA023/BMA150/SMB380: 7-bit I2C slave address 0x38 * BMA180: 7-bit I2C slave address 0x40 or 0x41 * BMA250: 7-bit I2C slave address 0x18 or 0x19 */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/bitops.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define BMA180_DRV_NAME "bma180" #define BMA180_IRQ_NAME "bma180_event" enum chip_ids { BMA023, BMA150, BMA180, BMA250, }; struct bma180_data; struct bma180_part_info { u8 chip_id; const struct iio_chan_spec *channels; unsigned int num_channels; const int *scale_table; unsigned int num_scales; const int *bw_table; unsigned int num_bw; int temp_offset; u8 int_reset_reg, int_reset_mask; u8 sleep_reg, sleep_mask; u8 bw_reg, bw_mask, bw_offset; u8 scale_reg, scale_mask; u8 power_reg, power_mask, lowpower_val; u8 int_enable_reg, int_enable_mask; u8 softreset_reg, softreset_val; int (*chip_config)(struct bma180_data *data); void (*chip_disable)(struct bma180_data *data); }; /* Register set */ #define BMA023_CTRL_REG0 0x0a #define BMA023_CTRL_REG1 0x0b #define BMA023_CTRL_REG2 0x14 #define BMA023_CTRL_REG3 0x15 #define BMA023_RANGE_MASK GENMASK(4, 3) /* Range of accel values */ #define BMA023_BW_MASK GENMASK(2, 0) /* Accel bandwidth */ #define BMA023_SLEEP BIT(0) #define BMA023_INT_RESET_MASK BIT(6) #define BMA023_NEW_DATA_INT BIT(5) /* Intr every new accel data is ready */ #define BMA023_RESET_VAL BIT(1) #define BMA180_CHIP_ID 0x00 /* Need to distinguish BMA180 from other */ #define BMA180_ACC_X_LSB 0x02 /* First of 6 registers of accel data */ #define BMA180_TEMP 0x08 #define BMA180_CTRL_REG0 0x0d #define BMA180_RESET 0x10 #define BMA180_BW_TCS 0x20 #define BMA180_CTRL_REG3 0x21 #define BMA180_TCO_Z 0x30 #define BMA180_OFFSET_LSB1 0x35 /* BMA180_CTRL_REG0 bits */ #define BMA180_DIS_WAKE_UP BIT(0) /* Disable wake up mode */ #define BMA180_SLEEP BIT(1) /* 1 - chip will sleep */ #define BMA180_EE_W BIT(4) /* Unlock writing to addr from 0x20 */ #define BMA180_RESET_INT BIT(6) /* Reset pending interrupts */ /* BMA180_CTRL_REG3 bits */ #define BMA180_NEW_DATA_INT BIT(1) /* Intr every new accel data is ready */ /* BMA180_OFFSET_LSB1 skipping mode bit */ #define BMA180_SMP_SKIP BIT(0) /* Bit masks for registers bit fields */ #define BMA180_RANGE 0x0e /* Range of measured accel values */ #define BMA180_BW 0xf0 /* Accel bandwidth */ #define BMA180_MODE_CONFIG 0x03 /* Config operation modes */ /* We have to write this value in reset register to do soft reset */ #define BMA180_RESET_VAL 0xb6 #define BMA023_ID_REG_VAL 0x02 #define BMA180_ID_REG_VAL 0x03 #define BMA250_ID_REG_VAL 0x03 /* Chip power modes */ #define BMA180_LOW_POWER 0x03 #define BMA250_RANGE_REG 0x0f #define BMA250_BW_REG 0x10 #define BMA250_POWER_REG 0x11 #define BMA250_RESET_REG 0x14 #define BMA250_INT_ENABLE_REG 0x17 #define BMA250_INT_MAP_REG 0x1a #define BMA250_INT_RESET_REG 0x21 #define BMA250_RANGE_MASK GENMASK(3, 0) /* Range of accel values */ #define BMA250_BW_MASK GENMASK(4, 0) /* Accel bandwidth */ #define BMA250_BW_OFFSET 8 #define BMA250_SUSPEND_MASK BIT(7) /* chip will sleep */ #define BMA250_LOWPOWER_MASK BIT(6) #define BMA250_DATA_INTEN_MASK BIT(4) #define BMA250_INT1_DATA_MASK BIT(0) #define BMA250_INT_RESET_MASK BIT(7) /* Reset pending interrupts */ struct bma180_data { struct regulator *vdd_supply; struct regulator *vddio_supply; struct i2c_client *client; struct iio_trigger *trig; const struct bma180_part_info *part_info; struct iio_mount_matrix orientation; struct mutex mutex; bool sleep_state; int scale; int bw; bool pmode; /* Ensure timestamp is naturally aligned */ struct { s16 chan[4]; s64 timestamp __aligned(8); } scan; }; enum bma180_chan { AXIS_X, AXIS_Y, AXIS_Z, TEMP }; static int bma023_bw_table[] = { 25, 50, 100, 190, 375, 750, 1500 }; /* Hz */ static int bma023_scale_table[] = { 2452, 4903, 9709, }; static int bma180_bw_table[] = { 10, 20, 40, 75, 150, 300 }; /* Hz */ static int bma180_scale_table[] = { 1275, 1863, 2452, 3727, 4903, 9709, 19417 }; static int bma250_bw_table[] = { 8, 16, 31, 63, 125, 250, 500, 1000 }; /* Hz */ static int bma250_scale_table[] = { 0, 0, 0, 38344, 0, 76590, 0, 0, 153180, 0, 0, 0, 306458 }; static int bma180_get_data_reg(struct bma180_data *data, enum bma180_chan chan) { int ret; if (data->sleep_state) return -EBUSY; switch (chan) { case TEMP: ret = i2c_smbus_read_byte_data(data->client, BMA180_TEMP); if (ret < 0) dev_err(&data->client->dev, "failed to read temp register\n"); break; default: ret = i2c_smbus_read_word_data(data->client, BMA180_ACC_X_LSB + chan * 2); if (ret < 0) dev_err(&data->client->dev, "failed to read accel_%c register\n", 'x' + chan); } return ret; } static int bma180_set_bits(struct bma180_data *data, u8 reg, u8 mask, u8 val) { int ret = i2c_smbus_read_byte_data(data->client, reg); u8 reg_val = (ret & ~mask) | (val << (ffs(mask) - 1)); if (ret < 0) return ret; return i2c_smbus_write_byte_data(data->client, reg, reg_val); } static int bma180_reset_intr(struct bma180_data *data) { int ret = bma180_set_bits(data, data->part_info->int_reset_reg, data->part_info->int_reset_mask, 1); if (ret) dev_err(&data->client->dev, "failed to reset interrupt\n"); return ret; } static int bma180_set_new_data_intr_state(struct bma180_data *data, bool state) { int ret = bma180_set_bits(data, data->part_info->int_enable_reg, data->part_info->int_enable_mask, state); if (ret) goto err; ret = bma180_reset_intr(data); if (ret) goto err; return 0; err: dev_err(&data->client->dev, "failed to set new data interrupt state %d\n", state); return ret; } static int bma180_set_sleep_state(struct bma180_data *data, bool state) { int ret = bma180_set_bits(data, data->part_info->sleep_reg, data->part_info->sleep_mask, state); if (ret) { dev_err(&data->client->dev, "failed to set sleep state %d\n", state); return ret; } data->sleep_state = state; return 0; } static int bma180_set_ee_writing_state(struct bma180_data *data, bool state) { int ret = bma180_set_bits(data, BMA180_CTRL_REG0, BMA180_EE_W, state); if (ret) dev_err(&data->client->dev, "failed to set ee writing state %d\n", state); return ret; } static int bma180_set_bw(struct bma180_data *data, int val) { int ret, i; if (data->sleep_state) return -EBUSY; for (i = 0; i < data->part_info->num_bw; ++i) { if (data->part_info->bw_table[i] == val) { ret = bma180_set_bits(data, data->part_info->bw_reg, data->part_info->bw_mask, i + data->part_info->bw_offset); if (ret) { dev_err(&data->client->dev, "failed to set bandwidth\n"); return ret; } data->bw = val; return 0; } } return -EINVAL; } static int bma180_set_scale(struct bma180_data *data, int val) { int ret, i; if (data->sleep_state) return -EBUSY; for (i = 0; i < data->part_info->num_scales; ++i) if (data->part_info->scale_table[i] == val) { ret = bma180_set_bits(data, data->part_info->scale_reg, data->part_info->scale_mask, i); if (ret) { dev_err(&data->client->dev, "failed to set scale\n"); return ret; } data->scale = val; return 0; } return -EINVAL; } static int bma180_set_pmode(struct bma180_data *data, bool mode) { u8 reg_val = mode ? data->part_info->lowpower_val : 0; int ret = bma180_set_bits(data, data->part_info->power_reg, data->part_info->power_mask, reg_val); if (ret) { dev_err(&data->client->dev, "failed to set power mode\n"); return ret; } data->pmode = mode; return 0; } static int bma180_soft_reset(struct bma180_data *data) { int ret = i2c_smbus_write_byte_data(data->client, data->part_info->softreset_reg, data->part_info->softreset_val); if (ret) dev_err(&data->client->dev, "failed to reset the chip\n"); return ret; } static int bma180_chip_init(struct bma180_data *data) { /* Try to read chip_id register. It must return 0x03. */ int ret = i2c_smbus_read_byte_data(data->client, BMA180_CHIP_ID); if (ret < 0) return ret; if (ret != data->part_info->chip_id) { dev_err(&data->client->dev, "wrong chip ID %d expected %d\n", ret, data->part_info->chip_id); return -ENODEV; } ret = bma180_soft_reset(data); if (ret) return ret; /* * No serial transaction should occur within minimum 10 us * after soft_reset command */ msleep(20); return bma180_set_new_data_intr_state(data, false); } static int bma023_chip_config(struct bma180_data *data) { int ret = bma180_chip_init(data); if (ret) goto err; ret = bma180_set_bw(data, 50); /* 50 Hz */ if (ret) goto err; ret = bma180_set_scale(data, 2452); /* 2 G */ if (ret) goto err; return 0; err: dev_err(&data->client->dev, "failed to config the chip\n"); return ret; } static int bma180_chip_config(struct bma180_data *data) { int ret = bma180_chip_init(data); if (ret) goto err; ret = bma180_set_pmode(data, false); if (ret) goto err; ret = bma180_set_bits(data, BMA180_CTRL_REG0, BMA180_DIS_WAKE_UP, 1); if (ret) goto err; ret = bma180_set_ee_writing_state(data, true); if (ret) goto err; ret = bma180_set_bits(data, BMA180_OFFSET_LSB1, BMA180_SMP_SKIP, 1); if (ret) goto err; ret = bma180_set_bw(data, 20); /* 20 Hz */ if (ret) goto err; ret = bma180_set_scale(data, 2452); /* 2 G */ if (ret) goto err; return 0; err: dev_err(&data->client->dev, "failed to config the chip\n"); return ret; } static int bma250_chip_config(struct bma180_data *data) { int ret = bma180_chip_init(data); if (ret) goto err; ret = bma180_set_pmode(data, false); if (ret) goto err; ret = bma180_set_bw(data, 16); /* 16 Hz */ if (ret) goto err; ret = bma180_set_scale(data, 38344); /* 2 G */ if (ret) goto err; /* * This enables dataready interrupt on the INT1 pin * FIXME: support using the INT2 pin */ ret = bma180_set_bits(data, BMA250_INT_MAP_REG, BMA250_INT1_DATA_MASK, 1); if (ret) goto err; return 0; err: dev_err(&data->client->dev, "failed to config the chip\n"); return ret; } static void bma023_chip_disable(struct bma180_data *data) { if (bma180_set_sleep_state(data, true)) goto err; return; err: dev_err(&data->client->dev, "failed to disable the chip\n"); } static void bma180_chip_disable(struct bma180_data *data) { if (bma180_set_new_data_intr_state(data, false)) goto err; if (bma180_set_ee_writing_state(data, false)) goto err; if (bma180_set_sleep_state(data, true)) goto err; return; err: dev_err(&data->client->dev, "failed to disable the chip\n"); } static void bma250_chip_disable(struct bma180_data *data) { if (bma180_set_new_data_intr_state(data, false)) goto err; if (bma180_set_sleep_state(data, true)) goto err; return; err: dev_err(&data->client->dev, "failed to disable the chip\n"); } static ssize_t bma180_show_avail(char *buf, const int *vals, unsigned int n, bool micros) { size_t len = 0; int i; for (i = 0; i < n; i++) { if (!vals[i]) continue; len += scnprintf(buf + len, PAGE_SIZE - len, micros ? "0.%06d " : "%d ", vals[i]); } buf[len - 1] = '\n'; return len; } static ssize_t bma180_show_filter_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct bma180_data *data = iio_priv(dev_to_iio_dev(dev)); return bma180_show_avail(buf, data->part_info->bw_table, data->part_info->num_bw, false); } static ssize_t bma180_show_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct bma180_data *data = iio_priv(dev_to_iio_dev(dev)); return bma180_show_avail(buf, data->part_info->scale_table, data->part_info->num_scales, true); } static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, S_IRUGO, bma180_show_filter_freq_avail, NULL, 0); static IIO_DEVICE_ATTR(in_accel_scale_available, S_IRUGO, bma180_show_scale_avail, NULL, 0); static struct attribute *bma180_attributes[] = { &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available. dev_attr.attr, &iio_dev_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group bma180_attrs_group = { .attrs = bma180_attributes, }; static int bma180_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bma180_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&data->mutex); ret = bma180_get_data_reg(data, chan->scan_index); mutex_unlock(&data->mutex); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; if (chan->scan_type.sign == 's') { *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); } else { *val = ret; } return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *val = data->bw; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ACCEL: *val = 0; *val2 = data->scale; return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = 500; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: *val = data->part_info->temp_offset; return IIO_VAL_INT; default: return -EINVAL; } } static int bma180_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bma180_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: if (val) return -EINVAL; mutex_lock(&data->mutex); ret = bma180_set_scale(data, val2); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: if (val2) return -EINVAL; mutex_lock(&data->mutex); ret = bma180_set_bw(data, val); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static const struct iio_info bma180_info = { .attrs = &bma180_attrs_group, .read_raw = bma180_read_raw, .write_raw = bma180_write_raw, }; static const char * const bma180_power_modes[] = { "low_noise", "low_power" }; static int bma180_get_power_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct bma180_data *data = iio_priv(indio_dev); return data->pmode; } static int bma180_set_power_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int mode) { struct bma180_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bma180_set_pmode(data, mode); mutex_unlock(&data->mutex); return ret; } static const struct iio_mount_matrix * bma180_accel_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct bma180_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_enum bma180_power_mode_enum = { .items = bma180_power_modes, .num_items = ARRAY_SIZE(bma180_power_modes), .get = bma180_get_power_mode, .set = bma180_set_power_mode, }; static const struct iio_chan_spec_ext_info bma023_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma180_accel_get_mount_matrix), { } }; static const struct iio_chan_spec_ext_info bma180_ext_info[] = { IIO_ENUM("power_mode", IIO_SHARED_BY_TYPE, &bma180_power_mode_enum), IIO_ENUM_AVAILABLE("power_mode", IIO_SHARED_BY_TYPE, &bma180_power_mode_enum), IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma180_accel_get_mount_matrix), { } }; #define BMA023_ACC_CHANNEL(_axis, _bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = _bits, \ .storagebits = 16, \ .shift = 16 - _bits, \ }, \ .ext_info = bma023_ext_info, \ } #define BMA150_TEMP_CHANNEL { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = TEMP, \ .scan_type = { \ .sign = 'u', \ .realbits = 8, \ .storagebits = 16, \ }, \ } #define BMA180_ACC_CHANNEL(_axis, _bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = _bits, \ .storagebits = 16, \ .shift = 16 - _bits, \ }, \ .ext_info = bma180_ext_info, \ } #define BMA180_TEMP_CHANNEL { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = TEMP, \ .scan_type = { \ .sign = 's', \ .realbits = 8, \ .storagebits = 16, \ }, \ } static const struct iio_chan_spec bma023_channels[] = { BMA023_ACC_CHANNEL(X, 10), BMA023_ACC_CHANNEL(Y, 10), BMA023_ACC_CHANNEL(Z, 10), IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct iio_chan_spec bma150_channels[] = { BMA023_ACC_CHANNEL(X, 10), BMA023_ACC_CHANNEL(Y, 10), BMA023_ACC_CHANNEL(Z, 10), BMA150_TEMP_CHANNEL, IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct iio_chan_spec bma180_channels[] = { BMA180_ACC_CHANNEL(X, 14), BMA180_ACC_CHANNEL(Y, 14), BMA180_ACC_CHANNEL(Z, 14), BMA180_TEMP_CHANNEL, IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct iio_chan_spec bma250_channels[] = { BMA180_ACC_CHANNEL(X, 10), BMA180_ACC_CHANNEL(Y, 10), BMA180_ACC_CHANNEL(Z, 10), BMA180_TEMP_CHANNEL, IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct bma180_part_info bma180_part_info[] = { [BMA023] = { .chip_id = BMA023_ID_REG_VAL, .channels = bma023_channels, .num_channels = ARRAY_SIZE(bma023_channels), .scale_table = bma023_scale_table, .num_scales = ARRAY_SIZE(bma023_scale_table), .bw_table = bma023_bw_table, .num_bw = ARRAY_SIZE(bma023_bw_table), /* No temperature channel */ .temp_offset = 0, .int_reset_reg = BMA023_CTRL_REG0, .int_reset_mask = BMA023_INT_RESET_MASK, .sleep_reg = BMA023_CTRL_REG0, .sleep_mask = BMA023_SLEEP, .bw_reg = BMA023_CTRL_REG2, .bw_mask = BMA023_BW_MASK, .scale_reg = BMA023_CTRL_REG2, .scale_mask = BMA023_RANGE_MASK, /* No power mode on bma023 */ .power_reg = 0, .power_mask = 0, .lowpower_val = 0, .int_enable_reg = BMA023_CTRL_REG3, .int_enable_mask = BMA023_NEW_DATA_INT, .softreset_reg = BMA023_CTRL_REG0, .softreset_val = BMA023_RESET_VAL, .chip_config = bma023_chip_config, .chip_disable = bma023_chip_disable, }, [BMA150] = { .chip_id = BMA023_ID_REG_VAL, .channels = bma150_channels, .num_channels = ARRAY_SIZE(bma150_channels), .scale_table = bma023_scale_table, .num_scales = ARRAY_SIZE(bma023_scale_table), .bw_table = bma023_bw_table, .num_bw = ARRAY_SIZE(bma023_bw_table), .temp_offset = -60, /* 0 LSB @ -30 degree C */ .int_reset_reg = BMA023_CTRL_REG0, .int_reset_mask = BMA023_INT_RESET_MASK, .sleep_reg = BMA023_CTRL_REG0, .sleep_mask = BMA023_SLEEP, .bw_reg = BMA023_CTRL_REG2, .bw_mask = BMA023_BW_MASK, .scale_reg = BMA023_CTRL_REG2, .scale_mask = BMA023_RANGE_MASK, /* No power mode on bma150 */ .power_reg = 0, .power_mask = 0, .lowpower_val = 0, .int_enable_reg = BMA023_CTRL_REG3, .int_enable_mask = BMA023_NEW_DATA_INT, .softreset_reg = BMA023_CTRL_REG0, .softreset_val = BMA023_RESET_VAL, .chip_config = bma023_chip_config, .chip_disable = bma023_chip_disable, }, [BMA180] = { .chip_id = BMA180_ID_REG_VAL, .channels = bma180_channels, .num_channels = ARRAY_SIZE(bma180_channels), .scale_table = bma180_scale_table, .num_scales = ARRAY_SIZE(bma180_scale_table), .bw_table = bma180_bw_table, .num_bw = ARRAY_SIZE(bma180_bw_table), .temp_offset = 48, /* 0 LSB @ 24 degree C */ .int_reset_reg = BMA180_CTRL_REG0, .int_reset_mask = BMA180_RESET_INT, .sleep_reg = BMA180_CTRL_REG0, .sleep_mask = BMA180_SLEEP, .bw_reg = BMA180_BW_TCS, .bw_mask = BMA180_BW, .scale_reg = BMA180_OFFSET_LSB1, .scale_mask = BMA180_RANGE, .power_reg = BMA180_TCO_Z, .power_mask = BMA180_MODE_CONFIG, .lowpower_val = BMA180_LOW_POWER, .int_enable_reg = BMA180_CTRL_REG3, .int_enable_mask = BMA180_NEW_DATA_INT, .softreset_reg = BMA180_RESET, .softreset_val = BMA180_RESET_VAL, .chip_config = bma180_chip_config, .chip_disable = bma180_chip_disable, }, [BMA250] = { .chip_id = BMA250_ID_REG_VAL, .channels = bma250_channels, .num_channels = ARRAY_SIZE(bma250_channels), .scale_table = bma250_scale_table, .num_scales = ARRAY_SIZE(bma250_scale_table), .bw_table = bma250_bw_table, .num_bw = ARRAY_SIZE(bma250_bw_table), .temp_offset = 48, /* 0 LSB @ 24 degree C */ .int_reset_reg = BMA250_INT_RESET_REG, .int_reset_mask = BMA250_INT_RESET_MASK, .sleep_reg = BMA250_POWER_REG, .sleep_mask = BMA250_SUSPEND_MASK, .bw_reg = BMA250_BW_REG, .bw_mask = BMA250_BW_MASK, .bw_offset = BMA250_BW_OFFSET, .scale_reg = BMA250_RANGE_REG, .scale_mask = BMA250_RANGE_MASK, .power_reg = BMA250_POWER_REG, .power_mask = BMA250_LOWPOWER_MASK, .lowpower_val = 1, .int_enable_reg = BMA250_INT_ENABLE_REG, .int_enable_mask = BMA250_DATA_INTEN_MASK, .softreset_reg = BMA250_RESET_REG, .softreset_val = BMA180_RESET_VAL, .chip_config = bma250_chip_config, .chip_disable = bma250_chip_disable, }, }; static irqreturn_t bma180_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bma180_data *data = iio_priv(indio_dev); s64 time_ns = iio_get_time_ns(indio_dev); int bit, ret, i = 0; mutex_lock(&data->mutex); for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = bma180_get_data_reg(data, bit); if (ret < 0) { mutex_unlock(&data->mutex); goto err; } data->scan.chan[i++] = ret; } mutex_unlock(&data->mutex); iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, time_ns); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bma180_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bma180_data *data = iio_priv(indio_dev); return bma180_set_new_data_intr_state(data, state); } static void bma180_trig_reen(struct iio_trigger *trig) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bma180_data *data = iio_priv(indio_dev); int ret; ret = bma180_reset_intr(data); if (ret) dev_err(&data->client->dev, "failed to reset interrupt\n"); } static const struct iio_trigger_ops bma180_trigger_ops = { .set_trigger_state = bma180_data_rdy_trigger_set_state, .reenable = bma180_trig_reen, }; static int bma180_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct device *dev = &client->dev; struct bma180_data *data; struct iio_dev *indio_dev; enum chip_ids chip; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; if (client->dev.of_node) chip = (uintptr_t)of_device_get_match_data(dev); else chip = id->driver_data; data->part_info = &bma180_part_info[chip]; ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; data->vdd_supply = devm_regulator_get(dev, "vdd"); if (IS_ERR(data->vdd_supply)) return dev_err_probe(dev, PTR_ERR(data->vdd_supply), "Failed to get vdd regulator\n"); data->vddio_supply = devm_regulator_get(dev, "vddio"); if (IS_ERR(data->vddio_supply)) return dev_err_probe(dev, PTR_ERR(data->vddio_supply), "Failed to get vddio regulator\n"); /* Typical voltage 2.4V these are min and max */ ret = regulator_set_voltage(data->vdd_supply, 1620000, 3600000); if (ret) return ret; ret = regulator_set_voltage(data->vddio_supply, 1200000, 3600000); if (ret) return ret; ret = regulator_enable(data->vdd_supply); if (ret) { dev_err(dev, "Failed to enable vdd regulator: %d\n", ret); return ret; } ret = regulator_enable(data->vddio_supply); if (ret) { dev_err(dev, "Failed to enable vddio regulator: %d\n", ret); goto err_disable_vdd; } /* Wait to make sure we started up properly (3 ms at least) */ usleep_range(3000, 5000); ret = data->part_info->chip_config(data); if (ret < 0) goto err_chip_disable; mutex_init(&data->mutex); indio_dev->channels = data->part_info->channels; indio_dev->num_channels = data->part_info->num_channels; indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bma180_info; if (client->irq > 0) { data->trig = iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->trig) { ret = -ENOMEM; goto err_chip_disable; } ret = devm_request_irq(dev, client->irq, iio_trigger_generic_data_rdy_poll, IRQF_TRIGGER_RISING, "bma180_event", data->trig); if (ret) { dev_err(dev, "unable to request IRQ\n"); goto err_trigger_free; } data->trig->ops = &bma180_trigger_ops; iio_trigger_set_drvdata(data->trig, indio_dev); ret = iio_trigger_register(data->trig); if (ret) goto err_trigger_free; indio_dev->trig = iio_trigger_get(data->trig); } ret = iio_triggered_buffer_setup(indio_dev, NULL, bma180_trigger_handler, NULL); if (ret < 0) { dev_err(dev, "unable to setup iio triggered buffer\n"); goto err_trigger_unregister; } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(dev, "unable to register iio device\n"); goto err_buffer_cleanup; } return 0; err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_trigger_unregister: if (data->trig) iio_trigger_unregister(data->trig); err_trigger_free: iio_trigger_free(data->trig); err_chip_disable: data->part_info->chip_disable(data); regulator_disable(data->vddio_supply); err_disable_vdd: regulator_disable(data->vdd_supply); return ret; } static void bma180_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct bma180_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (data->trig) { iio_trigger_unregister(data->trig); iio_trigger_free(data->trig); } mutex_lock(&data->mutex); data->part_info->chip_disable(data); mutex_unlock(&data->mutex); regulator_disable(data->vddio_supply); regulator_disable(data->vdd_supply); } static int bma180_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bma180_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bma180_set_sleep_state(data, true); mutex_unlock(&data->mutex); return ret; } static int bma180_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bma180_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = bma180_set_sleep_state(data, false); mutex_unlock(&data->mutex); return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(bma180_pm_ops, bma180_suspend, bma180_resume); static const struct i2c_device_id bma180_ids[] = { { "bma023", BMA023 }, { "bma150", BMA150 }, { "bma180", BMA180 }, { "bma250", BMA250 }, { "smb380", BMA150 }, { } }; MODULE_DEVICE_TABLE(i2c, bma180_ids); static const struct of_device_id bma180_of_match[] = { { .compatible = "bosch,bma023", .data = (void *)BMA023 }, { .compatible = "bosch,bma150", .data = (void *)BMA150 }, { .compatible = "bosch,bma180", .data = (void *)BMA180 }, { .compatible = "bosch,bma250", .data = (void *)BMA250 }, { .compatible = "bosch,smb380", .data = (void *)BMA150 }, { } }; MODULE_DEVICE_TABLE(of, bma180_of_match); static struct i2c_driver bma180_driver = { .driver = { .name = "bma180", .pm = pm_sleep_ptr(&bma180_pm_ops), .of_match_table = bma180_of_match, }, .probe = bma180_probe, .remove = bma180_remove, .id_table = bma180_ids, }; module_i2c_driver(bma180_driver); MODULE_AUTHOR("Kravchenko Oleksandr <[email protected]>"); MODULE_AUTHOR("Texas Instruments, Inc."); MODULE_DESCRIPTION("Bosch BMA023/BMA1x0/BMA250 triaxial acceleration sensor"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/bma180.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO driver for Domintech DMARD06 accelerometer * * Copyright (C) 2016 Aleksei Mamlin <[email protected]> */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #define DMARD06_DRV_NAME "dmard06" /* Device data registers */ #define DMARD06_CHIP_ID_REG 0x0f #define DMARD06_TOUT_REG 0x40 #define DMARD06_XOUT_REG 0x41 #define DMARD06_YOUT_REG 0x42 #define DMARD06_ZOUT_REG 0x43 #define DMARD06_CTRL1_REG 0x44 /* Device ID value */ #define DMARD05_CHIP_ID 0x05 #define DMARD06_CHIP_ID 0x06 #define DMARD07_CHIP_ID 0x07 /* Device values */ #define DMARD05_AXIS_SCALE_VAL 15625 #define DMARD06_AXIS_SCALE_VAL 31250 #define DMARD06_TEMP_CENTER_VAL 25 #define DMARD06_SIGN_BIT 7 /* Device power modes */ #define DMARD06_MODE_NORMAL 0x27 #define DMARD06_MODE_POWERDOWN 0x00 /* Device channels */ #define DMARD06_ACCEL_CHANNEL(_axis, _reg) { \ .type = IIO_ACCEL, \ .address = _reg, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .modified = 1, \ } #define DMARD06_TEMP_CHANNEL(_reg) { \ .type = IIO_TEMP, \ .address = _reg, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET), \ } struct dmard06_data { struct i2c_client *client; u8 chip_id; }; static const struct iio_chan_spec dmard06_channels[] = { DMARD06_ACCEL_CHANNEL(X, DMARD06_XOUT_REG), DMARD06_ACCEL_CHANNEL(Y, DMARD06_YOUT_REG), DMARD06_ACCEL_CHANNEL(Z, DMARD06_ZOUT_REG), DMARD06_TEMP_CHANNEL(DMARD06_TOUT_REG), }; static int dmard06_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct dmard06_data *dmard06 = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = i2c_smbus_read_byte_data(dmard06->client, chan->address); if (ret < 0) { dev_err(&dmard06->client->dev, "Error reading data: %d\n", ret); return ret; } *val = sign_extend32(ret, DMARD06_SIGN_BIT); if (dmard06->chip_id == DMARD06_CHIP_ID) *val = *val >> 1; switch (chan->type) { case IIO_ACCEL: return IIO_VAL_INT; case IIO_TEMP: if (dmard06->chip_id != DMARD06_CHIP_ID) *val = *val / 2; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: *val = DMARD06_TEMP_CENTER_VAL; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ACCEL: *val = 0; if (dmard06->chip_id == DMARD06_CHIP_ID) *val2 = DMARD06_AXIS_SCALE_VAL; else *val2 = DMARD05_AXIS_SCALE_VAL; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } default: return -EINVAL; } } static const struct iio_info dmard06_info = { .read_raw = dmard06_read_raw, }; static int dmard06_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct dmard06_data *dmard06; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C check functionality failed\n"); return -ENXIO; } indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*dmard06)); if (!indio_dev) { dev_err(&client->dev, "Failed to allocate iio device\n"); return -ENOMEM; } dmard06 = iio_priv(indio_dev); dmard06->client = client; ret = i2c_smbus_read_byte_data(dmard06->client, DMARD06_CHIP_ID_REG); if (ret < 0) { dev_err(&client->dev, "Error reading chip id: %d\n", ret); return ret; } if (ret != DMARD05_CHIP_ID && ret != DMARD06_CHIP_ID && ret != DMARD07_CHIP_ID) { dev_err(&client->dev, "Invalid chip id: %02d\n", ret); return -ENODEV; } dmard06->chip_id = ret; i2c_set_clientdata(client, indio_dev); indio_dev->name = DMARD06_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = dmard06_channels; indio_dev->num_channels = ARRAY_SIZE(dmard06_channels); indio_dev->info = &dmard06_info; return devm_iio_device_register(&client->dev, indio_dev); } static int dmard06_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct dmard06_data *dmard06 = iio_priv(indio_dev); int ret; ret = i2c_smbus_write_byte_data(dmard06->client, DMARD06_CTRL1_REG, DMARD06_MODE_POWERDOWN); if (ret < 0) return ret; return 0; } static int dmard06_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct dmard06_data *dmard06 = iio_priv(indio_dev); int ret; ret = i2c_smbus_write_byte_data(dmard06->client, DMARD06_CTRL1_REG, DMARD06_MODE_NORMAL); if (ret < 0) return ret; return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(dmard06_pm_ops, dmard06_suspend, dmard06_resume); static const struct i2c_device_id dmard06_id[] = { { "dmard05", 0 }, { "dmard06", 0 }, { "dmard07", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, dmard06_id); static const struct of_device_id dmard06_of_match[] = { { .compatible = "domintech,dmard05" }, { .compatible = "domintech,dmard06" }, { .compatible = "domintech,dmard07" }, { } }; MODULE_DEVICE_TABLE(of, dmard06_of_match); static struct i2c_driver dmard06_driver = { .probe = dmard06_probe, .id_table = dmard06_id, .driver = { .name = DMARD06_DRV_NAME, .of_match_table = dmard06_of_match, .pm = pm_sleep_ptr(&dmard06_pm_ops), }, }; module_i2c_driver(dmard06_driver); MODULE_AUTHOR("Aleksei Mamlin <[email protected]>"); MODULE_DESCRIPTION("Domintech DMARD06 accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/dmard06.c
// SPDX-License-Identifier: GPL-2.0-only /* * 3-axis accelerometer driver supporting many I2C Bosch-Sensortec chips * Copyright (c) 2014, Intel Corporation. */ #include <linux/device.h> #include <linux/mod_devicetable.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/acpi.h> #include <linux/regmap.h> #include "bmc150-accel.h" #ifdef CONFIG_ACPI static const struct acpi_device_id bmc150_acpi_dual_accel_ids[] = { {"BOSC0200"}, {"DUAL250E"}, { } }; /* * The DUAL250E ACPI device for 360° hinges type 2-in-1s with 1 accelerometer * in the display and 1 in the hinge has an ACPI-method (DSM) to tell the * ACPI code about the angle between the 2 halves. This will make the ACPI * code enable/disable the keyboard and touchpad. We need to call this to avoid * the keyboard being disabled when the 2-in-1 is turned-on or resumed while * fully folded into tablet mode (which gets detected with a HALL-sensor). * If we don't call this then the keyboard won't work even when the 2-in-1 is * changed to be used in laptop mode after the power-on / resume. * * This DSM takes 2 angles, selected by setting aux0 to 0 or 1, these presumably * define the angle between the gravity vector measured by the accelerometer in * the display (aux0=0) resp. the base (aux0=1) and some reference vector. * The 2 angles get subtracted from each other so the reference vector does * not matter and we can simply leave the second angle at 0. */ #define BMC150_DSM_GUID "7681541e-8827-4239-8d9d-36be7fe12542" #define DUAL250E_SET_ANGLE_FN_INDEX 3 struct dual250e_set_angle_args { u32 aux0; u32 ang0; u32 rawx; u32 rawy; u32 rawz; } __packed; static bool bmc150_acpi_set_angle_dsm(struct i2c_client *client, u32 aux0, u32 ang0) { struct acpi_device *adev = ACPI_COMPANION(&client->dev); struct dual250e_set_angle_args args = { .aux0 = aux0, .ang0 = ang0, }; union acpi_object args_obj, *obj; guid_t guid; if (!acpi_dev_hid_uid_match(adev, "DUAL250E", NULL)) return false; guid_parse(BMC150_DSM_GUID, &guid); if (!acpi_check_dsm(adev->handle, &guid, 0, BIT(DUAL250E_SET_ANGLE_FN_INDEX))) return false; /* * Note this triggers the following warning: * "ACPI Warning: \_SB.PCI0.I2C2.ACC1._DSM: Argument #4 type mismatch - * Found [Buffer], ACPI requires [Package]" * This is unavoidable since the _DSM implementation expects a "naked" * buffer, so wrapping it in a package will _not_ work. */ args_obj.type = ACPI_TYPE_BUFFER; args_obj.buffer.length = sizeof(args); args_obj.buffer.pointer = (u8 *)&args; obj = acpi_evaluate_dsm(adev->handle, &guid, 0, DUAL250E_SET_ANGLE_FN_INDEX, &args_obj); if (!obj) { dev_err(&client->dev, "Failed to call DSM to enable keyboard and touchpad\n"); return false; } ACPI_FREE(obj); return true; } static bool bmc150_acpi_enable_keyboard(struct i2c_client *client) { /* * The EC must see a change for it to re-enable the kbd, so first * set the angle to 270° (tent/stand mode) and then change it to * 90° (laptop mode). */ if (!bmc150_acpi_set_angle_dsm(client, 0, 270)) return false; /* The EC needs some time to notice the angle being changed */ msleep(100); return bmc150_acpi_set_angle_dsm(client, 0, 90); } static void bmc150_acpi_resume_work(struct work_struct *work) { struct bmc150_accel_data *data = container_of(work, struct bmc150_accel_data, resume_work.work); bmc150_acpi_enable_keyboard(data->second_device); } static void bmc150_acpi_resume_handler(struct device *dev) { struct bmc150_accel_data *data = iio_priv(dev_get_drvdata(dev)); /* * Delay the bmc150_acpi_enable_keyboard() call till after the system * resume has completed, otherwise it will not work. */ schedule_delayed_work(&data->resume_work, msecs_to_jiffies(1000)); } /* * Some acpi_devices describe 2 accelerometers in a single ACPI device, * try instantiating a second i2c_client for an I2cSerialBusV2 ACPI resource * with index 1. */ static void bmc150_acpi_dual_accel_probe(struct i2c_client *client) { struct bmc150_accel_data *data = iio_priv(i2c_get_clientdata(client)); struct acpi_device *adev = ACPI_COMPANION(&client->dev); char dev_name[16]; struct i2c_board_info board_info = { .type = "bmc150_accel", .dev_name = dev_name, .fwnode = client->dev.fwnode, }; if (acpi_match_device_ids(adev, bmc150_acpi_dual_accel_ids)) return; /* * The 2nd accel sits in the base of 2-in-1s. The suffix is static, as * there should never be more then 1 ACPI node with 2 accelerometers. */ snprintf(dev_name, sizeof(dev_name), "%s:base", acpi_device_hid(adev)); board_info.irq = acpi_dev_gpio_irq_get(adev, 1); data->second_device = i2c_acpi_new_device(&client->dev, 1, &board_info); if (!IS_ERR(data->second_device) && bmc150_acpi_enable_keyboard(data->second_device)) { INIT_DELAYED_WORK(&data->resume_work, bmc150_acpi_resume_work); data->resume_callback = bmc150_acpi_resume_handler; } } static void bmc150_acpi_dual_accel_remove(struct i2c_client *client) { struct bmc150_accel_data *data = iio_priv(i2c_get_clientdata(client)); if (data->resume_callback) cancel_delayed_work_sync(&data->resume_work); i2c_unregister_device(data->second_device); } #else static void bmc150_acpi_dual_accel_probe(struct i2c_client *client) {} static void bmc150_acpi_dual_accel_remove(struct i2c_client *client) {} #endif static int bmc150_accel_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct regmap *regmap; const char *name = NULL; enum bmc150_type type = BOSCH_UNKNOWN; bool block_supported = i2c_check_functionality(client->adapter, I2C_FUNC_I2C) || i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK); int ret; regmap = devm_regmap_init_i2c(client, &bmc150_regmap_conf); if (IS_ERR(regmap)) { dev_err(&client->dev, "Failed to initialize i2c regmap\n"); return PTR_ERR(regmap); } if (id) { name = id->name; type = id->driver_data; } ret = bmc150_accel_core_probe(&client->dev, regmap, client->irq, type, name, block_supported); if (ret) return ret; /* * The !id check avoids recursion when probe() gets called * for the second client. */ if (!id && has_acpi_companion(&client->dev)) bmc150_acpi_dual_accel_probe(client); return 0; } static void bmc150_accel_remove(struct i2c_client *client) { bmc150_acpi_dual_accel_remove(client); bmc150_accel_core_remove(&client->dev); } static const struct acpi_device_id bmc150_accel_acpi_match[] = { {"BMA0255"}, {"BMA0280"}, {"BMA222"}, {"BMA222E"}, {"BMA250E"}, {"BMC150A"}, {"BMI055A"}, {"BOSC0200"}, {"BSBA0150"}, {"DUAL250E"}, { }, }; MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match); static const struct i2c_device_id bmc150_accel_id[] = { {"bma222"}, {"bma222e"}, {"bma250e"}, {"bma253"}, {"bma254"}, {"bma255"}, {"bma280"}, {"bmc150_accel"}, {"bmc156_accel", BOSCH_BMC156}, {"bmi055_accel"}, {} }; MODULE_DEVICE_TABLE(i2c, bmc150_accel_id); static const struct of_device_id bmc150_accel_of_match[] = { { .compatible = "bosch,bma222" }, { .compatible = "bosch,bma222e" }, { .compatible = "bosch,bma250e" }, { .compatible = "bosch,bma253" }, { .compatible = "bosch,bma254" }, { .compatible = "bosch,bma255" }, { .compatible = "bosch,bma280" }, { .compatible = "bosch,bmc150_accel" }, { .compatible = "bosch,bmc156_accel" }, { .compatible = "bosch,bmi055_accel" }, { }, }; MODULE_DEVICE_TABLE(of, bmc150_accel_of_match); static struct i2c_driver bmc150_accel_driver = { .driver = { .name = "bmc150_accel_i2c", .of_match_table = bmc150_accel_of_match, .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match), .pm = &bmc150_accel_pm_ops, }, .probe = bmc150_accel_probe, .remove = bmc150_accel_remove, .id_table = bmc150_accel_id, }; module_i2c_driver(bmc150_accel_driver); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 I2C accelerometer driver"); MODULE_IMPORT_NS(IIO_BMC150);
linux-master
drivers/iio/accel/bmc150-accel-i2c.c
// SPDX-License-Identifier: GPL-2.0 /* * NXP FXLS8962AF/FXLS8964AF Accelerometer I2C Driver * * Copyright 2021 Connected Cars A/S */ #include <linux/dev_printk.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include "fxls8962af.h" static int fxls8962af_probe(struct i2c_client *client) { struct regmap *regmap; regmap = devm_regmap_init_i2c(client, &fxls8962af_i2c_regmap_conf); if (IS_ERR(regmap)) { dev_err(&client->dev, "Failed to initialize i2c regmap\n"); return PTR_ERR(regmap); } return fxls8962af_core_probe(&client->dev, regmap, client->irq); } static const struct i2c_device_id fxls8962af_id[] = { { "fxls8962af", fxls8962af }, { "fxls8964af", fxls8964af }, {} }; MODULE_DEVICE_TABLE(i2c, fxls8962af_id); static const struct of_device_id fxls8962af_of_match[] = { { .compatible = "nxp,fxls8962af" }, { .compatible = "nxp,fxls8964af" }, {} }; MODULE_DEVICE_TABLE(of, fxls8962af_of_match); static struct i2c_driver fxls8962af_driver = { .driver = { .name = "fxls8962af_i2c", .of_match_table = fxls8962af_of_match, .pm = pm_ptr(&fxls8962af_pm_ops), }, .probe = fxls8962af_probe, .id_table = fxls8962af_id, }; module_i2c_driver(fxls8962af_driver); MODULE_AUTHOR("Sean Nyekjaer <[email protected]>"); MODULE_DESCRIPTION("NXP FXLS8962AF/FXLS8964AF accelerometer i2c driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_FXLS8962AF);
linux-master
drivers/iio/accel/fxls8962af-i2c.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADIS16209 Dual-Axis Digital Inclinometer and Accelerometer * * Copyright 2010 Analog Devices Inc. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/iio/imu/adis.h> #define ADIS16209_STARTUP_DELAY_MS 220 #define ADIS16209_FLASH_CNT_REG 0x00 /* Data Output Register Definitions */ #define ADIS16209_SUPPLY_OUT_REG 0x02 #define ADIS16209_XACCL_OUT_REG 0x04 #define ADIS16209_YACCL_OUT_REG 0x06 /* Output, auxiliary ADC input */ #define ADIS16209_AUX_ADC_REG 0x08 /* Output, temperature */ #define ADIS16209_TEMP_OUT_REG 0x0A /* Output, +/- 90 degrees X-axis inclination */ #define ADIS16209_XINCL_OUT_REG 0x0C #define ADIS16209_YINCL_OUT_REG 0x0E /* Output, +/-180 vertical rotational position */ #define ADIS16209_ROT_OUT_REG 0x10 /* * Calibration Register Definitions. * Acceleration, inclination or rotation offset null. */ #define ADIS16209_XACCL_NULL_REG 0x12 #define ADIS16209_YACCL_NULL_REG 0x14 #define ADIS16209_XINCL_NULL_REG 0x16 #define ADIS16209_YINCL_NULL_REG 0x18 #define ADIS16209_ROT_NULL_REG 0x1A /* Alarm Register Definitions */ #define ADIS16209_ALM_MAG1_REG 0x20 #define ADIS16209_ALM_MAG2_REG 0x22 #define ADIS16209_ALM_SMPL1_REG 0x24 #define ADIS16209_ALM_SMPL2_REG 0x26 #define ADIS16209_ALM_CTRL_REG 0x28 #define ADIS16209_AUX_DAC_REG 0x30 #define ADIS16209_GPIO_CTRL_REG 0x32 #define ADIS16209_SMPL_PRD_REG 0x36 #define ADIS16209_AVG_CNT_REG 0x38 #define ADIS16209_SLP_CNT_REG 0x3A #define ADIS16209_MSC_CTRL_REG 0x34 #define ADIS16209_MSC_CTRL_PWRUP_SELF_TEST BIT(10) #define ADIS16209_MSC_CTRL_SELF_TEST_EN BIT(8) #define ADIS16209_MSC_CTRL_DATA_RDY_EN BIT(2) /* Data-ready polarity: 1 = active high, 0 = active low */ #define ADIS16209_MSC_CTRL_ACTIVE_HIGH BIT(1) #define ADIS16209_MSC_CTRL_DATA_RDY_DIO2 BIT(0) #define ADIS16209_STAT_REG 0x3C #define ADIS16209_STAT_ALARM2 BIT(9) #define ADIS16209_STAT_ALARM1 BIT(8) #define ADIS16209_STAT_SELFTEST_FAIL_BIT 5 #define ADIS16209_STAT_SPI_FAIL_BIT 3 #define ADIS16209_STAT_FLASH_UPT_FAIL_BIT 2 /* Power supply above 3.625 V */ #define ADIS16209_STAT_POWER_HIGH_BIT 1 /* Power supply below 2.975 V */ #define ADIS16209_STAT_POWER_LOW_BIT 0 #define ADIS16209_CMD_REG 0x3E #define ADIS16209_CMD_SW_RESET BIT(7) #define ADIS16209_CMD_CLEAR_STAT BIT(4) #define ADIS16209_CMD_FACTORY_CAL BIT(1) #define ADIS16209_ERROR_ACTIVE BIT(14) enum adis16209_scan { ADIS16209_SCAN_SUPPLY, ADIS16209_SCAN_ACC_X, ADIS16209_SCAN_ACC_Y, ADIS16209_SCAN_AUX_ADC, ADIS16209_SCAN_TEMP, ADIS16209_SCAN_INCLI_X, ADIS16209_SCAN_INCLI_Y, ADIS16209_SCAN_ROT, }; static const u8 adis16209_addresses[8][1] = { [ADIS16209_SCAN_SUPPLY] = { }, [ADIS16209_SCAN_AUX_ADC] = { }, [ADIS16209_SCAN_ACC_X] = { ADIS16209_XACCL_NULL_REG }, [ADIS16209_SCAN_ACC_Y] = { ADIS16209_YACCL_NULL_REG }, [ADIS16209_SCAN_INCLI_X] = { ADIS16209_XINCL_NULL_REG }, [ADIS16209_SCAN_INCLI_Y] = { ADIS16209_YINCL_NULL_REG }, [ADIS16209_SCAN_ROT] = { }, [ADIS16209_SCAN_TEMP] = { }, }; static int adis16209_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adis *st = iio_priv(indio_dev); int m; if (mask != IIO_CHAN_INFO_CALIBBIAS) return -EINVAL; switch (chan->type) { case IIO_ACCEL: case IIO_INCLI: m = GENMASK(13, 0); break; default: return -EINVAL; } return adis_write_reg_16(st, adis16209_addresses[chan->scan_index][0], val & m); } static int adis16209_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adis *st = iio_priv(indio_dev); int ret; int bits; u8 addr; s16 val16; switch (mask) { case IIO_CHAN_INFO_RAW: return adis_single_conversion(indio_dev, chan, ADIS16209_ERROR_ACTIVE, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VOLTAGE: *val = 0; switch (chan->channel) { case 0: *val2 = 305180; /* 0.30518 mV */ break; case 1: *val2 = 610500; /* 0.6105 mV */ break; default: return -EINVAL; } return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = -470; *val2 = 0; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: /* * IIO base unit for sensitivity of accelerometer * is milli g. * 1 LSB represents 0.244 mg. */ *val = 0; *val2 = IIO_G_TO_M_S_2(244140); return IIO_VAL_INT_PLUS_NANO; case IIO_INCLI: case IIO_ROT: /* * IIO base units for rotation are degrees. * 1 LSB represents 0.025 milli degrees. */ *val = 0; *val2 = 25000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } break; case IIO_CHAN_INFO_OFFSET: /* * The raw ADC value is 0x4FE when the temperature * is 45 degrees and the scale factor per milli * degree celcius is -470. */ *val = 25000 / -470 - 0x4FE; return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_ACCEL: bits = 14; break; default: return -EINVAL; } addr = adis16209_addresses[chan->scan_index][0]; ret = adis_read_reg_16(st, addr, &val16); if (ret) return ret; *val = sign_extend32(val16, bits - 1); return IIO_VAL_INT; } return -EINVAL; } static const struct iio_chan_spec adis16209_channels[] = { ADIS_SUPPLY_CHAN(ADIS16209_SUPPLY_OUT_REG, ADIS16209_SCAN_SUPPLY, 0, 14), ADIS_TEMP_CHAN(ADIS16209_TEMP_OUT_REG, ADIS16209_SCAN_TEMP, 0, 12), ADIS_ACCEL_CHAN(X, ADIS16209_XACCL_OUT_REG, ADIS16209_SCAN_ACC_X, BIT(IIO_CHAN_INFO_CALIBBIAS), 0, 14), ADIS_ACCEL_CHAN(Y, ADIS16209_YACCL_OUT_REG, ADIS16209_SCAN_ACC_Y, BIT(IIO_CHAN_INFO_CALIBBIAS), 0, 14), ADIS_AUX_ADC_CHAN(ADIS16209_AUX_ADC_REG, ADIS16209_SCAN_AUX_ADC, 0, 12), ADIS_INCLI_CHAN(X, ADIS16209_XINCL_OUT_REG, ADIS16209_SCAN_INCLI_X, 0, 0, 14), ADIS_INCLI_CHAN(Y, ADIS16209_YINCL_OUT_REG, ADIS16209_SCAN_INCLI_Y, 0, 0, 14), ADIS_ROT_CHAN(X, ADIS16209_ROT_OUT_REG, ADIS16209_SCAN_ROT, 0, 0, 14), IIO_CHAN_SOFT_TIMESTAMP(8) }; static const struct iio_info adis16209_info = { .read_raw = adis16209_read_raw, .write_raw = adis16209_write_raw, .update_scan_mode = adis_update_scan_mode, }; static const char * const adis16209_status_error_msgs[] = { [ADIS16209_STAT_SELFTEST_FAIL_BIT] = "Self test failure", [ADIS16209_STAT_SPI_FAIL_BIT] = "SPI failure", [ADIS16209_STAT_FLASH_UPT_FAIL_BIT] = "Flash update failed", [ADIS16209_STAT_POWER_HIGH_BIT] = "Power supply above 3.625V", [ADIS16209_STAT_POWER_LOW_BIT] = "Power supply below 2.975V", }; static const struct adis_timeout adis16209_timeouts = { .reset_ms = ADIS16209_STARTUP_DELAY_MS, .self_test_ms = ADIS16209_STARTUP_DELAY_MS, .sw_reset_ms = ADIS16209_STARTUP_DELAY_MS, }; static const struct adis_data adis16209_data = { .read_delay = 30, .msc_ctrl_reg = ADIS16209_MSC_CTRL_REG, .glob_cmd_reg = ADIS16209_CMD_REG, .diag_stat_reg = ADIS16209_STAT_REG, .self_test_mask = ADIS16209_MSC_CTRL_SELF_TEST_EN, .self_test_reg = ADIS16209_MSC_CTRL_REG, .self_test_no_autoclear = true, .timeouts = &adis16209_timeouts, .status_error_msgs = adis16209_status_error_msgs, .status_error_mask = BIT(ADIS16209_STAT_SELFTEST_FAIL_BIT) | BIT(ADIS16209_STAT_SPI_FAIL_BIT) | BIT(ADIS16209_STAT_FLASH_UPT_FAIL_BIT) | BIT(ADIS16209_STAT_POWER_HIGH_BIT) | BIT(ADIS16209_STAT_POWER_LOW_BIT), }; static int adis16209_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct adis *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); indio_dev->name = spi->dev.driver->name; indio_dev->info = &adis16209_info; indio_dev->channels = adis16209_channels; indio_dev->num_channels = ARRAY_SIZE(adis16209_channels); indio_dev->modes = INDIO_DIRECT_MODE; ret = adis_init(st, indio_dev, spi, &adis16209_data); if (ret) return ret; ret = devm_adis_setup_buffer_and_trigger(st, indio_dev, NULL); if (ret) return ret; ret = __adis_initial_startup(st); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static struct spi_driver adis16209_driver = { .driver = { .name = "adis16209", }, .probe = adis16209_probe, }; module_spi_driver(adis16209_driver); MODULE_AUTHOR("Barry Song <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADIS16209 Dual-Axis Digital Inclinometer and Accelerometer"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("spi:adis16209"); MODULE_IMPORT_NS(IIO_ADISLIB);
linux-master
drivers/iio/accel/adis16209.c
// SPDX-License-Identifier: GPL-2.0-only /* * Freescale MMA7660FC 3-Axis Accelerometer * * Copyright (c) 2016, Intel Corporation. * * IIO driver for Freescale MMA7660FC; 7-bit I2C address: 0x4c. */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #define MMA7660_DRIVER_NAME "mma7660" #define MMA7660_REG_XOUT 0x00 #define MMA7660_REG_YOUT 0x01 #define MMA7660_REG_ZOUT 0x02 #define MMA7660_REG_OUT_BIT_ALERT BIT(6) #define MMA7660_REG_MODE 0x07 #define MMA7660_REG_MODE_BIT_MODE BIT(0) #define MMA7660_REG_MODE_BIT_TON BIT(2) #define MMA7660_I2C_READ_RETRIES 5 /* * The accelerometer has one measurement range: * * -1.5g - +1.5g (6-bit, signed) * * scale = (1.5 + 1.5) * 9.81 / (2^6 - 1) = 0.467142857 */ #define MMA7660_SCALE_AVAIL "0.467142857" static const int mma7660_nscale = 467142857; #define MMA7660_CHANNEL(reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec mma7660_channels[] = { MMA7660_CHANNEL(MMA7660_REG_XOUT, X), MMA7660_CHANNEL(MMA7660_REG_YOUT, Y), MMA7660_CHANNEL(MMA7660_REG_ZOUT, Z), }; enum mma7660_mode { MMA7660_MODE_STANDBY, MMA7660_MODE_ACTIVE }; struct mma7660_data { struct i2c_client *client; struct mutex lock; enum mma7660_mode mode; }; static IIO_CONST_ATTR(in_accel_scale_available, MMA7660_SCALE_AVAIL); static struct attribute *mma7660_attributes[] = { &iio_const_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group mma7660_attribute_group = { .attrs = mma7660_attributes }; static int mma7660_set_mode(struct mma7660_data *data, enum mma7660_mode mode) { int ret; struct i2c_client *client = data->client; if (mode == data->mode) return 0; ret = i2c_smbus_read_byte_data(client, MMA7660_REG_MODE); if (ret < 0) { dev_err(&client->dev, "failed to read sensor mode\n"); return ret; } if (mode == MMA7660_MODE_ACTIVE) { ret &= ~MMA7660_REG_MODE_BIT_TON; ret |= MMA7660_REG_MODE_BIT_MODE; } else { ret &= ~MMA7660_REG_MODE_BIT_TON; ret &= ~MMA7660_REG_MODE_BIT_MODE; } ret = i2c_smbus_write_byte_data(client, MMA7660_REG_MODE, ret); if (ret < 0) { dev_err(&client->dev, "failed to change sensor mode\n"); return ret; } data->mode = mode; return ret; } static int mma7660_read_accel(struct mma7660_data *data, u8 address) { int ret, retries = MMA7660_I2C_READ_RETRIES; struct i2c_client *client = data->client; /* * Read data. If the Alert bit is set, the register was read at * the same time as the device was attempting to update the content. * The solution is to read the register again. Do this only * MMA7660_I2C_READ_RETRIES times to avoid spending too much time * in the kernel. */ do { ret = i2c_smbus_read_byte_data(client, address); if (ret < 0) { dev_err(&client->dev, "register read failed\n"); return ret; } } while (retries-- > 0 && ret & MMA7660_REG_OUT_BIT_ALERT); if (ret & MMA7660_REG_OUT_BIT_ALERT) { dev_err(&client->dev, "all register read retries failed\n"); return -ETIMEDOUT; } return ret; } static int mma7660_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mma7660_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&data->lock); ret = mma7660_read_accel(data, chan->address); mutex_unlock(&data->lock); if (ret < 0) return ret; *val = sign_extend32(ret, 5); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = mma7660_nscale; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } return -EINVAL; } static const struct iio_info mma7660_info = { .read_raw = mma7660_read_raw, .attrs = &mma7660_attribute_group, }; static int mma7660_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct mma7660_data *data; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); data->mode = MMA7660_MODE_STANDBY; indio_dev->info = &mma7660_info; indio_dev->name = MMA7660_DRIVER_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = mma7660_channels; indio_dev->num_channels = ARRAY_SIZE(mma7660_channels); ret = mma7660_set_mode(data, MMA7660_MODE_ACTIVE); if (ret < 0) return ret; ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "device_register failed\n"); mma7660_set_mode(data, MMA7660_MODE_STANDBY); } return ret; } static void mma7660_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); int ret; iio_device_unregister(indio_dev); ret = mma7660_set_mode(iio_priv(indio_dev), MMA7660_MODE_STANDBY); if (ret) dev_warn(&client->dev, "Failed to put device in stand-by mode (%pe), ignoring\n", ERR_PTR(ret)); } static int mma7660_suspend(struct device *dev) { struct mma7660_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return mma7660_set_mode(data, MMA7660_MODE_STANDBY); } static int mma7660_resume(struct device *dev) { struct mma7660_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return mma7660_set_mode(data, MMA7660_MODE_ACTIVE); } static DEFINE_SIMPLE_DEV_PM_OPS(mma7660_pm_ops, mma7660_suspend, mma7660_resume); static const struct i2c_device_id mma7660_i2c_id[] = { {"mma7660", 0}, {} }; MODULE_DEVICE_TABLE(i2c, mma7660_i2c_id); static const struct of_device_id mma7660_of_match[] = { { .compatible = "fsl,mma7660" }, { } }; MODULE_DEVICE_TABLE(of, mma7660_of_match); static const struct acpi_device_id mma7660_acpi_id[] = { {"MMA7660", 0}, {} }; MODULE_DEVICE_TABLE(acpi, mma7660_acpi_id); static struct i2c_driver mma7660_driver = { .driver = { .name = "mma7660", .pm = pm_sleep_ptr(&mma7660_pm_ops), .of_match_table = mma7660_of_match, .acpi_match_table = mma7660_acpi_id, }, .probe = mma7660_probe, .remove = mma7660_remove, .id_table = mma7660_i2c_id, }; module_i2c_driver(mma7660_driver); MODULE_AUTHOR("Constantin Musca <[email protected]>"); MODULE_DESCRIPTION("Freescale MMA7660FC 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/mma7660.c
// SPDX-License-Identifier: GPL-2.0 /* * 3-axis accelerometer driver supporting following Bosch-Sensortec chips: * - BMI088 * * Copyright (c) 2018-2020, Topic Embedded Products */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include "bmi088-accel.h" static int bmi088_regmap_spi_write(void *context, const void *data, size_t count) { struct spi_device *spi = context; /* Write register is same as generic SPI */ return spi_write(spi, data, count); } static int bmi088_regmap_spi_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct spi_device *spi = context; u8 addr[2]; addr[0] = *(u8 *)reg; addr[0] |= BIT(7); /* Set RW = '1' */ addr[1] = 0; /* Read requires a dummy byte transfer */ return spi_write_then_read(spi, addr, sizeof(addr), val, val_size); } static struct regmap_bus bmi088_regmap_bus = { .write = bmi088_regmap_spi_write, .read = bmi088_regmap_spi_read, }; static int bmi088_accel_probe(struct spi_device *spi) { struct regmap *regmap; const struct spi_device_id *id = spi_get_device_id(spi); regmap = devm_regmap_init(&spi->dev, &bmi088_regmap_bus, spi, &bmi088_regmap_conf); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Failed to initialize spi regmap\n"); return PTR_ERR(regmap); } return bmi088_accel_core_probe(&spi->dev, regmap, spi->irq, id->driver_data); } static void bmi088_accel_remove(struct spi_device *spi) { bmi088_accel_core_remove(&spi->dev); } static const struct of_device_id bmi088_of_match[] = { { .compatible = "bosch,bmi085-accel" }, { .compatible = "bosch,bmi088-accel" }, { .compatible = "bosch,bmi090l-accel" }, {} }; MODULE_DEVICE_TABLE(of, bmi088_of_match); static const struct spi_device_id bmi088_accel_id[] = { {"bmi085-accel", BOSCH_BMI085}, {"bmi088-accel", BOSCH_BMI088}, {"bmi090l-accel", BOSCH_BMI090L}, {} }; MODULE_DEVICE_TABLE(spi, bmi088_accel_id); static struct spi_driver bmi088_accel_driver = { .driver = { .name = "bmi088_accel_spi", .pm = pm_ptr(&bmi088_accel_pm_ops), .of_match_table = bmi088_of_match, }, .probe = bmi088_accel_probe, .remove = bmi088_accel_remove, .id_table = bmi088_accel_id, }; module_spi_driver(bmi088_accel_driver); MODULE_AUTHOR("Niek van Agt <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMI088 accelerometer driver (SPI)"); MODULE_IMPORT_NS(IIO_BMI088);
linux-master
drivers/iio/accel/bmi088-accel-spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 ROHM Semiconductors * * ROHM/KIONIX KX022A accelerometer driver */ #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/regmap.h> #include "kionix-kx022a.h" static int kx022a_i2c_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct regmap *regmap; if (!i2c->irq) { dev_err(dev, "No IRQ configured\n"); return -EINVAL; } regmap = devm_regmap_init_i2c(i2c, &kx022a_regmap); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to initialize Regmap\n"); return kx022a_probe_internal(dev); } static const struct of_device_id kx022a_of_match[] = { { .compatible = "kionix,kx022a", }, { } }; MODULE_DEVICE_TABLE(of, kx022a_of_match); static struct i2c_driver kx022a_i2c_driver = { .driver = { .name = "kx022a-i2c", .of_match_table = kx022a_of_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = kx022a_i2c_probe, }; module_i2c_driver(kx022a_i2c_driver); MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); MODULE_AUTHOR("Matti Vaittinen <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_KX022A);
linux-master
drivers/iio/accel/kionix-kx022a-i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * Core IIO driver for Bosch BMA400 triaxial acceleration sensor. * * Copyright 2019 Dan Robertson <[email protected]> * * TODO: * - Support for power management * - Support events and interrupts * - Create channel for step count * - Create channel for sensor time */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <asm/unaligned.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "bma400.h" /* * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may * be selected with the acc_range bits of the ACC_CONFIG1 register. * NB: This buffer is populated in the device init. */ static int bma400_scales[8]; /* * See the ACC_CONFIG1 section of the datasheet. * NB: This buffer is populated in the device init. */ static int bma400_sample_freqs[14]; static const int bma400_osr_range[] = { 0, 1, 3 }; static int tap_reset_timeout[BMA400_TAP_TIM_LIST_LEN] = { 300000, 400000, 500000, 600000 }; static int tap_max2min_time[BMA400_TAP_TIM_LIST_LEN] = { 30000, 45000, 60000, 90000 }; static int double_tap2_min_delay[BMA400_TAP_TIM_LIST_LEN] = { 20000, 40000, 60000, 80000 }; /* See the ACC_CONFIG0 section of the datasheet */ enum bma400_power_mode { POWER_MODE_SLEEP = 0x00, POWER_MODE_LOW = 0x01, POWER_MODE_NORMAL = 0x02, POWER_MODE_INVALID = 0x03, }; enum bma400_scan { BMA400_ACCL_X, BMA400_ACCL_Y, BMA400_ACCL_Z, BMA400_TEMP, }; struct bma400_sample_freq { int hz; int uhz; }; enum bma400_activity { BMA400_STILL, BMA400_WALKING, BMA400_RUNNING, }; struct bma400_data { struct device *dev; struct regmap *regmap; struct mutex mutex; /* data register lock */ struct iio_mount_matrix orientation; enum bma400_power_mode power_mode; struct bma400_sample_freq sample_freq; int oversampling_ratio; int scale; struct iio_trigger *trig; int steps_enabled; bool step_event_en; bool activity_event_en; unsigned int generic_event_en; unsigned int tap_event_en_bitmask; /* Correct time stamp alignment */ struct { __le16 buff[3]; u8 temperature; s64 ts __aligned(8); } buffer __aligned(IIO_DMA_MINALIGN); __le16 status; __be16 duration; }; static bool bma400_is_writable_reg(struct device *dev, unsigned int reg) { switch (reg) { case BMA400_CHIP_ID_REG: case BMA400_ERR_REG: case BMA400_STATUS_REG: case BMA400_X_AXIS_LSB_REG: case BMA400_X_AXIS_MSB_REG: case BMA400_Y_AXIS_LSB_REG: case BMA400_Y_AXIS_MSB_REG: case BMA400_Z_AXIS_LSB_REG: case BMA400_Z_AXIS_MSB_REG: case BMA400_SENSOR_TIME0: case BMA400_SENSOR_TIME1: case BMA400_SENSOR_TIME2: case BMA400_EVENT_REG: case BMA400_INT_STAT0_REG: case BMA400_INT_STAT1_REG: case BMA400_INT_STAT2_REG: case BMA400_TEMP_DATA_REG: case BMA400_FIFO_LENGTH0_REG: case BMA400_FIFO_LENGTH1_REG: case BMA400_FIFO_DATA_REG: case BMA400_STEP_CNT0_REG: case BMA400_STEP_CNT1_REG: case BMA400_STEP_CNT3_REG: case BMA400_STEP_STAT_REG: return false; default: return true; } } static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case BMA400_ERR_REG: case BMA400_STATUS_REG: case BMA400_X_AXIS_LSB_REG: case BMA400_X_AXIS_MSB_REG: case BMA400_Y_AXIS_LSB_REG: case BMA400_Y_AXIS_MSB_REG: case BMA400_Z_AXIS_LSB_REG: case BMA400_Z_AXIS_MSB_REG: case BMA400_SENSOR_TIME0: case BMA400_SENSOR_TIME1: case BMA400_SENSOR_TIME2: case BMA400_EVENT_REG: case BMA400_INT_STAT0_REG: case BMA400_INT_STAT1_REG: case BMA400_INT_STAT2_REG: case BMA400_TEMP_DATA_REG: case BMA400_FIFO_LENGTH0_REG: case BMA400_FIFO_LENGTH1_REG: case BMA400_FIFO_DATA_REG: case BMA400_STEP_CNT0_REG: case BMA400_STEP_CNT1_REG: case BMA400_STEP_CNT3_REG: case BMA400_STEP_STAT_REG: return true; default: return false; } } const struct regmap_config bma400_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BMA400_CMD_REG, .cache_type = REGCACHE_RBTREE, .writeable_reg = bma400_is_writable_reg, .volatile_reg = bma400_is_volatile_reg, }; EXPORT_SYMBOL_NS(bma400_regmap_config, IIO_BMA400); static const struct iio_mount_matrix * bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct bma400_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info bma400_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix), { } }; static const struct iio_event_spec bma400_step_detect_event = { .type = IIO_EV_TYPE_CHANGE, .dir = IIO_EV_DIR_NONE, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }; static const struct iio_event_spec bma400_activity_event = { .type = IIO_EV_TYPE_CHANGE, .dir = IIO_EV_DIR_NONE, .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE), }; static const struct iio_event_spec bma400_accel_event[] = { { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_FALLING, .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_HYSTERESIS) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_HYSTERESIS) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_GESTURE, .dir = IIO_EV_DIR_SINGLETAP, .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_RESET_TIMEOUT), }, { .type = IIO_EV_TYPE_GESTURE, .dir = IIO_EV_DIR_DOUBLETAP, .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_RESET_TIMEOUT) | BIT(IIO_EV_INFO_TAP2_MIN_DELAY), }, }; static int usec_to_tapreg_raw(int usec, const int *time_list) { int index; for (index = 0; index < BMA400_TAP_TIM_LIST_LEN; index++) { if (usec == time_list[index]) return index; } return -EINVAL; } static ssize_t in_accel_gesture_tap_maxtomin_time_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bma400_data *data = iio_priv(indio_dev); int ret, reg_val, raw, vals[2]; ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1, &reg_val); if (ret) return ret; raw = FIELD_GET(BMA400_TAP_TICSTH_MSK, reg_val); vals[0] = 0; vals[1] = tap_max2min_time[raw]; return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals); } static ssize_t in_accel_gesture_tap_maxtomin_time_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bma400_data *data = iio_priv(indio_dev); int ret, val_int, val_fract, raw; ret = iio_str_to_fixpoint(buf, 100000, &val_int, &val_fract); if (ret) return ret; raw = usec_to_tapreg_raw(val_fract, tap_max2min_time); if (raw < 0) return -EINVAL; ret = regmap_update_bits(data->regmap, BMA400_TAP_CONFIG1, BMA400_TAP_TICSTH_MSK, FIELD_PREP(BMA400_TAP_TICSTH_MSK, raw)); if (ret) return ret; return len; } static IIO_DEVICE_ATTR_RW(in_accel_gesture_tap_maxtomin_time, 0); /* * Tap interrupts works with 200 Hz input data rate and the time based tap * controls are in the terms of data samples so the below calculation is * used to convert the configuration values into seconds. * e.g.: * 60 data samples * 0.005 ms = 0.3 seconds. * 80 data samples * 0.005 ms = 0.4 seconds. */ /* quiet configuration values in seconds */ static IIO_CONST_ATTR(in_accel_gesture_tap_reset_timeout_available, "0.3 0.4 0.5 0.6"); /* tics_th configuration values in seconds */ static IIO_CONST_ATTR(in_accel_gesture_tap_maxtomin_time_available, "0.03 0.045 0.06 0.09"); /* quiet_dt configuration values in seconds */ static IIO_CONST_ATTR(in_accel_gesture_doubletap_tap2_min_delay_available, "0.02 0.04 0.06 0.08"); /* List of sensitivity values available to configure tap interrupts */ static IIO_CONST_ATTR(in_accel_gesture_tap_value_available, "0 1 2 3 4 5 6 7"); static struct attribute *bma400_event_attributes[] = { &iio_const_attr_in_accel_gesture_tap_value_available.dev_attr.attr, &iio_const_attr_in_accel_gesture_tap_reset_timeout_available.dev_attr.attr, &iio_const_attr_in_accel_gesture_tap_maxtomin_time_available.dev_attr.attr, &iio_const_attr_in_accel_gesture_doubletap_tap2_min_delay_available.dev_attr.attr, &iio_dev_attr_in_accel_gesture_tap_maxtomin_time.dev_attr.attr, NULL }; static const struct attribute_group bma400_event_attribute_group = { .attrs = bma400_event_attributes, }; #define BMA400_ACC_CHANNEL(_index, _axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ .ext_info = bma400_ext_info, \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ .event_spec = bma400_accel_event, \ .num_event_specs = ARRAY_SIZE(bma400_accel_event) \ } #define BMA400_ACTIVITY_CHANNEL(_chan2) { \ .type = IIO_ACTIVITY, \ .modified = 1, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ .scan_index = -1, /* No buffer support */ \ .event_spec = &bma400_activity_event, \ .num_event_specs = 1, \ } static const struct iio_chan_spec bma400_channels[] = { BMA400_ACC_CHANNEL(0, X), BMA400_ACC_CHANNEL(1, Y), BMA400_ACC_CHANNEL(2, Z), { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_index = 3, .scan_type = { .sign = 's', .realbits = 8, .storagebits = 8, .endianness = IIO_LE, }, }, { .type = IIO_STEPS, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_ENABLE), .scan_index = -1, /* No buffer support */ .event_spec = &bma400_step_detect_event, .num_event_specs = 1, }, BMA400_ACTIVITY_CHANNEL(IIO_MOD_STILL), BMA400_ACTIVITY_CHANNEL(IIO_MOD_WALKING), BMA400_ACTIVITY_CHANNEL(IIO_MOD_RUNNING), IIO_CHAN_SOFT_TIMESTAMP(4), }; static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2) { unsigned int raw_temp; int host_temp; int ret; if (data->power_mode == POWER_MODE_SLEEP) return -EBUSY; ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp); if (ret) return ret; host_temp = sign_extend32(raw_temp, 7); /* * The formula for the TEMP_DATA register in the datasheet * is: x * 0.5 + 23 */ *val = (host_temp >> 1) + 23; *val2 = (host_temp & 0x1) * 500000; return IIO_VAL_INT_PLUS_MICRO; } static int bma400_get_accel_reg(struct bma400_data *data, const struct iio_chan_spec *chan, int *val) { __le16 raw_accel; int lsb_reg; int ret; if (data->power_mode == POWER_MODE_SLEEP) return -EBUSY; switch (chan->channel2) { case IIO_MOD_X: lsb_reg = BMA400_X_AXIS_LSB_REG; break; case IIO_MOD_Y: lsb_reg = BMA400_Y_AXIS_LSB_REG; break; case IIO_MOD_Z: lsb_reg = BMA400_Z_AXIS_LSB_REG; break; default: dev_err(data->dev, "invalid axis channel modifier\n"); return -EINVAL; } /* bulk read two registers, with the base being the LSB register */ ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel, sizeof(raw_accel)); if (ret) return ret; *val = sign_extend32(le16_to_cpu(raw_accel), 11); return IIO_VAL_INT; } static void bma400_output_data_rate_from_raw(int raw, unsigned int *val, unsigned int *val2) { *val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw); if (raw > BMA400_ACC_ODR_MIN_RAW) *val2 = 0; else *val2 = 500000; } static int bma400_get_accel_output_data_rate(struct bma400_data *data) { unsigned int val; unsigned int odr; int ret; switch (data->power_mode) { case POWER_MODE_LOW: /* * Runs at a fixed rate in low-power mode. See section 4.3 * in the datasheet. */ bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW, &data->sample_freq.hz, &data->sample_freq.uhz); return 0; case POWER_MODE_NORMAL: /* * In normal mode the ODR can be found in the ACC_CONFIG1 * register. */ ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); if (ret) goto error; odr = val & BMA400_ACC_ODR_MASK; if (odr < BMA400_ACC_ODR_MIN_RAW || odr > BMA400_ACC_ODR_MAX_RAW) { ret = -EINVAL; goto error; } bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz, &data->sample_freq.uhz); return 0; case POWER_MODE_SLEEP: data->sample_freq.hz = 0; data->sample_freq.uhz = 0; return 0; default: ret = 0; goto error; } error: data->sample_freq.hz = -1; data->sample_freq.uhz = -1; return ret; } static int bma400_set_accel_output_data_rate(struct bma400_data *data, int hz, int uhz) { unsigned int idx; unsigned int odr; unsigned int val; int ret; if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) { if (uhz || hz > BMA400_ACC_ODR_MAX_HZ) return -EINVAL; /* Note this works because MIN_WHOLE_HZ is odd */ idx = __ffs(hz); if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ) return -EINVAL; idx += BMA400_ACC_ODR_MIN_RAW + 1; } else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) { idx = BMA400_ACC_ODR_MIN_RAW; } else { return -EINVAL; } ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); if (ret) return ret; /* preserve the range and normal mode osr */ odr = (~BMA400_ACC_ODR_MASK & val) | idx; ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr); if (ret) return ret; bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz, &data->sample_freq.uhz); return 0; } static int bma400_get_accel_oversampling_ratio(struct bma400_data *data) { unsigned int val; unsigned int osr; int ret; /* * The oversampling ratio is stored in a different register * based on the power-mode. In normal mode the OSR is stored * in ACC_CONFIG1. In low-power mode it is stored in * ACC_CONFIG0. */ switch (data->power_mode) { case POWER_MODE_LOW: ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val); if (ret) { data->oversampling_ratio = -1; return ret; } osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT; data->oversampling_ratio = osr; return 0; case POWER_MODE_NORMAL: ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); if (ret) { data->oversampling_ratio = -1; return ret; } osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT; data->oversampling_ratio = osr; return 0; case POWER_MODE_SLEEP: data->oversampling_ratio = 0; return 0; default: data->oversampling_ratio = -1; return -EINVAL; } } static int bma400_set_accel_oversampling_ratio(struct bma400_data *data, int val) { unsigned int acc_config; int ret; if (val & ~BMA400_TWO_BITS_MASK) return -EINVAL; /* * The oversampling ratio is stored in a different register * based on the power-mode. */ switch (data->power_mode) { case POWER_MODE_LOW: ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &acc_config); if (ret) return ret; ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG, (acc_config & ~BMA400_LP_OSR_MASK) | (val << BMA400_LP_OSR_SHIFT)); if (ret) { dev_err(data->dev, "Failed to write out OSR\n"); return ret; } data->oversampling_ratio = val; return 0; case POWER_MODE_NORMAL: ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config); if (ret) return ret; ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, (acc_config & ~BMA400_NP_OSR_MASK) | (val << BMA400_NP_OSR_SHIFT)); if (ret) { dev_err(data->dev, "Failed to write out OSR\n"); return ret; } data->oversampling_ratio = val; return 0; default: return -EINVAL; } return ret; } static int bma400_accel_scale_to_raw(struct bma400_data *data, unsigned int val) { int raw; if (val == 0) return -EINVAL; /* Note this works because BMA400_SCALE_MIN is odd */ raw = __ffs(val); if (val >> raw != BMA400_SCALE_MIN) return -EINVAL; return raw; } static int bma400_get_accel_scale(struct bma400_data *data) { unsigned int raw_scale; unsigned int val; int ret; ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); if (ret) return ret; raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT; if (raw_scale > BMA400_TWO_BITS_MASK) return -EINVAL; data->scale = BMA400_SCALE_MIN << raw_scale; return 0; } static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val) { unsigned int acc_config; int raw; int ret; ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config); if (ret) return ret; raw = bma400_accel_scale_to_raw(data, val); if (raw < 0) return raw; ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, (acc_config & ~BMA400_ACC_SCALE_MASK) | (raw << BMA400_SCALE_SHIFT)); if (ret) return ret; data->scale = val; return 0; } static int bma400_get_power_mode(struct bma400_data *data) { unsigned int val; int ret; ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val); if (ret) { dev_err(data->dev, "Failed to read status register\n"); return ret; } data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK; return 0; } static int bma400_set_power_mode(struct bma400_data *data, enum bma400_power_mode mode) { unsigned int val; int ret; ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val); if (ret) return ret; if (data->power_mode == mode) return 0; if (mode == POWER_MODE_INVALID) return -EINVAL; /* Preserve the low-power oversample ratio etc */ ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG, mode | (val & ~BMA400_TWO_BITS_MASK)); if (ret) { dev_err(data->dev, "Failed to write to power-mode\n"); return ret; } data->power_mode = mode; /* * Update our cached osr and odr based on the new * power-mode. */ bma400_get_accel_output_data_rate(data); bma400_get_accel_oversampling_ratio(data); return 0; } static int bma400_enable_steps(struct bma400_data *data, int val) { int ret; if (data->steps_enabled == val) return 0; ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG, BMA400_STEP_INT_MSK, FIELD_PREP(BMA400_STEP_INT_MSK, val ? 1 : 0)); if (ret) return ret; data->steps_enabled = val; return ret; } static int bma400_get_steps_reg(struct bma400_data *data, int *val) { u8 *steps_raw; int ret; steps_raw = kmalloc(BMA400_STEP_RAW_LEN, GFP_KERNEL); if (!steps_raw) return -ENOMEM; ret = regmap_bulk_read(data->regmap, BMA400_STEP_CNT0_REG, steps_raw, BMA400_STEP_RAW_LEN); if (ret) { kfree(steps_raw); return ret; } *val = get_unaligned_le24(steps_raw); kfree(steps_raw); return IIO_VAL_INT; } static void bma400_init_tables(void) { int raw; int i; for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) { raw = (i / 2) + 5; bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i], &bma400_sample_freqs[i + 1]); } for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) { raw = i / 2; bma400_scales[i] = 0; bma400_scales[i + 1] = BMA400_SCALE_MIN << raw; } } static void bma400_power_disable(void *data_ptr) { struct bma400_data *data = data_ptr; int ret; mutex_lock(&data->mutex); ret = bma400_set_power_mode(data, POWER_MODE_SLEEP); mutex_unlock(&data->mutex); if (ret) dev_warn(data->dev, "Failed to put device into sleep mode (%pe)\n", ERR_PTR(ret)); } static enum iio_modifier bma400_act_to_mod(enum bma400_activity activity) { switch (activity) { case BMA400_STILL: return IIO_MOD_STILL; case BMA400_WALKING: return IIO_MOD_WALKING; case BMA400_RUNNING: return IIO_MOD_RUNNING; default: return IIO_NO_MOD; } } static int bma400_init(struct bma400_data *data) { static const char * const regulator_names[] = { "vdd", "vddio" }; unsigned int val; int ret; ret = devm_regulator_bulk_get_enable(data->dev, ARRAY_SIZE(regulator_names), regulator_names); if (ret) return dev_err_probe(data->dev, ret, "Failed to get regulators\n"); /* Try to read chip_id register. It must return 0x90. */ ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val); if (ret) { dev_err(data->dev, "Failed to read chip id register\n"); return ret; } if (val != BMA400_ID_REG_VAL) { dev_err(data->dev, "Chip ID mismatch\n"); return -ENODEV; } ret = bma400_get_power_mode(data); if (ret) { dev_err(data->dev, "Failed to get the initial power-mode\n"); return ret; } if (data->power_mode != POWER_MODE_NORMAL) { ret = bma400_set_power_mode(data, POWER_MODE_NORMAL); if (ret) { dev_err(data->dev, "Failed to wake up the device\n"); return ret; } /* * TODO: The datasheet waits 1500us here in the example, but * lists 2/ODR as the wakeup time. */ usleep_range(1500, 2000); } ret = devm_add_action_or_reset(data->dev, bma400_power_disable, data); if (ret) return ret; bma400_init_tables(); ret = bma400_get_accel_output_data_rate(data); if (ret) return ret; ret = bma400_get_accel_oversampling_ratio(data); if (ret) return ret; ret = bma400_get_accel_scale(data); if (ret) return ret; /* Configure INT1 pin to open drain */ ret = regmap_write(data->regmap, BMA400_INT_IO_CTRL_REG, 0x06); if (ret) return ret; /* * Once the interrupt engine is supported we might use the * data_src_reg, but for now ensure this is set to the * variable ODR filter selectable by the sample frequency * channel. */ return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00); } static int bma400_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bma400_data *data = iio_priv(indio_dev); unsigned int activity; int ret; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_TEMP: mutex_lock(&data->mutex); ret = bma400_get_temp_reg(data, val, val2); mutex_unlock(&data->mutex); return ret; case IIO_STEPS: return bma400_get_steps_reg(data, val); case IIO_ACTIVITY: ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG, &activity); if (ret) return ret; /* * The device does not support confidence value levels, * so we will always have 100% for current activity and * 0% for the others. */ if (chan->channel2 == bma400_act_to_mod(activity)) *val = 100; else *val = 0; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_RAW: mutex_lock(&data->mutex); ret = bma400_get_accel_reg(data, chan, val); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_ACCEL: if (data->sample_freq.hz < 0) return -EINVAL; *val = data->sample_freq.hz; *val2 = data->sample_freq.uhz; return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: /* * Runs at a fixed sampling frequency. See Section 4.4 * of the datasheet. */ *val = 6; *val2 = 250000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = data->scale; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: /* * TODO: We could avoid this logic and returning -EINVAL here if * we set both the low-power and normal mode OSR registers when * we configure the device. */ if (data->oversampling_ratio < 0) return -EINVAL; *val = data->oversampling_ratio; return IIO_VAL_INT; case IIO_CHAN_INFO_ENABLE: *val = data->steps_enabled; return IIO_VAL_INT; default: return -EINVAL; } } static int bma400_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: *type = IIO_VAL_INT_PLUS_MICRO; *vals = bma400_scales; *length = ARRAY_SIZE(bma400_scales); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: *type = IIO_VAL_INT; *vals = bma400_osr_range; *length = ARRAY_SIZE(bma400_osr_range); return IIO_AVAIL_RANGE; case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT_PLUS_MICRO; *vals = bma400_sample_freqs; *length = ARRAY_SIZE(bma400_sample_freqs); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int bma400_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bma400_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: /* * The sample frequency is readonly for the temperature * register and a fixed value in low-power mode. */ if (chan->type != IIO_ACCEL) return -EINVAL; mutex_lock(&data->mutex); ret = bma400_set_accel_output_data_rate(data, val, val2); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_SCALE: if (val != 0 || val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX) return -EINVAL; mutex_lock(&data->mutex); ret = bma400_set_accel_scale(data, val2); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: mutex_lock(&data->mutex); ret = bma400_set_accel_oversampling_ratio(data, val); mutex_unlock(&data->mutex); return ret; case IIO_CHAN_INFO_ENABLE: mutex_lock(&data->mutex); ret = bma400_enable_steps(data, val); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: return IIO_VAL_INT; case IIO_CHAN_INFO_ENABLE: return IIO_VAL_INT; default: return -EINVAL; } } static int bma400_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct bma400_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_ACCEL: switch (dir) { case IIO_EV_DIR_RISING: return FIELD_GET(BMA400_INT_GEN1_MSK, data->generic_event_en); case IIO_EV_DIR_FALLING: return FIELD_GET(BMA400_INT_GEN2_MSK, data->generic_event_en); case IIO_EV_DIR_SINGLETAP: return FIELD_GET(BMA400_S_TAP_MSK, data->tap_event_en_bitmask); case IIO_EV_DIR_DOUBLETAP: return FIELD_GET(BMA400_D_TAP_MSK, data->tap_event_en_bitmask); default: return -EINVAL; } case IIO_STEPS: return data->step_event_en; case IIO_ACTIVITY: return data->activity_event_en; default: return -EINVAL; } } static int bma400_steps_event_enable(struct bma400_data *data, int state) { int ret; ret = bma400_enable_steps(data, 1); if (ret) return ret; ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG, BMA400_STEP_INT_MSK, FIELD_PREP(BMA400_STEP_INT_MSK, state)); if (ret) return ret; data->step_event_en = state; return 0; } static int bma400_activity_event_en(struct bma400_data *data, enum iio_event_direction dir, int state) { int ret, reg, msk, value; int field_value = 0; switch (dir) { case IIO_EV_DIR_RISING: reg = BMA400_GEN1INT_CONFIG0; msk = BMA400_INT_GEN1_MSK; value = 2; set_mask_bits(&field_value, BMA400_INT_GEN1_MSK, FIELD_PREP(BMA400_INT_GEN1_MSK, state)); break; case IIO_EV_DIR_FALLING: reg = BMA400_GEN2INT_CONFIG0; msk = BMA400_INT_GEN2_MSK; value = 0; set_mask_bits(&field_value, BMA400_INT_GEN2_MSK, FIELD_PREP(BMA400_INT_GEN2_MSK, state)); break; default: return -EINVAL; } /* Enabling all axis for interrupt evaluation */ ret = regmap_write(data->regmap, reg, 0xF8); if (ret) return ret; /* OR combination of all axis for interrupt evaluation */ ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG1_OFF, value); if (ret) return ret; /* Initial value to avoid interrupts while enabling*/ ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG2_OFF, 0x0A); if (ret) return ret; /* Initial duration value to avoid interrupts while enabling*/ ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG31_OFF, 0x0F); if (ret) return ret; ret = regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG, msk, field_value); if (ret) return ret; ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG, msk, field_value); if (ret) return ret; set_mask_bits(&data->generic_event_en, msk, field_value); return 0; } static int bma400_tap_event_en(struct bma400_data *data, enum iio_event_direction dir, int state) { unsigned int mask, field_value; int ret; /* * Tap interrupts can be configured only in normal mode. * See table in section 4.3 "Power modes - performance modes" of * datasheet v1.2. */ if (data->power_mode != POWER_MODE_NORMAL) return -EINVAL; /* * Tap interrupts are operating with a data rate of 200Hz. * See section 4.7 "Tap sensing interrupt" in datasheet v1.2. */ if (data->sample_freq.hz != 200 && state) { dev_err(data->dev, "Invalid data rate for tap interrupts.