python_code
stringlengths 0
679k
| repo_name
stringlengths 9
41
| file_path
stringlengths 6
149
|
---|---|---|
import torch
from ldm.modules.midas.api import load_midas_transform
class AddMiDaS(object):
def __init__(self, model_type):
super().__init__()
self.transform = load_midas_transform(model_type)
def pt2np(self, x):
x = ((x + 1.0) * .5).detach().cpu().numpy()
return x
def np2pt(self, x):
x = torch.from_numpy(x) * 2 - 1.
return x
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = self.pt2np(sample['jpg'])
x = self.transform({"image": x})["image"]
sample['midas_in'] = x
return sample | trt-samples-for-hackathon-cn-master | Hackathon2023/controlnet/ldm/data/util.py |
trt-samples-for-hackathon-cn-master | Hackathon2023/controlnet/ldm/data/__init__.py |
|
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import torchvision
from torchsummary import summary
import time
torch.manual_seed(0)
resnet50 = torchvision.models.resnet50().cuda()
resnet50.eval()
#summary(resnet50, (3, 1080, 1920), device='cuda')
input_data = torch.randn(1, 3, 1080, 1920, dtype=torch.float32, device='cuda')
output_data_pytorch = resnet50(input_data).cpu().detach().numpy()
nRound = 10
with torch.no_grad():
torch.cuda.synchronize()
t0 = time.time()
for i in range(nRound):
resnet50(input_data)
torch.cuda.synchronize()
time_pytorch = (time.time() - t0) / nRound
print('PyTorch time:', time_pytorch)
input_names = ['input']
output_names = ['output']
torch.onnx.export(resnet50, input_data, 'resnet50.onnx', input_names=input_names, output_names=output_names, verbose=False, opset_version=11)
torch.onnx.export(resnet50, input_data, 'resnet50.dynamic_shape.onnx', dynamic_axes={"input": [0, 2, 3]}, input_names=input_names, output_names=output_names, verbose=False, opset_version=11)
#继续运行python代码前,先运行如下命令
#trtexec --verbose --onnx=resnet50.onnx --saveEngine=resnet50.trt
#trtexec --verbose --onnx=resnet50.onnx --saveEngine=resnet50_fp16.trt --fp16
#以下命令不必运行,仅供参考
#trtexec --verbose --onnx=resnet50.dynamic_shape.onnx --saveEngine=resnet50.dynamic_shape.trt --optShapes=input:1x3x1080x1920 --minShapes=input:1x3x1080x1920 --maxShapes=input:1x3x1080x1920
from trt_lite2 import TrtLite
import numpy as np
import os
for engine_file_path in ['resnet50.trt', 'resnet50_fp16.trt']:
if not os.path.exists(engine_file_path):
print('Engine file', engine_file_path, 'doesn\'t exist. Please run trtexec and re-run this script.')
exit(1)
print('====', engine_file_path, '===')
trt = TrtLite(engine_file_path=engine_file_path)
trt.print_info()
i2shape = {0: (1, 3, 1080, 1920)}
io_info = trt.get_io_info(i2shape)
d_buffers = trt.allocate_io_buffers(i2shape, True)
output_data_trt = np.zeros(io_info[1][2], dtype=np.float32)
d_buffers[0].copy_(input_data.reshape(d_buffers[0].size()))
trt.execute([t.data_ptr() for t in d_buffers], i2shape)
output_data_trt = d_buffers[1].cpu().numpy()
torch.cuda.synchronize()
t0 = time.time()
for i in range(nRound):
trt.execute([t.data_ptr() for t in d_buffers], i2shape)
torch.cuda.synchronize()
time_trt = (time.time() - t0) / nRound
print('TensorRT time:', time_trt)
print('Speedup:', time_pytorch / time_trt)
print('Average diff percentage:', np.mean(np.abs(output_data_pytorch - output_data_trt) / np.abs(output_data_pytorch)))
| trt-samples-for-hackathon-cn-master | old/python/app_onnx_resnet50.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datetime import datetime
import numpy as np
import os, sys
i_gpu = 0
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
import pycuda.driver as cuda
import pycuda.autoinit
import tensorrt as trt
import tensorflow.compat.v1 as tf
import tf2onnx
import ctypes
import onnx_graphsurgeon as gs
import onnx
ctypes.cdll.LoadLibrary('../build/OnehotPlugin.so')
#TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE)
def modify_onehot(graph):
for node in graph.nodes:
if node.op == "OneHot":
depth = node.inputs[1].values
attrs = {"depth": int(depth)}
onehot = gs.Node(op="OnehotPlugin", name=node.name, attrs=attrs)
graph.nodes.append(onehot)
inp_output_tensor = node.inputs[0]
inp_output_tensor.outputs = [onehot]
onehot.outputs = node.outputs
node.outputs.clear()
print(onehot)
# Remove the non-used node from the graph completely
graph.cleanup()
return graph
# Simple helper data class that's a little nicer to use than a 2-tuple.
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
# size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
size = trt.volume(engine.get_binding_shape(binding))
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
# This function is generalized for multiple inputs/outputs.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async(batch_size=batch_size,
bindings=bindings,
stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
def main():
tf.set_random_seed(1234)
np.random.seed(0)
iterations = 100
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
batch_size = 16
input_data = np.random.rand(batch_size, 256).astype(np.float32)
input_ph = tf.placeholder(dtype=tf.float32,
shape=[batch_size, 256],
name="input")
x = tf.layers.dense(input_ph, 256)
# test one_hot
depth = 256
indices = tf.cast(
tf.clip_by_value(tf.reshape(x, [-1]), 0, depth - 1),
tf.int32)
x = tf.one_hot(indices, depth)
x = tf.reshape(x, [batch_size, -1])
x = tf.layers.dense(x, 256)
output = tf.identity(x, name="output")
sess.run(tf.global_variables_initializer())
time_sum = 0
a = datetime.now()
for i in range(iterations):
tf_result = sess.run([output], {input_ph: input_data})
b = datetime.now()
time_sum = (b - a).total_seconds()
tf_time = "[INFO] TF execution time " + str(
time_sum * 1000 / iterations) + " ms"
print(tf_time)
output_name_without_port = ["output"]
frozen_graph = tf.graph_util.convert_variables_to_constants(
sess, sess.graph_def, output_name_without_port)
# save frozen model
with open("test_op.pb", "wb") as ofile:
ofile.write(frozen_graph.SerializeToString())
model_file = "test_op.onnx"
os.system("python3 -m tf2onnx.convert --input test_op.pb --inputs input:0 --outputs output:0 --output test_op.onnx --verbose --opset 11")
### use ONNX GraphSurgeon
# ONNX operator is required to keep aligned (like name, inputs, outputs and attributes) with TensorRT plugin to use Fallback mechanism.
# ONNX GraphSurgeon is useful for modification and you can install it by the following commands.
# pip install nvidia-pyindex
# pip install onnx-graphsurgeon
graph = gs.import_onnx(onnx.load(model_file))
graph = modify_onehot(graph)
model_file = "test_op_onehot.onnx"
onnx.save(gs.export_onnx(graph), model_file)
# build trt model by onnx model
cuda.Device(0).make_context()
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(
1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_batch_size = batch_size
with open(model_file, 'rb') as model:
# parse onnx model
parser.parse(model.read())
for i in range(parser.num_errors):
print(parser.get_error(i))
engine = builder.build_engine(network, builder.create_builder_config())
if engine == None:
print("[ERROR] engine is None")
exit(-1)
inputs, outputs, bindings, stream = allocate_buffers(engine)
with engine.create_execution_context() as context:
input_data = input_data.ravel()
np.copyto(inputs[0].host, input_data)
time_sum = 0
a = datetime.now()
for i in range(iterations):
np.copyto(inputs[0].host, input_data)
output = do_inference(context,
bindings=bindings,
inputs=inputs,
outputs=outputs,
stream=stream,
batch_size=batch_size)
b = datetime.now()
time_sum = (b - a).total_seconds()
trt_time = ("TRT execution time " +
str(time_sum * 1000 / iterations) + " ms")
trt_result = output
for i in range(len(trt_result)):
print(
"trt cross_check output_%d " % i +
str(np.allclose(tf_result[i].flatten(), trt_result[i], atol=1e-5)))
print("max diff " +
str(np.fabs(tf_result[i].flatten() - trt_result[i]).max()))
print("min diff " +
str(np.fabs(tf_result[i].flatten() - trt_result[i]).min()))
print(tf_time)
print(trt_time)
cuda.Context.pop()
if __name__ == '__main__':
main()
| trt-samples-for-hackathon-cn-master | old/python/app_Onehot_plugin_TF.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from functools import reduce
import numpy as np
import tensorrt
import ctypes
import torch
from trt_lite2 import TrtLite
np.set_printoptions(threshold=np.inf)
ctypes.cdll.LoadLibrary('../build/AddPlugin.so')
def get_plugin_creator(plugin_name):
plugin_creator_list = tensorrt.get_plugin_registry().plugin_creator_list
plugin_creator = None
for c in plugin_creator_list:
if c.name == plugin_name:
plugin_creator = c
return plugin_creator
def build_engine(builder, input_shape):
plugin_creator = get_plugin_creator('AddPlugin')
if plugin_creator == None:
print('Plugin not found. Exiting')
exit()
config = builder.create_builder_config()
config.max_workspace_size = 1 << 20
builder.max_batch_size = 8
network = builder.create_network()
tensor = network.add_input('data', tensorrt.DataType.FLOAT, input_shape)
layer = network.add_plugin_v2(
[tensor],
plugin_creator.create_plugin('AddPlugin', tensorrt.PluginFieldCollection([
tensorrt.PluginField('valueToAdd', np.array([100.0], dtype=np.float32), tensorrt.PluginFieldType.FLOAT32)
]))
)
tensor = layer.get_output(0)
network.mark_output(tensor)
return builder.build_engine(network, config)
def run_engine():
batch_size = 2
input_shape = (batch_size, 1, 2, 8)
n = reduce(lambda x, y: x * y, input_shape)
input_data = np.asarray(range(n), dtype=np.float32).reshape(input_shape)
output_data = np.zeros(input_shape, dtype=np.float32)
trt = TrtLite(build_engine, (input_shape[1:],))
trt.print_info()
d_buffers = trt.allocate_io_buffers(batch_size, True)
d_buffers[0].copy_(torch.from_numpy(input_data))
trt.execute([t.data_ptr() for t in d_buffers], batch_size)
output_data = d_buffers[1].cpu().numpy()
print(output_data)
if __name__ == '__main__':
run_engine()
| trt-samples-for-hackathon-cn-master | old/python/app_plugin.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
import ctypes
def get_plugin_creator(plugin_name):
trt.init_libnvinfer_plugins(logger, '')
plugin_creator_list = trt.get_plugin_registry().plugin_creator_list
plugin_creator = None
for c in plugin_creator_list:
if c.name == plugin_name:
plugin_creator = c
return plugin_creator
def build_engine(shape_data, shape_indices):
plugin_creator = get_plugin_creator('GatherND')
if plugin_creator == None:
print('GatherND plugin not found. Exiting')
exit()
builder = trt.Builder(logger)
network = builder.create_network(flags=1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
tensor_data = network.add_input('data', trt.DataType.FLOAT, shape_data)
tensor_indices = network.add_input('indices', trt.DataType.INT32, shape_indices)
layer = network.add_plugin_v2(
[tensor_data, tensor_indices],
plugin_creator .create_plugin('GatherND', trt.PluginFieldCollection([]))
)
network.mark_output(layer.get_output(0))
return builder.build_engine(network, builder.create_builder_config())
def run_trt(data, indices, output_0):
engine = build_engine(data.shape, indices.shape)
print("succeed to build the engine")
context = engine.create_execution_context()
d_indices = cuda.mem_alloc(indices.nbytes)
d_data = cuda.mem_alloc(data.nbytes)
d_output_0 = cuda.mem_alloc(output_0.nbytes)
cuda.memcpy_htod(d_indices, indices)
cuda.memcpy_htod(d_data, data)
bindings = [int(d_data), int(d_indices), int(d_output_0)]
context.execute_v2(bindings)
cuda.memcpy_dtoh(output_0, d_output_0)
return output_0
if __name__ == "__main__":
logger = trt.Logger(trt.Logger.INFO)
ctypes.cdll.LoadLibrary('../build/GatherND.so')
data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.float32)
indices = np.array([[[0, 1]], [[1, 0]]], dtype=np.int32)
# Expecting output as np.array([[[2,3]],[[4,5]]], dtype=np.float32)
output_0 = np.zeros([2, 1, 2], dtype=np.float32)
output_0 = run_trt(data, indices, output_0)
print(f"data shape: {data.shape} indices shape: {indices.shape} output shape: {output_0.shape} ")
print(f"data {data} \n indices: \n {indices} \n result: \n {output_0}")
| trt-samples-for-hackathon-cn-master | old/python/app_GatherND_plugin.py |
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from functools import reduce
import tensorrt
import torch
import numpy as np
class TrtLite:
def __init__(self, build_engine_proc = None, build_engine_params = None, engine_file_path = None):
logger = tensorrt.Logger(tensorrt.Logger.INFO)
if engine_file_path is None:
with tensorrt.Builder(logger) as builder:
if build_engine_params is not None:
self.engine = build_engine_proc(builder, *build_engine_params)
else:
self.engine = build_engine_proc(builder)
else:
with open(engine_file_path, 'rb') as f, tensorrt.Runtime(logger) as runtime:
self.engine = runtime.deserialize_cuda_engine(f.read())
self.context = self.engine.create_execution_context()
def __del__(self):
self.engine = None
self.context = None
def save_to_file(self, engine_file_path):
with open(engine_file_path, 'wb') as f:
f.write(self.engine.serialize())
def get_io_info(self, input_desc):
def to_numpy_dtype(trt_dtype):
tb = {
tensorrt.DataType.BOOL: np.dtype('bool'),
tensorrt.DataType.FLOAT: np.dtype('float32'),
tensorrt.DataType.HALF: np.dtype('float16'),
tensorrt.DataType.INT32: np.dtype('int32'),
tensorrt.DataType.INT8: np.dtype('int8'),
}
return tb[trt_dtype]
if isinstance(input_desc, dict):
if self.engine.has_implicit_batch_dimension:
print('Engine was built with static-shaped input so you should provide batch_size instead of i2shape')
return
i2shape = input_desc
for i, shape in i2shape.items():
self.context.set_binding_shape(i, shape)
return [(self.engine.get_binding_name(i), self.engine.binding_is_input(i),
tuple(self.context.get_binding_shape(i)), to_numpy_dtype(self.engine.get_binding_dtype(i))) for i in range(self.engine.num_bindings)]
batch_size = input_desc
return [(self.engine.get_binding_name(i),
self.engine.binding_is_input(i),
(batch_size,) + tuple(self.context.get_binding_shape(i)),
to_numpy_dtype(self.engine.get_binding_dtype(i))) for i in range(self.engine.num_bindings)]
def allocate_io_buffers(self, input_desc, on_gpu):
io_info = self.get_io_info(input_desc)
if io_info is None:
return
if on_gpu:
cuda = torch.device('cuda')
np2pth = {
np.dtype('bool'): torch.bool,
np.dtype('float32'): torch.float32,
np.dtype('float16'): torch.float16,
np.dtype('int32'): torch.int32,
np.dtype('int8'): torch.int8,
}
return [torch.empty(i[2], dtype=np2pth[i[3]], device=cuda).contiguous() for i in io_info]
else:
return [np.zeros(i[2], i[3]) for i in io_info]
def execute(self, bindings, input_desc, stream_handle = 0, input_consumed = None):
if isinstance(input_desc, dict):
i2shape = input_desc
for i, shape in i2shape.items():
self.context.set_binding_shape(i, shape)
self.context.execute_async_v2(bindings, stream_handle, input_consumed)
return
batch_size = input_desc
self.context.execute_async(batch_size, bindings, stream_handle, input_consumed)
def print_info(self):
print("Batch dimension is", "implicit" if self.engine.has_implicit_batch_dimension else "explicit")
for i in range(self.engine.num_bindings):
print("input" if self.engine.binding_is_input(i) else "output",
self.engine.get_binding_name(i), self.engine.get_binding_dtype(i),
self.engine.get_binding_shape(i),
-1 if -1 in self.engine.get_binding_shape(i) else reduce(
lambda x, y: x * y, self.engine.get_binding_shape(i)) * self.engine.get_binding_dtype(i).itemsize)
| trt-samples-for-hackathon-cn-master | old/python/trt_lite2.py |
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from functools import reduce
import tensorrt
import pycuda.driver as cuda
import numpy as np
class TrtLite:
def __init__(self, build_engine_proc = None, build_engine_params = None, engine_file_path = None):
logger = tensorrt.Logger(tensorrt.Logger.INFO)
if engine_file_path is None:
with tensorrt.Builder(logger) as builder:
if build_engine_params is not None:
self.engine = build_engine_proc(builder, *build_engine_params)
else:
self.engine = build_engine_proc(builder)
else:
with open(engine_file_path, 'rb') as f, tensorrt.Runtime(logger) as runtime:
self.engine = runtime.deserialize_cuda_engine(f.read())
self.context = self.engine.create_execution_context()
def __del__(self):
self.engine = None
self.context = None
def save_to_file(self, engine_file_path):
with open(engine_file_path, 'wb') as f:
f.write(self.engine.serialize())
def get_io_info(self, input_desc):
def to_numpy_dtype(trt_dtype):
tb = {
tensorrt.DataType.BOOL: np.dtype('bool'),
tensorrt.DataType.FLOAT: np.dtype('float32'),
tensorrt.DataType.HALF: np.dtype('float16'),
tensorrt.DataType.INT32: np.dtype('int32'),
tensorrt.DataType.INT8: np.dtype('int8'),
}
return tb[trt_dtype]
if isinstance(input_desc, dict):
if self.engine.has_implicit_batch_dimension:
print('Engine was built with static-shaped input so you should provide batch_size instead of i2shape')
return
i2shape = input_desc
for i, shape in i2shape.items():
self.context.set_binding_shape(i, shape)
return [(self.engine.get_binding_name(i), self.engine.binding_is_input(i),
self.context.get_binding_shape(i), to_numpy_dtype(self.engine.get_binding_dtype(i))) for i in range(self.engine.num_bindings)]
batch_size = input_desc
return [(self.engine.get_binding_name(i), self.engine.binding_is_input(i),
(batch_size,) + tuple(self.context.get_binding_shape(i)), to_numpy_dtype(self.engine.get_binding_dtype(i))) for i in range(self.engine.num_bindings)]
def allocate_io_buffers(self, input_desc, on_gpu):
io_info = self.get_io_info(input_desc)
if io_info is None:
return
if on_gpu:
return [cuda.mem_alloc(reduce(lambda x, y: x * y, i[2]) * i[3].itemsize) for i in io_info]
else:
return [np.zeros(i[2], i[3]) for i in io_info]
def execute(self, bindings, input_desc, stream_handle = 0, input_consumed = None):
if isinstance(input_desc, dict):
i2shape = input_desc
for i, shape in i2shape.items():
self.context.set_binding_shape(i, shape)
self.context.execute_async_v2(bindings, stream_handle, input_consumed)
return
batch_size = input_desc
self.context.execute_async(batch_size, bindings, stream_handle, input_consumed)
def print_info(self):
print("Batch dimension is", "implicit" if self.engine.has_implicit_batch_dimension else "explicit")
for i in range(self.engine.num_bindings):
print("input" if self.engine.binding_is_input(i) else "output",
self.engine.get_binding_name(i), self.engine.get_binding_dtype(i),
self.engine.get_binding_shape(i),
-1 if -1 in self.engine.get_binding_shape(i) else reduce(
lambda x, y: x * y, self.engine.get_binding_shape(i)) * self.engine.get_binding_dtype(i).itemsize)
| trt-samples-for-hackathon-cn-master | old/python/trt_lite.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
import ctypes
def get_plugin_creator(plugin_name):
trt.init_libnvinfer_plugins(logger, '')
plugin_creator_list = trt.get_plugin_registry().plugin_creator_list
plugin_creator = None
for c in plugin_creator_list:
if c.name == plugin_name:
plugin_creator = c
return plugin_creator
def build_engine(shape_data, shape_indices, shape_updates):
plugin_creator = get_plugin_creator('ScatterND')
if plugin_creator == None:
print('scatterND plugin not found. Exiting')
exit()
builder = trt.Builder(logger)
network = builder.create_network(flags=1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
tensor_data = network.add_input('data', trt.DataType.FLOAT, shape_data)
tensor_indices = network.add_input('indices', trt.DataType.INT32, shape_indices)
tensor_updates = network.add_input('updates', trt.DataType.FLOAT, shape_updates)
layer = network.add_plugin_v2(
[tensor_data, tensor_indices, tensor_updates],
plugin_creator .create_plugin('ScatterND', trt.PluginFieldCollection([
]))
)
network.mark_output(layer.get_output(0))
return builder.build_engine(network, builder.create_builder_config())
def run_trt(data, indices, updates, output_0):
engine = build_engine(data.shape, indices.shape, updates.shape)
print("succeed to build the engine")
context = engine.create_execution_context()
d_indices = cuda.mem_alloc(indices.nbytes)
d_data = cuda.mem_alloc(data.nbytes)
d_updates = cuda.mem_alloc(updates.nbytes)
d_output_0 = cuda.mem_alloc(output_0.nbytes)
cuda.memcpy_htod(d_indices, indices)
cuda.memcpy_htod(d_data, data)
cuda.memcpy_htod(d_updates, updates)
bindings = [int(d_data), int(d_indices), int(d_updates), int(d_output_0)]
context.execute_v2(bindings)
cuda.memcpy_dtoh(output_0, d_output_0)
return output_0
if __name__ == "__main__":
logger = trt.Logger(trt.Logger.INFO)
ctypes.cdll.LoadLibrary('../build/ScatterND.so')
data = np.array(
[[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.float32)
indices = np.array([[0], [2]], dtype=np.int32)
updates = np.array(
[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]], dtype=np.float32)
# Expecting output as np.array(
# [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
# [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
# [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
# [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.float32)
output_0 = np.zeros(data.shape, dtype=np.float32)
output_0 = run_trt(data, indices, updates, output_0)
print(f"data shape: {data.shape} indices shape: {indices.shape} updates shape: {updates.shape} output shape: {output_0.shape} ")
print(f"data {data} \n indices: \n {indices} \n updates: \n {updates} \n result: \n {output_0}")
| trt-samples-for-hackathon-cn-master | old/python/app_ScatterND_plugin.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from functools import reduce
import numpy as np
import tensorrt
import pycuda.driver as cuda
import pycuda.autoinit
from trt_lite import TrtLite
np.set_printoptions(threshold=np.inf)
def build_engine_static(builder, input_shape):
network = builder.create_network()
data = network.add_input("data", tensorrt.DataType.FLOAT, input_shape)
w = np.asarray(
[0, 0, 0,
0, 1, 0,
0, 0, 0],
dtype = np.float32)
b = np.zeros((1,), np.float32)
conv = network.add_convolution(data, 1, (3, 3), w, b)
conv.stride = (1, 1)
conv.padding = (1, 1)
print('conv', conv.get_output(0).shape)
network.mark_output(conv.get_output(0))
builder.max_batch_size = 64
return builder.build_engine(network, builder.create_builder_config())
def run_engine_static(save_and_load=False):
batch_size = 1
input_shape = (batch_size, 1, 5, 5)
n = reduce(lambda x, y: x * y, input_shape)
input_data = np.asarray(range(n), dtype=np.float32).reshape(input_shape)
output_data = np.zeros(input_shape, dtype=np.float32)
trt = TrtLite(build_engine_static, (input_shape[1:],))
if save_and_load:
trt.save_to_file("out.trt")
trt = TrtLite(engine_file_path="out.trt")
trt.print_info()
d_buffers = trt.allocate_io_buffers(batch_size, True)
cuda.memcpy_htod(d_buffers[0], input_data)
trt.execute(d_buffers, batch_size)
cuda.memcpy_dtoh(output_data, d_buffers[1])
print(output_data)
def build_engine_dynamic(builder):
network = builder.create_network(1)
data = network.add_input("data", tensorrt.DataType.FLOAT, (-1, 1, -1, -1))
w = np.asarray(
[0, 0, 0,
0, 1, 0,
0, 0, 0],
dtype = np.float32)
b = np.zeros((1,), np.float32)
conv = network.add_convolution(data, 1, (3, 3), w, b)
conv.stride = (1, 1)
conv.padding = (1, 1)
print('conv', conv.get_output(0).shape)
network.mark_output(conv.get_output(0))
op = builder.create_optimization_profile()
op.set_shape('data', (1, 1, 3, 3), (1, 1, 5, 5), (16, 1, 128, 128))
config = builder.create_builder_config()
config.add_optimization_profile(op)
return builder.build_engine(network, config)
def run_engine_dynamic(save_and_load=False):
input_shape = (1, 1, 5, 5)
n = reduce(lambda x, y: x * y, input_shape)
input_data = np.asarray(range(n), dtype=np.float32).reshape(input_shape)
output_data = np.zeros(input_shape, dtype=np.float32)
trt = TrtLite(build_engine_dynamic)
if save_and_load:
trt.save_to_file("out.trt")
trt = TrtLite(engine_file_path="out.trt")
trt.print_info()
i2shape = {0: input_shape}
d_buffers = trt.allocate_io_buffers(i2shape, True)
cuda.memcpy_htod(d_buffers[0], input_data)
trt.execute(d_buffers, i2shape)
cuda.memcpy_dtoh(output_data, d_buffers[1])
print(output_data)
if __name__ == '__main__':
run_engine_static()
run_engine_static(True)
run_engine_dynamic()
run_engine_dynamic(True)
| trt-samples-for-hackathon-cn-master | old/python/app_basic.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import numpy as np
src_onnx = 'custom.onnx'
dst_onnx = 'custom_surgeon.onnx'
class CustomModel(torch.nn.Module):
def forward(self, x, grid):
grid = torch.clamp(grid, -1.0, 1.0)
return torch.nn.functional.grid_sample(input=x, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True)
x = torch.randn(1, 3, 544, 960)
grid = torch.randn(1, 544, 960, 2)
custom = CustomModel()
print('output shape:', custom(x, grid).size())
input_names = ['x', 'grid']
output_names = ['y']
torch.onnx.export(custom, (x, grid), src_onnx, input_names=input_names, output_names=output_names, opset_version=11, verbose=True,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH, do_constant_folding=False)
import onnx_graphsurgeon as gs
import onnx
import numpy as np
graph = gs.import_onnx(onnx.load(src_onnx))
for node in graph.nodes:
if node.op == 'Resize' and node.i(2, 0).op == 'Concat':
# actually not used in this sample
node_concat = node.i(2, 0)
values = []
for i in range(len(node_concat.inputs)):
c = node_concat.i(i, 0)
# print(c)
while c.op != 'Constant':
c = c.i(0, 0)
values.append(c.attrs['value'].values)
#以下是不可靠的写法(不可靠地假定了0号父亲是Constant)
#node_concat.i(0, 0).attrs['value'] = gs.Constant('', np.concatenate(values))
#node.inputs[2] = node_concat.inputs[0]
#以下是更可靠的写法
node_constant = gs.Node(op="Constant", name=node_concat.name, attrs={'value':gs.Constant('', np.concatenate(values))})
node_constant.outputs = node_concat.outputs[:]
graph.nodes.append(node_constant)
node_concat.outputs.clear()
if node.op == 'Unsqueeze' and node.i(0, 0).op == 'Constant' and node.i(0, 0).attrs['value'].dtype == np.float64:
node.i(0, 0).attrs['value'] = gs.Constant('', np.asarray([node.i(0, 0).attrs['value'].values], dtype=np.float32))
if node.op == 'Clip':
node_cast0 = node.i(1, 0)
node_cast1 = node.i(2, 0)
#change data type to fp32
node_cast0.i(0, 0).attrs['value'] = gs.Constant('', np.asarray([-1.0], dtype=np.float32))
node_cast1.i(0, 0).attrs['value'] = gs.Constant('', np.asarray([1.0], dtype=np.float32))
#skip cast
node.inputs = [node.inputs[0], node_cast0.inputs[0], node_cast1.inputs[0]]
#cleanup cast
node_cast0.outputs.clear()
node_cast1.outputs.clear()
if node.op == 'grid_sampler':
#cleanup 3 unused inputs
for i in [4, 3, 2]:
node.i(i, 0).outputs.clear()
del node.inputs[i]
graph.cleanup()
onnx.save(gs.export_onnx(graph), dst_onnx)
model = onnx.load(dst_onnx)
# May not work with non-standard ONNX op
#onnx.checker.check_model(model)
#print(onnx.helper.printable_graph(model.graph))
#trtexec --verbose --onnx=custom_surgeon.onnx --saveEngine=custom_surgeon.trt --plugins=./GridSamplerPlugin.so
| trt-samples-for-hackathon-cn-master | old/python/app_onnx_custom.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import torchvision
import time
import ctypes
cudart = ctypes.CDLL('libcudart.so')
torch.manual_seed(0)
resnet50 = torchvision.models.resnet50().cuda()
resnet50.eval()
input_data = torch.randn(1, 3, 1080, 1920, dtype=torch.float32, device='cuda')
nRound = 10
cudart.cudaProfilerStart()
with torch.no_grad():
torch.cuda.synchronize()
t0 = time.time()
for i in range(nRound):
resnet50(input_data)
torch.cuda.synchronize()
time_pytorch = (time.time() - t0) / nRound
print('PyTorch time:', time_pytorch)
cudart.cudaProfilerStop()
| trt-samples-for-hackathon-cn-master | old/python/app_decode_inference.py |
#!/usr/bin/python3
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
import ctypes
def get_plugin_creator(plugin_name):
trt.init_libnvinfer_plugins(logger, '')
plugin_creator_list = trt.get_plugin_registry().plugin_creator_list
plugin_creator = None
for c in plugin_creator_list:
if c.name == plugin_name:
plugin_creator = c
return plugin_creator
def build_engine(shape_indices):
plugin_creator = get_plugin_creator('OnehotPlugin')
if plugin_creator == None:
print('OnehotPlugin plugin not found. Exiting')
exit()
builder = trt.Builder(logger)
network = builder.create_network(flags=1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
tensor_indices = network.add_input('indices', trt.DataType.INT32, shape_indices)
depth = 10
layer = network.add_plugin_v2(
[tensor_indices], plugin_creator.create_plugin('OnehotPlugin', trt.PluginFieldCollection([
trt.PluginField('depth', np.array([depth], dtype=np.int32), trt.PluginFieldType.INT32)
])))
network.mark_output(layer.get_output(0))
return builder.build_engine(network, builder.create_builder_config())
def run_trt(indices, output_0):
engine = build_engine(indices.shape)
print("succeed to build the engine")
context = engine.create_execution_context()
d_indices = cuda.mem_alloc(indices.nbytes)
d_output_0 = cuda.mem_alloc(output_0.nbytes)
cuda.memcpy_htod(d_indices, indices)
bindings = [int(d_indices), int(d_output_0)]
context.execute_v2(bindings)
cuda.memcpy_dtoh(output_0, d_output_0)
return output_0
if __name__ == "__main__":
logger = trt.Logger(trt.Logger.INFO)
ctypes.cdll.LoadLibrary('../build/OnehotPlugin.so')
indices = np.array([[1, 9], [2, 4]], dtype=np.int32)
output_0 = np.zeros([2, 2, 10], dtype=np.float32)
output_0 = run_trt(indices, output_0)
print(f"indices shape: {indices.shape} output shape: {output_0.shape} ")
print(f"indices: \n {indices} \n result: \n {output_0}")
| trt-samples-for-hackathon-cn-master | old/python/app_Onehot_plugin.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import subprocess
from parseTrtexecLog import parse_build_log, parse_profiling_log
from trex import EnginePlan, layer_type_formatter, render_dot, to_dot
onnxFile = "./model/model.onnx"
trtFile = "./model/model.plan"
# build
buildLogfile = "./model/build.log"
buildMetadataJsonFile = "./model/build.metadata.json"
buildTimingCacheFile = "./model/build.timingCache.cache"
# profile
profileLogFile = "./model/profile.log"
profileJsonFile = "./model/profile.json"
profileMetadatadJsonFile = "./model/profile.metadata.json"
profileTimingJsonFile = "./model/profile.timing.json"
# draw
graphJsonFile = "./model/graph.json"
# build engine -----------------------------------------------------------------
cmd_line = "trtexec --verbose --profilingVerbosity=detailed --buildOnly --workspace=4096 --onnx=%s --saveEngine=%s --timingCacheFile=%s" % \
(onnxFile,trtFile,buildTimingCacheFile)
with open(buildLogfile, "w") as f:
log = subprocess.run(cmd_line.split(" "), check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
f.write(log.stdout)
with open(buildMetadataJsonFile, "w") as f:
json.dump(parse_build_log(buildLogfile), f)
print("\nSucceeded building engine\n\t%s\n\t%s\n\t%s" % (buildLogfile, buildTimingCacheFile, buildMetadataJsonFile))
# profile engine ---------------------------------------------------------------
cmd_line = "trtexec --verbose --profilingVerbosity=detailed --noDataTransfers --useCudaGraph --separateProfileRun --useSpinWait --loadEngine=%s --exportProfile=%s --exportTimes=%s --exportLayerInfo=%s" % \
(trtFile, profileJsonFile, profileTimingJsonFile, graphJsonFile)
with open(profileLogFile, "w") as f:
log = subprocess.run(cmd_line.split(" "), check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
f.write(log.stdout)
with open(profileMetadatadJsonFile, "w") as f:
json.dump(parse_profiling_log(profileLogFile), f)
print("\nSucceeded profiling engine\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s" % (profileLogFile, profileJsonFile, profileTimingJsonFile, graphJsonFile, profileMetadatadJsonFile))
# draw graph -------------------------------------------------------------------
plan = EnginePlan(graphJsonFile)
formatter = layer_type_formatter
graph = to_dot(plan, formatter, display_regions=True, expand_layer_details=False)
render_dot(graph, graphJsonFile, "svg")
print("\nSucceeded drawing graph\n\t%s" % graphJsonFile)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/mainProcess.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
onnxFile = "./model.onnx"
# 创建 .onnx 模型文件 ------------------------------------------------------------
tensor0 = gs.Variable("tensor-0", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
graphNodeList = []
tensor1 = gs.Variable("tensor-1", np.float32, None)
node1 = gs.Node("Conv", "Conv-1", inputs=[tensor0, constant32x1, constant32], outputs=[tensor1])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor2 = gs.Variable("tensor-2", np.float32, None)
node2 = gs.Node("Relu", "ReLU-2", inputs=[tensor1], outputs=[tensor2])
graphNodeList.append(node2)
tensor3 = gs.Variable("tensor-3", np.float32, None)
node3 = gs.Node("MaxPool", "MaxPool-3", inputs=[tensor2], outputs=[tensor3])
node3.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node3)
tensor4 = gs.Variable("tensor-4", np.float32, None)
node1 = gs.Node("Conv", "Conv-4", inputs=[tensor3, constant64x32, constant64], outputs=[tensor4])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor5 = gs.Variable("tensor-5", np.float32, None)
node5 = gs.Node("Relu", "ReLU-5", inputs=[tensor4], outputs=[tensor5])
graphNodeList.append(node5)
tensor6 = gs.Variable("tensor-6", np.float32, None)
node6 = gs.Node("MaxPool", "MaxPool-6", inputs=[tensor5], outputs=[tensor6])
node6.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node6)
tensor7 = gs.Variable("tensor-7", np.float32, None)
node7 = gs.Node("Transpose", "Transpose-7", inputs=[tensor6], outputs=[tensor7], attrs=OrderedDict([("perm", [0, 2, 3, 1])]))
graphNodeList.append(node7)
tensor8 = gs.Variable("tensor-8", np.float32, None)
node8 = gs.Node("Reshape", "Reshape-7", inputs=[tensor7, constantM1Comma3136], outputs=[tensor8])
graphNodeList.append(node8)
tensor9 = gs.Variable("tensor-9", np.float32, None)
node9 = gs.Node("MatMul", "MatMul-9", inputs=[tensor8, constant3136x1024], outputs=[tensor9])
graphNodeList.append(node9)
tensor10 = gs.Variable("tensor-10", np.float32, None)
node10 = gs.Node("Add", "Add-10", inputs=[tensor9, constant1024], outputs=[tensor10])
graphNodeList.append(node10)
tensor11 = gs.Variable("tensor-11", np.float32, None)
node11 = gs.Node("Relu", "ReLU-11", inputs=[tensor10], outputs=[tensor11])
graphNodeList.append(node11)
tensor12 = gs.Variable("tensor-12", np.float32, None)
node12 = gs.Node("MatMul", "MatMul-12", inputs=[tensor11, constant1024x10], outputs=[tensor12])
graphNodeList.append(node12)
tensor13 = gs.Variable("tensor-13", np.float32, None)
node13 = gs.Node("Add", "Add-13", inputs=[tensor12, constant10], outputs=[tensor13])
graphNodeList.append(node13)
tensor14 = gs.Variable("tensor-14", np.float32, None)
node14 = gs.Node("Softmax", "Softmax-14", inputs=[tensor13], outputs=[tensor14], attrs=OrderedDict([("axis", 1)]))
graphNodeList.append(node14)
tensor15 = gs.Variable("tensor-15", np.int64, None)
node15 = gs.Node("ArgMax", "ArgMax-15", inputs=[tensor14], outputs=[tensor15], attrs=OrderedDict([("axis", 1), ("keepdims", 0)]))
graphNodeList.append(node15)
graph = gs.Graph(nodes=graphNodeList, inputs=[tensor0], outputs=[tensor15])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), onnxFile)
print("Succeeded create %s" % onnxFile)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/getOnnxModel.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
from setuptools import find_packages, setup
def no_publish():
blacklist = ["register"]
for cmd in blacklist:
if cmd in sys.argv:
raise RuntimeError('Command "{}" blacklisted'.format(cmd))
def main():
no_publish()
with open("requirements.txt", "r") as req_file:
required_pckgs = [line.strip() for line in req_file.readlines()]
setup(
name="trex",
version="0.1.2",
description="TREX: TensorRT Engine Exploration Toolkit",
long_description="",
author="NVIDIA",
author_email="[email protected]",
classifiers=[
"Intended Audience :: Developers",
"Programming Language :: Python :: 3",
],
license="Apache 2.0",
install_requires=required_pckgs,
packages=find_packages(exclude=("model")),
zip_safe=True,
)
if __name__ == "__main__":
main()
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/setup.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
trtexec log file parsing
"""
import json
import re
from enum import Enum, unique
from pickle import BUILD
from typing import Any, Dict, List, Tuple
def __to_float(line: str) -> float:
"""Scan the input string and extract the first float instance."""
# https://docs.python.org/3/library/re.html#simulating-scanf
float_match = re.search(r"[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?", line)
if float_match is None:
raise ValueError
start, end = float_match.span()
return float(line[start:end])
def __get_stats(line: str) -> List[float]:
"""Parse a string containing pairs of "key = value" and return the list of values.
Here's a sample input line: "min = 0.87854 ms, max = 0.894043 ms, mean = 0.881251 ms"
The values are expected to be floats.
Split the kv list to "k = v" substrings, then split each substring to
k, v and return float(v)
"""
return [__to_float(substr.split("=")[1]) for substr in line.split(",")]
class FileSection:
def __init__(self, section_header: str):
self.section_header = section_header
self.dict = {}
def entered_section(self, line: str):
s = re.search(self.section_header, line)
return s is not None
def parse_line(self, line: str):
def parse_kv_line(line: str) -> Tuple[Any, Any]:
"""Parse a log line that reports a key-value pair.
The log line has this format: [mm/dd/yyyy-hh:mm:ss] [I] key_name: key_value
"""
match = re.search(r'(\[\d+/\d+/\d+-\d+:\d+:\d+\] \[I\] )', line)
if match is not None:
match_end = match.span()[1]
kv_line = line[match_end:].strip()
kv = kv_line.split(": ")
if len(kv) > 1:
return kv[0], kv[1]
return None, None
k, v = parse_kv_line(line)
if k is not None and v is not None:
self.dict[k] = v
return True
return False
def __parse_log_file(file_name: str, sections: List) -> List[Dict]:
current_section = None
with open(file_name, "r") as file:
for line in file.readlines():
if current_section is None:
for section in sections:
if section.entered_section(line):
current_section = section
break
else:
if not current_section.parse_line(line):
current_section = None
dicts = [section.dict for section in sections]
return dicts
def parse_build_log(file_name: str) -> List[Dict]:
"""Parse the TensorRT engine build log and extract the builder configuration.
Returns the model and engine build configurations as dictionaries.
"""
model_options = FileSection("=== Model Options ===")
build_options = FileSection("=== Build Options ===")
sections = [model_options, build_options]
__parse_log_file(file_name, sections)
return {
"model_options": model_options.dict,
"build_options": build_options.dict,
}
def parse_profiling_log(file_name: str):
performance_summary = FileSection("=== Performance summary ===")
inference_options = FileSection("=== Inference Options ===")
device_information = FileSection("=== Device Information ===")
sections = [performance_summary, inference_options, device_information]
__parse_log_file(file_name, sections)
def post_process_perf(perf_summary: dict):
"""Normalize the log results to a standard format"""
for k, v in perf_summary.items():
if k in ["Throughput", "Total Host Walltime", "Total GPU Compute Time"]:
perf_summary[k] = __to_float(v)
if k in ["Latency", "Enqueue Time", "H2D Latency", "GPU Compute Time", "D2H Latency"]:
perf_summary[k] = __get_stats(v)
return perf_summary
def post_process_device_info(device_info: dict):
"""Convert some value fields to float"""
for k, v in device_info.items():
if k in ["Compute Clock Rate", "Memory Bus Width", "Memory Clock Rate", "Compute Capability", "SMs"]:
device_info[k] = __to_float(v)
return device_info
return {"performance_summary": post_process_perf(performance_summary.dict), "inference_options": inference_options.dict, "device_information": post_process_device_info(device_information.dict)}
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/parseTrtexecLog.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
TensorRT Engine Exploration API - EnginePlan
"""
import ntpath
import warnings
from copy import deepcopy
from typing import List, Tuple
import pandas as pd
from .df_preprocessing import *
from .layer import Layer, fold_no_ops
from .parser import *
class EnginePlan:
def __init__(
self,
graph_file: str,
profiling_file: str = None,
profiling_metadata_file: str = None,
build_metadata_file: str = None,
name: str = None,
):
def path_leaf(path):
head, tail = ntpath.split(path)
return tail or ntpath.basename(head)
def create_layers(self, raw_layers):
layers = [Layer(raw_layer) for raw_layer in raw_layers]
self.layers = fold_no_ops(layers, self.bindings)
self.all_layers = deepcopy(self.layers)
self.layers = [layer for layer in self.layers if layer.type != "Constant"]
return raw_layers
def process_profiling_file(profiling_file, ignore_layers):
if not profiling_file:
return None
raw_perf = read_profiling_file(profiling_file)
raw_perf = [perf_rec for perf_rec in raw_perf if perf_rec["name"] not in ignore_layers]
return raw_perf
def merge_profiling_data(graph_df, raw_perf):
if raw_perf is not None:
perf_df = pd.DataFrame.from_dict(raw_perf)
perf_df.drop(columns=["name"], inplace=True)
perf_df.rename(columns={
"percentage": "latency.pct_time",
"averageMs": "latency.avg_time",
"timeMs": "latency.time",
}, inplace=True)
df = graph_df.join(perf_df)
else:
warnings.warn("Profiling data was not provided.")
df = graph_df
df["latency.pct_time"] = [0] * len(df)
df["latency.avg_time"] = [0] * len(df)
df["latency.time"] = [0] * len(df)
return df
def add_graph_summation_cols(df, layers):
# Add new (summation) columns
df["total_io_size_bytes"] = [l.total_io_size_bytes for l in layers]
df["weights_size"] = [l.weights_size for l in layers]
df["total_footprint_bytes"] = [l.total_footprint_bytes for l in layers]
df["precision"] = [l.precision for l in layers]
return df
def construct_df(raw_layers):
raw_layers = [raw_layer for raw_layer in raw_layers if raw_layer["LayerType"] not in ["Constant", "NoOp"]]
graph_df = pd.DataFrame.from_dict(raw_layers)
graph_df = fix_df(graph_df)
return graph_df
def compute_summary(self):
self.total_act_size = sum([l.total_io_size_bytes for l in self.layers])
self.total_weights_size = sum([l.weights_size for l in self.layers])
assert self.total_weights_size == self.df["weights_size"].sum()
self.total_runtime = sum([avg_time for avg_time in self._df["latency.avg_time"]])
self.name = name or path_leaf(graph_file)
raw_layers, self.bindings = import_graph_file(graph_file)
raw_layers = create_layers(self, raw_layers)
self._df = None
ignore_layers = [raw_layer["Name"] for raw_layer in raw_layers if raw_layer["LayerType"] in ["Constant", "NoOp"]]
self._raw_perf = process_profiling_file(profiling_file, ignore_layers=ignore_layers)
graph_df = construct_df(raw_layers)
graph_df = add_graph_summation_cols(graph_df, self.layers)
self._df = merge_profiling_data(graph_df, self._raw_perf)
compute_summary(self)
self.device_properties = get_device_properties(profiling_metadata_file)
self.performance_summary = get_performance_summary(profiling_metadata_file)
self.builder_cfg = get_builder_config(build_metadata_file)
assert self._df is not None, f"Failed parsing plan file {graph_file}"
@property
def df(self):
return self._df
def get_layers_by_type(self, layer_type):
return filter_by_layer(self._df, layer_type)
def find(self, layer_name: str):
for l in self.layers:
if layer_name == l.name: return l
return None
def get_bindings(self) -> Tuple[List[Activation], List[Activation]]:
"""Return a list of the inputs bindings and a list of the output bindings"""
inputs, outputs = [], []
for layer in self.layers:
inputs += [inp for inp in layer.inputs if inp.name in self.bindings]
outputs += [outp for outp in layer.outputs if outp.name in self.bindings]
return inputs, outputs
def summary(self):
return print_summary(self)
def summary_dict(plan: EnginePlan):
"""Create a dictionary of important attributes of the engine plan."""
MB_1 = 1024 * 1024
bindings = plan.get_bindings()
d = {
"Inputs": f"{bindings[0]}",
"Average time": f"{plan.total_runtime:.3f} ms",
"Layers": f"{len(plan.df)}",
"Weights": f"{plan.total_weights_size / MB_1 :.1f} MB",
"Activations": f"{plan.total_act_size/ MB_1 :.1f} MB",
}
return d
def print_summary(plan: EnginePlan):
def print_dict(d: Dict):
for k, v in d.items():
print(f"\t{k}: {v}")
print("Model:")
print_dict(summary_dict(plan))
print("Device Properties:")
print_dict(plan.device_properties)
print("Performance Summary:")
print_dict(plan.performance_summary)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/engine_plan.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains miscellanous utility functions.
"""
import functools
from typing import Dict, List, Tuple
import pandas as pd
def group_count(df, grouping_attr):
grp = df.groupby([grouping_attr]).size().to_frame().reset_index()
grp.rename(columns={0: "count"}, inplace=True)
return grp
def group_sum_attr(df, grouping_attr, reduced_attr):
grp = df.groupby([grouping_attr]).sum()[reduced_attr].to_frame().reset_index()
return grp
def shape_to_str(shape):
return "[" + ",".join(str(dim) for dim in shape) + "]"
def _merge_keys_values(keys_lists: List[List], values_lists: List[List], empty_placeholder: object) -> Dict:
# Concatenate the keys lists into a set of all keys
all_keys = set(functools.reduce(lambda a, b: a + b, keys_lists))
# Create the stacked output dictionary, and fill missing values.
dicts = [dict(zip(keys, values)) for keys, values in zip(keys_lists, values_lists)]
result = {}
for key in all_keys:
for d in dicts:
if key not in d:
d[key] = empty_placeholder
result[key] = [d[key] for d in dicts]
return result
def stack_dicts(dict_list: List[dict], empty_placeholder: object = 0):
"""Stack lists of dictionaries as a single dictionary"""
# A list of names lists.
keys_lists = [list(d.keys()) for d in dict_list]
# A list of values lists.
values_lists = [list(d.values()) for d in dict_list]
return _merge_keys_values(keys_lists, values_lists, empty_placeholder)
def stack_dataframes(
df_list: List[pd.DataFrame],
names_col: str,
values_col: str,
empty_placeholder: object = 0,
):
# A list of names lists.
names = [df[names_col].tolist() for df in df_list]
# A list of values lists.
values = [df[values_col].tolist() for df in df_list]
return _merge_keys_values(names, values, empty_placeholder)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/misc.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Performance report card.
This file contains interaction cells for the engine_report_card.ipynb notebook.
"""
from functools import partial
from .df_preprocessing import clean_for_display
from .graphing import *
from .interactive import InteractiveDiagram, InteractiveDiagram_2
from .misc import group_count, group_sum_attr
from .notebook import display_df
from .parser import read_timing_file
from .plotting import *
def report_card_perf_overview(plan: EnginePlan):
"""Display performance overview diagrams.
Display a dropdown widget to choose between diagrams showing various
characteristics of the plan's convolution layers."""
layer_types = group_count(plan.df, "type")
count_per_layer_type = partial(plotly_bar2, layer_types, values_col="count", names_col="type", color="type", colormap=layer_colormap, orientation="h", show_axis_ticks=(True, True))
time_pct_by_type = plan.df.groupby(["type"]).sum()[["latency.pct_time", "latency.avg_time"]].reset_index()
latency_per_type_ms = partial(plotly_bar2, time_pct_by_type, values_col="latency.avg_time", names_col="type", color="type", colormap=layer_colormap, orientation="h", show_axis_ticks=(True, True))
latency_per_type_pct = partial(plotly_bar2, time_pct_by_type, values_col="latency.pct_time", names_col="type", color="type", colormap=layer_colormap, orientation="h", show_axis_ticks=(True, True))
precision_per_layer = partial(plotly_bar2, plan.df, values_col="latency.avg_time", names_col="Name", color="precision", colormap=precision_colormap, xaxis_title="Layer")
output_precision_per_layer = partial(plotly_bar2, plan.df, values_col="latency.avg_time", names_col="Name", color="output_precision", colormap=precision_colormap, xaxis_title="Layer")
output_precision_per_layer = partial(plotly_bar2, plan.df, values_col="latency.avg_time", names_col="Name", color="output_precision", colormap=precision_colormap, xaxis_title="Layer")
latency_distribution = partial(plotly_hist, plan.df, values_col="latency.pct_time", xaxis_title='Latency (ms)', color="type", colormap=layer_colormap)
latency_per_layer = partial(plotly_bar2, plan.df, values_col="latency.pct_time", names_col="Name", color="type", colormap=layer_colormap, xaxis_title="Layer")
latency_per_layer_ms = partial(plotly_bar2, plan.df, values_col="latency.avg_time", names_col="Name", color="type", colormap=layer_colormap, xaxis_title="Layer")
precision_charts = []
layer_precisions = group_count(plan.df, "precision")
precision_charts.append((layer_precisions, 'Layer Count By Precision', "count", "precision"))
layers_time_pct_by_precision = group_sum_attr(plan.df, grouping_attr="precision", reduced_attr="latency.pct_time")
precision_charts.append((layers_time_pct_by_precision, '% Latency By Precision', "latency.pct_time", "precision"))
precision_statistics = partial(plotly_pie2, charts=precision_charts, colormap=precision_colormap)
def precision_per_type(title):
title = f"{title}\n({plan.name})"
df = plan.df
precision_sunburst = df.groupby(["type", "precision"]).count().reset_index()
color = [precision_colormap[p] for p in df["precision"]]
fig = px.sunburst(precision_sunburst, path=["type", "precision"], values="Name", color_discrete_map=precision_colormap, color="precision")
fig.update_layout(
title=title,
title_x=0.5,
font_size=15,
)
fig.show()
dropdown_choices = {
"Latency per layer (%)": latency_per_layer,
"Latency per layer (ms)": latency_per_layer_ms,
"Layer latency distribution": latency_distribution,
"Precision per layer": precision_per_layer,
"Output precision per layer": output_precision_per_layer,
"Count per layer type": count_per_layer_type,
"Latency per layer type (ms)": latency_per_type_ms,
"Latency per layer type (%)": latency_per_type_pct,
"Precision per layer type": precision_per_type,
"Precision rollup": precision_statistics,
}
return InteractiveDiagram_2(dropdown_choices, 'Diagram:')
def report_card_convolutions_overview(convs: pd.DataFrame):
"""Display convolution layer diagrams.
Display a dropdown widget to choose between diagrams showing various
characteristics of the plan's convolution layers"""
latency_vs_ai_per_conv = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="attr.arithmetic_intensity", colormap=precision_colormap)
latency_vs_prec_per_conv = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="precision", colormap=precision_colormap)
latency_vs_fmas = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="attr.macs")
latency_vs_data = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="total_footprint_bytes")
latency_vs_ce_per_conv = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="attr.compute_efficiency", colormap=precision_colormap)
latency_vs_group_size = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="attr.groups")
latency_vs_kernel_size = partial(plotly_bar2, convs, values_col="latency.pct_time", names_col="Name", color="attr.kernel")
footprint_per_conv = partial(plotly_bar2, convs, values_col="total_footprint_bytes", names_col="Name", color="latency.pct_time")
fmas_per_conv = partial(plotly_bar2, convs, values_col="attr.macs", names_col="Name", color="latency.pct_time")
ai_vs_latency_per_conv = partial(plotly_bar2, convs, values_col="attr.arithmetic_intensity", names_col="Name", color="latency.pct_time")
ai_vs_footprint_per_conv = partial(plotly_bar2, convs, values_col="attr.arithmetic_intensity", names_col="Name", color="total_footprint_bytes")
ce_vs_latency_per_conv = partial(plotly_bar2, convs, values_col="attr.compute_efficiency", names_col="Name", color="latency.pct_time")
me_vs_latency_per_conv = partial(plotly_bar2, convs, values_col="attr.memory_efficiency", names_col="Name", color="latency.pct_time")
dropdown_choices = {
"Latency per convolution (color = precision)": latency_vs_prec_per_conv,
"Latency per convolution (color = FMAs)": latency_vs_fmas,
"Latency per convolution (color = data size)": latency_vs_data,
"Latency per convolution (color = arithmetic intensity)": latency_vs_ai_per_conv,
"Latency per convolution (color = compute efficiency)": latency_vs_ce_per_conv,
"Latency per convolution (color = group size)": latency_vs_group_size,
"Latency per convolution (color = kernel size)": latency_vs_kernel_size,
"Data footprints": footprint_per_conv,
"Fused Multiply-Accumulate (FMAs)": fmas_per_conv,
"Arithmetic intensity (color = latency)": ai_vs_latency_per_conv,
"Arithmetic intensity (color = footprint)": ai_vs_footprint_per_conv,
"Compute efficiency (color = latency)": ce_vs_latency_per_conv,
"Memory efficiency (color = latency)": me_vs_latency_per_conv,
}
InteractiveDiagram_2(dropdown_choices, 'Diagram:')
def report_card_table_view(plan: EnginePlan):
"""Layers tabular views.
Display a dropdown widget to choose among tabular views of all, or specific,
layers"""
def render_diagram(choice, ignore):
if choice == "All":
display_df(clean_for_display(plan.df))
else:
df = plan.get_layers_by_type(choice)
print(f"There are {len(df)} {choice} layers which account for"
f"{df["latency.pct_time"].sum(): .2f}% ({df["latency.avg_time"].sum(): .5f} ms) of the overall latency.")
display_df(clean_for_display(df))
types = ["All"] + list(set(plan.df["type"]))
dropdown_choices = {t: t for t in types}
InteractiveDiagram(render_diagram, dropdown_choices, "Dataframe")
def report_card_memory_footprint(plan: EnginePlan):
"""Memory footprint diagrams"""
def render_diagram(choice, values_col, colormap):
if "distribution" in choice:
plotly_hist(plan.df, f"{choice}", values_col, "Size (bytes)", color="type", colormap=colormap)
else:
plotly_bar2(plan.df, f"{choice}", values_col, "Name", color="type", colormap=colormap, show_axis_ticks=(False, True))
dropdown_choices = {
"Weights footprint per layer": ("weights_size", layer_colormap),
"Activation footprint per layer": ("total_io_size_bytes", layer_colormap),
"Total footprint per layer": ("total_footprint_bytes", layer_colormap),
"Weights footprint distribution per layer": ("weights_size", layer_colormap),
"Activations footprint distribution per layer": ("total_io_size_bytes", layer_colormap),
"Total footprint distribution per layer": ("total_footprint_bytes", layer_colormap),
}
InteractiveDiagram(render_diagram, dropdown_choices, 'Bar color')
def report_card_draw_plan_graph(plan: EnginePlan, engine_name: str):
"""Draw the plan graph (export to SVG)"""
def render_diagram(choice, formatter, display_regions, expand_layer_details):
graph = to_dot(plan, formatter, display_regions=display_regions, expand_layer_details=expand_layer_details)
render_dot(graph, engine_name, "svg")
# Color code nodes by precision or layer-type
dropdown_choices = {
"Color nodes by type": (layer_type_formatter, False, False),
"Color nodes by type (detailed)": (layer_type_formatter, True, True),
"Color nodes by precision": (precision_formatter, False, False),
"Color nodes by precision (detailed)": (precision_formatter, True, True),
}
InteractiveDiagram(render_diagram, dropdown_choices, 'Color formatting:')
def report_card_pointwise_lint(plan: EnginePlan):
pws = plan.get_layers_by_type("PointWise")
if len(pws) == 0:
print("The engine plan does not contain pointwise layers.")
return
charts = []
by_n_operations = group_count(pws, "attr.n_operations")
charts.append((by_n_operations, "Pointwise layers by number of operations", "count", "attr.n_operations"))
layers_time_pct_by_n_operations = group_sum_attr(pws, grouping_attr="attr.n_operations", reduced_attr="latency.pct_time")
charts.append((layers_time_pct_by_n_operations, "Latency by number of operations (%)", "latency.pct_time", "attr.n_operations"))
df = layers_time_pct_by_n_operations.merge(by_n_operations, on="attr.n_operations")
df["per_op_latency"] = df["latency.pct_time"] / (df["count"] * df["attr.n_operations"])
pws["per_op_latency"] = pws["latency.pct_time"] / pws["attr.n_operations"]
charts.append((df, "Per op latency by number of operations", "per_op_latency", "attr.n_operations"))
def list_pw_operations(pws):
for _, pw in pws.iterrows():
if pw["attr.n_operations"] < 2:
continue
operations = "\n\t".join([op for op in pw["attr.operations"]])
print(f"{pw.name}\n\t{operations}")
plotly_pie2("Pointwise Statistics", charts)
list_pw_operations(pws)
print(pws["per_op_latency"])
def layer_latency_sunburst(df: pd.DataFrame, title: str):
precision_sunburst = df.groupby(["type", "latency.pct_time"]).count().reset_index()
fig = px.sunburst(precision_sunburst, path=["type", "latency.pct_time"], values="latency.avg_time", color_discrete_map=layer_colormap, color="type")
fig.update_layout(
title=title,
title_x=0.5,
font_size=15,
)
fig.show()
def plot_engine_timings(timing_json_file: str):
"""Plot the engine profiling timings"""
latencies = read_timing_file(timing_json_file)
samples = range(len(latencies))
fig = px.scatter(title="Engine Timing Samples", x=samples, y=latencies)
trex_base_layout(fig)
fig.update_layout({"yaxis_title": "Latency (ms)", "xaxis_title": "Timing Samples", "title_x": 0.5})
fig.show()
def report_card_gemm_MNK(plan: pd.DataFrame):
def render_scatter3d(choice, x, y, z, color, size):
convs = plan.get_layers_by_type("Convolution")
fig = px.scatter_3d(convs, x=x, y=y, z=z, color=color, size=size, size_max=18, opacity=0.7)
trex_base_layout(fig)
fig.update_layout({"title": "Implicit GEMM " + choice, "title_x": 0.5})
fig.show()
dropdown_choices = {
"MxNxK color=mean time; size=mean time": (
"attr.M",
"attr.N",
"attr.K",
"latency.avg_time",
"latency.avg_time",
),
"MxNxK color=arithmetic intensity; size=mean time": (
"attr.M",
"attr.N",
"attr.K",
"attr.arithmetic_intensity",
"latency.avg_time",
),
"MxNxK color=compute efficiency; size=mean time": (
"attr.M",
"attr.N",
"attr.K",
"attr.compute_efficiency",
"latency.avg_time",
),
"MxNxK color=memory efficiency; size=mean time": (
"attr.M",
"attr.N",
"attr.K",
"attr.memory_efficiency",
"latency.avg_time",
),
}
InteractiveDiagram(render_scatter3d, dropdown_choices, "Diagram")
def report_card_gemm_MNK_scatter(plan: pd.DataFrame):
def render_scatter(choice, x, y, color, size):
convs = plan.get_layers_by_type("Convolution")
fig = px.scatter(convs, x=x, y=y, color=color, size=size, size_max=18, opacity=0.7)
fig.update_layout(margin=dict(l=0, r=0, b=0, t=50), title=choice, title_x=0.5)
fig.show()
dropdown_choices = {
"M vs. Latency (color = foorprint)": ("attr.M", "latency.avg_time", "total_footprint_bytes", None),
"N vs. Latency (color = foorprint)": ("attr.N", "latency.avg_time", "total_footprint_bytes", None),
"K vs. Latency (color = foorprint)": ("attr.K", "latency.avg_time", "total_footprint_bytes", None),
}
InteractiveDiagram(render_scatter, dropdown_choices, "Diagram")
def report_card_efficiency_vs_latency_3d(plan: pd.DataFrame):
convs = plan.get_layers_by_type("Convolution")
fig = px.scatter_3d(convs, x="attr.compute_efficiency", y="attr.memory_efficiency", z="latency.avg_time", color="total_footprint_bytes", size="latency.avg_time", size_max=18, opacity=0.7)
fig.update_layout(margin=dict(l=0, r=0, b=0, t=50), title="Compute-efficiency vs Memory-efficiency vs Latency", title_x=0.5)
trex_base_layout(fig)
fig.show()
def report_card_perf_scatter(plan: pd.DataFrame):
def render_scatter(choice, x, y, color, size):
convs = plan.get_layers_by_type("Convolution")
fig = px.scatter(convs, x=x, y=y, color=color, size=size, size_max=18, opacity=0.7)
fig.update_layout(margin=dict(l=0, r=0, b=0, t=50), title=choice, title_x=0.5)
fig.show()
dropdown_choices = {
"Compute-efficiency vs. FMAs (size = foorprint)": (
"attr.compute_efficiency",
"attr.macs",
"latency.avg_time",
"total_footprint_bytes",
),
"Memory-efficiency vs. footprint (size = FMAs)": (
"attr.memory_efficiency",
"total_footprint_bytes",
"latency.avg_time",
"attr.macs",
),
"Compute-efficiency vs. memory-efficiency (size = AI)": ("attr.compute_efficiency", "attr.memory_efficiency", "latency.avg_time", "attr.arithmetic_intensity"),
"Memory footprint vs FMAs (size = AI)": ("total_footprint_bytes", "attr.macs", "latency.avg_time", "attr.arithmetic_intensity"),
"Arithmetic-intensity vs. compute-efficiency (size = memory-efficiency)": ("attr.arithmetic_intensity", "attr.compute_efficiency", "latency.avg_time", "attr.memory_efficiency"),
"Arithmetic-intensity vs. memory-efficiency (size = compute-efficiency)": ("attr.arithmetic_intensity", "attr.memory_efficiency", "latency.avg_time", "attr.compute_efficiency"),
}
InteractiveDiagram(render_scatter, dropdown_choices, "Diagram")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/report_card.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains interaction cells for the compare_engines.ipynb notebook.