\n"); return -EINVAL; } ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG, BMA400_S_TAP_MSK, FIELD_PREP(BMA400_S_TAP_MSK, state)); if (ret) return ret; switch (dir) { case IIO_EV_DIR_SINGLETAP: mask = BMA400_S_TAP_MSK; set_mask_bits(&field_value, BMA400_S_TAP_MSK, FIELD_PREP(BMA400_S_TAP_MSK, state)); break; case IIO_EV_DIR_DOUBLETAP: mask = BMA400_D_TAP_MSK; set_mask_bits(&field_value, BMA400_D_TAP_MSK, FIELD_PREP(BMA400_D_TAP_MSK, state)); break; default: return -EINVAL; } ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG, mask, field_value); if (ret) return ret; set_mask_bits(&data->tap_event_en_bitmask, mask, field_value); return 0; } static int bma400_disable_adv_interrupt(struct bma400_data *data) { int ret; ret = regmap_write(data->regmap, BMA400_INT_CONFIG0_REG, 0); if (ret) return ret; ret = regmap_write(data->regmap, BMA400_INT_CONFIG1_REG, 0); if (ret) return ret; data->tap_event_en_bitmask = 0; data->generic_event_en = 0; data->step_event_en = false; data->activity_event_en = false; return 0; } static int bma400_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct bma400_data *data = iio_priv(indio_dev); int ret; switch (chan->type) { case IIO_ACCEL: switch (type) { case IIO_EV_TYPE_MAG: mutex_lock(&data->mutex); ret = bma400_activity_event_en(data, dir, state); mutex_unlock(&data->mutex); return ret; case IIO_EV_TYPE_GESTURE: mutex_lock(&data->mutex); ret = bma400_tap_event_en(data, dir, state); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_STEPS: mutex_lock(&data->mutex); ret = bma400_steps_event_enable(data, state); mutex_unlock(&data->mutex); return ret; case IIO_ACTIVITY: mutex_lock(&data->mutex); if (!data->step_event_en) { ret = bma400_steps_event_enable(data, true); if (ret) { mutex_unlock(&data->mutex); return ret; } } data->activity_event_en = state; mutex_unlock(&data->mutex); return 0; default: return -EINVAL; } } static int get_gen_config_reg(enum iio_event_direction dir) { switch (dir) { case IIO_EV_DIR_FALLING: return BMA400_GEN2INT_CONFIG0; case IIO_EV_DIR_RISING: return BMA400_GEN1INT_CONFIG0; default: return -EINVAL; } } static int bma400_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct bma400_data *data = iio_priv(indio_dev); int ret, reg, reg_val, raw; if (chan->type != IIO_ACCEL) return -EINVAL; switch (type) { case IIO_EV_TYPE_MAG: reg = get_gen_config_reg(dir); if (reg < 0) return -EINVAL; *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: ret = regmap_read(data->regmap, reg + BMA400_GEN_CONFIG2_OFF, val); if (ret) return ret; return IIO_VAL_INT; case IIO_EV_INFO_PERIOD: mutex_lock(&data->mutex); ret = regmap_bulk_read(data->regmap, reg + BMA400_GEN_CONFIG3_OFF, &data->duration, sizeof(data->duration)); if (ret) { mutex_unlock(&data->mutex); return ret; } *val = be16_to_cpu(data->duration); mutex_unlock(&data->mutex); return IIO_VAL_INT; case IIO_EV_INFO_HYSTERESIS: ret = regmap_read(data->regmap, reg, val); if (ret) return ret; *val = FIELD_GET(BMA400_GEN_HYST_MSK, *val); return IIO_VAL_INT; default: return -EINVAL; } case IIO_EV_TYPE_GESTURE: switch (info) { case IIO_EV_INFO_VALUE: ret = regmap_read(data->regmap, BMA400_TAP_CONFIG, &reg_val); if (ret) return ret; *val = FIELD_GET(BMA400_TAP_SEN_MSK, reg_val); return IIO_VAL_INT; case IIO_EV_INFO_RESET_TIMEOUT: ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1, &reg_val); if (ret) return ret; raw = FIELD_GET(BMA400_TAP_QUIET_MSK, reg_val); *val = 0; *val2 = tap_reset_timeout[raw]; return IIO_VAL_INT_PLUS_MICRO; case IIO_EV_INFO_TAP2_MIN_DELAY: ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1, &reg_val); if (ret) return ret; raw = FIELD_GET(BMA400_TAP_QUIETDT_MSK, reg_val); *val = 0; *val2 = double_tap2_min_delay[raw]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } default: return -EINVAL; } } static int bma400_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct bma400_data *data = iio_priv(indio_dev); int reg, ret, raw; if (chan->type != IIO_ACCEL) return -EINVAL; switch (type) { case IIO_EV_TYPE_MAG: reg = get_gen_config_reg(dir); if (reg < 0) return -EINVAL; switch (info) { case IIO_EV_INFO_VALUE: if (val < 1 || val > 255) return -EINVAL; return regmap_write(data->regmap, reg + BMA400_GEN_CONFIG2_OFF, val); case IIO_EV_INFO_PERIOD: if (val < 1 || val > 65535) return -EINVAL; mutex_lock(&data->mutex); put_unaligned_be16(val, &data->duration); ret = regmap_bulk_write(data->regmap, reg + BMA400_GEN_CONFIG3_OFF, &data->duration, sizeof(data->duration)); mutex_unlock(&data->mutex); return ret; case IIO_EV_INFO_HYSTERESIS: if (val < 0 || val > 3) return -EINVAL; return regmap_update_bits(data->regmap, reg, BMA400_GEN_HYST_MSK, FIELD_PREP(BMA400_GEN_HYST_MSK, val)); default: return -EINVAL; } case IIO_EV_TYPE_GESTURE: switch (info) { case IIO_EV_INFO_VALUE: if (val < 0 || val > 7) return -EINVAL; return regmap_update_bits(data->regmap, BMA400_TAP_CONFIG, BMA400_TAP_SEN_MSK, FIELD_PREP(BMA400_TAP_SEN_MSK, val)); case IIO_EV_INFO_RESET_TIMEOUT: raw = usec_to_tapreg_raw(val2, tap_reset_timeout); if (raw < 0) return -EINVAL; return regmap_update_bits(data->regmap, BMA400_TAP_CONFIG1, BMA400_TAP_QUIET_MSK, FIELD_PREP(BMA400_TAP_QUIET_MSK, raw)); case IIO_EV_INFO_TAP2_MIN_DELAY: raw = usec_to_tapreg_raw(val2, double_tap2_min_delay); if (raw < 0) return -EINVAL; return regmap_update_bits(data->regmap, BMA400_TAP_CONFIG1, BMA400_TAP_QUIETDT_MSK, FIELD_PREP(BMA400_TAP_QUIETDT_MSK, raw)); default: return -EINVAL; } default: return -EINVAL; } } static int bma400_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bma400_data *data = iio_priv(indio_dev); int ret; ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG, BMA400_INT_DRDY_MSK, FIELD_PREP(BMA400_INT_DRDY_MSK, state)); if (ret) return ret; return regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG, BMA400_INT_DRDY_MSK, FIELD_PREP(BMA400_INT_DRDY_MSK, state)); } static const unsigned long bma400_avail_scan_masks[] = { BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z), BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z) | BIT(BMA400_TEMP), 0 }; static const struct iio_info bma400_info = { .read_raw = bma400_read_raw, .read_avail = bma400_read_avail, .write_raw = bma400_write_raw, .write_raw_get_fmt = bma400_write_raw_get_fmt, .read_event_config = bma400_read_event_config, .write_event_config = bma400_write_event_config, .write_event_value = bma400_write_event_value, .read_event_value = bma400_read_event_value, .event_attrs = &bma400_event_attribute_group, }; static const struct iio_trigger_ops bma400_trigger_ops = { .set_trigger_state = &bma400_data_rdy_trigger_set_state, .validate_device = &iio_trigger_validate_own_device, }; static irqreturn_t bma400_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bma400_data *data = iio_priv(indio_dev); int ret, temp; /* Lock to protect the data->buffer */ mutex_lock(&data->mutex); /* bulk read six registers, with the base being the LSB register */ ret = regmap_bulk_read(data->regmap, BMA400_X_AXIS_LSB_REG, &data->buffer.buff, sizeof(data->buffer.buff)); if (ret) goto unlock_err; if (test_bit(BMA400_TEMP, indio_dev->active_scan_mask)) { ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &temp); if (ret) goto unlock_err; data->buffer.temperature = temp; } iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer, iio_get_time_ns(indio_dev)); mutex_unlock(&data->mutex); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; unlock_err: mutex_unlock(&data->mutex); return IRQ_NONE; } static irqreturn_t bma400_interrupt(int irq, void *private) { struct iio_dev *indio_dev = private; struct bma400_data *data = iio_priv(indio_dev); s64 timestamp = iio_get_time_ns(indio_dev); unsigned int act, ev_dir = IIO_EV_DIR_NONE; int ret; /* Lock to protect the data->status */ mutex_lock(&data->mutex); ret = regmap_bulk_read(data->regmap, BMA400_INT_STAT0_REG, &data->status, sizeof(data->status)); /* * if none of the bit is set in the status register then it is * spurious interrupt. */ if (ret || !data->status) goto unlock_err; /* * Disable all advance interrupts if interrupt engine overrun occurs. * See section 4.7 "Interrupt engine overrun" in datasheet v1.2. */ if (FIELD_GET(BMA400_INT_ENG_OVRUN_MSK, le16_to_cpu(data->status))) { bma400_disable_adv_interrupt(data); dev_err(data->dev, "Interrupt engine overrun\n"); goto unlock_err; } if (FIELD_GET(BMA400_INT_S_TAP_MSK, le16_to_cpu(data->status))) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, IIO_EV_TYPE_GESTURE, IIO_EV_DIR_SINGLETAP), timestamp); if (FIELD_GET(BMA400_INT_D_TAP_MSK, le16_to_cpu(data->status))) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, IIO_EV_TYPE_GESTURE, IIO_EV_DIR_DOUBLETAP), timestamp); if (FIELD_GET(BMA400_INT_GEN1_MSK, le16_to_cpu(data->status))) ev_dir = IIO_EV_DIR_RISING; if (FIELD_GET(BMA400_INT_GEN2_MSK, le16_to_cpu(data->status))) ev_dir = IIO_EV_DIR_FALLING; if (ev_dir != IIO_EV_DIR_NONE) { iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, IIO_EV_TYPE_MAG, ev_dir), timestamp); } if (FIELD_GET(BMA400_STEP_STAT_MASK, le16_to_cpu(data->status))) { iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_STEPS, 0, IIO_NO_MOD, IIO_EV_TYPE_CHANGE, IIO_EV_DIR_NONE), timestamp); if (data->activity_event_en) { ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG, &act); if (ret) goto unlock_err; iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACTIVITY, 0, bma400_act_to_mod(act), IIO_EV_TYPE_CHANGE, IIO_EV_DIR_NONE), timestamp); } } if (FIELD_GET(BMA400_INT_DRDY_MSK, le16_to_cpu(data->status))) { mutex_unlock(&data->mutex); iio_trigger_poll_nested(data->trig); return IRQ_HANDLED; } mutex_unlock(&data->mutex); return IRQ_HANDLED; unlock_err: mutex_unlock(&data->mutex); return IRQ_NONE; } int bma400_probe(struct device *dev, struct regmap *regmap, int irq, const char *name) { struct iio_dev *indio_dev; struct bma400_data *data; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->regmap = regmap; data->dev = dev; ret = bma400_init(data); if (ret) return ret; ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; mutex_init(&data->mutex); indio_dev->name = name; indio_dev->info = &bma400_info; indio_dev->channels = bma400_channels; indio_dev->num_channels = ARRAY_SIZE(bma400_channels); indio_dev->available_scan_masks = bma400_avail_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; if (irq > 0) { data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->trig) return -ENOMEM; data->trig->ops = &bma400_trigger_ops; iio_trigger_set_drvdata(data->trig, indio_dev); ret = devm_iio_trigger_register(data->dev, data->trig); if (ret) return dev_err_probe(data->dev, ret, "iio trigger register fail\n"); indio_dev->trig = iio_trigger_get(data->trig); ret = devm_request_threaded_irq(dev, irq, NULL, &bma400_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return dev_err_probe(data->dev, ret, "request irq %d failed\n", irq); } ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, &bma400_trigger_handler, NULL); if (ret) return dev_err_probe(data->dev, ret, "iio triggered buffer setup failed\n"); return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS(bma400_probe, IIO_BMA400); MODULE_AUTHOR("Dan Robertson <[email protected]>"); MODULE_AUTHOR("Jagath Jog J <[email protected]>"); MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/bma400_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL355 3-Axis Digital Accelerometer I2C driver * * Copyright (c) 2021 Puranjay Mohan <[email protected]> */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/regmap.h> #include "adxl355.h" static const struct regmap_config adxl355_i2c_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x2F, .rd_table = &adxl355_readable_regs_tbl, .wr_table = &adxl355_writeable_regs_tbl, }; static int adxl355_i2c_probe(struct i2c_client *client) { struct regmap *regmap; const struct adxl355_chip_info *chip_data; chip_data = i2c_get_match_data(client); if (!chip_data) return -ENODEV; regmap = devm_regmap_init_i2c(client, &adxl355_i2c_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Error initializing i2c regmap: %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return adxl355_core_probe(&client->dev, regmap, chip_data); } static const struct i2c_device_id adxl355_i2c_id[] = { { "adxl355", (kernel_ulong_t)&adxl35x_chip_info[ADXL355] }, { "adxl359", (kernel_ulong_t)&adxl35x_chip_info[ADXL359] }, { } }; MODULE_DEVICE_TABLE(i2c, adxl355_i2c_id); static const struct of_device_id adxl355_of_match[] = { { .compatible = "adi,adxl355", .data = &adxl35x_chip_info[ADXL355] }, { .compatible = "adi,adxl359", .data = &adxl35x_chip_info[ADXL359] }, { } }; MODULE_DEVICE_TABLE(of, adxl355_of_match); static struct i2c_driver adxl355_i2c_driver = { .driver = { .name = "adxl355_i2c", .of_match_table = adxl355_of_match, }, .probe = adxl355_i2c_probe, .id_table = adxl355_i2c_id, }; module_i2c_driver(adxl355_i2c_driver); MODULE_AUTHOR("Puranjay Mohan <[email protected]>"); MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer I2C driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADXL355);
linux-master
drivers/iio/accel/adxl355_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL313 3-Axis Digital Accelerometer * * Copyright (c) 2021 Lucas Stankus <[email protected]> * * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL313.pdf */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/property.h> #include "adxl313.h" static const struct regmap_config adxl31x_spi_regmap_config[] = { [ADXL312] = { .reg_bits = 8, .val_bits = 8, .rd_table = &adxl312_readable_regs_table, .wr_table = &adxl312_writable_regs_table, .max_register = 0x39, /* Setting bits 7 and 6 enables multiple-byte read */ .read_flag_mask = BIT(7) | BIT(6), }, [ADXL313] = { .reg_bits = 8, .val_bits = 8, .rd_table = &adxl313_readable_regs_table, .wr_table = &adxl313_writable_regs_table, .max_register = 0x39, /* Setting bits 7 and 6 enables multiple-byte read */ .read_flag_mask = BIT(7) | BIT(6), }, [ADXL314] = { .reg_bits = 8, .val_bits = 8, .rd_table = &adxl314_readable_regs_table, .wr_table = &adxl314_writable_regs_table, .max_register = 0x39, /* Setting bits 7 and 6 enables multiple-byte read */ .read_flag_mask = BIT(7) | BIT(6), }, }; static int adxl313_spi_setup(struct device *dev, struct regmap *regmap) { struct spi_device *spi = container_of(dev, struct spi_device, dev); int ret; if (spi->mode & SPI_3WIRE) { ret = regmap_write(regmap, ADXL313_REG_DATA_FORMAT, ADXL313_SPI_3WIRE); if (ret) return ret; } return regmap_update_bits(regmap, ADXL313_REG_POWER_CTL, ADXL313_I2C_DISABLE, ADXL313_I2C_DISABLE); } static int adxl313_spi_probe(struct spi_device *spi) { const struct adxl313_chip_info *chip_data; struct regmap *regmap; int ret; spi->mode |= SPI_MODE_3; ret = spi_setup(spi); if (ret) return ret; /* * Retrieves device specific data as a pointer to a * adxl313_chip_info structure */ chip_data = device_get_match_data(&spi->dev); if (!chip_data) chip_data = (const struct adxl313_chip_info *)spi_get_device_id(spi)->driver_data; regmap = devm_regmap_init_spi(spi, &adxl31x_spi_regmap_config[chip_data->type]); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Error initializing spi regmap: %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } return adxl313_core_probe(&spi->dev, regmap, chip_data, &adxl313_spi_setup); } static const struct spi_device_id adxl313_spi_id[] = { { .name = "adxl312", .driver_data = (kernel_ulong_t)&adxl31x_chip_info[ADXL312] }, { .name = "adxl313", .driver_data = (kernel_ulong_t)&adxl31x_chip_info[ADXL313] }, { .name = "adxl314", .driver_data = (kernel_ulong_t)&adxl31x_chip_info[ADXL314] }, { } }; MODULE_DEVICE_TABLE(spi, adxl313_spi_id); static const struct of_device_id adxl313_of_match[] = { { .compatible = "adi,adxl312", .data = &adxl31x_chip_info[ADXL312] }, { .compatible = "adi,adxl313", .data = &adxl31x_chip_info[ADXL313] }, { .compatible = "adi,adxl314", .data = &adxl31x_chip_info[ADXL314] }, { } }; MODULE_DEVICE_TABLE(of, adxl313_of_match); static struct spi_driver adxl313_spi_driver = { .driver = { .name = "adxl313_spi", .of_match_table = adxl313_of_match, }, .probe = adxl313_spi_probe, .id_table = adxl313_spi_id, }; module_spi_driver(adxl313_spi_driver); MODULE_AUTHOR("Lucas Stankus <[email protected]>"); MODULE_DESCRIPTION("ADXL313 3-Axis Digital Accelerometer SPI driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADXL313);
linux-master
drivers/iio/accel/adxl313_spi.c
// SPDX-License-Identifier: GPL-2.0+ /* * ADXL372 3-Axis Digital Accelerometer SPI driver * * Copyright 2018 Analog Devices Inc. */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/of.h> #include <linux/spi/spi.h> #include "adxl372.h" static const struct regmap_config adxl372_spi_regmap_config = { .reg_bits = 7, .pad_bits = 1, .val_bits = 8, .read_flag_mask = BIT(0), .readable_noinc_reg = adxl372_readable_noinc_reg, }; static int adxl372_spi_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); struct regmap *regmap; regmap = devm_regmap_init_spi(spi, &adxl372_spi_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); return adxl372_probe(&spi->dev, regmap, spi->irq, id->name); } static const struct spi_device_id adxl372_spi_id[] = { { "adxl372", 0 }, {} }; MODULE_DEVICE_TABLE(spi, adxl372_spi_id); static const struct of_device_id adxl372_of_match[] = { { .compatible = "adi,adxl372" }, { } }; MODULE_DEVICE_TABLE(of, adxl372_of_match); static struct spi_driver adxl372_spi_driver = { .driver = { .name = "adxl372_spi", .of_match_table = adxl372_of_match, }, .probe = adxl372_spi_probe, .id_table = adxl372_spi_id, }; module_spi_driver(adxl372_spi_driver); MODULE_AUTHOR("Stefan Popa <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer SPI driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_ADXL372);
linux-master
drivers/iio/accel/adxl372_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL355 3-Axis Digital Accelerometer IIO core driver * * Copyright (c) 2021 Puranjay Mohan <[email protected]> * * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/limits.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/units.h> #include <asm/unaligned.h> #include "adxl355.h" /* ADXL355 Register Definitions */ #define ADXL355_DEVID_AD_REG 0x00 #define ADXL355_DEVID_MST_REG 0x01 #define ADXL355_PARTID_REG 0x02 #define ADXL355_STATUS_REG 0x04 #define ADXL355_FIFO_ENTRIES_REG 0x05 #define ADXL355_TEMP2_REG 0x06 #define ADXL355_XDATA3_REG 0x08 #define ADXL355_YDATA3_REG 0x0B #define ADXL355_ZDATA3_REG 0x0E #define ADXL355_FIFO_DATA_REG 0x11 #define ADXL355_OFFSET_X_H_REG 0x1E #define ADXL355_OFFSET_Y_H_REG 0x20 #define ADXL355_OFFSET_Z_H_REG 0x22 #define ADXL355_ACT_EN_REG 0x24 #define ADXL355_ACT_THRESH_H_REG 0x25 #define ADXL355_ACT_THRESH_L_REG 0x26 #define ADXL355_ACT_COUNT_REG 0x27 #define ADXL355_FILTER_REG 0x28 #define ADXL355_FILTER_ODR_MSK GENMASK(3, 0) #define ADXL355_FILTER_HPF_MSK GENMASK(6, 4) #define ADXL355_FIFO_SAMPLES_REG 0x29 #define ADXL355_INT_MAP_REG 0x2A #define ADXL355_SYNC_REG 0x2B #define ADXL355_RANGE_REG 0x2C #define ADXL355_POWER_CTL_REG 0x2D #define ADXL355_POWER_CTL_MODE_MSK GENMASK(1, 0) #define ADXL355_POWER_CTL_DRDY_MSK BIT(2) #define ADXL355_SELF_TEST_REG 0x2E #define ADXL355_RESET_REG 0x2F #define ADXL355_DEVID_AD_VAL 0xAD #define ADXL355_DEVID_MST_VAL 0x1D #define ADXL355_PARTID_VAL 0xED #define ADXL359_PARTID_VAL 0xE9 #define ADXL355_RESET_CODE 0x52 static const struct regmap_range adxl355_read_reg_range[] = { regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG), regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG), }; const struct regmap_access_table adxl355_readable_regs_tbl = { .yes_ranges = adxl355_read_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, IIO_ADXL355); static const struct regmap_range adxl355_write_reg_range[] = { regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG), }; const struct regmap_access_table adxl355_writeable_regs_tbl = { .yes_ranges = adxl355_write_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, IIO_ADXL355); const struct adxl355_chip_info adxl35x_chip_info[] = { [ADXL355] = { .name = "adxl355", .part_id = ADXL355_PARTID_VAL, /* * At +/- 2g with 20-bit resolution, scale is given in datasheet * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2. */ .accel_scale = { .integer = 0, .decimal = 38245, }, /* * The datasheet defines an intercept of 1885 LSB at 25 degC * and a slope of -9.05 LSB/C. The following formula can be used * to find the temperature: * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE. * Hence using some rearranging we get the scale as -110.497238 * and offset as -2111.25. */ .temp_offset = { .integer = -2111, .decimal = 250000, }, }, [ADXL359] = { .name = "adxl359", .part_id = ADXL359_PARTID_VAL, /* * At +/- 10g with 20-bit resolution, scale is given in datasheet * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2. */ .accel_scale = { .integer = 0, .decimal = 191229, }, /* * The datasheet defines an intercept of 1852 LSB at 25 degC * and a slope of -9.05 LSB/C. The following formula can be used * to find the temperature: * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE. * Hence using some rearranging we get the scale as -110.497238 * and offset as -2079.25. */ .temp_offset = { .integer = -2079, .decimal = 250000, }, }, }; EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, IIO_ADXL355); enum adxl355_op_mode { ADXL355_MEASUREMENT, ADXL355_STANDBY, ADXL355_TEMP_OFF, }; enum adxl355_odr { ADXL355_ODR_4000HZ, ADXL355_ODR_2000HZ, ADXL355_ODR_1000HZ, ADXL355_ODR_500HZ, ADXL355_ODR_250HZ, ADXL355_ODR_125HZ, ADXL355_ODR_62_5HZ, ADXL355_ODR_31_25HZ, ADXL355_ODR_15_625HZ, ADXL355_ODR_7_813HZ, ADXL355_ODR_3_906HZ, }; enum adxl355_hpf_3db { ADXL355_HPF_OFF, ADXL355_HPF_24_7, ADXL355_HPF_6_2084, ADXL355_HPF_1_5545, ADXL355_HPF_0_3862, ADXL355_HPF_0_0954, ADXL355_HPF_0_0238, }; static const int adxl355_odr_table[][2] = { [0] = {4000, 0}, [1] = {2000, 0}, [2] = {1000, 0}, [3] = {500, 0}, [4] = {250, 0}, [5] = {125, 0}, [6] = {62, 500000}, [7] = {31, 250000}, [8] = {15, 625000}, [9] = {7, 813000}, [10] = {3, 906000}, }; static const int adxl355_hpf_3db_multipliers[] = { 0, 247000, 62084, 15545, 3862, 954, 238, }; enum adxl355_chans { chan_x, chan_y, chan_z, }; struct adxl355_chan_info { u8 data_reg; u8 offset_reg; }; static const struct adxl355_chan_info adxl355_chans[] = { [chan_x] = { .data_reg = ADXL355_XDATA3_REG, .offset_reg = ADXL355_OFFSET_X_H_REG }, [chan_y] = { .data_reg = ADXL355_YDATA3_REG, .offset_reg = ADXL355_OFFSET_Y_H_REG }, [chan_z] = { .data_reg = ADXL355_ZDATA3_REG, .offset_reg = ADXL355_OFFSET_Z_H_REG }, }; struct adxl355_data { const struct adxl355_chip_info *chip_info; struct regmap *regmap; struct device *dev; struct mutex lock; /* lock to protect op_mode */ enum adxl355_op_mode op_mode; enum adxl355_odr odr; enum adxl355_hpf_3db hpf_3db; int calibbias[3]; int adxl355_hpf_3db_table[7][2]; struct iio_trigger *dready_trig; union { u8 transf_buf[3]; struct { u8 buf[14]; s64 ts; } buffer; } __aligned(IIO_DMA_MINALIGN); }; static int adxl355_set_op_mode(struct adxl355_data *data, enum adxl355_op_mode op_mode) { int ret; if (data->op_mode == op_mode) return 0; ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, ADXL355_POWER_CTL_MODE_MSK, op_mode); if (ret) return ret; data->op_mode = op_mode; return ret; } static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct adxl355_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, ADXL355_POWER_CTL_DRDY_MSK, FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, state ? 0 : 1)); mutex_unlock(&data->lock); return ret; } static void adxl355_fill_3db_frequency_table(struct adxl355_data *data) { u32 multiplier; u64 div, rem; u64 odr; int i; odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) + adxl355_odr_table[data->odr][1]; for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) { multiplier = adxl355_hpf_3db_multipliers[i]; div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0), TERA * 100, &rem); data->adxl355_hpf_3db_table[i][0] = div; data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100); } } static int adxl355_setup(struct adxl355_data *data) { unsigned int regval; int ret; ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, &regval); if (ret) return ret; if (regval != ADXL355_DEVID_AD_VAL) { dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval); return -ENODEV; } ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, &regval); if (ret) return ret; if (regval != ADXL355_DEVID_MST_VAL) { dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval); return -ENODEV; } ret = regmap_read(data->regmap, ADXL355_PARTID_REG, &regval); if (ret) return ret; if (regval != ADXL355_PARTID_VAL) dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval); /* * Perform a software reset to make sure the device is in a consistent * state after start-up. */ ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE); if (ret) return ret; ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, ADXL355_POWER_CTL_DRDY_MSK, FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1)); if (ret) return ret; adxl355_fill_3db_frequency_table(data); return adxl355_set_op_mode(data, ADXL355_MEASUREMENT); } static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr) { return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2); } static int adxl355_read_axis(struct adxl355_data *data, u8 addr) { int ret; ret = regmap_bulk_read(data->regmap, addr, data->transf_buf, ARRAY_SIZE(data->transf_buf)); if (ret) return ret; return get_unaligned_be24(data->transf_buf); } static int adxl355_find_match(const int (*freq_tbl)[2], const int n, const int val, const int val2) { int i; for (i = 0; i < n; i++) { if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2) return i; } return -EINVAL; } static int adxl355_set_odr(struct adxl355_data *data, enum adxl355_odr odr) { int ret; mutex_lock(&data->lock); if (data->odr == odr) { mutex_unlock(&data->lock); return 0; } ret = adxl355_set_op_mode(data, ADXL355_STANDBY); if (ret) goto err_unlock; ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG, ADXL355_FILTER_ODR_MSK, FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr)); if (ret) goto err_set_opmode; data->odr = odr; adxl355_fill_3db_frequency_table(data); ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); if (ret) goto err_set_opmode; mutex_unlock(&data->lock); return 0; err_set_opmode: adxl355_set_op_mode(data, ADXL355_MEASUREMENT); err_unlock: mutex_unlock(&data->lock); return ret; } static int adxl355_set_hpf_3db(struct adxl355_data *data, enum adxl355_hpf_3db hpf) { int ret; mutex_lock(&data->lock); if (data->hpf_3db == hpf) { mutex_unlock(&data->lock); return 0; } ret = adxl355_set_op_mode(data, ADXL355_STANDBY); if (ret) goto err_unlock; ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG, ADXL355_FILTER_HPF_MSK, FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf)); if (ret) goto err_set_opmode; data->hpf_3db = hpf; ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); if (ret) goto err_set_opmode; mutex_unlock(&data->lock); return 0; err_set_opmode: adxl355_set_op_mode(data, ADXL355_MEASUREMENT); err_unlock: mutex_unlock(&data->lock); return ret; } static int adxl355_set_calibbias(struct adxl355_data *data, enum adxl355_chans chan, int calibbias) { int ret; mutex_lock(&data->lock); ret = adxl355_set_op_mode(data, ADXL355_STANDBY); if (ret) goto err_unlock; put_unaligned_be16(calibbias, data->transf_buf); ret = regmap_bulk_write(data->regmap, adxl355_chans[chan].offset_reg, data->transf_buf, 2); if (ret) goto err_set_opmode; data->calibbias[chan] = calibbias; ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); if (ret) goto err_set_opmode; mutex_unlock(&data->lock); return 0; err_set_opmode: adxl355_set_op_mode(data, ADXL355_MEASUREMENT); err_unlock: mutex_unlock(&data->lock); return ret; } static int adxl355_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adxl355_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: ret = adxl355_get_temp_data(data, chan->address); if (ret < 0) return ret; *val = get_unaligned_be16(data->transf_buf); return IIO_VAL_INT; case IIO_ACCEL: ret = adxl355_read_axis(data, adxl355_chans[ chan->address].data_reg); if (ret < 0) return ret; *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_TEMP: /* * Temperature scale is -110.497238. * See the detailed explanation in adxl35x_chip_info * definition above. */ *val = -110; *val2 = 497238; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: *val = data->chip_info->accel_scale.integer; *val2 = data->chip_info->accel_scale.decimal; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: *val = data->chip_info->temp_offset.integer; *val2 = data->chip_info->temp_offset.decimal; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: *val = sign_extend32(data->calibbias[chan->address], 15); return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: *val = adxl355_odr_table[data->odr][0]; *val2 = adxl355_odr_table[data->odr][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: *val = data->adxl355_hpf_3db_table[data->hpf_3db][0]; *val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int adxl355_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adxl355_data *data = iio_priv(indio_dev); int odr_idx, hpf_idx, calibbias; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: odr_idx = adxl355_find_match(adxl355_odr_table, ARRAY_SIZE(adxl355_odr_table), val, val2); if (odr_idx < 0) return odr_idx; return adxl355_set_odr(data, odr_idx); case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table, ARRAY_SIZE(data->adxl355_hpf_3db_table), val, val2); if (hpf_idx < 0) return hpf_idx; return adxl355_set_hpf_3db(data, hpf_idx); case IIO_CHAN_INFO_CALIBBIAS: calibbias = clamp_t(int, val, S16_MIN, S16_MAX); return adxl355_set_calibbias(data, chan->address, calibbias); default: return -EINVAL; } } static int adxl355_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct adxl355_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (const int *)adxl355_odr_table; *type = IIO_VAL_INT_PLUS_MICRO; /* Values are stored in a 2D matrix */ *length = ARRAY_SIZE(adxl355_odr_table) * 2; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: *vals = (const int *)data->adxl355_hpf_3db_table; *type = IIO_VAL_INT_PLUS_MICRO; /* Values are stored in a 2D matrix */ *length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static const unsigned long adxl355_avail_scan_masks[] = { GENMASK(3, 0), 0 }; static const struct iio_info adxl355_info = { .read_raw = adxl355_read_raw, .write_raw = adxl355_write_raw, .read_avail = &adxl355_read_avail, }; static const struct iio_trigger_ops adxl355_trigger_ops = { .set_trigger_state = &adxl355_data_rdy_trigger_set_state, .validate_device = &iio_trigger_validate_own_device, }; static irqreturn_t adxl355_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct adxl355_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); /* * data->buffer is used both for triggered buffer support * and read/write_raw(), hence, it has to be zeroed here before usage. */ data->buffer.buf[0] = 0; /* * The acceleration data is 24 bits and big endian. It has to be saved * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer. * The buf array is 14 bytes as it includes 3x4=12 bytes for * accelaration data of x, y, and z axis. It also includes 2 bytes for * temperature data. */ ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG, &data->buffer.buf[1], 3); if (ret) goto out_unlock_notify; ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG, &data->buffer.buf[5], 3); if (ret) goto out_unlock_notify; ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG, &data->buffer.buf[9], 3); if (ret) goto out_unlock_notify; ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG, &data->buffer.buf[12], 2); if (ret) goto out_unlock_notify; iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer, pf->timestamp); out_unlock_notify: mutex_unlock(&data->lock); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } #define ADXL355_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 20, \ .storagebits = 32, \ .shift = 4, \ .endianness = IIO_BE, \ } \ } static const struct iio_chan_spec adxl355_channels[] = { ADXL355_ACCEL_CHANNEL(0, chan_x, X), ADXL355_ACCEL_CHANNEL(1, chan_y, Y), ADXL355_ACCEL_CHANNEL(2, chan_z, Z), { .type = IIO_TEMP, .address = ADXL355_TEMP2_REG, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .scan_index = 3, .scan_type = { .sign = 's', .realbits = 12, .storagebits = 16, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(4), }; static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq) { struct adxl355_data *data = iio_priv(indio_dev); int ret; data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->dready_trig) return -ENOMEM; data->dready_trig->ops = &adxl355_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = devm_request_irq(data->dev, irq, &iio_trigger_generic_data_rdy_poll, IRQF_ONESHOT, "adxl355_irq", data->dready_trig); if (ret) return dev_err_probe(data->dev, ret, "request irq %d failed\n", irq); ret = devm_iio_trigger_register(data->dev, data->dready_trig); if (ret) { dev_err(data->dev, "iio trigger register failed\n"); return ret; } indio_dev->trig = iio_trigger_get(data->dready_trig); return 0; } int adxl355_core_probe(struct device *dev, struct regmap *regmap, const struct adxl355_chip_info *chip_info) { struct adxl355_data *data; struct iio_dev *indio_dev; int ret; int irq; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->regmap = regmap; data->dev = dev; data->op_mode = ADXL355_STANDBY; data->chip_info = chip_info; mutex_init(&data->lock); indio_dev->name = chip_info->name; indio_dev->info = &adxl355_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = adxl355_channels; indio_dev->num_channels = ARRAY_SIZE(adxl355_channels); indio_dev->available_scan_masks = adxl355_avail_scan_masks; ret = adxl355_setup(data); if (ret) { dev_err(dev, "ADXL355 setup failed\n"); return ret; } ret = devm_iio_triggered_buffer_setup(dev, indio_dev, &iio_pollfunc_store_time, &adxl355_trigger_handler, NULL); if (ret) { dev_err(dev, "iio triggered buffer setup failed\n"); return ret; } irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY"); if (irq > 0) { ret = adxl355_probe_trigger(indio_dev, irq); if (ret) return ret; } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, IIO_ADXL355); MODULE_AUTHOR("Puranjay Mohan <[email protected]>"); MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/adxl355_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics accelerometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/acpi.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/iio/common/st_sensors_i2c.h> #include "st_accel.h" static const struct of_device_id st_accel_of_match[] = { { /* An older compatible */ .compatible = "st,lis3lv02d", .data = LIS3LV02DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis3lv02dl-accel", .data = LIS3LV02DL_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303dlh-accel", .data = LSM303DLH_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303dlhc-accel", .data = LSM303DLHC_ACCEL_DEV_NAME, }, { .compatible = "st,lis3dh-accel", .data = LIS3DH_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330d-accel", .data = LSM330D_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330dl-accel", .data = LSM330DL_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330dlc-accel", .data = LSM330DLC_ACCEL_DEV_NAME, }, { .compatible = "st,lis331dl-accel", .data = LIS331DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis331dlh-accel", .data = LIS331DLH_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303dl-accel", .data = LSM303DL_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303dlm-accel", .data = LSM303DLM_ACCEL_DEV_NAME, }, { .compatible = "st,lsm330-accel", .data = LSM330_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303agr-accel", .data = LSM303AGR_ACCEL_DEV_NAME, }, { .compatible = "st,lis2dh12-accel", .data = LIS2DH12_ACCEL_DEV_NAME, }, { .compatible = "st,h3lis331dl-accel", .data = H3LIS331DL_ACCEL_DEV_NAME, }, { .compatible = "st,lis3l02dq", .data = LIS3L02DQ_ACCEL_DEV_NAME, }, { .compatible = "st,lng2dm-accel", .data = LNG2DM_ACCEL_DEV_NAME, }, { .compatible = "st,lis2dw12", .data = LIS2DW12_ACCEL_DEV_NAME, }, { .compatible = "st,lis3de", .data = LIS3DE_ACCEL_DEV_NAME, }, { .compatible = "st,lis2de12", .data = LIS2DE12_ACCEL_DEV_NAME, }, { .compatible = "st,lis2hh12", .data = LIS2HH12_ACCEL_DEV_NAME, }, { .compatible = "st,lis302dl", .data = LIS302DL_ACCEL_DEV_NAME, }, { .compatible = "st,lsm303c-accel", .data = LSM303C_ACCEL_DEV_NAME, }, { .compatible = "silan,sc7a20", .data = SC7A20_ACCEL_DEV_NAME, }, { .compatible = "st,iis328dq", .data = IIS328DQ_ACCEL_DEV_NAME, }, {}, }; MODULE_DEVICE_TABLE(of, st_accel_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id st_accel_acpi_match[] = { {"SMO8840", (kernel_ulong_t)LIS2DH12_ACCEL_DEV_NAME}, {"SMO8A90", (kernel_ulong_t)LNG2DM_ACCEL_DEV_NAME}, { }, }; MODULE_DEVICE_TABLE(acpi, st_accel_acpi_match); #endif static const struct i2c_device_id st_accel_id_table[] = { { LSM303DLH_ACCEL_DEV_NAME }, { LSM303DLHC_ACCEL_DEV_NAME }, { LIS3DH_ACCEL_DEV_NAME }, { LSM330D_ACCEL_DEV_NAME }, { LSM330DL_ACCEL_DEV_NAME }, { LSM330DLC_ACCEL_DEV_NAME }, { LIS331DLH_ACCEL_DEV_NAME }, { LSM303DL_ACCEL_DEV_NAME }, { LSM303DLM_ACCEL_DEV_NAME }, { LSM330_ACCEL_DEV_NAME }, { LSM303AGR_ACCEL_DEV_NAME }, { LIS2DH12_ACCEL_DEV_NAME }, { LIS3L02DQ_ACCEL_DEV_NAME }, { LNG2DM_ACCEL_DEV_NAME }, { H3LIS331DL_ACCEL_DEV_NAME }, { LIS331DL_ACCEL_DEV_NAME }, { LIS3LV02DL_ACCEL_DEV_NAME }, { LIS2DW12_ACCEL_DEV_NAME }, { LIS3DE_ACCEL_DEV_NAME }, { LIS2DE12_ACCEL_DEV_NAME }, { LIS2HH12_ACCEL_DEV_NAME }, { LIS302DL_ACCEL_DEV_NAME }, { LSM303C_ACCEL_DEV_NAME }, { SC7A20_ACCEL_DEV_NAME }, { IIS328DQ_ACCEL_DEV_NAME }, {}, }; MODULE_DEVICE_TABLE(i2c, st_accel_id_table); static int st_accel_i2c_probe(struct i2c_client *client) { const struct st_sensor_settings *settings; struct st_sensor_data *adata; struct iio_dev *indio_dev; int ret; st_sensors_dev_name_probe(&client->dev, client->name, sizeof(client->name)); settings = st_accel_get_settings(client->name); if (!settings) { dev_err(&client->dev, "device name %s not recognized.\n", client->name); return -ENODEV; } indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*adata)); if (!indio_dev) return -ENOMEM; adata = iio_priv(indio_dev); adata->sensor_settings = (struct st_sensor_settings *)settings; ret = st_sensors_i2c_configure(indio_dev, client); if (ret < 0) return ret; ret = st_sensors_power_enable(indio_dev); if (ret) return ret; return st_accel_common_probe(indio_dev); } static struct i2c_driver st_accel_driver = { .driver = { .name = "st-accel-i2c", .of_match_table = st_accel_of_match, .acpi_match_table = ACPI_PTR(st_accel_acpi_match), }, .probe = st_accel_i2c_probe, .id_table = st_accel_id_table, }; module_i2c_driver(st_accel_driver); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics accelerometers i2c driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ST_SENSORS);
linux-master
drivers/iio/accel/st_accel_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * Freescale MMA9551L Intelligent Motion-Sensing Platform driver * Copyright (c) 2014, Intel Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/pm_runtime.h> #include "mma9551_core.h" #define MMA9551_DRV_NAME "mma9551" #define MMA9551_IRQ_NAME "mma9551_event" #define MMA9551_GPIO_COUNT 4 /* Tilt application (inclination in IIO terms). */ #define MMA9551_TILT_XZ_ANG_REG 0x00 #define MMA9551_TILT_YZ_ANG_REG 0x01 #define MMA9551_TILT_XY_ANG_REG 0x02 #define MMA9551_TILT_ANGFLG BIT(7) #define MMA9551_TILT_QUAD_REG 0x03 #define MMA9551_TILT_XY_QUAD_SHIFT 0 #define MMA9551_TILT_YZ_QUAD_SHIFT 2 #define MMA9551_TILT_XZ_QUAD_SHIFT 4 #define MMA9551_TILT_CFG_REG 0x01 #define MMA9551_TILT_ANG_THRESH_MASK GENMASK(3, 0) #define MMA9551_DEFAULT_SAMPLE_RATE 122 /* Hz */ /* Tilt events are mapped to the first three GPIO pins. */ enum mma9551_tilt_axis { mma9551_x = 0, mma9551_y, mma9551_z, }; struct mma9551_data { struct i2c_client *client; struct mutex mutex; int event_enabled[3]; int irqs[MMA9551_GPIO_COUNT]; }; static int mma9551_read_incli_chan(struct i2c_client *client, const struct iio_chan_spec *chan, int *val) { u8 quad_shift, angle, quadrant; u16 reg_addr; int ret; switch (chan->channel2) { case IIO_MOD_X: reg_addr = MMA9551_TILT_YZ_ANG_REG; quad_shift = MMA9551_TILT_YZ_QUAD_SHIFT; break; case IIO_MOD_Y: reg_addr = MMA9551_TILT_XZ_ANG_REG; quad_shift = MMA9551_TILT_XZ_QUAD_SHIFT; break; case IIO_MOD_Z: reg_addr = MMA9551_TILT_XY_ANG_REG; quad_shift = MMA9551_TILT_XY_QUAD_SHIFT; break; default: return -EINVAL; } ret = mma9551_set_power_state(client, true); if (ret < 0) return ret; ret = mma9551_read_status_byte(client, MMA9551_APPID_TILT, reg_addr, &angle); if (ret < 0) goto out_poweroff; ret = mma9551_read_status_byte(client, MMA9551_APPID_TILT, MMA9551_TILT_QUAD_REG, &quadrant); if (ret < 0) goto out_poweroff; angle &= ~MMA9551_TILT_ANGFLG; quadrant = (quadrant >> quad_shift) & 0x03; if (quadrant == 1 || quadrant == 3) *val = 90 * (quadrant + 1) - angle; else *val = angle + 90 * quadrant; ret = IIO_VAL_INT; out_poweroff: mma9551_set_power_state(client, false); return ret; } static int mma9551_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mma9551_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_INCLI: mutex_lock(&data->mutex); ret = mma9551_read_incli_chan(data->client, chan, val); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_ACCEL: mutex_lock(&data->mutex); ret = mma9551_read_accel_chan(data->client, chan, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ACCEL: return mma9551_read_accel_scale(val, val2); default: return -EINVAL; } default: return -EINVAL; } } static int mma9551_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct mma9551_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_INCLI: /* IIO counts axes from 1, because IIO_NO_MOD is 0. */ return data->event_enabled[chan->channel2 - 1]; default: return -EINVAL; } } static int mma9551_config_incli_event(struct iio_dev *indio_dev, enum iio_modifier axis, int state) { struct mma9551_data *data = iio_priv(indio_dev); enum mma9551_tilt_axis mma_axis; int ret; /* IIO counts axes from 1, because IIO_NO_MOD is 0. */ mma_axis = axis - 1; if (data->event_enabled[mma_axis] == state) return 0; if (state == 0) { ret = mma9551_gpio_config(data->client, (enum mma9551_gpio_pin)mma_axis, MMA9551_APPID_NONE, 0, 0); if (ret < 0) return ret; ret = mma9551_set_power_state(data->client, false); if (ret < 0) return ret; } else { int bitnum; /* Bit 7 of each angle register holds the angle flag. */ switch (axis) { case IIO_MOD_X: bitnum = 7 + 8 * MMA9551_TILT_YZ_ANG_REG; break; case IIO_MOD_Y: bitnum = 7 + 8 * MMA9551_TILT_XZ_ANG_REG; break; case IIO_MOD_Z: bitnum = 7 + 8 * MMA9551_TILT_XY_ANG_REG; break; default: return -EINVAL; } ret = mma9551_set_power_state(data->client, true); if (ret < 0) return ret; ret = mma9551_gpio_config(data->client, (enum mma9551_gpio_pin)mma_axis, MMA9551_APPID_TILT, bitnum, 0); if (ret < 0) { mma9551_set_power_state(data->client, false); return ret; } } data->event_enabled[mma_axis] = state; return ret; } static int mma9551_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct mma9551_data *data = iio_priv(indio_dev); int ret; switch (chan->type) { case IIO_INCLI: mutex_lock(&data->mutex); ret = mma9551_config_incli_event(indio_dev, chan->channel2, state); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int mma9551_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct mma9551_data *data = iio_priv(indio_dev); int ret; switch (chan->type) { case IIO_INCLI: if (val2 != 0 || val < 1 || val > 10) return -EINVAL; mutex_lock(&data->mutex); ret = mma9551_update_config_bits(data->client, MMA9551_APPID_TILT, MMA9551_TILT_CFG_REG, MMA9551_TILT_ANG_THRESH_MASK, val); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int mma9551_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct mma9551_data *data = iio_priv(indio_dev); int ret; u8 tmp; switch (chan->type) { case IIO_INCLI: mutex_lock(&data->mutex); ret = mma9551_read_config_byte(data->client, MMA9551_APPID_TILT, MMA9551_TILT_CFG_REG, &tmp); mutex_unlock(&data->mutex); if (ret < 0) return ret; *val = tmp & MMA9551_TILT_ANG_THRESH_MASK; *val2 = 0; return IIO_VAL_INT; default: return -EINVAL; } } static const struct iio_event_spec mma9551_incli_event = { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE), }; #define MMA9551_INCLI_CHANNEL(axis) { \ .type = IIO_INCLI, \ .modified = 1, \ .channel2 = axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ .event_spec = &mma9551_incli_event, \ .num_event_specs = 1, \ } static const struct iio_chan_spec mma9551_channels[] = { MMA9551_ACCEL_CHANNEL(IIO_MOD_X), MMA9551_ACCEL_CHANNEL(IIO_MOD_Y), MMA9551_ACCEL_CHANNEL(IIO_MOD_Z), MMA9551_INCLI_CHANNEL(IIO_MOD_X), MMA9551_INCLI_CHANNEL(IIO_MOD_Y), MMA9551_INCLI_CHANNEL(IIO_MOD_Z), }; static const struct iio_info mma9551_info = { .read_raw = mma9551_read_raw, .read_event_config = mma9551_read_event_config, .write_event_config = mma9551_write_event_config, .read_event_value = mma9551_read_event_value, .write_event_value = mma9551_write_event_value, }; static irqreturn_t mma9551_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct mma9551_data *data = iio_priv(indio_dev); int i, ret, mma_axis = -1; u16 reg; u8 val; mutex_lock(&data->mutex); for (i = 0; i < 3; i++) if (irq == data->irqs[i]) { mma_axis = i; break; } if (mma_axis == -1) { /* IRQ was triggered on 4th line, which we don't use. */ dev_warn(&data->client->dev, "irq triggered on unused line %d\n", data->irqs[3]); goto out; } switch (mma_axis) { case mma9551_x: reg = MMA9551_TILT_YZ_ANG_REG; break; case mma9551_y: reg = MMA9551_TILT_XZ_ANG_REG; break; case mma9551_z: reg = MMA9551_TILT_XY_ANG_REG; break; } /* * Read the angle even though we don't use it, otherwise we * won't get any further interrupts. */ ret = mma9551_read_status_byte(data->client, MMA9551_APPID_TILT, reg, &val); if (ret < 0) { dev_err(&data->client->dev, "error %d reading tilt register in IRQ\n", ret); goto out; } iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_INCLI, 0, (mma_axis + 1), IIO_EV_TYPE_ROC, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); out: mutex_unlock(&data->mutex); return IRQ_HANDLED; } static int mma9551_init(struct mma9551_data *data) { int ret; ret = mma9551_read_version(data->client); if (ret) return ret; return mma9551_set_device_state(data->client, true); } static int mma9551_gpio_probe(struct iio_dev *indio_dev) { struct gpio_desc *gpio; int i, ret; struct mma9551_data *data = iio_priv(indio_dev); struct device *dev = &data->client->dev; for (i = 0; i < MMA9551_GPIO_COUNT; i++) { gpio = devm_gpiod_get_index(dev, NULL, i, GPIOD_IN); if (IS_ERR(gpio)) { dev_err(dev, "acpi gpio get index failed\n"); return PTR_ERR(gpio); } ret = gpiod_to_irq(gpio); if (ret < 0) return ret; data->irqs[i] = ret; ret = devm_request_threaded_irq(dev, data->irqs[i], NULL, mma9551_event_handler, IRQF_TRIGGER_RISING | IRQF_ONESHOT, MMA9551_IRQ_NAME, indio_dev); if (ret < 0) { dev_err(dev, "request irq %d failed\n", data->irqs[i]); return ret; } dev_dbg(dev, "gpio resource, no:%d irq:%d\n", desc_to_gpio(gpio), data->irqs[i]); } return 0; } static const char *mma9551_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; return dev_name(dev); } static int mma9551_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct mma9551_data *data; struct iio_dev *indio_dev; const char *name = NULL; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; if (id) name = id->name; else if (ACPI_HANDLE(&client->dev)) name = mma9551_match_acpi_device(&client->dev); ret = mma9551_init(data); if (ret < 0) return ret; mutex_init(&data->mutex); indio_dev->channels = mma9551_channels; indio_dev->num_channels = ARRAY_SIZE(mma9551_channels); indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mma9551_info; ret = mma9551_gpio_probe(indio_dev); if (ret < 0) goto out_poweroff; ret = pm_runtime_set_active(&client->dev); if (ret < 0) goto out_poweroff; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, MMA9551_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "unable to register iio device\n"); goto err_pm_cleanup; } return 0; err_pm_cleanup: pm_runtime_dont_use_autosuspend(&client->dev); pm_runtime_disable(&client->dev); out_poweroff: mma9551_set_device_state(client, false); return ret; } static void mma9551_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mma9551_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); mutex_lock(&data->mutex); mma9551_set_device_state(data->client, false); mutex_unlock(&data->mutex); } static int mma9551_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9551_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = mma9551_set_device_state(data->client, false); mutex_unlock(&data->mutex); if (ret < 0) { dev_err(&data->client->dev, "powering off device failed\n"); return -EAGAIN; } return 0; } static int mma9551_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9551_data *data = iio_priv(indio_dev); int ret; ret = mma9551_set_device_state(data->client, true); if (ret < 0) return ret; mma9551_sleep(MMA9551_DEFAULT_SAMPLE_RATE); return 0; } static int mma9551_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9551_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = mma9551_set_device_state(data->client, false); mutex_unlock(&data->mutex); return ret; } static int mma9551_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma9551_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = mma9551_set_device_state(data->client, true); mutex_unlock(&data->mutex); return ret; } static const struct dev_pm_ops mma9551_pm_ops = { SYSTEM_SLEEP_PM_OPS(mma9551_suspend, mma9551_resume) RUNTIME_PM_OPS(mma9551_runtime_suspend, mma9551_runtime_resume, NULL) }; static const struct acpi_device_id mma9551_acpi_match[] = { {"MMA9551", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, mma9551_acpi_match); static const struct i2c_device_id mma9551_id[] = { {"mma9551", 0}, {} }; MODULE_DEVICE_TABLE(i2c, mma9551_id); static struct i2c_driver mma9551_driver = { .driver = { .name = MMA9551_DRV_NAME, .acpi_match_table = ACPI_PTR(mma9551_acpi_match), .pm = pm_ptr(&mma9551_pm_ops), }, .probe = mma9551_probe, .remove = mma9551_remove, .id_table = mma9551_id, }; module_i2c_driver(mma9551_driver); MODULE_AUTHOR("Irina Tirdea <[email protected]>"); MODULE_AUTHOR("Vlad Dogaru <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MMA9551L motion-sensing platform driver"); MODULE_IMPORT_NS(IIO_MMA9551);
linux-master
drivers/iio/accel/mma9551.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/regmap.h> #include "kxsd9.h" static int kxsd9_i2c_probe(struct i2c_client *i2c) { static const struct regmap_config config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x0e, }; struct regmap *regmap; regmap = devm_regmap_init_i2c(i2c, &config); if (IS_ERR(regmap)) { dev_err(&i2c->dev, "Failed to register i2c regmap: %pe\n", regmap); return PTR_ERR(regmap); } return kxsd9_common_probe(&i2c->dev, regmap, i2c->name); } static void kxsd9_i2c_remove(struct i2c_client *client) { kxsd9_common_remove(&client->dev); } static const struct of_device_id kxsd9_of_match[] = { { .compatible = "kionix,kxsd9", }, { }, }; MODULE_DEVICE_TABLE(of, kxsd9_of_match); static const struct i2c_device_id kxsd9_i2c_id[] = { {"kxsd9", 0}, { }, }; MODULE_DEVICE_TABLE(i2c, kxsd9_i2c_id); static struct i2c_driver kxsd9_i2c_driver = { .driver = { .name = "kxsd9", .of_match_table = kxsd9_of_match, .pm = pm_ptr(&kxsd9_dev_pm_ops), }, .probe = kxsd9_i2c_probe, .remove = kxsd9_i2c_remove, .id_table = kxsd9_i2c_id, }; module_i2c_driver(kxsd9_i2c_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("KXSD9 accelerometer I2C interface"); MODULE_IMPORT_NS(IIO_KXSD9);
linux-master
drivers/iio/accel/kxsd9-i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO driver for the MiraMEMS DA217 and DA280 3-axis accelerometer and * IIO driver for the MiraMEMS DA226 2-axis accelerometer * * Copyright (c) 2016 Hans de Goede <[email protected]> */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/acpi.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/byteorder/generic.h> #define DA280_REG_CHIP_ID 0x01 #define DA280_REG_ACC_X_LSB 0x02 #define DA280_REG_ACC_Y_LSB 0x04 #define DA280_REG_ACC_Z_LSB 0x06 #define DA280_REG_MODE_BW 0x11 #define DA280_CHIP_ID 0x13 #define DA280_MODE_ENABLE 0x1e #define DA280_MODE_DISABLE 0x9e enum da280_chipset { da217, da226, da280 }; /* * a value of + or -4096 corresponds to + or - 1G * scale = 9.81 / 4096 = 0.002395019 */ static const int da280_nscale = 2395019; #define DA280_CHANNEL(reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec da280_channels[] = { DA280_CHANNEL(DA280_REG_ACC_X_LSB, X), DA280_CHANNEL(DA280_REG_ACC_Y_LSB, Y), DA280_CHANNEL(DA280_REG_ACC_Z_LSB, Z), }; struct da280_data { struct i2c_client *client; }; static int da280_enable(struct i2c_client *client, bool enable) { u8 data = enable ? DA280_MODE_ENABLE : DA280_MODE_DISABLE; return i2c_smbus_write_byte_data(client, DA280_REG_MODE_BW, data); } static int da280_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct da280_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = i2c_smbus_read_word_data(data->client, chan->address); if (ret < 0) return ret; /* * Values are 14 bits, stored as 16 bits with the 2 * least significant bits always 0. */ *val = (short)ret >> 2; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = da280_nscale; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static const struct iio_info da280_info = { .read_raw = da280_read_raw, }; static enum da280_chipset da280_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return -EINVAL; return (enum da280_chipset) id->driver_data; } static void da280_disable(void *client) { da280_enable(client, false); } static int da280_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); int ret; struct iio_dev *indio_dev; struct da280_data *data; enum da280_chipset chip; ret = i2c_smbus_read_byte_data(client, DA280_REG_CHIP_ID); if (ret != DA280_CHIP_ID) return (ret < 0) ? ret : -ENODEV; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; indio_dev->info = &da280_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = da280_channels; if (ACPI_HANDLE(&client->dev)) { chip = da280_match_acpi_device(&client->dev); } else { chip = id->driver_data; } if (chip == da217) { indio_dev->name = "da217"; indio_dev->num_channels = 3; } else if (chip == da226) { indio_dev->name = "da226"; indio_dev->num_channels = 2; } else { indio_dev->name = "da280"; indio_dev->num_channels = 3; } ret = da280_enable(client, true); if (ret < 0) return ret; ret = devm_add_action_or_reset(&client->dev, da280_disable, client); if (ret) return ret; return devm_iio_device_register(&client->dev, indio_dev); } static int da280_suspend(struct device *dev) { return da280_enable(to_i2c_client(dev), false); } static int da280_resume(struct device *dev) { return da280_enable(to_i2c_client(dev), true); } static DEFINE_SIMPLE_DEV_PM_OPS(da280_pm_ops, da280_suspend, da280_resume); static const struct acpi_device_id da280_acpi_match[] = { {"NSA2513", da217}, {"MIRAACC", da280}, {}, }; MODULE_DEVICE_TABLE(acpi, da280_acpi_match); static const struct i2c_device_id da280_i2c_id[] = { { "da217", da217 }, { "da226", da226 }, { "da280", da280 }, {} }; MODULE_DEVICE_TABLE(i2c, da280_i2c_id); static struct i2c_driver da280_driver = { .driver = { .name = "da280", .acpi_match_table = ACPI_PTR(da280_acpi_match), .pm = pm_sleep_ptr(&da280_pm_ops), }, .probe = da280_probe, .id_table = da280_i2c_id, }; module_i2c_driver(da280_driver); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("MiraMEMS DA280 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/da280.c
// SPDX-License-Identifier: GPL-2.0-only /* * HID Sensors Driver * Copyright (c) 2012, Intel Corporation. */ #include <linux/device.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/slab.h> #include <linux/hid-sensor-hub.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include "../common/hid-sensors/hid-sensor-trigger.h" enum accel_3d_channel { CHANNEL_SCAN_INDEX_X, CHANNEL_SCAN_INDEX_Y, CHANNEL_SCAN_INDEX_Z, ACCEL_3D_CHANNEL_MAX, }; #define CHANNEL_SCAN_INDEX_TIMESTAMP ACCEL_3D_CHANNEL_MAX struct accel_3d_state { struct hid_sensor_hub_callbacks callbacks; struct hid_sensor_common common_attributes; struct hid_sensor_hub_attribute_info accel[ACCEL_3D_CHANNEL_MAX]; /* Ensure timestamp is naturally aligned */ struct { u32 accel_val[3]; s64 timestamp __aligned(8); } scan; int scale_pre_decml; int scale_post_decml; int scale_precision; int value_offset; int64_t timestamp; }; static const u32 accel_3d_addresses[ACCEL_3D_CHANNEL_MAX] = { HID_USAGE_SENSOR_ACCEL_X_AXIS, HID_USAGE_SENSOR_ACCEL_Y_AXIS, HID_USAGE_SENSOR_ACCEL_Z_AXIS }; static const u32 accel_3d_sensitivity_addresses[] = { HID_USAGE_SENSOR_DATA_ACCELERATION, }; /* Channel definitions */ static const struct iio_chan_spec accel_3d_channels[] = { { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), .scan_index = CHANNEL_SCAN_INDEX_X, }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), .scan_index = CHANNEL_SCAN_INDEX_Y, }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), .scan_index = CHANNEL_SCAN_INDEX_Z, }, IIO_CHAN_SOFT_TIMESTAMP(CHANNEL_SCAN_INDEX_TIMESTAMP) }; /* Channel definitions */ static const struct iio_chan_spec gravity_channels[] = { { .type = IIO_GRAVITY, .modified = 1, .channel2 = IIO_MOD_X, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), .scan_index = CHANNEL_SCAN_INDEX_X, }, { .type = IIO_GRAVITY, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), .scan_index = CHANNEL_SCAN_INDEX_Y, }, { .type = IIO_GRAVITY, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), .scan_index = CHANNEL_SCAN_INDEX_Z, }, IIO_CHAN_SOFT_TIMESTAMP(CHANNEL_SCAN_INDEX_TIMESTAMP), }; /* Adjust channel real bits based on report descriptor */ static void accel_3d_adjust_channel_bit_mask(struct iio_chan_spec *channels, int channel, int size) { channels[channel].scan_type.sign = 's'; /* Real storage bits will change based on the report desc. */ channels[channel].scan_type.realbits = size * 8; /* Maximum size of a sample to capture is u32 */ channels[channel].scan_type.storagebits = sizeof(u32) * 8; } /* Channel read_raw handler */ static int accel_3d_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct accel_3d_state *accel_state = iio_priv(indio_dev); int report_id = -1; u32 address; int ret_type; s32 min; struct hid_sensor_hub_device *hsdev = accel_state->common_attributes.hsdev; *val = 0; *val2 = 0; switch (mask) { case IIO_CHAN_INFO_RAW: hid_sensor_power_state(&accel_state->common_attributes, true); report_id = accel_state->accel[chan->scan_index].report_id; min = accel_state->accel[chan->scan_index].logical_minimum; address = accel_3d_addresses[chan->scan_index]; if (report_id >= 0) *val = sensor_hub_input_attr_get_raw_value( accel_state->common_attributes.hsdev, hsdev->usage, address, report_id, SENSOR_HUB_SYNC, min < 0); else { *val = 0; hid_sensor_power_state(&accel_state->common_attributes, false); return -EINVAL; } hid_sensor_power_state(&accel_state->common_attributes, false); ret_type = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: *val = accel_state->scale_pre_decml; *val2 = accel_state->scale_post_decml; ret_type = accel_state->scale_precision; break; case IIO_CHAN_INFO_OFFSET: *val = accel_state->value_offset; ret_type = IIO_VAL_INT; break; case IIO_CHAN_INFO_SAMP_FREQ: ret_type = hid_sensor_read_samp_freq_value( &accel_state->common_attributes, val, val2); break; case IIO_CHAN_INFO_HYSTERESIS: ret_type = hid_sensor_read_raw_hyst_value( &accel_state->common_attributes, val, val2); break; default: ret_type = -EINVAL; break; } return ret_type; } /* Channel write_raw handler */ static int accel_3d_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct accel_3d_state *accel_state = iio_priv(indio_dev); int ret = 0; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: ret = hid_sensor_write_samp_freq_value( &accel_state->common_attributes, val, val2); break; case IIO_CHAN_INFO_HYSTERESIS: ret = hid_sensor_write_raw_hyst_value( &accel_state->common_attributes, val, val2); break; default: ret = -EINVAL; } return ret; } static const struct iio_info accel_3d_info = { .read_raw = &accel_3d_read_raw, .write_raw = &accel_3d_write_raw, }; /* Function to push data to buffer */ static void hid_sensor_push_data(struct iio_dev *indio_dev, void *data, int len, int64_t timestamp) { dev_dbg(&indio_dev->dev, "hid_sensor_push_data\n"); iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp); } /* Callback handler to send event after all samples are received and captured */ static int accel_3d_proc_event(struct hid_sensor_hub_device *hsdev, unsigned usage_id, void *priv) { struct iio_dev *indio_dev = platform_get_drvdata(priv); struct accel_3d_state *accel_state = iio_priv(indio_dev); dev_dbg(&indio_dev->dev, "accel_3d_proc_event\n"); if (atomic_read(&accel_state->common_attributes.data_ready)) { if (!accel_state->timestamp) accel_state->timestamp = iio_get_time_ns(indio_dev); hid_sensor_push_data(indio_dev, &accel_state->scan, sizeof(accel_state->scan), accel_state->timestamp); accel_state->timestamp = 0; } return 0; } /* Capture samples in local storage */ static int accel_3d_capture_sample(struct hid_sensor_hub_device *hsdev, unsigned usage_id, size_t raw_len, char *raw_data, void *priv) { struct iio_dev *indio_dev = platform_get_drvdata(priv); struct accel_3d_state *accel_state = iio_priv(indio_dev); int offset; int ret = -EINVAL; switch (usage_id) { case HID_USAGE_SENSOR_ACCEL_X_AXIS: case HID_USAGE_SENSOR_ACCEL_Y_AXIS: case HID_USAGE_SENSOR_ACCEL_Z_AXIS: offset = usage_id - HID_USAGE_SENSOR_ACCEL_X_AXIS; accel_state->scan.accel_val[CHANNEL_SCAN_INDEX_X + offset] = *(u32 *)raw_data; ret = 0; break; case HID_USAGE_SENSOR_TIME_TIMESTAMP: accel_state->timestamp = hid_sensor_convert_timestamp( &accel_state->common_attributes, *(int64_t *)raw_data); ret = 0; break; default: break; } return ret; } /* Parse report which is specific to an usage id*/ static int accel_3d_parse_report(struct platform_device *pdev, struct hid_sensor_hub_device *hsdev, struct iio_chan_spec *channels, unsigned usage_id, struct accel_3d_state *st) { int ret; int i; for (i = 0; i <= CHANNEL_SCAN_INDEX_Z; ++i) { ret = sensor_hub_input_get_attribute_info(hsdev, HID_INPUT_REPORT, usage_id, HID_USAGE_SENSOR_ACCEL_X_AXIS + i, &st->accel[CHANNEL_SCAN_INDEX_X + i]); if (ret < 0) break; accel_3d_adjust_channel_bit_mask(channels, CHANNEL_SCAN_INDEX_X + i, st->accel[CHANNEL_SCAN_INDEX_X + i].size); } dev_dbg(&pdev->dev, "accel_3d %x:%x, %x:%x, %x:%x\n", st->accel[0].index, st->accel[0].report_id, st->accel[1].index, st->accel[1].report_id, st->accel[2].index, st->accel[2].report_id); st->scale_precision = hid_sensor_format_scale( hsdev->usage, &st->accel[CHANNEL_SCAN_INDEX_X], &st->scale_pre_decml, &st->scale_post_decml); return ret; } /* Function to initialize the processing for usage id */ static int hid_accel_3d_probe(struct platform_device *pdev) { int ret = 0; const char *name; struct iio_dev *indio_dev; struct accel_3d_state *accel_state; const struct iio_chan_spec *channel_spec; int channel_size; struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct accel_3d_state)); if (indio_dev == NULL) return -ENOMEM; platform_set_drvdata(pdev, indio_dev); accel_state = iio_priv(indio_dev); accel_state->common_attributes.hsdev = hsdev; accel_state->common_attributes.pdev = pdev; if (hsdev->usage == HID_USAGE_SENSOR_ACCEL_3D) { name = "accel_3d"; channel_spec = accel_3d_channels; channel_size = sizeof(accel_3d_channels); indio_dev->num_channels = ARRAY_SIZE(accel_3d_channels); } else { name = "gravity"; channel_spec = gravity_channels; channel_size = sizeof(gravity_channels); indio_dev->num_channels = ARRAY_SIZE(gravity_channels); } ret = hid_sensor_parse_common_attributes(hsdev, hsdev->usage, &accel_state->common_attributes, accel_3d_sensitivity_addresses, ARRAY_SIZE(accel_3d_sensitivity_addresses)); if (ret) { dev_err(&pdev->dev, "failed to setup common attributes\n"); return ret; } indio_dev->channels = devm_kmemdup(&pdev->dev, channel_spec, channel_size, GFP_KERNEL); if (!indio_dev->channels) { dev_err(&pdev->dev, "failed to duplicate channels\n"); return -ENOMEM; } ret = accel_3d_parse_report(pdev, hsdev, (struct iio_chan_spec *)indio_dev->channels, hsdev->usage, accel_state); if (ret) { dev_err(&pdev->dev, "failed to setup attributes\n"); return ret; } indio_dev->info = &accel_3d_info; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; atomic_set(&accel_state->common_attributes.data_ready, 0); ret = hid_sensor_setup_trigger(indio_dev, name, &accel_state->common_attributes); if (ret < 0) { dev_err(&pdev->dev, "trigger setup failed\n"); return ret; } ret = iio_device_register(indio_dev); if (ret) { dev_err(&pdev->dev, "device register failed\n"); goto error_remove_trigger; } accel_state->callbacks.send_event = accel_3d_proc_event; accel_state->callbacks.capture_sample = accel_3d_capture_sample; accel_state->callbacks.pdev = pdev; ret = sensor_hub_register_callback(hsdev, hsdev->usage, &accel_state->callbacks); if (ret < 0) { dev_err(&pdev->dev, "callback reg failed\n"); goto error_iio_unreg; } return ret; error_iio_unreg: iio_device_unregister(indio_dev); error_remove_trigger: hid_sensor_remove_trigger(indio_dev, &accel_state->common_attributes); return ret; } /* Function to deinitialize the processing for usage id */ static int hid_accel_3d_remove(struct platform_device *pdev) { struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data; struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct accel_3d_state *accel_state = iio_priv(indio_dev); sensor_hub_remove_callback(hsdev, hsdev->usage); iio_device_unregister(indio_dev); hid_sensor_remove_trigger(indio_dev, &accel_state->common_attributes); return 0; } static const struct platform_device_id hid_accel_3d_ids[] = { { /* Format: HID-SENSOR-usage_id_in_hex_lowercase */ .name = "HID-SENSOR-200073", }, { /* gravity sensor */ .name = "HID-SENSOR-20007b", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, hid_accel_3d_ids); static struct platform_driver hid_accel_3d_platform_driver = { .id_table = hid_accel_3d_ids, .driver = { .name = KBUILD_MODNAME, .pm = &hid_sensor_pm_ops, }, .probe = hid_accel_3d_probe, .remove = hid_accel_3d_remove, }; module_platform_driver(hid_accel_3d_platform_driver); MODULE_DESCRIPTION("HID Sensor Accel 3D"); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_HID);
linux-master
drivers/iio/accel/hid-sensor-accel-3d.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2021 Analog Devices, Inc. * Author: Cosmin Tanislav <[email protected]> */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include "adxl367.h" #define ADXL367_SPI_WRITE_COMMAND 0x0A #define ADXL367_SPI_READ_COMMAND 0x0B #define ADXL367_SPI_FIFO_COMMAND 0x0D struct adxl367_spi_state { struct spi_device *spi; struct spi_message reg_write_msg; struct spi_transfer reg_write_xfer[2]; struct spi_message reg_read_msg; struct spi_transfer reg_read_xfer[2]; struct spi_message fifo_msg; struct spi_transfer fifo_xfer[2]; /* * DMA (thus cache coherency maintenance) may require the * transfer buffers live in their own cache lines. */ u8 reg_write_tx_buf[1] __aligned(IIO_DMA_MINALIGN); u8 reg_read_tx_buf[2]; u8 fifo_tx_buf[1]; }; static int adxl367_read_fifo(void *context, __be16 *fifo_buf, unsigned int fifo_entries) { struct adxl367_spi_state *st = context; st->fifo_xfer[1].rx_buf = fifo_buf; st->fifo_xfer[1].len = fifo_entries * sizeof(*fifo_buf); return spi_sync(st->spi, &st->fifo_msg); } static int adxl367_read(void *context, const void *reg_buf, size_t reg_size, void *val_buf, size_t val_size) { struct adxl367_spi_state *st = context; u8 reg = ((const u8 *)reg_buf)[0]; st->reg_read_tx_buf[1] = reg; st->reg_read_xfer[1].rx_buf = val_buf; st->reg_read_xfer[1].len = val_size; return spi_sync(st->spi, &st->reg_read_msg); } static int adxl367_write(void *context, const void *val_buf, size_t val_size) { struct adxl367_spi_state *st = context; st->reg_write_xfer[1].tx_buf = val_buf; st->reg_write_xfer[1].len = val_size; return spi_sync(st->spi, &st->reg_write_msg); } static struct regmap_bus adxl367_spi_regmap_bus = { .read = adxl367_read, .write = adxl367_write, }; static const struct regmap_config adxl367_spi_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static const struct adxl367_ops adxl367_spi_ops = { .read_fifo = adxl367_read_fifo, }; static int adxl367_spi_probe(struct spi_device *spi) { struct adxl367_spi_state *st; struct regmap *regmap; st = devm_kzalloc(&spi->dev, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; st->spi = spi; /* * Xfer: [XFR1] [ XFR2 ] * Master: 0x0A ADDR DATA0 DATA1 ... DATAN * Slave: .... .......................... */ st->reg_write_tx_buf[0] = ADXL367_SPI_WRITE_COMMAND; st->reg_write_xfer[0].tx_buf = st->reg_write_tx_buf; st->reg_write_xfer[0].len = sizeof(st->reg_write_tx_buf); spi_message_init_with_transfers(&st->reg_write_msg, st->reg_write_xfer, 2); /* * Xfer: [ XFR1 ] [ XFR2 ] * Master: 0x0B ADDR ..................... * Slave: ......... DATA0 DATA1 ... DATAN */ st->reg_read_tx_buf[0] = ADXL367_SPI_READ_COMMAND; st->reg_read_xfer[0].tx_buf = st->reg_read_tx_buf; st->reg_read_xfer[0].len = sizeof(st->reg_read_tx_buf); spi_message_init_with_transfers(&st->reg_read_msg, st->reg_read_xfer, 2); /* * Xfer: [XFR1] [ XFR2 ] * Master: 0x0D ..................... * Slave: .... DATA0 DATA1 ... DATAN */ st->fifo_tx_buf[0] = ADXL367_SPI_FIFO_COMMAND; st->fifo_xfer[0].tx_buf = st->fifo_tx_buf; st->fifo_xfer[0].len = sizeof(st->fifo_tx_buf); spi_message_init_with_transfers(&st->fifo_msg, st->fifo_xfer, 2); regmap = devm_regmap_init(&spi->dev, &adxl367_spi_regmap_bus, st, &adxl367_spi_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); return adxl367_probe(&spi->dev, &adxl367_spi_ops, st, regmap, spi->irq); } static const struct spi_device_id adxl367_spi_id[] = { { "adxl367", 0 }, { }, }; MODULE_DEVICE_TABLE(spi, adxl367_spi_id); static const struct of_device_id adxl367_of_match[] = { { .compatible = "adi,adxl367" }, { }, }; MODULE_DEVICE_TABLE(of, adxl367_of_match); static struct spi_driver adxl367_spi_driver = { .driver = { .name = "adxl367_spi", .of_match_table = adxl367_of_match, }, .probe = adxl367_spi_probe, .id_table = adxl367_spi_id, }; module_spi_driver(adxl367_spi_driver); MODULE_IMPORT_NS(IIO_ADXL367); MODULE_AUTHOR("Cosmin Tanislav <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADXL367 3-axis accelerometer SPI driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/adxl367_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO accel SPI driver for Freescale MMA7455L 3-axis 10-bit accelerometer * Copyright 2015 Joachim Eastwood <[email protected]> */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include "mma7455.h" static int mma7455_spi_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); struct regmap *regmap; regmap = devm_regmap_init_spi(spi, &mma7455_core_regmap); if (IS_ERR(regmap)) return PTR_ERR(regmap); return mma7455_core_probe(&spi->dev, regmap, id->name); } static void mma7455_spi_remove(struct spi_device *spi) { mma7455_core_remove(&spi->dev); } static const struct spi_device_id mma7455_spi_ids[] = { { "mma7455", 0 }, { "mma7456", 0 }, { } }; MODULE_DEVICE_TABLE(spi, mma7455_spi_ids); static struct spi_driver mma7455_spi_driver = { .probe = mma7455_spi_probe, .remove = mma7455_spi_remove, .id_table = mma7455_spi_ids, .driver = { .name = "mma7455-spi", }, }; module_spi_driver(mma7455_spi_driver); MODULE_AUTHOR("Joachim Eastwood <[email protected]>"); MODULE_DESCRIPTION("Freescale MMA7455L SPI accelerometer driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_MMA7455);
linux-master