"""
import copy
from functools import partial
from typing import List
import numpy as np
from matplotlib.pyplot import colormaps
from .activations import create_activations
from .engine_plan import EnginePlan, summary_dict
from .interactive import *
from .misc import group_count, group_sum_attr, stack_dicts
from .plotting import *
def get_plans_names(plans: List[EnginePlan]):
"""Create unique plans names"""
engine_names = [plan.name for plan in plans]
if len(set(engine_names)) != len(plans):
engine_names = [plan.name + str(i) for i, plan in enumerate(plans)]
return engine_names
def compare_engines_overview(plans: List[EnginePlan]):
"""A dropdown widget to choose from several diagrams
that compare 2 or more engine plans.
"""
engine_names = get_plans_names(plans)
# Get throughtput data.
throughtput = [plan.performance_summary.get("Throughput", 0) for plan in plans]
have_throughput_data = all([tp > 0 for tp in throughtput])
def throughput_per_plan(title: str):
y = [plan.performance_summary.get("Throughput", 0) for plan in plans]
x = [plan.name for plan in plans]
fig = px.bar(x=y, y=x, orientation="h")
trex_base_layout(fig)
fig.update_layout({"xaxis_title": "Throughput (inferences / sec)", "yaxis_title": "Engine"})
fig.show()
time_by_type = [plan.df.groupby(["type"]).sum() \
[["latency.pct_time", "latency.avg_time"]].reset_index() for plan in plans]
cnt_by_type = [group_count(plan.df, "type") for plan in plans]
# Normalize timings by the batch-size.
df_list_bs_normalized = [copy.deepcopy(plan.df) for plan in plans]
for i, plan in enumerate(plans):
inputs, outputs = plan.get_bindings()
bs = inputs[0].shape[0]
df_list_bs_normalized[i]["latency.avg_time"] /= bs
time_by_type_bs_normalized = [df.groupby(["type"]).sum() \
[["latency.pct_time", "latency.avg_time"]].reset_index() for df in df_list_bs_normalized]
def latency_per_type(title):
stacked_latencies_bars = partial(stacked_bars, title, bar_names=engine_names, df_list=time_by_type, names_col="type", values_col="latency.avg_time", colormap=layer_colormap, display_tbl=False, xaxis_title="Engine", yaxis_title="Latency (ms)")
if have_throughput_data:
# Display throughput scatter plot together with the latencies bars.
fig = make_subplots(specs=[[{"secondary_y": True}]])
stacked_latencies_bars(fig=fig)
fig.add_trace(go.Scatter(x=engine_names, y=throughtput, name="Throughput (IPS)", marker=dict(size=12)), secondary_y=True)
trex_base_layout(fig)
fig.update_yaxes(title_text="Throughput (inferences / sec)", secondary_y=True)
fig.show()
else:
stacked_latencies_bars()
df = stacked_tabular_df(engine_names, time_by_type, "type", "latency.avg_time", empty_symbol=np.NaN)
# Compute the speedup of the last engine vs. the first engine.
df["speedup"] = df[engine_names[0]] / df[engine_names[-1]]
print(f"\'speedup\' refers to the speedup of \"{engine_names[-1]}\" relative to \"{engine_names[0]}\"")
display_df(df, range_highlights=speedup_range_highlights(col_name="speedup", threshold=0.03))
latency_per_type_bs_normalized = partial(stacked_bars, bar_names=engine_names, df_list=time_by_type_bs_normalized, names_col="type", values_col="latency.avg_time", empty_symbol=np.NaN, colormap=layer_colormap, xaxis_title="Engine", yaxis_title="Latency (ms)")
d = {engine_name: df for engine_name, df in zip(engine_names, time_by_type)}
latency_per_type_comparison = partial(plotly_bar2, df=d, values_col="latency.avg_time", names_col="type", orientation="h", showlegend=True)
d = {engine_name: df for engine_name, df in zip(engine_names, cnt_by_type)}
count_comparison = partial(plotly_bar2, df=d, values_col="count", names_col="type", orientation="h", showlegend=True)
time_by_precision = [plan.df.groupby(["precision"]).sum() \
[["latency.avg_time"]].reset_index() for plan in plans]
stacked_layers_by_precision = partial(stacked_bars, bar_names=engine_names, df_list=time_by_precision, names_col="precision", values_col="latency.avg_time", colormap=precision_colormap)
precision_subplots = [(group_count(plan.df, "precision"), plan.name, "count", "precision") for plan in plans]
precision_cnts = partial(plotly_pie2, charts=precision_subplots, colormap=precision_colormap)
output_precision_subplots = [(group_count(plan.df, "output_precision"), plan.name, "count", "output_precision") for plan in plans]
output_precision_cnts = partial(plotly_pie2, charts=output_precision_subplots, colormap=precision_colormap)
precision_subplots = [(group_sum_attr(plan.df, grouping_attr="precision", reduced_attr="latency.pct_time"), plan.name, "latency.pct_time", "precision") for plan in plans]
precision_latency = partial(plotly_pie2, charts=precision_subplots, colormap=precision_colormap)
dropdown_choices = {
"Stacked latencies by layer type": latency_per_type,
"Stacked latencies by layer type (BS normalized)": latency_per_type_bs_normalized,
"Layer count comparison": count_comparison,
"Layer-type latency comparison": latency_per_type_comparison,
"Layer latency by precision": stacked_layers_by_precision,
"Precision counts": precision_cnts,
"Output precision counts": output_precision_cnts,
"Precision latency": precision_latency,
}
if have_throughput_data:
dropdown_choices["Throughput"] = throughput_per_plan
InteractiveDiagram_2(dropdown_choices, 'Diagram:')
def compare_engines_summaries_tbl(plans: List[EnginePlan], orientation: str = "vertical"):
"""Display a tabular comparison of several engine plans."""
merged_summaries = {}
summary_dicts_list = ([summary_dict(plan) for plan in plans], [plan.performance_summary for plan in plans], [plan.device_properties for plan in plans], [plan.builder_cfg for plan in plans])
for d in summary_dicts_list:
merged_summaries.update(stack_dicts(d, empty_placeholder=""))
if orientation == "vertical":
df = pd.DataFrame.from_dict(merged_summaries, orient="index", columns=get_plans_names(plans))
df["attribute"] = list(merged_summaries.keys())
df = rotate_columns(df)
df.set_index("attribute")
else:
df = pd.DataFrame.from_dict(merged_summaries)
df["plan"] = get_plans_names(plans)
df = rotate_columns(df)
print(("\"Average time\": "
"refers to the sum of the layer latencies, when profiling layers separately"))
print(("\"Latency\": "
"refers to the [min, max, mean, median, 99% percentile] of the engine latency "
"measurements, when timing the engine w/o profiling layers."))
display_df(df)
# Code to align and compare two plans
def get_io_dimensions(layer: pd.Series, use_all_tensors: bool) -> tuple:
"""Return a tuple containing all the dimensions of layer's
inputs and outputs.
The first dimension (batch) of each input/output tensor is not included
so that the batch-size is not a cause for a mismatch.
For an exact (conservative) matching set `use_all_tensors` to True.
To match using only the first input and output, set to False.
"""
inputs, outputs = create_activations(layer)
if not use_all_tensors:
inputs = [
inputs[0],
]
outputs = [
outputs[0],
]
dims_dict = {"inputs": [t.shape[1:] for t in inputs], "outputs": [t.shape[1:] for t in outputs]}
return dims_dict
def get_io_formats(layer: pd.Series) -> tuple:
"""Return a string representation of the inputs and outputs."""
inputs, outputs = create_activations(layer)
in_formats = "in: " + ", ".join((f"{t.format}:{t.shape}" for t in inputs))
out_formats = "out: " + ", ".join((f"{t.format}:{t.shape}" for t in outputs))
return in_formats + "\t" + out_formats
def get_io_precisions(layer: pd.Series) -> tuple:
"""Return two tuples representing the precisions of layer's inputs and outputs."""
if layer is None:
return "", ""
inputs, outputs = create_activations(layer)
assert len(inputs) > 0 and len(outputs) > 0
p_in = ", ".join((t.precision for t in inputs))
p_out = ", ".join((t.precision for t in outputs))
return p_in, p_out
def match_layers(plan1: EnginePlan, plan2: EnginePlan, exact_matching: bool) -> List[Tuple]:
"""Align two plans by their layers.
When comparing the layers of two engine plans, we want to find pairs of layers,
one from each plan, that correspond to the same trt.Network layer. This is
not trivial since the plans may have a different number of layers, the layers
may be fused differently, and they may have different names.
A heuristic assigns a `signature` to each layer in the two plans. To determine
if two layers correspond to the same trt.Network layer, their signatures are
compared.
Aligining two plans is the task of finding pairs of layers with the same
signature.
This function returns a list of index pairs.
"""
def signature(layer: pd.Series, exact: bool) -> Dict:
"""Returns the heuristic layer signature.
The signature is composed of the layer's type and dimensions.
"""
sig = get_io_dimensions(layer, exact)
sig["type"] = layer["type"]
return sig
def clamp_indexes(i1: int, i2: int) -> Tuple:
i1 = min(i1, len(plan1.df) - 1)
i2 = min(i2, len(plan2.df) - 1)
return i1, i2
def are_equal(s1: Dict, s2: Dict) -> bool:
assert list(s1.keys()) == list(s2.keys()), "Internal error: signature are corrupt"
for k in s1.keys():
if s1[k] != s2[k]:
return False
return True
def is_aligned(i1: int, i2: int, exact_matching: bool) -> bool:
"""Return True if row `i1` of plan1 is aligned
with row `i2` of plan2. """
def pointwise_same(s1: Dict, s2: Dict):
"""Special signatures comparison for pointwise layers.
When comparing PointWise layers allow the inputs to be connected in
reverse order."""
same = False
types_ok = s1["type"] == s2["type"] == "PointWise"
in_lengths_ok = len(s1["inputs"]) == 2 and len(s2["inputs"]) == 2
out_lengths_ok = len(s1["outputs"]) == 1 and len(s2["outputs"]) == 1
if types_ok and in_lengths_ok and out_lengths_ok:
same = s1["inputs"][0] == s2["inputs"][1] and s1["inputs"][1] == s2["inputs"][0]
return same
i1, i2 = clamp_indexes(i1, i2)
s1 = signature(plan1.df.loc[i1], exact_matching)
s2 = signature(plan2.df.loc[i2], exact_matching)
aligned = are_equal(s1, s2)
if not aligned:
aligned = pointwise_same(s1, s2)
return aligned
def beam_search(beam_size, unprocessed_indices, list_id):
"""Shine a search beam and look for a match in the other list.
"""
i1 = unprocessed_indices[0][0]
i2 = unprocessed_indices[1][0]
for s in range(beam_size):
# clamp
idx = min(s, len(unprocessed_indices[list_id]) - 1)
if list_id == 1:
i2 = unprocessed_indices[list_id][idx]
else:
i1 = unprocessed_indices[list_id][idx]
if is_aligned(i1, i2, exact_matching):
return i1, i2
if list_id == 1:
return i1, None
else:
return None, i2
def debug_print(i1: int, i2: int):
return # disable print
t1 = plan1.df.loc[i1]["type"] if i1 is not None else "None"
t2 = plan2.df.loc[i2]["type"] if i2 is not None else "None"
print(f"{i1}: {t1} {i2}: {t2}")
matched_indices_pairs = []
unprocessed_indices_1 = [*range(len(plan1.df))]
unprocessed_indices_2 = [*range(len(plan2.df))]
while unprocessed_indices_1 and unprocessed_indices_2:
beam_size = max(len(unprocessed_indices_1), len(unprocessed_indices_2))
for list_id in (1, 0):
i1, i2 = beam_search(beam_size, (unprocessed_indices_1, unprocessed_indices_2), list_id)
debug_print(i1, i2)
matched_indices_pairs.append((i1, i2))
if i1 is not None:
unprocessed_indices_1.remove(i1)
if i2 is not None:
unprocessed_indices_2.remove(i2)
if not unprocessed_indices_1 or not unprocessed_indices_2:
break
# Process "left-over" layers
for i1 in unprocessed_indices_1:
matched_indices_pairs.append((i1, None))
for i2 in unprocessed_indices_2:
matched_indices_pairs.append((None, i2))
return matched_indices_pairs
def aligned_merge_plans(plan1: EnginePlan, plan2: EnginePlan, matched_indices_pairs: List[Tuple]) -> pd.DataFrame:
"""Return a dataframe containing merged layers from the two plans, after
their layers have been aligned.
"""
def append_layer(merged: List, layer1: pd.Series, layer2: pd.Series):
p1_in, p1_out = get_io_precisions(layer1)
p2_in, p2_out = get_io_precisions(layer2)
merged.append((
layer1["type"] if layer1 is not None else layer2["type"],
layer1["latency.avg_time"] if layer1 is not None else 0,
layer2["latency.avg_time"] if layer2 is not None else 0,
layer1["latency.avg_time"] / layer2["latency.avg_time"] if layer1 is not None and layer2 is not None else np.NaN,
p1_in,
p2_in,
p1_out,
p2_out,
layer1["tactic"] if layer1 is not None else "",
layer2["tactic"] if layer2 is not None else "",
get_io_formats(layer1) if layer1 is not None else "",
get_io_formats(layer2) if layer2 is not None else "",
layer1["Name"] if layer1 is not None else "",
layer2["Name"] if layer2 is not None else "",
))
merged = []
for pair in matched_indices_pairs:
# A pair of matched indices
m1 = pair[0]
m2 = pair[1]
# Add the pair of matched layers.
layer1 = plan1.df.loc[m1] if m1 is not None else None
layer2 = plan2.df.loc[m2] if m2 is not None else None
append_layer(merged, layer1, layer2)
df = pd.DataFrame(merged, columns=("type", 'avg_time (1)', 'avg_time (2)', 'speedup (2)', 'in-p (1)', 'in-p (2)', 'out-p (1)', 'out-p (2)', 'tactic (1)', 'tactic (2)', 'formats (1)', 'formats (2)', plan1.name, plan2.name))
return df
def aligned_layers(plan1: EnginePlan, plan2: EnginePlan, matched_indices_pairs: List[Tuple], layer_type: str = None) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Return the dataframes of the two plans, after their layers
have been aligned.
Where the two plans do not align, insert space-holder rows.
"""
def append_layer(layers_tbl, layer):
if layer is None:
# Add a "space-holder"
layers_tbl.append((len(layers_tbl), "", "", 0))
else:
layers_tbl.append((len(layers_tbl), layer["Name"], layer["type"], layer["latency.avg_time"]))
# Create a table of layers for each engine.
# Empty rows are inserted to an engine's table as space-holders when there's
# no matching layer in the other engine.
layers_tbl1, layers_tbl2 = [], []
def filer_layer(layer, layer_type):
ignore = layer is not None and (layer_type is None or layer["type"] == layer_type)
return ignore
for pair in matched_indices_pairs:
# A pair of matched indices
m1, m2 = pair[0], pair[1]
# Add the pair of matched layers.
layer1 = plan1.df.loc[m1] if m1 is not None else None
layer2 = plan2.df.loc[m2] if m2 is not None else None
if layer1 is not None and layer2 is not None:
if (layer_type is None or layer1["type"] == layer_type):
append_layer(layers_tbl1, layer1)
append_layer(layers_tbl2, layer2)
else:
if filer_layer(layer1, layer_type):
append_layer(layers_tbl2, None)
append_layer(layers_tbl1, layer1)
if filer_layer(layer2, layer_type):
append_layer(layers_tbl1, None)
append_layer(layers_tbl2, layer2)
df1 = pd.DataFrame(layers_tbl1, columns=("id", "name", "type", "latency.avg_time"))
df2 = pd.DataFrame(layers_tbl2, columns=("id", "name", "type", "latency.avg_time"))
return df1, df2
def speedup_range_highlights(col_name, threshold: float):
light_yellow = {"r": 255, "g": 245, "b": 157, "a": 0}
green = {"r": 0, "g": 255, "b": 0, "a": 1}
orange = {"r": 245, "g": 166, "b": 35, "a": 1}
range_highlights = {
col_name: {
"active": True,
"equals": {
"active": True,
"value": 1,
"color": light_yellow
},
"greaterThan": {
"active": True,
"value": 1. + threshold,
"color": green
},
"lessThan": {
"active": True,
"value": 1. - threshold,
"color": orange
},
}
}
return range_highlights
def compare_engines_layer_latencies(plan1: EnginePlan, plan2: EnginePlan, threshold: float, exact_matching: bool):
"""Display a table and a bar diagram comparing the latencies of layers from
two plans.
"""
def render_diagram(choice: str, ignore):
if plan1.name == plan2.name:
plan1.name += ".0"
plan2.name += ".1"
matched_indices_pairs = match_layers(plan1, plan2, exact_matching)
# Display a table comparison
df = aligned_merge_plans(plan1, plan2, matched_indices_pairs)
if choice != "All":
df = df.query(f"type == \"{choice}\"")
print(f"Legend:\n\t1: {plan1.name}\n\t2: {plan2.name}")
display_df(df, range_highlights=speedup_range_highlights('speedup (2)', threshold))
# Display a bar diagram comparison
layer_type = None if choice == "All" else choice
df1, df2 = aligned_layers(plan1, plan2, matched_indices_pairs, layer_type)
latency_str = lambda name, df: f"\n\t{name}: {df["latency.avg_time"].sum():.3f} ms"
print(f"Latencies:{latency_str(plan1.name, df1)}{latency_str(plan2.name, df2)}")
d = {plan1.name: df1, plan2.name: df2}
plotly_bar2(title="Layer Latency Comparison", df=d, values_col="latency.avg_time", names_col="id", orientation="v", showlegend=True)
types = ["All"] + list(set(plan1.df["type"].tolist() + plan2.df["type"].tolist()))
dropdown_choices = {t: t for t in types}
InteractiveDiagram(render_diagram, dropdown_choices, "Dataframe")
def compare_engines_layer_details(
plan1: EnginePlan,
plan2: EnginePlan,
):
"""Compare the details of two layers from two aligned plans.
Align plan1 and plan2 and display a drop-down list of the layers
of the combined dataframe. This allows easier comparison of
individual layers.
"""
def render_diagram(choice: str, row_id: int):
if plan1.name == plan2.name:
plan1.name += ".0"
plan2.name += ".1"
row = df.iloc[row_id]
d = {
"name": (row[plan1.name], row[plan2.name]),
"avg_time": (row['avg_time (1)'], row['avg_time (2)']),
"tactic": (row['tactic (1)'], row['tactic (2)']),
"in-p": (row['in-p (1)'], row['in-p (2)']),
"out-p": (row['out-p (1)'], row['out-p (2)']),
"format": (row['formats (1)'], row['formats (2)']),
}
df2 = pd.DataFrame.from_dict(d, orient="index", columns=(
plan1.name,
plan2.name,
))
speedup = row['avg_time (1)'] / row['avg_time (2)']
tactic = "Same" if row['tactic (1)'] == row['tactic (2)'] else "Different"
inp_precision = "Same" if row['in-p (1)'] == row['in-p (2)'] else "Different"
out_precision = "Same" if row['out-p (1)'] == row['out-p (2)'] else "Different"
formats = "Same" if row['formats (1)'] == row['formats (2)'] else "Different"
df2["comparison"] = ('', speedup, tactic, inp_precision, out_precision, formats)
df2 = rotate_columns(df2)
df2["attribute"] = ("name", "avg_time", "tactic", 'input precision', 'output precision', "formats")
df2 = rotate_columns(df2)
df2.set_index("attribute")
display_df(df2)
matched_indices_pairs = match_layers(plan1, plan2, exact_matching=True)
df = aligned_merge_plans(plan1, plan2, matched_indices_pairs)
dropdown_choices = {f"{t}: {df.iloc[t]["type"]}": t for t in range(len(df))}
InteractiveDiagram(render_diagram, dropdown_choices, "Dataframe")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/compare_engines.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains the Activation class which abstracts plan Region views.
"""
from typing import Dict
import numpy as np
import pandas as pd
# This dictionary compresses JSON's long format description strings.
_regionFormatDict = {"Four wide channel vectorized row major Int8 format": "Int8 NC/4HW4", "Four wide channel vectorized row major FP32 format": "FP32 NC/4HW4", "Thirty-two wide channel vectorized row major Int8 format": "Int8 NC/32HW32", "Thirty-two wide channel vectorized row major FP32 format": "FP32 NC/32HW32", "Thirty-two wide channel vectorized row major FP16 format": "FP16 NC/32HW32", "Thirty-two wide channel vectorized row major Int8 format with 3 spatial dimensions": "Int8 NC32DHW", "Thirty-two wide channel vectorized row major FP16 format with 3 spatial dimensions": "FP16 NC32DHW", "Sixteen wide channel vectorized row major FP16 format": "FP16 NC16HW", "Channel major FP16 format where channel % 4 == 0": "FP16 NHWC4", "Channel major FP32 format where channel % 4 == 0": "FP32 NHWC4", "Channel major Int8 format where channel % 4 == 0": "Int8 NHWC4", "Channel major FP16 format where channel % 8 == 0": "FP16 NHWC8", "Channel major FP16 format where channel % 16 == 0": "FP16 NHWC16", "Channel major FP16 format where channel == 4 and column stride % 32 == 0": "FP16 NHWC4", "Channel major INT8 format where channel == 4 and column stride % 32 == 0": "Int8 NHWC4", "Channel major INT8 format where column stride % 32 == 0": "Int8 NHWC1", "Row major INT8 format where column stride % 64 == 0": "Int8 NCHW", "Channel major FP16 format where channel % 8 == 0 with 3 spatial dimensions": "FP16 NDHWC8", "Channel major FP16 format where channel == 1 and column stride % 32 == 0": "FP16 NHWC1", "Row major FP16 format where column stride % 64 == 0": "FP16", "Two wide channel vectorized row major FP16 format": "FP16 NC/2HW2", "Row major linear FP32": "FP32 NCHW", "Row major linear Int32": "INT32 NCHW", "Row major linear FP16 format": "FP16 NCHW", "Row major Int8 format": "Int8 NCHW", "Channel major FP32 format": "FP32 NHWC", "Channel major FP16 format": "FP16 NHWC", "Channel major Int8 format": "Int8 NHWC", "Row major linear BOOL": "Bool", "Unknown format": "Unknown format"}
class Activation:
"""Convenience class wrapping activation regions."""
def __init__(self, raw_dict: Dict):
def parse_tensor_info(desc):
if "Int8" in desc:
precision = "INT8"
data_size = 1
elif "FP32" in desc:
precision = "FP32"
data_size = 4
elif "FP16" in desc:
precision = "FP16"
data_size = 2
elif "INT32" in desc:
precision = "INT32"
data_size = 4
elif "Bool" in desc:
precision = "BOOL"
data_size = 4
elif desc == "Unknown format":
precision = "Unknown"
data_size = 0
else:
raise ValueError(f"Uknown precision {desc}")
return precision, data_size
self.name = raw_dict["Name"]
self.shape = raw_dict["Dimensions"]
format = raw_dict["Format/Datatype"].replace(".", '')
self.format = _regionFormatDict.get(format, "Unknown format")
self.precision, self.data_size = parse_tensor_info(self.format)
self.size_bytes = np.prod(self.shape) * self.data_size
def tooltip(self):
tip = "\\n".join((
str(self.shape),
self.format,
))
return tip
def __repr__(self):
return f"{self.name}: {str(self.shape)}x{self.format}"
def create_activations(layer: pd.Series):
inputs = [Activation(tensor) for tensor in layer.Inputs]
outputs = [Activation(tensor) for tensor in layer.Outputs]
return inputs, outputs
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/activations.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains pyplot plotting wrappers.
"""
import math
from collections import defaultdict
from typing import Dict, List, Tuple
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from .misc import stack_dataframes
from .notebook import display_df
NVDA_GREEN = '#76b900'
UNKNOWN_KEY_COLOR = "gray"
GRID_COLOR = 'rgba(114, 179, 24, 0.3)'
# pallete = px.colors.qualitative.G10
# https://medialab.github.io/iwanthue/
default_pallete = ["#a11350", "#008619", "#4064ec", "#ffb519", "#8f1a8e", "#b2b200", "#64b0ff", "#e46d00", "#02d2ba", "#ef393d", "#f1b0f7", "#7e4401", UNKNOWN_KEY_COLOR]
# Set a color for each precision datatype.
precision_colormap = defaultdict(lambda: UNKNOWN_KEY_COLOR, {
"INT8": NVDA_GREEN,
"FP32": "red",
"FP16": "orange",
"INT32": "lightgray",
})
# Set a color for each layer type.
layer_colormap = defaultdict(
lambda: UNKNOWN_KEY_COLOR,
{
# https://htmlcolorcodes.com/
"Convolution": "#4682B4", # SteelBlue
"Deconvolution": "#7B68EE", # MediumSlateBlue
"ConvActPool": "#6495ED", # CornflowerBlue
"MatrixMultiply": "#1E90FF", # DodgerBlue
"Reformat": "#00FFFF", # Cyan
"Shuffle": "#BC8F8F", # RosyBrown
"Slice": "#FFA500", # Orange
"Scale": "#8FBC8B", # DarkSeaGreen
"Quantize": "#6B8E23", # OliveDrab
"Pooling": "#3CB371", # MediumSeaGreen
"PluginV2": "#C71585", # MediumVioletRed
"PointWise": "#9ACD32", # YellowGreen
"ElementWise": "#9ACD32", # YellowGreen
"Reduce": "#90EE90", # LightGreen
"SoftMax": "#DA70D6", # Orchid
"Myelin": "#800080", # Purple
}
)
def _categorical_colormap(df: pd.DataFrame, color_col: str):
# Protect against index-out-of-range
max_idx = len(default_pallete) - 1
colormap = {category: default_pallete[min(i, max_idx)] for i, category in enumerate(set(df[color_col]))}
return colormap
def _create_categorical_marker(df: pd.DataFrame, color_col: str, colormap: Dict = None):
if not colormap:
colormap = _categorical_colormap(df, color_col)
# Make colormap robust to unknown keys
colormap = defaultdict(lambda: UNKNOWN_KEY_COLOR, colormap)
color_list = [colormap[key] for key in df[color_col]]
marker = dict(color=color_list)
return marker
def trex_base_layout(fig, gridcolor=None):
"White background with colored grid"
gridcolor = gridcolor or GRID_COLOR
fig.update_layout({
"xaxis": {
"gridcolor": gridcolor
},
"yaxis": {
"gridcolor": gridcolor
},
"plot_bgcolor": 'rgba(0, 0, 0, 0)',
"paper_bgcolor": 'rgba(0, 0, 0, 0)',
})
def create_layout(title: str, size: Tuple, x_title: str, y_title: str, orientation: str, show_axis_ticks: Tuple[bool] = (True, True)):
y_grid = None if orientation == "h" else GRID_COLOR
x_grid = None if orientation == "v" else GRID_COLOR
if orientation == "h":
x_title, y_title = y_title, x_title
top_right = {"yanchor": "top", "y": 0.99, "xanchor": "right", "x": 0.99}
layout = go.Layout(
title={
"text": title,
"y": 0.9,
"x": 0.5,
"xanchor": "center",
"yanchor": "bottom"
},
width=size[0],
height=size[1],
xaxis={
"visible": True,
"showticklabels": show_axis_ticks[0],
"title": x_title,
"gridcolor": x_grid,
},
yaxis={
"visible": True,
"showticklabels": show_axis_ticks[1],
"title": y_title,
"gridcolor": y_grid,
"tickformat": "%{y:$.2f}"
},
plot_bgcolor='rgba(0,0,0,0)',
legend=top_right,
)
return layout
def plotly_bar2(
df: pd.DataFrame,
title: str,
values_col: str,
names_col: str,
orientation: str = "v",
color: str = None,
size: Tuple = (None, None),
use_slider: bool = False,
colormap: Dict = None,
show_axis_ticks: Tuple = (False, True),
showlegend: bool = False,
xaxis_title: str = None,
yaxis_title: str = None,
):
def categorical_color(df, color) -> bool:
if df[color].dtype in [float, int]:
return False
return True
def add_bar(df, name, color, colormap, showlegend):
if orientation == "v":
x, y = (names_col, values_col)
hover_txt = f"{x}: " + "%{x}" + f"<br>{y}: " + "%{y:.4f}"
else:
x, y = (values_col, names_col)
hover_txt = f"{x}: " + "%{x:.4f}" + f"<br>{y}: " + "%{y}"
is_categorical = False
colorbar = None
if color is not None:
assert isinstance(color, str)
if not categorical_color(df, color):
colorbar = dict(title=color)
color = df[color]
else:
is_categorical = True
if not is_categorical:
marker = dict(color=color, colorbar=colorbar)
else:
marker = _create_categorical_marker(df, color, colormap)
texttemplate = "%{value:.4f}" if df[values_col].dtype == float else '%{value}'
bar = go.Bar(x=df[x], y=df[y], orientation=orientation, marker=marker, text=df[values_col], texttemplate=texttemplate, hovertemplate=hover_txt, name=name, showlegend=showlegend)
return bar
layout = create_layout(
title,
size,
x_title=xaxis_title or names_col,
y_title=yaxis_title or values_col,
orientation=orientation,
show_axis_ticks=show_axis_ticks,
)
fig = go.Figure(layout=layout)
if not isinstance(df, Dict):
df_dict = {None: df}
else:
df_dict = df
for name, df in df_dict.items():
bar = add_bar(df, name, color, colormap, showlegend=showlegend)
fig.add_traces(bar)
if use_slider:
fig.update_xaxes(rangeslider_visible=True)
fig.show()
def rotate_columns(df: pd.DataFrame):
cols = df.columns.tolist()
cols = cols[-1:] + cols[:-1]
df = df[cols]
return df
def stacked_tabular_df(
bar_names: List[str],
df_list: List[pd.DataFrame],
names_col: str,
values_col: str,
empty_symbol: object = 0,
):
stacked = stack_dataframes(df_list, names_col, values_col, empty_symbol)
df = pd.DataFrame.from_dict(stacked, orient="index", columns=bar_names)
df[values_col] = stacked.keys()
df = rotate_columns(df)
return df
def stacked_tabular(*args, **kwargs):
df = stacked_tabular_df(*args, **kwargs)
display_df(df)
def stacked_bars(
title: str,
bar_names: List[str],
df_list: List[pd.DataFrame],
names_col: str,
values_col: str,
empty_symbol: object = 0,
colormap: Dict = None,
display_tbl: bool = True,
fig: go.Figure = None,
xaxis_title: str = None,
yaxis_title: str = None,
):
"""Stack a list of dataframes.
Each df in df_list has a `names` column and a 'values` column.
This function returns a dictionary indexed by each name in the
set of all names from all dfs in df_list.
For each `name` key the dictionary value is a list of all values from all dfs.
If a df[name] does not exist, we create an `empty_symbol` entry for it.