drivers/iio/accel/mma7455_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * 3-axis accelerometer driver supporting many Bosch-Sensortec chips * Copyright (c) 2014, Intel Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/of_irq.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include "bmc150-accel.h" #define BMC150_ACCEL_DRV_NAME "bmc150_accel" #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" #define BMC150_ACCEL_REG_CHIP_ID 0x00 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0) #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1) #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2) #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) #define BMC150_ACCEL_REG_PMU_LPW 0x11 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 #define BMC150_ACCEL_PMU_MODE_SHIFT 5 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F #define BMC150_ACCEL_DEF_RANGE_2G 0x03 #define BMC150_ACCEL_DEF_RANGE_4G 0x05 #define BMC150_ACCEL_DEF_RANGE_8G 0x08 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C /* Default BW: 125Hz */ #define BMC150_ACCEL_REG_PMU_BW 0x10 #define BMC150_ACCEL_DEF_BW 125 #define BMC150_ACCEL_REG_RESET 0x14 #define BMC150_ACCEL_RESET_VAL 0xB6 #define BMC150_ACCEL_REG_INT_MAP_0 0x19 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2) #define BMC150_ACCEL_REG_INT_MAP_1 0x1A #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0) #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1) #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2) #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5) #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6) #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7) #define BMC150_ACCEL_REG_INT_MAP_2 0x1B #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2) #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 #define BMC150_ACCEL_REG_INT_EN_0 0x16 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) #define BMC150_ACCEL_REG_INT_EN_1 0x17 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5) #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6) #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2) #define BMC150_ACCEL_REG_INT_5 0x27 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 #define BMC150_ACCEL_REG_INT_6 0x28 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF /* Slope duration in terms of number of samples */ #define BMC150_ACCEL_DEF_SLOPE_DURATION 1 /* in terms of multiples of g's/LSB, based on range */ #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1 #define BMC150_ACCEL_REG_XOUT_L 0x02 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 /* Sleep Duration values */ #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 #define BMC150_ACCEL_SLEEP_1_MS 0x06 #define BMC150_ACCEL_SLEEP_2_MS 0x07 #define BMC150_ACCEL_SLEEP_4_MS 0x08 #define BMC150_ACCEL_SLEEP_6_MS 0x09 #define BMC150_ACCEL_SLEEP_10_MS 0x0A #define BMC150_ACCEL_SLEEP_25_MS 0x0B #define BMC150_ACCEL_SLEEP_50_MS 0x0C #define BMC150_ACCEL_SLEEP_100_MS 0x0D #define BMC150_ACCEL_SLEEP_500_MS 0x0E #define BMC150_ACCEL_SLEEP_1_SEC 0x0F #define BMC150_ACCEL_REG_TEMP 0x08 #define BMC150_ACCEL_TEMP_CENTER_VAL 23 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E #define BMC150_ACCEL_REG_FIFO_DATA 0x3F #define BMC150_ACCEL_FIFO_LENGTH 32 enum bmc150_accel_axis { AXIS_X, AXIS_Y, AXIS_Z, AXIS_MAX, }; enum bmc150_power_modes { BMC150_ACCEL_SLEEP_MODE_NORMAL, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, BMC150_ACCEL_SLEEP_MODE_LPM, BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, }; struct bmc150_scale_info { int scale; u8 reg_range; }; struct bmc150_accel_chip_info { const char *name; u8 chip_id; const struct iio_chan_spec *channels; int num_channels; const struct bmc150_scale_info scale_table[4]; }; static const struct { int val; int val2; u8 bw_bits; } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08}, {31, 260000, 0x09}, {62, 500000, 0x0A}, {125, 0, 0x0B}, {250, 0, 0x0C}, {500, 0, 0x0D}, {1000, 0, 0x0E}, {2000, 0, 0x0F} }; static __maybe_unused const struct { int bw_bits; int msec; } bmc150_accel_sample_upd_time[] = { {0x08, 64}, {0x09, 32}, {0x0A, 16}, {0x0B, 8}, {0x0C, 4}, {0x0D, 2}, {0x0E, 1}, {0x0F, 1} }; static const struct { int sleep_dur; u8 reg_value; } bmc150_accel_sleep_value_table[] = { {0, 0}, {500, BMC150_ACCEL_SLEEP_500_MICRO}, {1000, BMC150_ACCEL_SLEEP_1_MS}, {2000, BMC150_ACCEL_SLEEP_2_MS}, {4000, BMC150_ACCEL_SLEEP_4_MS}, {6000, BMC150_ACCEL_SLEEP_6_MS}, {10000, BMC150_ACCEL_SLEEP_10_MS}, {25000, BMC150_ACCEL_SLEEP_25_MS}, {50000, BMC150_ACCEL_SLEEP_50_MS}, {100000, BMC150_ACCEL_SLEEP_100_MS}, {500000, BMC150_ACCEL_SLEEP_500_MS}, {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; const struct regmap_config bmc150_regmap_conf = { .reg_bits = 8, .val_bits = 8, .max_register = 0x3f, }; EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, IIO_BMC150); static int bmc150_accel_set_mode(struct bmc150_accel_data *data, enum bmc150_power_modes mode, int dur_us) { struct device *dev = regmap_get_device(data->regmap); int i; int ret; u8 lpw_bits; int dur_val = -1; if (dur_us > 0) { for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); ++i) { if (bmc150_accel_sleep_value_table[i].sleep_dur == dur_us) dur_val = bmc150_accel_sleep_value_table[i].reg_value; } } else { dur_val = 0; } if (dur_val < 0) return -EINVAL; lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); dev_dbg(dev, "Set Mode bits %x\n", lpw_bits); ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); if (ret < 0) { dev_err(dev, "Error writing reg_pmu_lpw\n"); return ret; } return 0; } static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, int val2) { int i; int ret; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].val == val && bmc150_accel_samp_freq_table[i].val2 == val2) { ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_BW, bmc150_accel_samp_freq_table[i].bw_bits); if (ret < 0) return ret; data->bw_bits = bmc150_accel_samp_freq_table[i].bw_bits; return 0; } } return -EINVAL; } static int bmc150_accel_update_slope(struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret; ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6, data->slope_thres); if (ret < 0) { dev_err(dev, "Error writing reg_int_6\n"); return ret; } ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5, BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur); if (ret < 0) { dev_err(dev, "Error updating reg_int_5\n"); return ret; } dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur); return ret; } static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t, bool state) { if (state) return bmc150_accel_update_slope(t->data); return 0; } static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, int *val2) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { *val = bmc150_accel_samp_freq_table[i].val; *val2 = bmc150_accel_samp_freq_table[i].val2; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } #ifdef CONFIG_PM static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) return bmc150_accel_sample_upd_time[i].msec; } return BMC150_ACCEL_MAX_STARTUP_TIME_MS; } static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { struct device *dev = regmap_get_device(data->regmap); int ret; if (on) { ret = pm_runtime_resume_and_get(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); } if (ret < 0) { dev_err(dev, "Failed: %s for %d\n", __func__, on); return ret; } return 0; } #else static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { return 0; } #endif #ifdef CONFIG_ACPI /* * Support for getting accelerometer information from BOSC0200 ACPI nodes. * * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object * contains the mount-matrix for the sensor in the display and ROMK contains * the mount-matrix for the sensor in the base. On devices using a single * sensor there is a ROTM ACPI object which contains the mount-matrix. * * Here is an incomplete list of devices known to use 1 of these setups: * * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices: * Lenovo Thinkpad Yoga 11e 3th gen * Lenovo Thinkpad Yoga 11e 4th gen * * Tablets using a single accelerometer using ROTM for the mount-matrix: * Chuwi Hi8 Pro (CWI513) * Chuwi Vi8 Plus (CWI519) * Chuwi Hi13 * Irbis TW90 * Jumper EZpad mini 3 * Onda V80 plus * Predia Basic Tablet */ static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct iio_dev *indio_dev = dev_get_drvdata(dev); struct acpi_device *adev = ACPI_COMPANION(dev); char *name, *alt_name, *label, *str; union acpi_object *obj, *elements; acpi_status status; int i, j, val[3]; if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) { alt_name = "ROMK"; label = "accel-base"; } else { alt_name = "ROMS"; label = "accel-display"; } if (acpi_has_method(adev->handle, "ROTM")) { name = "ROTM"; } else if (acpi_has_method(adev->handle, alt_name)) { name = alt_name; indio_dev->label = label; } else { return false; } status = acpi_evaluate_object(adev->handle, name, NULL, &buffer); if (ACPI_FAILURE(status)) { dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status); return false; } obj = buffer.pointer; if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3) goto unknown_format; elements = obj->package.elements; for (i = 0; i < 3; i++) { if (elements[i].type != ACPI_TYPE_STRING) goto unknown_format; str = elements[i].string.pointer; if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3) goto unknown_format; for (j = 0; j < 3; j++) { switch (val[j]) { case -1: str = "-1"; break; case 0: str = "0"; break; case 1: str = "1"; break; default: goto unknown_format; } orientation->rotation[i * 3 + j] = str; } } kfree(buffer.pointer); return true; unknown_format: dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n"); kfree(buffer.pointer); return false; } static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { struct iio_dev *indio_dev = dev_get_drvdata(dev); if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0) indio_dev->label = "accel-base"; else indio_dev->label = "accel-display"; return false; /* DUAL250E fwnodes have no mount matrix info */ } static bool bmc150_apply_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { struct acpi_device *adev = ACPI_COMPANION(dev); if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL)) return bmc150_apply_bosc0200_acpi_orientation(dev, orientation); if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL)) return bmc150_apply_dual250e_acpi_orientation(dev, orientation); return false; } #else static bool bmc150_apply_acpi_orientation(struct device *dev, struct iio_mount_matrix *orientation) { return false; } #endif struct bmc150_accel_interrupt_info { u8 map_reg; u8 map_bitmask; u8 en_reg; u8 en_bitmask; }; static const struct bmc150_accel_interrupt_info bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = { { /* data ready interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, }, { /* motion interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_0, .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE, .en_reg = BMC150_ACCEL_REG_INT_EN_0, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | BMC150_ACCEL_INT_EN_BIT_SLP_Y | BMC150_ACCEL_INT_EN_BIT_SLP_Z }, { /* fifo watermark interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, }, }; static const struct bmc150_accel_interrupt_info bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = { { /* data ready interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, }, { /* motion interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_2, .map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE, .en_reg = BMC150_ACCEL_REG_INT_EN_0, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | BMC150_ACCEL_INT_EN_BIT_SLP_Y | BMC150_ACCEL_INT_EN_BIT_SLP_Z }, { /* fifo watermark interrupt */ .map_reg = BMC150_ACCEL_REG_INT_MAP_1, .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM, .en_reg = BMC150_ACCEL_REG_INT_EN_1, .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, }, }; static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev, struct bmc150_accel_data *data, int irq) { const struct bmc150_accel_interrupt_info *irq_info = NULL; struct device *dev = regmap_get_device(data->regmap); int i; /* * For now we map all interrupts to the same output pin. * However, some boards may have just INT2 (and not INT1) connected, * so we try to detect which IRQ it is based on the interrupt-names. * Without interrupt-names, we assume the irq belongs to INT1. */ irq_info = bmc150_accel_interrupts_int1; if (data->type == BOSCH_BMC156 || irq == of_irq_get_byname(dev->of_node, "INT2")) irq_info = bmc150_accel_interrupts_int2; for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++) data->interrupts[i].info = &irq_info[i]; } static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i, bool state) { struct device *dev = regmap_get_device(data->regmap); struct bmc150_accel_interrupt *intr = &data->interrupts[i]; const struct bmc150_accel_interrupt_info *info = intr->info; int ret; if (state) { if (atomic_inc_return(&intr->users) > 1) return 0; } else { if (atomic_dec_return(&intr->users) > 0) return 0; } /* * We will expect the enable and disable to do operation in reverse * order. This will happen here anyway, as our resume operation uses * sync mode runtime pm calls. The suspend operation will be delayed * by autosuspend delay. * So the disable operation will still happen in reverse order of * enable operation. When runtime pm is disabled the mode is always on, * so sequence doesn't matter. */ ret = bmc150_accel_set_power_state(data, state); if (ret < 0) return ret; /* map the interrupt to the appropriate pins */ ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask, (state ? info->map_bitmask : 0)); if (ret < 0) { dev_err(dev, "Error updating reg_int_map\n"); goto out_fix_power_state; } /* enable/disable the interrupt */ ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask, (state ? info->en_bitmask : 0)); if (ret < 0) { dev_err(dev, "Error updating reg_int_en\n"); goto out_fix_power_state; } return 0; out_fix_power_state: bmc150_accel_set_power_state(data, false); return ret; } static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) { struct device *dev = regmap_get_device(data->regmap); int ret, i; for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) { if (data->chip_info->scale_table[i].scale == val) { ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, data->chip_info->scale_table[i].reg_range); if (ret < 0) { dev_err(dev, "Error writing pmu_range\n"); return ret; } data->range = data->chip_info->scale_table[i].reg_range; return 0; } } return -EINVAL; } static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) { struct device *dev = regmap_get_device(data->regmap); int ret; unsigned int value; mutex_lock(&data->mutex); ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value); if (ret < 0) { dev_err(dev, "Error reading reg_temp\n"); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(value, 7); mutex_unlock(&data->mutex); return IIO_VAL_INT; } static int bmc150_accel_get_axis(struct bmc150_accel_data *data, struct iio_chan_spec const *chan, int *val) { struct device *dev = regmap_get_device(data->regmap); int ret; int axis = chan->scan_index; __le16 raw_val; mutex_lock(&data->mutex); ret = bmc150_accel_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis), &raw_val, sizeof(raw_val)); if (ret < 0) { dev_err(dev, "Error reading axis %d\n", axis); bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift, chan->scan_type.realbits - 1); ret = bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); if (ret < 0) return ret; return IIO_VAL_INT; } static int bmc150_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: return bmc150_accel_get_temp(data, val); case IIO_ACCEL: if (iio_buffer_enabled(indio_dev)) return -EBUSY; else return bmc150_accel_get_axis(data, chan, val); default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: if (chan->type == IIO_TEMP) { *val = BMC150_ACCEL_TEMP_CENTER_VAL; return IIO_VAL_INT; } else { return -EINVAL; } case IIO_CHAN_INFO_SCALE: *val = 0; switch (chan->type) { case IIO_TEMP: *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: { int i; const struct bmc150_scale_info *si; int st_size = ARRAY_SIZE(data->chip_info->scale_table); for (i = 0; i < st_size; ++i) { si = &data->chip_info->scale_table[i]; if (si->reg_range == data->range) { *val2 = si->scale; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_get_bw(data, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int bmc150_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_set_bw(data, val, val2); mutex_unlock(&data->mutex); break; case IIO_CHAN_INFO_SCALE: if (val) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_accel_set_scale(data, val2); mutex_unlock(&data->mutex); return ret; default: ret = -EINVAL; } return ret; } static int bmc150_accel_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: *val = data->slope_thres; break; case IIO_EV_INFO_PERIOD: *val = data->slope_dur; break; default: return -EINVAL; } return IIO_VAL_INT; } static int bmc150_accel_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (data->ev_enable_state) return -EBUSY; switch (info) { case IIO_EV_INFO_VALUE: data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK; break; case IIO_EV_INFO_PERIOD: data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK; break; default: return -EINVAL; } return 0; } static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct bmc150_accel_data *data = iio_priv(indio_dev); return data->ev_enable_state; } static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; if (state == data->ev_enable_state) return 0; mutex_lock(&data->mutex); ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } data->ev_enable_state = state; mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct bmc150_accel_data *data = iio_priv(indio_dev); int i; for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { if (data->triggers[i].indio_trig == trig) return 0; } return -EINVAL; } static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int wm; mutex_lock(&data->mutex); wm = data->watermark; mutex_unlock(&data->mutex); return sprintf(buf, "%d\n", wm); } static ssize_t bmc150_accel_get_fifo_state(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); bool state; mutex_lock(&data->mutex); state = data->fifo_mode; mutex_unlock(&data->mutex); return sprintf(buf, "%d\n", state); } static const struct iio_mount_matrix * bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct bmc150_accel_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix), { } }; IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1"); IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, __stringify(BMC150_ACCEL_FIFO_LENGTH)); static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO, bmc150_accel_get_fifo_state, NULL, 0); static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO, bmc150_accel_get_fifo_watermark, NULL, 0); static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark_min, &iio_dev_attr_hwfifo_watermark_max, &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL, }; static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (val > BMC150_ACCEL_FIFO_LENGTH) val = BMC150_ACCEL_FIFO_LENGTH; mutex_lock(&data->mutex); data->watermark = val; mutex_unlock(&data->mutex); return 0; } /* * We must read at least one full frame in one burst, otherwise the rest of the * frame data is discarded. */ static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data, char *buffer, int samples) { struct device *dev = regmap_get_device(data->regmap); int sample_length = 3 * 2; int ret; int total_length = samples * sample_length; ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA, buffer, total_length); if (ret) dev_err(dev, "Error transferring data from fifo: %d\n", ret); return ret; } static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples, bool irq) { struct bmc150_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int ret, i; u8 count; u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3]; int64_t tstamp; uint64_t sample_period; unsigned int val; ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val); if (ret < 0) { dev_err(dev, "Error reading reg_fifo_status\n"); return ret; } count = val & 0x7F; if (!count) return 0; /* * If we getting called from IRQ handler we know the stored timestamp is * fairly accurate for the last stored sample. Otherwise, if we are * called as a result of a read operation from userspace and hence * before the watermark interrupt was triggered, take a timestamp * now. We can fall anywhere in between two samples so the error in this * case is at most one sample period. */ if (!irq) { data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(indio_dev); } /* * Approximate timestamps for each of the sample based on the sampling * frequency, timestamp for last sample and number of samples. * * Note that we can't use the current bandwidth settings to compute the * sample period because the sample rate varies with the device * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That * small variation adds when we store a large number of samples and * creates significant jitter between the last and first samples in * different batches (e.g. 32ms vs 21ms). * * To avoid this issue we compute the actual sample period ourselves * based on the timestamp delta between the last two flush operations. */ sample_period = (data->timestamp - data->old_timestamp); do_div(sample_period, count); tstamp = data->timestamp - (count - 1) * sample_period; if (samples && count > samples) count = samples; ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count); if (ret) return ret; /* * Ideally we want the IIO core to handle the demux when running in fifo * mode but not when running in triggered buffer mode. Unfortunately * this does not seem to be possible, so stick with driver demux for * now. */ for (i = 0; i < count; i++) { int j, bit; j = 0; for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit], sizeof(data->scan.channels[0])); iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, tstamp); tstamp += sample_period; } return count; } static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = __bmc150_accel_fifo_flush(indio_dev, samples, false); mutex_unlock(&data->mutex); return ret; } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "15.620000 31.260000 62.50000 125 250 500 1000 2000"); static struct attribute *bmc150_accel_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group bmc150_accel_attrs_group = { .attrs = bmc150_accel_attributes, }; static const struct iio_event_spec bmc150_accel_event = { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) }; #define BMC150_ACCEL_CHANNEL(_axis, bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = (bits), \ .storagebits = 16, \ .shift = 16 - (bits), \ .endianness = IIO_LE, \ }, \ .ext_info = bmc150_accel_ext_info, \ .event_spec = &bmc150_accel_event, \ .num_event_specs = 1 \ } #define BMC150_ACCEL_CHANNELS(bits) { \ { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = -1, \ }, \ BMC150_ACCEL_CHANNEL(X, bits), \ BMC150_ACCEL_CHANNEL(Y, bits), \ BMC150_ACCEL_CHANNEL(Z, bits), \ IIO_CHAN_SOFT_TIMESTAMP(3), \ } static const struct iio_chan_spec bma222e_accel_channels[] = BMC150_ACCEL_CHANNELS(8); static const struct iio_chan_spec bma250e_accel_channels[] = BMC150_ACCEL_CHANNELS(10); static const struct iio_chan_spec bmc150_accel_channels[] = BMC150_ACCEL_CHANNELS(12); static const struct iio_chan_spec bma280_accel_channels[] = BMC150_ACCEL_CHANNELS(14); /* * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed * over the amount of bits (see above). The scale table can be calculated using * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2 * Multiply 10^6 and round to get the values listed below. */ static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = { { .name = "BMA222", .chip_id = 0x03, .channels = bma222e_accel_channels, .num_channels = ARRAY_SIZE(bma222e_accel_channels), .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, {306458, BMC150_ACCEL_DEF_RANGE_4G}, {612916, BMC150_ACCEL_DEF_RANGE_8G}, {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA222E", .chip_id = 0xF8, .channels = bma222e_accel_channels, .num_channels = ARRAY_SIZE(bma222e_accel_channels), .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, {306458, BMC150_ACCEL_DEF_RANGE_4G}, {612916, BMC150_ACCEL_DEF_RANGE_8G}, {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA250E", .chip_id = 0xF9, .channels = bma250e_accel_channels, .num_channels = ARRAY_SIZE(bma250e_accel_channels), .scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G}, {76614, BMC150_ACCEL_DEF_RANGE_4G}, {153229, BMC150_ACCEL_DEF_RANGE_8G}, {306458, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055", .chip_id = 0xFA, .channels = bmc150_accel_channels, .num_channels = ARRAY_SIZE(bmc150_accel_channels), .scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G}, {19154, BMC150_ACCEL_DEF_RANGE_4G}, {38307, BMC150_ACCEL_DEF_RANGE_8G}, {76614, BMC150_ACCEL_DEF_RANGE_16G} }, }, { .name = "BMA280", .chip_id = 0xFB, .channels = bma280_accel_channels, .num_channels = ARRAY_SIZE(bma280_accel_channels), .scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G}, {4788, BMC150_ACCEL_DEF_RANGE_4G}, {9577, BMC150_ACCEL_DEF_RANGE_8G}, {19154, BMC150_ACCEL_DEF_RANGE_16G} }, }, }; static const struct iio_info bmc150_accel_info = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, }; static const struct iio_info bmc150_accel_info_fifo = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, .validate_trigger = bmc150_accel_validate_trigger, .hwfifo_set_watermark = bmc150_accel_set_watermark, .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush, }; static const unsigned long bmc150_accel_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0}; static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L, data->buffer, AXIS_MAX * 2); mutex_unlock(&data->mutex); if (ret < 0) goto err_read; iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, pf->timestamp); err_read: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static void bmc150_accel_trig_reen(struct iio_trigger *trig) { struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = t->data; struct device *dev = regmap_get_device(data->regmap); int ret; /* new data interrupts don't need ack */ if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY]) return; mutex_lock(&data->mutex); /* clear any latched interrupt */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); mutex_unlock(&data->mutex); if (ret < 0) dev_err(dev, "Error writing reg_int_rst_latch\n"); } static int bmc150_accel_trigger_set_state(struct iio_trigger *trig, bool state) { struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = t->data; int ret; mutex_lock(&data->mutex); if (t->enabled == state) { mutex_unlock(&data->mutex); return 0; } if (t->setup) { ret = t->setup(t, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } } ret = bmc150_accel_set_interrupt(data, t->intr, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } t->enabled = state; mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops bmc150_accel_trigger_ops = { .set_trigger_state = bmc150_accel_trigger_set_state, .reenable = bmc150_accel_trig_reen, }; static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int dir; int ret; unsigned int val; ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val); if (ret < 0) { dev_err(dev, "Error reading reg_int_status_2\n"); return ret; } if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) dir = IIO_EV_DIR_FALLING; else dir = IIO_EV_DIR_RISING; if (val & BMC150_ACCEL_ANY_MOTION_BIT_X) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_ROC, dir), data->timestamp); if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_ROC, dir), data->timestamp); if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_ROC, dir), data->timestamp); return ret; } static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); bool ack = false; int ret; mutex_lock(&data->mutex); if (data->fifo_mode) { ret = __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, true); if (ret > 0) ack = true; } if (data->ev_enable_state) { ret = bmc150_accel_handle_roc_event(indio_dev); if (ret > 0) ack = true; } if (ack) { ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret) dev_err(dev, "Error writing reg_int_rst_latch\n"); ret = IRQ_HANDLED; } else { ret = IRQ_NONE; } mutex_unlock(&data->mutex); return ret; } static irqreturn_t bmc150_accel_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); bool ack = false; int i; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(indio_dev); for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { if (data->triggers[i].enabled) { iio_trigger_poll(data->triggers[i].indio_trig); ack = true; break; } } if (data->ev_enable_state || data->fifo_mode) return IRQ_WAKE_THREAD; if (ack) return IRQ_HANDLED; return IRQ_NONE; } static const struct { int intr; const char *name; int (*setup)(struct bmc150_accel_trigger *t, bool state); } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = { { .intr = 0, .name = "%s-dev%d", }, { .intr = 1, .name = "%s-any-motion-dev%d", .setup = bmc150_accel_any_motion_setup, }, }; static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data, int from) { int i; for (i = from; i >= 0; i--) { if (data->triggers[i].indio_trig) { iio_trigger_unregister(data->triggers[i].indio_trig); data->triggers[i].indio_trig = NULL; } } } static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev, struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int i, ret; for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { struct bmc150_accel_trigger *t = &data->triggers[i]; t->indio_trig = devm_iio_trigger_alloc(dev, bmc150_accel_triggers[i].name, indio_dev->name, iio_device_id(indio_dev)); if (!t->indio_trig) { ret = -ENOMEM; break; } t->indio_trig->ops = &bmc150_accel_trigger_ops; t->intr = bmc150_accel_triggers[i].intr; t->data = data; t->setup = bmc150_accel_triggers[i].setup; iio_trigger_set_drvdata(t->indio_trig, t); ret = iio_trigger_register(t->indio_trig); if (ret) break; } if (ret) bmc150_accel_unregister_triggers(data, i - 1); return ret; } #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1; int ret; ret = regmap_write(data->regmap, reg, data->fifo_mode); if (ret < 0) { dev_err(dev, "Error writing reg_fifo_config1\n"); return ret; } if (!data->fifo_mode) return 0; ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0, data->watermark); if (ret < 0) dev_err(dev, "Error writing reg_fifo_config0\n"); return ret; } static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); return bmc150_accel_set_power_state(data, true); } static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret = 0; if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) return 0; mutex_lock(&data->mutex); if (!data->watermark) goto out; ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, true); if (ret) goto out; data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO; ret = bmc150_accel_fifo_set_mode(data); if (ret) { data->fifo_mode = 0; bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); } out: mutex_unlock(&data->mutex); return ret; } static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) return 0; mutex_lock(&data->mutex); if (!data->fifo_mode) goto out; bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false); data->fifo_mode = 0; bmc150_accel_fifo_set_mode(data); out: mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev) { struct bmc150_accel_data *data = iio_priv(indio_dev); return bmc150_accel_set_power_state(data, false); } static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = { .preenable = bmc150_accel_buffer_preenable, .postenable = bmc150_accel_buffer_postenable, .predisable = bmc150_accel_buffer_predisable, .postdisable = bmc150_accel_buffer_postdisable, }; static int bmc150_accel_chip_init(struct bmc150_accel_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret, i; unsigned int val; /* * Reset chip to get it in a known good state. A delay of 1.8ms after * reset is required according to the data sheets of supported chips. */ regmap_write(data->regmap, BMC150_ACCEL_REG_RESET, BMC150_ACCEL_RESET_VAL); usleep_range(1800, 2500); ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val); if (ret < 0) { dev_err(dev, "Error: Reading chip id\n"); return ret; } dev_dbg(dev, "Chip Id %x\n", val); for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) { if (bmc150_accel_chip_info_tbl[i].chip_id == val) { data->chip_info = &bmc150_accel_chip_info_tbl[i]; break; } } if (!data->chip_info) { dev_err(dev, "Invalid chip %x\n", val); return -ENODEV; } ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; /* Set Bandwidth */ ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); if (ret < 0) return ret; /* Set Default Range */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, BMC150_ACCEL_DEF_RANGE_4G); if (ret < 0) { dev_err(dev, "Error writing reg_pmu_range\n"); return ret; } data->range = BMC150_ACCEL_DEF_RANGE_4G; /* Set default slope duration and thresholds */ data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION; ret = bmc150_accel_update_slope(data); if (ret < 0) return ret; /* Set default as latched interrupts */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(dev, "Error writing reg_int_rst_latch\n"); return ret; } return 0; } int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, enum bmc150_type type, const char *name, bool block_supported) { const struct iio_dev_attr **fifo_attrs; struct bmc150_accel_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; data->type = type; if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) { ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; } /* * VDD is the analog and digital domain voltage supply * VDDIO is the digital I/O voltage supply */ data->regulators[0].supply = "vdd"; data->regulators[1].supply = "vddio"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators), data->regulators); if (ret) return dev_err_probe(dev, ret, "failed to get regulators\n"); ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), data->regulators); if (ret) { dev_err(dev, "failed to enable regulators: %d\n", ret); return ret; } /* * 2ms or 3ms power-on time according to datasheets, let's better * be safe than sorry and set this delay to 5ms. */ msleep(5); ret = bmc150_accel_chip_init(data); if (ret < 0) goto err_disable_regulators; mutex_init(&data->mutex); indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->name = name ? name : data->chip_info->name; indio_dev->available_scan_masks = bmc150_accel_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmc150_accel_info; if (block_supported) { indio_dev->modes |= INDIO_BUFFER_SOFTWARE; indio_dev->info = &bmc150_accel_info_fifo; fifo_attrs = bmc150_accel_fifo_attributes; } else { fifo_attrs = NULL; } ret = iio_triggered_buffer_setup_ext(indio_dev, &iio_pollfunc_store_time, bmc150_accel_trigger_handler, IIO_BUFFER_DIRECTION_IN, &bmc150_accel_buffer_ops, fifo_attrs); if (ret < 0) { dev_err(dev, "Failed: iio triggered buffer setup\n"); goto err_disable_regulators; } if (irq > 0) { ret = devm_request_threaded_irq(dev, irq, bmc150_accel_irq_handler, bmc150_accel_irq_thread_handler, IRQF_TRIGGER_RISING, BMC150_ACCEL_IRQ_NAME, indio_dev); if (ret) goto err_buffer_cleanup; /* * Set latched mode interrupt. While certain interrupts are * non-latched regardless of this settings (e.g. new data) we * want to use latch mode when we can to prevent interrupt * flooding. */ ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(dev, "Error writing reg_int_rst_latch\n"); goto err_buffer_cleanup; } bmc150_accel_interrupts_setup(indio_dev, data, irq); ret = bmc150_accel_triggers_setup(indio_dev, data); if (ret) goto err_buffer_cleanup; } ret = pm_runtime_set_active(dev); if (ret) goto err_trigger_unregister; pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(dev, "Unable to register iio device\n"); goto err_pm_cleanup; } return 0; err_pm_cleanup: pm_runtime_dont_use_autosuspend(dev); pm_runtime_disable(dev); err_trigger_unregister: bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_disable_regulators: regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); return ret; } EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, IIO_BMC150); void bmc150_accel_core_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); iio_triggered_buffer_cleanup(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); mutex_unlock(&data->mutex); regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); } EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, IIO_BMC150); #ifdef CONFIG_PM_SLEEP static int bmc150_accel_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); bmc150_accel_fifo_set_mode(data); mutex_unlock(&data->mutex); if (data->resume_callback) data->resume_callback(dev); return 0; } #endif #ifdef CONFIG_PM static int bmc150_accel_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); if (ret < 0) return -EAGAIN; return 0; } static int bmc150_accel_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; int sleep_val; ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; ret = bmc150_accel_fifo_set_mode(data); if (ret < 0) return ret; sleep_val = bmc150_accel_get_startup_times(data); if (sleep_val < 20) usleep_range(sleep_val * 1000, 20000); else msleep_interruptible(sleep_val); return 0; } #endif const struct dev_pm_ops bmc150_accel_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, bmc150_accel_runtime_resume, NULL) }; EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, IIO_BMC150); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 accelerometer driver");
linux-master
drivers/iio/accel/bmc150-accel-core.c
// SPDX-License-Identifier: GPL-2.0-only /* * I2C IIO driver for Bosch BMA400 triaxial acceleration sensor. * * Copyright 2019 Dan Robertson <[email protected]> * * I2C address is either 0x14 or 0x15 depending on SDO */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include "bma400.h" static int bma400_i2c_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct regmap *regmap; regmap = devm_regmap_init_i2c(client, &bma400_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "failed to create regmap\n"); return PTR_ERR(regmap); } return bma400_probe(&client->dev, regmap, client->irq, id->name); } static const struct i2c_device_id bma400_i2c_ids[] = { { "bma400", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, bma400_i2c_ids); static const struct of_device_id bma400_of_i2c_match[] = { { .compatible = "bosch,bma400" }, { } }; MODULE_DEVICE_TABLE(of, bma400_of_i2c_match); static struct i2c_driver bma400_i2c_driver = { .driver = { .name = "bma400", .of_match_table = bma400_of_i2c_match, }, .probe = bma400_i2c_probe, .id_table = bma400_i2c_ids, }; module_i2c_driver(bma400_i2c_driver); MODULE_AUTHOR("Dan Robertson <[email protected]>"); MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor (I2C)"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_BMA400);
linux-master
drivers/iio/accel/bma400_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics accelerometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/sysfs.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/common/st_sensors.h> #include "st_accel.h" #define ST_ACCEL_NUMBER_DATA_CHANNELS 3 /* DEFAULT VALUE FOR SENSORS */ #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c /* FULLSCALE */ #define ST_ACCEL_FS_AVL_2G 2 #define ST_ACCEL_FS_AVL_4G 4 #define ST_ACCEL_FS_AVL_6G 6 #define ST_ACCEL_FS_AVL_8G 8 #define ST_ACCEL_FS_AVL_16G 16 #define ST_ACCEL_FS_AVL_100G 100 #define ST_ACCEL_FS_AVL_200G 200 #define ST_ACCEL_FS_AVL_400G 400 static const struct iio_mount_matrix * st_accel_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct st_sensor_data *adata = iio_priv(indio_dev); return &adata->mount_matrix; } static const struct iio_chan_spec_ext_info st_accel_mount_matrix_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, st_accel_get_mount_matrix), { } }; static const struct iio_chan_spec st_accel_8bit_channels[] = { ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8, ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1, st_accel_mount_matrix_ext_info), ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1, st_accel_mount_matrix_ext_info), ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1, st_accel_mount_matrix_ext_info), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct iio_chan_spec st_accel_12bit_channels[] = { ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16, ST_ACCEL_DEFAULT_OUT_X_L_ADDR, st_accel_mount_matrix_ext_info), ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR, st_accel_mount_matrix_ext_info), ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR, st_accel_mount_matrix_ext_info), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct iio_chan_spec st_accel_16bit_channels[] = { ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16, ST_ACCEL_DEFAULT_OUT_X_L_ADDR, st_accel_mount_matrix_ext_info), ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR, st_accel_mount_matrix_ext_info), ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR, st_accel_mount_matrix_ext_info), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct st_sensor_settings st_accel_sensors_settings[] = { { .wai = 0x33, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS3DH_ACCEL_DEV_NAME, [1] = LSM303DLHC_ACCEL_DEV_NAME, [2] = LSM330D_ACCEL_DEV_NAME, [3] = LSM330DL_ACCEL_DEV_NAME, [4] = LSM330DLC_ACCEL_DEV_NAME, [5] = LSM303AGR_ACCEL_DEV_NAME, [6] = LIS2DH12_ACCEL_DEV_NAME, [7] = LIS3DE_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 10, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, { .hz = 400, .value = 0x07, }, { .hz = 1600, .value = 0x08, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(2000), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(4000), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(12000), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x25, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x32, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS331DLH_ACCEL_DEV_NAME, [1] = LSM303DL_ACCEL_DEV_NAME, [2] = LSM303DLH_ACCEL_DEV_NAME, [3] = LSM303DLM_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x18, .odr_avl = { { .hz = 50, .value = 0x00, }, { .hz = 100, .value = 0x01, }, { .hz = 400, .value = 0x02, }, { .hz = 1000, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0xe0, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(2000), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x03, .gain = IIO_G_TO_M_S_2(3900), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x02, .addr_od = 0x22, .mask_od = 0x40, }, .int2 = { .addr = 0x22, .mask = 0x10, .addr_od = 0x22, .mask_od = 0x40, }, .addr_ihl = 0x22, .mask_ihl = 0x80, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x40, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LSM330_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 3, .value = 0x01, }, { .hz = 6, .value = 0x02, }, { .hz = 12, .value = 0x03, }, { .hz = 25, .value = 0x04, }, { .hz = 50, .value = 0x05, }, { .hz = 100, .value = 0x06, }, { .hz = 200, .value = 0x07, }, { .hz = 400, .value = 0x08, }, { .hz = 800, .value = 0x09, }, { .hz = 1600, .value = 0x0a, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x24, .mask = 0x38, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(61), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(122), }, [2] = { .num = ST_ACCEL_FS_AVL_6G, .value = 0x02, .gain = IIO_G_TO_M_S_2(183), }, [3] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x03, .gain = IIO_G_TO_M_S_2(244), }, [4] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x04, .gain = IIO_G_TO_M_S_2(732), }, }, }, .bdu = { .addr = 0x20, .mask = 0x08, }, .drdy_irq = { .int1 = { .addr = 0x23, .mask = 0x80, }, .addr_ihl = 0x23, .mask_ihl = 0x40, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, .ig1 = { .en_addr = 0x23, .en_mask = 0x08, }, }, .sim = { .addr = 0x24, .value = BIT(0), }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x3a, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS3LV02DL_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x30, /* DF1 and DF0 */ .odr_avl = { { .hz = 40, .value = 0x00, }, { .hz = 160, .value = 0x01, }, { .hz = 640, .value = 0x02, }, { .hz = 2560, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0xc0, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x21, .mask = 0x80, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_6G, .value = 0x01, .gain = IIO_G_TO_M_S_2(3000), }, }, }, .bdu = { .addr = 0x21, .mask = 0x40, }, /* * Data Alignment Setting - needs to be set to get * left-justified data like all other sensors. */ .das = { .addr = 0x21, .mask = 0x01, }, .drdy_irq = { .int1 = { .addr = 0x21, .mask = 0x04, }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x21, .value = BIT(1), }, .multi_read_bit = true, .bootime = 2, /* guess */ }, { .wai = 0x3b, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS331DL_ACCEL_DEV_NAME, [1] = LIS302DL_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_8bit_channels, .odr = { .addr = 0x20, .mask = 0x80, .odr_avl = { { .hz = 100, .value = 0x00, }, { .hz = 400, .value = 0x01, }, }, }, .pw = { .addr = 0x20, .mask = 0x40, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x20, .mask = 0x20, /* * TODO: check these resulting gain settings, these are * not in the datsheet */ .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(18000), }, [1] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x01, .gain = IIO_G_TO_M_S_2(72000), }, }, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x04, .addr_od = 0x22, .mask_od = 0x40, }, .int2 = { .addr = 0x22, .mask = 0x20, .addr_od = 0x22, .mask_od = 0x40, }, .addr_ihl = 0x22, .mask_ihl = 0x80, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x21, .value = BIT(7), }, .multi_read_bit = false, .bootime = 2, /* guess */ }, { .wai = 0x32, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = H3LIS331DL_ACCEL_DEV_NAME, [1] = IIS328DQ_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x18, .odr_avl = { { .hz = 50, .value = 0x00, }, { .hz = 100, .value = 0x01, }, { .hz = 400, .value = 0x02, }, { .hz = 1000, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0x20, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_100G, .value = 0x00, .gain = IIO_G_TO_M_S_2(49000), }, [1] = { .num = ST_ACCEL_FS_AVL_200G, .value = 0x01, .gain = IIO_G_TO_M_S_2(98000), }, [2] = { .num = ST_ACCEL_FS_AVL_400G, .value = 0x03, .gain = IIO_G_TO_M_S_2(195000), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x02, }, .int2 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x22, .mask_ihl = 0x80, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { /* No WAI register present */ .sensors_supported = { [0] = LIS3L02DQ_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x30, .odr_avl = { { .hz = 280, .value = 0x00, }, { .hz = 560, .value = 0x01, }, { .hz = 1120, .value = 0x02, }, { .hz = 4480, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0xc0, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .gain = IIO_G_TO_M_S_2(488), }, }, }, /* * The part has a BDU bit but if set the data is never * updated so don't set it. */ .bdu = { }, .drdy_irq = { .int1 = { .addr = 0x21, .mask = 0x04, }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x21, .value = BIT(1), }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x33, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LNG2DM_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_8bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 10, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, { .hz = 400, .value = 0x07, }, { .hz = 1600, .value = 0x08, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(15600), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(31200), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(62500), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(187500), }, }, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x25, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x44, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS2DW12_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 12, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .fs = { .addr = 0x25, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(976), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(1952), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(3904), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(7808), }, }, }, .bdu = { .addr = 0x21, .mask = 0x08, }, .drdy_irq = { .int1 = { .addr = 0x23, .mask = 0x01, .addr_od = 0x22, .mask_od = 0x20, }, .int2 = { .addr = 0x24, .mask = 0x01, .addr_od = 0x22, .mask_od = 0x20, }, .addr_ihl = 0x22, .mask_ihl = 0x08, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x01, }, }, .sim = { .addr = 0x21, .value = BIT(0), }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x11, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS3DHH_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { /* just ODR = 1100Hz available */ .odr_avl = { { .hz = 1100, .value = 0x00, }, }, }, .pw = { .addr = 0x20, .mask = 0x80, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .fs = { .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .gain = IIO_G_TO_M_S_2(76), }, }, }, .bdu = { .addr = 0x20, .mask = 0x01, }, .drdy_irq = { .int1 = { .addr = 0x21, .mask = 0x80, .addr_od = 0x23, .mask_od = 0x04, }, .int2 = { .addr = 0x22, .mask = 0x80, .addr_od = 0x23, .mask_od = 0x08, }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x33, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS2DE12_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_8bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 10, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, { .hz = 400, .value = 0x07, }, { .hz = 1620, .value = 0x08, }, { .hz = 5376, .value = 0x09, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(15600), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(31200), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(62500), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(187500), }, }, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x25, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x41, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS2HH12_ACCEL_DEV_NAME, [1] = LSM303C_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { .addr = 0x20, .mask = 0x70, .odr_avl = { { .hz = 10, .value = 0x01, }, { .hz = 50, .value = 0x02, }, { .hz = 100, .value = 0x03, }, { .hz = 200, .value = 0x04, }, { .hz = 400, .value = 0x05, }, { .hz = 800, .value = 0x06, }, }, }, .pw = { .addr = 0x20, .mask = 0x70, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(61), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x02, .gain = IIO_G_TO_M_S_2(122), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x03, .gain = IIO_G_TO_M_S_2(244), }, }, }, .bdu = { .addr = 0x20, .mask = 0x08, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x01, }, .int2 = { .addr = 0x25, .mask = 0x01, }, .addr_ihl = 0x24, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x49, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LSM9DS0_IMU_DEV_NAME, [1] = LSM303D_IMU_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { .addr = 0x20, .mask = GENMASK(7, 4), .odr_avl = { { 3, 0x01, }, { 6, 0x02, }, { 12, 0x03, }, { 25, 0x04, }, { 50, 0x05, }, { 100, 0x06, }, { 200, 0x07, }, { 400, 0x08, }, { 800, 0x09, }, { 1600, 0x0a, }, }, }, .pw = { .addr = 0x20, .mask = GENMASK(7, 4), .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x21, .mask = GENMASK(5, 3), .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(61), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(122), }, [2] = { .num = ST_ACCEL_FS_AVL_6G, .value = 0x02, .gain = IIO_G_TO_M_S_2(183), }, [3] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x03, .gain = IIO_G_TO_M_S_2(244), }, [4] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x04, .gain = IIO_G_TO_M_S_2(732), }, }, }, .bdu = { .addr = 0x20, .mask = BIT(3), }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = BIT(2), }, .int2 = { .addr = 0x23, .mask = BIT(3), }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = GENMASK(2, 0), }, }, .sim = { .addr = 0x21, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { /* * Not an ST part. Register-compatible with the LIS2DH, even * though the WAI value is different. */ .wai = 0x11, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = SC7A20_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 10, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, { .hz = 400, .value = 0x07, }, { .hz = 1600, .value = 0x08, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(2000), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(4000), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(12000), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x25, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, }; /* Default accel DRDY is available on INT1 pin */ static const struct st_sensors_platform_data default_accel_pdata = { .drdy_int_pin = 1, }; static int st_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { int err; struct st_sensor_data *adata = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: err = st_sensors_read_info_raw(indio_dev, ch, val); if (err < 0) goto read_error; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = adata->current_fullscale->gain / 1000000; *val2 = adata->current_fullscale->gain % 1000000; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: *val = adata->odr; return IIO_VAL_INT; default: return -EINVAL; } read_error: return err; } static int st_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: { int gain; gain = val * 1000000 + val2; return st_sensors_set_fullscale_by_gain(indio_dev, gain); } case IIO_CHAN_INFO_SAMP_FREQ: if (val2) return -EINVAL; return st_sensors_set_odr(indio_dev, val); default: return -EINVAL; } } static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available); static struct attribute *st_accel_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group st_accel_attribute_group = { .attrs = st_accel_attributes, }; static const struct iio_info accel_info = { .attrs = &st_accel_attribute_group, .read_raw = &st_accel_read_raw, .write_raw = &st_accel_write_raw, .debugfs_reg_access = &st_sensors_debugfs_reg_access, }; #ifdef CONFIG_IIO_TRIGGER static const struct iio_trigger_ops st_accel_trigger_ops = { .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE, .validate_device = st_sensors_validate_device, }; #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops) #else #define ST_ACCEL_TRIGGER_OPS NULL #endif #ifdef CONFIG_ACPI /* Read ST-specific _ONT orientation data from ACPI and generate an * appropriate mount matrix. */ static int apply_acpi_orientation(struct iio_dev *indio_dev) { struct st_sensor_data *adata = iio_priv(indio_dev); struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; struct acpi_device *adev; union acpi_object *ont; union acpi_object *elements; acpi_status status; int ret = -EINVAL; unsigned int val; int i, j; int final_ont[3][3] = { { 0 }, }; /* For some reason, ST's _ONT translation does not apply directly * to the data read from the sensor. Another translation must be * performed first, as described by the matrix below. Perhaps * ST required this specific translation for the first product * where the device was mounted? */ const int default_ont[3][3] = { { 0, 1, 0 }, { -1, 0, 0 }, { 0, 0, -1 }, }; adev = ACPI_COMPANION(indio_dev->dev.parent); if (!adev) return -ENXIO; /* Read _ONT data, which should be a package of 6 integers. */ status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer); if (status == AE_NOT_FOUND) { return -ENXIO; } else if (ACPI_FAILURE(status)) { dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n", status); return status; } ont = buffer.pointer; if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6) goto out; /* The first 3 integers provide axis order information. * e.g. 0 1 2 would indicate normal X,Y,Z ordering. * e.g. 1 0 2 indicates that data arrives in order Y,X,Z. */ elements = ont->package.elements; for (i = 0; i < 3; i++) { if (elements[i].type != ACPI_TYPE_INTEGER) goto out; val = elements[i].integer.value; if (val > 2) goto out; /* Avoiding full matrix multiplication, we simply reorder the * columns in the default_ont matrix according to the * ordering provided by _ONT. */ final_ont[0][i] = default_ont[0][val]; final_ont[1][i] = default_ont[1][val]; final_ont[2][i] = default_ont[2][val]; } /* The final 3 integers provide sign flip information. * 0 means no change, 1 means flip. * e.g. 0 0 1 means that Z data should be sign-flipped. * This is applied after the axis reordering from above. */ elements += 3; for (i = 0; i < 3; i++) { if (elements[i].type != ACPI_TYPE_INTEGER) goto out; val = elements[i].integer.value; if (val != 0 && val != 1) goto out; if (!val) continue; /* Flip the values in the indicated column */ final_ont[0][i] *= -1; final_ont[1][i] *= -1; final_ont[2][i] *= -1; } /* Convert our integer matrix to a string-based iio_mount_matrix */ for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { int matrix_val = final_ont[i][j]; char *str_value; switch (matrix_val) { case -1: str_value = "-1"; break; case 0: str_value = "0"; break; case 1: str_value = "1"; break; default: goto out; } adata->mount_matrix.rotation[i * 3 + j] = str_value; } } ret = 0; dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n"); out: kfree(buffer.pointer); if (ret) dev_dbg(&indio_dev->dev, "failed to apply ACPI orientation data: %d\n", ret); return ret; } #else /* !CONFIG_ACPI */ static int apply_acpi_orientation(struct iio_dev *indio_dev) { return -EINVAL; } #endif /* * st_accel_get_settings() - get sensor settings from device name * @name: device name buffer reference. * * Return: valid reference on success, NULL otherwise. */ const struct st_sensor_settings *st_accel_get_settings(const char *name) { int index = st_sensors_get_settings_index(name, st_accel_sensors_settings, ARRAY_SIZE(st_accel_sensors_settings)); if (index < 0) return NULL; return &st_accel_sensors_settings[index]; } EXPORT_SYMBOL_NS(st_accel_get_settings, IIO_ST_SENSORS); int st_accel_common_probe(struct iio_dev *indio_dev) { struct st_sensor_data *adata = iio_priv(indio_dev); struct device *parent = indio_dev->dev.parent; struct st_sensors_platform_data *pdata = dev_get_platdata(parent); int err; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &accel_info; err = st_sensors_verify_id(indio_dev); if (err < 0) return err; adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS; indio_dev->channels = adata->sensor_settings->ch; indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; /* * First try specific ACPI methods to retrieve orientation then try the * generic function. */ err = apply_acpi_orientation(indio_dev); if (err) { err = iio_read_mount_matrix(parent, &adata->mount_matrix); if (err) return err; } adata->current_fullscale = &adata->sensor_settings->fs.fs_avl[0]; adata->odr = adata->sensor_settings->odr.odr_avl[0].hz; if (!pdata) pdata = (struct st_sensors_platform_data *)&default_accel_pdata; err = st_sensors_init_sensor(indio_dev, pdata); if (err < 0) return err; err = st_accel_allocate_ring(indio_dev); if (err < 0) return err; if (adata->irq > 0) { err = st_sensors_allocate_trigger(indio_dev, ST_ACCEL_TRIGGER_OPS); if (err < 0) return err; } return devm_iio_device_register(parent, indio_dev); } EXPORT_SYMBOL_NS(st_accel_common_probe, IIO_ST_SENSORS); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics accelerometers driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ST_SENSORS);
linux-master
drivers/iio/accel/st_accel_core.c
// SPDX-License-Identifier: GPL-2.0 /* * 3-axis accelerometer driver supporting following Bosch-Sensortec chips: * - BMI088 * * Copyright (c) 2018-2021, Topic Embedded Products */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/slab.h> #include <asm/unaligned.h> #include "bmi088-accel.h" #define BMI088_ACCEL_REG_CHIP_ID 0x00 #define BMI088_ACCEL_REG_ERROR 0x02 #define BMI088_ACCEL_REG_INT_STATUS 0x1D #define BMI088_ACCEL_INT_STATUS_BIT_DRDY BIT(7) #define BMI088_ACCEL_REG_RESET 0x7E #define BMI088_ACCEL_RESET_VAL 0xB6 #define BMI088_ACCEL_REG_PWR_CTRL 0x7D #define BMI088_ACCEL_REG_PWR_CONF 0x7C #define BMI088_ACCEL_REG_INT_MAP_DATA 0x58 #define BMI088_ACCEL_INT_MAP_DATA_BIT_INT1_DRDY BIT(2) #define BMI088_ACCEL_INT_MAP_DATA_BIT_INT2_FWM BIT(5) #define BMI088_ACCEL_REG_INT1_IO_CONF 0x53 #define BMI088_ACCEL_INT1_IO_CONF_BIT_ENABLE_OUT BIT(3) #define BMI088_ACCEL_INT1_IO_CONF_BIT_LVL BIT(1) #define BMI088_ACCEL_REG_INT2_IO_CONF 0x54 #define BMI088_ACCEL_INT2_IO_CONF_BIT_ENABLE_OUT BIT(3) #define BMI088_ACCEL_INT2_IO_CONF_BIT_LVL BIT(1) #define BMI088_ACCEL_REG_ACC_CONF 0x40 #define BMI088_ACCEL_MODE_ODR_MASK 0x0f #define BMI088_ACCEL_REG_ACC_RANGE 0x41 #define BMI088_ACCEL_RANGE_3G 0x00 #define BMI088_ACCEL_RANGE_6G 0x01 #define BMI088_ACCEL_RANGE_12G 0x02 #define BMI088_ACCEL_RANGE_24G 0x03 #define BMI088_ACCEL_REG_TEMP 0x22 #define BMI088_ACCEL_REG_TEMP_SHIFT 5 #define BMI088_ACCEL_TEMP_UNIT 125 #define BMI088_ACCEL_TEMP_OFFSET 23000 #define BMI088_ACCEL_REG_XOUT_L 0x12 #define BMI088_ACCEL_AXIS_TO_REG(axis) \ (BMI088_ACCEL_REG_XOUT_L + (axis * 2)) #define BMI088_ACCEL_MAX_STARTUP_TIME_US 1000 #define BMI088_AUTO_SUSPEND_DELAY_MS 2000 #define BMI088_ACCEL_REG_FIFO_STATUS 0x0E #define BMI088_ACCEL_REG_FIFO_CONFIG0 0x48 #define BMI088_ACCEL_REG_FIFO_CONFIG1 0x49 #define BMI088_ACCEL_REG_FIFO_DATA 0x3F #define BMI088_ACCEL_FIFO_LENGTH 100 #define BMI088_ACCEL_FIFO_MODE_FIFO 0x40 #define BMI088_ACCEL_FIFO_MODE_STREAM 0x80 #define BMIO088_ACCEL_ACC_RANGE_MSK GENMASK(1, 0) enum bmi088_accel_axis { AXIS_X, AXIS_Y, AXIS_Z, }; static const int bmi088_sample_freqs[] = { 12, 500000, 25, 0, 50, 0, 100, 0, 200, 0, 400, 0, 800, 0, 1600, 0, }; /* Available OSR (over sampling rate) sets the 3dB cut-off frequency */ enum bmi088_osr_modes { BMI088_ACCEL_MODE_OSR_NORMAL = 0xA, BMI088_ACCEL_MODE_OSR_2 = 0x9, BMI088_ACCEL_MODE_OSR_4 = 0x8, }; /* Available ODR (output data rates) in Hz */ enum bmi088_odr_modes { BMI088_ACCEL_MODE_ODR_12_5 = 0x5, BMI088_ACCEL_MODE_ODR_25 = 0x6, BMI088_ACCEL_MODE_ODR_50 = 0x7, BMI088_ACCEL_MODE_ODR_100 = 0x8, BMI088_ACCEL_MODE_ODR_200 = 0x9, BMI088_ACCEL_MODE_ODR_400 = 0xa, BMI088_ACCEL_MODE_ODR_800 = 0xb, BMI088_ACCEL_MODE_ODR_1600 = 0xc, }; struct bmi088_scale_info { int scale; u8 reg_range; }; struct bmi088_accel_chip_info { const char *name; u8 chip_id; const struct iio_chan_spec *channels; int num_channels; const int scale_table[4][2]; }; struct bmi088_accel_data { struct regmap *regmap; const struct bmi088_accel_chip_info *chip_info; u8 buffer[2] __aligned(IIO_DMA_MINALIGN); /* shared DMA safe buffer */ }; static const struct regmap_range bmi088_volatile_ranges[] = { /* All registers below 0x40 are volatile, except the CHIP ID. */ regmap_reg_range(BMI088_ACCEL_REG_ERROR, 0x3f), /* Mark the RESET as volatile too, it is self-clearing */ regmap_reg_range(BMI088_ACCEL_REG_RESET, BMI088_ACCEL_REG_RESET), }; static const struct regmap_access_table bmi088_volatile_table = { .yes_ranges = bmi088_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(bmi088_volatile_ranges), }; const struct regmap_config bmi088_regmap_conf = { .reg_bits = 8, .val_bits = 8, .max_register = 0x7E, .volatile_table = &bmi088_volatile_table, .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_NS_GPL(bmi088_regmap_conf, IIO_BMI088); static int bmi088_accel_power_up(struct bmi088_accel_data *data) { int ret; /* Enable accelerometer and temperature sensor */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x4); if (ret) return ret; /* Datasheet recommends to wait at least 5ms before communication */ usleep_range(5000, 6000); /* Disable suspend mode */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x0); if (ret) return ret; /* Recommended at least 1ms before further communication */ usleep_range(1000, 1200); return 0; } static int bmi088_accel_power_down(struct bmi088_accel_data *data) { int ret; /* Enable suspend mode */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x3); if (ret) return ret; /* Recommended at least 1ms before further communication */ usleep_range(1000, 1200); /* Disable accelerometer and temperature sensor */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x0); if (ret) return ret; /* Datasheet recommends to wait at least 5ms before communication */ usleep_range(5000, 6000); return 0; } static int bmi088_accel_get_sample_freq(struct bmi088_accel_data *data, int *val, int *val2) { unsigned int value; int ret; ret = regmap_read(data->regmap, BMI088_ACCEL_REG_ACC_CONF, &value); if (ret) return ret; value &= BMI088_ACCEL_MODE_ODR_MASK; value -= BMI088_ACCEL_MODE_ODR_12_5; value <<= 1; if (value >= ARRAY_SIZE(bmi088_sample_freqs) - 1) return -EINVAL; *val = bmi088_sample_freqs[value]; *val2 = bmi088_sample_freqs[value + 1]; return IIO_VAL_INT_PLUS_MICRO; } static int bmi088_accel_set_sample_freq(struct bmi088_accel_data *data, int val) { unsigned int regval; int index = 0; while (index < ARRAY_SIZE(bmi088_sample_freqs) && bmi088_sample_freqs[index] != val) index += 2; if (index >= ARRAY_SIZE(bmi088_sample_freqs)) return -EINVAL; regval = (index >> 1) + BMI088_ACCEL_MODE_ODR_12_5; return regmap_update_bits(data->regmap, BMI088_ACCEL_REG_ACC_CONF, BMI088_ACCEL_MODE_ODR_MASK, regval); } static int bmi088_accel_set_scale(struct bmi088_accel_data *data, int val, int val2) { unsigned int i; for (i = 0; i < 4; i++) if (val == data->chip_info->scale_table[i][0] && val2 == data->chip_info->scale_table[i][1]) break; if (i == 4) return -EINVAL; return regmap_write(data->regmap, BMI088_ACCEL_REG_ACC_RANGE, i); } static int bmi088_accel_get_temp(struct bmi088_accel_data *data, int *val) { int ret; s16 temp; ret = regmap_bulk_read(data->regmap, BMI088_ACCEL_REG_TEMP, &data->buffer, sizeof(__be16)); if (ret) return ret; /* data->buffer is cacheline aligned */ temp = be16_to_cpu(*(__be16 *)data->buffer); *val = temp >> BMI088_ACCEL_REG_TEMP_SHIFT; return IIO_VAL_INT; } static int bmi088_accel_get_axis(struct bmi088_accel_data *data, struct iio_chan_spec const *chan, int *val) { int ret; s16 raw_val; ret = regmap_bulk_read(data->regmap, BMI088_ACCEL_AXIS_TO_REG(chan->scan_index), data->buffer, sizeof(__le16)); if (ret) return ret; raw_val = le16_to_cpu(*(__le16 *)data->buffer); *val = raw_val; return IIO_VAL_INT; } static int bmi088_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmi088_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int ret; int reg; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_get_temp(data, val); goto out_read_raw_pm_put; case IIO_ACCEL: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) goto out_read_raw_pm_put; ret = bmi088_accel_get_axis(data, chan, val); iio_device_release_direct_mode(indio_dev); if (!ret) ret = IIO_VAL_INT; goto out_read_raw_pm_put; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: /* Offset applies before scale */ *val = BMI088_ACCEL_TEMP_OFFSET/BMI088_ACCEL_TEMP_UNIT; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_TEMP: /* 0.125 degrees per LSB */ *val = BMI088_ACCEL_TEMP_UNIT; return IIO_VAL_INT; case IIO_ACCEL: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = regmap_read(data->regmap, BMI088_ACCEL_REG_ACC_RANGE, &reg); if (ret) goto out_read_raw_pm_put; reg = FIELD_GET(BMIO088_ACCEL_ACC_RANGE_MSK, reg); *val = data->chip_info->scale_table[reg][0]; *val2 = data->chip_info->scale_table[reg][1]; ret = IIO_VAL_INT_PLUS_MICRO; goto out_read_raw_pm_put; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_get_sample_freq(data, val, val2); goto out_read_raw_pm_put; default: break; } return -EINVAL; out_read_raw_pm_put: pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int bmi088_accel_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct bmi088_accel_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = (const int *)data->chip_info->scale_table; *length = 8; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT_PLUS_MICRO; *vals = bmi088_sample_freqs; *length = ARRAY_SIZE(bmi088_sample_freqs); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int bmi088_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmi088_accel_data *data = iio_priv(indio_dev); struct device *dev = regmap_get_device(data->regmap); int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_set_scale(data, val, val2); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = bmi088_accel_set_sample_freq(data, val); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; default: return -EINVAL; } } #define BMI088_ACCEL_CHANNEL(_axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = AXIS_##_axis, \ } static const struct iio_chan_spec bmi088_accel_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .scan_index = -1, }, BMI088_ACCEL_CHANNEL(X), BMI088_ACCEL_CHANNEL(Y), BMI088_ACCEL_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct bmi088_accel_chip_info bmi088_accel_chip_info_tbl[] = { [BOSCH_BMI085] = { .name = "bmi085-accel", .chip_id = 0x1F, .channels = bmi088_accel_channels, .num_channels = ARRAY_SIZE(bmi088_accel_channels), .scale_table = {{0, 598}, {0, 1196}, {0, 2393}, {0, 4785}}, }, [BOSCH_BMI088] = { .name = "bmi088-accel", .chip_id = 0x1E, .channels = bmi088_accel_channels, .num_channels = ARRAY_SIZE(bmi088_accel_channels), .scale_table = {{0, 897}, {0, 1794}, {0, 3589}, {0, 7178}}, }, [BOSCH_BMI090L] = { .name = "bmi090l-accel", .chip_id = 0x1A, .channels = bmi088_accel_channels, .num_channels = ARRAY_SIZE(bmi088_accel_channels), .scale_table = {{0, 897}, {0, 1794}, {0, 3589}, {0, 7178}}, }, }; static const struct iio_info bmi088_accel_info = { .read_raw = bmi088_accel_read_raw, .write_raw = bmi088_accel_write_raw, .read_avail = bmi088_accel_read_avail, }; static const unsigned long bmi088_accel_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; static int bmi088_accel_chip_init(struct bmi088_accel_data *data, enum bmi_device_type type) { struct device *dev = regmap_get_device(data->regmap); int ret, i; unsigned int val; if (type >= BOSCH_UNKNOWN) return -ENODEV; /* Do a dummy read to enable SPI interface, won't harm I2C */ regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val); /* * Reset chip to get it in a known good state. A delay of 1ms after * reset is required according to the data sheet */ ret = regmap_write(data->regmap, BMI088_ACCEL_REG_RESET, BMI088_ACCEL_RESET_VAL); if (ret) return ret; usleep_range(1000, 2000); /* Do a dummy read again after a reset to enable the SPI interface */ regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val); /* Read chip ID */ ret = regmap_read(data->regmap, BMI088_ACCEL_REG_CHIP_ID, &val); if (ret) { dev_err(dev, "Error: Reading chip id\n"); return ret; } /* Validate chip ID */ for (i = 0; i < ARRAY_SIZE(bmi088_accel_chip_info_tbl); i++) if (bmi088_accel_chip_info_tbl[i].chip_id == val) break; if (i == ARRAY_SIZE(bmi088_accel_chip_info_tbl)) data->chip_info = &bmi088_accel_chip_info_tbl[type]; else data->chip_info = &bmi088_accel_chip_info_tbl[i]; if (i != type) dev_warn(dev, "unexpected chip id 0x%X\n", val); return 0; } int bmi088_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, enum bmi_device_type type) { struct bmi088_accel_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; ret = bmi088_accel_chip_init(data, type); if (ret) return ret; indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->name = data->chip_info->name; indio_dev->available_scan_masks = bmi088_accel_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmi088_accel_info; /* Enable runtime PM */ pm_runtime_get_noresume(dev); pm_runtime_set_suspended(dev); pm_runtime_enable(dev); /* We need ~6ms to startup, so set the delay to 6 seconds */ pm_runtime_set_autosuspend_delay(dev, 6000); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); ret = iio_device_register(indio_dev); if (ret) dev_err(dev, "Unable to register iio device\n"); return ret; } EXPORT_SYMBOL_NS_GPL(bmi088_accel_core_probe, IIO_BMI088); void bmi088_accel_core_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmi088_accel_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); bmi088_accel_power_down(data); } EXPORT_SYMBOL_NS_GPL(bmi088_accel_core_remove, IIO_BMI088); static int bmi088_accel_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmi088_accel_data *data = iio_priv(indio_dev); return bmi088_accel_power_down(data); } static int bmi088_accel_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmi088_accel_data *data = iio_priv(indio_dev); return bmi088_accel_power_up(data); } EXPORT_NS_GPL_RUNTIME_DEV_PM_OPS(bmi088_accel_pm_ops, bmi088_accel_runtime_suspend, bmi088_accel_runtime_resume, NULL, IIO_BMI088); MODULE_AUTHOR("Niek van Agt <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMI088 accelerometer driver (core)");
linux-master
drivers/iio/accel/bmi088-accel-core.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL345 3-Axis Digital Accelerometer SPI driver * * Copyright (c) 2017 Eva Rachel Retuya <[email protected]> */ #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include "adxl345.h" #define ADXL345_MAX_SPI_FREQ_HZ 5000000 static const struct regmap_config adxl345_spi_regmap_config = { .reg_bits = 8, .val_bits = 8, /* Setting bits 7 and 6 enables multiple-byte read */ .read_flag_mask = BIT(7) | BIT(6), }; static int adxl345_spi_probe(struct spi_device *spi) { struct regmap *regmap; /* Bail out if max_speed_hz exceeds 5 MHz */ if (spi->max_speed_hz > ADXL345_MAX_SPI_FREQ_HZ) return dev_err_probe(&spi->dev, -EINVAL, "SPI CLK, %d Hz exceeds 5 MHz\n", spi->max_speed_hz); regmap = devm_regmap_init_spi(spi, &adxl345_spi_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(&spi->dev, PTR_ERR(regmap), "Error initializing regmap\n"); return adxl345_core_probe(&spi->dev, regmap); } static const struct spi_device_id adxl345_spi_id[] = { { "adxl345", ADXL345 }, { "adxl375", ADXL375 }, { } }; MODULE_DEVICE_TABLE(spi, adxl345_spi_id); static const struct of_device_id adxl345_of_match[] = { { .compatible = "adi,adxl345", .data = (const void *)ADXL345 }, { .compatible = "adi,adxl375", .data = (const void *)ADXL375 }, { } }; MODULE_DEVICE_TABLE(of, adxl345_of_match); static const struct acpi_device_id adxl345_acpi_match[] = { { "ADS0345", ADXL345 }, { } }; MODULE_DEVICE_TABLE(acpi, adxl345_acpi_match); static struct spi_driver adxl345_spi_driver = { .driver = { .name = "adxl345_spi", .of_match_table = adxl345_of_match, .acpi_match_table = adxl345_acpi_match, }, .probe = adxl345_spi_probe, .id_table = adxl345_spi_id, }; module_spi_driver(adxl345_spi_driver); MODULE_AUTHOR("Eva Rachel Retuya <[email protected]>"); MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer SPI driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADXL345);
linux-master
drivers/iio/accel/adxl345_spi.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for older Chrome OS EC accelerometer * * Copyright 2017 Google, Inc * * This driver uses the memory mapper cros-ec interface to communicate * with the Chrome OS EC about accelerometer data or older commands. * Accelerometer access is presented through iio sysfs. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iio/buffer.h> #include <linux/iio/common/cros_ec_sensors_core.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/platform_device.h> #define DRV_NAME "cros-ec-accel-legacy" #define CROS_EC_SENSOR_LEGACY_NUM 2 /* * Sensor scale hard coded at 10 bits per g, computed as: * g / (2^10 - 1) = 0.009586168; with g = 9.80665 m.s^-2 */ #define ACCEL_LEGACY_NSCALE 9586168 /* * Sensor frequency is hard-coded to 10Hz. */ static const int cros_ec_legacy_sample_freq[] = { 10, 0 }; static int cros_ec_accel_legacy_read_cmd(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret; unsigned int i; u8 sensor_num; /* * Read all sensor data through a command. * Save sensor_num, it is assumed to stay. */ sensor_num = st->param.info.sensor_num; st->param.cmd = MOTIONSENSE_CMD_DUMP; st->param.dump.max_sensor_count = CROS_EC_SENSOR_LEGACY_NUM; ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->dump) + CROS_EC_SENSOR_LEGACY_NUM * sizeof(struct ec_response_motion_sensor_data)); st->param.info.sensor_num = sensor_num; if (ret != 0) { dev_warn(&indio_dev->dev, "Unable to read sensor data\n"); return ret; } for_each_set_bit(i, &scan_mask, indio_dev->masklength) { *data = st->resp->dump.sensor[sensor_num].data[i] * st->sign[i]; data++; } return 0; } static int cros_ec_accel_legacy_read(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); s16 data = 0; int ret; int idx = chan->scan_index; mutex_lock(&st->cmd_lock); switch (mask) { case IIO_CHAN_INFO_RAW: ret = st->read_ec_sensors_data(indio_dev, 1 << idx, &data); if (ret < 0) break; ret = IIO_VAL_INT; *val = data; break; case IIO_CHAN_INFO_SCALE: WARN_ON(st->type != MOTIONSENSE_TYPE_ACCEL); *val = 0; *val2 = ACCEL_LEGACY_NSCALE; ret = IIO_VAL_INT_PLUS_NANO; break; case IIO_CHAN_INFO_CALIBBIAS: /* Calibration not supported. */ *val = 0; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SAMP_FREQ: *val = cros_ec_legacy_sample_freq[0]; *val2 = cros_ec_legacy_sample_freq[1]; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = cros_ec_sensors_core_read(st, chan, val, val2, mask); break; } mutex_unlock(&st->cmd_lock); return ret; } static int cros_ec_accel_legacy_write(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { /* * Do nothing but don't return an error code to allow calibration * script to work. */ if (mask == IIO_CHAN_INFO_CALIBBIAS) return 0; return -EINVAL; } /** * cros_ec_accel_legacy_read_avail() - get available values * @indio_dev: pointer to state information for device * @chan: channel specification structure table * @vals: list of available values * @type: type of data returned * @length: number of data returned in the array * @mask: specifies which values to be requested * * Return: an error code or IIO_AVAIL_LIST */ static int cros_ec_accel_legacy_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *length = ARRAY_SIZE(cros_ec_legacy_sample_freq); *vals = cros_ec_legacy_sample_freq; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; } return -EINVAL; } static const struct iio_info cros_ec_accel_legacy_info = { .read_raw = &cros_ec_accel_legacy_read, .write_raw = &cros_ec_accel_legacy_write, .read_avail = &cros_ec_accel_legacy_read_avail, }; /* * Present the channel using HTML5 standard: * need to invert X and Y and invert some lid axis. */ #define CROS_EC_ACCEL_ROTATE_AXIS(_axis) \ ((_axis) == CROS_EC_SENSOR_Z ? CROS_EC_SENSOR_Z : \ ((_axis) == CROS_EC_SENSOR_X ? CROS_EC_SENSOR_Y : \ CROS_EC_SENSOR_X)) #define CROS_EC_ACCEL_LEGACY_CHAN(_axis) \ { \ .type = IIO_ACCEL, \ .channel2 = IIO_MOD_X + (_axis), \ .modified = 1, \ .info_mask_separate = \ BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_all = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .ext_info = cros_ec_sensors_ext_info, \ .scan_type = { \ .sign = 's', \ .realbits = CROS_EC_SENSOR_BITS, \ .storagebits = CROS_EC_SENSOR_BITS, \ }, \ .scan_index = CROS_EC_ACCEL_ROTATE_AXIS(_axis), \ } \ static const struct iio_chan_spec cros_ec_accel_legacy_channels[] = { CROS_EC_ACCEL_LEGACY_CHAN(CROS_EC_SENSOR_X), CROS_EC_ACCEL_LEGACY_CHAN(CROS_EC_SENSOR_Y), CROS_EC_ACCEL_LEGACY_CHAN(CROS_EC_SENSOR_Z), IIO_CHAN_SOFT_TIMESTAMP(CROS_EC_SENSOR_MAX_AXIS) }; static int cros_ec_accel_legacy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct cros_ec_sensors_core_state *state; int ret; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*state)); if (!indio_dev) return -ENOMEM; ret = cros_ec_sensors_core_init(pdev, indio_dev, true, cros_ec_sensors_capture); if (ret) return ret; indio_dev->info = &cros_ec_accel_legacy_info; state = iio_priv(indio_dev); if (state->ec->cmd_readmem != NULL) state->read_ec_sensors_data = cros_ec_sensors_read_lpc; else state->read_ec_sensors_data = cros_ec_accel_legacy_read_cmd; indio_dev->channels = cros_ec_accel_legacy_channels; indio_dev->num_channels = ARRAY_SIZE(cros_ec_accel_legacy_channels); /* The lid sensor needs to be presented inverted. */ if (!strcmp(indio_dev->label, "accel-display")) { state->sign[CROS_EC_SENSOR_X] = -1; state->sign[CROS_EC_SENSOR_Z] = -1; } return cros_ec_sensors_core_register(dev, indio_dev, NULL); } static struct platform_driver cros_ec_accel_platform_driver = { .driver = { .name = DRV_NAME, }, .probe = cros_ec_accel_legacy_probe, }; module_platform_driver(cros_ec_accel_platform_driver); MODULE_DESCRIPTION("ChromeOS EC legacy accelerometer driver"); MODULE_AUTHOR("Gwendal Grignou <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRV_NAME);
linux-master
drivers/iio/accel/cros_ec_accel_legacy.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO driver for the 3-axis accelerometer Domintech DMARD09. * * Copyright (c) 2016, Jelle van der Waa <[email protected]> */ #include <asm/unaligned.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #define DMARD09_DRV_NAME "dmard09" #define DMARD09_REG_CHIPID 0x18 #define DMARD09_REG_STAT 0x0A #define DMARD09_REG_X 0x0C #define DMARD09_REG_Y 0x0E #define DMARD09_REG_Z 0x10 #define DMARD09_CHIPID 0x95 #define DMARD09_BUF_LEN 8 #define DMARD09_AXIS_X 0 #define DMARD09_AXIS_Y 1 #define DMARD09_AXIS_Z 2 #define DMARD09_AXIS_X_OFFSET ((DMARD09_AXIS_X + 1) * 2) #define DMARD09_AXIS_Y_OFFSET ((DMARD09_AXIS_Y + 1) * 2) #define DMARD09_AXIS_Z_OFFSET ((DMARD09_AXIS_Z + 1) * 2) struct dmard09_data { struct i2c_client *client; }; #define DMARD09_CHANNEL(_axis, offset) { \ .type = IIO_ACCEL, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .modified = 1, \ .address = offset, \ .channel2 = IIO_MOD_##_axis, \ } static const struct iio_chan_spec dmard09_channels[] = { DMARD09_CHANNEL(X, DMARD09_AXIS_X_OFFSET), DMARD09_CHANNEL(Y, DMARD09_AXIS_Y_OFFSET), DMARD09_CHANNEL(Z, DMARD09_AXIS_Z_OFFSET), }; static int dmard09_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct dmard09_data *data = iio_priv(indio_dev); u8 buf[DMARD09_BUF_LEN]; int ret; s16 accel; switch (mask) { case IIO_CHAN_INFO_RAW: /* * Read from the DMAR09_REG_STAT register, since the chip * caches reads from the individual X, Y, Z registers. */ ret = i2c_smbus_read_i2c_block_data(data->client, DMARD09_REG_STAT, DMARD09_BUF_LEN, buf); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg %d\n", DMARD09_REG_STAT); return ret; } accel = get_unaligned_le16(&buf[chan->address]); /* Remove lower 3 bits and sign extend */ accel <<= 4; accel >>= 7; *val = accel; return IIO_VAL_INT; default: return -EINVAL; } } static const struct iio_info dmard09_info = { .read_raw = dmard09_read_raw, }; static int dmard09_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct dmard09_data *data; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; ret = i2c_smbus_read_byte_data(data->client, DMARD09_REG_CHIPID); if (ret < 0) { dev_err(&client->dev, "Error reading chip id %d\n", ret); return ret; } if (ret != DMARD09_CHIPID) { dev_err(&client->dev, "Invalid chip id %d\n", ret); return -ENODEV; } i2c_set_clientdata(client, indio_dev); indio_dev->name = DMARD09_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = dmard09_channels; indio_dev->num_channels = ARRAY_SIZE(dmard09_channels); indio_dev->info = &dmard09_info; return devm_iio_device_register(&client->dev, indio_dev); } static const struct i2c_device_id dmard09_id[] = { { "dmard09", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, dmard09_id); static struct i2c_driver dmard09_driver = { .driver = { .name = DMARD09_DRV_NAME }, .probe = dmard09_probe, .id_table = dmard09_id, }; module_i2c_driver(dmard09_driver); MODULE_AUTHOR("Jelle van der Waa <[email protected]>"); MODULE_DESCRIPTION("DMARD09 3-axis accelerometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/dmard09.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO driver for the 3-axis accelerometer Domintech ARD10. * * Copyright (c) 2016 Hans de Goede <[email protected]> * Copyright (c) 2012 Domintech Technology Co., Ltd */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/byteorder/generic.h> #define DMARD10_REG_ACTR 0x00 #define DMARD10_REG_AFEM 0x0c #define DMARD10_REG_STADR 0x12 #define DMARD10_REG_STAINT 0x1c #define DMARD10_REG_MISC2 0x1f #define DMARD10_REG_PD 0x21 #define DMARD10_MODE_OFF 0x00 #define DMARD10_MODE_STANDBY 0x02 #define DMARD10_MODE_ACTIVE 0x06 #define DMARD10_MODE_READ_OTP 0x12 #define DMARD10_MODE_RESET_DATA_PATH 0x82 /* AFEN set 1, ATM[2:0]=b'000 (normal), EN_Z/Y/X/T=1 */ #define DMARD10_VALUE_AFEM_AFEN_NORMAL 0x8f /* ODR[3:0]=b'0111 (100Hz), CCK[3:0]=b'0100 (204.8kHZ) */ #define DMARD10_VALUE_CKSEL_ODR_100_204 0x74 /* INTC[6:5]=b'00 */ #define DMARD10_VALUE_INTC 0x00 /* TAP1/TAP2 Average 2 */ #define DMARD10_VALUE_TAPNS_AVE_2 0x11 #define DMARD10_VALUE_STADR 0x55 #define DMARD10_VALUE_STAINT 0xaa #define DMARD10_VALUE_MISC2_OSCA_EN 0x08 #define DMARD10_VALUE_PD_RST 0x52 /* Offsets into the buffer read in dmard10_read_raw() */ #define DMARD10_X_OFFSET 1 #define DMARD10_Y_OFFSET 2 #define DMARD10_Z_OFFSET 3 /* * a value of + or -128 corresponds to + or - 1G * scale = 9.81 / 128 = 0.076640625 */ static const int dmard10_nscale = 76640625; #define DMARD10_CHANNEL(reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec dmard10_channels[] = { DMARD10_CHANNEL(DMARD10_X_OFFSET, X), DMARD10_CHANNEL(DMARD10_Y_OFFSET, Y), DMARD10_CHANNEL(DMARD10_Z_OFFSET, Z), }; struct dmard10_data { struct i2c_client *client; }; /* Init sequence taken from the android driver */ static int dmard10_reset(struct i2c_client *client) { unsigned char buffer[7]; int ret; /* 1. Powerdown reset */ ret = i2c_smbus_write_byte_data(client, DMARD10_REG_PD, DMARD10_VALUE_PD_RST); if (ret < 0) return ret; /* * 2. ACTR => Standby mode => Download OTP to parameter reg => * Standby mode => Reset data path => Standby mode */ buffer[0] = DMARD10_REG_ACTR; buffer[1] = DMARD10_MODE_STANDBY; buffer[2] = DMARD10_MODE_READ_OTP; buffer[3] = DMARD10_MODE_STANDBY; buffer[4] = DMARD10_MODE_RESET_DATA_PATH; buffer[5] = DMARD10_MODE_STANDBY; ret = i2c_master_send(client, buffer, 6); if (ret < 0) return ret; /* 3. OSCA_EN = 1, TSTO = b'000 (INT1 = normal, TEST0 = normal) */ ret = i2c_smbus_write_byte_data(client, DMARD10_REG_MISC2, DMARD10_VALUE_MISC2_OSCA_EN); if (ret < 0) return ret; /* 4. AFEN = 1 (AFE will powerdown after ADC) */ buffer[0] = DMARD10_REG_AFEM; buffer[1] = DMARD10_VALUE_AFEM_AFEN_NORMAL; buffer[2] = DMARD10_VALUE_CKSEL_ODR_100_204; buffer[3] = DMARD10_VALUE_INTC; buffer[4] = DMARD10_VALUE_TAPNS_AVE_2; buffer[5] = 0x00; /* DLYC, no delay timing */ buffer[6] = 0x07; /* INTD=1 push-pull, INTA=1 active high, AUTOT=1 */ ret = i2c_master_send(client, buffer, 7); if (ret < 0) return ret; /* 5. Activation mode */ ret = i2c_smbus_write_byte_data(client, DMARD10_REG_ACTR, DMARD10_MODE_ACTIVE); if (ret < 0) return ret; return 0; } /* Shutdown sequence taken from the android driver */ static int dmard10_shutdown(struct i2c_client *client) { unsigned char buffer[3]; buffer[0] = DMARD10_REG_ACTR; buffer[1] = DMARD10_MODE_STANDBY; buffer[2] = DMARD10_MODE_OFF; return i2c_master_send(client, buffer, 3); } static int dmard10_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct dmard10_data *data = iio_priv(indio_dev); __le16 buf[4]; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: /* * Read 8 bytes starting at the REG_STADR register, trying to * read the individual X, Y, Z registers will always read 0. */ ret = i2c_smbus_read_i2c_block_data(data->client, DMARD10_REG_STADR, sizeof(buf), (u8 *)buf); if (ret < 0) return ret; ret = le16_to_cpu(buf[chan->address]); *val = sign_extend32(ret, 12); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = dmard10_nscale; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static const struct iio_info dmard10_info = { .read_raw = dmard10_read_raw, }; static void dmard10_shutdown_cleanup(void *client) { dmard10_shutdown(client); } static int dmard10_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct dmard10_data *data; /* These 2 registers have special POR reset values used for id */ ret = i2c_smbus_read_byte_data(client, DMARD10_REG_STADR); if (ret != DMARD10_VALUE_STADR) return (ret < 0) ? ret : -ENODEV; ret = i2c_smbus_read_byte_data(client, DMARD10_REG_STAINT); if (ret != DMARD10_VALUE_STAINT) return (ret < 0) ? ret : -ENODEV; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; indio_dev->info = &dmard10_info; indio_dev->name = "dmard10"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = dmard10_channels; indio_dev->num_channels = ARRAY_SIZE(dmard10_channels); ret = dmard10_reset(client); if (ret < 0) return ret; ret = devm_add_action_or_reset(&client->dev, dmard10_shutdown_cleanup, client); if (ret) return ret; return devm_iio_device_register(&client->dev, indio_dev); } static int dmard10_suspend(struct device *dev) { return dmard10_shutdown(to_i2c_client(dev)); } static int dmard10_resume(struct device *dev) { return dmard10_reset(to_i2c_client(dev)); } static DEFINE_SIMPLE_DEV_PM_OPS(dmard10_pm_ops, dmard10_suspend, dmard10_resume); static const struct i2c_device_id dmard10_i2c_id[] = { {"dmard10", 0}, {} }; MODULE_DEVICE_TABLE(i2c, dmard10_i2c_id); static struct i2c_driver dmard10_driver = { .driver = { .name = "dmard10", .pm = pm_sleep_ptr(&dmard10_pm_ops), }, .probe = dmard10_probe, .id_table = dmard10_i2c_id, }; module_i2c_driver(dmard10_driver); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("Domintech ARD10 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/dmard10.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2021 Analog Devices, Inc. * Author: Cosmin Tanislav <[email protected]> */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include "adxl367.h" #define ADXL367_I2C_FIFO_DATA 0x42 struct adxl367_i2c_state { struct regmap *regmap; }; static bool adxl367_readable_noinc_reg(struct device *dev, unsigned int reg) { return reg == ADXL367_I2C_FIFO_DATA; } static int adxl367_i2c_read_fifo(void *context, __be16 *fifo_buf, unsigned int fifo_entries) { struct adxl367_i2c_state *st = context; return regmap_noinc_read(st->regmap, ADXL367_I2C_FIFO_DATA, fifo_buf, fifo_entries * sizeof(*fifo_buf)); } static const struct regmap_config adxl367_i2c_regmap_config = { .reg_bits = 8, .val_bits = 8, .readable_noinc_reg = adxl367_readable_noinc_reg, }; static const struct adxl367_ops adxl367_i2c_ops = { .read_fifo = adxl367_i2c_read_fifo, }; static int adxl367_i2c_probe(struct i2c_client *client) { struct adxl367_i2c_state *st; struct regmap *regmap; st = devm_kzalloc(&client->dev, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; regmap = devm_regmap_init_i2c(client, &adxl367_i2c_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); st->regmap = regmap; return adxl367_probe(&client->dev, &adxl367_i2c_ops, st, regmap, client->irq); } static const struct i2c_device_id adxl367_i2c_id[] = { { "adxl367", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, adxl367_i2c_id); static const struct of_device_id adxl367_of_match[] = { { .compatible = "adi,adxl367" }, { }, }; MODULE_DEVICE_TABLE(of, adxl367_of_match); static struct i2c_driver adxl367_i2c_driver = { .driver = { .name = "adxl367_i2c", .of_match_table = adxl367_of_match, }, .probe = adxl367_i2c_probe, .id_table = adxl367_i2c_id, }; module_i2c_driver(adxl367_i2c_driver); MODULE_IMPORT_NS(IIO_ADXL367); MODULE_AUTHOR("Cosmin Tanislav <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADXL367 3-axis accelerometer I2C driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/adxl367_i2c.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/device.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/spi/spi.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/regmap.h> #include "kxsd9.h" static int kxsd9_spi_probe(struct spi_device *spi) { static const struct regmap_config config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x0e, }; struct regmap *regmap; spi->mode = SPI_MODE_0; regmap = devm_regmap_init_spi(spi, &config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n", __func__, PTR_ERR(regmap)); return PTR_ERR(regmap); } return kxsd9_common_probe(&spi->dev, regmap, spi_get_device_id(spi)->name); } static void kxsd9_spi_remove(struct spi_device *spi) { kxsd9_common_remove(&spi->dev); } static const struct spi_device_id kxsd9_spi_id[] = { {"kxsd9", 0}, { }, }; MODULE_DEVICE_TABLE(spi, kxsd9_spi_id); static const struct of_device_id kxsd9_of_match[] = { { .compatible = "kionix,kxsd9" }, { } }; MODULE_DEVICE_TABLE(of, kxsd9_of_match); static struct spi_driver kxsd9_spi_driver = { .driver = { .name = "kxsd9", .pm = pm_ptr(&kxsd9_dev_pm_ops), .of_match_table = kxsd9_of_match, }, .probe = kxsd9_spi_probe, .remove = kxsd9_spi_remove, .id_table = kxsd9_spi_id, }; module_spi_driver(kxsd9_spi_driver); MODULE_AUTHOR("Jonathan Cameron <[email protected]>"); MODULE_DESCRIPTION("Kionix KXSD9 SPI driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_KXSD9);