"""
stacked = stack_dataframes(df_list, names_col, values_col, empty_symbol)
if colormap:
bars = [go.Bar(name=k, x=bar_names, y=v, marker_color=colormap[k], text=v) for k, v in stacked.items()]
else:
bars = [go.Bar(name=k, x=bar_names, y=v, text=v) for k, v in stacked.items()]
display_bars = True
if fig is None:
fig = go.Figure(data=bars)
trex_base_layout(fig)
else:
fig.add_traces(bars)
display_bars = False
fig.update_layout(
title=title,
title_x=0.5,
font_size=15,
)
fig.update_layout(barmode="stack")
fig.update_layout(showlegend=colormap is not None)
fig.update_traces(texttemplate='%{text:.4f}')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode="hide")
fig.update_layout({"yaxis_title": yaxis_title or values_col, "xaxis_title": xaxis_title})
if display_bars:
fig.show()
if display_tbl:
stacked_tabular(bar_names, df_list, names_col, values_col, empty_symbol)
return fig
def plotly_hist(df: pd.DataFrame, title: str, values_col: str, xaxis_title: str, color: str, colormap=None):
"""Draw a histogram diagram."""
fig = px.histogram(df, x=values_col, title=title, nbins=len(df), histfunc="count", color=color, template="simple_white", color_discrete_map=colormap)
fig.update_layout(xaxis={"title": xaxis_title}, bargap=0.05)
fig.show()
def plotly_pie(df: pd.DataFrame, title: str, values: str, names: str, colormap: Dict[str, str] = None):
"""Draw a pie diagram."""
fig = go.Figure(data=[go.Pie(labels=df[names], values=df[values], hole=.0)])
pie_pallette = default_pallete
if colormap:
pie_pallette = [colormap[key] for key in df[names]]
marker = dict(colors=pie_pallette, line=dict(color=NVDA_GREEN, width=1))
fig.update_traces(marker=marker)
fig.update_traces(
hoverinfo='label+percent',
textinfo="value",
textfont_size=20,
)
fig.update_layout(
title=title,
title_x=0.5,
font_size=20,
)
fig.show()
def plotly_pie2(title: str, charts: list, max_cols: int = 3, colormap: Dict[str, str] = None):
"""Draw a pie diagram."""
main_title = title
n_charts = len(charts)
n_cols = min(max_cols, n_charts)
n_rows = math.ceil(n_charts / n_cols)
specs = [[{"type": "domain"}] * n_cols] * n_rows
subtitles = [chart[1] for chart in charts]
fig = make_subplots(rows=n_rows, cols=n_cols, specs=specs, subplot_titles=subtitles)
pie_pallette = None
for i, chart in enumerate(charts):
df, title, values, names = chart
row, col = i // n_cols, i % n_cols
texttemplate = "%{value:.1f}" if df[values].dtype == float else '%{value}'
if colormap is not None:
pie_pallette = [colormap[key] for key in df[names]]
marker = dict(colors=pie_pallette, line=dict(color=NVDA_GREEN, width=1))
fig.add_trace(go.Pie(
labels=df[names],
values=df[values],
name=title,
marker=marker,
texttemplate=texttemplate,
), row + 1, col + 1)
if pie_pallette is None:
pie_pallette = default_pallete
fig.update_traces(
hoverinfo='label+percent',
textinfo="value",
textfont_size=20,
hole=0.4,
textposition="inside",
)
fig.update_layout(
title=main_title,
title_x=0.5,
font_size=20,
)
fig.show()
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/plotting.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from trex.activations import *
from trex.compare_engines import *
from trex.df_preprocessing import *
from trex.engine_plan import *
from trex.graphing import *
from trex.interactive import *
from trex.lint import *
from trex.misc import *
from trex.notebook import *
# The Jupyter notebook graphing and plotting are
# not required in a terminal environment.
from trex.plotting import *
from trex.report_card import *
__version__ = "0.1.2"
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/__init__.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Dict, List, Tuple
from .parser import *
def __disambiguate_layer_names(raw_layers: List) -> List:
"""If a layer name appears twice we need to disabmiguate it"""
names_cnt = {}
for raw_layer in raw_layers:
name = raw_layer["Name"]
if name in names_cnt:
names_cnt[name] += 1
name += "_" + str(names_cnt[name])
raw_layer["Name"] = name
else:
names_cnt[name] = 1
return raw_layers
def __convert_deconv(raw_layers: List) -> List:
for raw_layer in raw_layers:
try:
is_deconv = (raw_layer["ParameterType"] == "Convolution" and raw_layer["LayerType"] == "CaskDeconvolutionV2")
if is_deconv:
raw_layer["ParameterType"] = "Deconvolution"
except KeyError:
pass
return raw_layers
def import_graph_file(graph_file: str):
raw_layers, bindings = read_graph_file(graph_file)
raw_layers = __convert_deconv(raw_layers)
raw_layers = __disambiguate_layer_names(raw_layers)
return raw_layers, bindings
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/raw_preprocessing.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains code to generate graph diagrams for an engine-plan.
"""
import os
import re
#from ast import Call
import warnings
from typing import Callable, List, NamedTuple
from graphviz import Digraph
from .activations import Activation
from .engine_plan import EnginePlan
from .layer import Layer
from .plotting import layer_colormap, precision_colormap
class Region(NamedTuple):
id: int
tensor: Activation
is_user: bool
should_display: bool
class Edge(NamedTuple):
src: str
dst: str
tensor: Activation
region_gen: int = None
class RegionGenerations:
"""A memory region may have several generations, where each generation
represents a consumable state of the region.
"""
def __init__(self, plan):
"""
A P event represents some layer writing to (producing part of) a memory
region.
A C event represents some layer reading from (consuming part of) a
memory region.
A region_story is a map from region name to the list of C/P events on
that region.
"""
story = {}
for layer in plan.layers:
for inp in layer.inputs:
story.setdefault(inp.name, []).append(("C", layer.name))
for outp in layer.outputs:
story.setdefault(outp.name, []).append(("P", layer.name))
# Create region generations.
# Each time we switch between C events and P events we create a new
# Region generation.
regions_gens = {}
for region, region_evts in story.items():
# A List of region generations.
# Each generation is a list of C/P events.
generations = [list()]
current_gen = 0
last = "P"
for evt in region_evts:
if evt[0] != last:
last = evt[0]
if evt[0] == "P":
current_gen += 1
generations.append(list())
generations[current_gen].append(evt)
regions_gens[region] = generations
self.regions_gens = regions_gens
def lookup_region_gen(self, layer_name: str, region_name: str):
"""Lookup the generation of a Region, given a layer name.
If a layer produces or consumes the Region, we return the corresponding
Region generation.
"""
try:
region_gens = self.regions_gens[region_name]
except KeyError:
# A KeyError can happen if we have a disconneted graph.
return -1
for gen_id, gen in enumerate(region_gens):
for evt in gen:
if evt[1] == layer_name:
return gen_id
# Assume for now that this is OK - it's probably a Constant
# layer that produced this region.
return 0
def nb_generations(self, region_name: str):
region_gens = self.regions_gens[region_name]
return len(region_gens)
def debug_generation(self):
for r, generations in self.regions_gens.items():
for g in generations:
print(r, g)
def create_id(self, region_id: int, region_generation: int):
return region_id + 100000 * region_generation
def render_dot(dot_graph: Digraph, engine_name: str, output_format: str):
"""Render dot graph to an external file using the specified format."""
dot_graph.format = output_format
output_fname = os.path.abspath(f"{engine_name}." + output_format)
dot_graph.render(outfile=output_fname, view=False, overwrite_source=False)
print(f"Created file://{output_fname}")
return output_fname
def node_label_simple(
layer: Layer,
latency: float,
display_layer_name: bool = True,
expand_layer_details: bool = False,
) -> str:
return f"{layer.name}\\n{layer.type}"
def node_label_keras(
layer: Layer,
latency: float,
display_layer_name: bool = True,
expand_layer_details: bool = False,
) -> str:
"""Keras-style node label formatting."""
def add_io(tensors: List):
io_desc_str = ""
for t in tensors:
io_desc_str += str(t.shape)
return io_desc_str
label = f"{layer.name}\\n" if display_layer_name else ""
label += f"{layer.type}"
label += "|{input:|output:}|{{"
label += add_io(layer.inputs)
label += "}|"
label += add_io(layer.outputs)
label += "}"
return label
def node_label_tbl(
layer: Layer,
latency: float,
display_layer_name: bool = True,
expand_layer_details: bool = False,
) -> str:
def clean_layer_name(layer_name: str):
layer_name = layer_name.replace("||", "\|\|")
layer_name = layer_name.replace("{", "")
layer_name = layer_name.replace("}", "")
return layer_name
def html_tbl(rows: List[str]):
def html_tbl_row(row_content, bold: bool, color: str = None):
row_content = row_content if not bold else f"<b>{row_content}</b>"
if color:
row = f"<TR><TD BGCOLOR=\"{color}\">{row_content}</TD></TR>"
else:
row = f"<TR><TD>{row_content}</TD></TR>"
return row
header = """<
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" CELLPADDING="4" color="transparent">""""
footer = "</TABLE>>"
tbl = header
for i, row in enumerate(rows):
tbl += html_tbl_row(row[0], i == 0, row[1] if len(row) > 1 else None)
tbl += footer
return tbl
def handle_pwgen(layer: Layer, rows: List[str]):
if layer.type != "PointWise":
return
try:
subtype = layer.raw_dict["ParameterSubType"]
if subtype == "PointWiseExpression":
ops = layer.raw_dict["Operations"]
for op in ops:
prefix = "const auto"
op_str = op[len(prefix):]
HoneyDew = "#F0FFF0"
rows.append((op_str, HoneyDew))
except KeyError:
pass
def handle_conv_deconv(layer: Layer, rows: List[str]):
if layer.type not in ("Convolution", "Deconvolution"):
return
try:
if len(layer.inputs) == 2:
rows.append(("Incident Add", "lightblue"))
act = layer.raw_dict["Activation"]
if act is not None and act != "NONE":
rows.append((act, "lightblue"))
except KeyError:
pass
layer_name = clean_layer_name(layer.name)
layer_type = f"{layer.type} ({latency} ms)"
rows = [(layer_type, )]
if display_layer_name:
parts = layer_name.split("+")
for p in parts:
rows.append((p, ))
if expand_layer_details:
handle_pwgen(layer, rows)
handle_conv_deconv(layer, rows)
tbl = html_tbl(rows)
return tbl
def parse_operation(op):
c = re.compile("\((.+\))")
args = c.findall(op)
args[0].split(",")
args = args[0].split(",")
c = re.compile("pwgen::.+\(")
w = c.findall(op)
opname = w[0][:-1]
output = op.split(" ")[2]
print(f"{opname}: {args} -> {output}")
return opname, args, output
class PlanGraph(object):
"""This is a base-class for representing TensorRT plans as renderable graphs"""
def __init__(self, plan: EnginePlan, display_regions: bool = False):
self.plan = plan
self.display_regions = display_regions
self.regions_dict = {}
self.regions_generations = RegionGenerations(plan)
self.edges_list = []
self.__create_graph(plan)
def __create_graph(self, plan: EnginePlan):
region_id = len(plan.all_layers)
for layer_id, layer in enumerate(plan.all_layers):
for inp in layer.inputs:
region_id = self.handle_region(layer_id, layer, inp, region_id, is_input=True)
for outp in layer.outputs:
region_id = self.handle_region(layer_id, layer, outp, region_id, is_input=False)
for edge in self.edges_list:
self.add_edge(edge.src, edge.dst, edge.tensor, edge.region_gen)
for layer_id, layer in enumerate(plan.all_layers):
try:
latency = plan.df[plan.df["Name"] == layer.name]["latency.avg_time"].iloc[0]
except (KeyError, IndexError):
# Constants layer
latency = 0
self.add_layer_node(layer_id, layer, latency, node_labeler=node_label_tbl)
for generations in self.regions_dict.values():
for r in generations:
if r.should_display:
self.add_region_node(r.id, r.tensor, r.is_user)
self.check_consistency()
def check_consistency(self):
# Verify that every output is either an output binding, or an input
# of another layer.
for region_name, region in self.regions_dict.items():
nb_prods = self._nb_producers(self.plan.all_layers, region_name)
nb_cons = self._nb_consumers(self.plan.all_layers, region_name)
is_user = region_name in self.plan.bindings # or nb_cons==0 or nb_prod==0
if not is_user and nb_cons == 0:
warnings.warn(f"Region {region_name} is neither a binding nor a layer input.")
if not is_user and nb_prods == 0:
warnings.warn(f"Region {region_name} is neither a binding nor a layer output.")
def find_producers(self, layers, region_name):
producers = []
for i, l in enumerate(self.plan.all_layers):
for o in l.outputs:
if o.name == region_name:
producers.append((i, l.name))
return producers
def _nb_producers(self, layers, inp_name):
return len(self.find_producers(layers, inp_name))
def _nb_consumers(self, layers, region_name):
consumers = []
for id, l in enumerate(self.plan.all_layers):
for i in l.inputs:
if i.name == region_name:
consumers.append((i, region_name))
return len(consumers)
def should_display_region(self, region_name: str, display_regions: bool) -> bool:
nb_gens = self.regions_generations.nb_generations(region_name)
nb_prod = self._nb_producers(self.plan.all_layers, region_name)
nb_cons = self._nb_consumers(self.plan.all_layers, region_name)
is_user = region_name in self.plan.bindings or nb_cons == 0 or nb_prod == 0
add = is_user or display_regions or nb_gens > 1 or nb_prod > 1
return add
def new_region(self, tensor: Activation, region_id: int, is_user: bool, should_display: bool) -> int:
self.regions_dict[tensor.name] = [Region(region_id, tensor, is_user, should_display)]
region_id += 1
return region_id
def handle_region(self, layer_id: int, layer: Layer, tensor: Activation, region_id: int, is_input: bool) -> int:
region_gen = self.regions_generations.lookup_region_gen(layer.name, tensor.name)
if region_gen == -1:
should_display = True
is_new_region = True
else:
should_display = self.should_display_region(tensor.name, self.display_regions)
is_new_region = tensor.name not in self.regions_dict
is_user = tensor.name in self.plan.bindings
is_new_generation = (not is_new_region and (region_gen + 1) > len(self.regions_dict[tensor.name]))
if is_new_region:
region_id = self.new_region(tensor, region_id, is_user, should_display)
elif is_new_generation:
self.add_generation(tensor, region_gen, is_user, region_id)
region = self.regions_dict[tensor.name][region_gen]
if should_display:
_from = str(region.id) if is_input else str(layer_id)
_to = str(layer_id) if is_input else str(region.id)
self.edges_list.append(Edge(_from, _to, tensor))
elif is_input:
producers = self.find_producers(self.plan.all_layers, tensor.name)
for producer in producers:
self.edges_list.append(Edge(str(producer[0]), str(layer_id), tensor))
return region_id
def add_region_node(self, id: int, tensor: Activation, is_user: bool):
pass
def add_layer_node(self, node_id: int, layer: Layer, latency: float, node_labeler: Callable):
pass
def add_edge(self, src, end, tensor, region_gen):
pass
def add_generation(self, tensor: Activation, region_gen: int, is_user: bool, region_id):
new_region_id = self.regions_generations.create_id(region_id, region_gen + 1)
self.regions_dict[tensor.name].append(Region(new_region_id, tensor, is_user, True))
# Add an edge between the previous and current region generations
previous_gen_region = self.regions_dict[tensor.name][region_gen - 1]
self.edges_list.append(Edge(str(previous_gen_region.id), str(new_region_id), tensor, region_gen=region_gen))
def precision_formatter(layer: Layer):
"""Format Dot nodes by layer precision"""
formatting = {"style": "filled", "tooltip": layer.tooltip(), "fillcolor": precision_colormap[layer.precision]}
return formatting
def layer_type_formatter(layer: Layer):
"""Format Dot nodes by layer type"""
def handle_reformat(layer: Layer):
if layer.type != "Reformat":
return None
try:
origin = layer.raw_dict["Origin"]
if origin == "QDQ":
return layer_colormap["Quantize"]
except KeyError:
return None
try:
layer_color = layer_colormap[layer.type]
layer_color = handle_reformat(layer) or layer_color
except KeyError:
layer_color = "#E5E7E9"
formatting = {
"style": "filled",
"tooltip": layer.tooltip(),
"fillcolor": layer_color,
"color": "white",
}
return formatting
def tensor_precision_formatter(tensor: Activation):
"""Format Dot edges by tensor precision"""
formatting = {"color": precision_colormap[tensor.precision], "tooltip": str(tensor.shape)}
return formatting
def region_precision_formatter(tensor: Activation):
"""Format Dot edges by region precision"""
formatting = {"style": "filled" if tensor.is_user else "dashed", "tooltip": str(tensor.shape), "penwidth": "3", "color": precision_colormap[tensor.precision]}
return formatting
class DotGraph(PlanGraph):
"""This class converts TensorRT plans to Graphviz DOT graphs"""
def __init__(
self,
plan: EnginePlan,
node_formatter: Callable,
region_formatter: Callable = region_precision_formatter,
display_layer_names: bool = True,
display_regions: bool = False,
expand_layer_details: bool = False,
):
self.dot = Digraph()
self.node_formatter = node_formatter
self.region_formatter = region_formatter
self.expand_layer_details = expand_layer_details
super().__init__(plan, display_regions)
def add_region_node(self, id: int, tensor: Activation, is_user: bool):
tensor.is_user = is_user
formatter = self.region_formatter(tensor)
self.dot.node(str(id), f"{tensor.name}\n{tensor.tooltip()}", shape="rectangle", fillcolor="gray" if is_user else None, fontname="Helvetica", **formatter)
def add_layer_node(self, node_id: int, layer: Layer, latency: float, node_labeler: Callable):
formatting = self.node_formatter(layer)
self.dot.node(str(node_id), node_labeler(layer, latency, expand_layer_details=self.expand_layer_details), shape="Mrecord", fontname="Helvetica", **formatting)
def add_edge(self, src, end, tensor, region_gen):
def generation_color(gen: int, line_color: str) -> str:
edge_color = ""
for i in range(gen):
edge_color += f"{line_color}:white:"
edge_color += f"{line_color}"
return edge_color
edge_color = precision_colormap[tensor.precision]
if region_gen:
edge_color = generation_color(region_gen, edge_color)
desc = tensor.tooltip()
else:
desc = tensor.tooltip()
self.dot.edge(src, end, desc, color=edge_color)
def to_dot(plan: EnginePlan, node_formatter: Callable, region_formatter: Callable = region_precision_formatter, display_layer_names: bool = True, display_regions: bool = False, display_constants: bool = False, expand_layer_details: bool = False) -> Digraph:
"""Convert plan-graph to dot format"""
g = DotGraph(plan, node_formatter, region_formatter, display_layer_names, display_regions, expand_layer_details)
return g.dot
import onnx
def make_onnx_tensor(tensor):
def get_type(desc):
desc = desc.lower()
if "int8" in desc:
return onnx.TensorProto.INT8
elif "fp32" in desc:
return onnx.TensorProto.FLOAT
elif "fp16" in desc:
return onnx.TensorProto.FLOAT16
elif "int32" in desc:
return onnx.TensorProto.INT32
else:
raise ValueError(f"Uknown precision {desc}")
t = onnx.helper.make_tensor_value_info(tensor.name, get_type(tensor.format), tensor.shape)
return t
class OnnxGraph(PlanGraph):
def __init__(
self,
plan: EnginePlan,
display_layer_names: bool = True,
display_regions: bool = False,
):
self.onnx_nodes = []
self.graph_inputs, self.graph_outputs = [], []
self.regions_inputs = dict()
self.regions_outputs = dict()
self.plan = plan
for layer in plan.layers:
for inp in layer.inputs:
if inp.name in self.plan.bindings:
self.graph_inputs.append(make_onnx_tensor(inp))
for outp in layer.outputs:
if outp.name in self.plan.bindings:
self.graph_outputs.append(make_onnx_tensor(outp))
super().__init__(plan, display_regions)
graph_def = onnx.helper.make_graph(self.onnx_nodes, "test-model", self.graph_inputs, self.graph_outputs)
self.model_def = onnx.helper.make_model(graph_def, producer_name="engine2onnx")
def add_region_node(self, id: int, tensor: Activation, is_user: bool):
if is_user:
# In the ONNX programming model we create
# bindings when we create the graph.
return
try:
inputs = self.regions_inputs[tensor.name]
except:
print(f"Did not find input {id}")
inputs = None
try:
outputs = self.regions_outputs[tensor.name]
except:
print(f"Did not find output {id}")
outputs = None
name = str(id)
node_def = onnx.helper.make_node("Region", inputs, outputs, name)
self.onnx_nodes.append(node_def)
def add_layer_node(self, node_id: int, layer: Layer, node_labeler: Callable):
def get_type(layer):
op_type = layer.type
# Convert Op Type to onnx.ai namepsace because
# Netron assigns these nodes specific colors.
if op_type == "Convolution":
op_type = "Conv"
if op_type == "Pooling":
if layer.raw_dict["PoolingType"] == "AVERAGE":
op_type = "AveragePool"
if layer.raw_dict["PoolingType"] == "Max":
op_type = "MaxPool"
return op_type
def add_attributes(layer, node_def):
for key, value in sorted(layer.items()):
if key not in ["InputRegions", "OutputRegions", "Inputs", "Outputs", "Name", "name", "ParameterType", "LayerName"]:
node_def.attribute.extend([onnx.helper.make_attribute(key, value)])
op_type = get_type(layer)
name = layer.name
print(f"adding node {node_id} - {layer.name}")
# Find layer id
inputs, outputs = [], []
for edge in self.edges_list:
if edge.src == str(node_id):
outputs.append(edge.tensor.name)
if edge.dst == str(node_id):
inputs.append(edge.tensor.name)
# Find inputs to layer id, outputs
node_def = onnx.helper.make_node(op_type, inputs, outputs, name)
add_attributes(layer.raw_dict, node_def)
self.onnx_nodes.append(node_def)
def add_edge(self, src, end, tensor, region_gen):
if True:
edge = f"{src}_to_{end}"
edge = tensor.name
try:
self.regions_inputs[tensor.name].append(edge)
except KeyError:
self.regions_inputs[tensor.name] = [
edge,
]
try:
self.regions_outputs[tensor.name].append(end)
except KeyError:
self.regions_outputs[tensor.name] = [
end,
]
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/graphing.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
JSON file parsing
"""
import json
from typing import BinaryIO, Dict, List, Tuple
def read_json(json_file: str) -> BinaryIO:
try:
data = json.load(json_file)
except:
raise ValueError(f"Could not load JSON file {json_file}")
return data
def read_graph_file(graph_file: str) -> List:
err_msg = f"File {graph_file} does not conform to the expected JSON format."
with open(graph_file) as json_file:
graph = read_json(json_file)
if not isinstance(graph, dict):
raise ValueError(err_msg)
layers = graph["Layers"]
try:
bindings = graph["Bindings"]
except KeyError:
# Older TRT didn't include bindings
bindings = list()
if not isinstance(layers, list):
raise ValueError(err_msg)
if not isinstance(layers[0], dict):
details_msg = "\nMake sure to enable detailed ProfilingVerbosity."
details_msg += "\nSee https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#engine-inspector"
raise ValueError(err_msg + details_msg)
return layers, bindings
def read_profiling_file(profiling_file: str) -> List[Dict[str, any]]:
perf = None
with open(profiling_file) as json_file:
perf = read_json(json_file)
# Clean data (remove records with short size)
perf = [rec for rec in perf if len(rec) in (4, 5)]
return perf
def read_metadata_file(metadata_file: str, device: int = 0):
with open(metadata_file) as json_file:
metadata = read_json(json_file)
return metadata[device]
def read_timing_file(timing_json_file: str):
with open(timing_json_file) as json_file:
timing_recs = read_json(json_file)
latencies_list = [rec["latencyMs"] for rec in timing_recs]
return latencies_list
def read_perf_metadata_file(metadata_file: str, section: str):
with open(metadata_file) as json_file:
metadata = read_json(json_file)
return metadata[section]
def get_device_properties(metadata_file: str) -> Dict:
try:
return read_perf_metadata_file(metadata_file, "device_information")
except (FileNotFoundError, TypeError):
return {}
def get_performance_summary(metadata_file: str) -> Dict:
try:
return read_perf_metadata_file(metadata_file, "performance_summary")
except (FileNotFoundError, TypeError):
return {}
def get_builder_config(metadata_file: str) -> Dict:
try:
d = read_perf_metadata_file(metadata_file, "model_options")
d.update(read_perf_metadata_file(metadata_file, "build_options"))
return d
except (FileNotFoundError, TypeError):
return {}
def import_graph_file(graph_file: str):
def disambiguate_layer_names(raw_layers: List) -> List:
"""If a layer name appears twice we need to disabmiguate it"""
names_cnt = {}
for raw_layer in raw_layers:
name = raw_layer["Name"]
if name in names_cnt:
names_cnt[name] += 1
name += "_" + str(names_cnt[name])
raw_layer["Name"] = name
else:
names_cnt[name] = 1
return raw_layers
def convert_deconv(raw_layers: List) -> List:
"""Distinguish between convolution and convolution-transpose (deconvolution)"""
for raw_layer in raw_layers:
try:
is_deconv = (raw_layer["ParameterType"] == "Convolution" and raw_layer["LayerType"] == "CaskDeconvolutionV2")
if is_deconv:
raw_layer["ParameterType"] = "Deconvolution"
except KeyError:
pass
return raw_layers
raw_layers, bindings = read_graph_file(graph_file)
raw_layers = convert_deconv(raw_layers)
raw_layers = disambiguate_layer_names(raw_layers)
return raw_layers, bindings
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/parser.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains configurable interactive widget wrappers.
"""
from typing import List
import IPython
from IPython.core.display import display
from ipywidgets import widgets
class InteractiveDiagram:
"""A dropdown widget wrapper"""
def __init__(self, diagram_renderer, choices, description):
def get_default_choice_key():
return list(self.choices.keys())[0]
def get_default_choice_value():
val = list(self.choices.values())[0]
if not isinstance(val, list) and not isinstance(val, tuple):
return (val, )
return val
self.diagram_renderer = diagram_renderer
self.choices = choices
display(get_default_choice_key())
self.choice_widget = widgets.Dropdown(
options=self.choices.keys(),
value=get_default_choice_key(),
description=description,
disabled=False,
)
dropdown_state_eventhandler = lambda change: self.dropdown_state_eventhandler(change)
self.choice_widget.observe(dropdown_state_eventhandler, names="value")
self._render(get_default_choice_key(), get_default_choice_value())
def _render(self, choice, values):
IPython.display.clear_output(wait=True)
display(self.choice_widget)
self.diagram_renderer(choice, *values)
def dropdown_state_eventhandler(self, change):
state_choice = change.new
values = self.choices[state_choice]
if not isinstance(values, list) and not isinstance(values, tuple):
values = (values, )
self._render(state_choice, values)
class InteractiveDiagram_2:
"""A dropdown widget wrapper"""
def __init__(self, choices: List, description: str):
def get_default_choice():
return list(self.choices.keys())[0]
def get_default_renderer():
val = list(self.choices.values())[0]
return val
self.choices = choices
display(get_default_choice())
self.choice_widget = widgets.Dropdown(
options=self.choices.keys(),
value=get_default_choice(),
description=description,
disabled=False,
)
dropdown_state_eventhandler = lambda change: self.dropdown_state_eventhandler(change)
self.choice_widget.observe(dropdown_state_eventhandler, names="value")
self._render(get_default_choice(), get_default_renderer())
def _render(self, title, renderer):
IPython.display.clear_output(wait=True)
display(self.choice_widget)
renderer(title=title)
def dropdown_state_eventhandler(self, change):
state_choice = change.new
renderer = self.choices[state_choice]
self._render(state_choice, renderer)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/interactive.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
TensorRT Engine Exploration API - Layer
"""
from typing import Dict, List
import numpy as np
from .activations import *
class Layer:
def __init__(self, raw_dict: Dict):
self.raw_dict = raw_dict
self.name = raw_dict["Name"]
try:
self.type = raw_dict["ParameterType"]
except:
self.type = raw_dict["LayerType"]
self.subtype = raw_dict["LayerType"]
self.inputs = [Activation(tensor) for tensor in raw_dict["Inputs"]]
self.outputs = [Activation(tensor) for tensor in raw_dict["Outputs"]]
self.outputs_size_bytes = np.sum([i.size_bytes for i in self.outputs])
if self.inputs:
self.precision = self.inputs[0].precision
self.inputs_size_bytes = np.sum([i.size_bytes for i in self.inputs])
else:
self.inputs_size_bytes = 0
self.precision = None
self.total_io_size_bytes = self.inputs_size_bytes + self.outputs_size_bytes
self._parse_weights()
self.total_footprint_bytes = self.total_io_size_bytes + self.weights_size
def _parse_constant(const):
cnt = const["Count"]
data_type = const["Type"]
try:
data_size = dict({"Int8": 1, "Half": 2, "Float": 4, "Int32": 4})[data_type]
except KeyError:
# Backward compatbility.
data_size = dict({"Int8": 1, "FP16": 2, "FP32": 4, "Int32": 4})[data_type]
return cnt, data_type, cnt * data_size
def _parse_weights(self):
try:
self.weights_cnt, self.weights_type, self.weights_size = \
Layer._parse_constant(self.raw_dict["Weights"])
except KeyError:
self.weights_cnt = 0
self.weights_type = None
self.weights_size = 0
try:
self.bias_cnt, self.bias_type, self.bias_size = \
Layer._parse_constant(self.raw_dict["Bias"])
except KeyError:
self.bias_cnt = 0
self.bias_type = None
self.bias_size = 0
def tooltip(self):
tip = ""
for key, value in sorted(self.raw_dict.items()):
if key not in ["InputRegions", "OutputRegions", "Inputs", "Outputs", "ParameterType", "LayerName"]:
tip += f"{key}:{value}\\n"
return tip
def __repr__(self):
rep = f"Layer({self.name})"
return rep
def fold_no_ops(layers: List, bindings: List) -> List:
"""Remove layers of type No-Op"""
def consumers_producers_dict(layers) -> Dict[Activation, List[Layer]]:
"""Return a dictionary of consumer-layers per activation tensor"""
consumers, producers = {}, {}
for layer in layers:
for loc, input in enumerate(layer.inputs):
try:
consumers[input.name].append((layer.name, loc))
except:
consumers[input.name] = [(layer.name, loc)]
for loc, output in enumerate(layer.outputs):
try:
producers[output.name].append((layer.name, loc))
except:
producers[output.name] = [(layer.name, loc)]
return consumers, producers
def move_input(src: Layer, dst: Layer, loc: int = 0):
# Can safely assume src input port #0 because NoOp has only a single input.
dst.inputs[loc] = src.inputs[0]
def move_output(src: Layer, dst: Layer, loc: int = 0):
# Can safely assume src output port #0 because NoOp has only a single output.
dst.outputs[loc] = src.outputs[0]
def fold(no_op: Layer):
try:
successors = activation_consumers[no_op.outputs[0].name]
for successor in successors:
successor_name, successor_in_port = successor
move_input(src=no_op, dst=ret[successor_name], loc=successor_in_port)
except KeyError:
# A leaf NoOp layer: it's output is a binding so we need to move the
# NoOp output to the output of the previous layer.
if no_op.outputs[0].name in bindings:
predecessors = activation_producers[no_op.inputs[0].name]
for predecessor in predecessors:
predecessor_name, predecessor_out_port = predecessor
move_output(src=no_op, dst=ret[predecessor_name], loc=predecessor_out_port)
pass
ret = {layer.name: layer for layer in layers}
activation_consumers, activation_producers = consumers_producers_dict(layers)
for layer in layers:
if layer.type == "NoOp":
fold(layer)
# Remove the No-Op layers from the final list.
ret = [layer for layer in ret.values() if layer.type != "NoOp"]
return ret
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/layer.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains raw JSON dataframes preprocessing functions.