linux-master
drivers/iio/accel/kxsd9-spi.c
// SPDX-License-Identifier: GPL-2.0 /* * MEMSensing digital 3-Axis accelerometer * * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for * sensitivity consumer applications. It has dynamic user-selectable full * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements * with output data rates from 1Hz to 1000Hz. * * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package * and is guaranteed to operate over -40C to +85C. * * This driver supports following MSA311 features: * - IIO interface * - Different power modes: NORMAL, SUSPEND * - ODR (Output Data Rate) selection * - Scale selection * - IIO triggered buffer * - NEW_DATA interrupt + trigger * * Below features to be done: * - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL * - Low Power mode * * Copyright (c) 2022, SberDevices. All Rights Reserved. * * Author: Dmitry Rokosov <[email protected]> */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/string_helpers.h> #include <linux/units.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #define MSA311_SOFT_RESET_REG 0x00 #define MSA311_PARTID_REG 0x01 #define MSA311_ACC_X_REG 0x02 #define MSA311_ACC_Y_REG 0x04 #define MSA311_ACC_Z_REG 0x06 #define MSA311_MOTION_INT_REG 0x09 #define MSA311_DATA_INT_REG 0x0A #define MSA311_TAP_ACTIVE_STS_REG 0x0B #define MSA311_ORIENT_STS_REG 0x0C #define MSA311_RANGE_REG 0x0F #define MSA311_ODR_REG 0x10 #define MSA311_PWR_MODE_REG 0x11 #define MSA311_SWAP_POLARITY_REG 0x12 #define MSA311_INT_SET_0_REG 0x16 #define MSA311_INT_SET_1_REG 0x17 #define MSA311_INT_MAP_0_REG 0x19 #define MSA311_INT_MAP_1_REG 0x1A #define MSA311_INT_CONFIG_REG 0x20 #define MSA311_INT_LATCH_REG 0x21 #define MSA311_FREEFALL_DUR_REG 0x22 #define MSA311_FREEFALL_TH_REG 0x23 #define MSA311_FREEFALL_HY_REG 0x24 #define MSA311_ACTIVE_DUR_REG 0x27 #define MSA311_ACTIVE_TH_REG 0x28 #define MSA311_TAP_DUR_REG 0x2A #define MSA311_TAP_TH_REG 0x2B #define MSA311_ORIENT_HY_REG 0x2C #define MSA311_Z_BLOCK_REG 0x2D #define MSA311_OFFSET_X_REG 0x38 #define MSA311_OFFSET_Y_REG 0x39 #define MSA311_OFFSET_Z_REG 0x3A enum msa311_fields { /* Soft_Reset */ F_SOFT_RESET_I2C, F_SOFT_RESET_SPI, /* Motion_Interrupt */ F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT, /* Data_Interrupt */ F_NEW_DATA_INT, /* Tap_Active_Status */ F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN, F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z, /* Orientation_Status */ F_ORIENT_Z, F_ORIENT_X_Y, /* Range */ F_FS, /* ODR */ F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR, /* Power Mode/Bandwidth */ F_PWR_MODE, F_LOW_POWER_BW, /* Swap_Polarity */ F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP, /* Int_Set_0 */ F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z, F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X, /* Int_Set_1 */ F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN, /* Int_Map_0 */ F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE, F_INT1_FREEFALL, /* Int_Map_1 */ F_INT1_NEW_DATA, /* Int_Config */ F_INT1_OD, F_INT1_LVL, /* Int_Latch */ F_RESET_INT, F_LATCH_INT, /* Freefall_Hy */ F_FREEFALL_MODE, F_FREEFALL_HY, /* Active_Dur */ F_ACTIVE_DUR, /* Tap_Dur */ F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR, /* Tap_Th */ F_TAP_TH, /* Orient_Hy */ F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE, /* Z_Block */ F_Z_BLOCKING, /* End of register map */ F_MAX_FIELDS, }; static const struct reg_field msa311_reg_fields[] = { /* Soft_Reset */ [F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2), [F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5), /* Motion_Interrupt */ [F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6), [F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5), [F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4), [F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2), [F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0), /* Data_Interrupt */ [F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0), /* Tap_Active_Status */ [F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7), [F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6), [F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5), [F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4), [F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3), [F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2), [F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1), [F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0), /* Orientation_Status */ [F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6), [F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5), /* Range */ [F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1), /* ODR */ [F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7), [F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6), [F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5), [F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3), /* Power Mode/Bandwidth */ [F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7), [F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4), /* Swap_Polarity */ [F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3), [F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2), [F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1), [F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0), /* Int_Set_0 */ [F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6), [F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5), [F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4), [F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2), [F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1), [F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0), /* Int_Set_1 */ [F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4), [F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3), /* Int_Map_0 */ [F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6), [F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5), [F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4), [F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2), [F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0), /* Int_Map_1 */ [F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0), /* Int_Config */ [F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1), [F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0), /* Int_Latch */ [F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7), [F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3), /* Freefall_Hy */ [F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2), [F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1), /* Active_Dur */ [F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1), /* Tap_Dur */ [F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7), [F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6), [F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2), /* Tap_Th */ [F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4), /* Orient_Hy */ [F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6), [F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3), [F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1), /* Z_Block */ [F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3), }; #define MSA311_WHO_AM_I 0x13 /* * Possible Full Scale ranges * * Axis data is 12-bit signed value, so * * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580 * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160 * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320 * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641 */ enum { MSA311_FS_2G, MSA311_FS_4G, MSA311_FS_8G, MSA311_FS_16G, }; struct iio_decimal_fract { int integral; int microfract; }; static const struct iio_decimal_fract msa311_fs_table[] = { {0, 9580}, {0, 19160}, {0, 38320}, {0, 76641}, }; /* Possible Output Data Rate values */ enum { MSA311_ODR_1_HZ, MSA311_ODR_1_95_HZ, MSA311_ODR_3_9_HZ, MSA311_ODR_7_81_HZ, MSA311_ODR_15_63_HZ, MSA311_ODR_31_25_HZ, MSA311_ODR_62_5_HZ, MSA311_ODR_125_HZ, MSA311_ODR_250_HZ, MSA311_ODR_500_HZ, MSA311_ODR_1000_HZ, }; static const struct iio_decimal_fract msa311_odr_table[] = { {1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000}, {31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0}, }; /* All supported power modes */ #define MSA311_PWR_MODE_NORMAL 0b00 #define MSA311_PWR_MODE_LOW 0b01 #define MSA311_PWR_MODE_UNKNOWN 0b10 #define MSA311_PWR_MODE_SUSPEND 0b11 static const char * const msa311_pwr_modes[] = { [MSA311_PWR_MODE_NORMAL] = "normal", [MSA311_PWR_MODE_LOW] = "low", [MSA311_PWR_MODE_UNKNOWN] = "unknown", [MSA311_PWR_MODE_SUSPEND] = "suspend", }; /* Autosuspend delay */ #define MSA311_PWR_SLEEP_DELAY_MS 2000 /* Possible INT1 types and levels */ enum { MSA311_INT1_OD_PUSH_PULL, MSA311_INT1_OD_OPEN_DRAIN, }; enum { MSA311_INT1_LVL_LOW, MSA311_INT1_LVL_HIGH, }; /* Latch INT modes */ #define MSA311_LATCH_INT_NOT_LATCHED 0b0000 #define MSA311_LATCH_INT_250MS 0b0001 #define MSA311_LATCH_INT_500MS 0b0010 #define MSA311_LATCH_INT_1S 0b0011 #define MSA311_LATCH_INT_2S 0b0100 #define MSA311_LATCH_INT_4S 0b0101 #define MSA311_LATCH_INT_8S 0b0110 #define MSA311_LATCH_INT_1MS 0b1010 #define MSA311_LATCH_INT_2MS 0b1011 #define MSA311_LATCH_INT_25MS 0b1100 #define MSA311_LATCH_INT_50MS 0b1101 #define MSA311_LATCH_INT_100MS 0b1110 #define MSA311_LATCH_INT_LATCHED 0b0111 static const struct regmap_range msa311_readonly_registers[] = { regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG), }; static const struct regmap_access_table msa311_writeable_table = { .no_ranges = msa311_readonly_registers, .n_no_ranges = ARRAY_SIZE(msa311_readonly_registers), }; static const struct regmap_range msa311_writeonly_registers[] = { regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG), }; static const struct regmap_access_table msa311_readable_table = { .no_ranges = msa311_writeonly_registers, .n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers), }; static const struct regmap_range msa311_volatile_registers[] = { regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG), }; static const struct regmap_access_table msa311_volatile_table = { .yes_ranges = msa311_volatile_registers, .n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers), }; static const struct regmap_config msa311_regmap_config = { .name = "msa311", .reg_bits = 8, .val_bits = 8, .max_register = MSA311_OFFSET_Z_REG, .wr_table = &msa311_writeable_table, .rd_table = &msa311_readable_table, .volatile_table = &msa311_volatile_table, .cache_type = REGCACHE_RBTREE, }; #define MSA311_GENMASK(field) ({ \ typeof(&(msa311_reg_fields)[0]) _field; \ _field = &msa311_reg_fields[(field)]; \ GENMASK(_field->msb, _field->lsb); \ }) /** * struct msa311_priv - MSA311 internal private state * @regs: Underlying I2C bus adapter used to abstract slave * register accesses * @fields: Abstract objects for each registers fields access * @dev: Device handler associated with appropriate bus client * @lock: Protects msa311 device state between setup and data access routines * (power transitions, samp_freq/scale tune, retrieving axes data, etc) * @chip_name: Chip name in the format "msa311-%02x" % partid * @new_data_trig: Optional NEW_DATA interrupt driven trigger used * to notify external consumers a new sample is ready */ struct msa311_priv { struct regmap *regs; struct regmap_field *fields[F_MAX_FIELDS]; struct device *dev; struct mutex lock; char *chip_name; struct iio_trigger *new_data_trig; }; enum msa311_si { MSA311_SI_X, MSA311_SI_Y, MSA311_SI_Z, MSA311_SI_TIMESTAMP, }; #define MSA311_ACCEL_CHANNEL(axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = MSA311_SI_##axis, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_LE, \ }, \ .datasheet_name = "ACC_"#axis, \ } static const struct iio_chan_spec msa311_channels[] = { MSA311_ACCEL_CHANNEL(X), MSA311_ACCEL_CHANNEL(Y), MSA311_ACCEL_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP), }; /** * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel * @msa311: MSA311 internal private state * @odr: output ODR value * * This function should be called under msa311->lock. * * Return: 0 on success, -ERRNO in other failures */ static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr) { int err; err = regmap_field_read(msa311->fields[F_ODR], odr); if (err) return err; /* * Filter the same 1000Hz ODR register values based on datasheet info. * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010 * all the time. */ if (*odr > MSA311_ODR_1000_HZ) *odr = MSA311_ODR_1000_HZ; return 0; } /** * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel * @msa311: MSA311 internal private state * @odr: requested ODR value * * This function should be called under msa311->lock. Possible ODR values: * - 1Hz (not available in normal mode) * - 1.95Hz (not available in normal mode) * - 3.9Hz * - 7.81Hz * - 15.63Hz * - 31.25Hz * - 62.5Hz * - 125Hz * - 250Hz * - 500Hz * - 1000Hz * * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode, * -ERRNO in other failures */ static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr) { struct device *dev = msa311->dev; unsigned int pwr_mode; bool good_odr; int err; err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode); if (err) return err; /* Filter bad ODR values */ if (pwr_mode == MSA311_PWR_MODE_NORMAL) good_odr = (odr > MSA311_ODR_1_95_HZ); else good_odr = false; if (!good_odr) { dev_err(dev, "can't set odr %u.%06uHz, not available in %s mode\n", msa311_odr_table[odr].integral, msa311_odr_table[odr].microfract, msa311_pwr_modes[pwr_mode]); return -EINVAL; } return regmap_field_write(msa311->fields[F_ODR], odr); } /** * msa311_wait_for_next_data() - Wait next accel data available after resume * @msa311: MSA311 internal private state * * Return: 0 on success, -EINTR if msleep() was interrupted, * -ERRNO in other failures */ static int msa311_wait_for_next_data(struct msa311_priv *msa311) { static const unsigned int unintr_thresh_ms = 20; struct device *dev = msa311->dev; unsigned long freq_uhz; unsigned long wait_ms; unsigned int odr; int err; err = msa311_get_odr(msa311, &odr); if (err) { dev_err(dev, "can't get actual frequency (%pe)\n", ERR_PTR(err)); return err; } /* * After msa311 resuming is done, we need to wait for data * to be refreshed by accel logic. * A certain timeout is calculated based on the current ODR value. * If requested timeout isn't so long (let's assume 20ms), * we can wait for next data in uninterruptible sleep. */ freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ + msa311_odr_table[odr].microfract; wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC; if (wait_ms < unintr_thresh_ms) usleep_range(wait_ms * USEC_PER_MSEC, unintr_thresh_ms * USEC_PER_MSEC); else if (msleep_interruptible(wait_ms)) return -EINTR; return 0; } /** * msa311_set_pwr_mode() - Install certain MSA311 power mode * @msa311: MSA311 internal private state * @mode: Power mode can be equal to NORMAL or SUSPEND * * This function should be called under msa311->lock. * * Return: 0 on success, -ERRNO on failure */ static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode) { struct device *dev = msa311->dev; unsigned int prev_mode; int err; if (mode >= ARRAY_SIZE(msa311_pwr_modes)) return -EINVAL; dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]); err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode); if (err) return err; err = regmap_field_write(msa311->fields[F_PWR_MODE], mode); if (err) return err; /* Wait actual data if we wake up */ if (prev_mode == MSA311_PWR_MODE_SUSPEND && mode == MSA311_PWR_MODE_NORMAL) return msa311_wait_for_next_data(msa311); return 0; } /** * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec * @msa311: MSA311 internal private state * @chan: IIO channel specification * @axis: Output accel axis data for requested IIO channel spec * * This function should be called under msa311->lock. * * Return: 0 on success, -EINVAL for unknown IIO channel specification, * -ERRNO in other failures */ static int msa311_get_axis(struct msa311_priv *msa311, const struct iio_chan_spec * const chan, __le16 *axis) { struct device *dev = msa311->dev; unsigned int axis_reg; if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) { dev_err(dev, "invalid scan_index value [%d]\n", chan->scan_index); return -EINVAL; } /* Axes data layout has 2 byte gap for each axis starting from X axis */ axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1); return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis)); } static int msa311_read_raw_data(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; __le16 axis; int err; err = pm_runtime_resume_and_get(dev); if (err) return err; err = iio_device_claim_direct_mode(indio_dev); if (err) return err; mutex_lock(&msa311->lock); err = msa311_get_axis(msa311, chan, &axis); mutex_unlock(&msa311->lock); iio_device_release_direct_mode(indio_dev); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) { dev_err(dev, "can't get axis %s (%pe)\n", chan->datasheet_name, ERR_PTR(err)); return err; } /* * Axis data format is: * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4] */ *val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; } static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int fs; int err; mutex_lock(&msa311->lock); err = regmap_field_read(msa311->fields[F_FS], &fs); mutex_unlock(&msa311->lock); if (err) { dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err)); return err; } *val = msa311_fs_table[fs].integral; *val2 = msa311_fs_table[fs].microfract; return IIO_VAL_INT_PLUS_MICRO; } static int msa311_read_samp_freq(struct iio_dev *indio_dev, int *val, int *val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int odr; int err; mutex_lock(&msa311->lock); err = msa311_get_odr(msa311, &odr); mutex_unlock(&msa311->lock); if (err) { dev_err(dev, "can't get actual frequency (%pe)\n", ERR_PTR(err)); return err; } *val = msa311_odr_table[odr].integral; *val2 = msa311_odr_table[odr].microfract; return IIO_VAL_INT_PLUS_MICRO; } static int msa311_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { switch (mask) { case IIO_CHAN_INFO_RAW: return msa311_read_raw_data(indio_dev, chan, val, val2); case IIO_CHAN_INFO_SCALE: return msa311_read_scale(indio_dev, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return msa311_read_samp_freq(indio_dev, val, val2); default: return -EINVAL; } } static int msa311_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (int *)msa311_odr_table; *type = IIO_VAL_INT_PLUS_MICRO; /* ODR value has 2 ints (integer and fractional parts) */ *length = ARRAY_SIZE(msa311_odr_table) * 2; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *vals = (int *)msa311_fs_table; *type = IIO_VAL_INT_PLUS_MICRO; /* FS value has 2 ints (integer and fractional parts) */ *length = ARRAY_SIZE(msa311_fs_table) * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int fs; int err; /* We do not have fs >= 1, so skip such values */ if (val) return 0; err = pm_runtime_resume_and_get(dev); if (err) return err; err = -EINVAL; for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++) /* Do not check msa311_fs_table[fs].integral, it's always 0 */ if (val2 == msa311_fs_table[fs].microfract) { mutex_lock(&msa311->lock); err = regmap_field_write(msa311->fields[F_FS], fs); mutex_unlock(&msa311->lock); break; } pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err)); return err; } static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int odr; int err; err = pm_runtime_resume_and_get(dev); if (err) return err; /* * Sampling frequency changing is prohibited when buffer mode is * enabled, because sometimes MSA311 chip returns outliers during * frequency values growing up in the read operation moment. */ err = iio_device_claim_direct_mode(indio_dev); if (err) return err; err = -EINVAL; for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++) if (val == msa311_odr_table[odr].integral && val2 == msa311_odr_table[odr].microfract) { mutex_lock(&msa311->lock); err = msa311_set_odr(msa311, odr); mutex_unlock(&msa311->lock); break; } iio_device_release_direct_mode(indio_dev); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err)); return err; } static int msa311_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return msa311_write_scale(indio_dev, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return msa311_write_samp_freq(indio_dev, val, val2); default: return -EINVAL; } } static int msa311_debugfs_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; int err; if (reg > regmap_get_max_register(msa311->regs)) return -EINVAL; err = pm_runtime_resume_and_get(dev); if (err) return err; mutex_lock(&msa311->lock); if (readval) err = regmap_read(msa311->regs, reg, readval); else err = regmap_write(msa311->regs, reg, writeval); mutex_unlock(&msa311->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) dev_err(dev, "can't %s register %u from debugfs (%pe)\n", str_read_write(readval), reg, ERR_PTR(err)); return err; } static int msa311_buffer_preenable(struct iio_dev *indio_dev) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; return pm_runtime_resume_and_get(dev); } static int msa311_buffer_postdisable(struct iio_dev *indio_dev) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; } static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; int err; mutex_lock(&msa311->lock); err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state); mutex_unlock(&msa311->lock); if (err) dev_err(dev, "can't %s buffer due to new_data_int failure (%pe)\n", str_enable_disable(state), ERR_PTR(err)); return err; } static int msa311_validate_device(struct iio_trigger *trig, struct iio_dev *indio_dev) { return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL; } static irqreturn_t msa311_buffer_thread(int irq, void *p) { struct iio_poll_func *pf = p; struct msa311_priv *msa311 = iio_priv(pf->indio_dev); struct iio_dev *indio_dev = pf->indio_dev; const struct iio_chan_spec *chan; struct device *dev = msa311->dev; int bit, err, i = 0; __le16 axis; struct { __le16 channels[MSA311_SI_Z + 1]; s64 ts __aligned(8); } buf; memset(&buf, 0, sizeof(buf)); mutex_lock(&msa311->lock); for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { chan = &msa311_channels[bit]; err = msa311_get_axis(msa311, chan, &axis); if (err) { mutex_unlock(&msa311->lock); dev_err(dev, "can't get axis %s (%pe)\n", chan->datasheet_name, ERR_PTR(err)); goto notify_done; } buf.channels[i++] = axis; } mutex_unlock(&msa311->lock); iio_push_to_buffers_with_timestamp(indio_dev, &buf, iio_get_time_ns(indio_dev)); notify_done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t msa311_irq_thread(int irq, void *p) { struct msa311_priv *msa311 = iio_priv(p); unsigned int new_data_int_enabled; struct device *dev = msa311->dev; int err; mutex_lock(&msa311->lock); /* * We do not check NEW_DATA int status, because based on the * specification it's cleared automatically after a fixed time. * So just check that is enabled by driver logic. */ err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN], &new_data_int_enabled); mutex_unlock(&msa311->lock); if (err) { dev_err(dev, "can't read new_data interrupt state (%pe)\n", ERR_PTR(err)); return IRQ_NONE; } if (new_data_int_enabled) iio_trigger_poll_nested(msa311->new_data_trig); return IRQ_HANDLED; } static const struct iio_info msa311_info = { .read_raw = msa311_read_raw, .read_avail = msa311_read_avail, .write_raw = msa311_write_raw, .debugfs_reg_access = msa311_debugfs_reg_access, }; static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = { .preenable = msa311_buffer_preenable, .postdisable = msa311_buffer_postdisable, }; static const struct iio_trigger_ops msa311_new_data_trig_ops = { .set_trigger_state = msa311_set_new_data_trig_state, .validate_device = msa311_validate_device, }; static int msa311_check_partid(struct msa311_priv *msa311) { struct device *dev = msa311->dev; unsigned int partid; int err; err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid); if (err) return dev_err_probe(dev, err, "failed to read partid\n"); if (partid != MSA311_WHO_AM_I) dev_warn(dev, "invalid partid (%#x), expected (%#x)\n", partid, MSA311_WHO_AM_I); msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL, "msa311-%02x", partid); if (!msa311->chip_name) return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n"); return 0; } static int msa311_soft_reset(struct msa311_priv *msa311) { struct device *dev = msa311->dev; int err; err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG, MSA311_GENMASK(F_SOFT_RESET_I2C) | MSA311_GENMASK(F_SOFT_RESET_SPI)); if (err) return dev_err_probe(dev, err, "can't soft reset all logic\n"); return 0; } static int msa311_chip_init(struct msa311_priv *msa311) { struct device *dev = msa311->dev; const char zero_bulk[2] = { }; int err; err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G); if (err) return dev_err_probe(dev, err, "failed to setup accel range\n"); /* Disable all interrupts by default */ err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG, zero_bulk, sizeof(zero_bulk)); if (err) return dev_err_probe(dev, err, "can't disable set0/set1 interrupts\n"); /* Unmap all INT1 interrupts by default */ err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG, zero_bulk, sizeof(zero_bulk)); if (err) return dev_err_probe(dev, err, "failed to unmap map0/map1 interrupts\n"); /* Disable all axes by default */ err = regmap_update_bits(msa311->regs, MSA311_ODR_REG, MSA311_GENMASK(F_X_AXIS_DIS) | MSA311_GENMASK(F_Y_AXIS_DIS) | MSA311_GENMASK(F_Z_AXIS_DIS), 0); if (err) return dev_err_probe(dev, err, "can't enable all axes\n"); err = msa311_set_odr(msa311, MSA311_ODR_125_HZ); if (err) return dev_err_probe(dev, err, "failed to set accel frequency\n"); return 0; } static int msa311_setup_interrupts(struct msa311_priv *msa311) { struct device *dev = msa311->dev; struct i2c_client *i2c = to_i2c_client(dev); struct iio_dev *indio_dev = i2c_get_clientdata(i2c); struct iio_trigger *trig; int err; /* Keep going without interrupts if no initialized I2C IRQ */ if (i2c->irq <= 0) return 0; err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, msa311_irq_thread, IRQF_ONESHOT, msa311->chip_name, indio_dev); if (err) return dev_err_probe(dev, err, "failed to request IRQ\n"); trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name); if (!trig) return dev_err_probe(dev, -ENOMEM, "can't allocate newdata trigger\n"); msa311->new_data_trig = trig; msa311->new_data_trig->ops = &msa311_new_data_trig_ops; iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev); err = devm_iio_trigger_register(dev, msa311->new_data_trig); if (err) return dev_err_probe(dev, err, "can't register newdata trigger\n"); err = regmap_field_write(msa311->fields[F_INT1_OD], MSA311_INT1_OD_PUSH_PULL); if (err) return dev_err_probe(dev, err, "can't enable push-pull interrupt\n"); err = regmap_field_write(msa311->fields[F_INT1_LVL], MSA311_INT1_LVL_HIGH); if (err) return dev_err_probe(dev, err, "can't set active interrupt level\n"); err = regmap_field_write(msa311->fields[F_LATCH_INT], MSA311_LATCH_INT_LATCHED); if (err) return dev_err_probe(dev, err, "can't latch interrupt\n"); err = regmap_field_write(msa311->fields[F_RESET_INT], 1); if (err) return dev_err_probe(dev, err, "can't reset interrupt\n"); err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1); if (err) return dev_err_probe(dev, err, "can't map new data interrupt\n"); return 0; } static int msa311_regmap_init(struct msa311_priv *msa311) { struct regmap_field **fields = msa311->fields; struct device *dev = msa311->dev; struct i2c_client *i2c = to_i2c_client(dev); struct regmap *regmap; int i; regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "failed to register i2c regmap\n"); msa311->regs = regmap; for (i = 0; i < F_MAX_FIELDS; i++) { fields[i] = devm_regmap_field_alloc(dev, msa311->regs, msa311_reg_fields[i]); if (IS_ERR(msa311->fields[i])) return dev_err_probe(dev, PTR_ERR(msa311->fields[i]), "can't alloc field[%d]\n", i); } return 0; } static void msa311_powerdown(void *msa311) { msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND); } static int msa311_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct msa311_priv *msa311; struct iio_dev *indio_dev; int err; indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311)); if (!indio_dev) return dev_err_probe(dev, -ENOMEM, "IIO device allocation failed\n"); msa311 = iio_priv(indio_dev); msa311->dev = dev; i2c_set_clientdata(i2c, indio_dev); err = msa311_regmap_init(msa311); if (err) return err; mutex_init(&msa311->lock); err = devm_regulator_get_enable(dev, "vdd"); if (err) return dev_err_probe(dev, err, "can't get vdd supply\n"); err = msa311_check_partid(msa311); if (err) return err; err = msa311_soft_reset(msa311); if (err) return err; err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL); if (err) return dev_err_probe(dev, err, "failed to power on device\n"); /* * Register powerdown deferred callback which suspends the chip * after module unloaded. * * MSA311 should be in SUSPEND mode in the two cases: * 1) When driver is loaded, but we do not have any data or * configuration requests to it (we are solving it using * autosuspend feature). * 2) When driver is unloaded and device is not used (devm action is * used in this case). */ err = devm_add_action_or_reset(dev, msa311_powerdown, msa311); if (err) return dev_err_probe(dev, err, "can't add powerdown action\n"); err = pm_runtime_set_active(dev); if (err) return err; err = devm_pm_runtime_enable(dev); if (err) return err; pm_runtime_get_noresume(dev); pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(dev); err = msa311_chip_init(msa311); if (err) return err; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = msa311_channels; indio_dev->num_channels = ARRAY_SIZE(msa311_channels); indio_dev->name = msa311->chip_name; indio_dev->info = &msa311_info; err = devm_iio_triggered_buffer_setup(dev, indio_dev, iio_pollfunc_store_time, msa311_buffer_thread, &msa311_buffer_setup_ops); if (err) return dev_err_probe(dev, err, "can't setup IIO trigger buffer\n"); err = msa311_setup_interrupts(msa311); if (err) return err; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); err = devm_iio_device_register(dev, indio_dev); if (err) return dev_err_probe(dev, err, "IIO device register failed\n"); return 0; } static int msa311_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct msa311_priv *msa311 = iio_priv(indio_dev); int err; mutex_lock(&msa311->lock); err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND); mutex_unlock(&msa311->lock); if (err) dev_err(dev, "failed to power off device (%pe)\n", ERR_PTR(err)); return err; } static int msa311_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct msa311_priv *msa311 = iio_priv(indio_dev); int err; mutex_lock(&msa311->lock); err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL); mutex_unlock(&msa311->lock); if (err) dev_err(dev, "failed to power on device (%pe)\n", ERR_PTR(err)); return err; } static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend, msa311_runtime_resume, NULL); static const struct i2c_device_id msa311_i2c_id[] = { { .name = "msa311" }, { } }; MODULE_DEVICE_TABLE(i2c, msa311_i2c_id); static const struct of_device_id msa311_of_match[] = { { .compatible = "memsensing,msa311" }, { } }; MODULE_DEVICE_TABLE(of, msa311_of_match); static struct i2c_driver msa311_driver = { .driver = { .name = "msa311", .of_match_table = msa311_of_match, .pm = pm_ptr(&msa311_pm_ops), }, .probe = msa311_probe, .id_table = msa311_i2c_id, }; module_i2c_driver(msa311_driver); MODULE_AUTHOR("Dmitry Rokosov <[email protected]>"); MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/msa311.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO accel I2C driver for Freescale MMA7455L 3-axis 10-bit accelerometer * Copyright 2015 Joachim Eastwood <[email protected]> */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/regmap.h> #include "mma7455.h" static int mma7455_i2c_probe(struct i2c_client *i2c) { const struct i2c_device_id *id = i2c_client_get_device_id(i2c); struct regmap *regmap; const char *name = NULL; regmap = devm_regmap_init_i2c(i2c, &mma7455_core_regmap); if (IS_ERR(regmap)) return PTR_ERR(regmap); if (id) name = id->name; return mma7455_core_probe(&i2c->dev, regmap, name); } static void mma7455_i2c_remove(struct i2c_client *i2c) { mma7455_core_remove(&i2c->dev); } static const struct i2c_device_id mma7455_i2c_ids[] = { { "mma7455", 0 }, { "mma7456", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mma7455_i2c_ids); static const struct of_device_id mma7455_of_match[] = { { .compatible = "fsl,mma7455" }, { .compatible = "fsl,mma7456" }, { } }; MODULE_DEVICE_TABLE(of, mma7455_of_match); static struct i2c_driver mma7455_i2c_driver = { .probe = mma7455_i2c_probe, .remove = mma7455_i2c_remove, .id_table = mma7455_i2c_ids, .driver = { .name = "mma7455-i2c", .of_match_table = mma7455_of_match, }, }; module_i2c_driver(mma7455_i2c_driver); MODULE_AUTHOR("Joachim Eastwood <[email protected]>"); MODULE_DESCRIPTION("Freescale MMA7455L I2C accelerometer driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_MMA7455);
linux-master
drivers/iio/accel/mma7455_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * SPI IIO driver for Bosch BMA400 triaxial acceleration sensor. * * Copyright 2020 Dan Robertson <[email protected]> * */ #include <linux/bits.h> #include <linux/init.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include "bma400.h" #define BMA400_MAX_SPI_READ 2 #define BMA400_SPI_READ_BUFFER_SIZE (BMA400_MAX_SPI_READ + 1) static int bma400_regmap_spi_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct device *dev = context; struct spi_device *spi = to_spi_device(dev); u8 result[BMA400_SPI_READ_BUFFER_SIZE]; ssize_t status; if (val_size > BMA400_MAX_SPI_READ) return -EINVAL; status = spi_write_then_read(spi, reg, 1, result, val_size + 1); if (status) return status; /* * From the BMA400 datasheet: * * > For a basic read operation two bytes have to be read and the first * > has to be dropped and the second byte must be interpreted. */ memcpy(val, result + 1, val_size); return 0; } static int bma400_regmap_spi_write(void *context, const void *data, size_t count) { struct device *dev = context; struct spi_device *spi = to_spi_device(dev); return spi_write(spi, data, count); } static struct regmap_bus bma400_regmap_bus = { .read = bma400_regmap_spi_read, .write = bma400_regmap_spi_write, .read_flag_mask = BIT(7), .max_raw_read = BMA400_MAX_SPI_READ, }; static int bma400_spi_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); struct regmap *regmap; unsigned int val; int ret; regmap = devm_regmap_init(&spi->dev, &bma400_regmap_bus, &spi->dev, &bma400_regmap_config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "failed to create regmap\n"); return PTR_ERR(regmap); } /* * Per the bma400 datasheet, the first SPI read may * return garbage. As the datasheet recommends, the * chip ID register will be read here and checked * again in the following probe. */ ret = regmap_read(regmap, BMA400_CHIP_ID_REG, &val); if (ret) dev_err(&spi->dev, "Failed to read chip id register\n"); return bma400_probe(&spi->dev, regmap, spi->irq, id->name); } static const struct spi_device_id bma400_spi_ids[] = { { "bma400", 0 }, { } }; MODULE_DEVICE_TABLE(spi, bma400_spi_ids); static const struct of_device_id bma400_of_spi_match[] = { { .compatible = "bosch,bma400" }, { } }; MODULE_DEVICE_TABLE(of, bma400_of_spi_match); static struct spi_driver bma400_spi_driver = { .driver = { .name = "bma400", .of_match_table = bma400_of_spi_match, }, .probe = bma400_spi_probe, .id_table = bma400_spi_ids, }; module_spi_driver(bma400_spi_driver); MODULE_AUTHOR("Dan Robertson <[email protected]>"); MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor (SPI)"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_BMA400);
linux-master
drivers/iio/accel/bma400_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * MXC6255 - MEMSIC orientation sensing accelerometer * * Copyright (c) 2015, Intel Corporation. * * IIO driver for MXC6255 (7-bit I2C slave address 0x15). */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/iio/iio.h> #include <linux/delay.h> #include <linux/acpi.h> #include <linux/regmap.h> #include <linux/iio/sysfs.h> #define MXC6255_DRV_NAME "mxc6255" #define MXC6255_REGMAP_NAME "mxc6255_regmap" #define MXC6255_REG_XOUT 0x00 #define MXC6255_REG_YOUT 0x01 #define MXC6255_REG_CHIP_ID 0x08 #define MXC6255_CHIP_ID 0x05 /* * MXC6255 has only one measurement range: +/- 2G. * The acceleration output is an 8-bit value. * * Scale is calculated as follows: * (2 + 2) * 9.80665 / (2^8 - 1) = 0.153829 * * Scale value for +/- 2G measurement range */ #define MXC6255_SCALE 153829 enum mxc6255_axis { AXIS_X, AXIS_Y, }; struct mxc6255_data { struct i2c_client *client; struct regmap *regmap; }; static int mxc6255_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mxc6255_data *data = iio_priv(indio_dev); unsigned int reg; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = regmap_read(data->regmap, chan->address, &reg); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg %lu\n", chan->address); return ret; } *val = sign_extend32(reg, 7); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = MXC6255_SCALE; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static const struct iio_info mxc6255_info = { .read_raw = mxc6255_read_raw, }; #define MXC6255_CHANNEL(_axis, reg) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .address = reg, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec mxc6255_channels[] = { MXC6255_CHANNEL(X, MXC6255_REG_XOUT), MXC6255_CHANNEL(Y, MXC6255_REG_YOUT), }; static bool mxc6255_is_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MXC6255_REG_XOUT: case MXC6255_REG_YOUT: case MXC6255_REG_CHIP_ID: return true; default: return false; } } static const struct regmap_config mxc6255_regmap_config = { .name = MXC6255_REGMAP_NAME, .reg_bits = 8, .val_bits = 8, .readable_reg = mxc6255_is_readable_reg, }; static int mxc6255_probe(struct i2c_client *client) { struct mxc6255_data *data; struct iio_dev *indio_dev; struct regmap *regmap; unsigned int chip_id; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; regmap = devm_regmap_init_i2c(client, &mxc6255_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Error initializing regmap\n"); return PTR_ERR(regmap); } data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->regmap = regmap; indio_dev->name = MXC6255_DRV_NAME; indio_dev->channels = mxc6255_channels; indio_dev->num_channels = ARRAY_SIZE(mxc6255_channels); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mxc6255_info; ret = regmap_read(data->regmap, MXC6255_REG_CHIP_ID, &chip_id); if (ret < 0) { dev_err(&client->dev, "Error reading chip id %d\n", ret); return ret; } if ((chip_id & 0x1f) != MXC6255_CHIP_ID) { dev_err(&client->dev, "Invalid chip id %x\n", chip_id); return -ENODEV; } dev_dbg(&client->dev, "Chip id %x\n", chip_id); ret = devm_iio_device_register(&client->dev, indio_dev); if (ret < 0) { dev_err(&client->dev, "Could not register IIO device\n"); return ret; } return 0; } static const struct acpi_device_id mxc6255_acpi_match[] = { {"MXC6225", 0}, {"MXC6255", 0}, { } }; MODULE_DEVICE_TABLE(acpi, mxc6255_acpi_match); static const struct i2c_device_id mxc6255_id[] = { {"mxc6225", 0}, {"mxc6255", 0}, { } }; MODULE_DEVICE_TABLE(i2c, mxc6255_id); static struct i2c_driver mxc6255_driver = { .driver = { .name = MXC6255_DRV_NAME, .acpi_match_table = ACPI_PTR(mxc6255_acpi_match), }, .probe = mxc6255_probe, .id_table = mxc6255_id, }; module_i2c_driver(mxc6255_driver); MODULE_AUTHOR("Teodora Baluta <[email protected]>"); MODULE_DESCRIPTION("MEMSIC MXC6255 orientation sensing accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/mxc6255.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADIS16201 Dual-Axis Digital Inclinometer and Accelerometer * * Copyright 2010 Analog Devices Inc. */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/iio/imu/adis.h> #define ADIS16201_STARTUP_DELAY_MS 220 #define ADIS16201_FLASH_CNT 0x00 /* Data Output Register Information */ #define ADIS16201_SUPPLY_OUT_REG 0x02 #define ADIS16201_XACCL_OUT_REG 0x04 #define ADIS16201_YACCL_OUT_REG 0x06 #define ADIS16201_AUX_ADC_REG 0x08 #define ADIS16201_TEMP_OUT_REG 0x0A #define ADIS16201_XINCL_OUT_REG 0x0C #define ADIS16201_YINCL_OUT_REG 0x0E /* Calibration Register Definition */ #define ADIS16201_XACCL_OFFS_REG 0x10 #define ADIS16201_YACCL_OFFS_REG 0x12 #define ADIS16201_XACCL_SCALE_REG 0x14 #define ADIS16201_YACCL_SCALE_REG 0x16 #define ADIS16201_XINCL_OFFS_REG 0x18 #define ADIS16201_YINCL_OFFS_REG 0x1A #define ADIS16201_XINCL_SCALE_REG 0x1C #define ADIS16201_YINCL_SCALE_REG 0x1E /* Alarm Register Definition */ #define ADIS16201_ALM_MAG1_REG 0x20 #define ADIS16201_ALM_MAG2_REG 0x22 #define ADIS16201_ALM_SMPL1_REG 0x24 #define ADIS16201_ALM_SMPL2_REG 0x26 #define ADIS16201_ALM_CTRL_REG 0x28 #define ADIS16201_AUX_DAC_REG 0x30 #define ADIS16201_GPIO_CTRL_REG 0x32 #define ADIS16201_SMPL_PRD_REG 0x36 /* Operation, filter configuration */ #define ADIS16201_AVG_CNT_REG 0x38 #define ADIS16201_SLP_CNT_REG 0x3A /* Miscellaneous Control Register Definition */ #define ADIS16201_MSC_CTRL_REG 0x34 #define ADIS16201_MSC_CTRL_SELF_TEST_EN BIT(8) /* Data-ready enable: 1 = enabled, 0 = disabled */ #define ADIS16201_MSC_CTRL_DATA_RDY_EN BIT(2) /* Data-ready polarity: 1 = active high, 0 = active low */ #define ADIS16201_MSC_CTRL_ACTIVE_DATA_RDY_HIGH BIT(1) /* Data-ready line selection: 1 = DIO1, 0 = DIO0 */ #define ADIS16201_MSC_CTRL_DATA_RDY_DIO1 BIT(0) /* Diagnostics System Status Register Definition */ #define ADIS16201_DIAG_STAT_REG 0x3C #define ADIS16201_DIAG_STAT_ALARM2 BIT(9) #define ADIS16201_DIAG_STAT_ALARM1 BIT(8) #define ADIS16201_DIAG_STAT_SPI_FAIL_BIT 3 #define ADIS16201_DIAG_STAT_FLASH_UPT_FAIL_BIT 2 /* Power supply above 3.625 V */ #define ADIS16201_DIAG_STAT_POWER_HIGH_BIT 1 /* Power supply below 2.975 V */ #define ADIS16201_DIAG_STAT_POWER_LOW_BIT 0 /* System Command Register Definition */ #define ADIS16201_GLOB_CMD_REG 0x3E #define ADIS16201_GLOB_CMD_SW_RESET BIT(7) #define ADIS16201_GLOB_CMD_FACTORY_RESET BIT(1) #define ADIS16201_ERROR_ACTIVE BIT(14) enum adis16201_scan { ADIS16201_SCAN_ACC_X, ADIS16201_SCAN_ACC_Y, ADIS16201_SCAN_INCLI_X, ADIS16201_SCAN_INCLI_Y, ADIS16201_SCAN_SUPPLY, ADIS16201_SCAN_AUX_ADC, ADIS16201_SCAN_TEMP, }; static const u8 adis16201_addresses[] = { [ADIS16201_SCAN_ACC_X] = ADIS16201_XACCL_OFFS_REG, [ADIS16201_SCAN_ACC_Y] = ADIS16201_YACCL_OFFS_REG, [ADIS16201_SCAN_INCLI_X] = ADIS16201_XINCL_OFFS_REG, [ADIS16201_SCAN_INCLI_Y] = ADIS16201_YINCL_OFFS_REG, }; static int adis16201_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adis *st = iio_priv(indio_dev); int ret; int bits; u8 addr; s16 val16; switch (mask) { case IIO_CHAN_INFO_RAW: return adis_single_conversion(indio_dev, chan, ADIS16201_ERROR_ACTIVE, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VOLTAGE: if (chan->channel == 0) { /* Voltage base units are mV hence 1.22 mV */ *val = 1; *val2 = 220000; } else { /* Voltage base units are mV hence 0.61 mV */ *val = 0; *val2 = 610000; } return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = -470; *val2 = 0; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: /* * IIO base unit for sensitivity of accelerometer * is milli g. * 1 LSB represents 0.244 mg. */ *val = 0; *val2 = IIO_G_TO_M_S_2(462400); return IIO_VAL_INT_PLUS_NANO; case IIO_INCLI: *val = 0; *val2 = 100000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } break; case IIO_CHAN_INFO_OFFSET: /* * The raw ADC value is 1278 when the temperature * is 25 degrees and the scale factor per milli * degree celcius is -470. */ *val = 25000 / -470 - 1278; return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_ACCEL: bits = 12; break; case IIO_INCLI: bits = 9; break; default: return -EINVAL; } addr = adis16201_addresses[chan->scan_index]; ret = adis_read_reg_16(st, addr, &val16); if (ret) return ret; *val = sign_extend32(val16, bits - 1); return IIO_VAL_INT; } return -EINVAL; } static int adis16201_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adis *st = iio_priv(indio_dev); int m; if (mask != IIO_CHAN_INFO_CALIBBIAS) return -EINVAL; switch (chan->type) { case IIO_ACCEL: m = GENMASK(11, 0); break; case IIO_INCLI: m = GENMASK(8, 0); break; default: return -EINVAL; } return adis_write_reg_16(st, adis16201_addresses[chan->scan_index], val & m); } static const struct iio_chan_spec adis16201_channels[] = { ADIS_SUPPLY_CHAN(ADIS16201_SUPPLY_OUT_REG, ADIS16201_SCAN_SUPPLY, 0, 12), ADIS_TEMP_CHAN(ADIS16201_TEMP_OUT_REG, ADIS16201_SCAN_TEMP, 0, 12), ADIS_ACCEL_CHAN(X, ADIS16201_XACCL_OUT_REG, ADIS16201_SCAN_ACC_X, BIT(IIO_CHAN_INFO_CALIBBIAS), 0, 14), ADIS_ACCEL_CHAN(Y, ADIS16201_YACCL_OUT_REG, ADIS16201_SCAN_ACC_Y, BIT(IIO_CHAN_INFO_CALIBBIAS), 0, 14), ADIS_AUX_ADC_CHAN(ADIS16201_AUX_ADC_REG, ADIS16201_SCAN_AUX_ADC, 0, 12), ADIS_INCLI_CHAN(X, ADIS16201_XINCL_OUT_REG, ADIS16201_SCAN_INCLI_X, BIT(IIO_CHAN_INFO_CALIBBIAS), 0, 14), ADIS_INCLI_CHAN(Y, ADIS16201_YINCL_OUT_REG, ADIS16201_SCAN_INCLI_Y, BIT(IIO_CHAN_INFO_CALIBBIAS), 0, 14), IIO_CHAN_SOFT_TIMESTAMP(7) }; static const struct iio_info adis16201_info = { .read_raw = adis16201_read_raw, .write_raw = adis16201_write_raw, .update_scan_mode = adis_update_scan_mode, }; static const char * const adis16201_status_error_msgs[] = { [ADIS16201_DIAG_STAT_SPI_FAIL_BIT] = "SPI failure", [ADIS16201_DIAG_STAT_FLASH_UPT_FAIL_BIT] = "Flash update failed", [ADIS16201_DIAG_STAT_POWER_HIGH_BIT] = "Power supply above 3.625V", [ADIS16201_DIAG_STAT_POWER_LOW_BIT] = "Power supply below 2.975V", }; static const struct adis_timeout adis16201_timeouts = { .reset_ms = ADIS16201_STARTUP_DELAY_MS, .sw_reset_ms = ADIS16201_STARTUP_DELAY_MS, .self_test_ms = ADIS16201_STARTUP_DELAY_MS, }; static const struct adis_data adis16201_data = { .read_delay = 20, .msc_ctrl_reg = ADIS16201_MSC_CTRL_REG, .glob_cmd_reg = ADIS16201_GLOB_CMD_REG, .diag_stat_reg = ADIS16201_DIAG_STAT_REG, .self_test_mask = ADIS16201_MSC_CTRL_SELF_TEST_EN, .self_test_reg = ADIS16201_MSC_CTRL_REG, .self_test_no_autoclear = true, .timeouts = &adis16201_timeouts, .status_error_msgs = adis16201_status_error_msgs, .status_error_mask = BIT(ADIS16201_DIAG_STAT_SPI_FAIL_BIT) | BIT(ADIS16201_DIAG_STAT_FLASH_UPT_FAIL_BIT) | BIT(ADIS16201_DIAG_STAT_POWER_HIGH_BIT) | BIT(ADIS16201_DIAG_STAT_POWER_LOW_BIT), }; static int adis16201_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct adis *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); indio_dev->name = spi->dev.driver->name; indio_dev->info = &adis16201_info; indio_dev->channels = adis16201_channels; indio_dev->num_channels = ARRAY_SIZE(adis16201_channels); indio_dev->modes = INDIO_DIRECT_MODE; ret = adis_init(st, indio_dev, spi, &adis16201_data); if (ret) return ret; ret = devm_adis_setup_buffer_and_trigger(st, indio_dev, NULL); if (ret) return ret; ret = __adis_initial_startup(st); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static struct spi_driver adis16201_driver = { .driver = { .name = "adis16201", }, .probe = adis16201_probe, }; module_spi_driver(adis16201_driver); MODULE_AUTHOR("Barry Song <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADIS16201 Dual-Axis Digital Inclinometer and Accelerometer"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("spi:adis16201"); MODULE_IMPORT_NS(IIO_ADISLIB);
linux-master
drivers/iio/accel/adis16201.c
// SPDX-License-Identifier: GPL-2.0+ /* * ADXL372 3-Axis Digital Accelerometer core driver * * Copyright 2018 Analog Devices Inc. */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "adxl372.h" /* ADXL372 registers definition */ #define ADXL372_DEVID 0x00 #define ADXL372_DEVID_MST 0x01 #define ADXL372_PARTID 0x02 #define ADXL372_STATUS_1 0x04 #define ADXL372_STATUS_2 0x05 #define ADXL372_FIFO_ENTRIES_2 0x06 #define ADXL372_FIFO_ENTRIES_1 0x07 #define ADXL372_X_DATA_H 0x08 #define ADXL372_X_DATA_L 0x09 #define ADXL372_Y_DATA_H 0x0A #define ADXL372_Y_DATA_L 0x0B #define ADXL372_Z_DATA_H 0x0C #define ADXL372_Z_DATA_L 0x0D #define ADXL372_X_MAXPEAK_H 0x15 #define ADXL372_X_MAXPEAK_L 0x16 #define ADXL372_Y_MAXPEAK_H 0x17 #define ADXL372_Y_MAXPEAK_L 0x18 #define ADXL372_Z_MAXPEAK_H 0x19 #define ADXL372_Z_MAXPEAK_L 0x1A #define ADXL372_OFFSET_X 0x20 #define ADXL372_OFFSET_Y 0x21 #define ADXL372_OFFSET_Z 0x22 #define ADXL372_X_THRESH_ACT_H 0x23 #define ADXL372_X_THRESH_ACT_L 0x24 #define ADXL372_Y_THRESH_ACT_H 0x25 #define ADXL372_Y_THRESH_ACT_L 0x26 #define ADXL372_Z_THRESH_ACT_H 0x27 #define ADXL372_Z_THRESH_ACT_L 0x28 #define ADXL372_TIME_ACT 0x29 #define ADXL372_X_THRESH_INACT_H 0x2A #define ADXL372_X_THRESH_INACT_L 0x2B #define ADXL372_Y_THRESH_INACT_H 0x2C #define ADXL372_Y_THRESH_INACT_L 0x2D #define ADXL372_Z_THRESH_INACT_H 0x2E #define ADXL372_Z_THRESH_INACT_L 0x2F #define ADXL372_TIME_INACT_H 0x30 #define ADXL372_TIME_INACT_L 0x31 #define ADXL372_X_THRESH_ACT2_H 0x32 #define ADXL372_X_THRESH_ACT2_L 0x33 #define ADXL372_Y_THRESH_ACT2_H 0x34 #define ADXL372_Y_THRESH_ACT2_L 0x35 #define ADXL372_Z_THRESH_ACT2_H 0x36 #define ADXL372_Z_THRESH_ACT2_L 0x37 #define ADXL372_HPF 0x38 #define ADXL372_FIFO_SAMPLES 0x39 #define ADXL372_FIFO_CTL 0x3A #define ADXL372_INT1_MAP 0x3B #define ADXL372_INT2_MAP 0x3C #define ADXL372_TIMING 0x3D #define ADXL372_MEASURE 0x3E #define ADXL372_POWER_CTL 0x3F #define ADXL372_SELF_TEST 0x40 #define ADXL372_RESET 0x41 #define ADXL372_FIFO_DATA 0x42 #define ADXL372_DEVID_VAL 0xAD #define ADXL372_PARTID_VAL 0xFA #define ADXL372_RESET_CODE 0x52 /* ADXL372_POWER_CTL */ #define ADXL372_POWER_CTL_MODE_MSK GENMASK_ULL(1, 0) #define ADXL372_POWER_CTL_MODE(x) (((x) & 0x3) << 0) /* ADXL372_MEASURE */ #define ADXL372_MEASURE_LINKLOOP_MSK GENMASK_ULL(5, 4) #define ADXL372_MEASURE_LINKLOOP_MODE(x) (((x) & 0x3) << 4) #define ADXL372_MEASURE_BANDWIDTH_MSK GENMASK_ULL(2, 0) #define ADXL372_MEASURE_BANDWIDTH_MODE(x) (((x) & 0x7) << 0) /* ADXL372_TIMING */ #define ADXL372_TIMING_ODR_MSK GENMASK_ULL(7, 5) #define ADXL372_TIMING_ODR_MODE(x) (((x) & 0x7) << 5) /* ADXL372_FIFO_CTL */ #define ADXL372_FIFO_CTL_FORMAT_MSK GENMASK(5, 3) #define ADXL372_FIFO_CTL_FORMAT_MODE(x) (((x) & 0x7) << 3) #define ADXL372_FIFO_CTL_MODE_MSK GENMASK(2, 1) #define ADXL372_FIFO_CTL_MODE_MODE(x) (((x) & 0x3) << 1) #define ADXL372_FIFO_CTL_SAMPLES_MSK BIT(1) #define ADXL372_FIFO_CTL_SAMPLES_MODE(x) (((x) > 0xFF) ? 1 : 0) /* ADXL372_STATUS_1 */ #define ADXL372_STATUS_1_DATA_RDY(x) (((x) >> 0) & 0x1) #define ADXL372_STATUS_1_FIFO_RDY(x) (((x) >> 1) & 0x1) #define ADXL372_STATUS_1_FIFO_FULL(x) (((x) >> 2) & 0x1) #define ADXL372_STATUS_1_FIFO_OVR(x) (((x) >> 3) & 0x1) #define ADXL372_STATUS_1_USR_NVM_BUSY(x) (((x) >> 5) & 0x1) #define ADXL372_STATUS_1_AWAKE(x) (((x) >> 6) & 0x1) #define ADXL372_STATUS_1_ERR_USR_REGS(x) (((x) >> 7) & 0x1) /* ADXL372_STATUS_2 */ #define ADXL372_STATUS_2_INACT(x) (((x) >> 4) & 0x1) #define ADXL372_STATUS_2_ACT(x) (((x) >> 5) & 0x1) #define ADXL372_STATUS_2_AC2(x) (((x) >> 6) & 0x1) /* ADXL372_INT1_MAP */ #define ADXL372_INT1_MAP_DATA_RDY_MSK BIT(0) #define ADXL372_INT1_MAP_DATA_RDY_MODE(x) (((x) & 0x1) << 0) #define ADXL372_INT1_MAP_FIFO_RDY_MSK BIT(1) #define ADXL372_INT1_MAP_FIFO_RDY_MODE(x) (((x) & 0x1) << 1) #define ADXL372_INT1_MAP_FIFO_FULL_MSK BIT(2) #define ADXL372_INT1_MAP_FIFO_FULL_MODE(x) (((x) & 0x1) << 2) #define ADXL372_INT1_MAP_FIFO_OVR_MSK BIT(3) #define ADXL372_INT1_MAP_FIFO_OVR_MODE(x) (((x) & 0x1) << 3) #define ADXL372_INT1_MAP_INACT_MSK BIT(4) #define ADXL372_INT1_MAP_INACT_MODE(x) (((x) & 0x1) << 4) #define ADXL372_INT1_MAP_ACT_MSK BIT(5) #define ADXL372_INT1_MAP_ACT_MODE(x) (((x) & 0x1) << 5) #define ADXL372_INT1_MAP_AWAKE_MSK BIT(6) #define ADXL372_INT1_MAP_AWAKE_MODE(x) (((x) & 0x1) << 6) #define ADXL372_INT1_MAP_LOW_MSK BIT(7) #define ADXL372_INT1_MAP_LOW_MODE(x) (((x) & 0x1) << 7) /* ADX372_THRESH */ #define ADXL372_THRESH_VAL_H_MSK GENMASK(10, 3) #define ADXL372_THRESH_VAL_H_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_H_MSK, x) #define ADXL372_THRESH_VAL_L_MSK GENMASK(2, 0) #define ADXL372_THRESH_VAL_L_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_L_MSK, x) /* The ADXL372 includes a deep, 512 sample FIFO buffer */ #define ADXL372_FIFO_SIZE 512 #define ADXL372_X_AXIS_EN(x) ((x) & BIT(0)) #define ADXL372_Y_AXIS_EN(x) ((x) & BIT(1)) #define ADXL372_Z_AXIS_EN(x) ((x) & BIT(2)) /* * At +/- 200g with 12-bit resolution, scale is computed as: * (200 + 200) * 9.81 / (2^12 - 1) = 0.958241 */ #define ADXL372_USCALE 958241 enum adxl372_op_mode { ADXL372_STANDBY, ADXL372_WAKE_UP, ADXL372_INSTANT_ON, ADXL372_FULL_BW_MEASUREMENT, }; enum adxl372_act_proc_mode { ADXL372_DEFAULT, ADXL372_LINKED, ADXL372_LOOPED, }; enum adxl372_th_activity { ADXL372_ACTIVITY, ADXL372_ACTIVITY2, ADXL372_INACTIVITY, }; enum adxl372_odr { ADXL372_ODR_400HZ, ADXL372_ODR_800HZ, ADXL372_ODR_1600HZ, ADXL372_ODR_3200HZ, ADXL372_ODR_6400HZ, }; enum adxl372_bandwidth { ADXL372_BW_200HZ, ADXL372_BW_400HZ, ADXL372_BW_800HZ, ADXL372_BW_1600HZ, ADXL372_BW_3200HZ, }; static const unsigned int adxl372_th_reg_high_addr[3] = { [ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H, [ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H, [ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H, }; enum adxl372_fifo_format { ADXL372_XYZ_FIFO, ADXL372_X_FIFO, ADXL372_Y_FIFO, ADXL372_XY_FIFO, ADXL372_Z_FIFO, ADXL372_XZ_FIFO, ADXL372_YZ_FIFO, ADXL372_XYZ_PEAK_FIFO, }; enum adxl372_fifo_mode { ADXL372_FIFO_BYPASSED, ADXL372_FIFO_STREAMED, ADXL372_FIFO_TRIGGERED, ADXL372_FIFO_OLD_SAVED }; static const int adxl372_samp_freq_tbl[5] = { 400, 800, 1600, 3200, 6400, }; static const int adxl372_bw_freq_tbl[5] = { 200, 400, 800, 1600, 3200, }; struct adxl372_axis_lookup { unsigned int bits; enum adxl372_fifo_format fifo_format; }; static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = { { BIT(0), ADXL372_X_FIFO }, { BIT(1), ADXL372_Y_FIFO }, { BIT(2), ADXL372_Z_FIFO }, { BIT(0) | BIT(1), ADXL372_XY_FIFO }, { BIT(0) | BIT(2), ADXL372_XZ_FIFO }, { BIT(1) | BIT(2), ADXL372_YZ_FIFO }, { BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO }, }; static const struct iio_event_spec adxl372_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), .mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), .mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE), }, }; #define ADXL372_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_BE, \ }, \ .event_spec = adxl372_events, \ .num_event_specs = ARRAY_SIZE(adxl372_events) \ } static const struct iio_chan_spec adxl372_channels[] = { ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X), ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y), ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z), }; struct adxl372_state { int irq; struct device *dev; struct regmap *regmap; struct iio_trigger *dready_trig; struct iio_trigger *peak_datardy_trig; enum adxl372_fifo_mode fifo_mode; enum adxl372_fifo_format fifo_format; unsigned int fifo_axis_mask; enum adxl372_op_mode op_mode; enum adxl372_act_proc_mode act_proc_mode; enum adxl372_odr odr; enum adxl372_bandwidth bw; u32 act_time_ms; u32 inact_time_ms; u8 fifo_set_size; unsigned long int1_bitmask; unsigned long int2_bitmask; u16 watermark; __be16 fifo_buf[ADXL372_FIFO_SIZE]; bool peak_fifo_mode_en; struct mutex threshold_m; /* lock for threshold */ }; static const unsigned long adxl372_channel_masks[] = { BIT(0), BIT(1), BIT(2), BIT(0) | BIT(1), BIT(0) | BIT(2), BIT(1) | BIT(2), BIT(0) | BIT(1) | BIT(2), 0 }; static ssize_t adxl372_read_threshold_value(struct iio_dev *indio_dev, unsigned int addr, u16 *threshold) { struct adxl372_state *st = iio_priv(indio_dev); __be16 raw_regval; u16 regval; int ret; ret = regmap_bulk_read(st->regmap, addr, &raw_regval, sizeof(raw_regval)); if (ret < 0) return ret; regval = be16_to_cpu(raw_regval); regval >>= 5; *threshold = regval; return 0; } static ssize_t adxl372_write_threshold_value(struct iio_dev *indio_dev, unsigned int addr, u16 threshold) { struct adxl372_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->threshold_m); ret = regmap_write(st->regmap, addr, ADXL372_THRESH_VAL_H_SEL(threshold)); if (ret < 0) goto unlock; ret = regmap_update_bits(st->regmap, addr + 1, GENMASK(7, 5), ADXL372_THRESH_VAL_L_SEL(threshold) << 5); unlock: mutex_unlock(&st->threshold_m); return ret; } static int adxl372_read_axis(struct adxl372_state *st, u8 addr) { __be16 regval; int ret; ret = regmap_bulk_read(st->regmap, addr, &regval, sizeof(regval)); if (ret < 0) return ret; return be16_to_cpu(regval); } static int adxl372_set_op_mode(struct adxl372_state *st, enum adxl372_op_mode op_mode) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL, ADXL372_POWER_CTL_MODE_MSK, ADXL372_POWER_CTL_MODE(op_mode)); if (ret < 0) return ret; st->op_mode = op_mode; return ret; } static int adxl372_set_odr(struct adxl372_state *st, enum adxl372_odr odr) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_TIMING, ADXL372_TIMING_ODR_MSK, ADXL372_TIMING_ODR_MODE(odr)); if (ret < 0) return ret; st->odr = odr; return ret; } static int adxl372_find_closest_match(const int *array, unsigned int size, int val) { int i; for (i = 0; i < size; i++) { if (val <= array[i]) return i; } return size - 1; } static int adxl372_set_bandwidth(struct adxl372_state *st, enum adxl372_bandwidth bw) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_MEASURE, ADXL372_MEASURE_BANDWIDTH_MSK, ADXL372_MEASURE_BANDWIDTH_MODE(bw)); if (ret < 0) return ret; st->bw = bw; return ret; } static int adxl372_set_act_proc_mode(struct adxl372_state *st, enum adxl372_act_proc_mode mode) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_MEASURE, ADXL372_MEASURE_LINKLOOP_MSK, ADXL372_MEASURE_LINKLOOP_MODE(mode)); if (ret < 0) return ret; st->act_proc_mode = mode; return ret; } static int adxl372_set_activity_threshold(struct adxl372_state *st, enum adxl372_th_activity act, bool ref_en, bool enable, unsigned int threshold) { unsigned char buf[6]; unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr; /* scale factor is 100 mg/code */ th_reg_high_val = (threshold / 100) >> 3; th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable; th_reg_high_addr = adxl372_th_reg_high_addr[act]; buf[0] = th_reg_high_val; buf[1] = th_reg_low_val; buf[2] = th_reg_high_val; buf[3] = th_reg_low_val; buf[4] = th_reg_high_val; buf[5] = th_reg_low_val; return regmap_bulk_write(st->regmap, th_reg_high_addr, buf, ARRAY_SIZE(buf)); } static int adxl372_set_activity_time_ms(struct adxl372_state *st, unsigned int act_time_ms) { unsigned int reg_val, scale_factor; int ret; /* * 3.3 ms per code is the scale factor of the TIME_ACT register for * ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below. */ if (st->odr == ADXL372_ODR_6400HZ) scale_factor = 3300; else scale_factor = 6600; reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor); /* TIME_ACT register is 8 bits wide */ if (reg_val > 0xFF) reg_val = 0xFF; ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val); if (ret < 0) return ret; st->act_time_ms = act_time_ms; return ret; } static int adxl372_set_inactivity_time_ms(struct adxl372_state *st, unsigned int inact_time_ms) { unsigned int reg_val_h, reg_val_l, res, scale_factor; int ret; /* * 13 ms per code is the scale factor of the TIME_INACT register for * ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below. */ if (st->odr == ADXL372_ODR_6400HZ) scale_factor = 13; else scale_factor = 26; res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor); reg_val_h = (res >> 8) & 0xFF; reg_val_l = res & 0xFF; ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h); if (ret < 0) return ret; ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l); if (ret < 0) return ret; st->inact_time_ms = inact_time_ms; return ret; } static int adxl372_set_interrupts(struct adxl372_state *st, unsigned long int1_bitmask, unsigned long int2_bitmask) { int ret; ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask); if (ret < 0) return ret; return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask); } static int adxl372_configure_fifo(struct adxl372_state *st) { unsigned int fifo_samples, fifo_ctl; int ret; /* FIFO must be configured while in standby mode */ ret = adxl372_set_op_mode(st, ADXL372_STANDBY); if (ret < 0) return ret; /* * watermark stores the number of sets; we need to write the FIFO * registers with the number of samples */ fifo_samples = (st->watermark * st->fifo_set_size); fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) | ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) | ADXL372_FIFO_CTL_SAMPLES_MODE(fifo_samples); ret = regmap_write(st->regmap, ADXL372_FIFO_SAMPLES, fifo_samples & 0xFF); if (ret < 0) return ret; ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl); if (ret < 0) return ret; return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT); } static int adxl372_get_status(struct adxl372_state *st, u8 *status1, u8 *status2, u16 *fifo_entries) { __be32 buf; u32 val; int ret; /* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */ ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1, &buf, sizeof(buf)); if (ret < 0) return ret; val = be32_to_cpu(buf); *status1 = (val >> 24) & 0x0F; *status2 = (val >> 16) & 0x0F; /* * FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2 * contains the two most significant bits */ *fifo_entries = val & 0x3FF; return ret; } static void adxl372_arrange_axis_data(struct adxl372_state *st, __be16 *sample) { __be16 axis_sample[3]; int i = 0; memset(axis_sample, 0, 3 * sizeof(__be16)); if (ADXL372_X_AXIS_EN(st->fifo_axis_mask)) axis_sample[i++] = sample[0]; if (ADXL372_Y_AXIS_EN(st->fifo_axis_mask)) axis_sample[i++] = sample[1]; if (ADXL372_Z_AXIS_EN(st->fifo_axis_mask)) axis_sample[i++] = sample[2]; memcpy(sample, axis_sample, 3 * sizeof(__be16)); } static void adxl372_push_event(struct iio_dev *indio_dev, s64 timestamp, u8 status2) { unsigned int ev_dir = IIO_EV_DIR_NONE; if (ADXL372_STATUS_2_ACT(status2)) ev_dir = IIO_EV_DIR_RISING; if (ADXL372_STATUS_2_INACT(status2)) ev_dir = IIO_EV_DIR_FALLING; if (ev_dir != IIO_EV_DIR_NONE) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, IIO_EV_TYPE_THRESH, ev_dir), timestamp); } static irqreturn_t adxl372_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct adxl372_state *st = iio_priv(indio_dev); u8 status1, status2; u16 fifo_entries; int i, ret; ret = adxl372_get_status(st, &status1, &status2, &fifo_entries); if (ret < 0) goto err; adxl372_push_event(indio_dev, iio_get_time_ns(indio_dev), status2); if (st->fifo_mode != ADXL372_FIFO_BYPASSED && ADXL372_STATUS_1_FIFO_FULL(status1)) { /* * When reading data from multiple axes from the FIFO, * to ensure that data is not overwritten and stored out * of order at least one sample set must be left in the * FIFO after every read. */ fifo_entries -= st->fifo_set_size; /* Read data from the FIFO */ ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA, st->fifo_buf, fifo_entries * sizeof(u16)); if (ret < 0) goto err; /* Each sample is 2 bytes */ for (i = 0; i < fifo_entries; i += st->fifo_set_size) { /* filter peak detection data */ if (st->peak_fifo_mode_en) adxl372_arrange_axis_data(st, &st->fifo_buf[i]); iio_push_to_buffers(indio_dev, &st->fifo_buf[i]); } } err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int adxl372_setup(struct adxl372_state *st) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADXL372_DEVID, &regval); if (ret < 0) return ret; if (regval != ADXL372_DEVID_VAL) { dev_err(st->dev, "Invalid chip id %x\n", regval); return -ENODEV; } /* * Perform a software reset to make sure the device is in a consistent * state after start up. */ ret = regmap_write(st->regmap, ADXL372_RESET, ADXL372_RESET_CODE); if (ret < 0) return ret; ret = adxl372_set_op_mode(st, ADXL372_STANDBY); if (ret < 0) return ret; /* Set threshold for activity detection to 1g */ ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY, true, true, 1000); if (ret < 0) return ret; /* Set threshold for inactivity detection to 100mg */ ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY, true, true, 100); if (ret < 0) return ret; /* Set activity processing in Looped mode */ ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED); if (ret < 0) return ret; ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ); if (ret < 0) return ret; ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ); if (ret < 0) return ret; /* Set activity timer to 1ms */ ret = adxl372_set_activity_time_ms(st, 1); if (ret < 0) return ret; /* Set inactivity timer to 10s */ ret = adxl372_set_inactivity_time_ms(st, 10000); if (ret < 0) return ret; /* Set the mode of operation to full bandwidth measurement mode */ return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT); } static int adxl372_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct adxl372_state *st = iio_priv(indio_dev); if (readval) return regmap_read(st->regmap, reg, readval); else return regmap_write(st->regmap, reg, writeval); } static int adxl372_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct adxl372_state *st = iio_priv(indio_dev); int ret; switch (info) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = adxl372_read_axis(st, chan->address); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = ADXL372_USCALE; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: *val = adxl372_samp_freq_tbl[st->odr]; return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *val = adxl372_bw_freq_tbl[st->bw]; return IIO_VAL_INT; } return -EINVAL; } static int adxl372_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct adxl372_state *st = iio_priv(indio_dev); int odr_index, bw_index, ret; switch (info) { case IIO_CHAN_INFO_SAMP_FREQ: odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl, ARRAY_SIZE(adxl372_samp_freq_tbl), val); ret = adxl372_set_odr(st, odr_index); if (ret < 0) return ret; /* * The timer period depends on the ODR selected. * At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms */ ret = adxl372_set_activity_time_ms(st, st->act_time_ms); if (ret < 0) return ret; /* * The timer period depends on the ODR selected. * At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms */ ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms); if (ret < 0) return ret; /* * The maximum bandwidth is constrained to at most half of * the ODR to ensure that the Nyquist criteria is not violated */ if (st->bw > odr_index) ret = adxl372_set_bandwidth(st, odr_index); return ret; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl, ARRAY_SIZE(adxl372_bw_freq_tbl), val); return adxl372_set_bandwidth(st, bw_index); default: return -EINVAL; } } static int adxl372_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct adxl372_state *st = iio_priv(indio_dev); unsigned int addr; u16 raw_value; int ret; switch (info) { case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index; ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value); if (ret < 0) return ret; *val = raw_value * ADXL372_USCALE; *val2 = 1000000; return IIO_VAL_FRACTIONAL; case IIO_EV_DIR_FALLING: addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index; ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value); if (ret < 0) return ret; *val = raw_value * ADXL372_USCALE; *val2 = 1000000; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_EV_INFO_PERIOD: switch (dir) { case IIO_EV_DIR_RISING: *val = st->act_time_ms; *val2 = 1000; return IIO_VAL_FRACTIONAL; case IIO_EV_DIR_FALLING: *val = st->inact_time_ms; *val2 = 1000; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } default: return -EINVAL; } } static int adxl372_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct adxl372_state *st = iio_priv(indio_dev); unsigned int val_ms; unsigned int addr; u16 raw_val; switch (info) { case IIO_EV_INFO_VALUE: raw_val = DIV_ROUND_UP(val * 1000000, ADXL372_USCALE); switch (dir) { case IIO_EV_DIR_RISING: addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index; return adxl372_write_threshold_value(indio_dev, addr, raw_val); case IIO_EV_DIR_FALLING: addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index; return adxl372_write_threshold_value(indio_dev, addr, raw_val); default: return -EINVAL; } case IIO_EV_INFO_PERIOD: val_ms = val * 1000 + DIV_ROUND_UP(val2, 1000); switch (dir) { case IIO_EV_DIR_RISING: return adxl372_set_activity_time_ms(st, val_ms); case IIO_EV_DIR_FALLING: return adxl372_set_inactivity_time_ms(st, val_ms); default: return -EINVAL; } default: return -EINVAL; } } static int adxl372_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct adxl372_state *st = iio_priv(indio_dev); switch (dir) { case IIO_EV_DIR_RISING: return FIELD_GET(ADXL372_INT1_MAP_ACT_MSK, st->int1_bitmask); case IIO_EV_DIR_FALLING: return FIELD_GET(ADXL372_INT1_MAP_INACT_MSK, st->int1_bitmask); default: return -EINVAL; } } static int adxl372_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct adxl372_state *st = iio_priv(indio_dev); switch (dir) { case IIO_EV_DIR_RISING: set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_ACT_MSK, ADXL372_INT1_MAP_ACT_MODE(state)); break; case IIO_EV_DIR_FALLING: set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_INACT_MSK, ADXL372_INT1_MAP_INACT_MODE(state)); break; default: return -EINVAL; } return adxl372_set_interrupts(st, st->int1_bitmask, 0); } static ssize_t adxl372_show_filter_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adxl372_state *st = iio_priv(indio_dev); int i; size_t len = 0; for (i = 0; i <= st->odr; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", adxl372_bw_freq_tbl[i]); buf[len - 1] = '\n'; return len; } static ssize_t adxl372_get_fifo_enabled(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adxl372_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->fifo_mode); } static ssize_t adxl372_get_fifo_watermark(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adxl372_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->watermark); } IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1"); IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, __stringify(ADXL372_FIFO_SIZE)); static IIO_DEVICE_ATTR(hwfifo_watermark, 0444, adxl372_get_fifo_watermark, NULL, 0); static IIO_DEVICE_ATTR(hwfifo_enabled, 0444, adxl372_get_fifo_enabled, NULL, 0); static const struct iio_dev_attr *adxl372_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark_min, &iio_dev_attr_hwfifo_watermark_max, &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL, }; static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val) { struct adxl372_state *st = iio_priv(indio_dev); if (val > ADXL372_FIFO_SIZE) val = ADXL372_FIFO_SIZE; st->watermark = val; return 0; } static int adxl372_buffer_postenable(struct iio_dev *indio_dev) { struct adxl372_state *st = iio_priv(indio_dev); unsigned int mask; int i, ret; st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK; ret = adxl372_set_interrupts(st, st->int1_bitmask, 0); if (ret < 0) return ret; mask = *indio_dev->active_scan_mask; for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) { if (mask == adxl372_axis_lookup_table[i].bits) break; } if (i == ARRAY_SIZE(adxl372_axis_lookup_table)) return -EINVAL; st->fifo_format = adxl372_axis_lookup_table[i].fifo_format; st->fifo_axis_mask = adxl372_axis_lookup_table[i].bits; st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask, indio_dev->masklength); /* Configure the FIFO to store sets of impact event peak. */ if (st->peak_fifo_mode_en) { st->fifo_set_size = 3; st->fifo_format = ADXL372_XYZ_PEAK_FIFO; } /* * The 512 FIFO samples can be allotted in several ways, such as: * 170 sample sets of concurrent 3-axis data * 256 sample sets of concurrent 2-axis data (user selectable) * 512 sample sets of single-axis data * 170 sets of impact event peak (x, y, z) */ if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE) st->watermark = (ADXL372_FIFO_SIZE / st->fifo_set_size); st->fifo_mode = ADXL372_FIFO_STREAMED; ret = adxl372_configure_fifo(st); if (ret < 0) { st->fifo_mode = ADXL372_FIFO_BYPASSED; st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK; adxl372_set_interrupts(st, st->int1_bitmask, 0); return ret; } return 0; } static int adxl372_buffer_predisable(struct iio_dev *indio_dev) { struct adxl372_state *st = iio_priv(indio_dev); st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK; adxl372_set_interrupts(st, st->int1_bitmask, 0); st->fifo_mode = ADXL372_FIFO_BYPASSED; adxl372_configure_fifo(st); return 0; } static const struct iio_buffer_setup_ops adxl372_buffer_ops = { .postenable = adxl372_buffer_postenable, .predisable = adxl372_buffer_predisable, }; static int adxl372_dready_trig_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct adxl372_state *st = iio_priv(indio_dev); if (state) st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK; return adxl372_set_interrupts(st, st->int1_bitmask, 0); } static int adxl372_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct adxl372_state *st = iio_priv(indio_dev); if (st->dready_trig != trig && st->peak_datardy_trig != trig) return -EINVAL; return 0; } static const struct iio_trigger_ops adxl372_trigger_ops = { .validate_device = &iio_trigger_validate_own_device, .set_trigger_state = adxl372_dready_trig_set_state, }; static int adxl372_peak_dready_trig_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct adxl372_state *st = iio_priv(indio_dev); if (state) st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK; st->peak_fifo_mode_en = state; return adxl372_set_interrupts(st, st->int1_bitmask, 0); } static const struct iio_trigger_ops adxl372_peak_data_trigger_ops = { .validate_device = &iio_trigger_validate_own_device, .set_trigger_state = adxl372_peak_dready_trig_set_state, }; static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400"); static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, 0444, adxl372_show_filter_freq_avail, NULL, 0); static struct attribute *adxl372_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group adxl372_attrs_group = { .attrs = adxl372_attributes, }; static const struct iio_info adxl372_info = { .validate_trigger = &adxl372_validate_trigger, .attrs = &adxl372_attrs_group, .read_raw = adxl372_read_raw, .write_raw = adxl372_write_raw, .read_event_config = adxl372_read_event_config, .write_event_config = adxl372_write_event_config, .read_event_value = adxl372_read_event_value, .write_event_value = adxl372_write_event_value, .debugfs_reg_access = &adxl372_reg_access, .hwfifo_set_watermark = adxl372_set_watermark, }; bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg) { return (reg == ADXL372_FIFO_DATA); } EXPORT_SYMBOL_NS_GPL(adxl372_readable_noinc_reg, IIO_ADXL372); int adxl372_probe(struct device *dev, struct regmap *regmap, int irq, const char *name) { struct iio_dev *indio_dev; struct adxl372_state *st; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); st->dev = dev; st->regmap = regmap; st->irq = irq; mutex_init(&st->threshold_m); indio_dev->channels = adxl372_channels; indio_dev->num_channels = ARRAY_SIZE(adxl372_channels); indio_dev->available_scan_masks = adxl372_channel_masks; indio_dev->name = name; indio_dev->info = &adxl372_info; indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; ret = adxl372_setup(st); if (ret < 0) { dev_err(dev, "ADXL372 setup failed\n"); return ret; } ret = devm_iio_triggered_buffer_setup_ext(dev, indio_dev, NULL, adxl372_trigger_handler, IIO_BUFFER_DIRECTION_IN, &adxl372_buffer_ops, adxl372_fifo_attributes); if (ret < 0) return ret; if (st->irq) { st->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (st->dready_trig == NULL) return -ENOMEM; st->peak_datardy_trig = devm_iio_trigger_alloc(dev, "%s-dev%d-peak", indio_dev->name, iio_device_id(indio_dev)); if (!st->peak_datardy_trig) return -ENOMEM; st->dready_trig->ops = &adxl372_trigger_ops; st->peak_datardy_trig->ops = &adxl372_peak_data_trigger_ops; iio_trigger_set_drvdata(st->dready_trig, indio_dev); iio_trigger_set_drvdata(st->peak_datardy_trig, indio_dev); ret = devm_iio_trigger_register(dev, st->dready_trig); if (ret < 0) return ret; ret = devm_iio_trigger_register(dev, st->peak_datardy_trig); if (ret < 0) return ret; indio_dev->trig = iio_trigger_get(st->dready_trig); ret = devm_request_threaded_irq(dev, st->irq, iio_trigger_generic_data_rdy_poll, NULL, IRQF_TRIGGER_RISING | IRQF_ONESHOT, indio_dev->name, st->dready_trig); if (ret < 0) return ret; } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(adxl372_probe, IIO_ADXL372); MODULE_AUTHOR("Stefan Popa <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/adxl372.