"""
import pandas as pd
from .activations import *
layer_attributes = {
"Convolution": {
"subtype": "subtype",
"Groups": "attr.groups",
"OutMaps": "attr.out_maps",
"Stride": "attr.stride",
"Kernel": "attr.kernel",
"HasBias": "attr.has_bias",
"Activation": "attr.activation",
"HasReLU": "attr.has_relu",
"PaddingMode": None, # "attr.padding_mode",
"PrePadding": None, # "attr.pre_padding",
"PostPadding": None, # "attr.post_padding",
"Dilation": "attr.dilation",
"AllowSparse": None,
"Weights": "Weights",
"Bias": None,
"Dimensions": None,
"ConvolutionTacticIndex": None,
"Operations": "attr.operations",
"NbOperations": "attr.n_operations",
},
"PointWiseV2": {
"Operations": "attr.operations",
"NbOperations": "attr.n_operations",
"NbInputArgs": "attr.n_input_args",
"InputArgs": None,
"NbOutputVars": None,
"OutputVars": None,
"NbLiterals": None,
"Literals": None,
"NbParams": None,
"Params": None,
},
"PointWise": {
"Instructions": "attr.operations",
"NbInstructions": "attr.n_operations",
"NbInputs": "attr.n_input_args",
"InputArgs": None,
"NbOutputVars": None,
"OutputVars": None,
"NbLiterals": None,
"Literals": None,
"NbParams": None,
"Params": None,
},
"Reformat": {
"Origin": "attr.origin",
},
"Pooling": {
"PoolingType": "attr.pooling_type",
"WindowSize": "attr.window_size",
"AverageCountExcludesPadding": None,
"PaddingMode": "attr.padding_mode",
"Stride": "attr.stride",
"PrePadding": None,
"PostPadding": None,
"BlendFactor": None,
},
"Scale": {
"Mode": "attr.mode",
"Shift": "attr.shift",
"Scale": "attr.scale",
"Power": "attr.power",
"Activation": "attr.activation",
"ChannelAxis": "attr.ch_axis",
},
"Shuffle": {
"FirstTranspose": "attr.first_transpose",
"SecondTranspose": "attr.second_transpose",
"Reshape": "attr.reshape",
"ZeroIsPlaceholder": None,
"ParameterSubType": None,
},
"Resize": {
"ResizeMode": "attr.mode",
"ResizeScales": "attr.scales",
"NNRounding": "attr.scale",
"Start": None,
"CoordTransform": None,
"ResizeSelector": None,
},
"Slice": {
"Start": "attr.start",
"Stride": "attr.stride",
"Size": "attr.size",
"Mode": "attr.mode",
"negativeInfinityPadding": None,
},
"Common": {
"ParameterType": None,
"weights": None,
"dimensions": None,
"TacticValue": None,
},
}
def __fix_type(df: pd.DataFrame):
df.rename(columns={"LayerType": "subtype"}, inplace=True)
try:
df["type"] = df.ParameterType.fillna(value=df.subtype)
df.drop(["ParameterType"], axis=1, inplace=True)
except AttributeError:
pass
def __fix_tactic(df: pd.DataFrame):
df.rename(columns={"TacticName": "tactic"}, inplace=True)
try:
df["tactic"] = df.tactic.fillna(value="TensorRT")
except AttributeError:
df["tactic"] = "TensorRT"
def __fix_columns_types(df: pd.DataFrame):
int_cols = [
"Groups",
"OutMaps",
"HasBias",
"HasReLU",
"AllowSparse",
"NbInputArgs",
"NbOutputVars",
"NbParams",
"NbLiterals",
]
for col in int_cols:
try:
df[col] = df[col].fillna(value=0)
df[col] = df[col].astype("int32")
except KeyError:
pass
df.fillna("", inplace=True)
def __fix_output_precision(df: pd.DataFrame):
df["output_precision"] = [Activation(outputs[0]).precision for outputs in df["Outputs"]]
def fix_df(df: pd.DataFrame):
"""One-time preprocessing of the DF.
Performed only on DF construction.
"""
__fix_type(df)
__fix_tactic(df)
__fix_columns_types(df)
__fix_output_precision(df)
return df
def clean_io(df: pd.DataFrame):
for index, layer in df.iterrows():
inputs, outputs = create_activations(layer)
if len(inputs) > 0:
inp_str = ", ".join([inp.format for inp in inputs])
df.loc[index, "Inputs"] = inp_str
df.loc[index, "Outputs"] = outputs[0].format
def filter_by_layer(df: pd.DataFrame, layer_type: str):
copy_cols = ["Name", "type", "precision", "tactic", "latency.pct_time", "latency.avg_time", "total_io_size_bytes", "total_footprint_bytes", "Inputs", "Outputs", "subtype"]
try:
attrs = layer_attributes[layer_type]
copy_cols += [k for k, v in attrs.items() if v is not None]
# Pointwise and Pointwise V2 layers have the same layer type.
if layer_type == "PointWise":
attrs = layer_attributes["PointWiseV2"]
copy_cols += [k for k, v in attrs.items() if v is not None]
except KeyError:
pass
layers = df.query(f"type == \"{layer_type}\"").copy()
if len(layers) == 0:
return layers
copy_cols = set(copy_cols) & set(layers.columns)
layers = layers[copy_cols]
if layer_type == "Convolution":
layers.rename(columns=layer_attributes[layer_type], inplace=True)
layers["attr.kernel"] = tuple(layers["attr.kernel"])
annotate_convolutions(layers)
if layer_type == "PointWise":
# The original JSON file handle PointWise and PointWise V2 as two subtypes.
pw = layers[layers["subtype"] == "PointWise"].copy()
pw.rename(columns=layer_attributes["PointWise"], inplace=True)
pw_v2 = layers[layers["subtype"] == "PointWiseV2"].copy()
pw_v2.rename(columns=layer_attributes["PointWiseV2"], inplace=True)
layers = pd.concat((pw, pw_v2))
else:
try:
layers.rename(columns=layer_attributes[layer_type], inplace=True)
except:
pass
return layers
def change_col_order(df: pd.DataFrame):
"""Change the dataframe columns-order (place common fields earlier)"""
cols = df.columns.to_list()
common_cols = list(("Name", "type", "Inputs", "Outputs", "latency.avg_time", "latency.pct_time", "total_footprint_bytes", "tactic"))
common_cols = [col for col in common_cols if col in cols]
cols = common_cols + [col for col in cols if col not in common_cols]
df = df[cols]
return df
def drop_columns(df: pd.DataFrame, columns: list):
for col in columns:
try:
df.drop([col], axis=1, inplace=True)
except KeyError:
pass
def clean_df(df: pd.DataFrame, inplace=True):
clean_io(df)
columns = set([col for col_list in layer_attributes.keys() for col in col_list])
drop_columns(df, columns)
df.fillna(0, inplace=inplace)
return df
def clean_for_display(df: pd.DataFrame):
"""Prepare the dataframe for display"""
df = clean_df(df.copy(), inplace=True)
df = change_col_order(df)
drop_columns(df, columns=["subtype", "TacticValue", "precision", "total_io_size_bytes"])
return df
def annotate_convolutions(convs: pd.DataFrame):
"""Convolutions as implicit GEMM"""
for index, conv in convs.iterrows():
inputs, outputs = create_activations(conv)
assert len(inputs) > 0
N, C, H, W = inputs[0].shape
# K: number of channels; P: Height; Q: Width
_, K, P, Q = outputs[0].shape
R, S = convs.loc[index, "attr.kernel"]
G = convs.loc[index, "attr.groups"]
weights_vol = (K * C * R * S) / G
input_vol = N * C * H * W
output_vol = N * K * P * Q
input_bytes = input_vol * inputs[0].data_size
output_bytes = output_vol * outputs[0].data_size
weights_bytes = weights_vol * inputs[0].data_size
nb_bytes = input_bytes + weights_bytes + output_bytes
nb_macs = N * K * P * Q * C * R * S / G
convs.loc[index, "attr.macs"] = nb_macs
# Arithmetic intensity: ops/bytes
convs.loc[index, "attr.arithmetic_intensity"] = nb_macs / nb_bytes
latency = convs.loc[index, "latency.avg_time"]
convs.loc[index, "attr.compute_efficiency"] = nb_macs / latency
convs.loc[index, "attr.memory_efficiency"] = nb_bytes / latency
# Conversion to matrices (M, K) * (K, N)
M = N * P * Q
N = K
K = C * R * S
convs.loc[index, "attr.M"] = M
convs.loc[index, "attr.N"] = N
convs.loc[index, "attr.K"] = K
convs["attr.macs"] = convs["attr.macs"].astype("int64")
convs["attr.M"] = convs["attr.M"].astype("int64")
convs["attr.N"] = convs["attr.N"].astype("int64")
convs["attr.K"] = convs["attr.K"].astype("int64")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/df_preprocessing.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Miscellanous functions used in Jupyter notebooks
"""
import dtale
import pandas as pd
import qgrid
from ipyfilechooser import FileChooser
from IPython.core.display import HTML, display
dtale.global_state.set_app_settings(dict(max_column_width=600)) # pixels
def section_header(title):
style = "text-align:center;background:#76b900;padding:20px;color:#ffffff;font-size:2em;"
return HTML('<div style="{}">{}</div>'.format(style, title))
def set_wide_display(width_pct: int = 90):
"""Configure a wider rendering of the notebook
(for easier viewing of wide tables and graphs).
"""
display(HTML(f"<style>.container {{width:{width_pct}% !important;}}</style>"))
def display_df_qgrid(df: pd.DataFrame):
"""Display a Pandas dataframe using a qgrid widget"""
grid = qgrid.show_grid(df, grid_options={
"forceFitColumns": False,
"fullWidthRows": True
}, column_options={
"resizable": True,
}, column_definitions={
"index": {
"maxWidth": 0,
"minWidth": 0,
"width": 0
},
"Name": {
"maxwidth": 400
}
})
display(grid)
def display_df_dtale(df: pd.DataFrame, range_highlights: dict = None, nan_display: str = "...", precision: int = 4):
"""Display a Pandas dataframe using a dtale widget"""
d = dtale.show(df, drop_index=True, allow_cell_edits=False, precision=precision, nan_display=nan_display)
if range_highlights is not None:
d.update_settings(range_highlights=range_highlights, background_mode="range")
display(d)
def display_df(df: pd.DataFrame, **kwargs):
display_df_dtale(df, **kwargs)
def display_filechooser(rootdir: str) -> FileChooser:
"""Create and display a FileChooser widget"""
fc = FileChooser(rootdir)
fc.filter_pattern = '*.engine'
fc.title = 'Press Select to choose an engine file'
display(fc)
return fc
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/notebook.py |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This file contains layer linting functions.
"""
from collections import OrderedDict
from typing import Dict
import pandas as pd
from .activations import create_activations
from .engine_plan import EnginePlan
class ConvLinter():
"""Convolution layer linter."""
def __init__(self, plan: EnginePlan):
self.plan = plan
self.convs = plan.get_layers_by_type("Convolution")
def tc_lint(self):
"""Search for Convolutions which are not accelerated by TensorCode"""
def is_small_conv(conv):
inputs, _ = create_activations(conv)
if len(inputs[0].shape) != 4:
return False
n, c, h, w = inputs[0].shape
return c < 32
report = OrderedDict()
# Look for kernels that are not scheduled for TensorCore acceleration
tc_candidates = self.convs.query(f"precision != \"FP32\"").copy()
# Identify acceleration from tactic name
df = tc_candidates
df = df[df["tactic"].str.contains("imma|hmma|xmma|i88|884", na=False) == False]
for _, conv in df.iterrows():
mitigation = ""
if is_small_conv(conv):
mitigation = "This Convolution has a small number " \
"of input channels so acceleration may not be possible."
report[conv.Name] = OrderedDict({"name": conv.Name, "tactic": conv.tactic, "subtype": conv.subtype, "hazard": "Convolution is not accelerated.", "mitigation": mitigation, "help": "TensorCores accelerate large Convolution and GEMM operations."})
return report
def mixed_precision_lint(self):
"""Search for Convolutions with Int8 inputs and Float outputs"""
report = OrderedDict()
df = self.convs
df = df.loc[df["precision"] == "INT8"].copy()
for index, conv in df.iterrows():
inputs, outputs = create_activations(conv)
inf = inputs[0].format[:4]
outf = outputs[0].format[:4]
found = inf == "Int8" and outf != "Int8"
if found:
report[conv.Name] = OrderedDict({
"name": conv.Name,
"tactic": conv.tactic,
"subtype": conv.subtype,
"hazard": "Quantized Convolution has float outputs.",
"mitigation": "Consider adding quantization after the convolution.",
"help": "Quantized Convolution with float outputs is ill advised "
"for memory-limited convolutions."
})
return report
def alignment_lint(self):
def alignment_ok(conv):
inputs, outputs = create_activations(conv)
prec = conv["precision"]
if len(inputs[0].shape) != 4 or len(outputs[0].shape) != 4:
return True
N, C, H, W = inputs[0].shape
_, K, P, Q = outputs[0].shape
if prec == "INT8":
ok = (C % 16 == 0) and (K % 16 == 0)
else:
ok = (C % 8 == 0) and (K % 8 == 0)
return ok
report = OrderedDict()
for _, conv in self.convs.iterrows():
if not alignment_ok(conv):
report[conv.Name] = {
"name": conv.Name,
"tactic": conv.tactic,
"subtype": conv.subtype,
"hazard": "Convolution channels are not optimally aligned.",
"mitigation": "Consider changing the alignment of the convolution's channels.",
"help": "For best performance, the input and outputs channels of a Tensor Core"
"accelerated convolution should be aligned to 8 (FP32/FP16) or 16 (INT8)"
}
return report
def lint(self):
report = self.tc_lint()
report.update(self.mixed_precision_lint())
report.update(self.alignment_lint())
df = pd.DataFrame.from_dict(report, orient="index")
return df
class ReformatLinter():
"""Reformat layer linter."""
def __init__(self, plan: EnginePlan):
self.plan = plan
self.reformats = plan.get_layers_by_type("Reformat")
def lint(self):
"""Search for conversions between types.
Conversions between layouts are assumed to be optimized."""
report = OrderedDict()
for index, reformat in self.reformats.iterrows():
inputs, outputs = create_activations(reformat)
inf = inputs[0].format[:4]
outf = outputs[0].format[:4]
if inf != outf:
mitigation = ""
if "INT8" in [inf, outf]:
mitigation = "Consider adding quantization around float operations."
report[reformat.Name] = OrderedDict({
"name": reformat.Name,
"origin": reformat["attr.origin"],
'type conversion': f"{inf} -> {outf}",
'shape conversion': f"{inputs[0].shape} -> {outputs[0].shape}",
"hazard": "Reformat layer is converting operand data type.",
"mitigation": mitigation,
"help": "Conversions between float32 and float16 are a red "
"flag, as are conversions between float32/16 and INT8."
})
df = pd.DataFrame.from_dict(report, orient="index")
return df
class SliceLinter():
"""Slice layer linter."""
def __init__(self, plan: EnginePlan):
self.plan = plan
self.slices = plan.get_layers_by_type("Slice")
def lint(self):
"""Search for conversions between types.
Conversions between layouts are assumed to be optimized."""
report = OrderedDict()
for index, slice in self.slices.iterrows():
inputs, outputs = create_activations(slice)
inf = inputs[0].format[:4]
outf = outputs[0].format[:4]
if inf != outf:
mitigation = ""
if "INT8" in [inf, outf]:
mitigation = "Consider adding quantization around float operations."
report[slice.Name] = OrderedDict({
"name": slice.Name,
'type conversion': f"{inf} -> {outf}",
'shape conversion': f"{inputs[0].shape} -> {outputs[0].shape}",
"hazard": "Slice layer is converting operand data type.",
"mitigation": mitigation,
"help": "Conversions between float32 and float16 are a red "
"flag, as are conversions between float32/16 <=> INT8."
})
df = pd.DataFrame.from_dict(report, orient="index")
return df
class QDQLinter():
"""Q/DQ layer linter."""
def __init__(self, plan: EnginePlan):
self.plan = plan
self.scales = plan.get_layers_by_type("Scale")
def lint(self):
"""Search for dangling Q/DQ layers."""
report = OrderedDict()
for index, scale in self.scales.iterrows():
inputs, outputs = create_activations(scale)
inf = inputs[0].format[:4]
outf = outputs[0].format[:4]
is_qdq = ("Int8" in inputs[0].format) ^ ("Int8" in outputs[0].format)
if is_qdq:
dq = "Int8" in inputs[0].format
role = "Quantize" if not dq else "Dequanitize"
report[scale.Name] = OrderedDict({
"name": scale.Name,
'type conversion': f"{inf} -> {outf}",
"hazard": f"Unfused {role} layer",
"mitigation": f"Check why the {role} layer is not fused",
"help": f"Unfused Quantize/Dequantize nodes are wasteful and "
"should be avoided. Quantize nodes may be necessary "
"for quantizing inputs."
})
df = pd.DataFrame.from_dict(report, orient="index")
return df
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trex/trex/lint.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
# ModelB -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
n = 0
scopeName = "B"
tensor1, n = addNode(graph, "AddScalar", scopeName, n, [tensorX], OrderedDict([["scalar", 1.0]]), "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor1]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelB.onnx")
print("Succeeded create %s" % "modelB.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-API/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import polygraphy.backend.trt as p
import tensorrt as trt
onnxFile = "./modelA.onnx"
trtFile = "./modelA.plan"
cacheFile = "./modelA.cache"
builder, network, parser = p.network_from_onnx_path(onnxFile)
profileList = [p.Profile().add("tensorX", [1, 1, 28, 28], [4, 1, 28, 28], [16, 1, 28, 28])]
builderConfig = p.CreateConfig( \
tf32=False,
fp16=True,
int8=False,
profiles=profileList,
calibrator=None,
precision_constraints=None,
strict_types=False,
load_timing_cache=None,
algorithm_selector=None,
sparse_weights=False,
tactic_sources=None,
restricted=False,
use_dla=False,
allow_gpu_fallback=False,
profiling_verbosity=None,
memory_pool_limits={trt.MemoryPoolType.WORKSPACE:1<<30},
refittable=False,
preview_features=None,
engine_capability=None,
direct_io=False,
builder_optimization_level=None,
fp8=False,
hardware_compatibility_level=None,
max_aux_streams=4,
version_compatible=False,
exclude_lean_runtime=False)
engineString = p.engine_from_network([builder, network], config=builderConfig, save_timing_cache=cacheFile)
p.save_engine(engineString, path=trtFile)
runner = p.TrtRunner(engineString, name=None, optimization_profile=0)
runner.activate()
output = runner.infer(OrderedDict([("tensorX", np.ascontiguousarray(np.random.rand(4, 1, 28, 28).astype(np.float32) * 2 - 1))]), check_inputs=True)
runner.deactivate()
print(output)
"""
methods of polygraphy.backend.trt:
'Algorithm'
'BytesFromEngine'
'Calibrator'
'CreateConfig'
'CreateNetwork'
'EngineBytesFromNetwork'
'EngineFromBytes'
'EngineFromNetwork'
'LoadPlugins'
'ModifyNetworkOutputs'
'NetworkFromOnnxBytes'
'NetworkFromOnnxPath'
'OnnxLikeFromNetwork'
'Profile'
'SaveEngine'
'ShapeTuple'
'TacticRecorder'
'TacticReplayData'
'TacticReplayer'
'TrtRunner'
'__builtins__'
'__cached__'
'__doc__'
'__file__'
'__loader__'
'__name__'
'__package__'
'__path__'
'__spec__'
'algorithm_selector'
'bytes_from_engine'
'calibrator'
'create_config'
'create_network'
'engine_bytes_from_network'
'engine_from_bytes'
'engine_from_network'
'get_trt_logger'
'load_plugins'
'loader'
'modify_network_outputs'
'network_from_onnx_bytes'
'network_from_onnx_path'
'onnx_like_from_network'
'profile'
'register_logger_callback'
'runner'
'save_engine'
'util'
"""
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-API/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
np.random.seed(31193)
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Onnxruntime/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import onnxruntime
np.random.seed(31193)
data = np.random.rand(1, 1, 28, 28).astype(np.float32) * 2 - 1
onnxFile = "modelA.onnx"
# Run the model in Onnx Runtime ------------------------------------------------
print("Onnxruntime using device: %s" % onnxruntime.get_device())
session = onnxruntime.InferenceSession(onnxFile, providers=["CPUExecutionProvider"])
for i, inputTensor in enumerate(session.get_inputs()):
print("Input %2d: %s, %s, %s" % (i, inputTensor.name, inputTensor.shape, inputTensor.type))
for i, outputTensor in enumerate(session.get_outputs()):
print("Output%2d: %s, %s, %s" % (i, outputTensor.name, outputTensor.shape, outputTensor.type))
inputDict = {}
inputDict[session.get_inputs()[0].name] = data
outputList = session.run(None, inputDict)
for i, outputTensor in enumerate(outputList):
print("Output%2d:\n%s" % (i, outputTensor))
print("Succeeding running model in OnnxRuntime!")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Onnxruntime/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from copy import deepcopy
import numpy as np
import tensorrt as trt
def rebuildNetwork(logger, bPrintInformation=True, jsonFile="./model.json", paraFile="./model.npz"):
with open(jsonFile, "r") as f:
js = json.loads(f.read())
if paraFile is not None:
para = np.load(paraFile)
else:
print("Using fake weight!")
np.random.seed(31193)
para = None
# Builder
if bPrintInformation:
print("\nJSON Information:")
for key in js["Builder"].keys():
print("js[\"Builder\"][\"%s\"] = %s" % (key, js["Builder"][key]))
builder = trt.Builder(logger)
builder.max_threads = js["Builder"]["nMaxThread"]
if int(trt.__version__.split(".")[0]) < 8: # deprecated since TensorRT 8
builder.max_batch_size = js["builder"]["nMaxBatchSize"]
builder.max_workspace_size = js["builder"]["nMaxWorkspaceSize"]
# Network
if bPrintInformation:
for key in js["Network"].keys():
print("js[\"Network\"][\"%s\"] = %s" % (key, js["Network"][key]))
networkFlag = 0
if not js["Network"]["bImplicitBatchMode"]:
networkFlag |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
if js["Network"]["bExplicitPrecision"]: # deprecated since TensorRT 8.4
networkFlag |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)
network = builder.create_network(networkFlag)
network.name = js["Network"]["sName"]
for i in range(js["Network"]["nInput"]):
tensorName = js["Network"]["Binding"][i]["sName"]
inputTensor = js["Tensor"][tensorName]
network.add_input(tensorName, trt.DataType(inputTensor["kDataType"]), inputTensor["lShape"])
dTensor = {} # Dictionary of tensors in new network
for i in range(js["Network"]["nInput"]):
tensor = network.get_input(i)
dTensor[tensor.name] = tensor
dIfCondition = {} # Dictionary of IfCondition structure in new network
dLoop = {} # Dictionary of Loop structure in new network
dLateLayerTensor = {} # In some cases, the shape tensor comsumed in early layer is produced in later layer, so we mark and set them later.
# Constant layer for Range Node from ONNX file
constantLayer0 = network.add_constant([], trt.Weights(np.ascontiguousarray(np.array([0], dtype=np.int32))))
constantLayer0.name = "ConstantLayer0ForRangeNoe"
constantLayer0.get_output(0).name = "ConstantTensor0ForRangeNoe"
constantLayer1 = network.add_constant([1], trt.Weights(np.ascontiguousarray(np.array([1], dtype=np.int32))))
constantLayer1.name = "ConstantLayer1ForRangeNoe"
constantLayer1.get_output(0).name = "ConstantTensor1ForRangeNoe"
# rebuild network layer by layer -------------------------------------------
for i in range(js["Network"]["nLayer"]):
layerInfo = js["Layer"][i]
if bPrintInformation:
print("%4d->%-15s,%s" % (i, str(trt.LayerType(layerInfo["kType"]))[10:], layerInfo["sName"]))
for key in layerInfo.keys():
print(" Layer[\"%s\"] = %s" % (key, layerInfo[key]))
# Specialization part of each layer
# 0 LayerType.CONVOLUTION
# 1 LayerType.FULLY_CONNECTED
# 2 LayerType.ACTIVATION
# 3 LayerType.POOLING
# 4 LayerType.LRN
# 5 LayerType.SCALE
# 6 LayerType.SOFTMAX
# 7 LayerType.DECONVOLUTION
# 8 LayerType.CONCATENATION
# 9 LayerType.ELEMENTWISE
# 10 LayerType.PLUGIN
# 11 LayerType.UNARY
# 12 LayerType.PADDING
# 13 LayerType.SHUFFLE
# 14 LayerType.REDUCE
# 15 LayerType.TOPK
# 16 LayerType.GATHER
# 17 LayerType.MATRIX_MULTIPLY
# 18 LayerType.RAGGED_SOFTMAX
# 19 LayerType.CONSTANT
# 20 LayerType.RNN_V2
# 21 LayerType.IDENTITY
# 22 LayerType.PLUGIN_V2
# 23 LayerType.SLICE
# 24 LayerType.SHAPE
# 25 LayerType.PARAMETRIC_RELU
# 26 LayerType.RESIZE
# 27 LayerType.TRIP_LIMIT
# 28 LayerType.RECURRENCE
# 29 LayerType.ITERATOR
# 30 LayerType.LOOP_OUTPUT
# 31 LayerType.SELECT
# 32 LayerType.FILL
# 33 LayerType.QUANTIZE
# 34 LayerType.DEQUANTIZE
# 35 LayerType.CONDITION
# 36 LayerType.CONDITIONAL_INPUT
# 37 LayerType.CONDITIONAL_OUTPUT
# 38 LayerType.SCATTER
# 39 LayerType.EINSUM
# 40 LayerType.ASSERTION
if layerInfo["kType"] == int(trt.LayerType.CONVOLUTION): # 0
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
if para is not None:
kernel = para[layerInfo["sName"] + "-kernel"]
bias = para[layerInfo["sName"] + "-bias"]
else:
kernelShape = layerInfo["lKernelShape"]
biasShape = layerInfo["lBiasShape"]
kernel = np.random.rand(np.prod(kernelShape)).astype(np.float32).reshape(kernelShape) * 2 - 1
bias = np.random.rand(np.prod(biasShape)).astype(np.float32).reshape(biasShape) * 2 - 1
if np.prod(kernel.shape) != 0: # Normal
if np.prod(bias.shape) != 0:
layer = network.add_convolution_nd(inputTensor, layerInfo["num_output_maps"], layerInfo["kernel_size_nd"], trt.Weights(kernel), trt.Weights(bias))
else:
layer = network.add_convolution_nd(inputTensor, layerInfo["num_output_maps"], layerInfo["kernel_size_nd"], trt.Weights(kernel))
else: # INT8-QDQ
assert (layerInfo["nInput"] == 2)
if np.prod(bias.shape) != 0:
layer = network.add_convolution_nd(inputTensor, layerInfo["num_output_maps"], layerInfo["kernel_size_nd"], trt.Weights(), trt.Weights(bias))
else:
layer = network.add_convolution_nd(inputTensor, layerInfo["num_output_maps"], layerInfo["kernel_size_nd"], trt.Weights())
tensorName1 = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName1]
layer.set_input(1, inputTensor1)
layer.kernel_size_nd = layerInfo["kernel_size_nd"]
layer.num_output_maps = layerInfo["num_output_maps"]
layer.stride_nd = layerInfo["stride_nd"]
layer.dilation_nd = layerInfo["dilation_nd"]
layer.num_groups = layerInfo["num_groups"]
layer.padding_nd = layerInfo["padding_nd"]
layer.padding_mode = trt.PaddingMode(layerInfo["padding_mode"])
layer.pre_padding = layerInfo["pre_padding"]
layer.post_padding = layerInfo["post_padding"]
elif layerInfo["kType"] == int(trt.LayerType.FULLY_CONNECTED): # 1
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
if para is not None:
kernel = para[layerInfo["sName"] + "-kernel"]
bias = para[layerInfo["sName"] + "-bias"]
else:
kernelShape = layerInfo["lKernelShape"]
biasShape = layerInfo["lBiasShape"]
kernel = np.random.rand(np.prod(kernelShape)).astype(np.float32).reshape(kernelShape) * 2 - 1
bias = np.random.rand(np.prod(biasShape)).astype(np.float32).reshape(biasShape) * 2 - 1
if np.prod(kernel.shape) != 0: # Normal
if np.prod(bias.shape) != 0:
layer = network.add_fully_connected(inputTensor, layerInfo["num_output_channels"], trt.Weights(kernel), trt.Weights(bias))
else:
layer = network.add_fully_connected(inputTensor, layerInfo["num_output_channels"], trt.Weights(kernel))
else: # INT8-QDQ
assert (layerInfo["nInput"] == 2)
if np.prod(bias.shape) != 0:
layer = network.add_fully_connected(inputTensor, layerInfo["num_output_channels"], trt.Weights(), trt.Weights(bias))
else:
layer = network.add_fully_connected(inputTensor, layerInfo["num_output_channels"], trt.Weights())
tensorName = layerInfo["lInputTensorName"][1]
inputTensor = dTensor[tensorName]
layer.set_input(1, inputTensor)
layer.num_output_channels = layerInfo["num_output_channels"]
elif layerInfo["kType"] == int(trt.LayerType.ACTIVATION): # 2
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_activation(inputTensor, trt.ActivationType.RELU)
layer.alpha = layerInfo["alpha"]
layer.beta = layerInfo["beta"]
layer.type = trt.ActivationType(layerInfo["type"])
elif layerInfo["kType"] == int(trt.LayerType.POOLING): # 3
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_pooling_nd(inputTensor, trt.PoolingType.MAX, [1, 1])
layer.average_count_excludes_padding = layerInfo["average_count_excludes_padding"]
layer.blend_factor = layerInfo["blend_factor"]
layer.stride_nd = layerInfo["stride_nd"]
layer.padding_nd = layerInfo["padding_nd"]
layer.padding_mode = trt.PaddingMode(layerInfo["padding_mode"])
layer.pre_padding = layerInfo["pre_padding"]
layer.post_padding = layerInfo["post_padding"]
layer.type = trt.PoolingType(layerInfo["type"])
layer.window_size_nd = layerInfo["window_size_nd"]
elif layerInfo["kType"] == int(trt.LayerType.LRN): # 4
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_lrn(inputTensor, 1, 0.0, 1.0, 1.0)
layer.alpha = layerInfo["alpha"]
layer.beta = layerInfo["beta"]
layer.k = layerInfo["k"]
layer.window_size = layerInfo["window_size"]
elif layerInfo["kType"] == int(trt.LayerType.SCALE): # 5
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
if para is not None:
scale = para[layerInfo["sName"] + "-scale"]
shift = para[layerInfo["sName"] + "-shift"]
power = para[layerInfo["sName"] + "-power"]
else:
scaleShape = layerInfo["lScaleShape"]
shiftShape = layerInfo["lShiftShape"]
powerShape = layerInfo["lPowerShape"]
scale = np.random.rand(np.prod(scaleShape)).astype(np.float32).reshape(scaleShape) * 2 - 1
shift = np.random.rand(np.prod(shiftShape)).astype(np.float32).reshape(shiftShape) * 2 - 1
power = np.ones(np.prod(powerShape)).astype(np.float32).reshape(powerShape)
layer = network.add_scale_nd(inputTensor, trt.ScaleMode(layerInfo["mode"]), shift, scale, power, layerInfo["channel_axis"])
layer.channel_axis = layerInfo["channel_axis"]
layer.mode = trt.ScaleMode(layerInfo["mode"])
layer.shift = shift
layer.scale = scale
layer.power = power
elif layerInfo["kType"] == int(trt.LayerType.SOFTMAX): # 6
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_softmax(inputTensor)
layer.axes = layerInfo["axes"]
elif layerInfo["kType"] == int(trt.LayerType.DECONVOLUTION): # 7
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
if para is not None:
kernel = para[layerInfo["sName"] + "-kernel"]
bias = para[layerInfo["sName"] + "-bias"]
else:
kernelShape = layerInfo["lKernelShape"]
biasShape = layerInfo["lBiasShape"]
kernel = np.random.rand(np.prod(kernelShape)).astype(np.float32).reshape(kernelShape) * 2 - 1
bias = np.random.rand(np.prod(biasShape)).astype(np.float32).reshape(biasShape) * 2 - 1
if np.prod(kernel.shape) != 0: # Normal
if np.prod(bias.shape) != 0:
layer = network.add_deconvolution_nd(inputTensor, 1, [1, 1], trt.Weights(kernel), trt.Weights(bias))
else:
layer = network.add_deconvolution_nd(inputTensor, 1, [1, 1], trt.Weights(kernel))
else: # INT8-QDQ
assert (layerInfo["nInput"] == 2)
if np.prod(bias.shape) != 0:
layer = network.add_deconvolution_nd(inputTensor, 1, [1, 1], trt.Weights(), trt.Weights(bias))
else:
layer = network.add_deconvolution_nd(inputTensor, 1, [1, 1], trt.Weights())
layer.kernel_size_nd = layerInfo["kernel_size_nd"]
layer.num_output_maps = layerInfo["num_output_maps"]
layer.stride_nd = layerInfo["stride_nd"]
layer.dilation_nd = layerInfo["dilation_nd"]
layer.num_groups = layerInfo["num_groups"]
layer.padding_nd = layerInfo["padding_nd"]
layer.padding_mode = trt.PaddingMode(layerInfo["padding_mode"])
layer.pre_padding = layerInfo["pre_padding"]
layer.post_padding = layerInfo["post_padding"]
elif layerInfo["kType"] == int(trt.LayerType.CONCATENATION): # 8
inputTensorList = []
for j in range(layerInfo["nInput"]):
tensorName = layerInfo["lInputTensorName"][j]
inputTensorList.append(dTensor[tensorName])
layer = network.add_concatenation(inputTensorList)
layer.axis = layerInfo["axis"]
elif layerInfo["kType"] == int(trt.LayerType.ELEMENTWISE): # 9
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_elementwise(inputTensor0, inputTensor1, trt.ElementWiseOperation.SUM)
layer.op = trt.ElementWiseOperation(layerInfo["op"])
elif layerInfo["kType"] == int(trt.LayerType.PLUGIN): # 10
print("IPlugin Layer not supported!")