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL313 3-Axis Digital Accelerometer * * Copyright (c) 2021 Lucas Stankus <[email protected]> * * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL313.pdf */ #include <linux/bitfield.h> #include <linux/module.h> #include <linux/regmap.h> #include "adxl313.h" static const struct regmap_range adxl312_readable_reg_range[] = { regmap_reg_range(ADXL313_REG_DEVID0, ADXL313_REG_DEVID0), regmap_reg_range(ADXL313_REG_OFS_AXIS(0), ADXL313_REG_OFS_AXIS(2)), regmap_reg_range(ADXL313_REG_THRESH_ACT, ADXL313_REG_ACT_INACT_CTL), regmap_reg_range(ADXL313_REG_BW_RATE, ADXL313_REG_FIFO_STATUS), }; static const struct regmap_range adxl313_readable_reg_range[] = { regmap_reg_range(ADXL313_REG_DEVID0, ADXL313_REG_XID), regmap_reg_range(ADXL313_REG_SOFT_RESET, ADXL313_REG_SOFT_RESET), regmap_reg_range(ADXL313_REG_OFS_AXIS(0), ADXL313_REG_OFS_AXIS(2)), regmap_reg_range(ADXL313_REG_THRESH_ACT, ADXL313_REG_ACT_INACT_CTL), regmap_reg_range(ADXL313_REG_BW_RATE, ADXL313_REG_FIFO_STATUS), }; const struct regmap_access_table adxl312_readable_regs_table = { .yes_ranges = adxl312_readable_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl312_readable_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl312_readable_regs_table, IIO_ADXL313); const struct regmap_access_table adxl313_readable_regs_table = { .yes_ranges = adxl313_readable_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl313_readable_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl313_readable_regs_table, IIO_ADXL313); const struct regmap_access_table adxl314_readable_regs_table = { .yes_ranges = adxl312_readable_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl312_readable_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl314_readable_regs_table, IIO_ADXL313); static int adxl312_check_id(struct device *dev, struct adxl313_data *data) { unsigned int regval; int ret; ret = regmap_read(data->regmap, ADXL313_REG_DEVID0, &regval); if (ret) return ret; if (regval != ADXL313_DEVID0_ADXL312_314) dev_warn(dev, "Invalid manufacturer ID: %#02x\n", regval); return 0; } static int adxl313_check_id(struct device *dev, struct adxl313_data *data) { unsigned int regval; int ret; ret = regmap_read(data->regmap, ADXL313_REG_DEVID0, &regval); if (ret) return ret; if (regval != ADXL313_DEVID0) dev_warn(dev, "Invalid manufacturer ID: 0x%02x\n", regval); /* Check DEVID1 and PARTID */ if (regval == ADXL313_DEVID0) { ret = regmap_read(data->regmap, ADXL313_REG_DEVID1, &regval); if (ret) return ret; if (regval != ADXL313_DEVID1) dev_warn(dev, "Invalid mems ID: 0x%02x\n", regval); ret = regmap_read(data->regmap, ADXL313_REG_PARTID, &regval); if (ret) return ret; if (regval != ADXL313_PARTID) dev_warn(dev, "Invalid device ID: 0x%02x\n", regval); } return 0; } const struct adxl313_chip_info adxl31x_chip_info[] = { [ADXL312] = { .name = "adxl312", .type = ADXL312, .scale_factor = 28425072, .variable_range = true, .soft_reset = false, .check_id = &adxl312_check_id, }, [ADXL313] = { .name = "adxl313", .type = ADXL313, .scale_factor = 9576806, .variable_range = true, .soft_reset = true, .check_id = &adxl313_check_id, }, [ADXL314] = { .name = "adxl314", .type = ADXL314, .scale_factor = 478858719, .variable_range = false, .soft_reset = false, .check_id = &adxl312_check_id, }, }; EXPORT_SYMBOL_NS_GPL(adxl31x_chip_info, IIO_ADXL313); static const struct regmap_range adxl312_writable_reg_range[] = { regmap_reg_range(ADXL313_REG_OFS_AXIS(0), ADXL313_REG_OFS_AXIS(2)), regmap_reg_range(ADXL313_REG_THRESH_ACT, ADXL313_REG_ACT_INACT_CTL), regmap_reg_range(ADXL313_REG_BW_RATE, ADXL313_REG_INT_MAP), regmap_reg_range(ADXL313_REG_DATA_FORMAT, ADXL313_REG_DATA_FORMAT), regmap_reg_range(ADXL313_REG_FIFO_CTL, ADXL313_REG_FIFO_CTL), }; static const struct regmap_range adxl313_writable_reg_range[] = { regmap_reg_range(ADXL313_REG_SOFT_RESET, ADXL313_REG_SOFT_RESET), regmap_reg_range(ADXL313_REG_OFS_AXIS(0), ADXL313_REG_OFS_AXIS(2)), regmap_reg_range(ADXL313_REG_THRESH_ACT, ADXL313_REG_ACT_INACT_CTL), regmap_reg_range(ADXL313_REG_BW_RATE, ADXL313_REG_INT_MAP), regmap_reg_range(ADXL313_REG_DATA_FORMAT, ADXL313_REG_DATA_FORMAT), regmap_reg_range(ADXL313_REG_FIFO_CTL, ADXL313_REG_FIFO_CTL), }; const struct regmap_access_table adxl312_writable_regs_table = { .yes_ranges = adxl312_writable_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl312_writable_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl312_writable_regs_table, IIO_ADXL313); const struct regmap_access_table adxl313_writable_regs_table = { .yes_ranges = adxl313_writable_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl313_writable_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl313_writable_regs_table, IIO_ADXL313); const struct regmap_access_table adxl314_writable_regs_table = { .yes_ranges = adxl312_writable_reg_range, .n_yes_ranges = ARRAY_SIZE(adxl312_writable_reg_range), }; EXPORT_SYMBOL_NS_GPL(adxl314_writable_regs_table, IIO_ADXL313); static const int adxl313_odr_freqs[][2] = { [0] = { 6, 250000 }, [1] = { 12, 500000 }, [2] = { 25, 0 }, [3] = { 50, 0 }, [4] = { 100, 0 }, [5] = { 200, 0 }, [6] = { 400, 0 }, [7] = { 800, 0 }, [8] = { 1600, 0 }, [9] = { 3200, 0 }, }; #define ADXL313_ACCEL_CHANNEL(index, axis) { \ .type = IIO_ACCEL, \ .address = index, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_type = { \ .realbits = 13, \ }, \ } static const struct iio_chan_spec adxl313_channels[] = { ADXL313_ACCEL_CHANNEL(0, X), ADXL313_ACCEL_CHANNEL(1, Y), ADXL313_ACCEL_CHANNEL(2, Z), }; static int adxl313_set_odr(struct adxl313_data *data, unsigned int freq1, unsigned int freq2) { unsigned int i; for (i = 0; i < ARRAY_SIZE(adxl313_odr_freqs); i++) { if (adxl313_odr_freqs[i][0] == freq1 && adxl313_odr_freqs[i][1] == freq2) break; } if (i == ARRAY_SIZE(adxl313_odr_freqs)) return -EINVAL; return regmap_update_bits(data->regmap, ADXL313_REG_BW_RATE, ADXL313_RATE_MSK, FIELD_PREP(ADXL313_RATE_MSK, ADXL313_RATE_BASE + i)); } static int adxl313_read_axis(struct adxl313_data *data, struct iio_chan_spec const *chan) { int ret; mutex_lock(&data->lock); ret = regmap_bulk_read(data->regmap, ADXL313_REG_DATA_AXIS(chan->address), &data->transf_buf, sizeof(data->transf_buf)); if (ret) goto unlock_ret; ret = le16_to_cpu(data->transf_buf); unlock_ret: mutex_unlock(&data->lock); return ret; } static int adxl313_read_freq_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (const int *)adxl313_odr_freqs; *length = ARRAY_SIZE(adxl313_odr_freqs) * 2; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int adxl313_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adxl313_data *data = iio_priv(indio_dev); unsigned int regval; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = adxl313_read_axis(data, chan); if (ret < 0) return ret; *val = sign_extend32(ret, chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = data->chip_info->scale_factor; return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_CALIBBIAS: ret = regmap_read(data->regmap, ADXL313_REG_OFS_AXIS(chan->address), &regval); if (ret) return ret; /* * 8-bit resolution at minimum range, that is 4x accel data scale * factor at full resolution */ *val = sign_extend32(regval, 7) * 4; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(data->regmap, ADXL313_REG_BW_RATE, &regval); if (ret) return ret; ret = FIELD_GET(ADXL313_RATE_MSK, regval) - ADXL313_RATE_BASE; *val = adxl313_odr_freqs[ret][0]; *val2 = adxl313_odr_freqs[ret][1]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int adxl313_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adxl313_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: /* * 8-bit resolution at minimum range, that is 4x accel data scale * factor at full resolution */ if (clamp_val(val, -128 * 4, 127 * 4) != val) return -EINVAL; return regmap_write(data->regmap, ADXL313_REG_OFS_AXIS(chan->address), val / 4); case IIO_CHAN_INFO_SAMP_FREQ: return adxl313_set_odr(data, val, val2); default: return -EINVAL; } } static const struct iio_info adxl313_info = { .read_raw = adxl313_read_raw, .write_raw = adxl313_write_raw, .read_avail = adxl313_read_freq_avail, }; static int adxl313_setup(struct device *dev, struct adxl313_data *data, int (*setup)(struct device *, struct regmap *)) { int ret; /* * If sw reset available, ensures the device is in a consistent * state after start up */ if (data->chip_info->soft_reset) { ret = regmap_write(data->regmap, ADXL313_REG_SOFT_RESET, ADXL313_SOFT_RESET); if (ret) return ret; } if (setup) { ret = setup(dev, data->regmap); if (ret) return ret; } ret = data->chip_info->check_id(dev, data); if (ret) return ret; /* Sets the range to maximum, full resolution, if applicable */ if (data->chip_info->variable_range) { ret = regmap_update_bits(data->regmap, ADXL313_REG_DATA_FORMAT, ADXL313_RANGE_MSK, FIELD_PREP(ADXL313_RANGE_MSK, ADXL313_RANGE_MAX)); if (ret) return ret; /* Enables full resolution */ ret = regmap_update_bits(data->regmap, ADXL313_REG_DATA_FORMAT, ADXL313_FULL_RES, ADXL313_FULL_RES); if (ret) return ret; } /* Enables measurement mode */ return regmap_update_bits(data->regmap, ADXL313_REG_POWER_CTL, ADXL313_POWER_CTL_MSK, ADXL313_MEASUREMENT_MODE); } /** * adxl313_core_probe() - probe and setup for adxl313 accelerometer * @dev: Driver model representation of the device * @regmap: Register map of the device * @chip_info: Structure containing device specific data * @setup: Setup routine to be executed right before the standard device * setup, can also be set to NULL if not required * * Return: 0 on success, negative errno on error cases */ int adxl313_core_probe(struct device *dev, struct regmap *regmap, const struct adxl313_chip_info *chip_info, int (*setup)(struct device *, struct regmap *)) { struct adxl313_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->regmap = regmap; data->chip_info = chip_info; mutex_init(&data->lock); indio_dev->name = chip_info->name; indio_dev->info = &adxl313_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = adxl313_channels; indio_dev->num_channels = ARRAY_SIZE(adxl313_channels); ret = adxl313_setup(dev, data, setup); if (ret) { dev_err(dev, "ADXL313 setup failed\n"); return ret; } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(adxl313_core_probe, IIO_ADXL313); MODULE_AUTHOR("Lucas Stankus <[email protected]>"); MODULE_DESCRIPTION("ADXL313 3-Axis Digital Accelerometer core driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/adxl313_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADXL345 3-Axis Digital Accelerometer I2C driver * * Copyright (c) 2017 Eva Rachel Retuya <[email protected]> * * 7-bit I2C slave address: 0x1D (ALT ADDRESS pin tied to VDDIO) or * 0x53 (ALT ADDRESS pin grounded) */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/regmap.h> #include "adxl345.h" static const struct regmap_config adxl345_i2c_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static int adxl345_i2c_probe(struct i2c_client *client) { struct regmap *regmap; regmap = devm_regmap_init_i2c(client, &adxl345_i2c_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(&client->dev, PTR_ERR(regmap), "Error initializing regmap\n"); return adxl345_core_probe(&client->dev, regmap); } static const struct i2c_device_id adxl345_i2c_id[] = { { "adxl345", ADXL345 }, { "adxl375", ADXL375 }, { } }; MODULE_DEVICE_TABLE(i2c, adxl345_i2c_id); static const struct of_device_id adxl345_of_match[] = { { .compatible = "adi,adxl345", .data = (const void *)ADXL345 }, { .compatible = "adi,adxl375", .data = (const void *)ADXL375 }, { } }; MODULE_DEVICE_TABLE(of, adxl345_of_match); static const struct acpi_device_id adxl345_acpi_match[] = { { "ADS0345", ADXL345 }, { } }; MODULE_DEVICE_TABLE(acpi, adxl345_acpi_match); static struct i2c_driver adxl345_i2c_driver = { .driver = { .name = "adxl345_i2c", .of_match_table = adxl345_of_match, .acpi_match_table = adxl345_acpi_match, }, .probe = adxl345_i2c_probe, .id_table = adxl345_i2c_id, }; module_i2c_driver(adxl345_i2c_driver); MODULE_AUTHOR("Eva Rachel Retuya <[email protected]>"); MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer I2C driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADXL345);
linux-master
drivers/iio/accel/adxl345_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * IIO driver for the MiraMEMS DA311 3-axis accelerometer * * Copyright (c) 2016 Hans de Goede <[email protected]> * Copyright (c) 2011-2013 MiraMEMS Sensing Technology Co., Ltd. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/byteorder/generic.h> #define DA311_CHIP_ID 0x13 /* * Note register addressed go from 0 - 0x3f and then wrap. * For some reason there are 2 banks with 0 - 0x3f addresses, * rather then a single 0-0x7f bank. */ /* Bank 0 regs */ #define DA311_REG_BANK 0x0000 #define DA311_REG_LDO_REG 0x0006 #define DA311_REG_CHIP_ID 0x000f #define DA311_REG_TEMP_CFG_REG 0x001f #define DA311_REG_CTRL_REG1 0x0020 #define DA311_REG_CTRL_REG3 0x0022 #define DA311_REG_CTRL_REG4 0x0023 #define DA311_REG_CTRL_REG5 0x0024 #define DA311_REG_CTRL_REG6 0x0025 #define DA311_REG_STATUS_REG 0x0027 #define DA311_REG_OUT_X_L 0x0028 #define DA311_REG_OUT_X_H 0x0029 #define DA311_REG_OUT_Y_L 0x002a #define DA311_REG_OUT_Y_H 0x002b #define DA311_REG_OUT_Z_L 0x002c #define DA311_REG_OUT_Z_H 0x002d #define DA311_REG_INT1_CFG 0x0030 #define DA311_REG_INT1_SRC 0x0031 #define DA311_REG_INT1_THS 0x0032 #define DA311_REG_INT1_DURATION 0x0033 #define DA311_REG_INT2_CFG 0x0034 #define DA311_REG_INT2_SRC 0x0035 #define DA311_REG_INT2_THS 0x0036 #define DA311_REG_INT2_DURATION 0x0037 #define DA311_REG_CLICK_CFG 0x0038 #define DA311_REG_CLICK_SRC 0x0039 #define DA311_REG_CLICK_THS 0x003a #define DA311_REG_TIME_LIMIT 0x003b #define DA311_REG_TIME_LATENCY 0x003c #define DA311_REG_TIME_WINDOW 0x003d /* Bank 1 regs */ #define DA311_REG_SOFT_RESET 0x0105 #define DA311_REG_OTP_XOFF_L 0x0110 #define DA311_REG_OTP_XOFF_H 0x0111 #define DA311_REG_OTP_YOFF_L 0x0112 #define DA311_REG_OTP_YOFF_H 0x0113 #define DA311_REG_OTP_ZOFF_L 0x0114 #define DA311_REG_OTP_ZOFF_H 0x0115 #define DA311_REG_OTP_XSO 0x0116 #define DA311_REG_OTP_YSO 0x0117 #define DA311_REG_OTP_ZSO 0x0118 #define DA311_REG_OTP_TRIM_OSC 0x011b #define DA311_REG_LPF_ABSOLUTE 0x011c #define DA311_REG_TEMP_OFF1 0x0127 #define DA311_REG_TEMP_OFF2 0x0128 #define DA311_REG_TEMP_OFF3 0x0129 #define DA311_REG_OTP_TRIM_THERM_H 0x011a /* * a value of + or -1024 corresponds to + or - 1G * scale = 9.81 / 1024 = 0.009580078 */ static const int da311_nscale = 9580078; #define DA311_CHANNEL(reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec da311_channels[] = { /* | 0x80 comes from the android driver */ DA311_CHANNEL(DA311_REG_OUT_X_L | 0x80, X), DA311_CHANNEL(DA311_REG_OUT_Y_L | 0x80, Y), DA311_CHANNEL(DA311_REG_OUT_Z_L | 0x80, Z), }; struct da311_data { struct i2c_client *client; }; static int da311_register_mask_write(struct i2c_client *client, u16 addr, u8 mask, u8 data) { int ret; u8 tmp_data = 0; if (addr & 0xff00) { /* Select bank 1 */ ret = i2c_smbus_write_byte_data(client, DA311_REG_BANK, 0x01); if (ret < 0) return ret; } if (mask != 0xff) { ret = i2c_smbus_read_byte_data(client, addr); if (ret < 0) return ret; tmp_data = ret; } tmp_data &= ~mask; tmp_data |= data & mask; ret = i2c_smbus_write_byte_data(client, addr & 0xff, tmp_data); if (ret < 0) return ret; if (addr & 0xff00) { /* Back to bank 0 */ ret = i2c_smbus_write_byte_data(client, DA311_REG_BANK, 0x00); if (ret < 0) return ret; } return 0; } /* Init sequence taken from the android driver */ static int da311_reset(struct i2c_client *client) { static const struct { u16 addr; u8 mask; u8 data; } init_data[] = { { DA311_REG_TEMP_CFG_REG, 0xff, 0x08 }, { DA311_REG_CTRL_REG5, 0xff, 0x80 }, { DA311_REG_CTRL_REG4, 0x30, 0x00 }, { DA311_REG_CTRL_REG1, 0xff, 0x6f }, { DA311_REG_TEMP_CFG_REG, 0xff, 0x88 }, { DA311_REG_LDO_REG, 0xff, 0x02 }, { DA311_REG_OTP_TRIM_OSC, 0xff, 0x27 }, { DA311_REG_LPF_ABSOLUTE, 0xff, 0x30 }, { DA311_REG_TEMP_OFF1, 0xff, 0x3f }, { DA311_REG_TEMP_OFF2, 0xff, 0xff }, { DA311_REG_TEMP_OFF3, 0xff, 0x0f }, }; int i, ret; /* Reset */ ret = da311_register_mask_write(client, DA311_REG_SOFT_RESET, 0xff, 0xaa); if (ret < 0) return ret; for (i = 0; i < ARRAY_SIZE(init_data); i++) { ret = da311_register_mask_write(client, init_data[i].addr, init_data[i].mask, init_data[i].data); if (ret < 0) return ret; } return 0; } static int da311_enable(struct i2c_client *client, bool enable) { u8 data = enable ? 0x00 : 0x20; return da311_register_mask_write(client, DA311_REG_TEMP_CFG_REG, 0x20, data); } static int da311_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct da311_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = i2c_smbus_read_word_data(data->client, chan->address); if (ret < 0) return ret; /* * Values are 12 bits, stored as 16 bits with the 4 * least significant bits always 0. */ *val = (short)ret >> 4; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = da311_nscale; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static const struct iio_info da311_info = { .read_raw = da311_read_raw, }; static void da311_disable(void *client) { da311_enable(client, false); } static int da311_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct da311_data *data; ret = i2c_smbus_read_byte_data(client, DA311_REG_CHIP_ID); if (ret != DA311_CHIP_ID) return (ret < 0) ? ret : -ENODEV; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; indio_dev->info = &da311_info; indio_dev->name = "da311"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = da311_channels; indio_dev->num_channels = ARRAY_SIZE(da311_channels); ret = da311_reset(client); if (ret < 0) return ret; ret = da311_enable(client, true); if (ret < 0) return ret; ret = devm_add_action_or_reset(&client->dev, da311_disable, client); if (ret) return ret; return devm_iio_device_register(&client->dev, indio_dev); } static int da311_suspend(struct device *dev) { return da311_enable(to_i2c_client(dev), false); } static int da311_resume(struct device *dev) { return da311_enable(to_i2c_client(dev), true); } static DEFINE_SIMPLE_DEV_PM_OPS(da311_pm_ops, da311_suspend, da311_resume); static const struct i2c_device_id da311_i2c_id[] = { {"da311", 0}, {} }; MODULE_DEVICE_TABLE(i2c, da311_i2c_id); static struct i2c_driver da311_driver = { .driver = { .name = "da311", .pm = pm_sleep_ptr(&da311_pm_ops), }, .probe = da311_probe, .id_table = da311_i2c_id, }; module_i2c_driver(da311_driver); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("MiraMEMS DA311 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/da311.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved. */ #include <linux/iio/common/ssp_sensors.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/kfifo_buf.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "../common/ssp_sensors/ssp_iio_sensor.h" #define SSP_CHANNEL_COUNT 3 #define SSP_ACCEL_NAME "ssp-accelerometer" static const char ssp_accel_device_name[] = SSP_ACCEL_NAME; enum ssp_accel_3d_channel { SSP_CHANNEL_SCAN_INDEX_X, SSP_CHANNEL_SCAN_INDEX_Y, SSP_CHANNEL_SCAN_INDEX_Z, SSP_CHANNEL_SCAN_INDEX_TIME, }; static int ssp_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { u32 t; struct ssp_data *data = dev_get_drvdata(indio_dev->dev.parent->parent); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: t = ssp_get_sensor_delay(data, SSP_ACCELEROMETER_SENSOR); ssp_convert_to_freq(t, val, val2); return IIO_VAL_INT_PLUS_MICRO; default: break; } return -EINVAL; } static int ssp_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret; struct ssp_data *data = dev_get_drvdata(indio_dev->dev.parent->parent); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: ret = ssp_convert_to_time(val, val2); ret = ssp_change_delay(data, SSP_ACCELEROMETER_SENSOR, ret); if (ret < 0) dev_err(&indio_dev->dev, "accel sensor enable fail\n"); return ret; default: break; } return -EINVAL; } static const struct iio_info ssp_accel_iio_info = { .read_raw = &ssp_accel_read_raw, .write_raw = &ssp_accel_write_raw, }; static const unsigned long ssp_accel_scan_mask[] = { 0x7, 0, }; static const struct iio_chan_spec ssp_acc_channels[] = { SSP_CHANNEL_AG(IIO_ACCEL, IIO_MOD_X, SSP_CHANNEL_SCAN_INDEX_X), SSP_CHANNEL_AG(IIO_ACCEL, IIO_MOD_Y, SSP_CHANNEL_SCAN_INDEX_Y), SSP_CHANNEL_AG(IIO_ACCEL, IIO_MOD_Z, SSP_CHANNEL_SCAN_INDEX_Z), SSP_CHAN_TIMESTAMP(SSP_CHANNEL_SCAN_INDEX_TIME), }; static int ssp_process_accel_data(struct iio_dev *indio_dev, void *buf, int64_t timestamp) { return ssp_common_process_data(indio_dev, buf, SSP_ACCELEROMETER_SIZE, timestamp); } static const struct iio_buffer_setup_ops ssp_accel_buffer_ops = { .postenable = &ssp_common_buffer_postenable, .postdisable = &ssp_common_buffer_postdisable, }; static int ssp_accel_probe(struct platform_device *pdev) { int ret; struct iio_dev *indio_dev; struct ssp_sensor_data *spd; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*spd)); if (!indio_dev) return -ENOMEM; spd = iio_priv(indio_dev); spd->process_data = ssp_process_accel_data; spd->type = SSP_ACCELEROMETER_SENSOR; indio_dev->name = ssp_accel_device_name; indio_dev->info = &ssp_accel_iio_info; indio_dev->channels = ssp_acc_channels; indio_dev->num_channels = ARRAY_SIZE(ssp_acc_channels); indio_dev->available_scan_masks = ssp_accel_scan_mask; ret = devm_iio_kfifo_buffer_setup(&pdev->dev, indio_dev, &ssp_accel_buffer_ops); if (ret) return ret; platform_set_drvdata(pdev, indio_dev); ret = devm_iio_device_register(&pdev->dev, indio_dev); if (ret < 0) return ret; /* ssp registering should be done after all iio setup */ ssp_register_consumer(indio_dev, SSP_ACCELEROMETER_SENSOR); return 0; } static struct platform_driver ssp_accel_driver = { .driver = { .name = SSP_ACCEL_NAME, }, .probe = ssp_accel_probe, }; module_platform_driver(ssp_accel_driver); MODULE_AUTHOR("Karol Wrona <[email protected]>"); MODULE_DESCRIPTION("Samsung sensorhub accelerometers driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_SSP_SENSORS);
linux-master
drivers/iio/accel/ssp_accel_sensor.c
// SPDX-License-Identifier: GPL-2.0 /* * mma8452.c - Support for following Freescale / NXP 3-axis accelerometers: * * device name digital output 7-bit I2C slave address (pin selectable) * --------------------------------------------------------------------- * MMA8451Q 14 bit 0x1c / 0x1d * MMA8452Q 12 bit 0x1c / 0x1d * MMA8453Q 10 bit 0x1c / 0x1d * MMA8652FC 12 bit 0x1d * MMA8653FC 10 bit 0x1d * FXLS8471Q 14 bit 0x1e / 0x1d / 0x1c / 0x1f * * Copyright 2015 Martin Kepplinger <[email protected]> * Copyright 2014 Peter Meerwald <[email protected]> * * * TODO: orientation events */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/events.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #define MMA8452_STATUS 0x00 #define MMA8452_STATUS_DRDY (BIT(2) | BIT(1) | BIT(0)) #define MMA8452_OUT_X 0x01 /* MSB first */ #define MMA8452_OUT_Y 0x03 #define MMA8452_OUT_Z 0x05 #define MMA8452_INT_SRC 0x0c #define MMA8452_WHO_AM_I 0x0d #define MMA8452_DATA_CFG 0x0e #define MMA8452_DATA_CFG_FS_MASK GENMASK(1, 0) #define MMA8452_DATA_CFG_FS_2G 0 #define MMA8452_DATA_CFG_FS_4G 1 #define MMA8452_DATA_CFG_FS_8G 2 #define MMA8452_DATA_CFG_HPF_MASK BIT(4) #define MMA8452_HP_FILTER_CUTOFF 0x0f #define MMA8452_HP_FILTER_CUTOFF_SEL_MASK GENMASK(1, 0) #define MMA8452_FF_MT_CFG 0x15 #define MMA8452_FF_MT_CFG_OAE BIT(6) #define MMA8452_FF_MT_CFG_ELE BIT(7) #define MMA8452_FF_MT_SRC 0x16 #define MMA8452_FF_MT_SRC_XHE BIT(1) #define MMA8452_FF_MT_SRC_YHE BIT(3) #define MMA8452_FF_MT_SRC_ZHE BIT(5) #define MMA8452_FF_MT_THS 0x17 #define MMA8452_FF_MT_THS_MASK 0x7f #define MMA8452_FF_MT_COUNT 0x18 #define MMA8452_FF_MT_CHAN_SHIFT 3 #define MMA8452_TRANSIENT_CFG 0x1d #define MMA8452_TRANSIENT_CFG_CHAN(chan) BIT(chan + 1) #define MMA8452_TRANSIENT_CFG_HPF_BYP BIT(0) #define MMA8452_TRANSIENT_CFG_ELE BIT(4) #define MMA8452_TRANSIENT_SRC 0x1e #define MMA8452_TRANSIENT_SRC_XTRANSE BIT(1) #define MMA8452_TRANSIENT_SRC_YTRANSE BIT(3) #define MMA8452_TRANSIENT_SRC_ZTRANSE BIT(5) #define MMA8452_TRANSIENT_THS 0x1f #define MMA8452_TRANSIENT_THS_MASK GENMASK(6, 0) #define MMA8452_TRANSIENT_COUNT 0x20 #define MMA8452_TRANSIENT_CHAN_SHIFT 1 #define MMA8452_CTRL_REG1 0x2a #define MMA8452_CTRL_ACTIVE BIT(0) #define MMA8452_CTRL_DR_MASK GENMASK(5, 3) #define MMA8452_CTRL_DR_SHIFT 3 #define MMA8452_CTRL_DR_DEFAULT 0x4 /* 50 Hz sample frequency */ #define MMA8452_CTRL_REG2 0x2b #define MMA8452_CTRL_REG2_RST BIT(6) #define MMA8452_CTRL_REG2_MODS_SHIFT 3 #define MMA8452_CTRL_REG2_MODS_MASK 0x1b #define MMA8452_CTRL_REG4 0x2d #define MMA8452_CTRL_REG5 0x2e #define MMA8452_OFF_X 0x2f #define MMA8452_OFF_Y 0x30 #define MMA8452_OFF_Z 0x31 #define MMA8452_MAX_REG 0x31 #define MMA8452_INT_DRDY BIT(0) #define MMA8452_INT_FF_MT BIT(2) #define MMA8452_INT_TRANS BIT(5) #define MMA8451_DEVICE_ID 0x1a #define MMA8452_DEVICE_ID 0x2a #define MMA8453_DEVICE_ID 0x3a #define MMA8652_DEVICE_ID 0x4a #define MMA8653_DEVICE_ID 0x5a #define FXLS8471_DEVICE_ID 0x6a #define MMA8452_AUTO_SUSPEND_DELAY_MS 2000 struct mma8452_data { struct i2c_client *client; struct mutex lock; struct iio_mount_matrix orientation; u8 ctrl_reg1; u8 data_cfg; const struct mma_chip_info *chip_info; int sleep_val; struct regulator *vdd_reg; struct regulator *vddio_reg; /* Ensure correct alignment of time stamp when present */ struct { __be16 channels[3]; s64 ts __aligned(8); } buffer; }; /** * struct mma8452_event_regs - chip specific data related to events * @ev_cfg: event config register address * @ev_cfg_ele: latch bit in event config register * @ev_cfg_chan_shift: number of the bit to enable events in X * direction; in event config register * @ev_src: event source register address * @ev_ths: event threshold register address * @ev_ths_mask: mask for the threshold value * @ev_count: event count (period) register address * * Since not all chips supported by the driver support comparing high pass * filtered data for events (interrupts), different interrupt sources are * used for different chips and the relevant registers are included here. */ struct mma8452_event_regs { u8 ev_cfg; u8 ev_cfg_ele; u8 ev_cfg_chan_shift; u8 ev_src; u8 ev_ths; u8 ev_ths_mask; u8 ev_count; }; static const struct mma8452_event_regs ff_mt_ev_regs = { .ev_cfg = MMA8452_FF_MT_CFG, .ev_cfg_ele = MMA8452_FF_MT_CFG_ELE, .ev_cfg_chan_shift = MMA8452_FF_MT_CHAN_SHIFT, .ev_src = MMA8452_FF_MT_SRC, .ev_ths = MMA8452_FF_MT_THS, .ev_ths_mask = MMA8452_FF_MT_THS_MASK, .ev_count = MMA8452_FF_MT_COUNT }; static const struct mma8452_event_regs trans_ev_regs = { .ev_cfg = MMA8452_TRANSIENT_CFG, .ev_cfg_ele = MMA8452_TRANSIENT_CFG_ELE, .ev_cfg_chan_shift = MMA8452_TRANSIENT_CHAN_SHIFT, .ev_src = MMA8452_TRANSIENT_SRC, .ev_ths = MMA8452_TRANSIENT_THS, .ev_ths_mask = MMA8452_TRANSIENT_THS_MASK, .ev_count = MMA8452_TRANSIENT_COUNT, }; /** * struct mma_chip_info - chip specific data * @name: part number of device reported via 'name' attr * @chip_id: WHO_AM_I register's value * @channels: struct iio_chan_spec matching the device's * capabilities * @num_channels: number of channels * @mma_scales: scale factors for converting register values * to m/s^2; 3 modes: 2g, 4g, 8g; 2 integers * per mode: m/s^2 and micro m/s^2 * @all_events: all events supported by this chip * @enabled_events: event flags enabled and handled by this driver */ struct mma_chip_info { const char *name; u8 chip_id; const struct iio_chan_spec *channels; int num_channels; const int mma_scales[3][2]; int all_events; int enabled_events; }; enum { idx_x, idx_y, idx_z, idx_ts, }; static int mma8452_drdy(struct mma8452_data *data) { int tries = 150; while (tries-- > 0) { int ret = i2c_smbus_read_byte_data(data->client, MMA8452_STATUS); if (ret < 0) return ret; if ((ret & MMA8452_STATUS_DRDY) == MMA8452_STATUS_DRDY) return 0; if (data->sleep_val <= 20) usleep_range(data->sleep_val * 250, data->sleep_val * 500); else msleep(20); } dev_err(&data->client->dev, "data not ready\n"); return -EIO; } static int mma8452_set_runtime_pm_state(struct i2c_client *client, bool on) { #ifdef CONFIG_PM int ret; if (on) { ret = pm_runtime_resume_and_get(&client->dev); } else { pm_runtime_mark_last_busy(&client->dev); ret = pm_runtime_put_autosuspend(&client->dev); } if (ret < 0) { dev_err(&client->dev, "failed to change power state to %d\n", on); return ret; } #endif return 0; } static int mma8452_read(struct mma8452_data *data, __be16 buf[3]) { int ret = mma8452_drdy(data); if (ret < 0) return ret; ret = mma8452_set_runtime_pm_state(data->client, true); if (ret) return ret; ret = i2c_smbus_read_i2c_block_data(data->client, MMA8452_OUT_X, 3 * sizeof(__be16), (u8 *)buf); ret = mma8452_set_runtime_pm_state(data->client, false); return ret; } static ssize_t mma8452_show_int_plus_micros(char *buf, const int (*vals)[2], int n) { size_t len = 0; while (n-- > 0) len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", vals[n][0], vals[n][1]); /* replace trailing space by newline */ buf[len - 1] = '\n'; return len; } static int mma8452_get_int_plus_micros_index(const int (*vals)[2], int n, int val, int val2) { while (n-- > 0) if (val == vals[n][0] && val2 == vals[n][1]) return n; return -EINVAL; } static unsigned int mma8452_get_odr_index(struct mma8452_data *data) { return (data->ctrl_reg1 & MMA8452_CTRL_DR_MASK) >> MMA8452_CTRL_DR_SHIFT; } static const int mma8452_samp_freq[8][2] = { {800, 0}, {400, 0}, {200, 0}, {100, 0}, {50, 0}, {12, 500000}, {6, 250000}, {1, 560000} }; /* Datasheet table: step time "Relationship with the ODR" (sample frequency) */ static const unsigned int mma8452_time_step_us[4][8] = { { 1250, 2500, 5000, 10000, 20000, 20000, 20000, 20000 }, /* normal */ { 1250, 2500, 5000, 10000, 20000, 80000, 80000, 80000 }, /* l p l n */ { 1250, 2500, 2500, 2500, 2500, 2500, 2500, 2500 }, /* high res*/ { 1250, 2500, 5000, 10000, 20000, 80000, 160000, 160000 } /* l p */ }; /* Datasheet table "High-Pass Filter Cutoff Options" */ static const int mma8452_hp_filter_cutoff[4][8][4][2] = { { /* normal */ { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, /* 800 Hz sample */ { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, /* 400 Hz sample */ { {8, 0}, {4, 0}, {2, 0}, {1, 0} }, /* 200 Hz sample */ { {4, 0}, {2, 0}, {1, 0}, {0, 500000} }, /* 100 Hz sample */ { {2, 0}, {1, 0}, {0, 500000}, {0, 250000} }, /* 50 Hz sample */ { {2, 0}, {1, 0}, {0, 500000}, {0, 250000} }, /* 12.5 Hz sample */ { {2, 0}, {1, 0}, {0, 500000}, {0, 250000} }, /* 6.25 Hz sample */ { {2, 0}, {1, 0}, {0, 500000}, {0, 250000} } /* 1.56 Hz sample */ }, { /* low noise low power */ { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {8, 0}, {4, 0}, {2, 0}, {1, 0} }, { {4, 0}, {2, 0}, {1, 0}, {0, 500000} }, { {2, 0}, {1, 0}, {0, 500000}, {0, 250000} }, { {0, 500000}, {0, 250000}, {0, 125000}, {0, 063000} }, { {0, 500000}, {0, 250000}, {0, 125000}, {0, 063000} }, { {0, 500000}, {0, 250000}, {0, 125000}, {0, 063000} } }, { /* high resolution */ { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {16, 0}, {8, 0}, {4, 0}, {2, 0} } }, { /* low power */ { {16, 0}, {8, 0}, {4, 0}, {2, 0} }, { {8, 0}, {4, 0}, {2, 0}, {1, 0} }, { {4, 0}, {2, 0}, {1, 0}, {0, 500000} }, { {2, 0}, {1, 0}, {0, 500000}, {0, 250000} }, { {1, 0}, {0, 500000}, {0, 250000}, {0, 125000} }, { {0, 250000}, {0, 125000}, {0, 063000}, {0, 031000} }, { {0, 250000}, {0, 125000}, {0, 063000}, {0, 031000} }, { {0, 250000}, {0, 125000}, {0, 063000}, {0, 031000} } } }; /* Datasheet table "MODS Oversampling modes averaging values at each ODR" */ static const u16 mma8452_os_ratio[4][8] = { /* 800 Hz, 400 Hz, ... , 1.56 Hz */ { 2, 4, 4, 4, 4, 16, 32, 128 }, /* normal */ { 2, 4, 4, 4, 4, 4, 8, 32 }, /* low power low noise */ { 2, 4, 8, 16, 32, 128, 256, 1024 }, /* high resolution */ { 2, 2, 2, 2, 2, 2, 4, 16 } /* low power */ }; static int mma8452_get_power_mode(struct mma8452_data *data) { int reg; reg = i2c_smbus_read_byte_data(data->client, MMA8452_CTRL_REG2); if (reg < 0) return reg; return ((reg & MMA8452_CTRL_REG2_MODS_MASK) >> MMA8452_CTRL_REG2_MODS_SHIFT); } static ssize_t mma8452_show_samp_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { return mma8452_show_int_plus_micros(buf, mma8452_samp_freq, ARRAY_SIZE(mma8452_samp_freq)); } static ssize_t mma8452_show_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct mma8452_data *data = iio_priv(indio_dev); return mma8452_show_int_plus_micros(buf, data->chip_info->mma_scales, ARRAY_SIZE(data->chip_info->mma_scales)); } static ssize_t mma8452_show_hp_cutoff_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct mma8452_data *data = iio_priv(indio_dev); int i, j; i = mma8452_get_odr_index(data); j = mma8452_get_power_mode(data); if (j < 0) return j; return mma8452_show_int_plus_micros(buf, mma8452_hp_filter_cutoff[j][i], ARRAY_SIZE(mma8452_hp_filter_cutoff[0][0])); } static ssize_t mma8452_show_os_ratio_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct mma8452_data *data = iio_priv(indio_dev); int i = mma8452_get_odr_index(data); int j; u16 val = 0; size_t len = 0; for (j = 0; j < ARRAY_SIZE(mma8452_os_ratio); j++) { if (val == mma8452_os_ratio[j][i]) continue; val = mma8452_os_ratio[j][i]; len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", val); } buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(mma8452_show_samp_freq_avail); static IIO_DEVICE_ATTR(in_accel_scale_available, 0444, mma8452_show_scale_avail, NULL, 0); static IIO_DEVICE_ATTR(in_accel_filter_high_pass_3db_frequency_available, 0444, mma8452_show_hp_cutoff_avail, NULL, 0); static IIO_DEVICE_ATTR(in_accel_oversampling_ratio_available, 0444, mma8452_show_os_ratio_avail, NULL, 0); static int mma8452_get_samp_freq_index(struct mma8452_data *data, int val, int val2) { return mma8452_get_int_plus_micros_index(mma8452_samp_freq, ARRAY_SIZE(mma8452_samp_freq), val, val2); } static int mma8452_get_scale_index(struct mma8452_data *data, int val, int val2) { return mma8452_get_int_plus_micros_index(data->chip_info->mma_scales, ARRAY_SIZE(data->chip_info->mma_scales), val, val2); } static int mma8452_get_hp_filter_index(struct mma8452_data *data, int val, int val2) { int i, j; i = mma8452_get_odr_index(data); j = mma8452_get_power_mode(data); if (j < 0) return j; return mma8452_get_int_plus_micros_index(mma8452_hp_filter_cutoff[j][i], ARRAY_SIZE(mma8452_hp_filter_cutoff[0][0]), val, val2); } static int mma8452_read_hp_filter(struct mma8452_data *data, int *hz, int *uHz) { int j, i, ret; ret = i2c_smbus_read_byte_data(data->client, MMA8452_HP_FILTER_CUTOFF); if (ret < 0) return ret; i = mma8452_get_odr_index(data); j = mma8452_get_power_mode(data); if (j < 0) return j; ret &= MMA8452_HP_FILTER_CUTOFF_SEL_MASK; *hz = mma8452_hp_filter_cutoff[j][i][ret][0]; *uHz = mma8452_hp_filter_cutoff[j][i][ret][1]; return 0; } static int mma8452_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mma8452_data *data = iio_priv(indio_dev); __be16 buffer[3]; int i, ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&data->lock); ret = mma8452_read(data, buffer); mutex_unlock(&data->lock); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; *val = sign_extend32(be16_to_cpu( buffer[chan->scan_index]) >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: i = data->data_cfg & MMA8452_DATA_CFG_FS_MASK; *val = data->chip_info->mma_scales[i][0]; *val2 = data->chip_info->mma_scales[i][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: i = mma8452_get_odr_index(data); *val = mma8452_samp_freq[i][0]; *val2 = mma8452_samp_freq[i][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: ret = i2c_smbus_read_byte_data(data->client, MMA8452_OFF_X + chan->scan_index); if (ret < 0) return ret; *val = sign_extend32(ret, 7); return IIO_VAL_INT; case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: if (data->data_cfg & MMA8452_DATA_CFG_HPF_MASK) { ret = mma8452_read_hp_filter(data, val, val2); if (ret < 0) return ret; } else { *val = 0; *val2 = 0; } return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: ret = mma8452_get_power_mode(data); if (ret < 0) return ret; i = mma8452_get_odr_index(data); *val = mma8452_os_ratio[ret][i]; return IIO_VAL_INT; } return -EINVAL; } static int mma8452_calculate_sleep(struct mma8452_data *data) { int ret, i = mma8452_get_odr_index(data); if (mma8452_samp_freq[i][0] > 0) ret = 1000 / mma8452_samp_freq[i][0]; else ret = 1000; return ret == 0 ? 1 : ret; } static int mma8452_standby(struct mma8452_data *data) { return i2c_smbus_write_byte_data(data->client, MMA8452_CTRL_REG1, data->ctrl_reg1 & ~MMA8452_CTRL_ACTIVE); } static int mma8452_active(struct mma8452_data *data) { return i2c_smbus_write_byte_data(data->client, MMA8452_CTRL_REG1, data->ctrl_reg1); } /* returns >0 if active, 0 if in standby and <0 on error */ static int mma8452_is_active(struct mma8452_data *data) { int reg; reg = i2c_smbus_read_byte_data(data->client, MMA8452_CTRL_REG1); if (reg < 0) return reg; return reg & MMA8452_CTRL_ACTIVE; } static int mma8452_change_config(struct mma8452_data *data, u8 reg, u8 val) { int ret; int is_active; mutex_lock(&data->lock); is_active = mma8452_is_active(data); if (is_active < 0) { ret = is_active; goto fail; } /* config can only be changed when in standby */ if (is_active > 0) { ret = mma8452_standby(data); if (ret < 0) goto fail; } ret = i2c_smbus_write_byte_data(data->client, reg, val); if (ret < 0) goto fail; if (is_active > 0) { ret = mma8452_active(data); if (ret < 0) goto fail; } ret = 0; fail: mutex_unlock(&data->lock); return ret; } static int mma8452_set_power_mode(struct mma8452_data *data, u8 mode) { int reg; reg = i2c_smbus_read_byte_data(data->client, MMA8452_CTRL_REG2); if (reg < 0) return reg; reg &= ~MMA8452_CTRL_REG2_MODS_MASK; reg |= mode << MMA8452_CTRL_REG2_MODS_SHIFT; return mma8452_change_config(data, MMA8452_CTRL_REG2, reg); } /* returns >0 if in freefall mode, 0 if not or <0 if an error occurred */ static int mma8452_freefall_mode_enabled(struct mma8452_data *data) { int val; val = i2c_smbus_read_byte_data(data->client, MMA8452_FF_MT_CFG); if (val < 0) return val; return !(val & MMA8452_FF_MT_CFG_OAE); } static int mma8452_set_freefall_mode(struct mma8452_data *data, bool state) { int val; if ((state && mma8452_freefall_mode_enabled(data)) || (!state && !(mma8452_freefall_mode_enabled(data)))) return 0; val = i2c_smbus_read_byte_data(data->client, MMA8452_FF_MT_CFG); if (val < 0) return val; if (state) { val |= BIT(idx_x + MMA8452_FF_MT_CHAN_SHIFT); val |= BIT(idx_y + MMA8452_FF_MT_CHAN_SHIFT); val |= BIT(idx_z + MMA8452_FF_MT_CHAN_SHIFT); val &= ~MMA8452_FF_MT_CFG_OAE; } else { val &= ~BIT(idx_x + MMA8452_FF_MT_CHAN_SHIFT); val &= ~BIT(idx_y + MMA8452_FF_MT_CHAN_SHIFT); val &= ~BIT(idx_z + MMA8452_FF_MT_CHAN_SHIFT); val |= MMA8452_FF_MT_CFG_OAE; } return mma8452_change_config(data, MMA8452_FF_MT_CFG, val); } static int mma8452_set_hp_filter_frequency(struct mma8452_data *data, int val, int val2) { int i, reg; i = mma8452_get_hp_filter_index(data, val, val2); if (i < 0) return i; reg = i2c_smbus_read_byte_data(data->client, MMA8452_HP_FILTER_CUTOFF); if (reg < 0) return reg; reg &= ~MMA8452_HP_FILTER_CUTOFF_SEL_MASK; reg |= i; return mma8452_change_config(data, MMA8452_HP_FILTER_CUTOFF, reg); } static int mma8452_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mma8452_data *data = iio_priv(indio_dev); int i, ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: i = mma8452_get_samp_freq_index(data, val, val2); if (i < 0) { ret = i; break; } data->ctrl_reg1 &= ~MMA8452_CTRL_DR_MASK; data->ctrl_reg1 |= i << MMA8452_CTRL_DR_SHIFT; data->sleep_val = mma8452_calculate_sleep(data); ret = mma8452_change_config(data, MMA8452_CTRL_REG1, data->ctrl_reg1); break; case IIO_CHAN_INFO_SCALE: i = mma8452_get_scale_index(data, val, val2); if (i < 0) { ret = i; break; } data->data_cfg &= ~MMA8452_DATA_CFG_FS_MASK; data->data_cfg |= i; ret = mma8452_change_config(data, MMA8452_DATA_CFG, data->data_cfg); break; case IIO_CHAN_INFO_CALIBBIAS: if (val < -128 || val > 127) { ret = -EINVAL; break; } ret = mma8452_change_config(data, MMA8452_OFF_X + chan->scan_index, val); break; case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: if (val == 0 && val2 == 0) { data->data_cfg &= ~MMA8452_DATA_CFG_HPF_MASK; } else { data->data_cfg |= MMA8452_DATA_CFG_HPF_MASK; ret = mma8452_set_hp_filter_frequency(data, val, val2); if (ret < 0) break; } ret = mma8452_change_config(data, MMA8452_DATA_CFG, data->data_cfg); break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: ret = mma8452_get_odr_index(data); for (i = 0; i < ARRAY_SIZE(mma8452_os_ratio); i++) { if (mma8452_os_ratio[i][ret] == val) { ret = mma8452_set_power_mode(data, i); break; } } break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(indio_dev); return ret; } static int mma8452_get_event_regs(struct mma8452_data *data, const struct iio_chan_spec *chan, enum iio_event_direction dir, const struct mma8452_event_regs **ev_reg) { if (!chan) return -EINVAL; switch (chan->type) { case IIO_ACCEL: switch (dir) { case IIO_EV_DIR_RISING: if ((data->chip_info->all_events & MMA8452_INT_TRANS) && (data->chip_info->enabled_events & MMA8452_INT_TRANS)) *ev_reg = &trans_ev_regs; else *ev_reg = &ff_mt_ev_regs; return 0; case IIO_EV_DIR_FALLING: *ev_reg = &ff_mt_ev_regs; return 0; default: return -EINVAL; } default: return -EINVAL; } } static int mma8452_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct mma8452_data *data = iio_priv(indio_dev); int ret, us, power_mode; const struct mma8452_event_regs *ev_regs; ret = mma8452_get_event_regs(data, chan, dir, &ev_regs); if (ret) return ret; switch (info) { case IIO_EV_INFO_VALUE: ret = i2c_smbus_read_byte_data(data->client, ev_regs->ev_ths); if (ret < 0) return ret; *val = ret & ev_regs->ev_ths_mask; return IIO_VAL_INT; case IIO_EV_INFO_PERIOD: ret = i2c_smbus_read_byte_data(data->client, ev_regs->ev_count); if (ret < 0) return ret; power_mode = mma8452_get_power_mode(data); if (power_mode < 0) return power_mode; us = ret * mma8452_time_step_us[power_mode][ mma8452_get_odr_index(data)]; *val = us / USEC_PER_SEC; *val2 = us % USEC_PER_SEC; return IIO_VAL_INT_PLUS_MICRO; case IIO_EV_INFO_HIGH_PASS_FILTER_3DB: ret = i2c_smbus_read_byte_data(data->client, MMA8452_TRANSIENT_CFG); if (ret < 0) return ret; if (ret & MMA8452_TRANSIENT_CFG_HPF_BYP) { *val = 0; *val2 = 0; } else { ret = mma8452_read_hp_filter(data, val, val2); if (ret < 0) return ret; } return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int mma8452_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct mma8452_data *data = iio_priv(indio_dev); int ret, reg, steps; const struct mma8452_event_regs *ev_regs; ret = mma8452_get_event_regs(data, chan, dir, &ev_regs); if (ret) return ret; switch (info) { case IIO_EV_INFO_VALUE: if (val < 0 || val > ev_regs->ev_ths_mask) return -EINVAL; return mma8452_change_config(data, ev_regs->ev_ths, val); case IIO_EV_INFO_PERIOD: ret = mma8452_get_power_mode(data); if (ret < 0) return ret; steps = (val * USEC_PER_SEC + val2) / mma8452_time_step_us[ret][ mma8452_get_odr_index(data)]; if (steps < 0 || steps > 0xff) return -EINVAL; return mma8452_change_config(data, ev_regs->ev_count, steps); case IIO_EV_INFO_HIGH_PASS_FILTER_3DB: reg = i2c_smbus_read_byte_data(data->client, MMA8452_TRANSIENT_CFG); if (reg < 0) return reg; if (val == 0 && val2 == 0) { reg |= MMA8452_TRANSIENT_CFG_HPF_BYP; } else { reg &= ~MMA8452_TRANSIENT_CFG_HPF_BYP; ret = mma8452_set_hp_filter_frequency(data, val, val2); if (ret < 0) return ret; } return mma8452_change_config(data, MMA8452_TRANSIENT_CFG, reg); default: return -EINVAL; } } static int mma8452_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct mma8452_data *data = iio_priv(indio_dev); int ret; const struct mma8452_event_regs *ev_regs; ret = mma8452_get_event_regs(data, chan, dir, &ev_regs); if (ret) return ret; switch (dir) { case IIO_EV_DIR_FALLING: return mma8452_freefall_mode_enabled(data); case IIO_EV_DIR_RISING: ret = i2c_smbus_read_byte_data(data->client, ev_regs->ev_cfg); if (ret < 0) return ret; return !!(ret & BIT(chan->scan_index + ev_regs->ev_cfg_chan_shift)); default: return -EINVAL; } } static int mma8452_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct mma8452_data *data = iio_priv(indio_dev); int val, ret; const struct mma8452_event_regs *ev_regs; ret = mma8452_get_event_regs(data, chan, dir, &ev_regs); if (ret) return ret; ret = mma8452_set_runtime_pm_state(data->client, state); if (ret) return ret; switch (dir) { case IIO_EV_DIR_FALLING: return mma8452_set_freefall_mode(data, state); case IIO_EV_DIR_RISING: val = i2c_smbus_read_byte_data(data->client, ev_regs->ev_cfg); if (val < 0) return val; if (state) { if (mma8452_freefall_mode_enabled(data)) { val &= ~BIT(idx_x + ev_regs->ev_cfg_chan_shift); val &= ~BIT(idx_y + ev_regs->ev_cfg_chan_shift); val &= ~BIT(idx_z + ev_regs->ev_cfg_chan_shift); val |= MMA8452_FF_MT_CFG_OAE; } val |= BIT(chan->scan_index + ev_regs->ev_cfg_chan_shift); } else { if (mma8452_freefall_mode_enabled(data)) return 0; val &= ~BIT(chan->scan_index + ev_regs->ev_cfg_chan_shift); } val |= ev_regs->ev_cfg_ele; return mma8452_change_config(data, ev_regs->ev_cfg, val); default: return -EINVAL; } } static void mma8452_transient_interrupt(struct iio_dev *indio_dev) { struct mma8452_data *data = iio_priv(indio_dev); s64 ts = iio_get_time_ns(indio_dev); int src; src = i2c_smbus_read_byte_data(data->client, MMA8452_TRANSIENT_SRC); if (src < 0) return; if (src & MMA8452_TRANSIENT_SRC_XTRANSE) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), ts); if (src & MMA8452_TRANSIENT_SRC_YTRANSE) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), ts); if (src & MMA8452_TRANSIENT_SRC_ZTRANSE) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), ts); } static irqreturn_t mma8452_interrupt(int irq, void *p) { struct iio_dev *indio_dev = p; struct mma8452_data *data = iio_priv(indio_dev); irqreturn_t ret = IRQ_NONE; int src; src = i2c_smbus_read_byte_data(data->client, MMA8452_INT_SRC); if (src < 0) return IRQ_NONE; if (!(src & (data->chip_info->enabled_events | MMA8452_INT_DRDY))) return IRQ_NONE; if (src & MMA8452_INT_DRDY) { iio_trigger_poll_nested(indio_dev->trig); ret = IRQ_HANDLED; } if (src & MMA8452_INT_FF_MT) { if (mma8452_freefall_mode_enabled(data)) { s64 ts = iio_get_time_ns(indio_dev); iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_AND_Y_AND_Z, IIO_EV_TYPE_MAG, IIO_EV_DIR_FALLING), ts); } ret = IRQ_HANDLED; } if (src & MMA8452_INT_TRANS) { mma8452_transient_interrupt(indio_dev); ret = IRQ_HANDLED; } return ret; } static irqreturn_t mma8452_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct mma8452_data *data = iio_priv(indio_dev); int ret; ret = mma8452_read(data, data->buffer.channels); if (ret < 0) goto done; iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int mma8452_reg_access_dbg(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { int ret; struct mma8452_data *data = iio_priv(indio_dev); if (reg > MMA8452_MAX_REG) return -EINVAL; if (!readval) return mma8452_change_config(data, reg, writeval); ret = i2c_smbus_read_byte_data(data->client, reg); if (ret < 0) return ret; *readval = ret; return 0; } static const struct iio_event_spec mma8452_freefall_event[] = { { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_HIGH_PASS_FILTER_3DB) }, }; static const struct iio_event_spec mma8652_freefall_event[] = { { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD) }, }; static const struct iio_event_spec mma8452_transient_event[] = { { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_HIGH_PASS_FILTER_3DB) }, }; static const struct iio_event_spec mma8452_motion_event[] = { { .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_PERIOD) }, }; /* * Threshold is configured in fixed 8G/127 steps regardless of * currently selected scale for measurement. */ static IIO_CONST_ATTR_NAMED(accel_transient_scale, in_accel_scale, "0.617742"); static struct attribute *mma8452_event_attributes[] = { &iio_const_attr_accel_transient_scale.dev_attr.attr, NULL, }; static const struct attribute_group mma8452_event_attribute_group = { .attrs = mma8452_event_attributes, }; static const struct iio_mount_matrix * mma8452_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct mma8452_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info mma8452_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mma8452_get_mount_matrix), { } }; #define MMA8452_FREEFALL_CHANNEL(modifier) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = modifier, \ .scan_index = -1, \ .event_spec = mma8452_freefall_event, \ .num_event_specs = ARRAY_SIZE(mma8452_freefall_event), \ } #define MMA8652_FREEFALL_CHANNEL(modifier) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = modifier, \ .scan_index = -1, \ .event_spec = mma8652_freefall_event, \ .num_event_specs = ARRAY_SIZE(mma8652_freefall_event), \ } #define MMA8452_CHANNEL(axis, idx, bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \ BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ .scan_index = idx, \ .scan_type = { \ .sign = 's', \ .realbits = (bits), \ .storagebits = 16, \ .shift = 16 - (bits), \ .endianness = IIO_BE, \ }, \ .event_spec = mma8452_transient_event, \ .num_event_specs = ARRAY_SIZE(mma8452_transient_event), \ .ext_info = mma8452_ext_info, \ } #define MMA8652_CHANNEL(axis, idx, bits) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ .scan_index = idx, \ .scan_type = { \ .sign = 's', \ .realbits = (bits), \ .storagebits = 16, \ .shift = 16 - (bits), \ .endianness = IIO_BE, \ }, \ .event_spec = mma8452_motion_event, \ .num_event_specs = ARRAY_SIZE(mma8452_motion_event), \ .ext_info = mma8452_ext_info, \ } static const struct iio_chan_spec mma8451_channels[] = { MMA8452_CHANNEL(X, idx_x, 14), MMA8452_CHANNEL(Y, idx_y, 14), MMA8452_CHANNEL(Z, idx_z, 14), IIO_CHAN_SOFT_TIMESTAMP(idx_ts), MMA8452_FREEFALL_CHANNEL(IIO_MOD_X_AND_Y_AND_Z), }; static const struct iio_chan_spec mma8452_channels[] = { MMA8452_CHANNEL(X, idx_x, 12), MMA8452_CHANNEL(Y, idx_y, 12), MMA8452_CHANNEL(Z, idx_z, 12), IIO_CHAN_SOFT_TIMESTAMP(idx_ts), MMA8452_FREEFALL_CHANNEL(IIO_MOD_X_AND_Y_AND_Z), }; static const struct iio_chan_spec mma8453_channels[] = { MMA8452_CHANNEL(X, idx_x, 10), MMA8452_CHANNEL(Y, idx_y, 10), MMA8452_CHANNEL(Z, idx_z, 10), IIO_CHAN_SOFT_TIMESTAMP(idx_ts), MMA8452_FREEFALL_CHANNEL(IIO_MOD_X_AND_Y_AND_Z), }; static const struct iio_chan_spec mma8652_channels[] = { MMA8652_CHANNEL(X, idx_x, 12), MMA8652_CHANNEL(Y, idx_y, 12), MMA8652_CHANNEL(Z, idx_z, 12), IIO_CHAN_SOFT_TIMESTAMP(idx_ts), MMA8652_FREEFALL_CHANNEL(IIO_MOD_X_AND_Y_AND_Z), }; static const struct iio_chan_spec mma8653_channels[] = { MMA8652_CHANNEL(X, idx_x, 10), MMA8652_CHANNEL(Y, idx_y, 10), MMA8652_CHANNEL(Z, idx_z, 10), IIO_CHAN_SOFT_TIMESTAMP(idx_ts), MMA8652_FREEFALL_CHANNEL(IIO_MOD_X_AND_Y_AND_Z), }; enum { mma8451, mma8452, mma8453, mma8652, mma8653, fxls8471, }; static const struct mma_chip_info mma_chip_info_table[] = { [mma8451] = { .name = "mma8451", .chip_id = MMA8451_DEVICE_ID, .channels = mma8451_channels, .num_channels = ARRAY_SIZE(mma8451_channels), /* * Hardware has fullscale of -2G, -4G, -8G corresponding to * raw value -8192 for 14 bit, -2048 for 12 bit or -512 for 10 * bit. * The userspace interface uses m/s^2 and we declare micro units * So scale factor for 12 bit here is given by: * g * N * 1000000 / 2048 for N = 2, 4, 8 and g=9.80665 */ .mma_scales = { {0, 2394}, {0, 4788}, {0, 9577} }, /* * Although we enable the interrupt sources once and for * all here the event detection itself is not enabled until * userspace asks for it by mma8452_write_event_config() */ .all_events = MMA8452_INT_DRDY | MMA8452_INT_TRANS | MMA8452_INT_FF_MT, .enabled_events = MMA8452_INT_TRANS | MMA8452_INT_FF_MT, }, [mma8452] = { .name = "mma8452", .chip_id = MMA8452_DEVICE_ID, .channels = mma8452_channels, .num_channels = ARRAY_SIZE(mma8452_channels), .mma_scales = { {0, 9577}, {0, 19154}, {0, 38307} }, /* * Although we enable the interrupt sources once and for * all here the event detection itself is not enabled until * userspace asks for it by mma8452_write_event_config() */ .all_events = MMA8452_INT_DRDY | MMA8452_INT_TRANS | MMA8452_INT_FF_MT, .enabled_events = MMA8452_INT_TRANS | MMA8452_INT_FF_MT, }, [mma8453] = { .name = "mma8453", .chip_id = MMA8453_DEVICE_ID, .channels = mma8453_channels, .num_channels = ARRAY_SIZE(mma8453_channels), .mma_scales = { {0, 38307}, {0, 76614}, {0, 153228} }, /* * Although we enable the interrupt sources once and for * all here the event detection itself is not enabled until * userspace asks for it by mma8452_write_event_config() */ .all_events = MMA8452_INT_DRDY | MMA8452_INT_TRANS | MMA8452_INT_FF_MT, .enabled_events = MMA8452_INT_TRANS | MMA8452_INT_FF_MT, }, [mma8652] = { .name = "mma8652", .chip_id = MMA8652_DEVICE_ID, .channels = mma8652_channels, .num_channels = ARRAY_SIZE(mma8652_channels), .mma_scales = { {0, 9577}, {0, 19154}, {0, 38307} }, .all_events = MMA8452_INT_DRDY | MMA8452_INT_FF_MT, .enabled_events = MMA8452_INT_FF_MT, }, [mma8653] = { .name = "mma8653", .chip_id = MMA8653_DEVICE_ID, .channels = mma8653_channels, .num_channels = ARRAY_SIZE(mma8653_channels), .mma_scales = { {0, 38307}, {0, 76614}, {0, 153228} }, /* * Although we enable the interrupt sources once and for * all here the event detection itself is not enabled until * userspace asks for it by mma8452_write_event_config() */ .all_events = MMA8452_INT_DRDY | MMA8452_INT_FF_MT, .enabled_events = MMA8452_INT_FF_MT, }, [fxls8471] = { .name = "fxls8471", .chip_id = FXLS8471_DEVICE_ID, .channels = mma8451_channels, .num_channels = ARRAY_SIZE(mma8451_channels), .mma_scales = { {0, 2394}, {0, 4788}, {0, 9577} }, /* * Although we enable the interrupt sources once and for * all here the event detection itself is not enabled until * userspace asks for it by mma8452_write_event_config() */ .all_events = MMA8452_INT_DRDY | MMA8452_INT_TRANS | MMA8452_INT_FF_MT, .enabled_events = MMA8452_INT_TRANS | MMA8452_INT_FF_MT, }, }; static struct attribute *mma8452_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_scale_available.dev_attr.attr, &iio_dev_attr_in_accel_filter_high_pass_3db_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_oversampling_ratio_available.dev_attr.attr, NULL }; static const struct attribute_group mma8452_group = { .attrs = mma8452_attributes, }; static const struct iio_info mma8452_info = { .attrs = &mma8452_group, .read_raw = &mma8452_read_raw, .write_raw = &mma8452_write_raw, .event_attrs = &mma8452_event_attribute_group, .read_event_value = &mma8452_read_event_value, .write_event_value = &mma8452_write_event_value, .read_event_config = &mma8452_read_event_config, .write_event_config = &mma8452_write_event_config, .debugfs_reg_access = &mma8452_reg_access_dbg, }; static const unsigned long mma8452_scan_masks[] = {0x7, 0}; static int mma8452_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct mma8452_data *data = iio_priv(indio_dev); int reg, ret; ret = mma8452_set_runtime_pm_state(data->client, state); if (ret) return ret; reg = i2c_smbus_read_byte_data(data->client, MMA8452_CTRL_REG4); if (reg < 0) return reg; if (state) reg |= MMA8452_INT_DRDY; else reg &= ~MMA8452_INT_DRDY; return mma8452_change_config(data, MMA8452_CTRL_REG4, reg); } static const struct iio_trigger_ops mma8452_trigger_ops = { .set_trigger_state = mma8452_data_rdy_trigger_set_state, .validate_device = iio_trigger_validate_own_device, }; static int mma8452_trigger_setup(struct iio_dev *indio_dev) { struct mma8452_data *data = iio_priv(indio_dev); struct iio_trigger *trig; int ret; trig = devm_iio_trigger_alloc(&data->client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!trig) return -ENOMEM; trig->ops = &mma8452_trigger_ops; iio_trigger_set_drvdata(trig, indio_dev); ret = iio_trigger_register(trig); if (ret) return ret; indio_dev->trig = iio_trigger_get(trig); return 0; } static void mma8452_trigger_cleanup(struct iio_dev *indio_dev) { if (indio_dev->trig) iio_trigger_unregister(indio_dev->trig); } static int mma8452_reset(struct i2c_client *client) { int i; int ret; /* * Find on fxls8471, after config reset bit, it reset immediately, * and will not give ACK, so here do not check the return value. * The following code will read the reset register, and check whether * this reset works. */ i2c_smbus_write_byte_data(client, MMA8452_CTRL_REG2, MMA8452_CTRL_REG2_RST); for (i = 0; i < 10; i++) { usleep_range(100, 200); ret = i2c_smbus_read_byte_data(client, MMA8452_CTRL_REG2); if (ret == -EIO) continue; /* I2C comm reset */ if (ret < 0) return ret; if (!(ret & MMA8452_CTRL_REG2_RST)) return 0; } return -ETIMEDOUT; } static const struct of_device_id mma8452_dt_ids[] = { { .compatible = "fsl,mma8451", .data = &mma_chip_info_table[mma8451] }, { .compatible = "fsl,mma8452", .data = &mma_chip_info_table[mma8452] }, { .compatible = "fsl,mma8453", .data = &mma_chip_info_table[mma8453] }, { .compatible = "fsl,mma8652", .data = &mma_chip_info_table[mma8652] }, { .compatible = "fsl,mma8653", .data = &mma_chip_info_table[mma8653] }, { .compatible = "fsl,fxls8471", .data = &mma_chip_info_table[fxls8471] }, { } }; MODULE_DEVICE_TABLE(of, mma8452_dt_ids); static int mma8452_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct mma8452_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; mutex_init(&data->lock); data->chip_info = device_get_match_data(&client->dev); if (!data->chip_info) { if (id) { data->chip_info = &mma_chip_info_table[id->driver_data]; } else { dev_err(&client->dev, "unknown device model\n"); return -ENODEV; } } ret = iio_read_mount_matrix(&client->dev, &data->orientation); if (ret) return ret; data->vdd_reg = devm_regulator_get(&client->dev, "vdd"); if (IS_ERR(data->vdd_reg)) return dev_err_probe(&client->dev, PTR_ERR(data->vdd_reg), "failed to get VDD regulator!\n"); data->vddio_reg = devm_regulator_get(&client->dev, "vddio"); if (IS_ERR(data->vddio_reg)) return dev_err_probe(&client->dev, PTR_ERR(data->vddio_reg), "failed to get VDDIO regulator!\n"); ret = regulator_enable(data->vdd_reg); if (ret) { dev_err(&client->dev, "failed to enable VDD regulator!\n"); return ret; } ret = regulator_enable(data->vddio_reg); if (ret) { dev_err(&client->dev, "failed to enable VDDIO regulator!\n"); goto disable_regulator_vdd; } ret = i2c_smbus_read_byte_data(client, MMA8452_WHO_AM_I); if (ret < 0) goto disable_regulators; switch (ret) { case MMA8451_DEVICE_ID: case MMA8452_DEVICE_ID: case MMA8453_DEVICE_ID: case MMA8652_DEVICE_ID: case MMA8653_DEVICE_ID: case FXLS8471_DEVICE_ID: if (ret == data->chip_info->chip_id) break; fallthrough; default: ret = -ENODEV; goto disable_regulators; } dev_info(&client->dev, "registering %s accelerometer; ID 0x%x\n", data->chip_info->name, data->chip_info->chip_id); i2c_set_clientdata(client, indio_dev); indio_dev->info = &mma8452_info; indio_dev->name = data->chip_info->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = data->chip_info->channels; indio_dev->num_channels = data->chip_info->num_channels; indio_dev->available_scan_masks = mma8452_scan_masks; ret = mma8452_reset(client); if (ret < 0) goto disable_regulators; data->data_cfg = MMA8452_DATA_CFG_FS_2G; ret = i2c_smbus_write_byte_data(client, MMA8452_DATA_CFG, data->data_cfg); if (ret < 0) goto disable_regulators; /* * By default set transient threshold to max to avoid events if * enabling without configuring threshold. */ ret = i2c_smbus_write_byte_data(client, MMA8452_TRANSIENT_THS, MMA8452_TRANSIENT_THS_MASK); if (ret < 0) goto disable_regulators; if (client->irq) { int irq2; irq2 = of_irq_get_byname(client->dev.of_node, "INT2"); if (irq2 == client->irq) { dev_dbg(&client->dev, "using interrupt line INT2\n"); } else { ret = i2c_smbus_write_byte_data(client, MMA8452_CTRL_REG5, data->chip_info->all_events); if (ret < 0) goto disable_regulators; dev_dbg(&client->dev, "using interrupt line INT1\n"); } ret = i2c_smbus_write_byte_data(client, MMA8452_CTRL_REG4, data->chip_info->enabled_events); if (ret < 0) goto disable_regulators; ret = mma8452_trigger_setup(indio_dev); if (ret < 0) goto disable_regulators; } data->ctrl_reg1 = MMA8452_CTRL_ACTIVE | (MMA8452_CTRL_DR_DEFAULT << MMA8452_CTRL_DR_SHIFT); data->sleep_val = mma8452_calculate_sleep(data); ret = i2c_smbus_write_byte_data(client, MMA8452_CTRL_REG1, data->ctrl_reg1); if (ret < 0) goto trigger_cleanup; ret = iio_triggered_buffer_setup(indio_dev, NULL, mma8452_trigger_handler, NULL); if (ret < 0) goto trigger_cleanup; if (client->irq) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, mma8452_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, client->name, indio_dev); if (ret) goto buffer_cleanup; } ret = pm_runtime_set_active(&client->dev); if (ret < 0) goto buffer_cleanup; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, MMA8452_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) goto buffer_cleanup; ret = mma8452_set_freefall_mode(data, false); if (ret < 0) goto unregister_device; return 0; unregister_device: iio_device_unregister(indio_dev); buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); trigger_cleanup: mma8452_trigger_cleanup(indio_dev); disable_regulators: regulator_disable(data->vddio_reg); disable_regulator_vdd: regulator_disable(data->vdd_reg); return ret; } static void mma8452_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mma8452_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); iio_triggered_buffer_cleanup(indio_dev); mma8452_trigger_cleanup(indio_dev); mma8452_standby(iio_priv(indio_dev)); regulator_disable(data->vddio_reg); regulator_disable(data->vdd_reg); } #ifdef CONFIG_PM static int mma8452_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma8452_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); ret = mma8452_standby(data); mutex_unlock(&data->lock); if (ret < 0) { dev_err(&data->client->dev, "powering off device failed\n"); return -EAGAIN; } ret = regulator_disable(data->vddio_reg); if (ret) { dev_err(dev, "failed to disable VDDIO regulator\n"); return ret; } ret = regulator_disable(data->vdd_reg); if (ret) { dev_err(dev, "failed to disable VDD regulator\n"); return ret; } return 0; } static int mma8452_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mma8452_data *data = iio_priv(indio_dev); int ret, sleep_val; ret = regulator_enable(data->vdd_reg); if (ret) { dev_err(dev, "failed to enable VDD regulator\n"); return ret; } ret = regulator_enable(data->vddio_reg); if (ret) { dev_err(dev, "failed to enable VDDIO regulator\n"); regulator_disable(data->vdd_reg); return ret; } ret = mma8452_active(data); if (ret < 0) goto runtime_resume_failed; ret = mma8452_get_odr_index(data); sleep_val = 1000 / mma8452_samp_freq[ret][0]; if (sleep_val < 20) usleep_range(sleep_val * 1000, 20000); else msleep_interruptible(sleep_val); return 0; runtime_resume_failed: regulator_disable(data->vddio_reg); regulator_disable(data->vdd_reg); return ret; } #endif static const struct dev_pm_ops mma8452_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(mma8452_runtime_suspend, mma8452_runtime_resume, NULL) }; static const struct i2c_device_id mma8452_id[] = { { "mma8451", mma8451 }, { "mma8452", mma8452 }, { "mma8453", mma8453 }, { "mma8652", mma8652 }, { "mma8653", mma8653 }, { "fxls8471", fxls8471 }, { } }; MODULE_DEVICE_TABLE(i2c, mma8452_id); static struct i2c_driver mma8452_driver = { .driver = { .name = "mma8452", .of_match_table = mma8452_dt_ids, .pm = &mma8452_pm_ops, }, .probe = mma8452_probe, .remove = mma8452_remove, .id_table = mma8452_id, }; module_i2c_driver(mma8452_driver); MODULE_AUTHOR("Peter Meerwald <[email protected]>"); MODULE_DESCRIPTION("Freescale / NXP MMA8452 accelerometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/accel/mma8452.c
// SPDX-License-Identifier: GPL-2.0-only /* * Common code for Freescale MMA955x Intelligent Sensor Platform drivers * Copyright (c) 2014, Intel Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/pm_runtime.h> #include "mma9551_core.h" /* Command masks for mailbox write command */ #define MMA9551_CMD_READ_VERSION_INFO 0x00 #define MMA9551_CMD_READ_CONFIG 0x10 #define MMA9551_CMD_WRITE_CONFIG 0x20 #define MMA9551_CMD_READ_STATUS 0x30 /* Mailbox read command */ #define MMA9551_RESPONSE_COCO BIT(7) /* Error-Status codes returned in mailbox read command */ #define MMA9551_MCI_ERROR_NONE 0x00 #define MMA9551_MCI_ERROR_PARAM 0x04 #define MMA9551_MCI_INVALID_COUNT 0x19 #define MMA9551_MCI_ERROR_COMMAND 0x1C #define MMA9551_MCI_ERROR_INVALID_LENGTH 0x21 #define MMA9551_MCI_ERROR_FIFO_BUSY 0x22 #define MMA9551_MCI_ERROR_FIFO_ALLOCATED 0x23 #define MMA9551_MCI_ERROR_FIFO_OVERSIZE 0x24 /* GPIO Application */ #define MMA9551_GPIO_POL_MSB 0x08 #define MMA9551_GPIO_POL_LSB 0x09 /* Sleep/Wake application */ #define MMA9551_SLEEP_CFG 0x06 #define MMA9551_SLEEP_CFG_SNCEN BIT(0) #define MMA9551_SLEEP_CFG_FLEEN BIT(1) #define MMA9551_SLEEP_CFG_SCHEN BIT(2) /* AFE application */ #define MMA9551_AFE_X_ACCEL_REG 0x00 #define MMA9551_AFE_Y_ACCEL_REG 0x02 #define MMA9551_AFE_Z_ACCEL_REG 0x04 /* Reset/Suspend/Clear application */ #define MMA9551_RSC_RESET 0x00 #define MMA9551_RSC_OFFSET(mask) (3 - (ffs(mask) - 1) / 8) #define MMA9551_RSC_VAL(mask) (mask >> (((ffs(mask) - 1) / 8) * 8)) /* * A response is composed of: * - control registers: MB0-3 * - data registers: MB4-31 * * A request is composed of: * - mbox to write to (always 0) * - control registers: MB1-4 * - data registers: MB5-31 */ #define MMA9551_MAILBOX_CTRL_REGS 4 #define MMA9551_MAX_MAILBOX_DATA_REGS 28 #define MMA9551_MAILBOX_REGS 32 #define MMA9551_I2C_READ_RETRIES 5 #define MMA9551_I2C_READ_DELAY 50 /* us */ struct mma9551_mbox_request { u8 start_mbox; /* Always 0. */ u8 app_id; /* * See Section 5.3.1 of the MMA955xL Software Reference Manual. * * Bit 7: reserved, always 0 * Bits 6-4: command * Bits 3-0: upper bits of register offset */ u8 cmd_off; u8 lower_off; u8 nbytes; u8 buf[MMA9551_MAX_MAILBOX_DATA_REGS - 1]; } __packed; struct mma9551_mbox_response { u8 app_id; /* * See Section 5.3.3 of the MMA955xL Software Reference Manual. * * Bit 7: COCO * Bits 6-0: Error code. */ u8 coco_err; u8 nbytes; u8 req_bytes; u8 buf[MMA9551_MAX_MAILBOX_DATA_REGS]; } __packed; struct mma9551_version_info { __be32 device_id; u8 rom_version[2]; u8 fw_version[2]; u8 hw_version[2]; u8 fw_build[2]; }; static int mma9551_transfer(struct i2c_client *client, u8 app_id, u8 command, u16 offset, u8 *inbytes, int num_inbytes, u8 *outbytes, int num_outbytes) { struct mma9551_mbox_request req; struct mma9551_mbox_response rsp; struct i2c_msg in, out; u8 req_len, err_code; int ret, retries; if (offset >= 1 << 12) { dev_err(&client->dev, "register offset too large\n"); return -EINVAL; } req_len = 1 + MMA9551_MAILBOX_CTRL_REGS + num_inbytes; req.start_mbox = 0; req.app_id = app_id; req.cmd_off = command | (offset >> 8); req.lower_off = offset; if (command == MMA9551_CMD_WRITE_CONFIG) req.nbytes = num_inbytes; else req.nbytes = num_outbytes; if (num_inbytes) memcpy(req.buf, inbytes, num_inbytes); out.addr = client->addr; out.flags = 0; out.len = req_len; out.buf = (u8 *)&req; ret = i2c_transfer(client->adapter, &out, 1); if (ret < 0) { dev_err(&client->dev, "i2c write failed\n"); return ret; } retries = MMA9551_I2C_READ_RETRIES; do { udelay(MMA9551_I2C_READ_DELAY); in.addr = client->addr; in.flags = I2C_M_RD; in.len = sizeof(rsp); in.buf = (u8 *)&rsp; ret = i2c_transfer(client->adapter, &in, 1); if (ret < 0) { dev_err(&client->dev, "i2c read failed\n"); return ret; } if (rsp.coco_err & MMA9551_RESPONSE_COCO) break; } while (--retries > 0); if (retries == 0) { dev_err(&client->dev, "timed out while waiting for command response\n"); return -ETIMEDOUT; } if (rsp.app_id != app_id) { dev_err(&client->dev, "app_id mismatch in response got %02x expected %02x\n", rsp.app_id, app_id); return -EINVAL; } err_code = rsp.coco_err & ~MMA9551_RESPONSE_COCO; if (err_code != MMA9551_MCI_ERROR_NONE) { dev_err(&client->dev, "read returned error %x\n", err_code); return -EINVAL; } if (rsp.nbytes != rsp.req_bytes) { dev_err(&client->dev, "output length mismatch got %d expected %d\n", rsp.nbytes, rsp.req_bytes); return -EINVAL; } if (num_outbytes) memcpy(outbytes, rsp.buf, num_outbytes); return 0; } /** * mma9551_read_config_byte() - read 1 configuration byte * @client: I2C client * @app_id: Application ID * @reg: Application register * @val: Pointer to store value read * * Read one configuration byte from the device using MMA955xL command format. * Commands to the MMA955xL platform consist of a write followed * by one or more reads. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_config_byte(struct i2c_client *client, u8 app_id, u16 reg, u8 *val) { return mma9551_transfer(client, app_id, MMA9551_CMD_READ_CONFIG, reg, NULL, 0, val, 1); } EXPORT_SYMBOL_NS(mma9551_read_config_byte, IIO_MMA9551); /** * mma9551_write_config_byte() - write 1 configuration byte * @client: I2C client * @app_id: Application ID * @reg: Application register * @val: Value to write * * Write one configuration byte from the device using MMA955xL command format. * Commands to the MMA955xL platform consist of a write followed by one or * more reads. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_write_config_byte(struct i2c_client *client, u8 app_id, u16 reg, u8 val) { return mma9551_transfer(client, app_id, MMA9551_CMD_WRITE_CONFIG, reg, &val, 1, NULL, 0); } EXPORT_SYMBOL_NS(mma9551_write_config_byte, IIO_MMA9551); /** * mma9551_read_status_byte() - read 1 status byte * @client: I2C client * @app_id: Application ID * @reg: Application register * @val: Pointer to store value read * * Read one status byte from the device using MMA955xL command format. * Commands to the MMA955xL platform consist of a write followed by one or * more reads. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_status_byte(struct i2c_client *client, u8 app_id, u16 reg, u8 *val) { return mma9551_transfer(client, app_id, MMA9551_CMD_READ_STATUS, reg, NULL, 0, val, 1); } EXPORT_SYMBOL_NS(mma9551_read_status_byte, IIO_MMA9551); /** * mma9551_read_config_word() - read 1 config word * @client: I2C client * @app_id: Application ID * @reg: Application register * @val: Pointer to store value read * * Read one configuration word from the device using MMA955xL command format. * Commands to the MMA955xL platform consist of a write followed by one or * more reads. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_config_word(struct i2c_client *client, u8 app_id, u16 reg, u16 *val) { int ret; __be16 v; ret = mma9551_transfer(client, app_id, MMA9551_CMD_READ_CONFIG, reg, NULL, 0, (u8 *)&v, 2); if (ret < 0) return ret; *val = be16_to_cpu(v); return 0; } EXPORT_SYMBOL_NS(mma9551_read_config_word, IIO_MMA9551); /** * mma9551_write_config_word() - write 1 config word * @client: I2C client * @app_id: Application ID * @reg: Application register * @val: Value to write * * Write one configuration word from the device using MMA955xL command format. * Commands to the MMA955xL platform consist of a write followed by one or * more reads. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_write_config_word(struct i2c_client *client, u8 app_id, u16 reg, u16 val) { __be16 v = cpu_to_be16(val); return mma9551_transfer(client, app_id, MMA9551_CMD_WRITE_CONFIG, reg, (u8 *)&v, 2, NULL, 0); } EXPORT_SYMBOL_NS(mma9551_write_config_word, IIO_MMA9551); /** * mma9551_read_status_word() - read 1 status word * @client: I2C client * @app_id: Application ID * @reg: Application register * @val: Pointer to store value read * * Read one status word from the device using MMA955xL command format. * Commands to the MMA955xL platform consist of a write followed by one or * more reads. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_status_word(struct i2c_client *client, u8 app_id, u16 reg, u16 *val) { int ret; __be16 v; ret = mma9551_transfer(client, app_id, MMA9551_CMD_READ_STATUS, reg, NULL, 0, (u8 *)&v, 2); if (ret < 0) return ret; *val = be16_to_cpu(v); return 0; } EXPORT_SYMBOL_NS(mma9551_read_status_word, IIO_MMA9551); /** * mma9551_read_config_words() - read multiple config words * @client: I2C client * @app_id: Application ID * @reg: Application register * @len: Length of array to read (in words) * @buf: Array of words to read * * Read multiple configuration registers (word-sized registers). * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_config_words(struct i2c_client *client, u8 app_id, u16 reg, u8 len, u16 *buf) { int ret, i; __be16 be_buf[MMA9551_MAX_MAILBOX_DATA_REGS / 2]; if (len > ARRAY_SIZE(be_buf)) { dev_err(&client->dev, "Invalid buffer size %d\n", len); return -EINVAL; } ret = mma9551_transfer(client, app_id, MMA9551_CMD_READ_CONFIG, reg, NULL, 0, (u8 *)be_buf, len * sizeof(u16)); if (ret < 0) return ret; for (i = 0; i < len; i++) buf[i] = be16_to_cpu(be_buf[i]); return 0; } EXPORT_SYMBOL_NS(mma9551_read_config_words, IIO_MMA9551); /** * mma9551_read_status_words() - read multiple status words * @client: I2C client * @app_id: Application ID * @reg: Application register * @len: Length of array to read (in words) * @buf: Array of words to read * * Read multiple status registers (word-sized registers). * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_status_words(struct i2c_client *client, u8 app_id, u16 reg, u8 len, u16 *buf) { int ret, i; __be16 be_buf[MMA9551_MAX_MAILBOX_DATA_REGS / 2]; if (len > ARRAY_SIZE(be_buf)) { dev_err(&client->dev, "Invalid buffer size %d\n", len); return -EINVAL; } ret = mma9551_transfer(client, app_id, MMA9551_CMD_READ_STATUS, reg, NULL, 0, (u8 *)be_buf, len * sizeof(u16)); if (ret < 0) return ret; for (i = 0; i < len; i++) buf[i] = be16_to_cpu(be_buf[i]); return 0; } EXPORT_SYMBOL_NS(mma9551_read_status_words, IIO_MMA9551); /** * mma9551_write_config_words() - write multiple config words * @client: I2C client * @app_id: Application ID * @reg: Application register * @len: Length of array to write (in words) * @buf: Array of words to write * * Write multiple configuration registers (word-sized registers). * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_write_config_words(struct i2c_client *client, u8 app_id, u16 reg, u8 len, u16 *buf) { int i; __be16 be_buf[(MMA9551_MAX_MAILBOX_DATA_REGS - 1) / 2]; if (len > ARRAY_SIZE(be_buf)) { dev_err(&client->dev, "Invalid buffer size %d\n", len); return -EINVAL; } for (i = 0; i < len; i++) be_buf[i] = cpu_to_be16(buf[i]); return mma9551_transfer(client, app_id, MMA9551_CMD_WRITE_CONFIG, reg, (u8 *)be_buf, len * sizeof(u16), NULL, 0); } EXPORT_SYMBOL_NS(mma9551_write_config_words, IIO_MMA9551); /** * mma9551_update_config_bits() - update bits in register * @client: I2C client * @app_id: Application ID * @reg: Application register * @mask: Mask for the bits to update * @val: Value of the bits to update * * Update bits in the given register using a bit mask. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_update_config_bits(struct i2c_client *client, u8 app_id, u16 reg, u8 mask, u8 val) { int ret; u8 tmp, orig; ret = mma9551_read_config_byte(client, app_id, reg, &orig); if (ret < 0) return ret; tmp = orig & ~mask; tmp |= val & mask; if (tmp == orig) return 0; return mma9551_write_config_byte(client, app_id, reg, tmp); } EXPORT_SYMBOL_NS(mma9551_update_config_bits, IIO_MMA9551); /** * mma9551_gpio_config() - configure gpio * @client: I2C client * @pin: GPIO pin to configure * @app_id: Application ID * @bitnum: Bit number of status register being assigned to the GPIO pin. * @polarity: The polarity parameter is described in section 6.2.2, page 66, * of the Software Reference Manual. Basically, polarity=0 means * the interrupt line has the same value as the selected bit, * while polarity=1 means the line is inverted. * * Assign a bit from an application’s status register to a specific GPIO pin. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_gpio_config(struct i2c_client *client, enum mma9551_gpio_pin pin, u8 app_id, u8 bitnum, int polarity) { u8 reg, pol_mask, pol_val; int ret; if (pin > mma9551_gpio_max) { dev_err(&client->dev, "bad GPIO pin\n"); return -EINVAL; } /* * Pin 6 is configured by regs 0x00 and 0x01, pin 7 by 0x02 and * 0x03, and so on. */ reg = pin * 2; ret = mma9551_write_config_byte(client, MMA9551_APPID_GPIO, reg, app_id); if (ret < 0) { dev_err(&client->dev, "error setting GPIO app_id\n"); return ret; } ret = mma9551_write_config_byte(client, MMA9551_APPID_GPIO, reg + 1, bitnum); if (ret < 0) { dev_err(&client->dev, "error setting GPIO bit number\n"); return ret; } switch (pin) { case mma9551_gpio6: reg = MMA9551_GPIO_POL_LSB; pol_mask = 1 << 6; break; case mma9551_gpio7: reg = MMA9551_GPIO_POL_LSB; pol_mask = 1 << 7; break; case mma9551_gpio8: reg = MMA9551_GPIO_POL_MSB; pol_mask = 1 << 0; break; case mma9551_gpio9: reg = MMA9551_GPIO_POL_MSB; pol_mask = 1 << 1; break; } pol_val = polarity ? pol_mask : 0; ret = mma9551_update_config_bits(client, MMA9551_APPID_GPIO, reg, pol_mask, pol_val); if (ret < 0) dev_err(&client->dev, "error setting GPIO polarity\n"); return ret; } EXPORT_SYMBOL_NS(mma9551_gpio_config, IIO_MMA9551); /** * mma9551_read_version() - read device version information * @client: I2C client * * Read version information and print device id and firmware version. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_read_version(struct i2c_client *client) { struct mma9551_version_info info; int ret; ret = mma9551_transfer(client, MMA9551_APPID_VERSION, 0x00, 0x00, NULL, 0, (u8 *)&info, sizeof(info)); if (ret < 0) return ret; dev_info(&client->dev, "device ID 0x%x, firmware version %02x.%02x\n", be32_to_cpu(info.device_id), info.fw_version[0], info.fw_version[1]); return 0; } EXPORT_SYMBOL_NS(mma9551_read_version, IIO_MMA9551); /** * mma9551_set_device_state() - sets HW power mode * @client: I2C client * @enable: Use true to power on device, false to cause the device * to enter sleep. * * Set power on/off for device using the Sleep/Wake Application. * When enable is true, power on chip and enable doze mode. * When enable is false, enter sleep mode (device remains in the * lowest-power mode). * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: 0 on success, negative value on failure. */ int mma9551_set_device_state(struct i2c_client *client, bool enable) { return mma9551_update_config_bits(client, MMA9551_APPID_SLEEP_WAKE, MMA9551_SLEEP_CFG, MMA9551_SLEEP_CFG_SNCEN | MMA9551_SLEEP_CFG_FLEEN | MMA9551_SLEEP_CFG_SCHEN, enable ? MMA9551_SLEEP_CFG_SCHEN | MMA9551_SLEEP_CFG_FLEEN : MMA9551_SLEEP_CFG_SNCEN); } EXPORT_SYMBOL_NS(mma9551_set_device_state, IIO_MMA9551); /** * mma9551_set_power_state() - sets runtime PM state * @client: I2C client * @on: Use true to power on device, false to power off * * Resume or suspend the device using Runtime PM. * The device will suspend after the autosuspend delay. * * Returns: 0 on success, negative value on failure. */ int mma9551_set_power_state(struct i2c_client *client, bool on) { #ifdef CONFIG_PM int ret; if (on) ret = pm_runtime_resume_and_get(&client->dev); else { pm_runtime_mark_last_busy(&client->dev); ret = pm_runtime_put_autosuspend(&client->dev); } if (ret < 0) { dev_err(&client->dev, "failed to change power state to %d\n", on); return ret; } #endif return 0; } EXPORT_SYMBOL_NS(mma9551_set_power_state, IIO_MMA9551); /** * mma9551_sleep() - sleep * @freq: Application frequency * * Firmware applications run at a certain frequency on the * device. Sleep for one application cycle to make sure the * application had time to run once and initialize set values. */ void mma9551_sleep(int freq) { int sleep_val = 1000 / freq; if (sleep_val < 20) usleep_range(sleep_val * 1000, 20000); else msleep_interruptible(sleep_val); } EXPORT_SYMBOL_NS(mma9551_sleep, IIO_MMA9551); /** * mma9551_read_accel_chan() - read accelerometer channel * @client: I2C client * @chan: IIO channel * @val: Pointer to the accelerometer value read * @val2: Unused * * Read accelerometer value for the specified channel. * * Locking note: This function must be called with the device lock held. * Locking is not handled inside the function. Callers should ensure they * serialize access to the HW. * * Returns: IIO_VAL_INT on success, negative value on failure. */ int mma9551_read_accel_chan(struct i2c_client *client, const struct iio_chan_spec *chan, int *val, int *val2) { u16 reg_addr; s16 raw_accel; int ret; switch (chan->channel2) { case IIO_MOD_X: reg_addr = MMA9551_AFE_X_ACCEL_REG; break; case IIO_MOD_Y: reg_addr = MMA9551_AFE_Y_ACCEL_REG; break; case IIO_MOD_Z: reg_addr = MMA9551_AFE_Z_ACCEL_REG; break; default: return -EINVAL; } ret = mma9551_set_power_state(client, true); if (ret < 0) return ret; ret = mma9551_read_status_word(client, MMA9551_APPID_AFE, reg_addr, &raw_accel); if (ret < 0) goto out_poweroff; *val = raw_accel; ret = IIO_VAL_INT; out_poweroff: mma9551_set_power_state(client, false); return ret; } EXPORT_SYMBOL_NS(mma9551_read_accel_chan, IIO_MMA9551); /** * mma9551_read_accel_scale() - read accelerometer scale * @val: Pointer to the accelerometer scale (int value) * @val2: Pointer to the accelerometer scale (micro value) * * Read accelerometer scale. * * Returns: IIO_VAL_INT_PLUS_MICRO. */ int mma9551_read_accel_scale(int *val, int *val2) { *val = 0; *val2 = 2440; return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(mma9551_read_accel_scale, IIO_MMA9551); /** * mma9551_app_reset() - reset application * @client: I2C client * @app_mask: Application to reset * * Reset the given application (using the Reset/Suspend/Clear * Control Application) * * Returns: 0 on success, negative value on failure. */ int mma9551_app_reset(struct i2c_client *client, u32 app_mask) { return mma9551_write_config_byte(client, MMA9551_APPID_RSC, MMA9551_RSC_RESET + MMA9551_RSC_OFFSET(app_mask), MMA9551_RSC_VAL(app_mask)); } EXPORT_SYMBOL_NS(mma9551_app_reset, IIO_MMA9551); MODULE_AUTHOR("Irina Tirdea <[email protected]>"); MODULE_AUTHOR("Vlad Dogaru <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MMA955xL sensors core");