break
elif layerInfo["kType"] == int(trt.LayerType.UNARY): # 11
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_unary(inputTensor, trt.UnaryOperation.ABS)
layer.op = trt.UnaryOperation(layerInfo["op"])
elif layerInfo["kType"] == int(trt.LayerType.PADDING): # 12
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_padding_nd(inputTensor, (0, 0), (0, 0))
layer.pre_padding_nd = layerInfo["pre_padding_nd"]
layer.post_padding_nd = layerInfo["post_padding_nd"]
elif layerInfo["kType"] == int(trt.LayerType.SHUFFLE): # 13
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_shuffle(inputTensor)
if layerInfo["bDynamicShuffle"]:
tensorName = layerInfo["lInputTensorName"][1]
if tensorName in dTensor.keys(): # In some cases, the shape tensor comsumed in early layer is produced in later layer, so we mark and set them later.
inputTensor = dTensor[tensorName]
layer.set_input(1, inputTensor)
else:
dLateLayerTensor[layerInfo["kIndex"]] = tensorName
else:
if layerInfo["reshape_dims"] is not None:
layer.reshape_dims = layerInfo["reshape_dims"]
layer.first_transpose = layerInfo["first_transpose"]
layer.second_transpose = layerInfo["second_transpose"]
layer.zero_is_placeholder = layerInfo["zero_is_placeholder"]
elif layerInfo["kType"] == int(trt.LayerType.REDUCE): # 14
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_reduce(inputTensor, trt.ReduceOperation.SUM, 1 << 1, False)
layer.axes = layerInfo["axes"]
layer.op = trt.ReduceOperation(layerInfo["op"])
layer.keep_dims = layerInfo["keep_dims"]
elif layerInfo["kType"] == int(trt.LayerType.TOPK): # 15
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_topk(inputTensor, trt.TopKOperation.MAX, 2, 1 << 1)
layer.axes = layerInfo["axes"]
layer.op = trt.TopKOperation(layerInfo["op"])
layer.k = layerInfo["k"]
elif layerInfo["kType"] == int(trt.LayerType.GATHER): # 16
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_gather(inputTensor0, inputTensor1, 1)
layer.axis = layerInfo["axis"]
layer.mode = trt.GatherMode(layerInfo["mode"])
elif layerInfo["kType"] == int(trt.LayerType.MATRIX_MULTIPLY): # 17
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_matrix_multiply(inputTensor0, trt.MatrixOperation.NONE, inputTensor1, trt.MatrixOperation.NONE)
layer.op0 = trt.MatrixOperation(layerInfo["op0"])
layer.op1 = trt.MatrixOperation(layerInfo["op1"])
elif layerInfo["kType"] == int(trt.LayerType.RAGGED_SOFTMAX): # 18
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_ragged_softmax(inputTensor0, inputTensor1)
elif layerInfo["kType"] == int(trt.LayerType.CONSTANT): # 19
weightShape = layerInfo["shape"]
if weightShape == [0]:
layer = network.add_constant([0], trt.Weights())
else:
if para is not None:
weight = para[layerInfo["sName"] + "-weights"]
else:
weight = np.random.rand(np.prod(weightShape)).astype(np.float32).reshape(weightShape)
layer = network.add_constant(weightShape, trt.Weights(weight))
elif layerInfo["kType"] == int(trt.LayerType.RNN_V2): # 20
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_rnn_v2(inputTensor, layerInfo["num_layers"], layerInfo["hidden_size"], layerInfo["max_seq_length"], trt.RNNOperation(layerInfo["op"]))
#layer.num_layers = layerInfo["num_layers"] # read only
#layer.hidden_size = layerInfo["hidden_size"] # read only
#layer.max_seq_length = layerInfo["max_seq_length"] # read only
layer.op = trt.RNNOperation(layerInfo["op"])
#layer.data_length = layerInfo["data_length"] # read only
layer.input_mode = trt.RNNInputMode(layerInfo["input_mode"])
layer.direction = trt.RNNDirection(layerInfo["direction"])
tensorName = layerInfo["lInputTensorName"][1]
if tensorName is not None:
inputTensor = dTensor[tensorName]
layer.hidden_state = inputTensor
tensorName = layerInfo["lInputTensorName"][2]
if tensorName is not None:
inputTensor = dTensor[tensorName]
layer.cell_state = inputTensor
tensorName = layerInfo["lInputTensorName"][3]
if tensorName is not None:
inputTensor = dTensor[tensorName]
layer.seq_lengths = inputTensor
nRealLayer = layer.num_layers * (2 if layer.direction == trt.RNNDirection.BIDIRECTION else 1)
if layer.op == trt.RNNOperation.RELU or layer.op == trt.RNNOperation.TANH:
lGateKind = [trt.RNNGateType.INPUT]
elif layer.op == trt.RNNOperation.LSTM:
lGateKind = [trt.RNNGateType.INPUT, trt.RNNGateType.CELL, trt.RNNGateType.FORGET, trt.RNNGateType.OUTPUT]
elif layer.op == trt.RNNOperation.GRU:
lGateKind = [trt.RNNGateType.UPDATE, trt.RNNGateType.RESET]
else:
lGateKind = []
for j in range(nRealLayer):
for gateKind in lGateKind:
if layer.input_mode == trt.RNNInputMode.LINEAR:
layer.set_weights_for_gate(j, gateKind, True, para[layerInfo["sName"] + "-" + str(j) + "-" + str(int(gateKind)) + "-weightX"])
layer.set_bias_for_gate(j, gateKind, True, para[layerInfo["sName"] + "-" + str(j) + "-" + str(int(gateKind)) + "-biasX"])
layer.set_weights_for_gate(j, gateKind, False, para[layerInfo["sName"] + "-" + str(j) + "-weightH"])
layer.set_bias_for_gate(j, gateKind, False, para[layerInfo["sName"] + "-" + str(j) + "-biasH"])
elif layerInfo["kType"] == int(trt.LayerType.IDENTITY): # 21
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_identity(inputTensor)
elif layerInfo["kType"] == int(trt.LayerType.PLUGIN_V2): # 22
print("IPlugin Layer not supported!")
break
elif layerInfo["kType"] == int(trt.LayerType.SLICE): # 23
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_slice(inputTensor, [0], [1], [1])
layer.mode = trt.SliceMode(layerInfo["mode"])
if layerInfo["start"] == None:
tensorName = layerInfo["lInputTensorName"][1]
inputTensor = dTensor[tensorName]
layer.set_input(1, inputTensor)
else:
layer.start = layerInfo["start"]
if layerInfo["shape"] == None:
tensorName = layerInfo["lInputTensorName"][2]
inputTensor = dTensor[tensorName]
layer.set_input(2, inputTensor)
else:
layer.shape = layerInfo["shape"]
if layerInfo["stride"] == None:
tensorName = layerInfo["lInputTensorName"][3]
inputTensor = dTensor[tensorName]
layer.set_input(3, inputTensor)
else:
layer.stride = layerInfo["stride"]
if trt.SliceMode(layerInfo["mode"]) == trt.SliceMode.FILL and layerInfo["fill"] == True:
tensorName = layerInfo["lInputTensorName"][4]
inputTensor = dTensor[tensorName]
layer.set_input(4, inputTensor)
elif layerInfo["kType"] == int(trt.LayerType.SHAPE): # 24
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_shape(inputTensor)
elif layerInfo["kType"] == int(trt.LayerType.PARAMETRIC_RELU): # 25
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_parametric_relu(inputTensor0, inputTensor1)
elif layerInfo["kType"] == int(trt.LayerType.RESIZE): # 26
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_resize(inputTensor)
if layerInfo["bDynamicResize"]:
tensorName = layerInfo["lInputTensorName"][1]
inputTensor = dTensor[tensorName]
layer.set_input(1, inputTensor)
elif layerInfo["bShapeMode"]:
layer.shape = layerInfo["shape"]
else:
layer.scales = layerInfo["scales"]
layer.resize_mode = trt.ResizeMode(layerInfo["resize_mode"])
layer.coordinate_transformation = trt.ResizeCoordinateTransformation(layerInfo["coordinate_transformation"])
layer.selector_for_single_pixel = trt.ResizeSelector(layerInfo["selector_for_single_pixel"])
layer.nearest_rounding = trt.ResizeRoundMode(layerInfo["nearest_rounding"])
elif layerInfo["kType"] == int(trt.LayerType.TRIP_LIMIT): # 27
bExist = False
for key, value in dLoop.items(): # find if the Loop already exists in the new network
if value["TripLimitLayerName"] == layerInfo["sName"]:
bExist = True
sLoopName = key
if not bExist: # not exist, add a new Loop structure
for key, value in js["Loop"].items():
if value["TripLimitLayerName"] == layerInfo["sName"]:
dLoop[key] = {}
dLoop[key]["TripLimitLayerName"] = layerInfo["sName"]
dLoop[key]["RecurrenceLayerName"] = value["RecurrenceLayerName"]
dLoop[key]["LoopOutputLayerName"] = value["LoopOutputLayerName"]
dLoop[key]["IteratorLayerName"] = value["IteratorLayerName"]
dLoop[key]["RecurrenceLayer"] = []
dLoop[key]["LoopOutputLayer"] = []
dLoop[key]["IteratorLayer"] = []
dLoop[key]["Loop"] = network.add_loop()
sLoopName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = dLoop[sLoopName]["Loop"].add_trip_limit(inputTensor, trt.TripLimit(layerInfo["kind"]))
dLoop[sLoopName]["TripLimitLayer"] = layer
elif layerInfo["kType"] == int(trt.LayerType.RECURRENCE): # 28
bExist = False
for key, value in dLoop.items(): # find if the Loop already exists in the new network
if layerInfo["sName"] in value["RecurrenceLayerName"]:
bExist = True
sLoopName = key
if not bExist: # not exist, add a new Loop structure
for key, value in js["Loop"].items():
if layerInfo["sName"] in value["RecurrenceLayerName"]:
dLoop[key] = {}
dLoop[key]["TripLimitLayerName"] = value["TripLimitLayerName"]
dLoop[key]["RecurrenceLayerName"] = value["RecurrenceLayerName"]
dLoop[key]["LoopOutputLayerName"] = value["LoopOutputLayerName"]
dLoop[key]["IteratorLayerName"] = value["IteratorLayerName"]
dLoop[key]["RecurrenceLayer"] = []
dLoop[key]["LoopOutputLayer"] = []
dLoop[key]["IteratorLayer"] = []
dLoop[key]["Loop"] = network.add_loop()
sLoopName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = dLoop[sLoopName]["Loop"].add_recurrence(inputTensor) # the second input tensor is recycled in the later additional scan
dLoop[sLoopName]["RecurrenceLayer"].append(layer) # append rather than assign
elif layerInfo["kType"] == int(trt.LayerType.ITERATOR): # 29
bExist = False
for key, value in dLoop.items(): # find if the Loop already exists in the new network
if layerInfo["sName"] in value["IteratorLayerName"]:
bExist = True
sLoopName = key
if not bExist: # not exist, add a new Loop structure
for key, value in js["Loop"].items():
if layerInfo["sName"] in value["IteratorLayerName"]:
dLoop[key] = {}
dLoop[key]["TripLimitLayerName"] = value["TripLimitLayerName"]
dLoop[key]["RecurrenceLayerName"] = value["RecurrenceLayerName"]
dLoop[key]["LoopOutputLayerName"] = value["LoopOutputLayerName"]
dLoop[key]["IteratorLayerName"] = value["IteratorLayerName"]
dLoop[key]["RecurrenceLayer"] = []
dLoop[key]["LoopOutputLayer"] = []
dLoop[key]["IteratorLayer"] = []
dLoop[key]["Loop"] = network.add_loop()
sLoopName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = dLoop[sLoopName]["Loop"].add_iterator(inputTensor, layerInfo["axis"], layerInfo["reverse"])
layer.axis = layerInfo["axis"]
#layer.reverse = layerInfo["reverse"] # read only
dLoop[sLoopName]["IteratorLayer"].append(layer) # append rather than assign
elif layerInfo["kType"] == int(trt.LayerType.LOOP_OUTPUT): # 30
bExist = False
for key, value in dLoop.items(): # find if the Loop already exists in the new network
if layerInfo["sName"] in value["LoopOutputLayerName"]:
bExist = True
sLoopName = key
if not bExist: # not exist, add a new Loop structure
for key, value in js["Loop"].items():
if layerInfo["sName"] in value["LoopOutputLayerName"]:
dLoop[key] = {}
dLoop[key]["TripLimitLayerName"] = value["TripLimitLayerName"]
dLoop[key]["RecurrenceLayerName"] = value["RecurrenceLayerName"]
dLoop[key]["LoopOutputLayerName"] = value["LoopOutputLayerName"]
dLoop[key]["IteratorLayerName"] = value["IteratorLayerName"]
dLoop[key]["RecurrenceLayer"] = []
dLoop[key]["LoopOutputLayer"] = []
dLoop[key]["IteratorLayer"] = []
dLoop[key]["Loop"] = network.add_loop()
sLoopName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = dLoop[sLoopName]["Loop"].add_loop_output(inputTensor, trt.LoopOutput(layerInfo["kind"]), layerInfo["axis"]) # the optinal second input tensor is recycled in the later additional scan
layer.axis = layerInfo["axis"]
#layer.kind = trt.LoopOutput(layerInfo["kind"]) # read only
dLoop[sLoopName]["LoopOutputLayer"].append(layer) # append rather than assign
elif layerInfo["kType"] == int(trt.LayerType.SELECT): # 31
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][2]
inputTensor2 = dTensor[tensorName]
layer = network.add_select(inputTensor0, inputTensor1, inputTensor2)
elif layerInfo["kType"] == int(trt.LayerType.FILL): # 32
layer = network.add_fill([1], trt.FillOperation(layerInfo["operation"]))
layer.operation = trt.FillOperation(layerInfo["operation"])
if layerInfo["bDynamicShapeFill"]:
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer.set_input(0, inputTensor)
else:
layer.shape = layerInfo["shape"]
if layerInfo["nInput"] >= 2:
tensorName = layerInfo["lInputTensorName"][1]
inputTensor = dTensor[tensorName]
layer.set_input(1, inputTensor)
tensorName = layerInfo["lInputTensorName"][2]
inputTensor = dTensor[tensorName]
layer.set_input(2, inputTensor)
if "Range" in layerInfo["sName"]: # The special case: parse Range node from ONNX
layer.set_input(1, constantLayer0.get_output(0))
layer.set_input(2, constantLayer1.get_output(0))
elif layerInfo["kType"] == int(trt.LayerType.QUANTIZE): # 33
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_quantize(inputTensor0, inputTensor1)
if layerInfo["nInput"] == 3:
tensorName = layerInfo["lInputTensorName"][2]
inputTensor2 = dTensor[tensorName]
layer.set_input(2, inputTensor2)
#layer.axis = layerInfo["axis"] # TODO: layerInfo["axis"] is always "-1", but not supported by TensorRT
if layerInfo["axis"] != -1:
layer.axis = layerInfo["axis"]
else:
layer.axis = 0 # change it into 0, per-tensor Quantization/Dequantization
elif layerInfo["kType"] == int(trt.LayerType.DEQUANTIZE): # 34
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = network.add_dequantize(inputTensor0, inputTensor1)
#layer.axis = layerInfo["axis"] # TODO: layerInfo["axis"] is always "-1", but not supported by TensorRT
if layerInfo["axis"] != -1:
layer.axis = layerInfo["axis"]
else:
layer.axis = 0 # change it into 0, per-tensor Quantization/Dequantization
elif layerInfo["kType"] == int(trt.LayerType.CONDITION): # 35
bExist = False
for key, value in dIfCondition.items(): # find if the IfCondition already exists in the new network
if value["ConditionLayerIndex"] == i:
bExist = True
sIfConditionName = key
if not bExist: # not exist, add a new IfCondition structure
for key, value in js["IfCondition"].items():
if value["InputLayerIndex"] == i:
dIfCondition[key] = {}
dIfCondition[key]["ConditionLayerIndex"] = i
dIfCondition[key]["InputLayerIndex"] = value["InputLayerIndex"]
dIfCondition[key]["OutputLayerIndex"] = value["OutputLayerIndex"]
dIfCondition[key]["IfCondition"] = network.add_if_conditional()
sIfConditionName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = dIfCondition[sIfConditionName]["IfCondition"].set_condition(inputTensor)
dIfCondition[sIfConditionName]["ConditionLayer"] = layer
elif layerInfo["kType"] == int(trt.LayerType.CONDITIONAL_INPUT): # 36
bExist = False
for key, value in dIfCondition.items(): # find if the IfCondition already exists in the new network
if value["InputLayerIndex"] == i:
bExist = True
sIfConditionName = key
if not bExist: # not exist, add a new IfCondition structure
for key, value in js["IfCondition"].items():
if value["InputLayerIndex"] == i:
dIfCondition[key] = {}
dIfCondition[key]["ConditionLayerIndex"] = value["ConditionLayerIndex"]
dIfCondition[key]["InputLayerIndex"] = i
dIfCondition[key]["OutputLayerIndex"] = value["OutputLayerIndex"]
dIfCondition[key]["IfCondition"] = network.add_if_conditional()
sIfConditionName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = dIfCondition[sIfConditionName]["IfCondition"].add_input(inputTensor)
dIfCondition[sIfConditionName]["InputLayer"] = layer
elif layerInfo["kType"] == int(trt.LayerType.CONDITIONAL_OUTPUT): # 37
bExist = False
for key, value in dIfCondition.items(): # find if the IfCondition already exists in the new network
if value["OutputLayerIndex"] == i:
bExist = True
sIfConditionName = key
if not bExist: # not exist, add a new IfCondition structure
for key, value in js["IfCondiftion"].items():
if value["InputLayerIndex"] == i:
dIfCondition[key] = {}
dIfCondition[key]["ConditionLayerIndex"] = value["ConditionLayerIndex"]
dIfCondition[key]["InputLayerIndex"] = value["InputLayerIndex"]
dIfCondition[key]["OutputLayerIndex"] = i
dIfCondition[key]["IfCondition"] = network.add_if_conditional()
sIfConditionName = key
break
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
layer = dIfCondition[sIfConditionName]["IfCondition"].add_output(inputTensor0, inputTensor1)
dIfCondition[sIfConditionName]["InputLayer"] = layer
elif layerInfo["kType"] == int(trt.LayerType.SCATTER): # 38
tensorName = layerInfo["lInputTensorName"][0]
inputTensor0 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][1]
inputTensor1 = dTensor[tensorName]
tensorName = layerInfo["lInputTensorName"][2]
inputTensor2 = dTensor[tensorName]
layer = network.add_scatter(inputTensor0, inputTensor1, inputTensor2, trt.ScatterMode.ELEMENT)
layer.axis = layerInfo["axis"]
layer.mode = trt.ScatterMode(layerInfo["mode"])
elif layerInfo["kType"] == int(trt.LayerType.EINSUM): # 39
inputTensorList = []
for j in range(layerInfo["nInput"]):
tensorName = layerInfo["lInputTensorName"][j]
inputTensorList.append(dTensor[tensorName])
layer = network.add_einsum(inputTensorList, layerInfo["equation"])
layer.equation = layerInfo["equation"]
elif layerInfo["kType"] == int(trt.LayerType.ASSERTION): # 40
tensorName = layerInfo["lInputTensorName"][0]
inputTensor = dTensor[tensorName]
layer = network.add_assertion(inputTensor, "Error message")
layer.message = layerInfo["message"]
# Common part of each layer
layer.name = layerInfo["sName"]
if layerInfo["bPrecisionIsSet"]:
layer.precision = trt.DataType(layerInfo["kPrecision"])
for j in range(layerInfo["nOutput"]):
#layer.set_output_type(j, trt.DataType(layerInfo["lOutputTensorDataType"][j])) # remove the use of set_output_type
outputTensor = layer.get_output(j)
referenceTensor = js["Tensor"][layerInfo["lOutputTensorName"][j]]
outputTensor.name = layerInfo["lOutputTensorName"][j]
outputTensor.dtype = trt.DataType(referenceTensor["kDataType"])
layer.set_output_type(j, trt.DataType(trt.DataType(referenceTensor["kDataType"]))) # Use data type of referenceTensor as standard
outputTensor.location = trt.TensorLocation(referenceTensor["kLocation"])
if outputTensor.dtype == trt.DataType.FLOAT and referenceTensor["nAllowedFormat"] != 8191: # The default value of a tensor's allowed_formats is 8191, meaning no more constraint is set
formatBitMask = referenceTensor["nAllowedFormat"] & \
(1 << int(trt.TensorFormat.LINEAR) | 1 << int(trt.TensorFormat.CHW32) | 1 << int(trt.TensorFormat.HWC))
elif outputTensor.dtype == trt.DataType.HALF and referenceTensor["nAllowedFormat"] != 8191:
formatBitMask = referenceTensor["nAllowedFormat"] & \
(1 << int(trt.TensorFormat.LINEAR) | 1 << int(trt.TensorFormat.CHW2) | 1 << int(trt.TensorFormat.HWC8) | \
1 << int(trt.TensorFormat.CHW4) | 1 << int(trt.TensorFormat.CHW16) | 1 << int(trt.TensorFormat.CHW32) | \
1 << int(trt.TensorFormat.DHWC8) | 1 << int(trt.TensorFormat.CDHW32) | 1 << int(trt.TensorFormat.HWC16))
elif outputTensor.dtype == trt.DataType.INT32 and referenceTensor["nAllowedFormat"] != 8191:
formatBitMask = referenceTensor["nAllowedFormat"] & \
(1 << int(trt.TensorFormat.LINEAR) | 1 << int(trt.TensorFormat.CHW32))
elif outputTensor.dtype == trt.DataType.INT8 and referenceTensor["nAllowedFormat"] != 8191:
formatBitMask = referenceTensor["nAllowedFormat"] & \
(1 << int(trt.TensorFormat.LINEAR) | 1 << int(trt.TensorFormat.CHW4) | 1 << int(trt.TensorFormat.CHW32) | 1 << int(trt.TensorFormat.CDHW32))
else: # bool
formatBitMask = referenceTensor["nAllowedFormat"] & \
(1 << int(trt.TensorFormat.LINEAR))
outputTensor.allowed_formats = formatBitMask
if referenceTensor["lDynamicRange"] is not None:
outputTensor.dynamic_range = referenceTensor["lDynamicRange"]
dTensor[outputTensor.name] = outputTensor
# Addition scan, recycle the second input tensor of Shuffle layer
for key, value in dLateLayerTensor.items():
layer = network.get_layer(i)
if tensorName in dTensor.keys():
inputTensor = dTensor[tensorName]
layer.set_input(1, inputTensor)
else:
print("Error finding tensor %s" % tensorName)
# Addition scan, recycle the second input tensor of recurrence layer or output lauer in Loop structure
for key, value in dLoop.items():
for recurrenceLayer in dLoop[key]["RecurrenceLayer"]:
for i in range(js["Network"]["nLayer"]):
if js["Layer"][i]["sName"] == recurrenceLayer.name:
tensorName = js["Layer"][i]["lInputTensorName"][1]
break
inputTensor = dTensor[tensorName]
recurrenceLayer.set_input(1, inputTensor)
for outputLayer in dLoop[key]["LoopOutputLayer"]:
if outputLayer.kind == trt.LoopOutput.LAST_VALUE: # only CONCATENTE and REVERSE mode need the second input tensor
continue
for i in range(js["Network"]["nLayer"]):
if js["Layer"][i]["sName"] == outputLayer.name:
tensorName = js["Layer"][i]["lInputTensorName"][1]
break
inputTensor = dTensor[tensorName]
outputLayer.set_input(1, inputTensor)
# mark output tensor
for i in range(js["Network"]["nInput"], js["Network"]["nInput"] + js["Network"]["nOutput"]):
tensorName = js["Network"]["Binding"][i]["sName"]
outputTensor = dTensor[tensorName]
assert (outputTensor.name in js["Tensor"])
network.mark_output(outputTensor)
# BuilderConfig
if bPrintInformation:
for key in js["BuilderConfig"].keys():
print("js[\"BuilderConfig\"][\"%s\"] = %s" % (key, js["BuilderConfig"][key]))
config = builder.create_builder_config()
if int(trt.__version__.split(".")[0]) < 8: # deprecated since TensorRT 8
config.max_workspace_size = js["BuilderConfig"]["nMaxWorkspaceSize"]
else:
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, js["BuilderConfig"]["nMemoryPoolLimit"]["WORKSPACE"])
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, js["BuilderConfig"]["nMemoryPoolLimit"]["DLA_MANAGED_SRAM"])
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, js["BuilderConfig"]["nMemoryPoolLimit"]["DLA_LOCAL_DRAM"])
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, js["BuilderConfig"]["nMemoryPoolLimit"]["DLA_GLOBAL_DRAM"])
config.flags = js["BuilderConfig"]["nFlag"]
config.quantization_flags = js["BuilderConfig"]["nQuantizationFlag"]
config.engine_capability = trt.EngineCapability(js["BuilderConfig"]["kEngineCapability"])
config.profile_stream = js["BuilderConfig"]["nProfileStream"]
config.profiling_verbosity = trt.ProfilingVerbosity(js["BuilderConfig"]["kProfilingVerbosity"])
config.avg_timing_iterations = js["BuilderConfig"]["nAverageTimingIteration"]
config.set_tactic_sources(js["BuilderConfig"]["nTacticSource"])
for i in range(js["BuilderConfig"]["nOptimizationProfile"]):
op = js["BuilderConfig"]["lOptimizationProfile"][i]
optimizationProfile = builder.create_optimization_profile()
for j in range(network.num_inputs):
if op[j] == {}:
continue
elif op[j]["bShapeTensor"]:
optimizationProfile.set_shape_input(op[j]["name"], op[j]["min"], op[j]["opt"], op[j]["max"])
else:
optimizationProfile.set_shape(op[j]["name"], op[j]["min"], op[j]["opt"], op[j]["max"])
config.add_optimization_profile(optimizationProfile)
# print network before building
if bPrintInformation:
print("\nFinal network:")
for i in range(network.num_layers):
layer = network.get_layer(i)
print("%4d->%s,in=%d,out=%d,%s" % (i, str(layer.type)[10:], layer.num_inputs, layer.num_outputs, layer.name))
for j in range(layer.num_inputs):
tensor = layer.get_input(j)
if tensor == None:
print("\tInput %2d:" % j, "None")
else:
print("\tInput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
for j in range(layer.num_outputs):
tensor = layer.get_output(j)
if tensor == None:
print("\tOutput %2d:" % j, "None")
else:
print("\tOutput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
return builder.build_serialized_network(network, config)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NetworkInspector/NetworkRebuilder.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NetworkInspector/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import numpy as np
import tensorrt as trt
trtFile = "./model.plan"
shape = [1, 1, 28, 28]
os.system("rm -rf ./*.plan")
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED # use profiling_verbosity to get more information
inputTensor = network.add_input("inputT0", trt.float32, [-1] + shape[1:])
profile.set_shape(inputTensor.name, [1] + shape[1:], [2] + shape[1:], [4] + shape[1:])
config.add_optimization_profile(profile)
w = np.ascontiguousarray(np.random.rand(32, 1, 5, 5).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(32, 1, 1).astype(np.float32))
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.ascontiguousarray(np.random.rand(64, 32, 5, 5).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(64, 1, 1).astype(np.float32))
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.ascontiguousarray(np.random.rand(64 * 7 * 7, 1024).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(1, 1024).astype(np.float32))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.ascontiguousarray(np.random.rand(1024, 10).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(1, 10).astype(np.float32))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
#-------------------------------------------------------------------------------
print("Succeeded building network!")
#del engineString, engine, context
from NetworkInspector import inspectNetwork
from NetworkRebuilder import rebuildNetwork
if "profile" not in locals().keys():
inspectNetwork(builder, config, network)
else:
inspectNetwork(builder, config, network, [profile]) # seems ugly if we can not get optimization profile from BuilderConfig
engineString = rebuildNetwork(logger)
with open(trtFile, "wb") as f:
f.write(engineString)
print("Succeeded saving .plan file!")
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NetworkInspector/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ctypes
import os
import numpy as np
import tensorrt as trt
from cuda import cudart
soFile = "./AddScalarPlugin.so"
np.random.seed(31193)
def printArrayInformation(x, info="", n=5):
if 0 in x.shape:
print('%s:%s' % (info, str(x.shape)))
print()
return
print( '%s:%s,SumAbs=%.5e,Var=%.5f,Max=%.5f,Min=%.5f,SAD=%.5f'%( \
info,str(x.shape),np.sum(abs(x)),np.var(x),np.max(x),np.min(x),np.sum(np.abs(np.diff(x.reshape(-1)))) ))
print('\t', x.reshape(-1)[:n], x.reshape(-1)[-n:])
def check(a, b, weak=False, checkEpsilon=1e-5):
if weak:
a = a.astype(np.float32)
b = b.astype(np.float32)
res = np.all(np.abs(a - b) < checkEpsilon)
else:
res = np.all(a == b)
diff0 = np.max(np.abs(a - b))
diff1 = np.max(np.abs(a - b) / (np.abs(b) + checkEpsilon))
print("check:%s, absDiff=%f, relDiff=%f" % (res, diff0, diff1))
def addScalarCPU(inputH, scalar):
return [inputH[0] + scalar]
def getAddScalarPlugin(scalar):
for c in trt.get_plugin_registry().plugin_creator_list:
#print(c.name)
if c.name == "AddScalar":
parameterList = []
parameterList.append(trt.PluginField("scalar", np.float32(scalar), trt.PluginFieldType.FLOAT32))
return c.create_plugin(c.name, trt.PluginFieldCollection(parameterList))
return None
shape = [32, 32]
scalar = 3
testCase = "<shape=%s,scalar=%f>" % (shape, scalar)
trtFile = "./model-Dim%s.plan" % str(len(shape))
print("Test %s" % testCase)
logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(logger, '')
ctypes.cdll.LoadLibrary(soFile)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, [-1 for i in shape])
profile.set_shape(inputT0.name, [1 for i in shape], [8 for i in shape], [32 for i in shape])
config.add_optimization_profile(profile)
pluginLayer = network.add_plugin_v2([inputT0], getAddScalarPlugin(scalar))
network.mark_output(pluginLayer.get_output(0))
#-------------------------------------------------------------------------------
print("Succeeded building network!")