linux-master
drivers/iio/accel/mma9551_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Sensortek STK8312 3-Axis Accelerometer * * Copyright (c) 2015, Intel Corporation. * * IIO driver for STK8312; 7-bit I2C address: 0x3D. */ #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #define STK8312_REG_XOUT 0x00 #define STK8312_REG_YOUT 0x01 #define STK8312_REG_ZOUT 0x02 #define STK8312_REG_INTSU 0x06 #define STK8312_REG_MODE 0x07 #define STK8312_REG_SR 0x08 #define STK8312_REG_STH 0x13 #define STK8312_REG_RESET 0x20 #define STK8312_REG_AFECTRL 0x24 #define STK8312_REG_OTPADDR 0x3D #define STK8312_REG_OTPDATA 0x3E #define STK8312_REG_OTPCTRL 0x3F #define STK8312_MODE_ACTIVE BIT(0) #define STK8312_MODE_STANDBY 0x00 #define STK8312_MODE_INT_AH_PP 0xC0 /* active-high, push-pull */ #define STK8312_DREADY_BIT BIT(4) #define STK8312_RNG_6G 1 #define STK8312_RNG_SHIFT 6 #define STK8312_RNG_MASK GENMASK(7, 6) #define STK8312_SR_MASK GENMASK(2, 0) #define STK8312_SR_400HZ_IDX 0 #define STK8312_ALL_CHANNEL_MASK GENMASK(2, 0) #define STK8312_ALL_CHANNEL_SIZE 3 #define STK8312_DRIVER_NAME "stk8312" #define STK8312_IRQ_NAME "stk8312_event" /* * The accelerometer has two measurement ranges: * * -6g - +6g (8-bit, signed) * -16g - +16g (8-bit, signed) * * scale1 = (6 + 6) * 9.81 / (2^8 - 1) = 0.4616 * scale2 = (16 + 16) * 9.81 / (2^8 - 1) = 1.2311 */ #define STK8312_SCALE_AVAIL "0.4616 1.2311" static const int stk8312_scale_table[][2] = { {0, 461600}, {1, 231100} }; static const struct { int val; int val2; } stk8312_samp_freq_table[] = { {400, 0}, {200, 0}, {100, 0}, {50, 0}, {25, 0}, {12, 500000}, {6, 250000}, {3, 125000} }; #define STK8312_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 8, \ .storagebits = 8, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec stk8312_channels[] = { STK8312_ACCEL_CHANNEL(0, STK8312_REG_XOUT, X), STK8312_ACCEL_CHANNEL(1, STK8312_REG_YOUT, Y), STK8312_ACCEL_CHANNEL(2, STK8312_REG_ZOUT, Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; struct stk8312_data { struct i2c_client *client; struct mutex lock; u8 range; u8 sample_rate_idx; u8 mode; struct iio_trigger *dready_trig; bool dready_trigger_on; /* Ensure timestamp is naturally aligned */ struct { s8 chans[3]; s64 timestamp __aligned(8); } scan; }; static IIO_CONST_ATTR(in_accel_scale_available, STK8312_SCALE_AVAIL); static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("3.125 6.25 12.5 25 50 100 200 400"); static struct attribute *stk8312_attributes[] = { &iio_const_attr_in_accel_scale_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group stk8312_attribute_group = { .attrs = stk8312_attributes }; static int stk8312_otp_init(struct stk8312_data *data) { int ret; int count = 10; struct i2c_client *client = data->client; ret = i2c_smbus_write_byte_data(client, STK8312_REG_OTPADDR, 0x70); if (ret < 0) goto exit_err; ret = i2c_smbus_write_byte_data(client, STK8312_REG_OTPCTRL, 0x02); if (ret < 0) goto exit_err; do { usleep_range(1000, 5000); ret = i2c_smbus_read_byte_data(client, STK8312_REG_OTPCTRL); if (ret < 0) goto exit_err; count--; } while (!(ret & BIT(7)) && count > 0); if (count == 0) { ret = -ETIMEDOUT; goto exit_err; } ret = i2c_smbus_read_byte_data(client, STK8312_REG_OTPDATA); if (ret == 0) ret = -EINVAL; if (ret < 0) goto exit_err; ret = i2c_smbus_write_byte_data(data->client, STK8312_REG_AFECTRL, ret); if (ret < 0) goto exit_err; msleep(150); return 0; exit_err: dev_err(&client->dev, "failed to initialize sensor\n"); return ret; } static int stk8312_set_mode(struct stk8312_data *data, u8 mode) { int ret; struct i2c_client *client = data->client; if (mode == data->mode) return 0; ret = i2c_smbus_write_byte_data(client, STK8312_REG_MODE, mode); if (ret < 0) { dev_err(&client->dev, "failed to change sensor mode\n"); return ret; } data->mode = mode; if (mode & STK8312_MODE_ACTIVE) { /* Need to run OTP sequence before entering active mode */ usleep_range(1000, 5000); ret = stk8312_otp_init(data); } return ret; } static int stk8312_set_interrupts(struct stk8312_data *data, u8 int_mask) { int ret; u8 mode; struct i2c_client *client = data->client; mode = data->mode; /* We need to go in standby mode to modify registers */ ret = stk8312_set_mode(data, STK8312_MODE_STANDBY); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, STK8312_REG_INTSU, int_mask); if (ret < 0) { dev_err(&client->dev, "failed to set interrupts\n"); stk8312_set_mode(data, mode); return ret; } return stk8312_set_mode(data, mode); } static int stk8312_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct stk8312_data *data = iio_priv(indio_dev); int ret; if (state) ret = stk8312_set_interrupts(data, STK8312_DREADY_BIT); else ret = stk8312_set_interrupts(data, 0x00); if (ret < 0) { dev_err(&data->client->dev, "failed to set trigger state\n"); return ret; } data->dready_trigger_on = state; return 0; } static const struct iio_trigger_ops stk8312_trigger_ops = { .set_trigger_state = stk8312_data_rdy_trigger_set_state, }; static int stk8312_set_sample_rate(struct stk8312_data *data, u8 rate) { int ret; u8 masked_reg; u8 mode; struct i2c_client *client = data->client; if (rate == data->sample_rate_idx) return 0; mode = data->mode; /* We need to go in standby mode to modify registers */ ret = stk8312_set_mode(data, STK8312_MODE_STANDBY); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(client, STK8312_REG_SR); if (ret < 0) goto err_activate; masked_reg = (ret & (~STK8312_SR_MASK)) | rate; ret = i2c_smbus_write_byte_data(client, STK8312_REG_SR, masked_reg); if (ret < 0) goto err_activate; data->sample_rate_idx = rate; return stk8312_set_mode(data, mode); err_activate: dev_err(&client->dev, "failed to set sampling rate\n"); stk8312_set_mode(data, mode); return ret; } static int stk8312_set_range(struct stk8312_data *data, u8 range) { int ret; u8 masked_reg; u8 mode; struct i2c_client *client = data->client; if (range != 1 && range != 2) return -EINVAL; else if (range == data->range) return 0; mode = data->mode; /* We need to go in standby mode to modify registers */ ret = stk8312_set_mode(data, STK8312_MODE_STANDBY); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(client, STK8312_REG_STH); if (ret < 0) goto err_activate; masked_reg = ret & (~STK8312_RNG_MASK); masked_reg |= range << STK8312_RNG_SHIFT; ret = i2c_smbus_write_byte_data(client, STK8312_REG_STH, masked_reg); if (ret < 0) goto err_activate; data->range = range; return stk8312_set_mode(data, mode); err_activate: dev_err(&client->dev, "failed to change sensor range\n"); stk8312_set_mode(data, mode); return ret; } static int stk8312_read_accel(struct stk8312_data *data, u8 address) { int ret; struct i2c_client *client = data->client; if (address > 2) return -EINVAL; ret = i2c_smbus_read_byte_data(client, address); if (ret < 0) dev_err(&client->dev, "register read failed\n"); return ret; } static int stk8312_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct stk8312_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: if (iio_buffer_enabled(indio_dev)) return -EBUSY; mutex_lock(&data->lock); ret = stk8312_set_mode(data, data->mode | STK8312_MODE_ACTIVE); if (ret < 0) { mutex_unlock(&data->lock); return ret; } ret = stk8312_read_accel(data, chan->address); if (ret < 0) { stk8312_set_mode(data, data->mode & (~STK8312_MODE_ACTIVE)); mutex_unlock(&data->lock); return ret; } *val = sign_extend32(ret, chan->scan_type.realbits - 1); ret = stk8312_set_mode(data, data->mode & (~STK8312_MODE_ACTIVE)); mutex_unlock(&data->lock); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = stk8312_scale_table[data->range - 1][0]; *val2 = stk8312_scale_table[data->range - 1][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: *val = stk8312_samp_freq_table[data->sample_rate_idx].val; *val2 = stk8312_samp_freq_table[data->sample_rate_idx].val2; return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static int stk8312_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int i; int index = -1; int ret; struct stk8312_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: for (i = 0; i < ARRAY_SIZE(stk8312_scale_table); i++) if (val == stk8312_scale_table[i][0] && val2 == stk8312_scale_table[i][1]) { index = i + 1; break; } if (index < 0) return -EINVAL; mutex_lock(&data->lock); ret = stk8312_set_range(data, index); mutex_unlock(&data->lock); return ret; case IIO_CHAN_INFO_SAMP_FREQ: for (i = 0; i < ARRAY_SIZE(stk8312_samp_freq_table); i++) if (val == stk8312_samp_freq_table[i].val && val2 == stk8312_samp_freq_table[i].val2) { index = i; break; } if (index < 0) return -EINVAL; mutex_lock(&data->lock); ret = stk8312_set_sample_rate(data, index); mutex_unlock(&data->lock); return ret; } return -EINVAL; } static const struct iio_info stk8312_info = { .read_raw = stk8312_read_raw, .write_raw = stk8312_write_raw, .attrs = &stk8312_attribute_group, }; static irqreturn_t stk8312_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct stk8312_data *data = iio_priv(indio_dev); int bit, ret, i = 0; mutex_lock(&data->lock); /* * Do a bulk read if all channels are requested, * from 0x00 (XOUT) to 0x02 (ZOUT) */ if (*(indio_dev->active_scan_mask) == STK8312_ALL_CHANNEL_MASK) { ret = i2c_smbus_read_i2c_block_data(data->client, STK8312_REG_XOUT, STK8312_ALL_CHANNEL_SIZE, data->scan.chans); if (ret < STK8312_ALL_CHANNEL_SIZE) { dev_err(&data->client->dev, "register read failed\n"); mutex_unlock(&data->lock); goto err; } } else { for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = stk8312_read_accel(data, bit); if (ret < 0) { mutex_unlock(&data->lock); goto err; } data->scan.chans[i++] = ret; } } mutex_unlock(&data->lock); iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, pf->timestamp); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t stk8312_data_rdy_trig_poll(int irq, void *private) { struct iio_dev *indio_dev = private; struct stk8312_data *data = iio_priv(indio_dev); if (data->dready_trigger_on) iio_trigger_poll(data->dready_trig); return IRQ_HANDLED; } static int stk8312_buffer_preenable(struct iio_dev *indio_dev) { struct stk8312_data *data = iio_priv(indio_dev); return stk8312_set_mode(data, data->mode | STK8312_MODE_ACTIVE); } static int stk8312_buffer_postdisable(struct iio_dev *indio_dev) { struct stk8312_data *data = iio_priv(indio_dev); return stk8312_set_mode(data, data->mode & (~STK8312_MODE_ACTIVE)); } static const struct iio_buffer_setup_ops stk8312_buffer_setup_ops = { .preenable = stk8312_buffer_preenable, .postdisable = stk8312_buffer_postdisable, }; static int stk8312_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct stk8312_data *data; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); indio_dev->info = &stk8312_info; indio_dev->name = STK8312_DRIVER_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = stk8312_channels; indio_dev->num_channels = ARRAY_SIZE(stk8312_channels); /* A software reset is recommended at power-on */ ret = i2c_smbus_write_byte_data(data->client, STK8312_REG_RESET, 0x00); if (ret < 0) { dev_err(&client->dev, "failed to reset sensor\n"); return ret; } data->sample_rate_idx = STK8312_SR_400HZ_IDX; ret = stk8312_set_range(data, STK8312_RNG_6G); if (ret < 0) return ret; ret = stk8312_set_mode(data, STK8312_MODE_INT_AH_PP | STK8312_MODE_ACTIVE); if (ret < 0) return ret; if (client->irq > 0) { ret = devm_request_threaded_irq(&client->dev, client->irq, stk8312_data_rdy_trig_poll, NULL, IRQF_TRIGGER_RISING | IRQF_ONESHOT, STK8312_IRQ_NAME, indio_dev); if (ret < 0) { dev_err(&client->dev, "request irq %d failed\n", client->irq); goto err_power_off; } data->dready_trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->dready_trig) { ret = -ENOMEM; goto err_power_off; } data->dready_trig->ops = &stk8312_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = iio_trigger_register(data->dready_trig); if (ret) { dev_err(&client->dev, "iio trigger register failed\n"); goto err_power_off; } } ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time, stk8312_trigger_handler, &stk8312_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "iio triggered buffer setup failed\n"); goto err_trigger_unregister; } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "device_register failed\n"); goto err_buffer_cleanup; } return 0; err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_trigger_unregister: if (data->dready_trig) iio_trigger_unregister(data->dready_trig); err_power_off: stk8312_set_mode(data, STK8312_MODE_STANDBY); return ret; } static void stk8312_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct stk8312_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (data->dready_trig) iio_trigger_unregister(data->dready_trig); stk8312_set_mode(data, STK8312_MODE_STANDBY); } static int stk8312_suspend(struct device *dev) { struct stk8312_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return stk8312_set_mode(data, data->mode & (~STK8312_MODE_ACTIVE)); } static int stk8312_resume(struct device *dev) { struct stk8312_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return stk8312_set_mode(data, data->mode | STK8312_MODE_ACTIVE); } static DEFINE_SIMPLE_DEV_PM_OPS(stk8312_pm_ops, stk8312_suspend, stk8312_resume); static const struct i2c_device_id stk8312_i2c_id[] = { /* Deprecated in favour of lowercase form */ { "STK8312", 0 }, { "stk8312", 0 }, {} }; MODULE_DEVICE_TABLE(i2c, stk8312_i2c_id); static struct i2c_driver stk8312_driver = { .driver = { .name = STK8312_DRIVER_NAME, .pm = pm_sleep_ptr(&stk8312_pm_ops), }, .probe = stk8312_probe, .remove = stk8312_remove, .id_table = stk8312_i2c_id, }; module_i2c_driver(stk8312_driver); MODULE_AUTHOR("Tiberiu Breana <[email protected]>"); MODULE_DESCRIPTION("STK8312 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/stk8312.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * mCube MC3230 3-Axis Accelerometer * * Copyright (c) 2016 Hans de Goede <[email protected]> * * IIO driver for mCube MC3230; 7-bit I2C address: 0x4c. */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #define MC3230_REG_XOUT 0x00 #define MC3230_REG_YOUT 0x01 #define MC3230_REG_ZOUT 0x02 #define MC3230_REG_MODE 0x07 #define MC3230_MODE_OPCON_MASK 0x03 #define MC3230_MODE_OPCON_WAKE 0x01 #define MC3230_MODE_OPCON_STANDBY 0x03 #define MC3230_REG_CHIP_ID 0x18 #define MC3230_CHIP_ID 0x01 #define MC3230_REG_PRODUCT_CODE 0x3b #define MC3230_PRODUCT_CODE 0x19 /* * The accelerometer has one measurement range: * * -1.5g - +1.5g (8-bit, signed) * * scale = (1.5 + 1.5) * 9.81 / (2^8 - 1) = 0.115411765 */ static const int mc3230_nscale = 115411765; #define MC3230_CHANNEL(reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec mc3230_channels[] = { MC3230_CHANNEL(MC3230_REG_XOUT, X), MC3230_CHANNEL(MC3230_REG_YOUT, Y), MC3230_CHANNEL(MC3230_REG_ZOUT, Z), }; struct mc3230_data { struct i2c_client *client; }; static int mc3230_set_opcon(struct mc3230_data *data, int opcon) { int ret; struct i2c_client *client = data->client; ret = i2c_smbus_read_byte_data(client, MC3230_REG_MODE); if (ret < 0) { dev_err(&client->dev, "failed to read mode reg: %d\n", ret); return ret; } ret &= ~MC3230_MODE_OPCON_MASK; ret |= opcon; ret = i2c_smbus_write_byte_data(client, MC3230_REG_MODE, ret); if (ret < 0) { dev_err(&client->dev, "failed to write mode reg: %d\n", ret); return ret; } return 0; } static int mc3230_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mc3230_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = i2c_smbus_read_byte_data(data->client, chan->address); if (ret < 0) return ret; *val = sign_extend32(ret, 7); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = mc3230_nscale; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static const struct iio_info mc3230_info = { .read_raw = mc3230_read_raw, }; static int mc3230_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct mc3230_data *data; /* First check chip-id and product-id */ ret = i2c_smbus_read_byte_data(client, MC3230_REG_CHIP_ID); if (ret != MC3230_CHIP_ID) return (ret < 0) ? ret : -ENODEV; ret = i2c_smbus_read_byte_data(client, MC3230_REG_PRODUCT_CODE); if (ret != MC3230_PRODUCT_CODE) return (ret < 0) ? ret : -ENODEV; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; i2c_set_clientdata(client, indio_dev); indio_dev->info = &mc3230_info; indio_dev->name = "mc3230"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = mc3230_channels; indio_dev->num_channels = ARRAY_SIZE(mc3230_channels); ret = mc3230_set_opcon(data, MC3230_MODE_OPCON_WAKE); if (ret < 0) return ret; ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "device_register failed\n"); mc3230_set_opcon(data, MC3230_MODE_OPCON_STANDBY); } return ret; } static void mc3230_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); iio_device_unregister(indio_dev); mc3230_set_opcon(iio_priv(indio_dev), MC3230_MODE_OPCON_STANDBY); } static int mc3230_suspend(struct device *dev) { struct mc3230_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return mc3230_set_opcon(data, MC3230_MODE_OPCON_STANDBY); } static int mc3230_resume(struct device *dev) { struct mc3230_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return mc3230_set_opcon(data, MC3230_MODE_OPCON_WAKE); } static DEFINE_SIMPLE_DEV_PM_OPS(mc3230_pm_ops, mc3230_suspend, mc3230_resume); static const struct i2c_device_id mc3230_i2c_id[] = { {"mc3230", 0}, {} }; MODULE_DEVICE_TABLE(i2c, mc3230_i2c_id); static struct i2c_driver mc3230_driver = { .driver = { .name = "mc3230", .pm = pm_sleep_ptr(&mc3230_pm_ops), }, .probe = mc3230_probe, .remove = mc3230_remove, .id_table = mc3230_i2c_id, }; module_i2c_driver(mc3230_driver); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("mCube MC3230 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/accel/mc3230.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/iio/common/inv_sensors_timestamp.h> /* compute jitter, min and max following jitter in per mille */ #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter) \ (div_s64((_val) * (_jitter), 1000)) #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter) \ (((_val) * (1000 - (_jitter))) / 1000) #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter) \ (((_val) * (1000 + (_jitter))) / 1000) /* Add a new value inside an accumulator and update the estimate value */ static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val) { uint64_t sum = 0; size_t i; acc->values[acc->idx++] = val; if (acc->idx >= ARRAY_SIZE(acc->values)) acc->idx = 0; /* compute the mean of all stored values, use 0 as empty slot */ for (i = 0; i < ARRAY_SIZE(acc->values); ++i) { if (acc->values[i] == 0) break; sum += acc->values[i]; } acc->val = div_u64(sum, i); } void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts, const struct inv_sensors_timestamp_chip *chip) { memset(ts, 0, sizeof(*ts)); /* save chip parameters and compute min and max clock period */ ts->chip = *chip; ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter); ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter); /* current multiplier and period values after reset */ ts->mult = chip->init_period / chip->clock_period; ts->period = chip->init_period; /* use theoretical value for chip period */ inv_update_acc(&ts->chip_period, chip->clock_period); } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, IIO_INV_SENSORS_TIMESTAMP); int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts, uint32_t period, bool fifo) { /* when FIFO is on, prevent odr change if one is already pending */ if (fifo && ts->new_mult != 0) return -EAGAIN; ts->new_mult = period / ts->chip.clock_period; return 0; } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, IIO_INV_SENSORS_TIMESTAMP); static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period, uint32_t mult) { uint32_t period_min, period_max; /* check that period is acceptable */ period_min = ts->min_period * mult; period_max = ts->max_period * mult; if (period > period_min && period < period_max) return true; else return false; } static bool inv_update_chip_period(struct inv_sensors_timestamp *ts, uint32_t mult, uint32_t period) { uint32_t new_chip_period; if (!inv_validate_period(ts, period, mult)) return false; /* update chip internal period estimation */ new_chip_period = period / mult; inv_update_acc(&ts->chip_period, new_chip_period); ts->period = ts->mult * ts->chip_period.val; return true; } static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts) { int64_t delta, jitter; int64_t adjust; /* delta time between last sample and last interrupt */ delta = ts->it.lo - ts->timestamp; /* adjust timestamp while respecting jitter */ jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter); if (delta > jitter) adjust = jitter; else if (delta < -jitter) adjust = -jitter; else adjust = 0; ts->timestamp += adjust; } void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts, uint32_t fifo_period, size_t fifo_nb, size_t sensor_nb, int64_t timestamp) { struct inv_sensors_timestamp_interval *it; int64_t delta, interval; const uint32_t fifo_mult = fifo_period / ts->chip.clock_period; uint32_t period = ts->period; bool valid = false; if (fifo_nb == 0) return; /* update interrupt timestamp and compute chip and sensor periods */ it = &ts->it; it->lo = it->up; it->up = timestamp; delta = it->up - it->lo; if (it->lo != 0) { /* compute period: delta time divided by number of samples */ period = div_s64(delta, fifo_nb); valid = inv_update_chip_period(ts, fifo_mult, period); } /* no previous data, compute theoritical value from interrupt */ if (ts->timestamp == 0) { /* elapsed time: sensor period * sensor samples number */ interval = (int64_t)ts->period * (int64_t)sensor_nb; ts->timestamp = it->up - interval; return; } /* if interrupt interval is valid, sync with interrupt timestamp */ if (valid) inv_align_timestamp_it(ts); } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, IIO_INV_SENSORS_TIMESTAMP); void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts, uint32_t fifo_period, size_t fifo_nb, unsigned int fifo_no) { int64_t interval; uint32_t fifo_mult; if (ts->new_mult == 0) return; /* update to new multiplier and update period */ ts->mult = ts->new_mult; ts->new_mult = 0; ts->period = ts->mult * ts->chip_period.val; /* * After ODR change the time interval with the previous sample is * undertermined (depends when the change occures). So we compute the * timestamp from the current interrupt using the new FIFO period, the * total number of samples and the current sample numero. */ if (ts->timestamp != 0) { /* compute measured fifo period */ fifo_mult = fifo_period / ts->chip.clock_period; fifo_period = fifo_mult * ts->chip_period.val; /* computes time interval between interrupt and this sample */ interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period; ts->timestamp = ts->it.up - interval; } } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, IIO_INV_SENSORS_TIMESTAMP); MODULE_AUTHOR("InvenSense, Inc."); MODULE_DESCRIPTION("InvenSense sensors timestamp module"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/common/inv_sensors/inv_sensors_timestamp.c
// SPDX-License-Identifier: GPL-2.0 /* * cros_ec_sensors - Driver for Chrome OS Embedded Controller sensors. * * Copyright (C) 2016 Google, Inc * * This driver uses the cros-ec interface to communicate with the Chrome OS * EC about sensors data. Data access is presented through iio sysfs. */ #include <linux/device.h> #include <linux/iio/buffer.h> #include <linux/iio/common/cros_ec_sensors_core.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/platform_device.h> #include <linux/slab.h> #define CROS_EC_SENSORS_MAX_CHANNELS 4 /* State data for ec_sensors iio driver. */ struct cros_ec_sensors_state { /* Shared by all sensors */ struct cros_ec_sensors_core_state core; struct iio_chan_spec channels[CROS_EC_SENSORS_MAX_CHANNELS]; }; static int cros_ec_sensors_read(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct cros_ec_sensors_state *st = iio_priv(indio_dev); s16 data = 0; s64 val64; int i; int ret; int idx = chan->scan_index; mutex_lock(&st->core.cmd_lock); switch (mask) { case IIO_CHAN_INFO_RAW: ret = st->core.read_ec_sensors_data(indio_dev, 1 << idx, &data); if (ret < 0) break; ret = IIO_VAL_INT; *val = data; break; case IIO_CHAN_INFO_CALIBBIAS: st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_OFFSET; st->core.param.sensor_offset.flags = 0; ret = cros_ec_motion_send_host_cmd(&st->core, 0); if (ret < 0) break; /* Save values */ for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) st->core.calib[i].offset = st->core.resp->sensor_offset.offset[i]; ret = IIO_VAL_INT; *val = st->core.calib[idx].offset; break; case IIO_CHAN_INFO_CALIBSCALE: st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_SCALE; st->core.param.sensor_offset.flags = 0; ret = cros_ec_motion_send_host_cmd(&st->core, 0); if (ret == -EPROTO || ret == -EOPNOTSUPP) { /* Reading calibscale is not supported on older EC. */ *val = 1; *val2 = 0; ret = IIO_VAL_INT_PLUS_MICRO; break; } else if (ret) { break; } /* Save values */ for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) st->core.calib[i].scale = st->core.resp->sensor_scale.scale[i]; *val = st->core.calib[idx].scale >> 15; *val2 = ((st->core.calib[idx].scale & 0x7FFF) * 1000000LL) / MOTION_SENSE_DEFAULT_SCALE; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_SCALE: st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE; st->core.param.sensor_range.data = EC_MOTION_SENSE_NO_VALUE; ret = cros_ec_motion_send_host_cmd(&st->core, 0); if (ret < 0) break; val64 = st->core.resp->sensor_range.ret; switch (st->core.type) { case MOTIONSENSE_TYPE_ACCEL: /* * EC returns data in g, iio exepects m/s^2. * Do not use IIO_G_TO_M_S_2 to avoid precision loss. */ *val = div_s64(val64 * 980665, 10); *val2 = 10000 << (CROS_EC_SENSOR_BITS - 1); ret = IIO_VAL_FRACTIONAL; break; case MOTIONSENSE_TYPE_GYRO: /* * EC returns data in dps, iio expects rad/s. * Do not use IIO_DEGREE_TO_RAD to avoid precision * loss. Round to the nearest integer. */ *val = 0; *val2 = div_s64(val64 * 3141592653ULL, 180 << (CROS_EC_SENSOR_BITS - 1)); ret = IIO_VAL_INT_PLUS_NANO; break; case MOTIONSENSE_TYPE_MAG: /* * EC returns data in 16LSB / uT, * iio expects Gauss */ *val = val64; *val2 = 100 << (CROS_EC_SENSOR_BITS - 1); ret = IIO_VAL_FRACTIONAL; break; default: ret = -EINVAL; } break; default: ret = cros_ec_sensors_core_read(&st->core, chan, val, val2, mask); break; } mutex_unlock(&st->core.cmd_lock); return ret; } static int cros_ec_sensors_write(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct cros_ec_sensors_state *st = iio_priv(indio_dev); int i; int ret; int idx = chan->scan_index; mutex_lock(&st->core.cmd_lock); switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: st->core.calib[idx].offset = val; /* Send to EC for each axis, even if not complete */ st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_OFFSET; st->core.param.sensor_offset.flags = MOTION_SENSE_SET_OFFSET; for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) st->core.param.sensor_offset.offset[i] = st->core.calib[i].offset; st->core.param.sensor_offset.temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; ret = cros_ec_motion_send_host_cmd(&st->core, 0); break; case IIO_CHAN_INFO_CALIBSCALE: st->core.calib[idx].scale = val; /* Send to EC for each axis, even if not complete */ st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_SCALE; st->core.param.sensor_offset.flags = MOTION_SENSE_SET_OFFSET; for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) st->core.param.sensor_scale.scale[i] = st->core.calib[i].scale; st->core.param.sensor_scale.temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; ret = cros_ec_motion_send_host_cmd(&st->core, 0); break; case IIO_CHAN_INFO_SCALE: if (st->core.type == MOTIONSENSE_TYPE_MAG) { ret = -EINVAL; break; } st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE; st->core.param.sensor_range.data = val; /* Always roundup, so caller gets at least what it asks for. */ st->core.param.sensor_range.roundup = 1; ret = cros_ec_motion_send_host_cmd(&st->core, 0); if (ret == 0) { st->core.range_updated = true; st->core.curr_range = val; } break; default: ret = cros_ec_sensors_core_write( &st->core, chan, val, val2, mask); break; } mutex_unlock(&st->core.cmd_lock); return ret; } static const struct iio_info ec_sensors_info = { .read_raw = &cros_ec_sensors_read, .write_raw = &cros_ec_sensors_write, .read_avail = &cros_ec_sensors_core_read_avail, }; static int cros_ec_sensors_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct cros_ec_sensors_state *state; struct iio_chan_spec *channel; int ret, i; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*state)); if (!indio_dev) return -ENOMEM; ret = cros_ec_sensors_core_init(pdev, indio_dev, true, cros_ec_sensors_capture); if (ret) return ret; indio_dev->info = &ec_sensors_info; state = iio_priv(indio_dev); for (channel = state->channels, i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++, channel++) { /* Common part */ channel->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_CALIBSCALE); channel->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ); channel->info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ); channel->scan_type.realbits = CROS_EC_SENSOR_BITS; channel->scan_type.storagebits = CROS_EC_SENSOR_BITS; channel->scan_index = i; channel->ext_info = cros_ec_sensors_ext_info; channel->modified = 1; channel->channel2 = IIO_MOD_X + i; channel->scan_type.sign = 's'; /* Sensor specific */ switch (state->core.type) { case MOTIONSENSE_TYPE_ACCEL: channel->type = IIO_ACCEL; break; case MOTIONSENSE_TYPE_GYRO: channel->type = IIO_ANGL_VEL; break; case MOTIONSENSE_TYPE_MAG: channel->type = IIO_MAGN; break; default: dev_err(&pdev->dev, "Unknown motion sensor\n"); return -EINVAL; } } /* Timestamp */ channel->type = IIO_TIMESTAMP; channel->channel = -1; channel->scan_index = CROS_EC_SENSOR_MAX_AXIS; channel->scan_type.sign = 's'; channel->scan_type.realbits = 64; channel->scan_type.storagebits = 64; indio_dev->channels = state->channels; indio_dev->num_channels = CROS_EC_SENSORS_MAX_CHANNELS; /* There is only enough room for accel and gyro in the io space */ if ((state->core.ec->cmd_readmem != NULL) && (state->core.type != MOTIONSENSE_TYPE_MAG)) state->core.read_ec_sensors_data = cros_ec_sensors_read_lpc; else state->core.read_ec_sensors_data = cros_ec_sensors_read_cmd; return cros_ec_sensors_core_register(dev, indio_dev, cros_ec_sensors_push_data); } static const struct platform_device_id cros_ec_sensors_ids[] = { { .name = "cros-ec-accel", }, { .name = "cros-ec-gyro", }, { .name = "cros-ec-mag", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, cros_ec_sensors_ids); static struct platform_driver cros_ec_sensors_platform_driver = { .driver = { .name = "cros-ec-sensors", .pm = &cros_ec_sensors_pm_ops, }, .probe = cros_ec_sensors_probe, .id_table = cros_ec_sensors_ids, }; module_platform_driver(cros_ec_sensors_platform_driver); MODULE_DESCRIPTION("ChromeOS EC 3-axis sensors driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/cros_ec_sensors/cros_ec_sensors.c
// SPDX-License-Identifier: GPL-2.0 /* * cros_ec_lid_angle - Driver for CrOS EC lid angle sensor. * * Copyright 2018 Google, Inc * * This driver uses the cros-ec interface to communicate with the Chrome OS * EC about counter sensors. Counters are presented through * iio sysfs. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iio/buffer.h> #include <linux/iio/common/cros_ec_sensors_core.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_device.h> #include <linux/slab.h> #define DRV_NAME "cros-ec-lid-angle" /* * One channel for the lid angle, the other for timestamp. */ static const struct iio_chan_spec cros_ec_lid_angle_channels[] = { { .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_type.realbits = CROS_EC_SENSOR_BITS, .scan_type.storagebits = CROS_EC_SENSOR_BITS, .scan_type.sign = 'u', .type = IIO_ANGL }, IIO_CHAN_SOFT_TIMESTAMP(1) }; /* State data for ec_sensors iio driver. */ struct cros_ec_lid_angle_state { /* Shared by all sensors */ struct cros_ec_sensors_core_state core; }; static int cros_ec_sensors_read_lid_angle(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret; st->param.cmd = MOTIONSENSE_CMD_LID_ANGLE; ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->lid_angle)); if (ret) { dev_warn(&indio_dev->dev, "Unable to read lid angle\n"); return ret; } *data = st->resp->lid_angle.value; return 0; } static int cros_ec_lid_angle_read(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct cros_ec_lid_angle_state *st = iio_priv(indio_dev); s16 data; int ret; mutex_lock(&st->core.cmd_lock); ret = cros_ec_sensors_read_lid_angle(indio_dev, 1, &data); if (ret == 0) { *val = data; ret = IIO_VAL_INT; } mutex_unlock(&st->core.cmd_lock); return ret; } static const struct iio_info cros_ec_lid_angle_info = { .read_raw = &cros_ec_lid_angle_read, }; static int cros_ec_lid_angle_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct cros_ec_lid_angle_state *state; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*state)); if (!indio_dev) return -ENOMEM; ret = cros_ec_sensors_core_init(pdev, indio_dev, false, NULL); if (ret) return ret; indio_dev->info = &cros_ec_lid_angle_info; state = iio_priv(indio_dev); indio_dev->channels = cros_ec_lid_angle_channels; indio_dev->num_channels = ARRAY_SIZE(cros_ec_lid_angle_channels); state->core.read_ec_sensors_data = cros_ec_sensors_read_lid_angle; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, cros_ec_sensors_capture, NULL); if (ret) return ret; return cros_ec_sensors_core_register(dev, indio_dev, NULL); } static const struct platform_device_id cros_ec_lid_angle_ids[] = { { .name = DRV_NAME, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, cros_ec_lid_angle_ids); static struct platform_driver cros_ec_lid_angle_platform_driver = { .driver = { .name = DRV_NAME, }, .probe = cros_ec_lid_angle_probe, .id_table = cros_ec_lid_angle_ids, }; module_platform_driver(cros_ec_lid_angle_platform_driver); MODULE_DESCRIPTION("ChromeOS EC driver for reporting convertible lid angle."); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/cros_ec_sensors/cros_ec_lid_angle.c
// SPDX-License-Identifier: GPL-2.0 /* * cros_ec_sensors_core - Common function for Chrome OS EC sensor driver. * * Copyright (C) 2016 Google, Inc */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iio/buffer.h> #include <linux/iio/common/cros_ec_sensors_core.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/platform_data/cros_ec_sensorhub.h> #include <linux/platform_device.h> /* * Hard coded to the first device to support sensor fifo. The EC has a 2048 * byte fifo and will trigger an interrupt when fifo is 2/3 full. */ #define CROS_EC_FIFO_SIZE (2048 * 2 / 3) static int cros_ec_get_host_cmd_version_mask(struct cros_ec_device *ec_dev, u16 cmd_offset, u16 cmd, u32 *mask) { int ret; struct { struct cros_ec_command msg; union { struct ec_params_get_cmd_versions params; struct ec_response_get_cmd_versions resp; }; } __packed buf = { .msg = { .command = EC_CMD_GET_CMD_VERSIONS + cmd_offset, .insize = sizeof(struct ec_response_get_cmd_versions), .outsize = sizeof(struct ec_params_get_cmd_versions) }, .params = {.cmd = cmd} }; ret = cros_ec_cmd_xfer_status(ec_dev, &buf.msg); if (ret >= 0) *mask = buf.resp.version_mask; return ret; } static void get_default_min_max_freq(enum motionsensor_type type, u32 *min_freq, u32 *max_freq, u32 *max_fifo_events) { /* * We don't know fifo size, set to size previously used by older * hardware. */ *max_fifo_events = CROS_EC_FIFO_SIZE; switch (type) { case MOTIONSENSE_TYPE_ACCEL: *min_freq = 12500; *max_freq = 100000; break; case MOTIONSENSE_TYPE_GYRO: *min_freq = 25000; *max_freq = 100000; break; case MOTIONSENSE_TYPE_MAG: *min_freq = 5000; *max_freq = 25000; break; case MOTIONSENSE_TYPE_PROX: case MOTIONSENSE_TYPE_LIGHT: *min_freq = 100; *max_freq = 50000; break; case MOTIONSENSE_TYPE_BARO: *min_freq = 250; *max_freq = 20000; break; case MOTIONSENSE_TYPE_ACTIVITY: default: *min_freq = 0; *max_freq = 0; break; } } static int cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state *st, int rate) { int ret; if (rate > U16_MAX) rate = U16_MAX; mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_EC_RATE; st->param.ec_rate.data = rate; ret = cros_ec_motion_send_host_cmd(st, 0); mutex_unlock(&st->cmd_lock); return ret; } static ssize_t cros_ec_sensor_set_report_latency(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int integer, fract, ret; int latency; ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); if (ret) return ret; /* EC rate is in ms. */ latency = integer * 1000 + fract / 1000; ret = cros_ec_sensor_set_ec_rate(st, latency); if (ret < 0) return ret; return len; } static ssize_t cros_ec_sensor_get_report_latency(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int latency, ret; mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_EC_RATE; st->param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE; ret = cros_ec_motion_send_host_cmd(st, 0); latency = st->resp->ec_rate.ret; mutex_unlock(&st->cmd_lock); if (ret < 0) return ret; return sprintf(buf, "%d.%06u\n", latency / 1000, (latency % 1000) * 1000); } static IIO_DEVICE_ATTR(hwfifo_timeout, 0644, cros_ec_sensor_get_report_latency, cros_ec_sensor_set_report_latency, 0); static ssize_t hwfifo_watermark_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->fifo_max_event_count); } static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0); static const struct iio_dev_attr *cros_ec_sensor_fifo_attributes[] = { &iio_dev_attr_hwfifo_timeout, &iio_dev_attr_hwfifo_watermark_max, NULL, }; int cros_ec_sensors_push_data(struct iio_dev *indio_dev, s16 *data, s64 timestamp) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); s16 *out; s64 delta; unsigned int i; /* * Ignore samples if the buffer is not set: it is needed if the ODR is * set but the buffer is not enabled yet. */ if (!iio_buffer_enabled(indio_dev)) return 0; out = (s16 *)st->samples; for_each_set_bit(i, indio_dev->active_scan_mask, indio_dev->masklength) { *out = data[i]; out++; } if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME) delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns(); else delta = 0; iio_push_to_buffers_with_timestamp(indio_dev, st->samples, timestamp + delta); return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_push_data); static void cros_ec_sensors_core_clean(void *arg) { struct platform_device *pdev = (struct platform_device *)arg; struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(pdev->dev.parent); struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); u8 sensor_num = st->param.info.sensor_num; cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num); } /** * cros_ec_sensors_core_init() - basic initialization of the core structure * @pdev: platform device created for the sensor * @indio_dev: iio device structure of the device * @physical_device: true if the device refers to a physical device * @trigger_capture: function pointer to call buffer is triggered, * for backward compatibility. * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_core_init(struct platform_device *pdev, struct iio_dev *indio_dev, bool physical_device, cros_ec_sensors_capture_t trigger_capture) { struct device *dev = &pdev->dev; struct cros_ec_sensors_core_state *state = iio_priv(indio_dev); struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent); struct cros_ec_dev *ec = sensor_hub->ec; struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev); u32 ver_mask, temp; int frequencies[ARRAY_SIZE(state->frequencies) / 2] = { 0 }; int ret, i; platform_set_drvdata(pdev, indio_dev); state->ec = ec->ec_dev; state->msg = devm_kzalloc(&pdev->dev, sizeof(*state->msg) + max((u16)sizeof(struct ec_params_motion_sense), state->ec->max_response), GFP_KERNEL); if (!state->msg) return -ENOMEM; state->resp = (struct ec_response_motion_sense *)state->msg->data; mutex_init(&state->cmd_lock); ret = cros_ec_get_host_cmd_version_mask(state->ec, ec->cmd_offset, EC_CMD_MOTION_SENSE_CMD, &ver_mask); if (ret < 0) return ret; /* Set up the host command structure. */ state->msg->version = fls(ver_mask) - 1; state->msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset; state->msg->outsize = sizeof(struct ec_params_motion_sense); indio_dev->name = pdev->name; if (physical_device) { enum motionsensor_location loc; state->param.cmd = MOTIONSENSE_CMD_INFO; state->param.info.sensor_num = sensor_platform->sensor_num; ret = cros_ec_motion_send_host_cmd(state, 0); if (ret) { dev_warn(dev, "Can not access sensor info\n"); return ret; } state->type = state->resp->info.type; loc = state->resp->info.location; if (loc == MOTIONSENSE_LOC_BASE) indio_dev->label = "accel-base"; else if (loc == MOTIONSENSE_LOC_LID) indio_dev->label = "accel-display"; else if (loc == MOTIONSENSE_LOC_CAMERA) indio_dev->label = "accel-camera"; /* Set sign vector, only used for backward compatibility. */ memset(state->sign, 1, CROS_EC_SENSOR_MAX_AXIS); for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) state->calib[i].scale = MOTION_SENSE_DEFAULT_SCALE; /* 0 is a correct value used to stop the device */ if (state->msg->version < 3) { get_default_min_max_freq(state->resp->info.type, &frequencies[1], &frequencies[2], &state->fifo_max_event_count); } else { if (state->resp->info_3.max_frequency == 0) { get_default_min_max_freq(state->resp->info.type, &frequencies[1], &frequencies[2], &temp); } else { frequencies[1] = state->resp->info_3.min_frequency; frequencies[2] = state->resp->info_3.max_frequency; } state->fifo_max_event_count = state->resp->info_3.fifo_max_event_count; } for (i = 0; i < ARRAY_SIZE(frequencies); i++) { state->frequencies[2 * i] = frequencies[i] / 1000; state->frequencies[2 * i + 1] = (frequencies[i] % 1000) * 1000; } if (cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) { /* * Create a software buffer, feed by the EC FIFO. * We can not use trigger here, as events are generated * as soon as sample_frequency is set. */ ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev, NULL, cros_ec_sensor_fifo_attributes); if (ret) return ret; /* Timestamp coming from FIFO are in ns since boot. */ ret = iio_device_set_clock(indio_dev, CLOCK_BOOTTIME); if (ret) return ret; } else { /* * The only way to get samples in buffer is to set a * software trigger (systrig, hrtimer). */ ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, trigger_capture, NULL); if (ret) return ret; } } return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_init); /** * cros_ec_sensors_core_register() - Register callback to FIFO and IIO when * sensor is ready. * It must be called at the end of the sensor probe routine. * @dev: device created for the sensor * @indio_dev: iio device structure of the device * @push_data: function to call when cros_ec_sensorhub receives * a sample for that sensor. * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_core_register(struct device *dev, struct iio_dev *indio_dev, cros_ec_sensorhub_push_data_cb_t push_data) { struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev); struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent); struct platform_device *pdev = to_platform_device(dev); struct cros_ec_dev *ec = sensor_hub->ec; int ret; ret = devm_iio_device_register(dev, indio_dev); if (ret) return ret; if (!push_data || !cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) return 0; ret = cros_ec_sensorhub_register_push_data( sensor_hub, sensor_platform->sensor_num, indio_dev, push_data); if (ret) return ret; return devm_add_action_or_reset( dev, cros_ec_sensors_core_clean, pdev); } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_register); /** * cros_ec_motion_send_host_cmd() - send motion sense host command * @state: pointer to state information for device * @opt_length: optional length to reduce the response size, useful on the data * path. Otherwise, the maximal allowed response size is used * * When called, the sub-command is assumed to be set in param->cmd. * * Return: 0 on success, -errno on failure. */ int cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state *state, u16 opt_length) { int ret; if (opt_length) state->msg->insize = min(opt_length, state->ec->max_response); else state->msg->insize = state->ec->max_response; memcpy(state->msg->data, &state->param, sizeof(state->param)); ret = cros_ec_cmd_xfer_status(state->ec, state->msg); if (ret < 0) return ret; if (ret && state->resp != (struct ec_response_motion_sense *)state->msg->data) memcpy(state->resp, state->msg->data, ret); return 0; } EXPORT_SYMBOL_GPL(cros_ec_motion_send_host_cmd); static ssize_t cros_ec_sensors_calibrate(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret, i; bool calibrate; ret = kstrtobool(buf, &calibrate); if (ret < 0) return ret; if (!calibrate) return -EINVAL; mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_PERFORM_CALIB; ret = cros_ec_motion_send_host_cmd(st, 0); if (ret != 0) { dev_warn(&indio_dev->dev, "Unable to calibrate sensor\n"); } else { /* Save values */ for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) st->calib[i].offset = st->resp->perform_calib.offset[i]; } mutex_unlock(&st->cmd_lock); return ret ? ret : len; } static ssize_t cros_ec_sensors_id(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); return snprintf(buf, PAGE_SIZE, "%d\n", st->param.info.sensor_num); } const struct iio_chan_spec_ext_info cros_ec_sensors_ext_info[] = { { .name = "calibrate", .shared = IIO_SHARED_BY_ALL, .write = cros_ec_sensors_calibrate }, { .name = "id", .shared = IIO_SHARED_BY_ALL, .read = cros_ec_sensors_id }, { }, }; EXPORT_SYMBOL_GPL(cros_ec_sensors_ext_info); /** * cros_ec_sensors_idx_to_reg - convert index into offset in shared memory * @st: pointer to state information for device * @idx: sensor index (should be element of enum sensor_index) * * Return: address to read at */ static unsigned int cros_ec_sensors_idx_to_reg( struct cros_ec_sensors_core_state *st, unsigned int idx) { /* * When using LPC interface, only space for 2 Accel and one Gyro. * First halfword of MOTIONSENSE_TYPE_ACCEL is used by angle. */ if (st->type == MOTIONSENSE_TYPE_ACCEL) return EC_MEMMAP_ACC_DATA + sizeof(u16) * (1 + idx + st->param.info.sensor_num * CROS_EC_SENSOR_MAX_AXIS); return EC_MEMMAP_GYRO_DATA + sizeof(u16) * idx; } static int cros_ec_sensors_cmd_read_u8(struct cros_ec_device *ec, unsigned int offset, u8 *dest) { return ec->cmd_readmem(ec, offset, 1, dest); } static int cros_ec_sensors_cmd_read_u16(struct cros_ec_device *ec, unsigned int offset, u16 *dest) { __le16 tmp; int ret = ec->cmd_readmem(ec, offset, 2, &tmp); if (ret >= 0) *dest = le16_to_cpu(tmp); return ret; } /** * cros_ec_sensors_read_until_not_busy() - read until is not busy * * @st: pointer to state information for device * * Read from EC status byte until it reads not busy. * Return: 8-bit status if ok, -errno on failure. */ static int cros_ec_sensors_read_until_not_busy( struct cros_ec_sensors_core_state *st) { struct cros_ec_device *ec = st->ec; u8 status; int ret, attempts = 0; ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status); if (ret < 0) return ret; while (status & EC_MEMMAP_ACC_STATUS_BUSY_BIT) { /* Give up after enough attempts, return error. */ if (attempts++ >= 50) return -EIO; /* Small delay every so often. */ if (attempts % 5 == 0) msleep(25); ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status); if (ret < 0) return ret; } return status; } /** * cros_ec_sensors_read_data_unsafe() - read acceleration data from EC shared memory * @indio_dev: pointer to IIO device * @scan_mask: bitmap of the sensor indices to scan * @data: location to store data * * This is the unsafe function for reading the EC data. It does not guarantee * that the EC will not modify the data as it is being read in. * * Return: 0 on success, -errno on failure. */ static int cros_ec_sensors_read_data_unsafe(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); struct cros_ec_device *ec = st->ec; unsigned int i; int ret; /* Read all sensors enabled in scan_mask. Each value is 2 bytes. */ for_each_set_bit(i, &scan_mask, indio_dev->masklength) { ret = cros_ec_sensors_cmd_read_u16(ec, cros_ec_sensors_idx_to_reg(st, i), data); if (ret < 0) return ret; *data *= st->sign[i]; data++; } return 0; } /** * cros_ec_sensors_read_lpc() - read acceleration data from EC shared memory. * @indio_dev: pointer to IIO device. * @scan_mask: bitmap of the sensor indices to scan. * @data: location to store data. * * Note: this is the safe function for reading the EC data. It guarantees * that the data sampled was not modified by the EC while being read. * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_read_lpc(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); struct cros_ec_device *ec = st->ec; u8 samp_id = 0xff, status = 0; int ret, attempts = 0; /* * Continually read all data from EC until the status byte after * all reads reflects that the EC is not busy and the sample id * matches the sample id from before all reads. This guarantees * that data read in was not modified by the EC while reading. */ while ((status & (EC_MEMMAP_ACC_STATUS_BUSY_BIT | EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK)) != samp_id) { /* If we have tried to read too many times, return error. */ if (attempts++ >= 5) return -EIO; /* Read status byte until EC is not busy. */ ret = cros_ec_sensors_read_until_not_busy(st); if (ret < 0) return ret; /* * Store the current sample id so that we can compare to the * sample id after reading the data. */ samp_id = ret & EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK; /* Read all EC data, format it, and store it into data. */ ret = cros_ec_sensors_read_data_unsafe(indio_dev, scan_mask, data); if (ret < 0) return ret; /* Read status byte. */ ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status); if (ret < 0) return ret; } return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_read_lpc); /** * cros_ec_sensors_read_cmd() - retrieve data using the EC command protocol * @indio_dev: pointer to IIO device * @scan_mask: bitmap of the sensor indices to scan * @data: location to store data * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_read_cmd(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret; unsigned int i; /* Read all sensor data through a command. */ st->param.cmd = MOTIONSENSE_CMD_DATA; ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->data)); if (ret != 0) { dev_warn(&indio_dev->dev, "Unable to read sensor data\n"); return ret; } for_each_set_bit(i, &scan_mask, indio_dev->masklength) { *data = st->resp->data.data[i]; data++; } return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_read_cmd); /** * cros_ec_sensors_capture() - the trigger handler function * @irq: the interrupt number. * @p: a pointer to the poll function. * * On a trigger event occurring, if the pollfunc is attached then this * handler is called as a threaded interrupt (and hence may sleep). It * is responsible for grabbing data from the device and pushing it into * the associated buffer. * * Return: IRQ_HANDLED */ irqreturn_t cros_ec_sensors_capture(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->cmd_lock); /* Clear capture data. */ memset(st->samples, 0, indio_dev->scan_bytes); /* Read data based on which channels are enabled in scan mask. */ ret = st->read_ec_sensors_data(indio_dev, *(indio_dev->active_scan_mask), (s16 *)st->samples); if (ret < 0) goto done; iio_push_to_buffers_with_timestamp(indio_dev, st->samples, iio_get_time_ns(indio_dev)); done: /* * Tell the core we are done with this trigger and ready for the * next one. */ iio_trigger_notify_done(indio_dev->trig); mutex_unlock(&st->cmd_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(cros_ec_sensors_capture); /** * cros_ec_sensors_core_read() - function to request a value from the sensor * @st: pointer to state information for device * @chan: channel specification structure table * @val: will contain one element making up the returned value * @val2: will contain another element making up the returned value * @mask: specifies which values to be requested * * Return: the type of value returned by the device */ int cros_ec_sensors_core_read(struct cros_ec_sensors_core_state *st, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret, frequency; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR; st->param.sensor_odr.data = EC_MOTION_SENSE_NO_VALUE; ret = cros_ec_motion_send_host_cmd(st, 0); if (ret) break; frequency = st->resp->sensor_odr.ret; *val = frequency / 1000; *val2 = (frequency % 1000) * 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; } return ret; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read); /** * cros_ec_sensors_core_read_avail() - get available values * @indio_dev: pointer to state information for device * @chan: channel specification structure table * @vals: list of available values * @type: type of data returned * @length: number of data returned in the array * @mask: specifies which values to be requested * * Return: an error code, IIO_AVAIL_RANGE or IIO_AVAIL_LIST */ int cros_ec_sensors_core_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct cros_ec_sensors_core_state *state = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *length = ARRAY_SIZE(state->frequencies); *vals = (const int *)&state->frequencies; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; } return -EINVAL; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read_avail); /** * cros_ec_sensors_core_write() - function to write a value to the sensor * @st: pointer to state information for device * @chan: channel specification structure table * @val: first part of value to write * @val2: second part of value to write * @mask: specifies which values to write * * Return: the type of value returned by the device */ int cros_ec_sensors_core_write(struct cros_ec_sensors_core_state *st, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret, frequency; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: frequency = val * 1000 + val2 / 1000; st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR; st->param.sensor_odr.data = frequency; /* Always roundup, so caller gets at least what it asks for. */ st->param.sensor_odr.roundup = 1; ret = cros_ec_motion_send_host_cmd(st, 0); break; default: ret = -EINVAL; break; } return ret; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_write); static int __maybe_unused cros_ec_sensors_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret = 0; if (st->range_updated) { mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE; st->param.sensor_range.data = st->curr_range; st->param.sensor_range.roundup = 1; ret = cros_ec_motion_send_host_cmd(st, 0); mutex_unlock(&st->cmd_lock); } return ret; } SIMPLE_DEV_PM_OPS(cros_ec_sensors_pm_ops, NULL, cros_ec_sensors_resume); EXPORT_SYMBOL_GPL(cros_ec_sensors_pm_ops); MODULE_DESCRIPTION("ChromeOS EC sensor hub core functions"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/cros_ec_sensors/cros_ec_sensors_core.c
// SPDX-License-Identifier: GPL-2.0 /* * System Control and Management Interface(SCMI) based IIO sensor driver * * Copyright (C) 2021 Google LLC */ #include <linux/delay.h> #include <linux/err.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/sysfs.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/scmi_protocol.h> #include <linux/time.h> #include <linux/types.h> #include <linux/units.h> #define SCMI_IIO_NUM_OF_AXIS 3 struct scmi_iio_priv { const struct scmi_sensor_proto_ops *sensor_ops; struct scmi_protocol_handle *ph; const struct scmi_sensor_info *sensor_info; struct iio_dev *indio_dev; /* lock to protect against multiple access to the device */ struct mutex lock; /* adding one additional channel for timestamp */ s64 iio_buf[SCMI_IIO_NUM_OF_AXIS + 1]; struct notifier_block sensor_update_nb; u32 *freq_avail; }; static int scmi_iio_sensor_update_cb(struct notifier_block *nb, unsigned long event, void *data) { struct scmi_sensor_update_report *sensor_update = data; struct iio_dev *scmi_iio_dev; struct scmi_iio_priv *sensor; s8 tstamp_scale; u64 time, time_ns; int i; if (sensor_update->readings_count == 0) return NOTIFY_DONE; sensor = container_of(nb, struct scmi_iio_priv, sensor_update_nb); for (i = 0; i < sensor_update->readings_count; i++) sensor->iio_buf[i] = sensor_update->readings[i].value; if (!sensor->sensor_info->timestamped) { time_ns = ktime_to_ns(sensor_update->timestamp); } else { /* * All the axes are supposed to have the same value for timestamp. * We are just using the values from the Axis 0 here. */ time = sensor_update->readings[0].timestamp; /* * Timestamp returned by SCMI is in seconds and is equal to * time * power-of-10 multiplier(tstamp_scale) seconds. * Converting the timestamp to nanoseconds below. */ tstamp_scale = sensor->sensor_info->tstamp_scale + const_ilog2(NSEC_PER_SEC) / const_ilog2(10); if (tstamp_scale < 0) { do_div(time, int_pow(10, abs(tstamp_scale))); time_ns = time; } else { time_ns = time * int_pow(10, tstamp_scale); } } scmi_iio_dev = sensor->indio_dev; iio_push_to_buffers_with_timestamp(scmi_iio_dev, sensor->iio_buf, time_ns); return NOTIFY_OK; } static int scmi_iio_buffer_preenable(struct iio_dev *iio_dev) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config = 0; int err; if (sensor->sensor_info->timestamped) sensor_config |= FIELD_PREP(SCMI_SENS_CFG_TSTAMP_ENABLED_MASK, SCMI_SENS_CFG_TSTAMP_ENABLE); sensor_config |= FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_ENABLE); err = sensor->sensor_ops->config_set(sensor->ph, sensor->sensor_info->id, sensor_config); if (err) dev_err(&iio_dev->dev, "Error in enabling sensor %s err %d", sensor->sensor_info->name, err); return err; } static int scmi_iio_buffer_postdisable(struct iio_dev *iio_dev) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config = 0; int err; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_DISABLE); err = sensor->sensor_ops->config_set(sensor->ph, sensor->sensor_info->id, sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in disabling sensor %s with err %d", sensor->sensor_info->name, err); } return err; } static const struct iio_buffer_setup_ops scmi_iio_buffer_ops = { .preenable = scmi_iio_buffer_preenable, .postdisable = scmi_iio_buffer_postdisable, }; static int scmi_iio_set_odr_val(struct iio_dev *iio_dev, int val, int val2) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u64 sec, mult, uHz, sf; u32 sensor_config; char buf[32]; int err = sensor->sensor_ops->config_get(sensor->ph, sensor->sensor_info->id, &sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in getting sensor config for sensor %s err %d", sensor->sensor_info->name, err); return err; } uHz = val * MICROHZ_PER_HZ + val2; /* * The seconds field in the sensor interval in SCMI is 16 bits long * Therefore seconds = 1/Hz <= 0xFFFF. As floating point calculations are * discouraged in the kernel driver code, to calculate the scale factor (sf) * (1* 1000000 * sf)/uHz <= 0xFFFF. Therefore, sf <= (uHz * 0xFFFF)/1000000 * To calculate the multiplier,we convert the sf into char string and * count the number of characters */ sf = (u64)uHz * 0xFFFF; do_div(sf, MICROHZ_PER_HZ); mult = scnprintf(buf, sizeof(buf), "%llu", sf) - 1; sec = int_pow(10, mult) * MICROHZ_PER_HZ; do_div(sec, uHz); if (sec == 0) { dev_err(&iio_dev->dev, "Trying to set invalid sensor update value for sensor %s", sensor->sensor_info->name); return -EINVAL; } sensor_config &= ~SCMI_SENS_CFG_UPDATE_SECS_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_UPDATE_SECS_MASK, sec); sensor_config &= ~SCMI_SENS_CFG_UPDATE_EXP_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_UPDATE_EXP_MASK, -mult); if (sensor->sensor_info->timestamped) { sensor_config &= ~SCMI_SENS_CFG_TSTAMP_ENABLED_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_TSTAMP_ENABLED_MASK, SCMI_SENS_CFG_TSTAMP_ENABLE); } sensor_config &= ~SCMI_SENS_CFG_ROUND_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_ROUND_MASK, SCMI_SENS_CFG_ROUND_AUTO); err = sensor->sensor_ops->config_set(sensor->ph, sensor->sensor_info->id, sensor_config); if (err) dev_err(&iio_dev->dev, "Error in setting sensor update interval for sensor %s value %u err %d", sensor->sensor_info->name, sensor_config, err); return err; } static int scmi_iio_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); int err; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&sensor->lock); err = scmi_iio_set_odr_val(iio_dev, val, val2); mutex_unlock(&sensor->lock); return err; default: return -EINVAL; } } static int scmi_iio_read_avail(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = sensor->freq_avail; *type = IIO_VAL_INT_PLUS_MICRO; *length = sensor->sensor_info->intervals.count * 2; if (sensor->sensor_info->intervals.segmented) return IIO_AVAIL_RANGE; else return IIO_AVAIL_LIST; default: return -EINVAL; } } static void convert_ns_to_freq(u64 interval_ns, u64 *hz, u64 *uhz) { u64 rem, freq; freq = NSEC_PER_SEC; rem = do_div(freq, interval_ns); *hz = freq; *uhz = rem * 1000000UL; do_div(*uhz, interval_ns); } static int scmi_iio_get_odr_val(struct iio_dev *iio_dev, int *val, int *val2) { u64 sensor_update_interval, sensor_interval_mult, hz, uhz; struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config; int mult; int err = sensor->sensor_ops->config_get(sensor->ph, sensor->sensor_info->id, &sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in getting sensor config for sensor %s err %d", sensor->sensor_info->name, err); return err; } sensor_update_interval = SCMI_SENS_CFG_GET_UPDATE_SECS(sensor_config) * NSEC_PER_SEC; mult = SCMI_SENS_CFG_GET_UPDATE_EXP(sensor_config); if (mult < 0) { sensor_interval_mult = int_pow(10, abs(mult)); do_div(sensor_update_interval, sensor_interval_mult); } else { sensor_interval_mult = int_pow(10, mult); sensor_update_interval = sensor_update_interval * sensor_interval_mult; } convert_ns_to_freq(sensor_update_interval, &hz, &uhz); *val = hz; *val2 = uhz; return 0; } static int scmi_iio_read_channel_data(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config; struct scmi_sensor_reading readings[SCMI_IIO_NUM_OF_AXIS]; int err; sensor_config = FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_ENABLE); err = sensor->sensor_ops->config_set( sensor->ph, sensor->sensor_info->id, sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in enabling sensor %s err %d", sensor->sensor_info->name, err); return err; } err = sensor->sensor_ops->reading_get_timestamped( sensor->ph, sensor->sensor_info->id, sensor->sensor_info->num_axis, readings); if (err) { dev_err(&iio_dev->dev, "Error in reading raw attribute for sensor %s err %d", sensor->sensor_info->name, err); return err; } sensor_config = FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_DISABLE); err = sensor->sensor_ops->config_set( sensor->ph, sensor->sensor_info->id, sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in disabling sensor %s err %d", sensor->sensor_info->name, err); return err; } *val = lower_32_bits(readings[ch->scan_index].value); *val2 = upper_32_bits(readings[ch->scan_index].value); return IIO_VAL_INT_64; } static int scmi_iio_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); s8 scale; int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: scale = sensor->sensor_info->axis[ch->scan_index].scale; if (scale < 0) { *val = 1; *val2 = int_pow(10, abs(scale)); return IIO_VAL_FRACTIONAL; } *val = int_pow(10, scale); return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = scmi_iio_get_odr_val(iio_dev, val, val2); return ret ? ret : IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(iio_dev); if (ret) return ret; ret = scmi_iio_read_channel_data(iio_dev, ch, val, val2); iio_device_release_direct_mode(iio_dev); return ret; default: return -EINVAL; } } static const struct iio_info scmi_iio_info = { .read_raw = scmi_iio_read_raw, .read_avail = scmi_iio_read_avail, .write_raw = scmi_iio_write_raw, }; static ssize_t scmi_iio_get_raw_available(struct iio_dev *iio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u64 resolution, rem; s64 min_range, max_range; s8 exponent, scale; int len = 0; /* * All the axes are supposed to have the same value for range and resolution. * We are just using the values from the Axis 0 here. */ if (sensor->sensor_info->axis[0].extended_attrs) { min_range = sensor->sensor_info->axis[0].attrs.min_range; max_range = sensor->sensor_info->axis[0].attrs.max_range; resolution = sensor->sensor_info->axis[0].resolution; exponent = sensor->sensor_info->axis[0].exponent; scale = sensor->sensor_info->axis[0].scale; /* * To provide the raw value for the resolution to the userspace, * need to divide the resolution exponent by the sensor scale */ exponent = exponent - scale; if (exponent < 0) { rem = do_div(resolution, int_pow(10, abs(exponent)) ); len = sysfs_emit(buf, "[%lld %llu.%llu %lld]\n", min_range, resolution, rem, max_range); } else { resolution = resolution * int_pow(10, exponent); len = sysfs_emit(buf, "[%lld %llu %lld]\n", min_range, resolution, max_range); } } return len; } static const struct iio_chan_spec_ext_info scmi_iio_ext_info[] = { { .name = "raw_available", .read = scmi_iio_get_raw_available, .shared = IIO_SHARED_BY_TYPE, }, {}, }; static void scmi_iio_set_timestamp_channel(struct iio_chan_spec *iio_chan, int scan_index) { iio_chan->type = IIO_TIMESTAMP; iio_chan->channel = -1; iio_chan->scan_index = scan_index; iio_chan->scan_type.sign = 'u'; iio_chan->scan_type.realbits = 64; iio_chan->scan_type.storagebits = 64; } static void scmi_iio_set_data_channel(struct iio_chan_spec *iio_chan, enum iio_chan_type type, enum iio_modifier mod, int scan_index) { iio_chan->type = type; iio_chan->modified = 1; iio_chan->channel2 = mod; iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_RAW); iio_chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ); iio_chan->info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ); iio_chan->scan_index = scan_index; iio_chan->scan_type.sign = 's'; iio_chan->scan_type.realbits = 64; iio_chan->scan_type.storagebits = 64; iio_chan->scan_type.endianness = IIO_LE; iio_chan->ext_info = scmi_iio_ext_info; } static int scmi_iio_get_chan_modifier(const char *name, enum iio_modifier *modifier) { char *pch, mod; if (!name) return -EINVAL; pch = strrchr(name, '_'); if (!pch) return -EINVAL; mod = *(pch + 1); switch (mod) { case 'X': *modifier = IIO_MOD_X; return 0; case 'Y': *modifier = IIO_MOD_Y; return 0; case 'Z': *modifier = IIO_MOD_Z; return 0; default: return -EINVAL; } } static int scmi_iio_get_chan_type(u8 scmi_type, enum iio_chan_type *iio_type) { switch (scmi_type) { case METERS_SEC_SQUARED: *iio_type = IIO_ACCEL; return 0; case RADIANS_SEC: *iio_type = IIO_ANGL_VEL; return 0; default: return -EINVAL; } } static u64 scmi_iio_convert_interval_to_ns(u32 val) { u64 sensor_update_interval = SCMI_SENS_INTVL_GET_SECS(val) * NSEC_PER_SEC; u64 sensor_interval_mult; int mult; mult = SCMI_SENS_INTVL_GET_EXP(val); if (mult < 0) { sensor_interval_mult = int_pow(10, abs(mult)); do_div(sensor_update_interval, sensor_interval_mult); } else { sensor_interval_mult = int_pow(10, mult); sensor_update_interval = sensor_update_interval * sensor_interval_mult; } return sensor_update_interval; } static int scmi_iio_set_sampling_freq_avail(struct iio_dev *iio_dev) { u64 cur_interval_ns, low_interval_ns, high_interval_ns, step_size_ns, hz, uhz; unsigned int cur_interval, low_interval, high_interval, step_size; struct scmi_iio_priv *sensor = iio_priv(iio_dev); int i; sensor->freq_avail = devm_kzalloc(&iio_dev->dev, sizeof(*sensor->freq_avail) * (sensor->sensor_info->intervals.count * 2), GFP_KERNEL); if (!sensor->freq_avail) return -ENOMEM; if (sensor->sensor_info->intervals.segmented) { low_interval = sensor->sensor_info->intervals .desc[SCMI_SENS_INTVL_SEGMENT_LOW]; low_interval_ns = scmi_iio_convert_interval_to_ns(low_interval); convert_ns_to_freq(low_interval_ns, &hz, &uhz); sensor->freq_avail[0] = hz; sensor->freq_avail[1] = uhz; step_size = sensor->sensor_info->intervals .desc[SCMI_SENS_INTVL_SEGMENT_STEP]; step_size_ns = scmi_iio_convert_interval_to_ns(step_size); convert_ns_to_freq(step_size_ns, &hz, &uhz); sensor->freq_avail[2] = hz; sensor->freq_avail[3] = uhz; high_interval = sensor->sensor_info->intervals .desc[SCMI_SENS_INTVL_SEGMENT_HIGH]; high_interval_ns = scmi_iio_convert_interval_to_ns(high_interval); convert_ns_to_freq(high_interval_ns, &hz, &uhz); sensor->freq_avail[4] = hz; sensor->freq_avail[5] = uhz; } else { for (i = 0; i < sensor->sensor_info->intervals.count; i++) { cur_interval = sensor->sensor_info->intervals.desc[i]; cur_interval_ns = scmi_iio_convert_interval_to_ns(cur_interval); convert_ns_to_freq(cur_interval_ns, &hz, &uhz); sensor->freq_avail[i * 2] = hz; sensor->freq_avail[i * 2 + 1] = uhz; } } return 0; } static struct iio_dev * scmi_alloc_iiodev(struct scmi_device *sdev, const struct scmi_sensor_proto_ops *ops, struct scmi_protocol_handle *ph, const struct scmi_sensor_info *sensor_info) { struct iio_chan_spec *iio_channels; struct scmi_iio_priv *sensor; enum iio_modifier modifier; enum iio_chan_type type; struct iio_dev *iiodev; struct device *dev = &sdev->dev; const struct scmi_handle *handle = sdev->handle; int i, ret; iiodev = devm_iio_device_alloc(dev, sizeof(*sensor)); if (!iiodev) return ERR_PTR(-ENOMEM); iiodev->modes = INDIO_DIRECT_MODE; sensor = iio_priv(iiodev); sensor->sensor_ops = ops; sensor->ph = ph; sensor->sensor_info = sensor_info; sensor->sensor_update_nb.notifier_call = scmi_iio_sensor_update_cb; sensor->indio_dev = iiodev; mutex_init(&sensor->lock); /* adding one additional channel for timestamp */ iiodev->num_channels = sensor_info->num_axis + 1; iiodev->name = sensor_info->name; iiodev->info = &scmi_iio_info; iio_channels = devm_kzalloc(dev, sizeof(*iio_channels) * (iiodev->num_channels), GFP_KERNEL); if (!iio_channels) return ERR_PTR(-ENOMEM); ret = scmi_iio_set_sampling_freq_avail(iiodev); if (ret < 0) return ERR_PTR(ret); for (i = 0; i < sensor_info->num_axis; i++) { ret = scmi_iio_get_chan_type(sensor_info->axis[i].type, &type); if (ret < 0) return ERR_PTR(ret); ret = scmi_iio_get_chan_modifier(sensor_info->axis[i].name, &modifier); if (ret < 0) return ERR_PTR(ret); scmi_iio_set_data_channel(&iio_channels[i], type, modifier, sensor_info->axis[i].id); } ret = handle->notify_ops->devm_event_notifier_register(sdev, SCMI_PROTOCOL_SENSOR, SCMI_EVENT_SENSOR_UPDATE, &sensor->sensor_info->id, &sensor->sensor_update_nb); if (ret) { dev_err(&iiodev->dev, "Error in registering sensor update notifier for sensor %s err %d", sensor->sensor_info->name, ret); return ERR_PTR(ret); } scmi_iio_set_timestamp_channel(&iio_channels[i], i); iiodev->channels = iio_channels; return iiodev; } static int scmi_iio_dev_probe(struct scmi_device *sdev) { const struct scmi_sensor_info *sensor_info; struct scmi_handle *handle = sdev->handle; const struct scmi_sensor_proto_ops *sensor_ops; struct scmi_protocol_handle *ph; struct device *dev = &sdev->dev; struct iio_dev *scmi_iio_dev; u16 nr_sensors; int err = -ENODEV, i; if (!handle) return -ENODEV; sensor_ops = handle->devm_protocol_get(sdev, SCMI_PROTOCOL_SENSOR, &ph); if (IS_ERR(sensor_ops)) { dev_err(dev, "SCMI device has no sensor interface\n"); return PTR_ERR(sensor_ops); } nr_sensors = sensor_ops->count_get(ph); if (!nr_sensors) { dev_dbg(dev, "0 sensors found via SCMI bus\n"); return -ENODEV; } for (i = 0; i < nr_sensors; i++) { sensor_info = sensor_ops->info_get(ph, i); if (!sensor_info) { dev_err(dev, "SCMI sensor %d has missing info\n", i); return -EINVAL; } /* This driver only supports 3-axis accel and gyro, skipping other sensors */ if (sensor_info->num_axis != SCMI_IIO_NUM_OF_AXIS) continue; /* This driver only supports 3-axis accel and gyro, skipping other sensors */ if (sensor_info->axis[0].type != METERS_SEC_SQUARED && sensor_info->axis[0].type != RADIANS_SEC) continue; scmi_iio_dev = scmi_alloc_iiodev(sdev, sensor_ops, ph, sensor_info); if (IS_ERR(scmi_iio_dev)) { dev_err(dev, "failed to allocate IIO device for sensor %s: %ld\n", sensor_info->name, PTR_ERR(scmi_iio_dev)); return PTR_ERR(scmi_iio_dev); } err = devm_iio_kfifo_buffer_setup(&scmi_iio_dev->dev, scmi_iio_dev, &scmi_iio_buffer_ops); if (err < 0) { dev_err(dev, "IIO buffer setup error at sensor %s: %d\n", sensor_info->name, err); return err; } err = devm_iio_device_register(dev, scmi_iio_dev); if (err) { dev_err(dev, "IIO device registration failed at sensor %s: %d\n", sensor_info->name, err); return err; } } return err; } static const struct scmi_device_id scmi_id_table[] = { { SCMI_PROTOCOL_SENSOR, "iiodev" }, {}, }; MODULE_DEVICE_TABLE(scmi, scmi_id_table); static struct scmi_driver scmi_iiodev_driver = { .name = "scmi-sensor-iiodev", .probe = scmi_iio_dev_probe, .id_table = scmi_id_table, }; module_scmi_driver(scmi_iiodev_driver); MODULE_AUTHOR("Jyoti Bhayana <[email protected]>"); MODULE_DESCRIPTION("SCMI IIO Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/scmi_sensors/scmi_iio.c