#del engineString, engine, context
from NetworkInspector import inspectNetwork
from NetworkRebuilder import rebuildNetwork
if "profile" not in locals().keys():
inspectNetwork(builder, config, network)
else:
inspectNetwork(builder, config, network, [profile]) # seems ugly if we can not get optimization profile from BuilderConfig
engineString = rebuildNetwork(logger)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
#context.set_input_shape(lTensorName[0], data.shape)
#context.set_binding_shape(0, data.shape)
#context.set_shape_input(0, data)
data = np.ones([8] + shape, dtype=np.float32)
bufferH = []
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NetworkInspector/UnitTestTemplate.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import numpy as np
import tensorrt as trt
def extractBuilder(builder, builderConfig, network):
dBuilder = {} # Dictionary of Builder
dBuilder["nMaxThread"] = builder.max_threads
dBuilder["bPlatformHasTF32"] = builder.platform_has_tf32
dBuilder["bPlatformHasFastFP16"] = builder.platform_has_fast_fp16
dBuilder["bPlatformHasFastINT8"] = builder.platform_has_fast_int8
dBuilder["nMaxDLABatchSize"] = builder.max_DLA_batch_size
dBuilder["nDLACore"] = builder.num_DLA_cores
dBuilder["bNetworkSupported"] = builder.is_network_supported(network, builderConfig)
if int(trt.__version__.split(".")[0]) < 8: # deprecated since TensorRT 8
dBuilder["nMaxBatchSize"] = builder.max_batch_size
dBuilder["nMaxWorkspaceSize"] = builder.max_workspace_size
return dBuilder
def extractBuilderConfig(builderConfig, network, lOptimizationProfile):
dBuilderConfig = {} # Dictionary of BuilderConfig
if int(trt.__version__.split(".")[0]) < 8: # deprecated since TensorRT 8
dBuilderConfig["nMaxWorkspaceSize"] = builderConfig.max_workspace_size
else:
dMemory = {} # Dictionary of Memory management
dMemory["WORKSPACE"] = builderConfig.get_memory_pool_limit(trt.MemoryPoolType.WORKSPACE)
dMemory["DLA_MANAGED_SRAM"] = builderConfig.get_memory_pool_limit(trt.MemoryPoolType.DLA_MANAGED_SRAM)
dMemory["DLA_LOCAL_DRAM"] = builderConfig.get_memory_pool_limit(trt.MemoryPoolType.DLA_LOCAL_DRAM)
dMemory["DLA_GLOBAL_DRAM"] = builderConfig.get_memory_pool_limit(trt.MemoryPoolType.DLA_GLOBAL_DRAM)
dBuilderConfig["nMemoryPoolLimit"] = dMemory
dBuilderConfig["kDefaultDeviceType"] = int(builderConfig.default_device_type) # save as int
dBuilderConfig["nDLACore"] = builderConfig.DLA_core
dBuilderConfig["kEngineCapability"] = int(builderConfig.engine_capability) # save as int
dBuilderConfig["nFlag"] = builderConfig.flags # save as bit mask
dBuilderConfig["nQuantizationFlag"] = int(builderConfig.quantization_flags) # save as int
dBuilderConfig["nOptimizationProfile"] = builderConfig.num_optimization_profiles
dBuilderConfig["nProfileStream"] = builderConfig.profile_stream
dBuilderConfig["kProfilingVerbosity"] = int(builderConfig.profiling_verbosity) # save as int
dBuilderConfig["nAverageTimingIteration"] = builderConfig.avg_timing_iterations
dBuilderConfig["nTacticSource"] = builderConfig.get_tactic_sources() # save as bit mask
#dBuilderConfig["int8_calibrator"] = builderConfig.int8_calibrator # TODO
#dBuilderConfig["algorithmSelector"] = builderConfig.algorithm_selector # TODO
#dBuilderConfig["get_device_type"] = builderConfig.get_device_type() # TODO, layer related
#dBuilderConfig["bCanRunOnDLA"] = builderConfig.can_run_on_DLA # TODO, layer related
lAllOP = [] # List of All set of Optimization Profile
if lOptimizationProfile is not None:
assert (len(lOptimizationProfile) == builderConfig.num_optimization_profiles)
for i in range(builderConfig.num_optimization_profiles):
optimizationProfile = lOptimizationProfile[i]
lOP = [] # List of one set of Optimization Profile
for j in range(network.num_inputs):
tensor = network.get_input(j)
if tensor.is_shape_tensor:
shapeList = optimizationProfile.get_shape_input(tensor.name)
else:
shapeList = optimizationProfile.get_shape(tensor.name)
if shapeList == []:
print("[INFO from NetowrkInspector]: No profile for input tensor %d, continue" % j)
lOP.append({}) # place holder for input tensor j
else:
dOP = {} # Dictionary of Optimization Profile for one input tensor
dOP["name"] = tensor.name
dOP["bShapeTensor"] = tensor.is_shape_tensor
dOP["nDimension"] = len(tensor.shape)
dOP["min"] = list(shapeList[0])
dOP["opt"] = list(shapeList[1])
dOP["max"] = list(shapeList[2])
lOP.append(dOP)
lAllOP.append(lOP)
dBuilderConfig["lOptimizationProfile"] = lAllOP
lOP = [] # List of whole sets of CalibrationProfile
calibrationProfile = builderConfig.get_calibration_profile()
if calibrationProfile is not None:
for j in range(network.num_inputs):
name = network.get_input(j).name
shapeList = calibrationProfile.get_shape(name)
dOP = {} # Dictionary of CalibrationProfile for only one single input tensor
dOP["name"] = name
dOP["min"] = list(shapeList[0])
dOP["opt"] = list(shapeList[1])
dOP["max"] = list(shapeList[2])
lOP.append(dOP)
dBuilderConfig["lCalibrationProfile"] = lOP
return dBuilderConfig
def extractNetwork(network):
dNetwork = {} # Dictionary of Network
dNetwork["sName"] = network.name
dNetwork["nLayer"] = network.num_layers
dNetwork["nInput"] = network.num_inputs
dNetwork["nOutput"] = network.num_outputs
dNetwork["bImplicitBatchMode"] = network.has_implicit_batch_dimension
dNetwork["bExplicitPrecision"] = network.has_explicit_precision
lBinding = [] # List of Binding
for i in range(network.num_inputs):
tensor = network.get_input(i)
dBinding = {} # Dictionary of Binding
dBinding["sName"] = tensor.name
dBinding["bInput"] = tensor.is_network_input
dBinding["bShapeTensor"] = tensor.is_shape_tensor
lBinding.append(dBinding)
for i in range(network.num_outputs):
tensor = network.get_output(i)
dBinding = {}
dBinding["sName"] = tensor.name
dBinding["bInput"] = tensor.is_network_input
dBinding["bShapeTensor"] = tensor.is_shape_tensor
lBinding.append(dBinding)
dNetwork["Binding"] = lBinding
return dNetwork
def exactTensor(tensor):
dTensor = {} # Dicitonary of TEnsor
dTensor["lShape"] = list(tensor.shape) # save as list
dTensor["kLocation"] = int(tensor.location) # save as int
dTensor["bBroadcastAcrossBatch"] = tensor.broadcast_across_batch # useless in Explicit Batch mode
dTensor["kDataType"] = int(tensor.dtype) # save as int
dTensor["nAllowedFormat"] = tensor.allowed_formats # save as bit mask
dTensor["lDynamicRange"] = None if tensor.dynamic_range is None else list(tensor.dynamic_range) # save as list
dTensor["bExecutionTensor"] = tensor.is_execution_tensor
dTensor["bShapeTensor"] = tensor.is_shape_tensor
dTensor["bNetworkInput"] = tensor.is_network_input
dTensor["bNetworkOutput"] = tensor.is_network_output
return dTensor
def exactLayerAndTensor(network):
lLayer = [] # List of Layer, layers are indexed by serial number
dTensor = {} # Dictionary of Tensor, tensors are indexed by name, not by serial number
dIfCondition = {} # Dictionary of IfCondition structure
dLoop = {} # Dictionary of Loop structure
parameter = {} # weight of each layer
for i in range(network.num_layers):
layer = network.get_layer(i)
dLayer = {} # Dictionary of one layer
dLayer["kIndex"] = i
dLayer["sName"] = layer.name
dLayer["kType"] = int(layer.type)
dLayer["nInput"] = layer.num_inputs
dLayer["nOutput"] = layer.num_outputs
dLayer["kPrecision"] = int(layer.precision) # save as int
dLayer["bPrecisionIsSet"] = layer.precision_is_set
lInputTensor = [] # List of Input Tensor
for j in range(layer.num_inputs):
tensor = layer.get_input(j)
if layer.type == trt.LayerType.FILL and j == 0 and tensor is None: # for linspace fill mode of Fill layer, inputTensor 0 could be None
lInputTensor.append(None)
elif layer.type == trt.LayerType.SLICE and j < layer.num_inputs - 1 and tensor is None: # for Slice layer, input tensors before the last one could be None
lInputTensor.append(None)
elif layer.type == trt.LayerType.RNN_V2 and j >= 1 and tensor == None: # for RNNV2 layer, seq_lengths / hidden_state / cell_state tensor could be None
lInputTensor.append(None)
else:
lInputTensor.append(tensor.name)
if not tensor.name in dTensor.keys():
dTensor[tensor.name] = exactTensor(tensor)
dLayer["lInputTensorName"] = lInputTensor
lOutputTensor = [] # List of Output Tensor
lOutputTensorDataType = [] # List of Output Tensor Data Type
for j in range(layer.num_outputs):
tensor = layer.get_output(j)
lOutputTensor.append(tensor.name)
lOutputTensorDataType.append(int(layer.get_output_type(j)))
if not tensor.name in dTensor.keys():
dTensor[tensor.name] = exactTensor(tensor)
dLayer["lOutputTensorName"] = lOutputTensor
dLayer["lOutputTensorDataType"] = lOutputTensorDataType
# Specialization of each layer
# 0 LayerType.CONVOLUTION
# 1 LayerType.FULLY_CONNECTED
# 2 LayerType.ACTIVATION
# 3 LayerType.POOLING
# 4 LayerType.LRN
# 5 LayerType.SCALE
# 6 LayerType.SOFTMAX
# 7 LayerType.DECONVOLUTION
# 8 LayerType.CONCATENATION
# 9 LayerType.ELEMENTWISE
# 10 LayerType.PLUGIN
# 11 LayerType.UNARY
# 12 LayerType.PADDING
# 13 LayerType.SHUFFLE
# 14 LayerType.REDUCE
# 15 LayerType.TOPK
# 16 LayerType.GATHER
# 17 LayerType.MATRIX_MULTIPLY
# 18 LayerType.RAGGED_SOFTMAX
# 19 LayerType.CONSTANT
# 20 LayerType.RNN_V2
# 21 LayerType.IDENTITY
# 22 LayerType.PLUGIN_V2
# 23 LayerType.SLICE
# 24 LayerType.SHAPE
# 25 LayerType.PARAMETRIC_RELU
# 26 LayerType.RESIZE
# 27 LayerType.TRIP_LIMIT
# 28 LayerType.RECURRENCE
# 29 LayerType.ITERATOR
# 30 LayerType.LOOP_OUTPUT
# 31 LayerType.SELECT
# 32 LayerType.FILL
# 33 LayerType.QUANTIZE
# 34 LayerType.DEQUANTIZE
# 35 LayerType.CONDITION
# 36 LayerType.CONDITIONAL_INPUT
# 37 LayerType.CONDITIONAL_OUTPUT
# 38 LayerType.SCATTER
# 39 LayerType.EINSUM
# 40 LayerType.ASSERTION
if layer.type == trt.LayerType.CONVOLUTION: # 0
layer.__class__ = trt.IConvolutionLayer
dLayer["kernel"] = layer.name + "-kernel"
dLayer["lKernelShape"] = [layer.num_output_maps, layer.get_input(0).shape[1], *list(layer.kernel_size_nd)]
parameter[layer.name + "-kernel"] = layer.kernel
dLayer["bias"] = layer.name + "-bias"
dLayer["lBiasShape"] = list(layer.bias.shape)
parameter[layer.name + "-bias"] = layer.bias
#dLayer["kernel_size"] = list(layer.kernel_size) # deprecated since TensorRT 8
dLayer["kernel_size_nd"] = list(layer.kernel_size_nd) # save as list
dLayer["num_output_maps"] = layer.num_output_maps
#dLayer["stride"] = list(layer.stride) # deprecated since TensorRT 8
dLayer["stride_nd"] = list(layer.stride_nd) # save as list
#dLayer["dilation"] = list(layer.dilation) # deprecated since TensorRT 8
dLayer["dilation_nd"] = list(layer.dilation_nd) # save as list
dLayer["num_groups"] = layer.num_groups
#dLayer["padding"] = layer.padding # deprecated since TensorRT 8
dLayer["padding_nd"] = list(layer.padding_nd) # save as list
dLayer["padding_mode"] = int(layer.padding_mode) # save as int
dLayer["pre_padding"] = list(layer.pre_padding) # save as list
dLayer["post_padding"] = list(layer.post_padding) # save as list
elif layer.type == trt.LayerType.FULLY_CONNECTED: # 1
layer.__class__ = trt.IFullyConnectedLayer
dLayer["kernel"] = layer.name + "-kernel"
dLayer["lKernelShape"] = [layer.num_output_channels, layer.kernel.shape[0] // layer.num_output_channels]
parameter[layer.name + "-kernel"] = layer.kernel
dLayer["bias"] = layer.name + "-bias"
dLayer["lBiasShape"] = list(layer.bias.shape)
parameter[layer.name + "-bias"] = layer.bias
dLayer["num_output_channels"] = layer.num_output_channels
elif layer.type == trt.LayerType.ACTIVATION: # 2
layer.__class__ = trt.IActivationLayer
dLayer["alpha"] = layer.alpha
dLayer["beta"] = layer.beta
dLayer["type"] = int(layer.type) # save as int
elif layer.type == trt.LayerType.POOLING: # 3
layer.__class__ = trt.IPoolingLayer
dLayer["average_count_excludes_padding"] = layer.average_count_excludes_padding
dLayer["blend_factor"] = layer.blend_factor
#dLayer["stride"] = list(layer.stride) # deprecated since TensorRT 8
dLayer["stride_nd"] = list(layer.stride_nd) # save as list
#dLayer["padding"] = layer.padding # deprecated since TensorRT 8
dLayer["padding_nd"] = list(layer.padding_nd) # save as list
dLayer["padding_mode"] = int(layer.padding_mode) # save as int
dLayer["pre_padding"] = list(layer.pre_padding) # save as list
dLayer["post_padding"] = list(layer.post_padding) # save as list
dLayer["type"] = int(layer.type) # save as int
#dLayer["window_size"] = list(layer.window_size) # deprecated since TensorRT 8
dLayer["window_size_nd"] = list(layer.window_size_nd) # save as list
elif layer.type == trt.LayerType.LRN: # 4
layer.__class__ = trt.ILRNLayer
dLayer["alpha"] = layer.alpha
dLayer["beta"] = layer.beta
dLayer["k"] = layer.k
dLayer["window_size"] = layer.window_size
elif layer.type == trt.LayerType.SCALE: # 5
layer.__class__ = trt.IScaleLayer
dLayer["channel_axis"] = layer.channel_axis
dLayer["mode"] = int(layer.mode) # save as int
dLayer["scale"] = layer.name + "-scale"
dLayer["lScaleShape"] = layer.scale.shape
parameter[layer.name + "-scale"] = layer.scale
dLayer["shift"] = layer.name + "-shift"
dLayer["lShiftShape"] = layer.shift.shape
parameter[layer.name + "-shift"] = layer.shift
dLayer["power"] = layer.name + "-power"
dLayer["lPowerShape"] = layer.power.shape
parameter[layer.name + "-power"] = layer.power
elif layer.type == trt.LayerType.SOFTMAX: # 6
layer.__class__ = trt.ISoftMaxLayer
dLayer["axes"] = layer.axes
elif layer.type == trt.LayerType.DECONVOLUTION: # 7
layer.__class__ = trt.IDeconvolutionLayer
dLayer["kernel"] = layer.name + "-kernel"
dLayer["lKernelShape"] = [layer.num_output_maps, layer.get_input(0).shape[1], *list(layer.kernel_size_nd)]
parameter[layer.name + "-kernel"] = layer.kernel
dLayer["bias"] = layer.name + "-bias"
dLayer["lBiasShape"] = list(layer.bias.shape)
parameter[layer.name + "-bias"] = layer.bias
#dLayer["kernel_size"] = list(layer.kernel_size) # deprecated since TensorRT 8
dLayer["kernel_size_nd"] = list(layer.kernel_size_nd) # save as list
dLayer["num_output_maps"] = layer.num_output_maps
#dLayer["stride"] = list(layer.stride) # deprecated since TensorRT 8
dLayer["stride_nd"] = list(layer.stride_nd) # save as list
#dLayer["dilation"] = list(layer.dilation) # deprecated since TensorRT 8
dLayer["dilation_nd"] = list(layer.dilation_nd) # save as list
dLayer["num_groups"] = layer.num_groups
#dLayer["padding"] = list(layer.padding) # deprecated since TensorRT 8
dLayer["padding_nd"] = list(layer.padding_nd) # save as list
dLayer["padding_mode"] = int(layer.padding_mode) # save as int
dLayer["pre_padding"] = list(layer.pre_padding) # save as list
dLayer["post_padding"] = list(layer.post_padding) # save as list
elif layer.type == trt.LayerType.CONCATENATION: # 8
layer.__class__ = trt.IConcatenationLayer
dLayer["axis"] = layer.axis
elif layer.type == trt.LayerType.ELEMENTWISE: # 9
layer.__class__ = trt.IElementWiseLayer
dLayer["op"] = int(layer.op) # save as int
elif layer.type == trt.LayerType.PLUGIN: # 10
print("IPlugin Layer not supported!") # layer.__class__ = trt.IPluginLayer
#break
elif layer.type == trt.LayerType.UNARY: # 11
layer.__class__ = trt.IUnaryLayer
dLayer["op"] = int(layer.op) # save as int
elif layer.type == trt.LayerType.PADDING: # 12
layer.__class__ = trt.IPaddingLayer
#dLayer["pre_padding"] = list(layer.pre_padding) # deprecated since TensorRT 8
dLayer["pre_padding_nd"] = list(layer.pre_padding_nd) # save as list, different from Convolution / Deconvolution Layer
#dLayer["post_padding"] = layer.post_padding # deprecated since TensorRT 8 # different from Convolution / Deconvolution Layer
dLayer["post_padding_nd"] = list(layer.post_padding_nd) # save as list
elif layer.type == trt.LayerType.SHUFFLE: # 13
layer.__class__ = trt.IShuffleLayer
if layer.num_inputs == 2: # dynamic shuffle mode
dLayer["bDynamicShuffle"] = True
else:
dLayer["bDynamicShuffle"] = False
try:
dLayer["reshape_dims"] = list(layer.reshape_dims) # save as list
except ValueError:
dLayer["reshape_dims"] = None # no reshape operation if ValueError raised
dLayer["first_transpose"] = list(layer.first_transpose) # save as list
dLayer["second_transpose"] = list(layer.second_transpose) # save as list
dLayer["zero_is_placeholder"] = layer.zero_is_placeholder
elif layer.type == trt.LayerType.REDUCE: # 14
layer.__class__ = trt.IReduceLayer
dLayer["axes"] = layer.axes
dLayer["op"] = int(layer.op) # save as int
dLayer["keep_dims"] = layer.keep_dims
elif layer.type == trt.LayerType.TOPK: # 15
layer.__class__ = trt.ITopKLayer
dLayer["axes"] = layer.axes
dLayer["op"] = int(layer.op) # save as int
dLayer["k"] = layer.k
elif layer.type == trt.LayerType.GATHER: # 16
layer.__class__ = trt.IGatherLayer
dLayer["axis"] = layer.axis
dLayer["mode"] = int(layer.mode) # save as int
elif layer.type == trt.LayerType.MATRIX_MULTIPLY: # 17
layer.__class__ = trt.IMatrixMultiplyLayer
dLayer["op0"] = int(layer.op0) # save as int
dLayer["op1"] = int(layer.op1) # save as int
elif layer.type == trt.LayerType.RAGGED_SOFTMAX: # 18
layer.__class__ = trt.IRaggedSoftMaxLayer
elif layer.type == trt.LayerType.CONSTANT: # 19
layer.__class__ = trt.IConstantLayer
dLayer["weights"] = layer.name + "-weights"
dLayer["lWeightShape"] = list(layer.shape)
parameter[layer.name + "-weights"] = layer.weights
dLayer["shape"] = list(layer.shape)
elif layer.type == trt.LayerType.RNN_V2: # 20
layer.__class__ = trt.IRNNv2Layer
dLayer["num_layers"] = layer.num_layers
dLayer["hidden_size"] = layer.hidden_size
dLayer["max_seq_length"] = layer.max_seq_length
dLayer["data_length"] = layer.data_length
dLayer["op"] = int(layer.op) # save as int
dLayer["input_mode"] = int(layer.input_mode) # save as int
dLayer["direction"] = int(layer.direction) # save as int
nRealLayer = layer.num_layers * (2 if layer.direction == trt.RNNDirection.BIDIRECTION else 1)
if layer.op == trt.RNNOperation.RELU or layer.op == trt.RNNOperation.TANH:
lGateKind = [trt.RNNGateType.INPUT]
elif layer.op == trt.RNNOperation.LSTM:
lGateKind = [trt.RNNGateType.INPUT, trt.RNNGateType.CELL, trt.RNNGateType.FORGET, trt.RNNGateType.OUTPUT]
elif layer.op == trt.RNNOperation.GRU:
lGateKind = [trt.RNNGateType.UPDATE, trt.RNNGateType.RESET]
else:
lGateKind = []
for j in range(nRealLayer):
for gateKind in lGateKind:
if layer.input_mode == trt.RNNInputMode.LINEAR:
parameter[layer.name + "-" + str(j) + "-" + str(int(gateKind)) + "-weightX"] = layer.get_weights_for_gate(j, gateKind, True)
parameter[layer.name + "-" + str(j) + "-" + str(int(gateKind)) + "-biasX"] = layer.get_bias_for_gate(j, gateKind, True) # bias for X is always needed
parameter[layer.name + "-" + str(j) + "-weightH"] = layer.get_weights_for_gate(j, gateKind, False)
parameter[layer.name + "-" + str(j) + "-biasH"] = layer.get_bias_for_gate(j, gateKind, False)
elif layer.type == trt.LayerType.IDENTITY: # 21
layer.__class__ = trt.IIdentityLayer
elif layer.type == trt.LayerType.PLUGIN_V2: # 22
layer.__class__ = trt.IPluginV2Layer
print("PluginV2 Layer not support!")
#dLayer["plugin_namespace"] = layer.plugin_namespace
#dLayer["plugin_type"] = layer.plugin_type
#dLayer["plugin_version"] = layer.plugin_version
#dLayer["tensorrt_version"] = layer.tensorrt_version
elif layer.type == trt.LayerType.SLICE: # 23
layer.__class__ = trt.ISliceLayer
dLayer["mode"] = int(layer.mode) # save as int
try:
dLayer["start"] = list(layer.start) # save as list
except ValueError:
dLayer["start"] = None
try:
dLayer["shape"] = list(layer.shape) # save as list
except ValueError:
dLayer["shape"] = None
try:
dLayer["stride"] = list(layer.stride) # save as list
except ValueError:
dLayer["stride"] = None
if layer.mode == trt.SliceMode.FILL and layer.num_inputs == 5:
dLayer["fill"] = True
else:
dLayer["fill"] = False
elif layer.type == trt.LayerType.SHAPE: # 24
layer.__class__ = trt.IShapeLayer
elif layer.type == trt.LayerType.PARAMETRIC_RELU: # 25
layer.__class__ = trt.IParametricReLULayer
elif layer.type == trt.LayerType.RESIZE: # 26
layer.__class__ = trt.IResizeLayer
if layer.num_inputs == 2: # dynamic resize mode
dLayer["bDynamicResize"] = True
else:
dLayer["bDynamicResize"] = False
if layer.scales == []: # static resize mode + use shape mode
dLayer["bShapeMode"] = True
dLayer["shape"] = list(layer.shape) # save as list
else: # static resize mode + use scale mode, TODO: how to check layer.shape? such as "layer.shape == [0] == [0]"
dLayer["bShapeMode"] = False
dLayer["scales"] = list(layer.scales) # save as list
dLayer["resize_mode"] = int(layer.resize_mode) # save as int
if layer.resize_mode == trt.ResizeMode.LINEAR and layer.coordinate_transformation == trt.ResizeCoordinateTransformation.ASYMMETRIC:
print("[Warning from NetworkInspector]: ResizeCoordinateTransformation of Resize Layer %s is set as HALF_PIXEL though default behaviour or your explicit set is ASYMMETRIC mode, please refer to the source code of NetworkInspector if you insist to use ASYMMETRIC mode!" % layer.name)
layer.coordinate_transformation = trt.ResizeCoordinateTransformation.HALF_PIXEL
#layer.coordinate_transformation = trt.ResizeCoordinateTransformation.ASYMMETRIC # uncomment this line if you want to use ASYMMETRIC mode
dLayer["coordinate_transformation"] = int(layer.coordinate_transformation) # save as int
dLayer["selector_for_single_pixel"] = int(layer.selector_for_single_pixel) # save as int
dLayer["nearest_rounding"] = int(layer.nearest_rounding) # save as int
elif layer.type == trt.LayerType.TRIP_LIMIT: # 27
layer.__class__ = trt.ITripLimitLayer
if layer.loop.name not in dLoop.keys(): # search every time because the appearance order of layers in loop is uncertain
dLoop[layer.loop.name] = {}
dLoop[layer.loop.name]["RecurrenceLayerName"] = []
dLoop[layer.loop.name]["LoopOutputLayerName"] = []
dLoop[layer.loop.name]["IteratorLayerName"] = []
dLoop[layer.loop.name]["TripLimitLayerName"] = layer.name
dLayer["kind"] = int(layer.kind) # save as int
elif layer.type == trt.LayerType.RECURRENCE: # 28
layer.__class__ = trt.IRecurrenceLayer
if layer.loop.name not in dLoop.keys(): # search every time because the appearance order of layers in loop is uncertain
dLoop[layer.loop.name] = {}
dLoop[layer.loop.name]["RecurrenceLayerName"] = []
dLoop[layer.loop.name]["LoopOutputLayerName"] = []
dLoop[layer.loop.name]["IteratorLayerName"] = []
dLoop[layer.loop.name]["RecurrenceLayerName"].append(layer.name) # a Loop structure could have more than one recurrence layer
elif layer.type == trt.LayerType.ITERATOR: # 29
layer.__class__ = trt.IIteratorLayer
if layer.loop.name not in dLoop.keys(): # search every time because the appearance order of layers in loop is uncertain
dLoop[layer.loop.name] = {}
dLoop[layer.loop.name]["RecurrenceLayerName"] = []
dLoop[layer.loop.name]["LoopOutputLayerName"] = []
dLoop[layer.loop.name]["IteratorLayerName"] = []
dLoop[layer.loop.name]["IteratorLayerName"].append(layer.name) # a Loop structure could have more than one iterator layer
dLayer["axis"] = layer.axis
dLayer["reverse"] = layer.reverse
elif layer.type == trt.LayerType.LOOP_OUTPUT: # 30
layer.__class__ = trt.ILoopOutputLayer
if layer.loop.name not in dLoop.keys(): # search every time because the appearance order of layers in loop is uncertain
dLoop[layer.loop.name] = {}
dLoop[layer.loop.name]["RecurrenceLayerName"] = []
dLoop[layer.loop.name]["LoopOutputLayerName"] = []
dLoop[layer.loop.name]["IteratorLayerName"] = []
dLoop[layer.loop.name]["LoopOutputLayerName"].append(layer.name) # a Loop structure could have more than one output layer
dLayer["axis"] = layer.axis
dLayer["kind"] = int(layer.kind) # save as int
elif layer.type == trt.LayerType.SELECT: # 31
layer.__class__ = trt.ISelectLayer
elif layer.type == trt.LayerType.FILL: # 32
layer.__class__ = trt.IFillLayer
dLayer["operation"] = int(layer.operation) # save as int
if layer.get_input(0) is not None: # dynamic fill mode, the shape of output tensor depends on input tenor 0
dLayer["bDynamicShapeFill"] = True
dLayer["shape"] = None
else: # static fill mode, the shape of output tensor is given by input parameter
dLayer["bDynamicShapeFill"] = False
dLayer["shape"] = list(layer.shape) # save as list
elif layer.type == trt.LayerType.QUANTIZE: # 33
layer.__class__ = trt.IQuantizeLayer
dLayer["axis"] = layer.axis
elif layer.type == trt.LayerType.DEQUANTIZE: # 34
layer.__class__ = trt.IDequantizeLayer
dLayer["axis"] = layer.axis
elif layer.type == trt.LayerType.CONDITION: # 35
layer.__class__ = trt.IConditionLayer
if layer.conditional.name not in dIfCondition.keys(): # search every time because the appearance order of layers in IfCondition is uncertain
dIfCondition[layer.conditional.name] = {}
dIfCondition[layer.conditional.name]["ConditionLayerIndex"] = i
elif layer.type == trt.LayerType.CONDITIONAL_INPUT: # 36
layer.__class__ = trt.IIfConditionalInputLayer
if layer.conditional.name not in dIfCondition.keys(): # search every time because the appearance order of layers in IfCondition is uncertain
dIfCondition[layer.conditional.name] = {}
dIfCondition[layer.conditional.name]["InputLayerIndex"] = i
elif layer.type == trt.LayerType.CONDITIONAL_OUTPUT: # 37
layer.__class__ = trt.IIfConditionalOutputLayer
if layer.conditional.name not in dIfCondition.keys(): # search every time because the appearance order of layers in IfCondition is uncertain
dIfCondition[layer.conditional.name] = {}
dIfCondition[layer.conditional.name]["OutputLayerIndex"] = i
elif layer.type == trt.LayerType.SCATTER: # 38
layer.__class__ = trt.IScatterLayer
dLayer["axis"] = layer.axis
dLayer["mode"] = int(layer.mode) # save as int
elif layer.type == trt.LayerType.EINSUM: # 39
layer.__class__ = trt.IEinsumLayer
dLayer["equation"] = layer.equation
elif layer.type == trt.LayerType.ASSERTION: # 40
layer.__class__ = trt.IAssertionLayer
dLayer["message"] = layer.message
else:
print("Layer not supported!")
break
lLayer.append(dLayer)
return lLayer, dTensor, dIfCondition, dLoop, parameter
def inspectNetwork(builder, builderConfig, network, lOptimizationProfile=[], calibrationProfile=None, bPrintInformation=True, jsonFile="./model.json", paraFile="./model.npz"):
# print network before parsing
if bPrintInformation:
print("\nOriginal network:")
for i in range(network.num_layers):
layer = network.get_layer(i)
print("%4d->%s,in=%d,out=%d,%s" % (i, str(layer.type)[10:], layer.num_inputs, layer.num_outputs, layer.name))
for j in range(layer.num_inputs):
tensor = layer.get_input(j)
if tensor == None:
print("\tInput %2d:" % j, "None")
else:
print("\tInput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
for j in range(layer.num_outputs):
tensor = layer.get_output(j)
if tensor == None:
print("\tOutput %2d:" % j, "None")
else:
print("\tOutput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
bigDictionary = {}
# Builder, almost useless especially since TensorRT 8
bigDictionary["Builder"] = extractBuilder(builder, builderConfig, network)
# BuilderConfig
bigDictionary["BuilderConfig"] = extractBuilderConfig(builderConfig, network, lOptimizationProfile)
# Network
bigDictionary["Network"] = extractNetwork(network)
# Layer and Tensor
bigDictionary["Layer"], bigDictionary["Tensor"], bigDictionary["IfCondition"], bigDictionary["Loop"], parameter = exactLayerAndTensor(network)
# Save result as file
with open(jsonFile, "w") as f:
f.write(json.dumps(bigDictionary))
np.savez(paraFile, **parameter)
return
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NetworkInspector/NetworkInspector.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
np.random.seed(31193)
nHeight = 28
nWidth = 28
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
inferenceImage = dataPath + "8.png"
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
logger = trt.Logger(trt.Logger.ERROR)
if os.path.isfile(trtFile):
with open(trtFile, "rb") as f:
engine = trt.Runtime(logger).deserialize_cuda_engine(f.read())
if engine == None:
print("Failed loading engine!")
exit()
print("Succeeded loading engine!")
else:
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, nHeight, nWidth])
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
w = np.ascontiguousarray(np.random.rand(32, 1, 5, 5).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(32, 1, 1).astype(np.float32))
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.ascontiguousarray(np.random.rand(64, 32, 5, 5).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(64, 1, 1).astype(np.float32))
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.ascontiguousarray(np.random.rand(64 * 7 * 7, 1024).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(1, 1024).astype(np.float32))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.ascontiguousarray(np.random.rand(1024, 10).astype(np.float32))
b = np.ascontiguousarray(np.random.rand(1, 10).astype(np.float32))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NsightSystems/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import onnx
import onnx_graphsurgeon as gs
# Create nodes
# use onnx_graphsurgeon.Graph.register() to register a function as a ndoe
@gs.Graph.register()
def add(self, a, b):
return self.layer(op="Add", inputs=[a, b], outputs=["myAdd"])
@gs.Graph.register()
def mul(self, a, b):
return self.layer(op="Mul", inputs=[a, b], outputs=["myMul"])
@gs.Graph.register()
def gemm(self, a, b, isTransposeA=False, isTransposeB=False):
attrs = {"transA": int(isTransposeA), "transB": int(isTransposeB)}
return self.layer(op="Gemm", inputs=[a, b], outputs=["myGgemm"], attrs=attrs)
@gs.Graph.register()
def min(self, *args):
return self.layer(op="Min", inputs=args, outputs=["myMin"])
@gs.Graph.register()
def max(self, *args):
return self.layer(op="Max", inputs=args, outputs=["myMax"])
# mark version during register a function as a ndoe
@gs.Graph.register(opsets=[11])
def relu(self, a):
return self.layer(op="Relu", inputs=[a], outputs=["myReLU"])
# register node with the same name but different version
@gs.Graph.register(opsets=[1])
def relu(self, a):
raise NotImplementedError("This function has not been implemented!")