// SPDX-License-Identifier: GPL-2.0-only /* * Measurements Specialties driver common i2c functions * * Copyright (c) 2015 Measurement-Specialties */ #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/device.h> #include <linux/delay.h> #include "ms_sensors_i2c.h" /* Conversion times in us */ static const u16 ms_sensors_ht_t_conversion_time[] = { 50000, 25000, 13000, 7000 }; static const u16 ms_sensors_ht_h_conversion_time[] = { 16000, 3000, 5000, 8000 }; static const u16 ms_sensors_tp_conversion_time[] = { 500, 1100, 2100, 4100, 8220, 16440 }; #define MS_SENSORS_SERIAL_READ_MSB 0xFA0F #define MS_SENSORS_SERIAL_READ_LSB 0xFCC9 #define MS_SENSORS_CONFIG_REG_WRITE 0xE6 #define MS_SENSORS_CONFIG_REG_READ 0xE7 #define MS_SENSORS_HT_T_CONVERSION_START 0xF3 #define MS_SENSORS_HT_H_CONVERSION_START 0xF5 #define MS_SENSORS_TP_PROM_READ 0xA0 #define MS_SENSORS_TP_T_CONVERSION_START 0x50 #define MS_SENSORS_TP_P_CONVERSION_START 0x40 #define MS_SENSORS_TP_ADC_READ 0x00 #define MS_SENSORS_NO_READ_CMD 0xFF /** * ms_sensors_reset() - Reset function * @cli: pointer to device client * @cmd: reset cmd. Depends on device in use * @delay: usleep minimal delay after reset command is issued * * Generic I2C reset function for Measurement Specialties devices. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_reset(void *cli, u8 cmd, unsigned int delay) { int ret; struct i2c_client *client = cli; ret = i2c_smbus_write_byte(client, cmd); if (ret) { dev_err(&client->dev, "Failed to reset device\n"); return ret; } usleep_range(delay, delay + 1000); return 0; } EXPORT_SYMBOL_NS(ms_sensors_reset, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_read_prom_word() - PROM word read function * @cli: pointer to device client * @cmd: PROM read cmd. Depends on device and prom id * @word: pointer to word destination value * * Generic i2c prom word read function for Measurement Specialties devices. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_read_prom_word(void *cli, int cmd, u16 *word) { int ret; struct i2c_client *client = cli; ret = i2c_smbus_read_word_swapped(client, cmd); if (ret < 0) { dev_err(&client->dev, "Failed to read prom word\n"); return ret; } *word = ret; return 0; } EXPORT_SYMBOL_NS(ms_sensors_read_prom_word, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_convert_and_read() - ADC conversion & read function * @cli: pointer to device client * @conv: ADC conversion command. Depends on device in use * @rd: ADC read command. Depends on device in use * @delay: usleep minimal delay after conversion command is issued * @adc: pointer to ADC destination value * * Generic ADC conversion & read function for Measurement Specialties * devices. * The function will issue conversion command, sleep appopriate delay, and * issue command to read ADC. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_convert_and_read(void *cli, u8 conv, u8 rd, unsigned int delay, u32 *adc) { int ret; __be32 buf = 0; struct i2c_client *client = cli; /* Trigger conversion */ ret = i2c_smbus_write_byte(client, conv); if (ret) goto err; usleep_range(delay, delay + 1000); /* Retrieve ADC value */ if (rd != MS_SENSORS_NO_READ_CMD) ret = i2c_smbus_read_i2c_block_data(client, rd, 3, (u8 *)&buf); else ret = i2c_master_recv(client, (u8 *)&buf, 3); if (ret < 0) goto err; dev_dbg(&client->dev, "ADC raw value : %x\n", be32_to_cpu(buf) >> 8); *adc = be32_to_cpu(buf) >> 8; return 0; err: dev_err(&client->dev, "Unable to make sensor adc conversion\n"); return ret; } EXPORT_SYMBOL_NS(ms_sensors_convert_and_read, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_crc_valid() - CRC check function * @value: input and CRC compare value * * Cyclic Redundancy Check function used in TSYS02D, HTU21, MS8607. * This function performs a x^8 + x^5 + x^4 + 1 polynomial CRC. * The argument contains CRC value in LSB byte while the bytes 1 and 2 * are used for CRC computation. * * Return: 1 if CRC is valid, 0 otherwise. */ static bool ms_sensors_crc_valid(u32 value) { u32 polynom = 0x988000; /* x^8 + x^5 + x^4 + 1 */ u32 msb = 0x800000; u32 mask = 0xFF8000; u32 result = value & 0xFFFF00; u8 crc = value & 0xFF; while (msb != 0x80) { if (result & msb) result = ((result ^ polynom) & mask) | (result & ~mask); msb >>= 1; mask >>= 1; polynom >>= 1; } return result == crc; } /** * ms_sensors_read_serial() - Serial number read function * @client: pointer to i2c client * @sn: pointer to 64-bits destination value * * Generic i2c serial number read function for Measurement Specialties devices. * This function is used for TSYS02d, HTU21, MS8607 chipset. * Refer to datasheet: * http://www.meas-spec.com/downloads/HTU2X_Serial_Number_Reading.pdf * * Sensor raw MSB serial number format is the following : * [ SNB3, CRC, SNB2, CRC, SNB1, CRC, SNB0, CRC] * Sensor raw LSB serial number format is the following : * [ X, X, SNC1, SNC0, CRC, SNA1, SNA0, CRC] * The resulting serial number is following : * [ SNA1, SNA0, SNB3, SNB2, SNB1, SNB0, SNC1, SNC0] * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_read_serial(struct i2c_client *client, u64 *sn) { u8 i; __be64 rcv_buf = 0; u64 rcv_val; __be16 send_buf; int ret; struct i2c_msg msg[2] = { { .addr = client->addr, .flags = client->flags, .len = 2, .buf = (__u8 *)&send_buf, }, { .addr = client->addr, .flags = client->flags | I2C_M_RD, .buf = (__u8 *)&rcv_buf, }, }; /* Read MSB part of serial number */ send_buf = cpu_to_be16(MS_SENSORS_SERIAL_READ_MSB); msg[1].len = 8; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) { dev_err(&client->dev, "Unable to read device serial number"); return ret; } rcv_val = be64_to_cpu(rcv_buf); dev_dbg(&client->dev, "Serial MSB raw : %llx\n", rcv_val); for (i = 0; i < 64; i += 16) { if (!ms_sensors_crc_valid((rcv_val >> i) & 0xFFFF)) return -ENODEV; } *sn = (((rcv_val >> 32) & 0xFF000000) | ((rcv_val >> 24) & 0x00FF0000) | ((rcv_val >> 16) & 0x0000FF00) | ((rcv_val >> 8) & 0x000000FF)) << 16; /* Read LSB part of serial number */ send_buf = cpu_to_be16(MS_SENSORS_SERIAL_READ_LSB); msg[1].len = 6; rcv_buf = 0; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) { dev_err(&client->dev, "Unable to read device serial number"); return ret; } rcv_val = be64_to_cpu(rcv_buf) >> 16; dev_dbg(&client->dev, "Serial MSB raw : %llx\n", rcv_val); for (i = 0; i < 48; i += 24) { if (!ms_sensors_crc_valid((rcv_val >> i) & 0xFFFFFF)) return -ENODEV; } *sn |= (rcv_val & 0xFFFF00) << 40 | (rcv_val >> 32); return 0; } EXPORT_SYMBOL_NS(ms_sensors_read_serial, IIO_MEAS_SPEC_SENSORS); static int ms_sensors_read_config_reg(struct i2c_client *client, u8 *config_reg) { int ret; ret = i2c_smbus_write_byte(client, MS_SENSORS_CONFIG_REG_READ); if (ret) { dev_err(&client->dev, "Unable to read config register"); return ret; } ret = i2c_master_recv(client, config_reg, 1); if (ret < 0) { dev_err(&client->dev, "Unable to read config register"); return ret; } dev_dbg(&client->dev, "Config register :%x\n", *config_reg); return 0; } /** * ms_sensors_write_resolution() - Set resolution function * @dev_data: pointer to temperature/humidity device data * @i: resolution index to set * * This function will program the appropriate resolution based on the index * provided when user space will set samp_freq channel. * This function is used for TSYS02D, HTU21 and MS8607 chipsets. * * Return: 0 on success, negative errno otherwise. */ ssize_t ms_sensors_write_resolution(struct ms_ht_dev *dev_data, u8 i) { u8 config_reg; int ret; ret = ms_sensors_read_config_reg(dev_data->client, &config_reg); if (ret) return ret; config_reg &= 0x7E; config_reg |= ((i & 1) << 7) + ((i & 2) >> 1); return i2c_smbus_write_byte_data(dev_data->client, MS_SENSORS_CONFIG_REG_WRITE, config_reg); } EXPORT_SYMBOL_NS(ms_sensors_write_resolution, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_show_battery_low() - Show device battery low indicator * @dev_data: pointer to temperature/humidity device data * @buf: pointer to char buffer to write result * * This function will read battery indicator value in the device and * return 1 if the device voltage is below 2.25V. * This function is used for TSYS02D, HTU21 and MS8607 chipsets. * * Return: length of sprintf on success, negative errno otherwise. */ ssize_t ms_sensors_show_battery_low(struct ms_ht_dev *dev_data, char *buf) { int ret; u8 config_reg; mutex_lock(&dev_data->lock); ret = ms_sensors_read_config_reg(dev_data->client, &config_reg); mutex_unlock(&dev_data->lock); if (ret) return ret; return sysfs_emit(buf, "%d\n", (config_reg & 0x40) >> 6); } EXPORT_SYMBOL_NS(ms_sensors_show_battery_low, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_show_heater() - Show device heater * @dev_data: pointer to temperature/humidity device data * @buf: pointer to char buffer to write result * * This function will read heater enable value in the device and * return 1 if the heater is enabled. * This function is used for HTU21 and MS8607 chipsets. * * Return: length of sprintf on success, negative errno otherwise. */ ssize_t ms_sensors_show_heater(struct ms_ht_dev *dev_data, char *buf) { u8 config_reg; int ret; mutex_lock(&dev_data->lock); ret = ms_sensors_read_config_reg(dev_data->client, &config_reg); mutex_unlock(&dev_data->lock); if (ret) return ret; return sysfs_emit(buf, "%d\n", (config_reg & 0x4) >> 2); } EXPORT_SYMBOL_NS(ms_sensors_show_heater, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_write_heater() - Write device heater * @dev_data: pointer to temperature/humidity device data * @buf: pointer to char buffer from user space * @len: length of buf * * This function will write 1 or 0 value in the device * to enable or disable heater. * This function is used for HTU21 and MS8607 chipsets. * * Return: length of buffer, negative errno otherwise. */ ssize_t ms_sensors_write_heater(struct ms_ht_dev *dev_data, const char *buf, size_t len) { u8 val, config_reg; int ret; ret = kstrtou8(buf, 10, &val); if (ret) return ret; if (val > 1) return -EINVAL; mutex_lock(&dev_data->lock); ret = ms_sensors_read_config_reg(dev_data->client, &config_reg); if (ret) { mutex_unlock(&dev_data->lock); return ret; } config_reg &= 0xFB; config_reg |= val << 2; ret = i2c_smbus_write_byte_data(dev_data->client, MS_SENSORS_CONFIG_REG_WRITE, config_reg); mutex_unlock(&dev_data->lock); if (ret) { dev_err(&dev_data->client->dev, "Unable to write config register\n"); return ret; } return len; } EXPORT_SYMBOL_NS(ms_sensors_write_heater, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_ht_read_temperature() - Read temperature * @dev_data: pointer to temperature/humidity device data * @temperature:pointer to temperature destination value * * This function will get temperature ADC value from the device, * check the CRC and compute the temperature value. * This function is used for TSYS02D, HTU21 and MS8607 chipsets. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_ht_read_temperature(struct ms_ht_dev *dev_data, s32 *temperature) { int ret; u32 adc; u16 delay; mutex_lock(&dev_data->lock); delay = ms_sensors_ht_t_conversion_time[dev_data->res_index]; ret = ms_sensors_convert_and_read(dev_data->client, MS_SENSORS_HT_T_CONVERSION_START, MS_SENSORS_NO_READ_CMD, delay, &adc); mutex_unlock(&dev_data->lock); if (ret) return ret; if (!ms_sensors_crc_valid(adc)) { dev_err(&dev_data->client->dev, "Temperature read crc check error\n"); return -ENODEV; } /* Temperature algorithm */ *temperature = (((s64)(adc >> 8) * 175720) >> 16) - 46850; return 0; } EXPORT_SYMBOL_NS(ms_sensors_ht_read_temperature, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_ht_read_humidity() - Read humidity * @dev_data: pointer to temperature/humidity device data * @humidity: pointer to humidity destination value * * This function will get humidity ADC value from the device, * check the CRC and compute the temperature value. * This function is used for HTU21 and MS8607 chipsets. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_ht_read_humidity(struct ms_ht_dev *dev_data, u32 *humidity) { int ret; u32 adc; u16 delay; mutex_lock(&dev_data->lock); delay = ms_sensors_ht_h_conversion_time[dev_data->res_index]; ret = ms_sensors_convert_and_read(dev_data->client, MS_SENSORS_HT_H_CONVERSION_START, MS_SENSORS_NO_READ_CMD, delay, &adc); mutex_unlock(&dev_data->lock); if (ret) return ret; if (!ms_sensors_crc_valid(adc)) { dev_err(&dev_data->client->dev, "Humidity read crc check error\n"); return -ENODEV; } /* Humidity algorithm */ *humidity = (((s32)(adc >> 8) * 12500) >> 16) * 10 - 6000; if (*humidity >= 100000) *humidity = 100000; return 0; } EXPORT_SYMBOL_NS(ms_sensors_ht_read_humidity, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_tp_crc4() - Calculate PROM CRC for * Temperature and pressure devices. * This function is only used when reading PROM coefficients * * @prom: pointer to PROM coefficients array * * Return: CRC. */ static u8 ms_sensors_tp_crc4(u16 *prom) { unsigned int cnt, n_bit; u16 n_rem = 0x0000; for (cnt = 0; cnt < MS_SENSORS_TP_PROM_WORDS_NB * 2; cnt++) { if (cnt % 2 == 1) n_rem ^= prom[cnt >> 1] & 0x00FF; else n_rem ^= prom[cnt >> 1] >> 8; for (n_bit = 8; n_bit > 0; n_bit--) { if (n_rem & 0x8000) n_rem = (n_rem << 1) ^ 0x3000; else n_rem <<= 1; } } return n_rem >> 12; } /** * ms_sensors_tp_crc_valid_112() - CRC check function for * Temperature and pressure devices for 112bit PROM. * This function is only used when reading PROM coefficients * * @prom: pointer to PROM coefficients array * * Return: True if CRC is ok. */ static bool ms_sensors_tp_crc_valid_112(u16 *prom) { u16 w0 = prom[0], crc_read = (w0 & 0xF000) >> 12; u8 crc; prom[0] &= 0x0FFF; /* Clear the CRC computation part */ prom[MS_SENSORS_TP_PROM_WORDS_NB - 1] = 0; crc = ms_sensors_tp_crc4(prom); prom[0] = w0; return crc == crc_read; } /** * ms_sensors_tp_crc_valid_128() - CRC check function for * Temperature and pressure devices for 128bit PROM. * This function is only used when reading PROM coefficients * * @prom: pointer to PROM coefficients array * * Return: True if CRC is ok. */ static bool ms_sensors_tp_crc_valid_128(u16 *prom) { u16 w7 = prom[7], crc_read = w7 & 0x000F; u8 crc; prom[7] &= 0xFF00; /* Clear the CRC and LSB part */ crc = ms_sensors_tp_crc4(prom); prom[7] = w7; return crc == crc_read; } /** * ms_sensors_tp_read_prom() - prom coeff read function * @dev_data: pointer to temperature/pressure device data * * This function will read prom coefficients and check CRC. * This function is used for MS5637 and MS8607 chipsets. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_tp_read_prom(struct ms_tp_dev *dev_data) { int i, ret; bool valid; for (i = 0; i < dev_data->hw->prom_len; i++) { ret = ms_sensors_read_prom_word( dev_data->client, MS_SENSORS_TP_PROM_READ + (i << 1), &dev_data->prom[i]); if (ret) return ret; } if (dev_data->hw->prom_len == 8) valid = ms_sensors_tp_crc_valid_128(dev_data->prom); else valid = ms_sensors_tp_crc_valid_112(dev_data->prom); if (!valid) { dev_err(&dev_data->client->dev, "Calibration coefficients crc check error\n"); return -ENODEV; } return 0; } EXPORT_SYMBOL_NS(ms_sensors_tp_read_prom, IIO_MEAS_SPEC_SENSORS); /** * ms_sensors_read_temp_and_pressure() - read temp and pressure * @dev_data: pointer to temperature/pressure device data * @temperature:pointer to temperature destination value * @pressure: pointer to pressure destination value * * This function will read ADC and compute pressure and temperature value. * This function is used for MS5637 and MS8607 chipsets. * * Return: 0 on success, negative errno otherwise. */ int ms_sensors_read_temp_and_pressure(struct ms_tp_dev *dev_data, int *temperature, unsigned int *pressure) { int ret; u32 t_adc, p_adc; s32 dt, temp; s64 off, sens, t2, off2, sens2; u16 *prom = dev_data->prom, delay; mutex_lock(&dev_data->lock); delay = ms_sensors_tp_conversion_time[dev_data->res_index]; ret = ms_sensors_convert_and_read( dev_data->client, MS_SENSORS_TP_T_CONVERSION_START + dev_data->res_index * 2, MS_SENSORS_TP_ADC_READ, delay, &t_adc); if (ret) { mutex_unlock(&dev_data->lock); return ret; } ret = ms_sensors_convert_and_read( dev_data->client, MS_SENSORS_TP_P_CONVERSION_START + dev_data->res_index * 2, MS_SENSORS_TP_ADC_READ, delay, &p_adc); mutex_unlock(&dev_data->lock); if (ret) return ret; dt = (s32)t_adc - (prom[5] << 8); /* Actual temperature = 2000 + dT * TEMPSENS */ temp = 2000 + (((s64)dt * prom[6]) >> 23); /* Second order temperature compensation */ if (temp < 2000) { s64 tmp = (s64)temp - 2000; t2 = (3 * ((s64)dt * (s64)dt)) >> 33; off2 = (61 * tmp * tmp) >> 4; sens2 = (29 * tmp * tmp) >> 4; if (temp < -1500) { s64 tmp = (s64)temp + 1500; off2 += 17 * tmp * tmp; sens2 += 9 * tmp * tmp; } } else { t2 = (5 * ((s64)dt * (s64)dt)) >> 38; off2 = 0; sens2 = 0; } /* OFF = OFF_T1 + TCO * dT */ off = (((s64)prom[2]) << 17) + ((((s64)prom[4]) * (s64)dt) >> 6); off -= off2; /* Sensitivity at actual temperature = SENS_T1 + TCS * dT */ sens = (((s64)prom[1]) << 16) + (((s64)prom[3] * dt) >> 7); sens -= sens2; /* Temperature compensated pressure = D1 * SENS - OFF */ *temperature = (temp - t2) * 10; *pressure = (u32)(((((s64)p_adc * sens) >> 21) - off) >> 15); return 0; } EXPORT_SYMBOL_NS(ms_sensors_read_temp_and_pressure, IIO_MEAS_SPEC_SENSORS); MODULE_DESCRIPTION("Measurement-Specialties common i2c driver"); MODULE_AUTHOR("William Markezana <[email protected]>"); MODULE_AUTHOR("Ludovic Tancerel <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/ms_sensors/ms_sensors_i2c.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved. */ #include <linux/iio/iio.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mfd/core.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/property.h> #include "ssp.h" #define SSP_WDT_TIME 10000 #define SSP_LIMIT_RESET_CNT 20 #define SSP_LIMIT_TIMEOUT_CNT 3 /* It is possible that it is max clk rate for version 1.0 of bootcode */ #define SSP_BOOT_SPI_HZ 400000 /* * These fields can look enigmatic but this structure is used mainly to flat * some values and depends on command type. */ struct ssp_instruction { __le32 a; __le32 b; u8 c; } __attribute__((__packed__)); static const u8 ssp_magnitude_table[] = {110, 85, 171, 71, 203, 195, 0, 67, 208, 56, 175, 244, 206, 213, 0, 92, 250, 0, 55, 48, 189, 252, 171, 243, 13, 45, 250}; static const struct ssp_sensorhub_info ssp_rinato_info = { .fw_name = "ssp_B2.fw", .fw_crashed_name = "ssp_crashed.fw", .fw_rev = 14052300, .mag_table = ssp_magnitude_table, .mag_length = ARRAY_SIZE(ssp_magnitude_table), }; static const struct ssp_sensorhub_info ssp_thermostat_info = { .fw_name = "thermostat_B2.fw", .fw_crashed_name = "ssp_crashed.fw", .fw_rev = 14080600, .mag_table = ssp_magnitude_table, .mag_length = ARRAY_SIZE(ssp_magnitude_table), }; static const struct mfd_cell sensorhub_sensor_devs[] = { { .name = "ssp-accelerometer", }, { .name = "ssp-gyroscope", }, }; static void ssp_toggle_mcu_reset_gpio(struct ssp_data *data) { gpiod_set_value(data->mcu_reset_gpiod, 0); usleep_range(1000, 1200); gpiod_set_value(data->mcu_reset_gpiod, 1); msleep(50); } static void ssp_sync_available_sensors(struct ssp_data *data) { int i, ret; for (i = 0; i < SSP_SENSOR_MAX; ++i) { if (data->available_sensors & BIT(i)) { ret = ssp_enable_sensor(data, i, data->delay_buf[i]); if (ret < 0) { dev_err(&data->spi->dev, "Sync sensor nr: %d fail\n", i); continue; } } } ret = ssp_command(data, SSP_MSG2SSP_AP_MCU_SET_DUMPMODE, data->mcu_dump_mode); if (ret < 0) dev_err(&data->spi->dev, "SSP_MSG2SSP_AP_MCU_SET_DUMPMODE failed\n"); } static void ssp_enable_mcu(struct ssp_data *data, bool enable) { dev_info(&data->spi->dev, "current shutdown = %d, old = %d\n", enable, data->shut_down); if (enable && data->shut_down) { data->shut_down = false; enable_irq(data->spi->irq); enable_irq_wake(data->spi->irq); } else if (!enable && !data->shut_down) { data->shut_down = true; disable_irq(data->spi->irq); disable_irq_wake(data->spi->irq); } else { dev_warn(&data->spi->dev, "current shutdown = %d, old = %d\n", enable, data->shut_down); } } /* * This function is the first one which communicates with the mcu so it is * possible that the first attempt will fail */ static int ssp_check_fwbl(struct ssp_data *data) { int retries = 0; while (retries++ < 5) { data->cur_firm_rev = ssp_get_firmware_rev(data); if (data->cur_firm_rev == SSP_INVALID_REVISION || data->cur_firm_rev == SSP_INVALID_REVISION2) { dev_warn(&data->spi->dev, "Invalid revision, trying %d time\n", retries); } else { break; } } if (data->cur_firm_rev == SSP_INVALID_REVISION || data->cur_firm_rev == SSP_INVALID_REVISION2) { dev_err(&data->spi->dev, "SSP_INVALID_REVISION\n"); return SSP_FW_DL_STATE_NEED_TO_SCHEDULE; } dev_info(&data->spi->dev, "MCU Firm Rev : Old = %8u, New = %8u\n", data->cur_firm_rev, data->sensorhub_info->fw_rev); if (data->cur_firm_rev != data->sensorhub_info->fw_rev) return SSP_FW_DL_STATE_NEED_TO_SCHEDULE; return SSP_FW_DL_STATE_NONE; } static void ssp_reset_mcu(struct ssp_data *data) { ssp_enable_mcu(data, false); ssp_clean_pending_list(data); ssp_toggle_mcu_reset_gpio(data); ssp_enable_mcu(data, true); } static void ssp_wdt_work_func(struct work_struct *work) { struct ssp_data *data = container_of(work, struct ssp_data, work_wdt); dev_err(&data->spi->dev, "%s - Sensor state: 0x%x, RC: %u, CC: %u\n", __func__, data->available_sensors, data->reset_cnt, data->com_fail_cnt); ssp_reset_mcu(data); data->com_fail_cnt = 0; data->timeout_cnt = 0; } static void ssp_wdt_timer_func(struct timer_list *t) { struct ssp_data *data = from_timer(data, t, wdt_timer); switch (data->fw_dl_state) { case SSP_FW_DL_STATE_FAIL: case SSP_FW_DL_STATE_DOWNLOADING: case SSP_FW_DL_STATE_SYNC: goto _mod; } if (data->timeout_cnt > SSP_LIMIT_TIMEOUT_CNT || data->com_fail_cnt > SSP_LIMIT_RESET_CNT) queue_work(system_power_efficient_wq, &data->work_wdt); _mod: mod_timer(&data->wdt_timer, jiffies + msecs_to_jiffies(SSP_WDT_TIME)); } static void ssp_enable_wdt_timer(struct ssp_data *data) { mod_timer(&data->wdt_timer, jiffies + msecs_to_jiffies(SSP_WDT_TIME)); } static void ssp_disable_wdt_timer(struct ssp_data *data) { del_timer_sync(&data->wdt_timer); cancel_work_sync(&data->work_wdt); } /** * ssp_get_sensor_delay() - gets sensor data acquisition period * @data: sensorhub structure * @type: SSP sensor type * * Returns acquisition period in ms */ u32 ssp_get_sensor_delay(struct ssp_data *data, enum ssp_sensor_type type) { return data->delay_buf[type]; } EXPORT_SYMBOL_NS(ssp_get_sensor_delay, IIO_SSP_SENSORS); /** * ssp_enable_sensor() - enables data acquisition for sensor * @data: sensorhub structure * @type: SSP sensor type * @delay: delay in ms * * Returns 0 or negative value in case of error */ int ssp_enable_sensor(struct ssp_data *data, enum ssp_sensor_type type, u32 delay) { int ret; struct ssp_instruction to_send; to_send.a = cpu_to_le32(delay); to_send.b = cpu_to_le32(data->batch_latency_buf[type]); to_send.c = data->batch_opt_buf[type]; switch (data->check_status[type]) { case SSP_INITIALIZATION_STATE: /* do calibration step, now just enable */ case SSP_ADD_SENSOR_STATE: ret = ssp_send_instruction(data, SSP_MSG2SSP_INST_BYPASS_SENSOR_ADD, type, (u8 *)&to_send, sizeof(to_send)); if (ret < 0) { dev_err(&data->spi->dev, "Enabling sensor failed\n"); data->check_status[type] = SSP_NO_SENSOR_STATE; goto derror; } data->sensor_enable |= BIT(type); data->check_status[type] = SSP_RUNNING_SENSOR_STATE; break; case SSP_RUNNING_SENSOR_STATE: ret = ssp_send_instruction(data, SSP_MSG2SSP_INST_CHANGE_DELAY, type, (u8 *)&to_send, sizeof(to_send)); if (ret < 0) { dev_err(&data->spi->dev, "Changing sensor delay failed\n"); goto derror; } break; default: data->check_status[type] = SSP_ADD_SENSOR_STATE; break; } data->delay_buf[type] = delay; if (atomic_inc_return(&data->enable_refcount) == 1) ssp_enable_wdt_timer(data); return 0; derror: return ret; } EXPORT_SYMBOL_NS(ssp_enable_sensor, IIO_SSP_SENSORS); /** * ssp_change_delay() - changes data acquisition for sensor * @data: sensorhub structure * @type: SSP sensor type * @delay: delay in ms * * Returns 0 or negative value in case of error */ int ssp_change_delay(struct ssp_data *data, enum ssp_sensor_type type, u32 delay) { int ret; struct ssp_instruction to_send; to_send.a = cpu_to_le32(delay); to_send.b = cpu_to_le32(data->batch_latency_buf[type]); to_send.c = data->batch_opt_buf[type]; ret = ssp_send_instruction(data, SSP_MSG2SSP_INST_CHANGE_DELAY, type, (u8 *)&to_send, sizeof(to_send)); if (ret < 0) { dev_err(&data->spi->dev, "Changing sensor delay failed\n"); return ret; } data->delay_buf[type] = delay; return 0; } EXPORT_SYMBOL_NS(ssp_change_delay, IIO_SSP_SENSORS); /** * ssp_disable_sensor() - disables sensor * * @data: sensorhub structure * @type: SSP sensor type * * Returns 0 or negative value in case of error */ int ssp_disable_sensor(struct ssp_data *data, enum ssp_sensor_type type) { int ret; __le32 command; if (data->sensor_enable & BIT(type)) { command = cpu_to_le32(data->delay_buf[type]); ret = ssp_send_instruction(data, SSP_MSG2SSP_INST_BYPASS_SENSOR_RM, type, (u8 *)&command, sizeof(command)); if (ret < 0) { dev_err(&data->spi->dev, "Remove sensor fail\n"); return ret; } data->sensor_enable &= ~BIT(type); } data->check_status[type] = SSP_ADD_SENSOR_STATE; if (atomic_dec_and_test(&data->enable_refcount)) ssp_disable_wdt_timer(data); return 0; } EXPORT_SYMBOL_NS(ssp_disable_sensor, IIO_SSP_SENSORS); static irqreturn_t ssp_irq_thread_fn(int irq, void *dev_id) { struct ssp_data *data = dev_id; /* * This wrapper is done to preserve error path for ssp_irq_msg, also * it is defined in different file. */ ssp_irq_msg(data); return IRQ_HANDLED; } static int ssp_initialize_mcu(struct ssp_data *data) { int ret; ssp_clean_pending_list(data); ret = ssp_get_chipid(data); if (ret != SSP_DEVICE_ID) { dev_err(&data->spi->dev, "%s - MCU %s ret = %d\n", __func__, ret < 0 ? "is not working" : "identification failed", ret); return ret < 0 ? ret : -ENODEV; } dev_info(&data->spi->dev, "MCU device ID = %d\n", ret); /* * needs clarification, for now do not want to export all transfer * methods to sensors' drivers */ ret = ssp_set_magnetic_matrix(data); if (ret < 0) { dev_err(&data->spi->dev, "%s - ssp_set_magnetic_matrix failed\n", __func__); return ret; } data->available_sensors = ssp_get_sensor_scanning_info(data); if (data->available_sensors == 0) { dev_err(&data->spi->dev, "%s - ssp_get_sensor_scanning_info failed\n", __func__); return -EIO; } data->cur_firm_rev = ssp_get_firmware_rev(data); dev_info(&data->spi->dev, "MCU Firm Rev : New = %8u\n", data->cur_firm_rev); return ssp_command(data, SSP_MSG2SSP_AP_MCU_DUMP_CHECK, 0); } /* * sensorhub can request its reinitialization as some brutal and rare error * handling. It can be requested from the MCU. */ static void ssp_refresh_task(struct work_struct *work) { struct ssp_data *data = container_of((struct delayed_work *)work, struct ssp_data, work_refresh); dev_info(&data->spi->dev, "refreshing\n"); data->reset_cnt++; if (ssp_initialize_mcu(data) >= 0) { ssp_sync_available_sensors(data); if (data->last_ap_state != 0) ssp_command(data, data->last_ap_state, 0); if (data->last_resume_state != 0) ssp_command(data, data->last_resume_state, 0); data->timeout_cnt = 0; data->com_fail_cnt = 0; } } int ssp_queue_ssp_refresh_task(struct ssp_data *data, unsigned int delay) { cancel_delayed_work_sync(&data->work_refresh); return queue_delayed_work(system_power_efficient_wq, &data->work_refresh, msecs_to_jiffies(delay)); } static const struct of_device_id ssp_of_match[] = { { .compatible = "samsung,sensorhub-rinato", .data = &ssp_rinato_info, }, { .compatible = "samsung,sensorhub-thermostat", .data = &ssp_thermostat_info, }, {}, }; MODULE_DEVICE_TABLE(of, ssp_of_match); static struct ssp_data *ssp_parse_dt(struct device *dev) { struct ssp_data *data; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return NULL; data->mcu_ap_gpiod = devm_gpiod_get(dev, "mcu-ap", GPIOD_IN); if (IS_ERR(data->mcu_ap_gpiod)) return NULL; data->ap_mcu_gpiod = devm_gpiod_get(dev, "ap-mcu", GPIOD_OUT_HIGH); if (IS_ERR(data->ap_mcu_gpiod)) return NULL; data->mcu_reset_gpiod = devm_gpiod_get(dev, "mcu-reset", GPIOD_OUT_HIGH); if (IS_ERR(data->mcu_reset_gpiod)) return NULL; data->sensorhub_info = device_get_match_data(dev); dev_set_drvdata(dev, data); return data; } /** * ssp_register_consumer() - registers iio consumer in ssp framework * * @indio_dev: consumer iio device * @type: ssp sensor type */ void ssp_register_consumer(struct iio_dev *indio_dev, enum ssp_sensor_type type) { struct ssp_data *data = dev_get_drvdata(indio_dev->dev.parent->parent); data->sensor_devs[type] = indio_dev; } EXPORT_SYMBOL_NS(ssp_register_consumer, IIO_SSP_SENSORS); static int ssp_probe(struct spi_device *spi) { int ret, i; struct ssp_data *data; data = ssp_parse_dt(&spi->dev); if (!data) { dev_err(&spi->dev, "Failed to find platform data\n"); return -ENODEV; } ret = mfd_add_devices(&spi->dev, PLATFORM_DEVID_NONE, sensorhub_sensor_devs, ARRAY_SIZE(sensorhub_sensor_devs), NULL, 0, NULL); if (ret < 0) { dev_err(&spi->dev, "mfd add devices fail\n"); return ret; } spi->mode = SPI_MODE_1; ret = spi_setup(spi); if (ret < 0) { dev_err(&spi->dev, "Failed to setup spi\n"); return ret; } data->fw_dl_state = SSP_FW_DL_STATE_NONE; data->spi = spi; spi_set_drvdata(spi, data); mutex_init(&data->comm_lock); for (i = 0; i < SSP_SENSOR_MAX; ++i) { data->delay_buf[i] = SSP_DEFAULT_POLLING_DELAY; data->batch_latency_buf[i] = 0; data->batch_opt_buf[i] = 0; data->check_status[i] = SSP_INITIALIZATION_STATE; } data->delay_buf[SSP_BIO_HRM_LIB] = 100; data->time_syncing = true; mutex_init(&data->pending_lock); INIT_LIST_HEAD(&data->pending_list); atomic_set(&data->enable_refcount, 0); INIT_WORK(&data->work_wdt, ssp_wdt_work_func); INIT_DELAYED_WORK(&data->work_refresh, ssp_refresh_task); timer_setup(&data->wdt_timer, ssp_wdt_timer_func, 0); ret = request_threaded_irq(data->spi->irq, NULL, ssp_irq_thread_fn, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "SSP_Int", data); if (ret < 0) { dev_err(&spi->dev, "Irq request fail\n"); goto err_setup_irq; } /* Let's start with enabled one so irq balance could be ok */ data->shut_down = false; /* just to avoid unbalanced irq set wake up */ enable_irq_wake(data->spi->irq); data->fw_dl_state = ssp_check_fwbl(data); if (data->fw_dl_state == SSP_FW_DL_STATE_NONE) { ret = ssp_initialize_mcu(data); if (ret < 0) { dev_err(&spi->dev, "Initialize_mcu failed\n"); goto err_read_reg; } } else { dev_err(&spi->dev, "Firmware version not supported\n"); ret = -EPERM; goto err_read_reg; } return 0; err_read_reg: free_irq(data->spi->irq, data); err_setup_irq: mutex_destroy(&data->pending_lock); mutex_destroy(&data->comm_lock); dev_err(&spi->dev, "Probe failed!\n"); return ret; } static void ssp_remove(struct spi_device *spi) { struct ssp_data *data = spi_get_drvdata(spi); if (ssp_command(data, SSP_MSG2SSP_AP_STATUS_SHUTDOWN, 0) < 0) dev_err(&data->spi->dev, "SSP_MSG2SSP_AP_STATUS_SHUTDOWN failed\n"); ssp_enable_mcu(data, false); ssp_disable_wdt_timer(data); ssp_clean_pending_list(data); free_irq(data->spi->irq, data); del_timer_sync(&data->wdt_timer); cancel_work_sync(&data->work_wdt); mutex_destroy(&data->comm_lock); mutex_destroy(&data->pending_lock); mfd_remove_devices(&spi->dev); } static int ssp_suspend(struct device *dev) { int ret; struct ssp_data *data = spi_get_drvdata(to_spi_device(dev)); data->last_resume_state = SSP_MSG2SSP_AP_STATUS_SUSPEND; if (atomic_read(&data->enable_refcount) > 0) ssp_disable_wdt_timer(data); ret = ssp_command(data, SSP_MSG2SSP_AP_STATUS_SUSPEND, 0); if (ret < 0) { dev_err(&data->spi->dev, "%s SSP_MSG2SSP_AP_STATUS_SUSPEND failed\n", __func__); ssp_enable_wdt_timer(data); return ret; } data->time_syncing = false; disable_irq(data->spi->irq); return 0; } static int ssp_resume(struct device *dev) { int ret; struct ssp_data *data = spi_get_drvdata(to_spi_device(dev)); enable_irq(data->spi->irq); if (atomic_read(&data->enable_refcount) > 0) ssp_enable_wdt_timer(data); ret = ssp_command(data, SSP_MSG2SSP_AP_STATUS_RESUME, 0); if (ret < 0) { dev_err(&data->spi->dev, "%s SSP_MSG2SSP_AP_STATUS_RESUME failed\n", __func__); ssp_disable_wdt_timer(data); return ret; } /* timesyncing is set by MCU */ data->last_resume_state = SSP_MSG2SSP_AP_STATUS_RESUME; return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(ssp_pm_ops, ssp_suspend, ssp_resume); static struct spi_driver ssp_driver = { .probe = ssp_probe, .remove = ssp_remove, .driver = { .pm = pm_sleep_ptr(&ssp_pm_ops), .of_match_table = ssp_of_match, .name = "sensorhub" }, }; module_spi_driver(ssp_driver); MODULE_DESCRIPTION("ssp sensorhub driver"); MODULE_AUTHOR("Samsung Electronics"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/common/ssp_sensors/ssp_dev.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved. */ #include <linux/iio/common/ssp_sensors.h> #include <linux/iio/buffer.h> #include <linux/iio/kfifo_buf.h> #include <linux/module.h> #include <linux/slab.h> #include "ssp_iio_sensor.h" /** * ssp_common_buffer_postenable() - generic postenable callback for ssp buffer * * @indio_dev: iio device * * Returns 0 or negative value in case of error */ int ssp_common_buffer_postenable(struct iio_dev *indio_dev) { struct ssp_sensor_data *spd = iio_priv(indio_dev); struct ssp_data *data = dev_get_drvdata(indio_dev->dev.parent->parent); /* the allocation is made in post because scan size is known in this * moment * */ spd->buffer = kmalloc(indio_dev->scan_bytes, GFP_KERNEL | GFP_DMA); if (!spd->buffer) return -ENOMEM; return ssp_enable_sensor(data, spd->type, ssp_get_sensor_delay(data, spd->type)); } EXPORT_SYMBOL_NS(ssp_common_buffer_postenable, IIO_SSP_SENSORS); /** * ssp_common_buffer_postdisable() - generic postdisable callback for ssp buffer * * @indio_dev: iio device * * Returns 0 or negative value in case of error */ int ssp_common_buffer_postdisable(struct iio_dev *indio_dev) { int ret; struct ssp_sensor_data *spd = iio_priv(indio_dev); struct ssp_data *data = dev_get_drvdata(indio_dev->dev.parent->parent); ret = ssp_disable_sensor(data, spd->type); if (ret < 0) return ret; kfree(spd->buffer); return ret; } EXPORT_SYMBOL_NS(ssp_common_buffer_postdisable, IIO_SSP_SENSORS); /** * ssp_common_process_data() - Common process data callback for ssp sensors * * @indio_dev: iio device * @buf: source buffer * @len: sensor data length * @timestamp: system timestamp * * Returns 0 or negative value in case of error */ int ssp_common_process_data(struct iio_dev *indio_dev, void *buf, unsigned int len, int64_t timestamp) { __le32 time; int64_t calculated_time = 0; struct ssp_sensor_data *spd = iio_priv(indio_dev); if (indio_dev->scan_bytes == 0) return 0; /* * it always sends full set of samples, remember about available masks */ memcpy(spd->buffer, buf, len); if (indio_dev->scan_timestamp) { memcpy(&time, &((char *)buf)[len], SSP_TIME_SIZE); calculated_time = timestamp + (int64_t)le32_to_cpu(time) * 1000000; } return iio_push_to_buffers_with_timestamp(indio_dev, spd->buffer, calculated_time); } EXPORT_SYMBOL_NS(ssp_common_process_data, IIO_SSP_SENSORS); MODULE_AUTHOR("Karol Wrona <[email protected]>"); MODULE_DESCRIPTION("Samsung sensorhub commons"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_SSP_SENSORS);
linux-master
drivers/iio/common/ssp_sensors/ssp_iio.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved. */ #include "ssp.h" #define SSP_DEV (&data->spi->dev) #define SSP_GET_MESSAGE_TYPE(data) (data & (3 << SSP_RW)) /* * SSP -> AP Instruction * They tell what packet type can be expected. In the future there will * be less of them. BYPASS means common sensor packets with accel, gyro, * hrm etc. data. LIBRARY and META are mock-up's for now. */ #define SSP_MSG2AP_INST_BYPASS_DATA 0x37 #define SSP_MSG2AP_INST_LIBRARY_DATA 0x01 #define SSP_MSG2AP_INST_DEBUG_DATA 0x03 #define SSP_MSG2AP_INST_BIG_DATA 0x04 #define SSP_MSG2AP_INST_META_DATA 0x05 #define SSP_MSG2AP_INST_TIME_SYNC 0x06 #define SSP_MSG2AP_INST_RESET 0x07 #define SSP_UNIMPLEMENTED -1 struct ssp_msg_header { u8 cmd; __le16 length; __le16 options; __le32 data; } __attribute__((__packed__)); struct ssp_msg { u16 length; u16 options; struct list_head list; struct completion *done; struct ssp_msg_header *h; char *buffer; }; static const int ssp_offset_map[SSP_SENSOR_MAX] = { [SSP_ACCELEROMETER_SENSOR] = SSP_ACCELEROMETER_SIZE + SSP_TIME_SIZE, [SSP_GYROSCOPE_SENSOR] = SSP_GYROSCOPE_SIZE + SSP_TIME_SIZE, [SSP_GEOMAGNETIC_UNCALIB_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GEOMAGNETIC_RAW] = SSP_UNIMPLEMENTED, [SSP_GEOMAGNETIC_SENSOR] = SSP_UNIMPLEMENTED, [SSP_PRESSURE_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GESTURE_SENSOR] = SSP_UNIMPLEMENTED, [SSP_PROXIMITY_SENSOR] = SSP_UNIMPLEMENTED, [SSP_TEMPERATURE_HUMIDITY_SENSOR] = SSP_UNIMPLEMENTED, [SSP_LIGHT_SENSOR] = SSP_UNIMPLEMENTED, [SSP_PROXIMITY_RAW] = SSP_UNIMPLEMENTED, [SSP_ORIENTATION_SENSOR] = SSP_UNIMPLEMENTED, [SSP_STEP_DETECTOR] = SSP_UNIMPLEMENTED, [SSP_SIG_MOTION_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GYRO_UNCALIB_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GAME_ROTATION_VECTOR] = SSP_UNIMPLEMENTED, [SSP_ROTATION_VECTOR] = SSP_UNIMPLEMENTED, [SSP_STEP_COUNTER] = SSP_UNIMPLEMENTED, [SSP_BIO_HRM_RAW] = SSP_BIO_HRM_RAW_SIZE + SSP_TIME_SIZE, [SSP_BIO_HRM_RAW_FAC] = SSP_BIO_HRM_RAW_FAC_SIZE + SSP_TIME_SIZE, [SSP_BIO_HRM_LIB] = SSP_BIO_HRM_LIB_SIZE + SSP_TIME_SIZE, }; #define SSP_HEADER_SIZE (sizeof(struct ssp_msg_header)) #define SSP_HEADER_SIZE_ALIGNED (ALIGN(SSP_HEADER_SIZE, 4)) static struct ssp_msg *ssp_create_msg(u8 cmd, u16 len, u16 opt, u32 data) { struct ssp_msg_header h; struct ssp_msg *msg; msg = kzalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return NULL; h.cmd = cmd; h.length = cpu_to_le16(len); h.options = cpu_to_le16(opt); h.data = cpu_to_le32(data); msg->buffer = kzalloc(SSP_HEADER_SIZE_ALIGNED + len, GFP_KERNEL | GFP_DMA); if (!msg->buffer) { kfree(msg); return NULL; } msg->length = len; msg->options = opt; memcpy(msg->buffer, &h, SSP_HEADER_SIZE); return msg; } /* * It is a bit heavy to do it this way but often the function is used to compose * the message from smaller chunks which are placed on the stack. Often the * chunks are small so memcpy should be optimalized. */ static inline void ssp_fill_buffer(struct ssp_msg *m, unsigned int offset, const void *src, unsigned int len) { memcpy(&m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], src, len); } static inline void ssp_get_buffer(struct ssp_msg *m, unsigned int offset, void *dest, unsigned int len) { memcpy(dest, &m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], len); } #define SSP_GET_BUFFER_AT_INDEX(m, index) \ (m->buffer[SSP_HEADER_SIZE_ALIGNED + index]) #define SSP_SET_BUFFER_AT_INDEX(m, index, val) \ (m->buffer[SSP_HEADER_SIZE_ALIGNED + index] = val) static void ssp_clean_msg(struct ssp_msg *m) { kfree(m->buffer); kfree(m); } static int ssp_print_mcu_debug(char *data_frame, int *data_index, int received_len) { int length = data_frame[(*data_index)++]; if (length > received_len - *data_index || length <= 0) { ssp_dbg("[SSP]: MSG From MCU-invalid debug length(%d/%d)\n", length, received_len); return -EPROTO; } ssp_dbg("[SSP]: MSG From MCU - %s\n", &data_frame[*data_index]); *data_index += length; return 0; } /* * It was designed that way - additional lines to some kind of handshake, * please do not ask why - only the firmware guy can know it. */ static int ssp_check_lines(struct ssp_data *data, bool state) { int delay_cnt = 0; gpiod_set_value_cansleep(data->ap_mcu_gpiod, state); while (gpiod_get_value_cansleep(data->mcu_ap_gpiod) != state) { usleep_range(3000, 3500); if (data->shut_down || delay_cnt++ > 500) { dev_err(SSP_DEV, "%s:timeout, hw ack wait fail %d\n", __func__, state); if (!state) gpiod_set_value_cansleep(data->ap_mcu_gpiod, 1); return -ETIMEDOUT; } } return 0; } static int ssp_do_transfer(struct ssp_data *data, struct ssp_msg *msg, struct completion *done, int timeout) { int status; /* * check if this is a short one way message or the whole transfer has * second part after an interrupt */ const bool use_no_irq = msg->length == 0; if (data->shut_down) return -EPERM; msg->done = done; mutex_lock(&data->comm_lock); status = ssp_check_lines(data, false); if (status < 0) goto _error_locked; status = spi_write(data->spi, msg->buffer, SSP_HEADER_SIZE); if (status < 0) { gpiod_set_value_cansleep(data->ap_mcu_gpiod, 1); dev_err(SSP_DEV, "%s spi_write fail\n", __func__); goto _error_locked; } if (!use_no_irq) { mutex_lock(&data->pending_lock); list_add_tail(&msg->list, &data->pending_list); mutex_unlock(&data->pending_lock); } status = ssp_check_lines(data, true); if (status < 0) { if (!use_no_irq) { mutex_lock(&data->pending_lock); list_del(&msg->list); mutex_unlock(&data->pending_lock); } goto _error_locked; } mutex_unlock(&data->comm_lock); if (!use_no_irq && done) if (wait_for_completion_timeout(done, msecs_to_jiffies(timeout)) == 0) { mutex_lock(&data->pending_lock); list_del(&msg->list); mutex_unlock(&data->pending_lock); data->timeout_cnt++; return -ETIMEDOUT; } return 0; _error_locked: mutex_unlock(&data->comm_lock); data->timeout_cnt++; return status; } static inline int ssp_spi_sync_command(struct ssp_data *data, struct ssp_msg *msg) { return ssp_do_transfer(data, msg, NULL, 0); } static int ssp_spi_sync(struct ssp_data *data, struct ssp_msg *msg, int timeout) { DECLARE_COMPLETION_ONSTACK(done); if (WARN_ON(!msg->length)) return -EPERM; return ssp_do_transfer(data, msg, &done, timeout); } static int ssp_handle_big_data(struct ssp_data *data, char *dataframe, int *idx) { /* mock-up, it will be changed with adding another sensor types */ *idx += 8; return 0; } static int ssp_parse_dataframe(struct ssp_data *data, char *dataframe, int len) { int idx, sd; struct ssp_sensor_data *spd; struct iio_dev **indio_devs = data->sensor_devs; for (idx = 0; idx < len;) { switch (dataframe[idx++]) { case SSP_MSG2AP_INST_BYPASS_DATA: if (idx >= len) return -EPROTO; sd = dataframe[idx++]; if (sd < 0 || sd >= SSP_SENSOR_MAX) { dev_err(SSP_DEV, "Mcu data frame1 error %d\n", sd); return -EPROTO; } if (indio_devs[sd]) { spd = iio_priv(indio_devs[sd]); if (spd->process_data) { if (idx >= len) return -EPROTO; spd->process_data(indio_devs[sd], &dataframe[idx], data->timestamp); } } else { dev_err(SSP_DEV, "no client for frame\n"); } idx += ssp_offset_map[sd]; break; case SSP_MSG2AP_INST_DEBUG_DATA: if (idx >= len) return -EPROTO; sd = ssp_print_mcu_debug(dataframe, &idx, len); if (sd) { dev_err(SSP_DEV, "Mcu data frame3 error %d\n", sd); return sd; } break; case SSP_MSG2AP_INST_LIBRARY_DATA: idx += len; break; case SSP_MSG2AP_INST_BIG_DATA: ssp_handle_big_data(data, dataframe, &idx); break; case SSP_MSG2AP_INST_TIME_SYNC: data->time_syncing = true; break; case SSP_MSG2AP_INST_RESET: ssp_queue_ssp_refresh_task(data, 0); break; } } if (data->time_syncing) data->timestamp = ktime_get_real_ns(); return 0; } /* threaded irq */ int ssp_irq_msg(struct ssp_data *data) { char *buffer; u8 msg_type; int ret; u16 length, msg_options; struct ssp_msg *msg = NULL, *iter, *n; ret = spi_read(data->spi, data->header_buffer, SSP_HEADER_BUFFER_SIZE); if (ret < 0) { dev_err(SSP_DEV, "header read fail\n"); return ret; } length = le16_to_cpu(data->header_buffer[1]); msg_options = le16_to_cpu(data->header_buffer[0]); if (length == 0) { dev_err(SSP_DEV, "length received from mcu is 0\n"); return -EINVAL; } msg_type = SSP_GET_MESSAGE_TYPE(msg_options); switch (msg_type) { case SSP_AP2HUB_READ: case SSP_AP2HUB_WRITE: /* * this is a small list, a few elements - the packets can be * received with no order */ mutex_lock(&data->pending_lock); list_for_each_entry_safe(iter, n, &data->pending_list, list) { if (iter->options == msg_options) { list_del(&iter->list); msg = iter; break; } } if (!msg) { /* * here can be implemented dead messages handling * but the slave should not send such ones - it is to * check but let's handle this */ buffer = kmalloc(length, GFP_KERNEL | GFP_DMA); if (!buffer) { ret = -ENOMEM; goto _unlock; } /* got dead packet so it is always an error */ ret = spi_read(data->spi, buffer, length); if (ret >= 0) ret = -EPROTO; kfree(buffer); dev_err(SSP_DEV, "No match error %x\n", msg_options); goto _unlock; } if (msg_type == SSP_AP2HUB_READ) ret = spi_read(data->spi, &msg->buffer[SSP_HEADER_SIZE_ALIGNED], msg->length); if (msg_type == SSP_AP2HUB_WRITE) { ret = spi_write(data->spi, &msg->buffer[SSP_HEADER_SIZE_ALIGNED], msg->length); if (msg_options & SSP_AP2HUB_RETURN) { msg->options = SSP_AP2HUB_READ | SSP_AP2HUB_RETURN; msg->length = 1; list_add_tail(&msg->list, &data->pending_list); goto _unlock; } } if (msg->done) if (!completion_done(msg->done)) complete(msg->done); _unlock: mutex_unlock(&data->pending_lock); break; case SSP_HUB2AP_WRITE: buffer = kzalloc(length, GFP_KERNEL | GFP_DMA); if (!buffer) return -ENOMEM; ret = spi_read(data->spi, buffer, length); if (ret < 0) { dev_err(SSP_DEV, "spi read fail\n"); kfree(buffer); break; } ret = ssp_parse_dataframe(data, buffer, length); kfree(buffer); break; default: dev_err(SSP_DEV, "unknown msg type\n"); return -EPROTO; } return ret; } void ssp_clean_pending_list(struct ssp_data *data) { struct ssp_msg *msg, *n; mutex_lock(&data->pending_lock); list_for_each_entry_safe(msg, n, &data->pending_list, list) { list_del(&msg->list); if (msg->done) if (!completion_done(msg->done)) complete(msg->done); } mutex_unlock(&data->pending_lock); } int ssp_command(struct ssp_data *data, char command, int arg) { int ret; struct ssp_msg *msg; msg = ssp_create_msg(command, 0, SSP_AP2HUB_WRITE, arg); if (!msg) return -ENOMEM; ssp_dbg("%s - command 0x%x %d\n", __func__, command, arg); ret = ssp_spi_sync_command(data, msg); ssp_clean_msg(msg); return ret; } int ssp_send_instruction(struct ssp_data *data, u8 inst, u8 sensor_type, u8 *send_buf, u8 length) { int ret; struct ssp_msg *msg; if (data->fw_dl_state == SSP_FW_DL_STATE_DOWNLOADING) { dev_err(SSP_DEV, "%s - Skip Inst! DL state = %d\n", __func__, data->fw_dl_state); return -EBUSY; } else if (!(data->available_sensors & BIT(sensor_type)) && (inst <= SSP_MSG2SSP_INST_CHANGE_DELAY)) { dev_err(SSP_DEV, "%s - Bypass Inst Skip! - %u\n", __func__, sensor_type); return -EIO; /* just fail */ } msg = ssp_create_msg(inst, length + 2, SSP_AP2HUB_WRITE, 0); if (!msg) return -ENOMEM; ssp_fill_buffer(msg, 0, &sensor_type, 1); ssp_fill_buffer(msg, 1, send_buf, length); ssp_dbg("%s - Inst = 0x%x, Sensor Type = 0x%x, data = %u\n", __func__, inst, sensor_type, send_buf[1]); ret = ssp_spi_sync(data, msg, 1000); ssp_clean_msg(msg); return ret; } int ssp_get_chipid(struct ssp_data *data) { int ret; char buffer; struct ssp_msg *msg; msg = ssp_create_msg(SSP_MSG2SSP_AP_WHOAMI, 1, SSP_AP2HUB_READ, 0); if (!msg) return -ENOMEM; ret = ssp_spi_sync(data, msg, 1000); buffer = SSP_GET_BUFFER_AT_INDEX(msg, 0); ssp_clean_msg(msg); return ret < 0 ? ret : buffer; } int ssp_set_magnetic_matrix(struct ssp_data *data) { int ret; struct ssp_msg *msg; msg = ssp_create_msg(SSP_MSG2SSP_AP_SET_MAGNETIC_STATIC_MATRIX, data->sensorhub_info->mag_length, SSP_AP2HUB_WRITE, 0); if (!msg) return -ENOMEM; ssp_fill_buffer(msg, 0, data->sensorhub_info->mag_table, data->sensorhub_info->mag_length); ret = ssp_spi_sync(data, msg, 1000); ssp_clean_msg(msg); return ret; } unsigned int ssp_get_sensor_scanning_info(struct ssp_data *data) { int ret; __le32 result; u32 cpu_result = 0; struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_SENSOR_SCANNING, 4, SSP_AP2HUB_READ, 0); if (!msg) return 0; ret = ssp_spi_sync(data, msg, 1000); if (ret < 0) { dev_err(SSP_DEV, "%s - spi read fail %d\n", __func__, ret); goto _exit; } ssp_get_buffer(msg, 0, &result, 4); cpu_result = le32_to_cpu(result); dev_info(SSP_DEV, "%s state: 0x%08x\n", __func__, cpu_result); _exit: ssp_clean_msg(msg); return cpu_result; } unsigned int ssp_get_firmware_rev(struct ssp_data *data) { int ret; __le32 result; struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_FIRMWARE_REV, 4, SSP_AP2HUB_READ, 0); if (!msg) return SSP_INVALID_REVISION; ret = ssp_spi_sync(data, msg, 1000); if (ret < 0) { dev_err(SSP_DEV, "%s - transfer fail %d\n", __func__, ret); ret = SSP_INVALID_REVISION; goto _exit; } ssp_get_buffer(msg, 0, &result, 4); ret = le32_to_cpu(result); _exit: ssp_clean_msg(msg); return ret; }
linux-master
drivers/iio/common/ssp_sensors/ssp_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics sensors spi library driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/iio/common/st_sensors_spi.h> #define ST_SENSORS_SPI_MULTIREAD 0xc0 static const struct regmap_config st_sensors_spi_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static const struct regmap_config st_sensors_spi_regmap_multiread_bit_config = { .reg_bits = 8, .val_bits = 8, .read_flag_mask = ST_SENSORS_SPI_MULTIREAD, }; /* * st_sensors_is_spi_3_wire() - check if SPI 3-wire mode has been selected * @spi: spi device reference. * * Return: true if SPI 3-wire mode is selected, false otherwise. */ static bool st_sensors_is_spi_3_wire(struct spi_device *spi) { struct st_sensors_platform_data *pdata; struct device *dev = &spi->dev; if (device_property_read_bool(dev, "spi-3wire")) return true; pdata = dev_get_platdata(dev); if (pdata && pdata->spi_3wire) return true; return false; } /* * st_sensors_configure_spi_3_wire() - configure SPI 3-wire if needed * @spi: spi device reference. * @settings: sensor specific settings reference. * * Return: 0 on success, else a negative error code. */ static int st_sensors_configure_spi_3_wire(struct spi_device *spi, struct st_sensor_settings *settings) { if (settings->sim.addr) { u8 buffer[] = { settings->sim.addr, settings->sim.value }; return spi_write(spi, buffer, 2); } return 0; } /* * st_sensors_spi_configure() - configure SPI interface * @indio_dev: IIO device reference. * @spi: spi device reference. * * Return: 0 on success, else a negative error code. */ int st_sensors_spi_configure(struct iio_dev *indio_dev, struct spi_device *spi) { struct st_sensor_data *sdata = iio_priv(indio_dev); const struct regmap_config *config; int err; if (st_sensors_is_spi_3_wire(spi)) { err = st_sensors_configure_spi_3_wire(spi, sdata->sensor_settings); if (err < 0) return err; } if (sdata->sensor_settings->multi_read_bit) config = &st_sensors_spi_regmap_multiread_bit_config; else config = &st_sensors_spi_regmap_config; sdata->regmap = devm_regmap_init_spi(spi, config); if (IS_ERR(sdata->regmap)) { dev_err(&spi->dev, "Failed to register spi regmap (%ld)\n", PTR_ERR(sdata->regmap)); return PTR_ERR(sdata->regmap); } spi_set_drvdata(spi, indio_dev); indio_dev->name = spi->modalias; sdata->irq = spi->irq; return 0; } EXPORT_SYMBOL_NS(st_sensors_spi_configure, IIO_ST_SENSORS); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics ST-sensors spi driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/st_sensors/st_sensors_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics sensors trigger library driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/iio/iio.h> #include <linux/iio/trigger.h> #include <linux/interrupt.h> #include <linux/regmap.h> #include <linux/iio/common/st_sensors.h> #include "st_sensors_core.h" /** * st_sensors_new_samples_available() - check if more samples came in * @indio_dev: IIO device reference. * @sdata: Sensor data. * * returns: * false - no new samples available or read error * true - new samples available */ static bool st_sensors_new_samples_available(struct iio_dev *indio_dev, struct st_sensor_data *sdata) { int ret, status; /* How would I know if I can't check it? */ if (!sdata->sensor_settings->drdy_irq.stat_drdy.addr) return true; /* No scan mask, no interrupt */ if (!indio_dev->active_scan_mask) return false; ret = regmap_read(sdata->regmap, sdata->sensor_settings->drdy_irq.stat_drdy.addr, &status); if (ret < 0) { dev_err(indio_dev->dev.parent, "error checking samples available\n"); return false; } return !!(status & sdata->sensor_settings->drdy_irq.stat_drdy.mask); } /** * st_sensors_irq_handler() - top half of the IRQ-based triggers * @irq: irq number * @p: private handler data */ static irqreturn_t st_sensors_irq_handler(int irq, void *p) { struct iio_trigger *trig = p; struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct st_sensor_data *sdata = iio_priv(indio_dev); /* Get the time stamp as close in time as possible */ sdata->hw_timestamp = iio_get_time_ns(indio_dev); return IRQ_WAKE_THREAD; } /** * st_sensors_irq_thread() - bottom half of the IRQ-based triggers * @irq: irq number * @p: private handler data */ static irqreturn_t st_sensors_irq_thread(int irq, void *p) { struct iio_trigger *trig = p; struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct st_sensor_data *sdata = iio_priv(indio_dev); /* * If this trigger is backed by a hardware interrupt and we have a * status register, check if this IRQ came from us. Notice that * we will process also if st_sensors_new_samples_available() * returns negative: if we can't check status, then poll * unconditionally. */ if (sdata->hw_irq_trigger && st_sensors_new_samples_available(indio_dev, sdata)) { iio_trigger_poll_nested(p); } else { dev_dbg(indio_dev->dev.parent, "spurious IRQ\n"); return IRQ_NONE; } /* * If we have proper level IRQs the handler will be re-entered if * the line is still active, so return here and come back in through * the top half if need be. */ if (!sdata->edge_irq) return IRQ_HANDLED; /* * If we are using edge IRQs, new samples arrived while processing * the IRQ and those may be missed unless we pick them here, so poll * again. If the sensor delivery frequency is very high, this thread * turns into a polled loop handler. */ while (sdata->hw_irq_trigger && st_sensors_new_samples_available(indio_dev, sdata)) { dev_dbg(indio_dev->dev.parent, "more samples came in during polling\n"); sdata->hw_timestamp = iio_get_time_ns(indio_dev); iio_trigger_poll_nested(p); } return IRQ_HANDLED; } int st_sensors_allocate_trigger(struct iio_dev *indio_dev, const struct iio_trigger_ops *trigger_ops) { struct st_sensor_data *sdata = iio_priv(indio_dev); struct device *parent = indio_dev->dev.parent; unsigned long irq_trig; int err; sdata->trig = devm_iio_trigger_alloc(parent, "%s-trigger", indio_dev->name); if (sdata->trig == NULL) { dev_err(&indio_dev->dev, "failed to allocate iio trigger.\n"); return -ENOMEM; } iio_trigger_set_drvdata(sdata->trig, indio_dev); sdata->trig->ops = trigger_ops; irq_trig = irqd_get_trigger_type(irq_get_irq_data(sdata->irq)); /* * If the IRQ is triggered on falling edge, we need to mark the * interrupt as active low, if the hardware supports this. */ switch(irq_trig) { case IRQF_TRIGGER_FALLING: case IRQF_TRIGGER_LOW: if (!sdata->sensor_settings->drdy_irq.addr_ihl) { dev_err(&indio_dev->dev, "falling/low specified for IRQ but hardware supports only rising/high: will request rising/high\n"); if (irq_trig == IRQF_TRIGGER_FALLING) irq_trig = IRQF_TRIGGER_RISING; if (irq_trig == IRQF_TRIGGER_LOW) irq_trig = IRQF_TRIGGER_HIGH; } else { /* Set up INT active low i.e. falling edge */ err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->drdy_irq.addr_ihl, sdata->sensor_settings->drdy_irq.mask_ihl, 1); if (err < 0) return err; dev_info(&indio_dev->dev, "interrupts on the falling edge or active low level\n"); } break; case IRQF_TRIGGER_RISING: dev_info(&indio_dev->dev, "interrupts on the rising edge\n"); break; case IRQF_TRIGGER_HIGH: dev_info(&indio_dev->dev, "interrupts active high level\n"); break; default: /* This is the most preferred mode, if possible */ dev_err(&indio_dev->dev, "unsupported IRQ trigger specified (%lx), enforce rising edge\n", irq_trig); irq_trig = IRQF_TRIGGER_RISING; } /* Tell the interrupt handler that we're dealing with edges */ if (irq_trig == IRQF_TRIGGER_FALLING || irq_trig == IRQF_TRIGGER_RISING) { if (!sdata->sensor_settings->drdy_irq.stat_drdy.addr) { dev_err(&indio_dev->dev, "edge IRQ not supported w/o stat register.\n"); return -EOPNOTSUPP; } sdata->edge_irq = true; } else { /* * If we're not using edges (i.e. level interrupts) we * just mask off the IRQ, handle one interrupt, then * if the line is still low, we return to the * interrupt handler top half again and start over. */ irq_trig |= IRQF_ONESHOT; } /* * If the interrupt pin is Open Drain, by definition this * means that the interrupt line may be shared with other * peripherals. But to do this we also need to have a status * register and mask to figure out if this sensor was firing * the IRQ or not, so we can tell the interrupt handle that * it was "our" interrupt. */ if (sdata->int_pin_open_drain && sdata->sensor_settings->drdy_irq.stat_drdy.addr) irq_trig |= IRQF_SHARED; err = devm_request_threaded_irq(parent, sdata->irq, st_sensors_irq_handler, st_sensors_irq_thread, irq_trig, sdata->trig->name, sdata->trig); if (err) { dev_err(&indio_dev->dev, "failed to request trigger IRQ.\n"); return err; } err = devm_iio_trigger_register(parent, sdata->trig); if (err < 0) { dev_err(&indio_dev->dev, "failed to register iio trigger.\n"); return err; } indio_dev->trig = iio_trigger_get(sdata->trig); return 0; } EXPORT_SYMBOL_NS(st_sensors_allocate_trigger, IIO_ST_SENSORS); int st_sensors_validate_device(struct iio_trigger *trig, struct iio_dev *indio_dev) { struct iio_dev *indio = iio_trigger_get_drvdata(trig); if (indio != indio_dev) return -EINVAL; return 0; } EXPORT_SYMBOL_NS(st_sensors_validate_device, IIO_ST_SENSORS);
linux-master
drivers/iio/common/st_sensors/st_sensors_trigger.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics sensors i2c library driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/regmap.h> #include <linux/iio/common/st_sensors_i2c.h> #define ST_SENSORS_I2C_MULTIREAD 0x80 static const struct regmap_config st_sensors_i2c_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static const struct regmap_config st_sensors_i2c_regmap_multiread_bit_config = { .reg_bits = 8, .val_bits = 8, .read_flag_mask = ST_SENSORS_I2C_MULTIREAD, }; /* * st_sensors_i2c_configure() - configure I2C interface * @indio_dev: IIO device reference. * @client: i2c client reference. * * Return: 0 on success, else a negative error code. */ int st_sensors_i2c_configure(struct iio_dev *indio_dev, struct i2c_client *client) { struct st_sensor_data *sdata = iio_priv(indio_dev); const struct regmap_config *config; if (sdata->sensor_settings->multi_read_bit) config = &st_sensors_i2c_regmap_multiread_bit_config; else config = &st_sensors_i2c_regmap_config; sdata->regmap = devm_regmap_init_i2c(client, config); if (IS_ERR(sdata->regmap)) { dev_err(&client->dev, "Failed to register i2c regmap (%ld)\n", PTR_ERR(sdata->regmap)); return PTR_ERR(sdata->regmap); } i2c_set_clientdata(client, indio_dev); indio_dev->name = client->name; sdata->irq = client->irq; return 0; } EXPORT_SYMBOL_NS(st_sensors_i2c_configure, IIO_ST_SENSORS); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics ST-sensors i2c driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/st_sensors/st_sensors_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics sensors core library driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/regmap.h> #include <asm/unaligned.h> #include <linux/iio/common/st_sensors.h> #include "st_sensors_core.h" int st_sensors_write_data_with_mask(struct iio_dev *indio_dev, u8 reg_addr, u8 mask, u8 data) { struct st_sensor_data *sdata = iio_priv(indio_dev); return regmap_update_bits(sdata->regmap, reg_addr, mask, data << __ffs(mask)); } int st_sensors_debugfs_reg_access(struct iio_dev *indio_dev, unsigned reg, unsigned writeval, unsigned *readval) { struct st_sensor_data *sdata = iio_priv(indio_dev); int err; if (!readval) return regmap_write(sdata->regmap, reg, writeval); err = regmap_read(sdata->regmap, reg, readval); if (err < 0) return err; return 0; } EXPORT_SYMBOL_NS(st_sensors_debugfs_reg_access, IIO_ST_SENSORS); static int st_sensors_match_odr(struct st_sensor_settings *sensor_settings, unsigned int odr, struct st_sensor_odr_avl *odr_out) { int i, ret = -EINVAL; for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) { if (sensor_settings->odr.odr_avl[i].hz == 0) goto st_sensors_match_odr_error; if (sensor_settings->odr.odr_avl[i].hz == odr) { odr_out->hz = sensor_settings->odr.odr_avl[i].hz; odr_out->value = sensor_settings->odr.odr_avl[i].value; ret = 0; break; } } st_sensors_match_odr_error: return ret; } int st_sensors_set_odr(struct iio_dev *indio_dev, unsigned int odr) { int err = 0; struct st_sensor_odr_avl odr_out = {0, 0}; struct st_sensor_data *sdata = iio_priv(indio_dev); mutex_lock(&sdata->odr_lock); if (!sdata->sensor_settings->odr.mask) goto unlock_mutex; err = st_sensors_match_odr(sdata->sensor_settings, odr, &odr_out); if (err < 0) goto unlock_mutex; if ((sdata->sensor_settings->odr.addr == sdata->sensor_settings->pw.addr) && (sdata->sensor_settings->odr.mask == sdata->sensor_settings->pw.mask)) { if (sdata->enabled == true) { err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->odr.addr, sdata->sensor_settings->odr.mask, odr_out.value); } else { err = 0; } } else { err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->odr.addr, sdata->sensor_settings->odr.mask, odr_out.value); } if (err >= 0) sdata->odr = odr_out.hz; unlock_mutex: mutex_unlock(&sdata->odr_lock); return err; } EXPORT_SYMBOL_NS(st_sensors_set_odr, IIO_ST_SENSORS); static int st_sensors_match_fs(struct st_sensor_settings *sensor_settings, unsigned int fs, int *index_fs_avl) { int i, ret = -EINVAL; for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) { if (sensor_settings->fs.fs_avl[i].num == 0) return ret; if (sensor_settings->fs.fs_avl[i].num == fs) { *index_fs_avl = i; ret = 0; break; } } return ret; } static int st_sensors_set_fullscale(struct iio_dev *indio_dev, unsigned int fs) { int err, i = 0; struct st_sensor_data *sdata = iio_priv(indio_dev); if (sdata->sensor_settings->fs.addr == 0) return 0; err = st_sensors_match_fs(sdata->sensor_settings, fs, &i); if (err < 0) goto st_accel_set_fullscale_error; err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->fs.addr, sdata->sensor_settings->fs.mask, sdata->sensor_settings->fs.fs_avl[i].value); if (err < 0) goto st_accel_set_fullscale_error; sdata->current_fullscale = &sdata->sensor_settings->fs.fs_avl[i]; return err; st_accel_set_fullscale_error: dev_err(&indio_dev->dev, "failed to set new fullscale.\n"); return err; } int st_sensors_set_enable(struct iio_dev *indio_dev, bool enable) { u8 tmp_value; int err = -EINVAL; bool found = false; struct st_sensor_odr_avl odr_out = {0, 0}; struct st_sensor_data *sdata = iio_priv(indio_dev); if (enable) { tmp_value = sdata->sensor_settings->pw.value_on; if ((sdata->sensor_settings->odr.addr == sdata->sensor_settings->pw.addr) && (sdata->sensor_settings->odr.mask == sdata->sensor_settings->pw.mask)) { err = st_sensors_match_odr(sdata->sensor_settings, sdata->odr, &odr_out); if (err < 0) goto set_enable_error; tmp_value = odr_out.value; found = true; } err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->pw.addr, sdata->sensor_settings->pw.mask, tmp_value); if (err < 0) goto set_enable_error; sdata->enabled = true; if (found) sdata->odr = odr_out.hz; } else { err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->pw.addr, sdata->sensor_settings->pw.mask, sdata->sensor_settings->pw.value_off); if (err < 0) goto set_enable_error; sdata->enabled = false; } set_enable_error: return err; } EXPORT_SYMBOL_NS(st_sensors_set_enable, IIO_ST_SENSORS); int st_sensors_set_axis_enable(struct iio_dev *indio_dev, u8 axis_enable) { struct st_sensor_data *sdata = iio_priv(indio_dev); int err = 0; if (sdata->sensor_settings->enable_axis.addr) err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->enable_axis.addr, sdata->sensor_settings->enable_axis.mask, axis_enable); return err; } EXPORT_SYMBOL_NS(st_sensors_set_axis_enable, IIO_ST_SENSORS); int st_sensors_power_enable(struct iio_dev *indio_dev) { static const char * const regulator_names[] = { "vdd", "vddio" }; struct device *parent = indio_dev->dev.parent; int err; /* Regulators not mandatory, but if requested we should enable them. */ err = devm_regulator_bulk_get_enable(parent, ARRAY_SIZE(regulator_names), regulator_names); if (err) return dev_err_probe(&indio_dev->dev, err, "unable to enable supplies\n"); return 0; } EXPORT_SYMBOL_NS(st_sensors_power_enable, IIO_ST_SENSORS); static int st_sensors_set_drdy_int_pin(struct iio_dev *indio_dev, struct st_sensors_platform_data *pdata) { struct st_sensor_data *sdata = iio_priv(indio_dev); /* Sensor does not support interrupts */ if (!sdata->sensor_settings->drdy_irq.int1.addr && !sdata->sensor_settings->drdy_irq.int2.addr) { if (pdata->drdy_int_pin) dev_info(&indio_dev->dev, "DRDY on pin INT%d specified, but sensor does not support interrupts\n", pdata->drdy_int_pin); return 0; } switch (pdata->drdy_int_pin) { case 1: if (!sdata->sensor_settings->drdy_irq.int1.mask) { dev_err(&indio_dev->dev, "DRDY on INT1 not available.\n"); return -EINVAL; } sdata->drdy_int_pin = 1; break; case 2: if (!sdata->sensor_settings->drdy_irq.int2.mask) { dev_err(&indio_dev->dev, "DRDY on INT2 not available.\n"); return -EINVAL; } sdata->drdy_int_pin = 2; break; default: dev_err(&indio_dev->dev, "DRDY on pdata not valid.\n"); return -EINVAL; } if (pdata->open_drain) { if (!sdata->sensor_settings->drdy_irq.int1.addr_od && !sdata->sensor_settings->drdy_irq.int2.addr_od) dev_err(&indio_dev->dev, "open drain requested but unsupported.\n"); else sdata->int_pin_open_drain = true; } return 0; } static struct st_sensors_platform_data *st_sensors_dev_probe(struct device *dev, struct st_sensors_platform_data *defdata) { struct st_sensors_platform_data *pdata; u32 val; if (!dev_fwnode(dev)) return NULL; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); if (!device_property_read_u32(dev, "st,drdy-int-pin", &val) && (val <= 2)) pdata->drdy_int_pin = (u8) val; else pdata->drdy_int_pin = defdata ? defdata->drdy_int_pin : 0; pdata->open_drain = device_property_read_bool(dev, "drive-open-drain"); return pdata; } /** * st_sensors_dev_name_probe() - device probe for ST sensor name * @dev: driver model representation of the device. * @name: device name buffer reference. * @len: device name buffer length. * * In effect this function matches an ID to an internal kernel * name for a certain sensor device, so that the rest of the autodetection can * rely on that name from this point on. I2C/SPI devices will be renamed * to match the internal kernel convention. */ void st_sensors_dev_name_probe(struct device *dev, char *name, int len) { const void *match; match = device_get_match_data(dev); if (!match) return; /* The name from the match takes precedence if present */ strscpy(name, match, len); } EXPORT_SYMBOL_NS(st_sensors_dev_name_probe, IIO_ST_SENSORS); int st_sensors_init_sensor(struct iio_dev *indio_dev, struct st_sensors_platform_data *pdata) { struct st_sensor_data *sdata = iio_priv(indio_dev); struct st_sensors_platform_data *of_pdata; int err = 0; mutex_init(&sdata->odr_lock); /* If OF/DT pdata exists, it will take precedence of anything else */ of_pdata = st_sensors_dev_probe(indio_dev->dev.parent, pdata); if (IS_ERR(of_pdata)) return PTR_ERR(of_pdata); if (of_pdata) pdata = of_pdata; if (pdata) { err = st_sensors_set_drdy_int_pin(indio_dev, pdata); if (err < 0) return err; } err = st_sensors_set_enable(indio_dev, false); if (err < 0) return err; /* Disable DRDY, this might be still be enabled after reboot. */ err = st_sensors_set_dataready_irq(indio_dev, false); if (err < 0) return err; if (sdata->current_fullscale) { err = st_sensors_set_fullscale(indio_dev, sdata->current_fullscale->num); if (err < 0) return err; } else dev_info(&indio_dev->dev, "Full-scale not possible\n"); err = st_sensors_set_odr(indio_dev, sdata->odr); if (err < 0) return err; /* set BDU */ if (sdata->sensor_settings->bdu.addr) { err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->bdu.addr, sdata->sensor_settings->bdu.mask, true); if (err < 0) return err; } /* set DAS */ if (sdata->sensor_settings->das.addr) { err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->das.addr, sdata->sensor_settings->das.mask, 1); if (err < 0) return err; } if (sdata->int_pin_open_drain) { u8 addr, mask; if (sdata->drdy_int_pin == 1) { addr = sdata->sensor_settings->drdy_irq.int1.addr_od; mask = sdata->sensor_settings->drdy_irq.int1.mask_od; } else { addr = sdata->sensor_settings->drdy_irq.int2.addr_od; mask = sdata->sensor_settings->drdy_irq.int2.mask_od; } dev_info(&indio_dev->dev, "set interrupt line to open drain mode on pin %d\n", sdata->drdy_int_pin); err = st_sensors_write_data_with_mask(indio_dev, addr, mask, 1); if (err < 0) return err; } err = st_sensors_set_axis_enable(indio_dev, ST_SENSORS_ENABLE_ALL_AXIS); return err; } EXPORT_SYMBOL_NS(st_sensors_init_sensor, IIO_ST_SENSORS); int st_sensors_set_dataready_irq(struct iio_dev *indio_dev, bool enable) { int err; u8 drdy_addr, drdy_mask; struct st_sensor_data *sdata = iio_priv(indio_dev); if (!sdata->sensor_settings->drdy_irq.int1.addr && !sdata->sensor_settings->drdy_irq.int2.addr) { /* * there are some devices (e.g. LIS3MDL) where drdy line is * routed to a given pin and it is not possible to select a * different one. Take into account irq status register * to understand if irq trigger can be properly supported */ if (sdata->sensor_settings->drdy_irq.stat_drdy.addr) sdata->hw_irq_trigger = enable; return 0; } /* Enable/Disable the interrupt generator 1. */ if (sdata->sensor_settings->drdy_irq.ig1.en_addr > 0) { err = st_sensors_write_data_with_mask(indio_dev, sdata->sensor_settings->drdy_irq.ig1.en_addr, sdata->sensor_settings->drdy_irq.ig1.en_mask, (int)enable); if (err < 0) goto st_accel_set_dataready_irq_error; } if (sdata->drdy_int_pin == 1) { drdy_addr = sdata->sensor_settings->drdy_irq.int1.addr; drdy_mask = sdata->sensor_settings->drdy_irq.int1.mask; } else { drdy_addr = sdata->sensor_settings->drdy_irq.int2.addr; drdy_mask = sdata->sensor_settings->drdy_irq.int2.mask; } /* Flag to the poll function that the hardware trigger is in use */ sdata->hw_irq_trigger = enable; /* Enable/Disable the interrupt generator for data ready. */ err = st_sensors_write_data_with_mask(indio_dev, drdy_addr, drdy_mask, (int)enable); st_accel_set_dataready_irq_error: return err; } EXPORT_SYMBOL_NS(st_sensors_set_dataready_irq, IIO_ST_SENSORS); int st_sensors_set_fullscale_by_gain(struct iio_dev *indio_dev, int scale) { int err = -EINVAL, i; struct st_sensor_data *sdata = iio_priv(indio_dev); for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) { if ((sdata->sensor_settings->fs.fs_avl[i].gain == scale) && (sdata->sensor_settings->fs.fs_avl[i].gain != 0)) { err = 0; break; } } if (err < 0) goto st_sensors_match_scale_error; err = st_sensors_set_fullscale(indio_dev, sdata->sensor_settings->fs.fs_avl[i].num); st_sensors_match_scale_error: return err; } EXPORT_SYMBOL_NS(st_sensors_set_fullscale_by_gain, IIO_ST_SENSORS); static int st_sensors_read_axis_data(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *data) { int err; u8 *outdata; struct st_sensor_data *sdata = iio_priv(indio_dev); unsigned int byte_for_channel; byte_for_channel = DIV_ROUND_UP(ch->scan_type.realbits + ch->scan_type.shift, 8); outdata = kmalloc(byte_for_channel, GFP_DMA | GFP_KERNEL); if (!outdata) return -ENOMEM; err = regmap_bulk_read(sdata->regmap, ch->address, outdata, byte_for_channel); if (err < 0) goto st_sensors_free_memory; if (byte_for_channel == 1) *data = (s8)*outdata; else if (byte_for_channel == 2) *data = (s16)get_unaligned_le16(outdata); else if (byte_for_channel == 3) *data = (s32)sign_extend32(get_unaligned_le24(outdata), 23); st_sensors_free_memory: kfree(outdata); return err; } int st_sensors_read_info_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *val) { int err; struct st_sensor_data *sdata = iio_priv(indio_dev); err = iio_device_claim_direct_mode(indio_dev); if (err) return err; mutex_lock(&sdata->odr_lock); err = st_sensors_set_enable(indio_dev, true); if (err < 0) goto out; msleep((sdata->sensor_settings->bootime * 1000) / sdata->odr); err = st_sensors_read_axis_data(indio_dev, ch, val); if (err < 0) goto out; *val = *val >> ch->scan_type.shift; err = st_sensors_set_enable(indio_dev, false); out: mutex_unlock(&sdata->odr_lock); iio_device_release_direct_mode(indio_dev); return err; } EXPORT_SYMBOL_NS(st_sensors_read_info_raw, IIO_ST_SENSORS); /* * st_sensors_get_settings_index() - get index of the sensor settings for a * specific device from list of settings * @name: device name buffer reference. * @list: sensor settings list. * @list_length: length of sensor settings list. * * Return: non negative number on success (valid index), * negative error code otherwise. */ int st_sensors_get_settings_index(const char *name, const struct st_sensor_settings *list, const int list_length) { int i, n; for (i = 0; i < list_length; i++) { for (n = 0; n < ST_SENSORS_MAX_4WAI; n++) { if (strcmp(name, list[i].sensors_supported[n]) == 0) return i; } } return -ENODEV; } EXPORT_SYMBOL_NS(st_sensors_get_settings_index, IIO_ST_SENSORS); /* * st_sensors_verify_id() - verify sensor ID (WhoAmI) is matching with the * expected value * @indio_dev: IIO device reference. * * Return: 0 on success (valid sensor ID), else a negative error code. */ int st_sensors_verify_id(struct iio_dev *indio_dev) { struct st_sensor_data *sdata = iio_priv(indio_dev); int wai, err; if (sdata->sensor_settings->wai_addr) { err = regmap_read(sdata->regmap, sdata->sensor_settings->wai_addr, &wai); if (err < 0) { dev_err(&indio_dev->dev, "failed to read Who-Am-I register.\n"); return err; } if (sdata->sensor_settings->wai != wai) { dev_err(&indio_dev->dev, "%s: WhoAmI mismatch (0x%x).\n", indio_dev->name, wai); return -EINVAL; } } return 0; } EXPORT_SYMBOL_NS(st_sensors_verify_id, IIO_ST_SENSORS); ssize_t st_sensors_sysfs_sampling_frequency_avail(struct device *dev, struct device_attribute *attr, char *buf) { int i, len = 0; struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct st_sensor_data *sdata = iio_priv(indio_dev); for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) { if (sdata->sensor_settings->odr.odr_avl[i].hz == 0) break; len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", sdata->sensor_settings->odr.odr_avl[i].hz); } buf[len - 1] = '\n'; return len; } EXPORT_SYMBOL_NS(st_sensors_sysfs_sampling_frequency_avail, IIO_ST_SENSORS); ssize_t st_sensors_sysfs_scale_avail(struct device *dev, struct device_attribute *attr, char *buf) { int i, len = 0, q, r; struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct st_sensor_data *sdata = iio_priv(indio_dev); for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) { if (sdata->sensor_settings->fs.fs_avl[i].num == 0) break; q = sdata->sensor_settings->fs.fs_avl[i].gain / 1000000; r = sdata->sensor_settings->fs.fs_avl[i].gain % 1000000; len += scnprintf(buf + len, PAGE_SIZE - len, "%u.%06u ", q, r); } buf[len - 1] = '\n'; return len; } EXPORT_SYMBOL_NS(st_sensors_sysfs_scale_avail, IIO_ST_SENSORS); MODULE_AUTHOR("Denis Ciocca <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics ST-sensors core"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/common/st_sensors/st_sensors_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics sensors buffer library driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/iio/iio.h> #include <linux/iio/trigger.h> #include <linux/interrupt.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/irqreturn.h> #include <linux/regmap.h> #include <linux/iio/common/st_sensors.h> static int st_sensors_get_buffer_element(struct iio_dev *indio_dev, u8 *buf) { struct st_sensor_data *sdata = iio_priv(indio_dev); unsigned int num_data_channels = sdata->num_data_channels; int i; for_each_set_bit(i, indio_dev->active_scan_mask, num_data_channels) { const struct iio_chan_spec *channel = &indio_dev->channels[i]; unsigned int bytes_to_read = DIV_ROUND_UP(channel->scan_type.realbits + channel->scan_type.shift, 8); unsigned int storage_bytes = channel->scan_type.storagebits >> 3; buf = PTR_ALIGN(buf, storage_bytes); if (regmap_bulk_read(sdata->regmap, channel->address, buf, bytes_to_read) < 0) return -EIO; /* Advance the buffer pointer */ buf += storage_bytes; } return 0; } irqreturn_t st_sensors_trigger_handler(int irq, void *p) { int len; struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct st_sensor_data *sdata = iio_priv(indio_dev); s64 timestamp; /* * If we do timestamping here, do it before reading the values, because * once we've read the values, new interrupts can occur (when using * the hardware trigger) and the hw_timestamp may get updated. * By storing it in a local variable first, we are safe. */ if (iio_trigger_using_own(indio_dev)) timestamp = sdata->hw_timestamp; else timestamp = iio_get_time_ns(indio_dev); len = st_sensors_get_buffer_element(indio_dev, sdata->buffer_data); if (len < 0) goto st_sensors_get_buffer_element_error; iio_push_to_buffers_with_timestamp(indio_dev, sdata->buffer_data, timestamp); st_sensors_get_buffer_element_error: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } EXPORT_SYMBOL_NS(st_sensors_trigger_handler, IIO_ST_SENSORS);
linux-master
drivers/iio/common/st_sensors/st_sensors_buffer.c
// SPDX-License-Identifier: GPL-2.0-only /* * HID Sensors Driver * Copyright (c) 2012, Intel Corporation. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/time.h> #include <linux/units.h> #include <linux/hid-sensor-hub.h> #include <linux/iio/iio.h> static struct { u32 usage_id; int unit; /* 0 for default others from HID sensor spec */ int scale_val0; /* scale, whole number */ int scale_val1; /* scale, fraction in nanos */ } unit_conversion[] = { {HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000}, {HID_USAGE_SENSOR_ACCEL_3D, HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0}, {HID_USAGE_SENSOR_ACCEL_3D, HID_USAGE_SENSOR_UNITS_G, 9, 806650000}, {HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000}, {HID_USAGE_SENSOR_GRAVITY_VECTOR, HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0}, {HID_USAGE_SENSOR_GRAVITY_VECTOR, HID_USAGE_SENSOR_UNITS_G, 9, 806650000}, {HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293}, {HID_USAGE_SENSOR_GYRO_3D, HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0}, {HID_USAGE_SENSOR_GYRO_3D, HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293}, {HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000}, {HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0}, {HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293}, {HID_USAGE_SENSOR_INCLINOMETER_3D, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293}, {HID_USAGE_SENSOR_INCLINOMETER_3D, HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0}, {HID_USAGE_SENSOR_ALS, 0, 1, 0}, {HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0}, {HID_USAGE_SENSOR_PRESSURE, 0, 100, 0}, {HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000}, {HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0}, {HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND, 1000000, 0}, {HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0}, {HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0}, {HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0}, {HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0}, {HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0}, {HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0}, {HID_USAGE_SENSOR_HINGE, 0, 0, 17453293}, {HID_USAGE_SENSOR_HINGE, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293}, }; static void simple_div(int dividend, int divisor, int *whole, int *micro_frac) { int rem; int exp = 0; *micro_frac = 0; if (divisor == 0) { *whole = 0; return; } *whole = dividend/divisor; rem = dividend % divisor; if (rem) { while (rem <= divisor) { rem *= 10; exp++; } *micro_frac = (rem / divisor) * int_pow(10, 6 - exp); } } static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2) { int divisor = int_pow(10, exp); *val1 = no / divisor; *val2 = no % divisor * int_pow(10, 6 - exp); } /* VTF format uses exponent and variable size format. For example if the size is 2 bytes 0x0067 with VTF16E14 format -> +1.03 To convert just change to 0x67 to decimal and use two decimal as E14 stands for 10^-2. Negative numbers are 2's complement */ static void convert_from_vtf_format(u32 value, int size, int exp, int *val1, int *val2) { int sign = 1; if (value & BIT(size*8 - 1)) { value = ((1LL << (size * 8)) - value); sign = -1; } exp = hid_sensor_convert_exponent(exp); if (exp >= 0) { *val1 = sign * value * int_pow(10, exp); *val2 = 0; } else { split_micro_fraction(value, -exp, val1, val2); if (*val1) *val1 = sign * (*val1); else *val2 = sign * (*val2); } } static u32 convert_to_vtf_format(int size, int exp, int val1, int val2) { int divisor; u32 value; int sign = 1; if (val1 < 0 || val2 < 0) sign = -1; exp = hid_sensor_convert_exponent(exp); if (exp < 0) { divisor = int_pow(10, 6 + exp); value = abs(val1) * int_pow(10, -exp); value += abs(val2) / divisor; } else { divisor = int_pow(10, exp); value = abs(val1) / divisor; } if (sign < 0) value = ((1LL << (size * 8)) - value); return value; } s32 hid_sensor_read_poll_value(struct hid_sensor_common *st) { s32 value = 0; int ret; ret = sensor_hub_get_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) { return -EINVAL; } else { if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND) value = value * 1000; } return value; } EXPORT_SYMBOL_NS(hid_sensor_read_poll_value, IIO_HID_ATTRIBUTES); int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st, int *val1, int *val2) { s32 value; int ret; ret = sensor_hub_get_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) { *val1 = *val2 = 0; return -EINVAL; } else { if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND) simple_div(1000, value, val1, val2); else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND) simple_div(1, value, val1, val2); else { *val1 = *val2 = 0; return -EINVAL; } } return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(hid_sensor_read_samp_freq_value, IIO_HID); int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st, int val1, int val2) { s32 value; int ret; if (val1 < 0 || val2 < 0) return -EINVAL; value = val1 * HZ_PER_MHZ + val2; if (value) { if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND) value = NSEC_PER_SEC / value; else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND) value = USEC_PER_SEC / value; else value = 0; } ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; ret = sensor_hub_get_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; st->poll_interval = value; return 0; } EXPORT_SYMBOL_NS(hid_sensor_write_samp_freq_value, IIO_HID); int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st, int *val1, int *val2) { s32 value; int ret; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity.report_id, st->sensitivity.index, sizeof(value), &value); if (ret < 0 || value < 0) { *val1 = *val2 = 0; return -EINVAL; } else { convert_from_vtf_format(value, st->sensitivity.size, st->sensitivity.unit_expo, val1, val2); } return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_value, IIO_HID); int hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common *st, int *val1, int *val2) { s32 value; int ret; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity_rel.report_id, st->sensitivity_rel.index, sizeof(value), &value); if (ret < 0 || value < 0) { *val1 = *val2 = 0; return -EINVAL; } convert_from_vtf_format(value, st->sensitivity_rel.size, st->sensitivity_rel.unit_expo, val1, val2); return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_rel_value, IIO_HID); int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st, int val1, int val2) { s32 value; int ret; if (val1 < 0 || val2 < 0) return -EINVAL; value = convert_to_vtf_format(st->sensitivity.size, st->sensitivity.unit_expo, val1, val2); ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id, st->sensitivity.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity.report_id, st->sensitivity.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; st->raw_hystersis = value; return 0; } EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_value, IIO_HID); int hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common *st, int val1, int val2) { s32 value; int ret; if (val1 < 0 || val2 < 0) return -EINVAL; value = convert_to_vtf_format(st->sensitivity_rel.size, st->sensitivity_rel.unit_expo, val1, val2); ret = sensor_hub_set_feature(st->hsdev, st->sensitivity_rel.report_id, st->sensitivity_rel.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity_rel.report_id, st->sensitivity_rel.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; st->raw_hystersis = value; return 0; } EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_rel_value, IIO_HID); /* * This fuction applies the unit exponent to the scale. * For example: * 9.806650000 ->exp:2-> val0[980]val1[665000000] * 9.000806000 ->exp:2-> val0[900]val1[80600000] * 0.174535293 ->exp:2-> val0[17]val1[453529300] * 1.001745329 ->exp:0-> val0[1]val1[1745329] * 1.001745329 ->exp:2-> val0[100]val1[174532900] * 1.001745329 ->exp:4-> val0[10017]val1[453290000] * 9.806650000 ->exp:-2-> val0[0]val1[98066500] */ static void adjust_exponent_nano(int *val0, int *val1, int scale0, int scale1, int exp) { int divisor; int i; int x; int res; int rem; if (exp > 0) { *val0 = scale0 * int_pow(10, exp); res = 0; if (exp > 9) { *val1 = 0; return; } for (i = 0; i < exp; ++i) { divisor = int_pow(10, 8 - i); x = scale1 / divisor; res += int_pow(10, exp - 1 - i) * x; scale1 = scale1 % divisor; } *val0 += res; *val1 = scale1 * int_pow(10, exp); } else if (exp < 0) { exp = abs(exp); if (exp > 9) { *val0 = *val1 = 0; return; } divisor = int_pow(10, exp); *val0 = scale0 / divisor; rem = scale0 % divisor; res = 0; for (i = 0; i < (9 - exp); ++i) { divisor = int_pow(10, 8 - i); x = scale1 / divisor; res += int_pow(10, 8 - exp - i) * x; scale1 = scale1 % divisor; } *val1 = rem * int_pow(10, 9 - exp) + res; } else { *val0 = scale0; *val1 = scale1; } } int hid_sensor_format_scale(u32 usage_id, struct hid_sensor_hub_attribute_info *attr_info, int *val0, int *val1) { int i; int exp; *val0 = 1; *val1 = 0; for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) { if (unit_conversion[i].usage_id == usage_id && unit_conversion[i].unit == attr_info->units) { exp = hid_sensor_convert_exponent( attr_info->unit_expo); adjust_exponent_nano(val0, val1, unit_conversion[i].scale_val0, unit_conversion[i].scale_val1, exp); break; } } return IIO_VAL_INT_PLUS_NANO; } EXPORT_SYMBOL_NS(hid_sensor_format_scale, IIO_HID); int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st, int64_t raw_value) { return st->timestamp_ns_scale * raw_value; } EXPORT_SYMBOL_NS(hid_sensor_convert_timestamp, IIO_HID); static int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev, u32 usage_id, struct hid_sensor_common *st) { sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_REPORT_INTERVAL, &st->poll); /* Default unit of measure is milliseconds */ if (st->poll.units == 0) st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND; st->poll_interval = -1; return 0; } static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev, u32 usage_id, struct hid_sensor_common *st) { sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_REPORT_LATENCY, &st->report_latency); hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n", st->report_latency.index, st->report_latency.report_id); } int hid_sensor_get_report_latency(struct hid_sensor_common *st) { int ret; int value; ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id, st->report_latency.index, sizeof(value), &value); if (ret < 0) return ret; return value; } EXPORT_SYMBOL_NS(hid_sensor_get_report_latency, IIO_HID_ATTRIBUTES); int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms) { return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id, st->report_latency.index, sizeof(latency_ms), &latency_ms); } EXPORT_SYMBOL_NS(hid_sensor_set_report_latency, IIO_HID_ATTRIBUTES); bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st) { return st->report_latency.index > 0 && st->report_latency.report_id > 0; } EXPORT_SYMBOL_NS(hid_sensor_batch_mode_supported, IIO_HID_ATTRIBUTES); int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev, u32 usage_id, struct hid_sensor_common *st, const u32 *sensitivity_addresses, u32 sensitivity_addresses_len) { struct hid_sensor_hub_attribute_info timestamp; s32 value; int ret; int i; hid_sensor_get_reporting_interval(hsdev, usage_id, st); sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_REPORT_STATE, &st->report_state); sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROY_POWER_STATE, &st->power_state); st->power_state.logical_minimum = 1; st->report_state.logical_minimum = 1; sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS, &st->sensitivity); sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_SENSITIVITY_REL_PCT, &st->sensitivity_rel); /* * Set Sensitivity field ids, when there is no individual modifier, will * check absolute sensitivity and relative sensitivity of data field */ for (i = 0; i < sensitivity_addresses_len; i++) { if (st->sensitivity.index < 0) sensor_hub_input_get_attribute_info( hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS | sensitivity_addresses[i], &st->sensitivity); if (st->sensitivity_rel.index < 0) sensor_hub_input_get_attribute_info( hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT | sensitivity_addresses[i], &st->sensitivity_rel); } st->raw_hystersis = -1; sensor_hub_input_get_attribute_info(hsdev, HID_INPUT_REPORT, usage_id, HID_USAGE_SENSOR_TIME_TIMESTAMP, &timestamp); if (timestamp.index >= 0 && timestamp.report_id) { int val0, val1; hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP, &timestamp, &val0, &val1); st->timestamp_ns_scale = val0; } else st->timestamp_ns_scale = 1000000000; hid_sensor_get_report_latency_info(hsdev, usage_id, st); hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n", st->poll.index, st->poll.report_id, st->report_state.index, st->report_state.report_id, st->power_state.index, st->power_state.report_id, st->sensitivity.index, st->sensitivity.report_id, timestamp.index, timestamp.report_id); ret = sensor_hub_get_feature(hsdev, st->power_state.report_id, st->power_state.index, sizeof(value), &value); if (ret < 0) return ret; if (value < 0) return -EINVAL; return 0; } EXPORT_SYMBOL_NS(hid_sensor_parse_common_attributes, IIO_HID); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_DESCRIPTION("HID Sensor common attribute processing"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/common/hid-sensors/hid-sensor-attributes.c
// SPDX-License-Identifier: GPL-2.0-only /* * HID Sensors Driver * Copyright (c) 2012, Intel Corporation. */ #include <linux/device.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/hid-sensor-hub.h> #include <linux/workqueue.h> #include <linux/iio/iio.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/sysfs.h> #include "hid-sensor-trigger.h" static ssize_t _hid_sensor_set_report_latency(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct hid_sensor_common *attrb = iio_device_get_drvdata(indio_dev); int integer, fract, ret; int latency; ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); if (ret) return ret; latency = integer * 1000 + fract / 1000; ret = hid_sensor_set_report_latency(attrb, latency); if (ret < 0) return len; attrb->latency_ms = hid_sensor_get_report_latency(attrb); return len; } static ssize_t _hid_sensor_get_report_latency(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct hid_sensor_common *attrb = iio_device_get_drvdata(indio_dev); int latency; latency = hid_sensor_get_report_latency(attrb); if (latency < 0) return latency; return sprintf(buf, "%d.%06u\n", latency / 1000, (latency % 1000) * 1000); } static ssize_t _hid_sensor_get_fifo_state(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct hid_sensor_common *attrb = iio_device_get_drvdata(indio_dev); int latency; latency = hid_sensor_get_report_latency(attrb); if (latency < 0) return latency; return sprintf(buf, "%d\n", !!latency); } static IIO_DEVICE_ATTR(hwfifo_timeout, 0644, _hid_sensor_get_report_latency, _hid_sensor_set_report_latency, 0); static IIO_DEVICE_ATTR(hwfifo_enabled, 0444, _hid_sensor_get_fifo_state, NULL, 0); static const struct iio_dev_attr *hid_sensor_fifo_attributes[] = { &iio_dev_attr_hwfifo_timeout, &iio_dev_attr_hwfifo_enabled, NULL, }; static int _hid_sensor_power_state(struct hid_sensor_common *st, bool state) { int state_val; int report_val; s32 poll_value = 0; if (state) { if (sensor_hub_device_open(st->hsdev)) return -EIO; atomic_inc(&st->data_ready); state_val = hid_sensor_get_usage_index(st->hsdev, st->power_state.report_id, st->power_state.index, HID_USAGE_SENSOR_PROP_POWER_STATE_D0_FULL_POWER_ENUM); report_val = hid_sensor_get_usage_index(st->hsdev, st->report_state.report_id, st->report_state.index, HID_USAGE_SENSOR_PROP_REPORTING_STATE_ALL_EVENTS_ENUM); poll_value = hid_sensor_read_poll_value(st); } else { int val; val = atomic_dec_if_positive(&st->data_ready); if (val < 0) return 0; sensor_hub_device_close(st->hsdev); state_val = hid_sensor_get_usage_index(st->hsdev, st->power_state.report_id, st->power_state.index, HID_USAGE_SENSOR_PROP_POWER_STATE_D4_POWER_OFF_ENUM); report_val = hid_sensor_get_usage_index(st->hsdev, st->report_state.report_id, st->report_state.index, HID_USAGE_SENSOR_PROP_REPORTING_STATE_NO_EVENTS_ENUM); } if (state_val >= 0) { state_val += st->power_state.logical_minimum; sensor_hub_set_feature(st->hsdev, st->power_state.report_id, st->power_state.index, sizeof(state_val), &state_val); } if (report_val >= 0) { report_val += st->report_state.logical_minimum; sensor_hub_set_feature(st->hsdev, st->report_state.report_id, st->report_state.index, sizeof(report_val), &report_val); } pr_debug("HID_SENSOR %s set power_state %d report_state %d\n", st->pdev->name, state_val, report_val); sensor_hub_get_feature(st->hsdev, st->power_state.report_id, st->power_state.index, sizeof(state_val), &state_val); if (state && poll_value) msleep_interruptible(poll_value * 2); return 0; } EXPORT_SYMBOL_NS(hid_sensor_power_state, IIO_HID); int hid_sensor_power_state(struct hid_sensor_common *st, bool state) { #ifdef CONFIG_PM int ret; if (atomic_add_unless(&st->runtime_pm_enable, 1, 1)) pm_runtime_enable(&st->pdev->dev); if (state) { atomic_inc(&st->user_requested_state); ret = pm_runtime_resume_and_get(&st->pdev->dev); } else { atomic_dec(&st->user_requested_state); pm_runtime_mark_last_busy(&st->pdev->dev); pm_runtime_use_autosuspend(&st->pdev->dev); ret = pm_runtime_put_autosuspend(&st->pdev->dev); } if (ret < 0) return ret; return 0; #else atomic_set(&st->user_requested_state, state); return _hid_sensor_power_state(st, state); #endif } static void hid_sensor_set_power_work(struct work_struct *work) { struct hid_sensor_common *attrb = container_of(work, struct hid_sensor_common, work); if (attrb->poll_interval >= 0) sensor_hub_set_feature(attrb->hsdev, attrb->poll.report_id, attrb->poll.index, sizeof(attrb->poll_interval), &attrb->poll_interval); if (attrb->raw_hystersis >= 0) sensor_hub_set_feature(attrb->hsdev, attrb->sensitivity.report_id, attrb->sensitivity.index, sizeof(attrb->raw_hystersis), &attrb->raw_hystersis); if (attrb->latency_ms > 0) hid_sensor_set_report_latency(attrb, attrb->latency_ms); if (atomic_read(&attrb->user_requested_state)) _hid_sensor_power_state(attrb, true); } static int hid_sensor_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { return hid_sensor_power_state(iio_trigger_get_drvdata(trig), state); } void hid_sensor_remove_trigger(struct iio_dev *indio_dev, struct hid_sensor_common *attrb) { if (atomic_read(&attrb->runtime_pm_enable)) pm_runtime_disable(&attrb->pdev->dev); pm_runtime_set_suspended(&attrb->pdev->dev); cancel_work_sync(&attrb->work); iio_trigger_unregister(attrb->trigger); iio_trigger_free(attrb->trigger); iio_triggered_buffer_cleanup(indio_dev); } EXPORT_SYMBOL_NS(hid_sensor_remove_trigger, IIO_HID); static const struct iio_trigger_ops hid_sensor_trigger_ops = { .set_trigger_state = &hid_sensor_data_rdy_trigger_set_state, }; int hid_sensor_setup_trigger(struct iio_dev *indio_dev, const char *name, struct hid_sensor_common *attrb) { const struct iio_dev_attr **fifo_attrs; int ret; struct iio_trigger *trig; if (hid_sensor_batch_mode_supported(attrb)) fifo_attrs = hid_sensor_fifo_attributes; else fifo_attrs = NULL; ret = iio_triggered_buffer_setup_ext(indio_dev, &iio_pollfunc_store_time, NULL, IIO_BUFFER_DIRECTION_IN, NULL, fifo_attrs); if (ret) { dev_err(&indio_dev->dev, "Triggered Buffer Setup Failed\n"); return ret; } trig = iio_trigger_alloc(indio_dev->dev.parent, "%s-dev%d", name, iio_device_id(indio_dev)); if (trig == NULL) { dev_err(&indio_dev->dev, "Trigger Allocate Failed\n"); ret = -ENOMEM; goto error_triggered_buffer_cleanup; } iio_trigger_set_drvdata(trig, attrb); trig->ops = &hid_sensor_trigger_ops; ret = iio_trigger_register(trig); if (ret) { dev_err(&indio_dev->dev, "Trigger Register Failed\n"); goto error_free_trig; } attrb->trigger = trig; indio_dev->trig = iio_trigger_get(trig); ret = pm_runtime_set_active(&indio_dev->dev); if (ret) goto error_unreg_trigger; iio_device_set_drvdata(indio_dev, attrb); INIT_WORK(&attrb->work, hid_sensor_set_power_work); pm_suspend_ignore_children(&attrb->pdev->dev, true); /* Default to 3 seconds, but can be changed from sysfs */ pm_runtime_set_autosuspend_delay(&attrb->pdev->dev, 3000); return ret; error_unreg_trigger: iio_trigger_unregister(trig); error_free_trig: iio_trigger_free(trig); error_triggered_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); return ret; } EXPORT_SYMBOL_NS(hid_sensor_setup_trigger, IIO_HID); static int __maybe_unused hid_sensor_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct hid_sensor_common *attrb = iio_device_get_drvdata(indio_dev); return _hid_sensor_power_state(attrb, false); } static int __maybe_unused hid_sensor_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct hid_sensor_common *attrb = iio_device_get_drvdata(indio_dev); schedule_work(&attrb->work); return 0; } static int __maybe_unused hid_sensor_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct hid_sensor_common *attrb = iio_device_get_drvdata(indio_dev); return _hid_sensor_power_state(attrb, true); } const struct dev_pm_ops hid_sensor_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(hid_sensor_suspend, hid_sensor_resume) SET_RUNTIME_PM_OPS(hid_sensor_suspend, hid_sensor_runtime_resume, NULL) }; EXPORT_SYMBOL_NS(hid_sensor_pm_ops, IIO_HID); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_DESCRIPTION("HID Sensor trigger processing"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_HID_ATTRIBUTES);
linux-master
drivers/iio/common/hid-sensors/hid-sensor-trigger.c
// SPDX-License-Identifier: GPL-2.0-only /* * mag3110.c - Support for Freescale MAG3110 magnetometer sensor * * Copyright (c) 2013 Peter Meerwald <[email protected]> * * (7-bit I2C slave address 0x0e) * * TODO: irq, user offset, oversampling, continuous mode */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/buffer.h> #include <linux/iio/triggered_buffer.h> #include <linux/delay.h> #include <linux/regulator/consumer.h> #define MAG3110_STATUS 0x00 #define MAG3110_OUT_X 0x01 /* MSB first */ #define MAG3110_OUT_Y 0x03 #define MAG3110_OUT_Z 0x05 #define MAG3110_WHO_AM_I 0x07 #define MAG3110_SYSMOD 0x08 #define MAG3110_OFF_X 0x09 /* MSB first */ #define MAG3110_OFF_Y 0x0b #define MAG3110_OFF_Z 0x0d #define MAG3110_DIE_TEMP 0x0f #define MAG3110_CTRL_REG1 0x10 #define MAG3110_CTRL_REG2 0x11 #define MAG3110_STATUS_DRDY (BIT(2) | BIT(1) | BIT(0)) #define MAG3110_CTRL_DR_MASK (BIT(7) | BIT(6) | BIT(5)) #define MAG3110_CTRL_DR_SHIFT 5 #define MAG3110_CTRL_DR_DEFAULT 0 #define MAG3110_SYSMOD_MODE_MASK GENMASK(1, 0) #define MAG3110_CTRL_TM BIT(1) /* trigger single measurement */ #define MAG3110_CTRL_AC BIT(0) /* continuous measurements */ #define MAG3110_CTRL_AUTO_MRST_EN BIT(7) /* magnetic auto-reset */ #define MAG3110_CTRL_RAW BIT(5) /* measurements not user-offset corrected */ #define MAG3110_DEVICE_ID 0xc4 /* Each client has this additional data */ struct mag3110_data { struct i2c_client *client; struct mutex lock; u8 ctrl_reg1; int sleep_val; struct regulator *vdd_reg; struct regulator *vddio_reg; /* Ensure natural alignment of timestamp */ struct { __be16 channels[3]; u8 temperature; s64 ts __aligned(8); } scan; }; static int mag3110_request(struct mag3110_data *data) { int ret, tries = 150; if ((data->ctrl_reg1 & MAG3110_CTRL_AC) == 0) { /* trigger measurement */ ret = i2c_smbus_write_byte_data(data->client, MAG3110_CTRL_REG1, data->ctrl_reg1 | MAG3110_CTRL_TM); if (ret < 0) return ret; } while (tries-- > 0) { ret = i2c_smbus_read_byte_data(data->client, MAG3110_STATUS); if (ret < 0) return ret; /* wait for data ready */ if ((ret & MAG3110_STATUS_DRDY) == MAG3110_STATUS_DRDY) break; if (data->sleep_val <= 20) usleep_range(data->sleep_val * 250, data->sleep_val * 500); else msleep(20); } if (tries < 0) { dev_err(&data->client->dev, "data not ready\n"); return -EIO; } return 0; } static int mag3110_read(struct mag3110_data *data, __be16 buf[3]) { int ret; mutex_lock(&data->lock); ret = mag3110_request(data); if (ret < 0) { mutex_unlock(&data->lock); return ret; } ret = i2c_smbus_read_i2c_block_data(data->client, MAG3110_OUT_X, 3 * sizeof(__be16), (u8 *) buf); mutex_unlock(&data->lock); return ret; } static ssize_t mag3110_show_int_plus_micros(char *buf, const int (*vals)[2], int n) { size_t len = 0; while (n-- > 0) len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", vals[n][0], vals[n][1]); /* replace trailing space by newline */ buf[len - 1] = '\n'; return len; } static int mag3110_get_int_plus_micros_index(const int (*vals)[2], int n, int val, int val2) { while (n-- > 0) if (val == vals[n][0] && val2 == vals[n][1]) return n; return -EINVAL; } static const int mag3110_samp_freq[8][2] = { {80, 0}, {40, 0}, {20, 0}, {10, 0}, {5, 0}, {2, 500000}, {1, 250000}, {0, 625000} }; static ssize_t mag3110_show_samp_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { return mag3110_show_int_plus_micros(buf, mag3110_samp_freq, 8); } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(mag3110_show_samp_freq_avail); static int mag3110_get_samp_freq_index(struct mag3110_data *data, int val, int val2) { return mag3110_get_int_plus_micros_index(mag3110_samp_freq, 8, val, val2); } static int mag3110_calculate_sleep(struct mag3110_data *data) { int ret, i = data->ctrl_reg1 >> MAG3110_CTRL_DR_SHIFT; if (mag3110_samp_freq[i][0] > 0) ret = 1000 / mag3110_samp_freq[i][0]; else ret = 1000; return ret == 0 ? 1 : ret; } static int mag3110_standby(struct mag3110_data *data) { return i2c_smbus_write_byte_data(data->client, MAG3110_CTRL_REG1, data->ctrl_reg1 & ~MAG3110_CTRL_AC); } static int mag3110_wait_standby(struct mag3110_data *data) { int ret, tries = 30; /* * Takes up to 1/ODR to come out of active mode into stby * Longest expected period is 12.5seconds. * We'll sleep for 500ms between checks */ while (tries-- > 0) { ret = i2c_smbus_read_byte_data(data->client, MAG3110_SYSMOD); if (ret < 0) { dev_err(&data->client->dev, "i2c error\n"); return ret; } /* wait for standby */ if ((ret & MAG3110_SYSMOD_MODE_MASK) == 0) break; msleep_interruptible(500); } if (tries < 0) { dev_err(&data->client->dev, "device not entering standby mode\n"); return -EIO; } return 0; } static int mag3110_active(struct mag3110_data *data) { return i2c_smbus_write_byte_data(data->client, MAG3110_CTRL_REG1, data->ctrl_reg1); } /* returns >0 if active, 0 if in standby and <0 on error */ static int mag3110_is_active(struct mag3110_data *data) { int reg; reg = i2c_smbus_read_byte_data(data->client, MAG3110_CTRL_REG1); if (reg < 0) return reg; return reg & MAG3110_CTRL_AC; } static int mag3110_change_config(struct mag3110_data *data, u8 reg, u8 val) { int ret; int is_active; mutex_lock(&data->lock); is_active = mag3110_is_active(data); if (is_active < 0) { ret = is_active; goto fail; } /* config can only be changed when in standby */ if (is_active > 0) { ret = mag3110_standby(data); if (ret < 0) goto fail; } /* * After coming out of active we must wait for the part * to transition to STBY. This can take up to 1 /ODR to occur */ ret = mag3110_wait_standby(data); if (ret < 0) goto fail; ret = i2c_smbus_write_byte_data(data->client, reg, val); if (ret < 0) goto fail; if (is_active > 0) { ret = mag3110_active(data); if (ret < 0) goto fail; } ret = 0; fail: mutex_unlock(&data->lock); return ret; } static int mag3110_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mag3110_data *data = iio_priv(indio_dev); __be16 buffer[3]; int i, ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; switch (chan->type) { case IIO_MAGN: /* in 0.1 uT / LSB */ ret = mag3110_read(data, buffer); if (ret < 0) goto release; *val = sign_extend32( be16_to_cpu(buffer[chan->scan_index]), chan->scan_type.realbits - 1); ret = IIO_VAL_INT; break; case IIO_TEMP: /* in 1 C / LSB */ mutex_lock(&data->lock); ret = mag3110_request(data); if (ret < 0) { mutex_unlock(&data->lock); goto release; } ret = i2c_smbus_read_byte_data(data->client, MAG3110_DIE_TEMP); mutex_unlock(&data->lock); if (ret < 0) goto release; *val = sign_extend32(ret, chan->scan_type.realbits - 1); ret = IIO_VAL_INT; break; default: ret = -EINVAL; } release: iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_MAGN: *val = 0; *val2 = 1000; return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = 1000; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: i = data->ctrl_reg1 >> MAG3110_CTRL_DR_SHIFT; *val = mag3110_samp_freq[i][0]; *val2 = mag3110_samp_freq[i][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: ret = i2c_smbus_read_word_swapped(data->client, MAG3110_OFF_X + 2 * chan->scan_index); if (ret < 0) return ret; *val = sign_extend32(ret >> 1, 14); return IIO_VAL_INT; } return -EINVAL; } static int mag3110_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mag3110_data *data = iio_priv(indio_dev); int rate, ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: rate = mag3110_get_samp_freq_index(data, val, val2); if (rate < 0) { ret = -EINVAL; break; } data->ctrl_reg1 &= 0xff & ~MAG3110_CTRL_DR_MASK & ~MAG3110_CTRL_AC; data->ctrl_reg1 |= rate << MAG3110_CTRL_DR_SHIFT; data->sleep_val = mag3110_calculate_sleep(data); if (data->sleep_val < 40) data->ctrl_reg1 |= MAG3110_CTRL_AC; ret = mag3110_change_config(data, MAG3110_CTRL_REG1, data->ctrl_reg1); break; case IIO_CHAN_INFO_CALIBBIAS: if (val < -10000 || val > 10000) { ret = -EINVAL; break; } ret = i2c_smbus_write_word_swapped(data->client, MAG3110_OFF_X + 2 * chan->scan_index, val << 1); break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(indio_dev); return ret; } static irqreturn_t mag3110_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct mag3110_data *data = iio_priv(indio_dev); int ret; ret = mag3110_read(data, data->scan.channels); if (ret < 0) goto done; if (test_bit(3, indio_dev->active_scan_mask)) { ret = i2c_smbus_read_byte_data(data->client, MAG3110_DIE_TEMP); if (ret < 0) goto done; data->scan.temperature = ret; } iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } #define MAG3110_CHANNEL(axis, idx) { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = idx, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec mag3110_channels[] = { MAG3110_CHANNEL(X, 0), MAG3110_CHANNEL(Y, 1), MAG3110_CHANNEL(Z, 2), { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 3, .scan_type = { .sign = 's', .realbits = 8, .storagebits = 8, }, }, IIO_CHAN_SOFT_TIMESTAMP(4), }; static struct attribute *mag3110_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group mag3110_group = { .attrs = mag3110_attributes, }; static const struct iio_info mag3110_info = { .attrs = &mag3110_group, .read_raw = &mag3110_read_raw, .write_raw = &mag3110_write_raw, }; static const unsigned long mag3110_scan_masks[] = {0x7, 0xf, 0}; static int mag3110_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct mag3110_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->vdd_reg = devm_regulator_get(&client->dev, "vdd"); if (IS_ERR(data->vdd_reg)) return dev_err_probe(&client->dev, PTR_ERR(data->vdd_reg), "failed to get VDD regulator!\n"); data->vddio_reg = devm_regulator_get(&client->dev, "vddio"); if (IS_ERR(data->vddio_reg)) return dev_err_probe(&client->dev, PTR_ERR(data->vddio_reg), "failed to get VDDIO regulator!\n"); ret = regulator_enable(data->vdd_reg); if (ret) { dev_err(&client->dev, "failed to enable VDD regulator!\n"); return ret; } ret = regulator_enable(data->vddio_reg); if (ret) { dev_err(&client->dev, "failed to enable VDDIO regulator!\n"); goto disable_regulator_vdd; } ret = i2c_smbus_read_byte_data(client, MAG3110_WHO_AM_I); if (ret < 0) goto disable_regulators; if (ret != MAG3110_DEVICE_ID) { ret = -ENODEV; goto disable_regulators; } data->client = client; mutex_init(&data->lock); i2c_set_clientdata(client, indio_dev); indio_dev->info = &mag3110_info; indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = mag3110_channels; indio_dev->num_channels = ARRAY_SIZE(mag3110_channels); indio_dev->available_scan_masks = mag3110_scan_masks; data->ctrl_reg1 = MAG3110_CTRL_DR_DEFAULT << MAG3110_CTRL_DR_SHIFT; data->sleep_val = mag3110_calculate_sleep(data); if (data->sleep_val < 40) data->ctrl_reg1 |= MAG3110_CTRL_AC; ret = mag3110_change_config(data, MAG3110_CTRL_REG1, data->ctrl_reg1); if (ret < 0) goto disable_regulators; ret = i2c_smbus_write_byte_data(client, MAG3110_CTRL_REG2, MAG3110_CTRL_AUTO_MRST_EN); if (ret < 0) goto standby_on_error; ret = iio_triggered_buffer_setup(indio_dev, NULL, mag3110_trigger_handler, NULL); if (ret < 0) goto standby_on_error; ret = iio_device_register(indio_dev); if (ret < 0) goto buffer_cleanup; return 0; buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); standby_on_error: mag3110_standby(iio_priv(indio_dev)); disable_regulators: regulator_disable(data->vddio_reg); disable_regulator_vdd: regulator_disable(data->vdd_reg); return ret; } static void mag3110_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mag3110_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); mag3110_standby(iio_priv(indio_dev)); regulator_disable(data->vddio_reg); regulator_disable(data->vdd_reg); } static int mag3110_suspend(struct device *dev) { struct mag3110_data *data = iio_priv(i2c_get_clientdata( to_i2c_client(dev))); int ret; ret = mag3110_standby(iio_priv(i2c_get_clientdata( to_i2c_client(dev)))); if (ret) return ret; ret = regulator_disable(data->vddio_reg); if (ret) { dev_err(dev, "failed to disable VDDIO regulator\n"); return ret; } ret = regulator_disable(data->vdd_reg); if (ret) { dev_err(dev, "failed to disable VDD regulator\n"); return ret; } return 0; } static int mag3110_resume(struct device *dev) { struct mag3110_data *data = iio_priv(i2c_get_clientdata( to_i2c_client(dev))); int ret; ret = regulator_enable(data->vdd_reg); if (ret) { dev_err(dev, "failed to enable VDD regulator\n"); return ret; } ret = regulator_enable(data->vddio_reg); if (ret) { dev_err(dev, "failed to enable VDDIO regulator\n"); regulator_disable(data->vdd_reg); return ret; } return i2c_smbus_write_byte_data(data->client, MAG3110_CTRL_REG1, data->ctrl_reg1); } static DEFINE_SIMPLE_DEV_PM_OPS(mag3110_pm_ops, mag3110_suspend, mag3110_resume); static const struct i2c_device_id mag3110_id[] = { { "mag3110", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mag3110_id); static const struct of_device_id mag3110_of_match[] = { { .compatible = "fsl,mag3110" }, { } }; MODULE_DEVICE_TABLE(of, mag3110_of_match); static struct i2c_driver mag3110_driver = { .driver = { .name = "mag3110", .of_match_table = mag3110_of_match, .pm = pm_sleep_ptr(&mag3110_pm_ops), }, .probe = mag3110_probe, .remove = mag3110_remove, .id_table = mag3110_id, }; module_i2c_driver(mag3110_driver); MODULE_AUTHOR("Peter Meerwald <[email protected]>"); MODULE_DESCRIPTION("Freescale MAG3110 magnetometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/magnetometer/mag3110.c
// SPDX-License-Identifier: GPL-2.0-only /* * 3-axis magnetometer driver support following SPI Bosch-Sensortec chips: * - BMC150 * - BMC156 * - BMM150 * * Copyright (c) 2016, Intel Corporation. */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/spi/spi.h> #include <linux/acpi.h> #include <linux/regmap.h> #include "bmc150_magn.h" static int bmc150_magn_spi_probe(struct spi_device *spi) { struct regmap *regmap; const struct spi_device_id *id = spi_get_device_id(spi); regmap = devm_regmap_init_spi(spi, &bmc150_magn_regmap_config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "Failed to register spi regmap: %pe\n", regmap); return PTR_ERR(regmap); } return bmc150_magn_probe(&spi->dev, regmap, spi->irq, id->name); } static void bmc150_magn_spi_remove(struct spi_device *spi) { bmc150_magn_remove(&spi->dev); } static const struct spi_device_id bmc150_magn_spi_id[] = { {"bmc150_magn", 0}, {"bmc156_magn", 0}, {"bmm150_magn", 0}, {} }; MODULE_DEVICE_TABLE(spi, bmc150_magn_spi_id); static const struct acpi_device_id bmc150_magn_acpi_match[] = { {"BMC150B", 0}, {"BMC156B", 0}, {"BMM150B", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match); static struct spi_driver bmc150_magn_spi_driver = { .probe = bmc150_magn_spi_probe, .remove = bmc150_magn_spi_remove, .id_table = bmc150_magn_spi_id, .driver = { .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match), .name = "bmc150_magn_spi", }, }; module_spi_driver(bmc150_magn_spi_driver); MODULE_AUTHOR("Daniel Baluta <[email protected]"); MODULE_DESCRIPTION("BMC150 magnetometer SPI driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_BMC150_MAGN);
linux-master
drivers/iio/magnetometer/bmc150_magn_spi.c
// SPDX-License-Identifier: GPL-2.0-only /* * HID Sensors Driver * Copyright (c) 2012, Intel Corporation. */ #include <linux/device.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/hid-sensor-hub.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include "../common/hid-sensors/hid-sensor-trigger.h" enum magn_3d_channel { CHANNEL_SCAN_INDEX_X, CHANNEL_SCAN_INDEX_Y, CHANNEL_SCAN_INDEX_Z, CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP, CHANNEL_SCAN_INDEX_NORTH_TRUE_TILT_COMP, CHANNEL_SCAN_INDEX_NORTH_MAGN, CHANNEL_SCAN_INDEX_NORTH_TRUE, CHANNEL_SCAN_INDEX_TIMESTAMP, MAGN_3D_CHANNEL_MAX, }; struct common_attributes { int scale_pre_decml; int scale_post_decml; int scale_precision; int value_offset; }; struct magn_3d_state { struct hid_sensor_hub_callbacks callbacks; struct hid_sensor_common magn_flux_attributes; struct hid_sensor_common rot_attributes; struct hid_sensor_hub_attribute_info magn[MAGN_3D_CHANNEL_MAX]; /* dynamically sized array to hold sensor values */ u32 *iio_vals; /* array of pointers to sensor value */ u32 *magn_val_addr[MAGN_3D_CHANNEL_MAX]; struct common_attributes magn_flux_attr; struct common_attributes rot_attr; s64 timestamp; }; static const u32 magn_3d_addresses[MAGN_3D_CHANNEL_MAX] = { HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS, HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Y_AXIS, HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Z_AXIS, HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH, HID_USAGE_SENSOR_ORIENT_COMP_TRUE_NORTH, HID_USAGE_SENSOR_ORIENT_MAGN_NORTH, HID_USAGE_SENSOR_ORIENT_TRUE_NORTH, HID_USAGE_SENSOR_TIME_TIMESTAMP, }; static const u32 magn_3d_sensitivity_addresses[] = { HID_USAGE_SENSOR_DATA_ORIENTATION, HID_USAGE_SENSOR_ORIENT_MAGN_FLUX, }; /* Channel definitions */ static const struct iio_chan_spec magn_3d_channels[] = { { .type = IIO_MAGN, .modified = 1, .channel2 = IIO_MOD_X, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_MAGN, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_MAGN, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_ROT, .modified = 1, .channel2 = IIO_MOD_NORTH_MAGN_TILT_COMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_ROT, .modified = 1, .channel2 = IIO_MOD_NORTH_TRUE_TILT_COMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_ROT, .modified = 1, .channel2 = IIO_MOD_NORTH_MAGN, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_ROT, .modified = 1, .channel2 = IIO_MOD_NORTH_TRUE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_HYSTERESIS), }, IIO_CHAN_SOFT_TIMESTAMP(7) }; /* Adjust channel real bits based on report descriptor */ static void magn_3d_adjust_channel_bit_mask(struct iio_chan_spec *channels, int channel, int size) { channels[channel].scan_type.sign = 's'; /* Real storage bits will change based on the report desc. */ channels[channel].scan_type.realbits = size * 8; /* Maximum size of a sample to capture is u32 */ channels[channel].scan_type.storagebits = sizeof(u32) * 8; } /* Channel read_raw handler */ static int magn_3d_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct magn_3d_state *magn_state = iio_priv(indio_dev); int report_id = -1; u32 address; int ret_type; s32 min; *val = 0; *val2 = 0; switch (mask) { case IIO_CHAN_INFO_RAW: hid_sensor_power_state(&magn_state->magn_flux_attributes, true); report_id = magn_state->magn[chan->address].report_id; min = magn_state->magn[chan->address].logical_minimum; address = magn_3d_addresses[chan->address]; if (report_id >= 0) *val = sensor_hub_input_attr_get_raw_value( magn_state->magn_flux_attributes.hsdev, HID_USAGE_SENSOR_COMPASS_3D, address, report_id, SENSOR_HUB_SYNC, min < 0); else { *val = 0; hid_sensor_power_state( &magn_state->magn_flux_attributes, false); return -EINVAL; } hid_sensor_power_state(&magn_state->magn_flux_attributes, false); ret_type = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_MAGN: *val = magn_state->magn_flux_attr.scale_pre_decml; *val2 = magn_state->magn_flux_attr.scale_post_decml; ret_type = magn_state->magn_flux_attr.scale_precision; break; case IIO_ROT: *val = magn_state->rot_attr.scale_pre_decml; *val2 = magn_state->rot_attr.scale_post_decml; ret_type = magn_state->rot_attr.scale_precision; break; default: ret_type = -EINVAL; } break; case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_MAGN: *val = magn_state->magn_flux_attr.value_offset; ret_type = IIO_VAL_INT; break; case IIO_ROT: *val = magn_state->rot_attr.value_offset; ret_type = IIO_VAL_INT; break; default: ret_type = -EINVAL; } break; case IIO_CHAN_INFO_SAMP_FREQ: ret_type = hid_sensor_read_samp_freq_value( &magn_state->magn_flux_attributes, val, val2); break; case IIO_CHAN_INFO_HYSTERESIS: switch (chan->type) { case IIO_MAGN: ret_type = hid_sensor_read_raw_hyst_value( &magn_state->magn_flux_attributes, val, val2); break; case IIO_ROT: ret_type = hid_sensor_read_raw_hyst_value( &magn_state->rot_attributes, val, val2); break; default: ret_type = -EINVAL; } break; default: ret_type = -EINVAL; break; } return ret_type; } /* Channel write_raw handler */ static int magn_3d_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct magn_3d_state *magn_state = iio_priv(indio_dev); int ret = 0; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: ret = hid_sensor_write_samp_freq_value( &magn_state->magn_flux_attributes, val, val2); break; case IIO_CHAN_INFO_HYSTERESIS: switch (chan->type) { case IIO_MAGN: ret = hid_sensor_write_raw_hyst_value( &magn_state->magn_flux_attributes, val, val2); break; case IIO_ROT: ret = hid_sensor_write_raw_hyst_value( &magn_state->rot_attributes, val, val2); break; default: ret = -EINVAL; } break; default: ret = -EINVAL; } return ret; } static const struct iio_info magn_3d_info = { .read_raw = &magn_3d_read_raw, .write_raw = &magn_3d_write_raw, }; /* Callback handler to send event after all samples are received and captured */ static int magn_3d_proc_event(struct hid_sensor_hub_device *hsdev, unsigned usage_id, void *priv) { struct iio_dev *indio_dev = platform_get_drvdata(priv); struct magn_3d_state *magn_state = iio_priv(indio_dev); dev_dbg(&indio_dev->dev, "magn_3d_proc_event\n"); if (atomic_read(&magn_state->magn_flux_attributes.data_ready)) { if (!magn_state->timestamp) magn_state->timestamp = iio_get_time_ns(indio_dev); iio_push_to_buffers_with_timestamp(indio_dev, magn_state->iio_vals, magn_state->timestamp); magn_state->timestamp = 0; } return 0; } /* Capture samples in local storage */ static int magn_3d_capture_sample(struct hid_sensor_hub_device *hsdev, unsigned usage_id, size_t raw_len, char *raw_data, void *priv) { struct iio_dev *indio_dev = platform_get_drvdata(priv); struct magn_3d_state *magn_state = iio_priv(indio_dev); int offset; int ret = 0; u32 *iio_val = NULL; switch (usage_id) { case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS: case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Y_AXIS: case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Z_AXIS: offset = (usage_id - HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS) + CHANNEL_SCAN_INDEX_X; break; case HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH: case HID_USAGE_SENSOR_ORIENT_COMP_TRUE_NORTH: case HID_USAGE_SENSOR_ORIENT_MAGN_NORTH: case HID_USAGE_SENSOR_ORIENT_TRUE_NORTH: offset = (usage_id - HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH) + CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP; break; case HID_USAGE_SENSOR_TIME_TIMESTAMP: magn_state->timestamp = hid_sensor_convert_timestamp(&magn_state->magn_flux_attributes, *(s64 *)raw_data); return ret; default: return -EINVAL; } iio_val = magn_state->magn_val_addr[offset]; if (iio_val != NULL) *iio_val = *((u32 *)raw_data); else ret = -EINVAL; return ret; } /* Parse report which is specific to an usage id*/ static int magn_3d_parse_report(struct platform_device *pdev, struct hid_sensor_hub_device *hsdev, struct iio_chan_spec **channels, int *chan_count, unsigned usage_id, struct magn_3d_state *st) { int i; int attr_count = 0; struct iio_chan_spec *_channels; /* Scan for each usage attribute supported */ for (i = 0; i < MAGN_3D_CHANNEL_MAX; i++) { int status; u32 address = magn_3d_addresses[i]; /* Check if usage attribute exists in the sensor hub device */ status = sensor_hub_input_get_attribute_info(hsdev, HID_INPUT_REPORT, usage_id, address, &(st->magn[i])); if (!status) attr_count++; } if (attr_count <= 0) { dev_err(&pdev->dev, "failed to find any supported usage attributes in report\n"); return -EINVAL; } dev_dbg(&pdev->dev, "magn_3d Found %d usage attributes\n", attr_count); dev_dbg(&pdev->dev, "magn_3d X: %x:%x Y: %x:%x Z: %x:%x\n", st->magn[0].index, st->magn[0].report_id, st->magn[1].index, st->magn[1].report_id, st->magn[2].index, st->magn[2].report_id); /* Setup IIO channel array */ _channels = devm_kcalloc(&pdev->dev, attr_count, sizeof(struct iio_chan_spec), GFP_KERNEL); if (!_channels) { dev_err(&pdev->dev, "failed to allocate space for iio channels\n"); return -ENOMEM; } /* attr_count include timestamp channel, and the iio_vals should be aligned to 8byte */ st->iio_vals = devm_kcalloc(&pdev->dev, ((attr_count + 1) % 2 + (attr_count + 1) / 2) * 2, sizeof(u32), GFP_KERNEL); if (!st->iio_vals) { dev_err(&pdev->dev, "failed to allocate space for iio values array\n"); return -ENOMEM; } for (i = 0, *chan_count = 0; i < MAGN_3D_CHANNEL_MAX && *chan_count < attr_count; i++){ if (st->magn[i].index >= 0) { /* Setup IIO channel struct */ (_channels[*chan_count]) = magn_3d_channels[i]; (_channels[*chan_count]).scan_index = *chan_count; (_channels[*chan_count]).address = i; if (i != CHANNEL_SCAN_INDEX_TIMESTAMP) { /* Set magn_val_addr to iio value address */ st->magn_val_addr[i] = &st->iio_vals[*chan_count]; magn_3d_adjust_channel_bit_mask(_channels, *chan_count, st->magn[i].size); } (*chan_count)++; } } if (*chan_count <= 0) { dev_err(&pdev->dev, "failed to find any magnetic channels setup\n"); return -EINVAL; } *channels = _channels; dev_dbg(&pdev->dev, "magn_3d Setup %d IIO channels\n", *chan_count); st->magn_flux_attr.scale_precision = hid_sensor_format_scale( HID_USAGE_SENSOR_COMPASS_3D, &st->magn[CHANNEL_SCAN_INDEX_X], &st->magn_flux_attr.scale_pre_decml, &st->magn_flux_attr.scale_post_decml); st->rot_attr.scale_precision = hid_sensor_format_scale( HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH, &st->magn[CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP], &st->rot_attr.scale_pre_decml, &st->rot_attr.scale_post_decml); if (st->rot_attributes.sensitivity.index < 0) { sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS | HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH, &st->rot_attributes.sensitivity); dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n", st->rot_attributes.sensitivity.index, st->rot_attributes.sensitivity.report_id); } return 0; } /* Function to initialize the processing for usage id */ static int hid_magn_3d_probe(struct platform_device *pdev) { int ret = 0; static char *name = "magn_3d"; struct iio_dev *indio_dev; struct magn_3d_state *magn_state; struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data; struct iio_chan_spec *channels; int chan_count = 0; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct magn_3d_state)); if (indio_dev == NULL) return -ENOMEM; platform_set_drvdata(pdev, indio_dev); magn_state = iio_priv(indio_dev); magn_state->magn_flux_attributes.hsdev = hsdev; magn_state->magn_flux_attributes.pdev = pdev; ret = hid_sensor_parse_common_attributes(hsdev, HID_USAGE_SENSOR_COMPASS_3D, &magn_state->magn_flux_attributes, magn_3d_sensitivity_addresses, ARRAY_SIZE(magn_3d_sensitivity_addresses)); if (ret) { dev_err(&pdev->dev, "failed to setup common attributes\n"); return ret; } magn_state->rot_attributes = magn_state->magn_flux_attributes; /* sensitivity of rot_attribute is not the same as magn_flux_attributes */ magn_state->rot_attributes.sensitivity.index = -1; ret = magn_3d_parse_report(pdev, hsdev, &channels, &chan_count, HID_USAGE_SENSOR_COMPASS_3D, magn_state); if (ret) { dev_err(&pdev->dev, "failed to parse report\n"); return ret; } indio_dev->channels = channels; indio_dev->num_channels = chan_count; indio_dev->info = &magn_3d_info; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; atomic_set(&magn_state->magn_flux_attributes.data_ready, 0); ret = hid_sensor_setup_trigger(indio_dev, name, &magn_state->magn_flux_attributes); if (ret < 0) { dev_err(&pdev->dev, "trigger setup failed\n"); return ret; } ret = iio_device_register(indio_dev); if (ret) { dev_err(&pdev->dev, "device register failed\n"); goto error_remove_trigger; } magn_state->callbacks.send_event = magn_3d_proc_event; magn_state->callbacks.capture_sample = magn_3d_capture_sample; magn_state->callbacks.pdev = pdev; ret = sensor_hub_register_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D, &magn_state->callbacks); if (ret < 0) { dev_err(&pdev->dev, "callback reg failed\n"); goto error_iio_unreg; } return ret; error_iio_unreg: iio_device_unregister(indio_dev); error_remove_trigger: hid_sensor_remove_trigger(indio_dev, &magn_state->magn_flux_attributes); return ret; } /* Function to deinitialize the processing for usage id */ static int hid_magn_3d_remove(struct platform_device *pdev) { struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data; struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct magn_3d_state *magn_state = iio_priv(indio_dev); sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D); iio_device_unregister(indio_dev); hid_sensor_remove_trigger(indio_dev, &magn_state->magn_flux_attributes); return 0; } static const struct platform_device_id hid_magn_3d_ids[] = { { /* Format: HID-SENSOR-usage_id_in_hex_lowercase */ .name = "HID-SENSOR-200083", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, hid_magn_3d_ids); static struct platform_driver hid_magn_3d_platform_driver = { .id_table = hid_magn_3d_ids, .driver = { .name = KBUILD_MODNAME, .pm = &hid_sensor_pm_ops, }, .probe = hid_magn_3d_probe, .remove = hid_magn_3d_remove, }; module_platform_driver(hid_magn_3d_platform_driver); MODULE_DESCRIPTION("HID Sensor Magnetometer 3D"); MODULE_AUTHOR("Srinivas Pandruvada <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_HID);
linux-master
drivers/iio/magnetometer/hid-sensor-magn-3d.c
// SPDX-License-Identifier: GPL-2.0-only /* * MMC35240 - MEMSIC 3-axis Magnetic Sensor * * Copyright (c) 2015, Intel Corporation. * * IIO driver for MMC35240 (7-bit I2C slave address 0x30). * * TODO: offset, ACPI, continuous measurement mode, PM */ #include <linux/module.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/regmap.h> #include <linux/acpi.h> #include <linux/pm.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #define MMC35240_DRV_NAME "mmc35240" #define MMC35240_REGMAP_NAME "mmc35240_regmap" #define MMC35240_REG_XOUT_L 0x00 #define MMC35240_REG_XOUT_H 0x01 #define MMC35240_REG_YOUT_L 0x02 #define MMC35240_REG_YOUT_H 0x03 #define MMC35240_REG_ZOUT_L 0x04 #define MMC35240_REG_ZOUT_H 0x05 #define MMC35240_REG_STATUS 0x06 #define MMC35240_REG_CTRL0 0x07 #define MMC35240_REG_CTRL1 0x08 #define MMC35240_REG_ID 0x20 #define MMC35240_STATUS_MEAS_DONE_BIT BIT(0) #define MMC35240_CTRL0_REFILL_BIT BIT(7) #define MMC35240_CTRL0_RESET_BIT BIT(6) #define MMC35240_CTRL0_SET_BIT BIT(5) #define MMC35240_CTRL0_CMM_BIT BIT(1) #define MMC35240_CTRL0_TM_BIT BIT(0) /* output resolution bits */ #define MMC35240_CTRL1_BW0_BIT BIT(0) #define MMC35240_CTRL1_BW1_BIT BIT(1) #define MMC35240_CTRL1_BW_MASK (MMC35240_CTRL1_BW0_BIT | \ MMC35240_CTRL1_BW1_BIT) #define MMC35240_CTRL1_BW_SHIFT 0 #define MMC35240_WAIT_CHARGE_PUMP 50000 /* us */ #define MMC35240_WAIT_SET_RESET 1000 /* us */ /* * Memsic OTP process code piece is put here for reference: * * #define OTP_CONVERT(REG) ((float)((REG) >=32 ? (32 - (REG)) : (REG)) * 0.006 * 1) For X axis, the COEFFICIENT is always 1. * 2) For Y axis, the COEFFICIENT is as below: * f_OTP_matrix[4] = OTP_CONVERT(((reg_data[1] & 0x03) << 4) | * (reg_data[2] >> 4)) + 1.0; * 3) For Z axis, the COEFFICIENT is as below: * f_OTP_matrix[8] = (OTP_CONVERT(reg_data[3] & 0x3f) + 1) * 1.35; * We implemented the OTP logic into driver. */ /* scale = 1000 here for Y otp */ #define MMC35240_OTP_CONVERT_Y(REG) (((REG) >= 32 ? (32 - (REG)) : (REG)) * 6) /* 0.6 * 1.35 = 0.81, scale 10000 for Z otp */ #define MMC35240_OTP_CONVERT_Z(REG) (((REG) >= 32 ? (32 - (REG)) : (REG)) * 81) #define MMC35240_X_COEFF(x) (x) #define MMC35240_Y_COEFF(y) (y + 1000) #define MMC35240_Z_COEFF(z) (z + 13500) #define MMC35240_OTP_START_ADDR 0x1B enum mmc35240_resolution { MMC35240_16_BITS_SLOW = 0, /* 7.92 ms */ MMC35240_16_BITS_FAST, /* 4.08 ms */ MMC35240_14_BITS, /* 2.16 ms */ MMC35240_12_BITS, /* 1.20 ms */ }; enum mmc35240_axis { AXIS_X = 0, AXIS_Y, AXIS_Z, }; static const struct { int sens[3]; /* sensitivity per X, Y, Z axis */ int nfo; /* null field output */ } mmc35240_props_table[] = { /* 16 bits, 125Hz ODR */ { {1024, 1024, 1024}, 32768, }, /* 16 bits, 250Hz ODR */ { {1024, 1024, 770}, 32768, }, /* 14 bits, 450Hz ODR */ { {256, 256, 193}, 8192, }, /* 12 bits, 800Hz ODR */ { {64, 64, 48}, 2048, }, }; struct mmc35240_data { struct i2c_client *client; struct mutex mutex; struct regmap *regmap; enum mmc35240_resolution res; /* OTP compensation */ int axis_coef[3]; int axis_scale[3]; }; static const struct { int val; int val2; } mmc35240_samp_freq[] = { {1, 500000}, {13, 0}, {25, 0}, {50, 0} }; static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1.5 13 25 50"); #define MMC35240_CHANNEL(_axis) { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_ ## _axis, \ .address = AXIS_ ## _axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec mmc35240_channels[] = { MMC35240_CHANNEL(X), MMC35240_CHANNEL(Y), MMC35240_CHANNEL(Z), }; static struct attribute *mmc35240_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group mmc35240_attribute_group = { .attrs = mmc35240_attributes, }; static int mmc35240_get_samp_freq_index(struct mmc35240_data *data, int val, int val2) { int i; for (i = 0; i < ARRAY_SIZE(mmc35240_samp_freq); i++) if (mmc35240_samp_freq[i].val == val && mmc35240_samp_freq[i].val2 == val2) return i; return -EINVAL; } static int mmc35240_hw_set(struct mmc35240_data *data, bool set) { int ret; u8 coil_bit; /* * Recharge the capacitor at VCAP pin, requested to be issued * before a SET/RESET command. */ ret = regmap_update_bits(data->regmap, MMC35240_REG_CTRL0, MMC35240_CTRL0_REFILL_BIT, MMC35240_CTRL0_REFILL_BIT); if (ret < 0) return ret; usleep_range(MMC35240_WAIT_CHARGE_PUMP, MMC35240_WAIT_CHARGE_PUMP + 1); if (set) coil_bit = MMC35240_CTRL0_SET_BIT; else coil_bit = MMC35240_CTRL0_RESET_BIT; return regmap_update_bits(data->regmap, MMC35240_REG_CTRL0, coil_bit, coil_bit); } static int mmc35240_init(struct mmc35240_data *data) { int ret, y_convert, z_convert; unsigned int reg_id; u8 otp_data[6]; ret = regmap_read(data->regmap, MMC35240_REG_ID, &reg_id); if (ret < 0) { dev_err(&data->client->dev, "Error reading product id\n"); return ret; } dev_dbg(&data->client->dev, "MMC35240 chip id %x\n", reg_id); /* * make sure we restore sensor characteristics, by doing * a SET/RESET sequence, the axis polarity being naturally * aligned after RESET */ ret = mmc35240_hw_set(data, true); if (ret < 0) return ret; usleep_range(MMC35240_WAIT_SET_RESET, MMC35240_WAIT_SET_RESET + 1); ret = mmc35240_hw_set(data, false); if (ret < 0) return ret; /* set default sampling frequency */ ret = regmap_update_bits(data->regmap, MMC35240_REG_CTRL1, MMC35240_CTRL1_BW_MASK, data->res << MMC35240_CTRL1_BW_SHIFT); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, MMC35240_OTP_START_ADDR, otp_data, sizeof(otp_data)); if (ret < 0) return ret; y_convert = MMC35240_OTP_CONVERT_Y(((otp_data[1] & 0x03) << 4) | (otp_data[2] >> 4)); z_convert = MMC35240_OTP_CONVERT_Z(otp_data[3] & 0x3f); data->axis_coef[0] = MMC35240_X_COEFF(1); data->axis_coef[1] = MMC35240_Y_COEFF(y_convert); data->axis_coef[2] = MMC35240_Z_COEFF(z_convert); data->axis_scale[0] = 1; data->axis_scale[1] = 1000; data->axis_scale[2] = 10000; return 0; } static int mmc35240_take_measurement(struct mmc35240_data *data) { int ret, tries = 100; unsigned int reg_status; ret = regmap_write(data->regmap, MMC35240_REG_CTRL0, MMC35240_CTRL0_TM_BIT); if (ret < 0) return ret; while (tries-- > 0) { ret = regmap_read(data->regmap, MMC35240_REG_STATUS, &reg_status); if (ret < 0) return ret; if (reg_status & MMC35240_STATUS_MEAS_DONE_BIT) break; /* minimum wait time to complete measurement is 10 ms */ usleep_range(10000, 11000); } if (tries < 0) { dev_err(&data->client->dev, "data not ready\n"); return -EIO; } return 0; } static int mmc35240_read_measurement(struct mmc35240_data *data, __le16 buf[3]) { int ret; ret = mmc35240_take_measurement(data); if (ret < 0) return ret; return regmap_bulk_read(data->regmap, MMC35240_REG_XOUT_L, buf, 3 * sizeof(__le16)); } /** * mmc35240_raw_to_mgauss - convert raw readings to milli gauss. Also apply * compensation for output value. * * @data: device private data * @index: axis index for which we want the conversion * @buf: raw data to be converted, 2 bytes in little endian format * @val: compensated output reading (unit is milli gauss) * * Returns: 0 in case of success, -EINVAL when @index is not valid */ static int mmc35240_raw_to_mgauss(struct mmc35240_data *data, int index, __le16 buf[], int *val) { int raw[3]; int sens[3]; int nfo; raw[AXIS_X] = le16_to_cpu(buf[AXIS_X]); raw[AXIS_Y] = le16_to_cpu(buf[AXIS_Y]); raw[AXIS_Z] = le16_to_cpu(buf[AXIS_Z]); sens[AXIS_X] = mmc35240_props_table[data->res].sens[AXIS_X]; sens[AXIS_Y] = mmc35240_props_table[data->res].sens[AXIS_Y]; sens[AXIS_Z] = mmc35240_props_table[data->res].sens[AXIS_Z]; nfo = mmc35240_props_table[data->res].nfo; switch (index) { case AXIS_X: *val = (raw[AXIS_X] - nfo) * 1000 / sens[AXIS_X]; break; case AXIS_Y: *val = (raw[AXIS_Y] - nfo) * 1000 / sens[AXIS_Y] - (raw[AXIS_Z] - nfo) * 1000 / sens[AXIS_Z]; break; case AXIS_Z: *val = (raw[AXIS_Y] - nfo) * 1000 / sens[AXIS_Y] + (raw[AXIS_Z] - nfo) * 1000 / sens[AXIS_Z]; break; default: return -EINVAL; } /* apply OTP compensation */ *val = (*val) * data->axis_coef[index] / data->axis_scale[index]; return 0; } static int mmc35240_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mmc35240_data *data = iio_priv(indio_dev); int ret, i; unsigned int reg; __le16 buf[3]; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&data->mutex); ret = mmc35240_read_measurement(data, buf); mutex_unlock(&data->mutex); if (ret < 0) return ret; ret = mmc35240_raw_to_mgauss(data, chan->address, buf, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = 1000; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = regmap_read(data->regmap, MMC35240_REG_CTRL1, &reg); mutex_unlock(&data->mutex); if (ret < 0) return ret; i = (reg & MMC35240_CTRL1_BW_MASK) >> MMC35240_CTRL1_BW_SHIFT; if (i < 0 || i >= ARRAY_SIZE(mmc35240_samp_freq)) return -EINVAL; *val = mmc35240_samp_freq[i].val; *val2 = mmc35240_samp_freq[i].val2; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int mmc35240_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mmc35240_data *data = iio_priv(indio_dev); int i, ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: i = mmc35240_get_samp_freq_index(data, val, val2); if (i < 0) return -EINVAL; mutex_lock(&data->mutex); ret = regmap_update_bits(data->regmap, MMC35240_REG_CTRL1, MMC35240_CTRL1_BW_MASK, i << MMC35240_CTRL1_BW_SHIFT); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static const struct iio_info mmc35240_info = { .read_raw = mmc35240_read_raw, .write_raw = mmc35240_write_raw, .attrs = &mmc35240_attribute_group, }; static bool mmc35240_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MMC35240_REG_CTRL0: case MMC35240_REG_CTRL1: return true; default: return false; } } static bool mmc35240_is_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MMC35240_REG_XOUT_L: case MMC35240_REG_XOUT_H: case MMC35240_REG_YOUT_L: case MMC35240_REG_YOUT_H: case MMC35240_REG_ZOUT_L: case MMC35240_REG_ZOUT_H: case MMC35240_REG_STATUS: case MMC35240_REG_ID: return true; default: return false; } } static bool mmc35240_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case MMC35240_REG_CTRL0: case MMC35240_REG_CTRL1: return false; default: return true; } } static const struct reg_default mmc35240_reg_defaults[] = { { MMC35240_REG_CTRL0, 0x00 }, { MMC35240_REG_CTRL1, 0x00 }, }; static const struct regmap_config mmc35240_regmap_config = { .name = MMC35240_REGMAP_NAME, .reg_bits = 8, .val_bits = 8, .max_register = MMC35240_REG_ID, .cache_type = REGCACHE_FLAT, .writeable_reg = mmc35240_is_writeable_reg, .readable_reg = mmc35240_is_readable_reg, .volatile_reg = mmc35240_is_volatile_reg, .reg_defaults = mmc35240_reg_defaults, .num_reg_defaults = ARRAY_SIZE(mmc35240_reg_defaults), }; static int mmc35240_probe(struct i2c_client *client) { struct mmc35240_data *data; struct iio_dev *indio_dev; struct regmap *regmap; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; regmap = devm_regmap_init_i2c(client, &mmc35240_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "regmap initialization failed\n"); return PTR_ERR(regmap); } data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->regmap = regmap; data->res = MMC35240_16_BITS_SLOW; mutex_init(&data->mutex); indio_dev->info = &mmc35240_info; indio_dev->name = MMC35240_DRV_NAME; indio_dev->channels = mmc35240_channels; indio_dev->num_channels = ARRAY_SIZE(mmc35240_channels); indio_dev->modes = INDIO_DIRECT_MODE; ret = mmc35240_init(data); if (ret < 0) { dev_err(&client->dev, "mmc35240 chip init failed\n"); return ret; } return devm_iio_device_register(&client->dev, indio_dev); } static int mmc35240_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mmc35240_data *data = iio_priv(indio_dev); regcache_cache_only(data->regmap, true); return 0; } static int mmc35240_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mmc35240_data *data = iio_priv(indio_dev); int ret; regcache_mark_dirty(data->regmap); ret = regcache_sync_region(data->regmap, MMC35240_REG_CTRL0, MMC35240_REG_CTRL1); if (ret < 0) dev_err(dev, "Failed to restore control registers\n"); regcache_cache_only(data->regmap, false); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(mmc35240_pm_ops, mmc35240_suspend, mmc35240_resume); static const struct of_device_id mmc35240_of_match[] = { { .compatible = "memsic,mmc35240", }, { } }; MODULE_DEVICE_TABLE(of, mmc35240_of_match); static const struct acpi_device_id mmc35240_acpi_match[] = { {"MMC35240", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, mmc35240_acpi_match); static const struct i2c_device_id mmc35240_id[] = { {"mmc35240", 0}, {} }; MODULE_DEVICE_TABLE(i2c, mmc35240_id); static struct i2c_driver mmc35240_driver = { .driver = { .name = MMC35240_DRV_NAME, .of_match_table = mmc35240_of_match, .pm = pm_sleep_ptr(&mmc35240_pm_ops), .acpi_match_table = ACPI_PTR(mmc35240_acpi_match), }, .probe = mmc35240_probe, .id_table = mmc35240_id, }; module_i2c_driver(mmc35240_driver); MODULE_AUTHOR("Daniel Baluta <[email protected]>"); MODULE_DESCRIPTION("MEMSIC MMC35240 magnetic sensor driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/iio/magnetometer/mmc35240.c
// SPDX-License-Identifier: GPL-2.0-only /* * STMicroelectronics magnetometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <[email protected]> */ #include <linux/kernel.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/common/st_sensors.h> #include "st_magn.h" int st_magn_trig_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); return st_sensors_set_dataready_irq(indio_dev, state); } static int st_magn_buffer_postenable(struct iio_dev *indio_dev) { return st_sensors_set_enable(indio_dev, true); } static int st_magn_buffer_predisable(struct iio_dev *indio_dev) { return st_sensors_set_enable(indio_dev, false); } static const struct iio_buffer_setup_ops st_magn_buffer_setup_ops = { .postenable = &st_magn_buffer_postenable, .predisable = &st_magn_buffer_predisable, }; int st_magn_allocate_ring(struct iio_dev *indio_dev) { return devm_iio_triggered_buffer_setup(indio_dev->dev.parent, indio_dev, NULL, &st_sensors_trigger_handler, &st_magn_buffer_setup_ops); }
linux-master
drivers/iio/magnetometer/st_magn_buffer.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * A sensor driver for the magnetometer AK8975. * * Magnetic compass sensor driver for monitoring magnetic flux information. * * Copyright (c) 2010, NVIDIA Corporation. */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/gpio/consumer.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> /* * Register definitions, as well as various shifts and masks to get at the * individual fields of the registers. */ #define AK8975_REG_WIA 0x00 #define AK8975_DEVICE_ID 0x48 #define AK8975_REG_INFO 0x01 #define AK8975_REG_ST1 0x02 #define AK8975_REG_ST1_DRDY_SHIFT 0 #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT) #define AK8975_REG_HXL 0x03 #define AK8975_REG_HXH 0x04 #define AK8975_REG_HYL 0x05 #define AK8975_REG_HYH 0x06 #define AK8975_REG_HZL 0x07 #define AK8975_REG_HZH 0x08 #define AK8975_REG_ST2 0x09 #define AK8975_REG_ST2_DERR_SHIFT 2 #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT) #define AK8975_REG_ST2_HOFL_SHIFT 3 #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT) #define AK8975_REG_CNTL 0x0A #define AK8975_REG_CNTL_MODE_SHIFT 0 #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT) #define AK8975_REG_CNTL_MODE_POWER_DOWN 0x00 #define AK8975_REG_CNTL_MODE_ONCE 0x01 #define AK8975_REG_CNTL_MODE_SELF_TEST 0x08 #define AK8975_REG_CNTL_MODE_FUSE_ROM 0x0F #define AK8975_REG_RSVC 0x0B #define AK8975_REG_ASTC 0x0C #define AK8975_REG_TS1 0x0D #define AK8975_REG_TS2 0x0E #define AK8975_REG_I2CDIS 0x0F #define AK8975_REG_ASAX 0x10 #define AK8975_REG_ASAY 0x11 #define AK8975_REG_ASAZ 0x12 #define AK8975_MAX_REGS AK8975_REG_ASAZ /* * AK09912 Register definitions */ #define AK09912_REG_WIA1 0x00 #define AK09912_REG_WIA2 0x01 #define AK09916_DEVICE_ID 0x09 #define AK09912_DEVICE_ID 0x04 #define AK09911_DEVICE_ID 0x05 #define AK09911_REG_INFO1 0x02 #define AK09911_REG_INFO2 0x03 #define AK09912_REG_ST1 0x10 #define AK09912_REG_ST1_DRDY_SHIFT 0 #define AK09912_REG_ST1_DRDY_MASK (1 << AK09912_REG_ST1_DRDY_SHIFT) #define AK09912_REG_HXL 0x11 #define AK09912_REG_HXH 0x12 #define AK09912_REG_HYL 0x13 #define AK09912_REG_HYH 0x14 #define AK09912_REG_HZL 0x15 #define AK09912_REG_HZH 0x16 #define AK09912_REG_TMPS 0x17 #define AK09912_REG_ST2 0x18 #define AK09912_REG_ST2_HOFL_SHIFT 3 #define AK09912_REG_ST2_HOFL_MASK (1 << AK09912_REG_ST2_HOFL_SHIFT) #define AK09912_REG_CNTL1 0x30 #define AK09912_REG_CNTL2 0x31 #define AK09912_REG_CNTL_MODE_POWER_DOWN 0x00 #define AK09912_REG_CNTL_MODE_ONCE 0x01 #define AK09912_REG_CNTL_MODE_SELF_TEST 0x10 #define AK09912_REG_CNTL_MODE_FUSE_ROM 0x1F #define AK09912_REG_CNTL2_MODE_SHIFT 0 #define AK09912_REG_CNTL2_MODE_MASK (0x1F << AK09912_REG_CNTL2_MODE_SHIFT) #define AK09912_REG_CNTL3 0x32 #define AK09912_REG_TS1 0x33 #define AK09912_REG_TS2 0x34 #define AK09912_REG_TS3 0x35 #define AK09912_REG_I2CDIS 0x36 #define AK09912_REG_TS4 0x37 #define AK09912_REG_ASAX 0x60 #define AK09912_REG_ASAY 0x61 #define AK09912_REG_ASAZ 0x62 #define AK09912_MAX_REGS AK09912_REG_ASAZ /* * Miscellaneous values. */ #define AK8975_MAX_CONVERSION_TIMEOUT 500 #define AK8975_CONVERSION_DONE_POLL_TIME 10 #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000) /* * Precalculate scale factor (in Gauss units) for each axis and * store in the device data. * * This scale factor is axis-dependent, and is derived from 3 calibration * factors ASA(x), ASA(y), and ASA(z). * * These ASA values are read from the sensor device at start of day, and * cached in the device context struct. * * Adjusting the flux value with the sensitivity adjustment value should be * done via the following formula: * * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 ) * where H is the raw value, ASA is the sensitivity adjustment, and Hadj * is the resultant adjusted value. * * We reduce the formula to: * * Hadj = H * (ASA + 128) / 256 * * H is in the range of -4096 to 4095. The magnetometer has a range of * +-1229uT. To go from the raw value to uT is: * * HuT = H * 1229/4096, or roughly, 3/10. * * Since 1uT = 0.01 gauss, our final scale factor becomes: * * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100 * Hadj = H * ((ASA + 128) * 0.003) / 256 * * Since ASA doesn't change, we cache the resultant scale factor into the * device context in ak8975_setup(). * * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we * multiply the stored scale value by 1e6. */ static long ak8975_raw_to_gauss(u16 data) { return (((long)data + 128) * 3000) / 256; } /* * For AK8963 and AK09911, same calculation, but the device is less sensitive: * * H is in the range of +-8190. The magnetometer has a range of * +-4912uT. To go from the raw value to uT is: * * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10. */ static long ak8963_09911_raw_to_gauss(u16 data) { return (((long)data + 128) * 6000) / 256; } /* * For AK09912, same calculation, except the device is more sensitive: * * H is in the range of -32752 to 32752. The magnetometer has a range of * +-4912uT. To go from the raw value to uT is: * * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10. */ static long ak09912_raw_to_gauss(u16 data) { return (((long)data + 128) * 1500) / 256; } /* Compatible Asahi Kasei Compass parts */ enum asahi_compass_chipset { AKXXXX = 0, AK8975, AK8963, AK09911, AK09912, AK09916, }; enum ak_ctrl_reg_addr { ST1, ST2, CNTL, ASA_BASE, MAX_REGS, REGS_END, }; enum ak_ctrl_reg_mask { ST1_DRDY, ST2_HOFL, ST2_DERR, CNTL_MODE, MASK_END, }; enum ak_ctrl_mode { POWER_DOWN, MODE_ONCE, SELF_TEST, FUSE_ROM, MODE_END, }; struct ak_def { enum asahi_compass_chipset type; long (*raw_to_gauss)(u16 data); u16 range; u8 ctrl_regs[REGS_END]; u8 ctrl_masks[MASK_END]; u8 ctrl_modes[MODE_END]; u8 data_regs[3]; }; static const struct ak_def ak_def_array[] = { { .type = AK8975, .raw_to_gauss = ak8975_raw_to_gauss, .range = 4096, .ctrl_regs = { AK8975_REG_ST1, AK8975_REG_ST2, AK8975_REG_CNTL, AK8975_REG_ASAX, AK8975_MAX_REGS}, .ctrl_masks = { AK8975_REG_ST1_DRDY_MASK, AK8975_REG_ST2_HOFL_MASK, AK8975_REG_ST2_DERR_MASK, AK8975_REG_CNTL_MODE_MASK}, .ctrl_modes = { AK8975_REG_CNTL_MODE_POWER_DOWN, AK8975_REG_CNTL_MODE_ONCE, AK8975_REG_CNTL_MODE_SELF_TEST, AK8975_REG_CNTL_MODE_FUSE_ROM}, .data_regs = { AK8975_REG_HXL, AK8975_REG_HYL, AK8975_REG_HZL}, }, { .type = AK8963, .raw_to_gauss = ak8963_09911_raw_to_gauss, .range = 8190, .ctrl_regs = { AK8975_REG_ST1, AK8975_REG_ST2, AK8975_REG_CNTL, AK8975_REG_ASAX, AK8975_MAX_REGS}, .ctrl_masks = { AK8975_REG_ST1_DRDY_MASK, AK8975_REG_ST2_HOFL_MASK, 0, AK8975_REG_CNTL_MODE_MASK}, .ctrl_modes = { AK8975_REG_CNTL_MODE_POWER_DOWN, AK8975_REG_CNTL_MODE_ONCE, AK8975_REG_CNTL_MODE_SELF_TEST, AK8975_REG_CNTL_MODE_FUSE_ROM}, .data_regs = { AK8975_REG_HXL, AK8975_REG_HYL, AK8975_REG_HZL}, }, { .type = AK09911, .raw_to_gauss = ak8963_09911_raw_to_gauss, .range = 8192, .ctrl_regs = { AK09912_REG_ST1, AK09912_REG_ST2, AK09912_REG_CNTL2, AK09912_REG_ASAX, AK09912_MAX_REGS}, .ctrl_masks = { AK09912_REG_ST1_DRDY_MASK, AK09912_REG_ST2_HOFL_MASK, 0, AK09912_REG_CNTL2_MODE_MASK}, .ctrl_modes = { AK09912_REG_CNTL_MODE_POWER_DOWN, AK09912_REG_CNTL_MODE_ONCE, AK09912_REG_CNTL_MODE_SELF_TEST, AK09912_REG_CNTL_MODE_FUSE_ROM}, .data_regs = { AK09912_REG_HXL, AK09912_REG_HYL, AK09912_REG_HZL}, }, { .type = AK09912, .raw_to_gauss = ak09912_raw_to_gauss, .range = 32752, .ctrl_regs = { AK09912_REG_ST1, AK09912_REG_ST2, AK09912_REG_CNTL2, AK09912_REG_ASAX, AK09912_MAX_REGS}, .ctrl_masks = { AK09912_REG_ST1_DRDY_MASK, AK09912_REG_ST2_HOFL_MASK, 0, AK09912_REG_CNTL2_MODE_MASK}, .ctrl_modes = { AK09912_REG_CNTL_MODE_POWER_DOWN, AK09912_REG_CNTL_MODE_ONCE, AK09912_REG_CNTL_MODE_SELF_TEST, AK09912_REG_CNTL_MODE_FUSE_ROM}, .data_regs = { AK09912_REG_HXL, AK09912_REG_HYL, AK09912_REG_HZL}, }, { .type = AK09916, .raw_to_gauss = ak09912_raw_to_gauss, .range = 32752, .ctrl_regs = { AK09912_REG_ST1, AK09912_REG_ST2, AK09912_REG_CNTL2, AK09912_REG_ASAX, AK09912_MAX_REGS}, .ctrl_masks = { AK09912_REG_ST1_DRDY_MASK, AK09912_REG_ST2_HOFL_MASK, 0, AK09912_REG_CNTL2_MODE_MASK}, .ctrl_modes = { AK09912_REG_CNTL_MODE_POWER_DOWN, AK09912_REG_CNTL_MODE_ONCE, AK09912_REG_CNTL_MODE_SELF_TEST, AK09912_REG_CNTL_MODE_FUSE_ROM}, .data_regs = { AK09912_REG_HXL, AK09912_REG_HYL, AK09912_REG_HZL}, } }; /* * Per-instance context data for the device. */ struct ak8975_data { struct i2c_client *client; const struct ak_def *def; struct mutex lock; u8 asa[3]; long raw_to_gauss[3]; struct gpio_desc *eoc_gpiod; struct gpio_desc *reset_gpiod; int eoc_irq; wait_queue_head_t data_ready_queue; unsigned long flags; u8 cntl_cache; struct iio_mount_matrix orientation; struct regulator *vdd; struct regulator *vid; /* Ensure natural alignment of timestamp */ struct { s16 channels[3]; s64 ts __aligned(8); } scan; }; /* Enable attached power regulator if any. */ static int ak8975_power_on(const struct ak8975_data *data) { int ret; ret = regulator_enable(data->vdd); if (ret) { dev_warn(&data->client->dev, "Failed to enable specified Vdd supply\n"); return ret; } ret = regulator_enable(data->vid); if (ret) { dev_warn(&data->client->dev, "Failed to enable specified Vid supply\n"); regulator_disable(data->vdd); return ret; } gpiod_set_value_cansleep(data->reset_gpiod, 0); /* * According to the datasheet the power supply rise time is 200us * and the minimum wait time before mode setting is 100us, in * total 300us. Add some margin and say minimum 500us here. */ usleep_range(500, 1000); return 0; } /* Disable attached power regulator if any. */ static void ak8975_power_off(const struct ak8975_data *data) { gpiod_set_value_cansleep(data->reset_gpiod, 1); regulator_disable(data->vid); regulator_disable(data->vdd); } /* * Return 0 if the i2c device is the one we expect. * return a negative error number otherwise */ static int ak8975_who_i_am(struct i2c_client *client, enum asahi_compass_chipset type) { u8 wia_val[2]; int ret; /* * Signature for each device: * Device | WIA1 | WIA2 * AK09916 | DEVICE_ID_| AK09916_DEVICE_ID * AK09912 | DEVICE_ID | AK09912_DEVICE_ID * AK09911 | DEVICE_ID | AK09911_DEVICE_ID * AK8975 | DEVICE_ID | NA * AK8963 | DEVICE_ID | NA */ ret = i2c_smbus_read_i2c_block_data_or_emulated( client, AK09912_REG_WIA1, 2, wia_val); if (ret < 0) { dev_err(&client->dev, "Error reading WIA\n"); return ret; } if (wia_val[0] != AK8975_DEVICE_ID) return -ENODEV; switch (type) { case AK8975: case AK8963: return 0; case AK09911: if (wia_val[1] == AK09911_DEVICE_ID) return 0; break; case AK09912: if (wia_val[1] == AK09912_DEVICE_ID) return 0; break; case AK09916: if (wia_val[1] == AK09916_DEVICE_ID) return 0; break; default: dev_err(&client->dev, "Type %d unknown\n", type); } return -ENODEV; } /* * Helper function to write to CNTL register. */ static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode) { u8 regval; int ret; regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) | data->def->ctrl_modes[mode]; ret = i2c_smbus_write_byte_data(data->client, data->def->ctrl_regs[CNTL], regval); if (ret < 0) { return ret; } data->cntl_cache = regval; /* After mode change wait atleast 100us */ usleep_range(100, 500); return 0; } /* * Handle data ready irq */ static irqreturn_t ak8975_irq_handler(int irq, void *data) { struct ak8975_data *ak8975 = data; set_bit(0, &ak8975->flags); wake_up(&ak8975->data_ready_queue); return IRQ_HANDLED; } /* * Install data ready interrupt handler */ static int ak8975_setup_irq(struct ak8975_data *data) { struct i2c_client *client = data->client; int rc; int irq; init_waitqueue_head(&data->data_ready_queue); clear_bit(0, &data->flags); if (client->irq) irq = client->irq; else irq = gpiod_to_irq(data->eoc_gpiod); rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler, IRQF_TRIGGER_RISING | IRQF_ONESHOT, dev_name(&client->dev), data); if (rc < 0) { dev_err(&client->dev, "irq %d request failed: %d\n", irq, rc); return rc; } data->eoc_irq = irq; return rc; } /* * Perform some start-of-day setup, including reading the asa calibration * values and caching them. */ static int ak8975_setup(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ak8975_data *data = iio_priv(indio_dev); int ret; /* Write the fused rom access mode. */ ret = ak8975_set_mode(data, FUSE_ROM); if (ret < 0) { dev_err(&client->dev, "Error in setting fuse access mode\n"); return ret; } /* Get asa data and store in the device data. */ ret = i2c_smbus_read_i2c_block_data_or_emulated( client, data->def->ctrl_regs[ASA_BASE], 3, data->asa); if (ret < 0) { dev_err(&client->dev, "Not able to read asa data\n"); return ret; } /* After reading fuse ROM data set power-down mode */ ret = ak8975_set_mode(data, POWER_DOWN); if (ret < 0) { dev_err(&client->dev, "Error in setting power-down mode\n"); return ret; } if (data->eoc_gpiod || client->irq > 0) { ret = ak8975_setup_irq(data); if (ret < 0) { dev_err(&client->dev, "Error setting data ready interrupt\n"); return ret; } } data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]); data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]); data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]); return 0; } static int wait_conversion_complete_gpio(struct ak8975_data *data) { struct i2c_client *client = data->client; u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT; int ret; /* Wait for the conversion to complete. */ while (timeout_ms) { msleep(AK8975_CONVERSION_DONE_POLL_TIME); if (gpiod_get_value(data->eoc_gpiod)) break; timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME; } if (!timeout_ms) { dev_err(&client->dev, "Conversion timeout happened\n"); return -EINVAL; } ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]); if (ret < 0) dev_err(&client->dev, "Error in reading ST1\n"); return ret; } static int wait_conversion_complete_polled(struct ak8975_data *data) { struct i2c_client *client = data->client; u8 read_status; u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT; int ret; /* Wait for the conversion to complete. */ while (timeout_ms) { msleep(AK8975_CONVERSION_DONE_POLL_TIME); ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]); if (ret < 0) { dev_err(&client->dev, "Error in reading ST1\n"); return ret; } read_status = ret; if (read_status) break; timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME; } if (!timeout_ms) { dev_err(&client->dev, "Conversion timeout happened\n"); return -EINVAL; } return read_status; } /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */ static int wait_conversion_complete_interrupt(struct ak8975_data *data) { int ret; ret = wait_event_timeout(data->data_ready_queue, test_bit(0, &data->flags), AK8975_DATA_READY_TIMEOUT); clear_bit(0, &data->flags); return ret > 0 ? 0 : -ETIME; } static int ak8975_start_read_axis(struct ak8975_data *data, const struct i2c_client *client) { /* Set up the device for taking a sample. */ int ret = ak8975_set_mode(data, MODE_ONCE); if (ret < 0) { dev_err(&client->dev, "Error in setting operating mode\n"); return ret; } /* Wait for the conversion to complete. */ if (data->eoc_irq) ret = wait_conversion_complete_interrupt(data); else if (data->eoc_gpiod) ret = wait_conversion_complete_gpio(data); else ret = wait_conversion_complete_polled(data); if (ret < 0) return ret; /* This will be executed only for non-interrupt based waiting case */ if (ret & data->def->ctrl_masks[ST1_DRDY]) { ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST2]); if (ret < 0) { dev_err(&client->dev, "Error in reading ST2\n"); return ret; } if (ret & (data->def->ctrl_masks[ST2_DERR] | data->def->ctrl_masks[ST2_HOFL])) { dev_err(&client->dev, "ST2 status error 0x%x\n", ret); return -EINVAL; } } return 0; } /* Retrieve raw flux value for one of the x, y, or z axis. */ static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val) { struct ak8975_data *data = iio_priv(indio_dev); const struct i2c_client *client = data->client; const struct ak_def *def = data->def; __le16 rval; u16 buff; int ret; pm_runtime_get_sync(&data->client->dev); mutex_lock(&data->lock); ret = ak8975_start_read_axis(data, client); if (ret) goto exit; ret = i2c_smbus_read_i2c_block_data_or_emulated( client, def->data_regs[index], sizeof(rval), (u8*)&rval); if (ret < 0) goto exit; mutex_unlock(&data->lock); pm_runtime_mark_last_busy(&data->client->dev); pm_runtime_put_autosuspend(&data->client->dev); /* Swap bytes and convert to valid range. */ buff = le16_to_cpu(rval); *val = clamp_t(s16, buff, -def->range, def->range); return IIO_VAL_INT; exit: mutex_unlock(&data->lock); dev_err(&client->dev, "Error in reading axis\n"); return ret; } static int ak8975_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ak8975_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: return ak8975_read_axis(indio_dev, chan->address, val); case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = data->raw_to_gauss[chan->address]; return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static const struct iio_mount_matrix * ak8975_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct ak8975_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info ak8975_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix), { } }; #define AK8975_CHANNEL(axis, index) \ { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .address = index, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU \ }, \ .ext_info = ak8975_ext_info, \ } static const struct iio_chan_spec ak8975_channels[] = { AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const unsigned long ak8975_scan_masks[] = { 0x7, 0 }; static const struct iio_info ak8975_info = { .read_raw = &ak8975_read_raw, }; static const struct acpi_device_id ak_acpi_match[] = { {"AK8975", AK8975}, {"AK8963", AK8963}, {"INVN6500", AK8963}, {"AK009911", AK09911}, {"AK09911", AK09911}, {"AKM9911", AK09911}, {"AK09912", AK09912}, { } }; MODULE_DEVICE_TABLE(acpi, ak_acpi_match); static void ak8975_fill_buffer(struct iio_dev *indio_dev) { struct ak8975_data *data = iio_priv(indio_dev); const struct i2c_client *client = data->client; const struct ak_def *def = data->def; int ret; __le16 fval[3]; mutex_lock(&data->lock); ret = ak8975_start_read_axis(data, client); if (ret) goto unlock; /* * For each axis, read the flux value from the appropriate register * (the register is specified in the iio device attributes). */ ret = i2c_smbus_read_i2c_block_data_or_emulated(client, def->data_regs[0], 3 * sizeof(fval[0]), (u8 *)fval); if (ret < 0) goto unlock; mutex_unlock(&data->lock); /* Clamp to valid range. */ data->scan.channels[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range); data->scan.channels[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range); data->scan.channels[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range); iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, iio_get_time_ns(indio_dev)); return; unlock: mutex_unlock(&data->lock); dev_err(&client->dev, "Error in reading axes block\n"); } static irqreturn_t ak8975_handle_trigger(int irq, void *p) { const struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; ak8975_fill_buffer(indio_dev); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int ak8975_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct ak8975_data *data; struct iio_dev *indio_dev; struct gpio_desc *eoc_gpiod; struct gpio_desc *reset_gpiod; const void *match; unsigned int i; int err; enum asahi_compass_chipset chipset; const char *name = NULL; /* * Grab and set up the supplied GPIO. * We may not have a GPIO based IRQ to scan, that is fine, we will * poll if so. */ eoc_gpiod = devm_gpiod_get_optional(&client->dev, NULL, GPIOD_IN); if (IS_ERR(eoc_gpiod)) return PTR_ERR(eoc_gpiod); if (eoc_gpiod) gpiod_set_consumer_name(eoc_gpiod, "ak_8975"); /* * According to AK09911 datasheet, if reset GPIO is provided then * deassert reset on ak8975_power_on() and assert reset on * ak8975_power_off(). */ reset_gpiod = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(reset_gpiod)) return PTR_ERR(reset_gpiod); /* Register with IIO */ indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (indio_dev == NULL) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->eoc_gpiod = eoc_gpiod; data->reset_gpiod = reset_gpiod; data->eoc_irq = 0; err = iio_read_mount_matrix(&client->dev, &data->orientation); if (err) return err; /* id will be NULL when enumerated via ACPI */ match = device_get_match_data(&client->dev); if (match) { chipset = (uintptr_t)match; name = dev_name(&client->dev); } else if (id) { chipset = (enum asahi_compass_chipset)(id->driver_data); name = id->name; } else return -ENOSYS; for (i = 0; i < ARRAY_SIZE(ak_def_array); i++) if (ak_def_array[i].type == chipset) break; if (i == ARRAY_SIZE(ak_def_array)) { dev_err(&client->dev, "AKM device type unsupported: %d\n", chipset); return -ENODEV; } data->def = &ak_def_array[i]; /* Fetch the regulators */ data->vdd = devm_regulator_get(&client->dev, "vdd"); if (IS_ERR(data->vdd)) return PTR_ERR(data->vdd); data->vid = devm_regulator_get(&client->dev, "vid"); if (IS_ERR(data->vid)) return PTR_ERR(data->vid); err = ak8975_power_on(data); if (err) return err; err = ak8975_who_i_am(client, data->def->type); if (err < 0) { dev_err(&client->dev, "Unexpected device\n"); goto power_off; } dev_dbg(&client->dev, "Asahi compass chip %s\n", name); /* Perform some basic start-of-day setup of the device. */ err = ak8975_setup(client); if (err < 0) { dev_err(&client->dev, "%s initialization fails\n", name); goto power_off; } mutex_init(&data->lock); indio_dev->channels = ak8975_channels; indio_dev->num_channels = ARRAY_SIZE(ak8975_channels); indio_dev->info = &ak8975_info; indio_dev->available_scan_masks = ak8975_scan_masks; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = name; err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger, NULL); if (err) { dev_err(&client->dev, "triggered buffer setup failed\n"); goto power_off; } err = iio_device_register(indio_dev); if (err) { dev_err(&client->dev, "device register failed\n"); goto cleanup_buffer; } /* Enable runtime PM */ pm_runtime_get_noresume(&client->dev); pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); /* * The device comes online in 500us, so add two orders of magnitude * of delay before autosuspending: 50 ms. */ pm_runtime_set_autosuspend_delay(&client->dev, 50); pm_runtime_use_autosuspend(&client->dev); pm_runtime_put(&client->dev); return 0; cleanup_buffer: iio_triggered_buffer_cleanup(indio_dev); power_off: ak8975_power_off(data); return err; } static void ak8975_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ak8975_data *data = iio_priv(indio_dev); pm_runtime_get_sync(&client->dev); pm_runtime_put_noidle(&client->dev); pm_runtime_disable(&client->dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); ak8975_set_mode(data, POWER_DOWN); ak8975_power_off(data); } static int ak8975_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ak8975_data *data = iio_priv(indio_dev); int ret; /* Set the device in power down if it wasn't already */ ret = ak8975_set_mode(data, POWER_DOWN); if (ret < 0) { dev_err(&client->dev, "Error in setting power-down mode\n"); return ret; } /* Next cut the regulators */ ak8975_power_off(data); return 0; } static int ak8975_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ak8975_data *data = iio_priv(indio_dev); int ret; /* Take up the regulators */ ak8975_power_on(data); /* * We come up in powered down mode, the reading routines will * put us in the mode to read values later. */ ret = ak8975_set_mode(data, POWER_DOWN); if (ret < 0) { dev_err(&client->dev, "Error in setting power-down mode\n"); return ret; } return 0; } static DEFINE_RUNTIME_DEV_PM_OPS(ak8975_dev_pm_ops, ak8975_runtime_suspend, ak8975_runtime_resume, NULL); static const struct i2c_device_id ak8975_id[] = { {"ak8975", AK8975}, {"ak8963", AK8963}, {"AK8963", AK8963}, {"ak09911", AK09911}, {"ak09912", AK09912}, {"ak09916", AK09916}, {} }; MODULE_DEVICE_TABLE(i2c, ak8975_id); static const struct of_device_id ak8975_of_match[] = { { .compatible = "asahi-kasei,ak8975", }, { .compatible = "ak8975", }, { .compatible = "asahi-kasei,ak8963", }, { .compatible = "ak8963", }, { .compatible = "asahi-kasei,ak09911", }, { .compatible = "ak09911", }, { .compatible = "asahi-kasei,ak09912", }, { .compatible = "ak09912", }, { .compatible = "asahi-kasei,ak09916", }, { .compatible = "ak09916", }, {} }; MODULE_DEVICE_TABLE(of, ak8975_of_match); static struct i2c_driver ak8975_driver = { .driver = { .name = "ak8975", .pm = pm_ptr(&ak8975_dev_pm_ops), .of_match_table = ak8975_of_match, .acpi_match_table = ak_acpi_match, }, .probe = ak8975_probe, .remove = ak8975_remove, .id_table = ak8975_id, }; module_i2c_driver(ak8975_driver); MODULE_AUTHOR("Laxman Dewangan <[email protected]>"); MODULE_DESCRIPTION("AK8975 magnetometer driver"); MODULE_LICENSE("GPL");
linux-master
drivers/iio/magnetometer/ak8975.c