# Create graph
graph = gs.Graph(opset=11)
tensor0 = gs.Variable(name="tensor0", shape=[64, 64], dtype=np.float32)
tensor1 = gs.Constant(name="tensor1", values=np.ones(shape=(64, 64), dtype=np.float32))
#tensor1 = np.ones(shape=(64, 64), dtype=np.float32) # np.array can also be used but the name of the tensor will be created automatically by ONNX if so
tensor2 = gs.Constant(name="tensor2", values=np.ones((64, 64), dtype=np.float32) * 0.5)
tensor3 = gs.Constant(name="tensor3", values=np.ones(shape=[64, 64], dtype=np.float32))
tensor4 = gs.Constant(name="tensor4", values=np.array([3], dtype=np.float32))
tensor5 = gs.Constant(name="tensor5", values=np.array([-3], dtype=np.float32))
node0 = graph.gemm(tensor1, tensor0, isTransposeB=True)
node1 = graph.add(*node0, tensor2)
node2 = graph.relu(*node1)
node3 = graph.mul(*node2, tensor3)
node4 = graph.min(*node3, tensor4)
node5 = graph.max(*node4, tensor5)
graph.inputs = [tensor0]
graph.outputs = [node5[0]]
graph.inputs[0].dtype = np.dtype(np.float32)
graph.outputs[0].dtype = np.dtype(np.float32)
onnx.save(gs.export_onnx(graph), "model-09-01.onnx")
@gs.Graph.register()
def replaceWithClip(self, inputs, outputs):
# remove the output tensor of the tail node and the input tensor of the head node
for inp in inputs:
inp.outputs.clear()
for out in outputs:
out.inputs.clear()
# inset new node
return self.layer(op="Clip", inputs=inputs, outputs=outputs)
temp = graph.tensors()
# find the input / outpu tensor that we want to remove, and pass them to function replaceWithClip
inputs = [temp["myMul_6"], temp["tensor5"], temp["tensor4"]]
outputs = [temp["myMax_10"]]
graph.replaceWithClip(inputs, outputs)
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-09-02.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/09-BuildModelWithAPI.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64])
tensor1 = gs.Variable("tensor1", np.float32, None)
tensor2 = gs.Variable("tensor2", np.float32, None)
tensor3 = gs.Variable("tensor3", np.float32, None)
tensor4 = gs.Variable("tensor4", np.float32, None)
node0 = gs.Node("Identity", "Node0", inputs=[tensor0], outputs=[tensor1])
node1 = gs.Node("TrashNode", "Node1", inputs=[tensor1], outputs=[tensor2])
node2 = gs.Node("Identity", "Node2", inputs=[tensor2], outputs=[tensor3])
node3 = gs.Node("Identity", "Node3", inputs=[tensor2], outputs=[tensor4])
graph = gs.Graph(nodes=[node0, node1, node2, node3], inputs=[tensor0], outputs=[tensor3, tensor4])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-03-01.onnx")
del graph
graph = gs.import_onnx(onnx.load("model-03-01.onnx"))
for node in graph.nodes:
if node.op == "TrashNode" and node.name == "Node1":
inputTensor = node.inputs[0]
outputTensor = node.outputs[0]
for subNode in graph.nodes: # search all nodes in case of the output tensor is used by multiple nodes
if outputTensor in subNode.inputs:
index = subNode.inputs.index(outputTensor)
subNode.inputs[index] = inputTensor
graph.cleanup().toposort() # the TrashNode node will be removed during graph clean
onnx.save(gs.export_onnx(graph), "model-03-02.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/03-RemoveNode.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64])
tensor1 = gs.Variable("tensor1", np.float32, None)
tensor2 = gs.Variable("tensor2", np.float32, None)
tensor3 = gs.Variable("tensor3", np.float32, None)
constant0 = gs.Constant(name="constant0", values=np.ones(shape=[1, 1, 1, 1], dtype=np.float32))
node0 = gs.Node("Identity", "myIdentity0", inputs=[tensor0], outputs=[tensor1])
node1 = gs.Node("Add", "myAdd", inputs=[tensor1, constant0], outputs=[tensor2])
node2 = gs.Node("Identity", "myIdentity1", inputs=[tensor2], outputs=[tensor3])
graph = gs.Graph(nodes=[node0, node1, node2], inputs=[tensor0], outputs=[tensor3])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-04-01.onnx")
del graph
# replace node by edit the operator type
graph = gs.import_onnx(onnx.load("model-04-01.onnx")) # load the graph from ONNX file
for node in graph.nodes:
if node.op == "Add" and node.name == "myAdd":
node.op = "Sub"
node.name = "mySub" # it's OK to change the name of the node or not
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-04-02.onnx")
del graph
# repalce node by inserting new node
graph = gs.import_onnx(onnx.load("model-04-01.onnx")) # load the graph from ONNX file
for node in graph.nodes:
if node.op == "Add" and node.name == "myAdd":
newNode = gs.Node("Sub", "mySub", inputs=node.inputs, outputs=node.outputs)
graph.nodes.append(newNode)
node.outputs = []
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-04-03.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/04-ReplaceNode.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64]) # 3 necessary tensors
tensor1 = gs.Variable("tensor1", np.float32, ["B", 3, 64, 64])
tensor2 = gs.Variable("tensor2", np.float32, ["B", 3, 64, 64])
tensor3 = gs.Variable("tensor3", np.float32, ["B", 3, 64, 64]) # 1 fake input tensor
tensor4 = gs.Variable("tensor4", np.float32, ["B", 1, 64, 64]) # 1 fake output tensor
tensor5 = gs.Variable("tensor5", np.float32, ["B", 1, 64, 64]) # 2 useless tensors
tensor6 = gs.Variable("tensor6", np.float32, ["B", 1, 64, 64])
tensor7 = gs.Variable("tensor7", np.float32, None) # 2 intermediate tensors
tensor8 = gs.Variable("tensor8", np.float32, None)
constant0 = gs.Constant(name="w", values=np.ones(shape=[1, 1, 1, 1], dtype=np.float32))
node0 = gs.Node("Add", "myAdd0", inputs=[constant0, constant0], outputs=[tensor7])
node1 = gs.Node("Add", "myAdd1", inputs=[tensor7, constant0], outputs=[tensor8])
node2 = gs.Node("Add", "myAdd2", inputs=[tensor0, tensor8], outputs=[tensor1]) # necessary node
node3 = gs.Node("Add", "myAdd3", inputs=[tensor1, constant0], outputs=[tensor2]) # necessary node
node4 = gs.Node("Add", "myAdd4", inputs=[tensor5, constant0], outputs=[tensor6]) # useless node
graph = gs.Graph(nodes=[node4, node3, node2, node1, node0], inputs=[tensor0, tensor3], outputs=[tensor2, tensor4]) # reverse the order of the node on purpose
onnx.save(gs.export_onnx(graph), "model-06-01.onnx")
# original graph, containing 4 tensors without node, 1 node without edge and 1 chain subgraph with constant expresssion
onnx.save(gs.export_onnx(graph.fold_constants()), "model-06-02.onnx")
# graph after constant folding, the subgraph with constant expression is fused, but the two more Add node are left without edge
# notice that constant folding will not remove any nodes
onnx.save(gs.export_onnx(graph.fold_constants().cleanup()), "model-06-03.onnx")
# graph after clean, the 3 Add nodes without edge are removed
print("Before toposort:") # The order of the original graph
for index, node in enumerate(graph.nodes):
print("No.%d->%s" % (index, node.name))
print("After toposort:") # The order of the last graph
graph.toposort()
for index, node in enumerate(graph.nodes):
print("No.%d->%s" % (index, node.name))
graph.inputs = [tensor0] # remove redundant input / output manually
graph.outputs = [tensor2]
onnx.save(gs.export_onnx(graph), "model-06-04.onnx")
# Notice
# + In TensorRT<8.0, redundant input / output tensors in netowrk (maybe from ONNX file) will be removed, so the count of input / output tensor of a TensorRT engine may be different from that in ONNX file
# + In TensorRT>=8.0, redundant input / output tensors in network will be retained as useless placeholders in the network
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/06-Fold.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64])
tensor1 = gs.Variable("tensor1", np.float32, None)
tensor2 = gs.Variable("tensor2", np.float32, None)
node0 = gs.Node("Identity", "myIdentity0", inputs=[tensor0], outputs=[tensor1])
node1 = gs.Node("Identity", "myIdentity1", inputs=[tensor1], outputs=[tensor2])
graph = gs.Graph(nodes=[node0, node1], inputs=[tensor0], outputs=[tensor2])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-02-01.onnx")
del graph
graph = gs.import_onnx(onnx.load("model-02-01.onnx")) # load the graph from ONNX file
for node in graph.nodes:
if node.op == "Identity" and node.name == "myIdentity0": # find the place we want to add ndoe
constant0 = gs.Constant(name="constant0", values=np.ones(shape=[1, 1, 1, 1], dtype=np.float32)) # construct the new variable and node
tensor3 = gs.Variable("tensor3", np.float32, None)
newNode = gs.Node("Add", "myAdd", inputs=[node.outputs[0], constant0], outputs=[tensor3])
graph.nodes.append(newNode) # REMEMBER to add the new node into the grap
index = node.o().inputs.index(node.outputs[0]) # find the next node
node.o().inputs[index] = tensor3 # replace the input tensor of next node as the new tensor
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-02-02.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/02-AddNode.py |
#!/usr/bin/env python3
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["A", 3, "B", 5])
tensor1 = gs.Variable("tensor1", np.int64, None)
tensor2 = gs.Variable("tensor2", np.int64, None)
tensor3 = gs.Variable("tensor3", np.float32, None)
tensor4 = gs.Variable("tensor4", np.int64, None)
tensor5 = gs.Variable("tensor5", np.int64, None)
tensor6 = gs.Variable("tensor6", np.int64, None)
tensor7 = gs.Variable("tensor7", np.int64, None)
tensor8 = gs.Variable("tensor8", np.float32, None)
constant0 = gs.Constant("constant0", values=np.array([0, 1], dtype=np.int32))
constant1 = gs.Constant("constant1", values=np.array([2, 3], dtype=np.int32))
node0 = gs.Node("Shape", "myShape", inputs=[tensor0], outputs=[tensor1]) # value=(A,3,B,5), shape=(4,)
node1 = gs.Node("ReduceProd", "myReduceProd0", inputs=[tensor1], attrs={"axes": [0], "keepdims": int(True)}, outputs=[tensor2]) # value=(A*3*B*5), shape=()
node2 = gs.Node("Reshape", "myReshape0", inputs=[tensor0, tensor2], outputs=[tensor3]) # shape=(A*3*B*5,)
node3 = gs.Node("Gather", "myGather0", inputs=[tensor1, constant0], outputs=[tensor4]) # value=(A,3), shape=(2,)
node4 = gs.Node("Gather", "myGather1", inputs=[tensor1, constant1], outputs=[tensor5]) # value=(B,5), shape=(2,)
node5 = gs.Node("ReduceProd", "myReduceProd1", inputs=[tensor5], attrs={"axes": [0], "keepdims": int(True)}, outputs=[tensor6]) # value=(B*5), shape=()
node6 = gs.Node("Concat", "myConcat", inputs=[tensor4, tensor6], attrs={"axis": 0}, outputs=[tensor7]) # value=(A,3,B*5), shape=()
node7 = gs.Node("Reshape", "myReshape1", inputs=[tensor0, tensor7], outputs=[tensor8]) # shape=(A*3*B*5,)
graph = gs.Graph(nodes=[node0, node1, node2, node3, node4, node5, node6, node7], inputs=[tensor0], outputs=[tensor3, tensor8])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-07-01.onnx") # using Dynamic Shape mode, there are many shape operators in the graph
graph.inputs[0].shape = [2, 3, 4, 5] # shape operators can be simplified if the shape is static
graph.fold_constants().cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-07-02.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/07-ShapeOperationAndSimplify.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
onnxFile = "./model-05.onnx"
nMaxAdjustNode = 256
# Create a ONNX graph with Onnx Graphsurgeon -----------------------------------
tensor0 = gs.Variable("tensor-0", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
graphNodeList = []
tensor1 = gs.Variable("tensor-1", np.float32, None)
node1 = gs.Node("Conv", "Conv-1", inputs=[tensor0, constant32x1, constant32], outputs=[tensor1])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor2 = gs.Variable("tensor-2", np.float32, None)
node2 = gs.Node("Relu", "ReLU-2", inputs=[tensor1], outputs=[tensor2])
graphNodeList.append(node2)
tensor3 = gs.Variable("tensor-3", np.float32, None)
node3 = gs.Node("MaxPool", "MaxPool-3", inputs=[tensor2], outputs=[tensor3])
node3.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node3)
tensor4 = gs.Variable("tensor-4", np.float32, None)
node1 = gs.Node("Conv", "Conv-4", inputs=[tensor3, constant64x32, constant64], outputs=[tensor4])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor5 = gs.Variable("tensor-5", np.float32, None)
node5 = gs.Node("Relu", "ReLU-5", inputs=[tensor4], outputs=[tensor5])
graphNodeList.append(node5)
tensor6 = gs.Variable("tensor-6", np.float32, None)
node6 = gs.Node("MaxPool", "MaxPool-6", inputs=[tensor5], outputs=[tensor6])
node6.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node6)
tensor7 = gs.Variable("tensor-7", np.float32, None)
node7 = gs.Node("Transpose", "Transpose-7", inputs=[tensor6], outputs=[tensor7], attrs=OrderedDict([("perm", [0, 2, 3, 1])]))
graphNodeList.append(node7)
tensor8 = gs.Variable("tensor-8", np.float32, None)
node8 = gs.Node("Reshape", "Reshape-7", inputs=[tensor7, constantM1Comma3136], outputs=[tensor8])
graphNodeList.append(node8)
tensor9 = gs.Variable("tensor-9", np.float32, None)
node9 = gs.Node("MatMul", "MatMul-9", inputs=[tensor8, constant3136x1024], outputs=[tensor9])
graphNodeList.append(node9)
tensor10 = gs.Variable("tensor-10", np.float32, None)
node10 = gs.Node("Add", "Add-10", inputs=[tensor9, constant1024], outputs=[tensor10])
graphNodeList.append(node10)
tensor11 = gs.Variable("tensor-11", np.float32, None)
node11 = gs.Node("Relu", "ReLU-11", inputs=[tensor10], outputs=[tensor11])
graphNodeList.append(node11)
tensor12 = gs.Variable("tensor-12", np.float32, None)
node12 = gs.Node("MatMul", "MatMul-12", inputs=[tensor11, constant1024x10], outputs=[tensor12])
graphNodeList.append(node12)
tensor13 = gs.Variable("tensor-13", np.float32, None)
node13 = gs.Node("Add", "Add-13", inputs=[tensor12, constant10], outputs=[tensor13])
graphNodeList.append(node13)
tensor14 = gs.Variable("tensor-14", np.float32, None)
node14 = gs.Node("Softmax", "Softmax-14", inputs=[tensor13], outputs=[tensor14], attrs=OrderedDict([("axis", 1)]))
graphNodeList.append(node14)
tensor15 = gs.Variable("tensor-15", np.int32, None)
node15 = gs.Node("ArgMax", "ArgMax-15", inputs=[tensor14], outputs=[tensor15], attrs=OrderedDict([("axis", 1), ("keepdims", 0)]))
graphNodeList.append(node15)
graph = gs.Graph(nodes=graphNodeList, inputs=[tensor0], outputs=[tensor15])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), onnxFile)
print("# Traverse the node: ----------------------------------------------------") # traverser by nodes and print information of node, input / output tensor, name of father / son node
for index, node in enumerate(graph.nodes):
print("Node%4d: op=%s, name=%s, attrs=%s" % (index, node.op, node.name, "".join(["{"] + [str(key) + ":" + str(value) + ", " for key, value in node.attrs.items()] + ["}"])))
for jndex, inputTensor in enumerate(node.inputs):
print("\tInTensor %d: %s" % (jndex, inputTensor))
for jndex, outputTensor in enumerate(node.outputs):
print("\tOutTensor %d: %s" % (jndex, outputTensor))
fatherNodeList = []
for i in range(nMaxAdjustNode):
try:
newNode = node.i(i)
fatherNodeList.append(newNode)
except:
break
for jndex, newNode in enumerate(fatherNodeList):
print("\tFatherNode%d: %s" % (jndex, newNode.name))
sonNodeList = []
for i in range(nMaxAdjustNode):
try:
newNode = node.o(i)
sonNodeList.append(newNode)
except:
break
for jndex, newNode in enumerate(sonNodeList):
print("\tSonNode %d: %s" % (jndex, newNode.name))
print("# Traverse the tensor: --------------------------------------------------") # traverser by tensors and print information of tensor, name of producer / consumer node, name of father / son tensor
for index, (name, tensor) in enumerate(graph.tensors().items()):
print("Tensor%4d: name=%s, desc=%s" % (index, name, tensor))
for jndex, inputNode in enumerate(tensor.inputs):
print("\tInNode %d: %s" % (jndex, inputNode.name))
for jndex, outputNode in enumerate(tensor.outputs):
print("\tOutNode %d: %s" % (jndex, outputNode.name))
fatherTensorList = []
for i in range(nMaxAdjustNode):
try:
newTensor = tensor.i(i)
fatherTensorList.append(newTensor)
except:
break
for jndex, newTensor in enumerate(fatherTensorList):
print("\tFatherTensor%d: %s" % (jndex, newTensor))
sonTensorList = []
for i in range(nMaxAdjustNode):
try:
newTensor = tensor.o(i)
sonTensorList.append(newTensor)
except:
break
for jndex, newTensor in enumerate(sonTensorList):
print("\tSonTensor %d: %s" % (jndex, newTensor))
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/05-PrintGraphInformation.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64]) # define tensor (variable in ONNX)
tensor1 = gs.Variable("tensor1", np.float32, None) # type or shape of the intermediate tensors can be None
tensor2 = gs.Variable("tensor2", np.float32, None)
tensor3 = gs.Variable("tensor3", np.float32, None)
constant0 = gs.Constant(name="constant0", values=np.ones(shape=[1, 3, 3, 3], dtype=np.float32)) # define constant tensor
constant1 = gs.Constant(name="constant1", values=np.ones(shape=[1], dtype=np.float32))
node0 = gs.Node("Conv", "myConv", inputs=[tensor0, constant0], outputs=[tensor1]) # defione node
node0.attrs = OrderedDict([["dilations", [1, 1]], ["kernel_shape", [3, 3]], ["pads", [1, 1, 1, 1]], ["strides", [1, 1]]]) # attribution of the node
node1 = gs.Node("Add", "myAdd", inputs=[tensor1, constant1], outputs=[tensor2])
node2 = gs.Node("Relu", "myRelu", inputs=[tensor2], outputs=[tensor3])
graph = gs.Graph(nodes=[node0, node1, node2], inputs=[tensor0], outputs=[tensor3]) # define graph
graph.cleanup().toposort() # clean the graph before saving as ONNX file
onnx.save(gs.export_onnx(graph), "model-01.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/01-CreateModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64])
tensor1 = gs.Variable("tensor1", np.float32, ["B", 3, 64, 64])
tensor2 = gs.Variable("tensor2", np.float32, ["B", 3, 64, 64])
tensor3 = gs.Variable("tensor3", np.float32, ["B", 3, 64, 64])
constant0 = gs.Constant(name="constant0", values=np.ones(shape=[1, 1, 1, 1], dtype=np.float32))
node0 = gs.Node("Identity", "myIdentity0", inputs=[tensor0], outputs=[tensor1])
node1 = gs.Node("Add", "myAdd", inputs=[tensor1, constant0], outputs=[tensor2])
node2 = gs.Node("Identity", "myIdentity1", inputs=[tensor2], outputs=[tensor3])
graph = gs.Graph(nodes=[node0, node1, node2], inputs=[tensor0], outputs=[tensor3])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-08-01.onnx")
del graph
# mark some tensors in original graph as input / output tensors so that isolate a subgraph
graph = gs.import_onnx(onnx.load("model-08-01.onnx"))
for node in graph.nodes:
if node.op == "Add" and node.name == "myAdd":
graph.inputs = [node.inputs[0]]
graph.outputs = [node.outputs[0]]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "model-08-02.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/08-IsolateSubgraph.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
from collections import OrderedDict
from copy import deepcopy
import numpy as np
import onnx
import onnx_graphsurgeon as gs
from polygraphy.backend.onnx.loader import fold_constants
np.random.seed(31193)
onnxFile0 = "model-10.onnx"
onnxFile1 = "model-10-01.onnx"
onnxFile2 = "model-10-02.onnx"
# Constant of 0 dimension
constantS0 = gs.Constant("constantS0", np.array(0, dtype=np.int64))
constantS2 = gs.Constant("constantS2", np.array(2, dtype=np.int64))
constantS3 = gs.Constant("constantS3", np.array(3, dtype=np.int64))
# Constant of 1 dimension integer value, MUST use np.ascontiguousarray, or TensorRT will regard the shape of this Constant as (0) !!!
constant0 = gs.Constant("constant0", np.ascontiguousarray(np.array([0], dtype=np.int64)))
constant1 = gs.Constant("constant1", np.ascontiguousarray(np.array([1], dtype=np.int64)))
# Constant of >1 dimension
constantWeight = gs.Constant("constantWeight", np.ascontiguousarray(np.random.rand(1 * 1 * 3 * 3).astype(np.float32).reshape([1, 1, 3, 3])))
constantBias = gs.Constant("constantBias", np.ascontiguousarray(np.random.rand(1 * 1 * 1 * 1).astype(np.float32).reshape([1, 1, 1, 1])))
constant307200x64 = gs.Constant("constant307200x256", np.ascontiguousarray(np.random.rand(307200 * 64).astype(np.float32).reshape([307200, 64])))
# Tool function
def markGraphOutput(graph, lNode, bMarkOutput=True, bMarkInput=False, lMarkOutput=None, lMarkInput=None, bRemoveOldOutput=True):
# graph: The ONNX graph for edition
# lNode: The list of nodes we want to mark as output
# bMarkOutput: Whether to mark the output tensor(s) of the nodes in the lNode
# bMarkInput: Whether to mark the input tensor(s) of the nodes in the lNode
# lMarkOutput: The index of output tensor(s) of the node are marked as output, only available when len(lNode) == 1
# lMarkInput: The index of input tensor(s) of the node are marked as output, only available when len(lNode) == 1
# bRemoveOldOutput: Whether to remove the original output of the network (cutting the graph to the node we want to mark to save ytime of building)
# In most cases, using the first 4 parameters is enough, for example:
#markGraphOutput(graph, ["/Conv"]) # mark output tensor of the node "/Conv" as output
#markGraphOutput(graph, ["/Conv"], False, True) # mark input tensors of the node "/Conv" (input tensor + weight + bias) as output
#markGraphOutput(graph, ["/TopK"], lMarkOutput=[1]) # mark the second output tensor of the node "/TopK" as output
#markGraphOutput(graph, ["/Conv"], bRemoveOldOutput=False) # mark output tensor of the node "/Conv" as output, and keep the original output of the network
if bRemoveOldOutput:
graph.outputs = []
for node in graph.nodes:
if node.name in lNode:
if bMarkOutput:
if lMarkOutput is None or len(lNode) > 1:
lMarkOutput = range(len(node.outputs))
for index in lMarkOutput:
graph.outputs.append(node.outputs[index])
node.outputs[index].dtype = np.dtype(np.float32)
print("[M] Mark node [%s] output tensor [%s]" % (node.name, node.outputs[index].name))
if bMarkInput:
if lMarkInput is None or len(lNode) > 1:
lMarkInput = range(len(node.inputs))
for index in lMarkInput:
graph.outputs.append(node.inputs[index])
print("[M] Mark node [%s] input tensor [%s]" % (node.name, node.inputs[index].name))
graph.cleanup().toposort()
return len(lNode)
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
tensorName = prefix + "-V-" + str(number) + "-" + nodeType + (("-" + suffix) if len(suffix) > 0 else "")
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=(OrderedDict() if attribution is None else attribution))
graph.nodes.append(node)
return tensor, number + 1
def addNodeMultipleOutput(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtypeList=None, shapeList=None):
# ONLY for the node with multiple tensor!!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtypeList: The list of the data type of the output tensor (optional)
# shapeList: The list of the shape of the output tensor (optional)
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
assert len(dtypeList) == len(shapeList)
outputList = []
for i in range(len(dtypeList)):
tensorName = prefix + "-V-" + str(number) + "-" + nodeType + "-" + str(i) + (("-" + suffix) if len(suffix) > 0 else "")
tensor = gs.Variable(tensorName, dtypeList[i], shapeList[i])
outputList.append(tensor)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=outputList, attrs=(OrderedDict() if attribution is None else attribution))
graph.nodes.append(node)
return outputList, number + 1
# A example of surgery function
def removeAddSub(graph):
scopeName = sys._getframe().f_code.co_name
n = 0
for node in graph.nodes:
if node.op == "Add" and node.o().op == "Sub" and node.inputs[1].values == node.o().inputs[1].values:
index = node.o().o().inputs.index(node.o().outputs[0])
tensor, n = addNode(graph, "Identity", scopeName, n, [node.inputs[0]], None, "", np.dtype(np.float32), node.inputs[0].shape)
node.o().o().inputs[index] = tensor
n += 1
return n
# Create a ONNX file as beginning
graph = gs.Graph()
scopeName = "WILI" # whatever something
n = 0 # a counter to differentiate the names of the nodes
tensorInput = gs.Variable("tensorInput", np.dtype(np.float32), ["B", 1, 480, 640])
attribution = OrderedDict([["dilations", [1, 1]], ["kernel_shape", [3, 3]], ["pads", [1, 1, 1, 1]], ["strides", [1, 1]]])
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorInput, constantWeight], attribution, "", np.dtype(np.float32), ['B', 1, 480, 640])
tensor2, n = addNode(graph, "Add", scopeName, n, [tensor1, constantBias], None, "", np.dtype(np.float32), ['B', 1, 480, 640])
tensor3, n = addNode(graph, "Relu", scopeName, n, [tensor2], None, "", np.dtype(np.float32), ['B', 1, 480, 640])
tensor4, n = addNode(graph, "Add", scopeName, n, [tensor3, constant1], None, "", np.dtype(np.float32), ['B', 1, 480, 640])
tensor5, n = addNode(graph, "Sub", scopeName, n, [tensor4, constant1], None, "", np.dtype(np.float32), ['B', 1, 480, 640])
tensor6, n = addNode(graph, "Shape", scopeName, n, [tensorInput], None, "", np.dtype(np.int64), [4]) # value:(B,1,480, 640)
tensorBScalar, n = addNode(graph, "Gather", scopeName, n, [tensor6, constantS0], OrderedDict([('axis', 0)]), "tensorBScalar", np.dtype(np.int64), []) # value: (B)
tensorB, n = addNode(graph, "Unsqueeze", scopeName, n, [tensorBScalar, constant0], None, "tensorB", np.dtype(np.int64), [1]) # value: (B)
tensorHScalar, n = addNode(graph, "Gather", scopeName, n, [tensor6, constantS2], OrderedDict([('axis', 0)]), "tensorHScalar", np.dtype(np.int64), []) # value: (480)
tensorH, n = addNode(graph, "Unsqueeze", scopeName, n, [tensorHScalar, constant0], None, "tensorH", np.dtype(np.int64), [1]) # value: (480)
tensorWScalar, n = addNode(graph, "Gather", scopeName, n, [tensor6, constantS3], OrderedDict([('axis', 0)]), "tensorWScalar", np.dtype(np.int64), []) # value: (640)
tensorW, n = addNode(graph, "Unsqueeze", scopeName, n, [tensorWScalar, constant0], None, "tensorW", np.dtype(np.int64), [1]) # value: (640)
tensorHW, n = addNode(graph, "Mul", scopeName, n, [tensorH, tensorW], None, "tensorHW", np.dtype(np.int64), [1]) # value: (480*640)
tensorBC1CHW, n = addNode(graph, "Concat", scopeName, n, [tensorB, constant1, tensorHW], OrderedDict([('axis', 0)]), "tensorBC1CHW", np.dtype(np.int64), [3]) # value: (B, 1, 480*640)
tensor7, n = addNode(graph, "Reshape", scopeName, n, [tensor5, tensorBC1CHW], None, "", np.dtype(np.float32), ["B", 1, 480 * 640])
tensor8, n = addNode(graph, "Squeeze", scopeName, n, [tensor7, constant1], None, "", np.dtype(np.float32), ["B", 480 * 640])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant307200x64], None, "", np.dtype(np.float32), ["B", 64])
graph.inputs = [tensorInput]
graph.outputs = [tensor9]
graph.cleanup().toposort()
graph.opset = 17 # node might not be supported by some old opset. For example, the shape inference of onnxruntime in polygraphy will fail if we use opset==11
# Save the model as ONNX file
# + "save_as_external_data" is used to seperate the weight and structure of the model, making it easier to copy if we are just interested in the structure. The saving process will fail without the switch if size of the model is larger than 2GiB.
# + If the model is small, "onnx.save(gs.export_onnx(graph), onnxFile0)" is enough
# + "all_tensors_to_one_file" is used to reduce the number of weight files
# + There must no directory prefix in "location" parameter
# + Clean the target weight files before saving, or the weight files will be appended to the old ones
os.system("rm -rf " + onnxFile0 + ".weight")
onnx.save(gs.export_onnx(graph), onnxFile0, save_as_external_data=True, all_tensors_to_one_file=True, location=onnxFile0.split('/')[-1] + ".weight")
# Load the model
# + If the size of the model is larger than 2GiB, laoding process must be divided into two steps: loading the structure firstly and then the weight
# + If the model is small, "onnxModel = onnx.load(onnxFile0)" is enough
onnxModel = onnx.load(onnxFile0, load_external_data=False)
onnx.load_external_data_for_model(onnxModel, ".")
# Do constant folding by polygraphy (and save it as visualization in this example)
# Sometimes this step should be skiped because some graph is not originally supported by polygraphy and TensorRT, so some manual graph surgery must be done before polygraphy take the model in this occasion
onnxModel = fold_constants(onnxModel, allow_onnxruntime_shape_inference=True)
onnx.save(onnxModel, onnxFile1, save_as_external_data=True, all_tensors_to_one_file=True, location=onnxFile1.split('/')[-1] + ".weight")
# Continue to do graph surgery by onnx-graphsurgeon
graph = gs.import_onnx(onnxModel)
#graph = gs.import_onnx(onnx.shape_inference.infer_shapes(onnxModel)) # This API can be used to infer the shape of each tensor if size of the model is less than 2GiB and polygraphy is not used before
# Print information of ONNX file before graph surgery
print("[M] %-16s: %5d Nodes, %5d tensors" % (onnxFile0, len(graph.nodes), len(graph.tensors().keys())))
# Do graph surgery and print how many subgraph is edited
print("[M] %4d RemoveAddSub" % removeAddSub(graph))
graph.cleanup().toposort()
# Print information of ONNX file after graph surgery
print("[M] %-16s: %5d Nodes, %5d tensors" % (onnxFile2, len(graph.nodes), len(graph.tensors().keys())))
# Print information of input / output tensor
for i, tensor in enumerate(graph.inputs):
print("[M] Input [%2d]: %s, %s, %s" % (i, tensor.shape, tensor.dtype, tensor.name))
for i, tensor in enumerate(graph.outputs):
print("[M] Output[%2d]: %s, %s, %s" % (i, tensor.shape, tensor.dtype, tensor.name))
# Do another constant folding by polygraphy and save it to ensure the model is supported by TensorRT
onnxModel = fold_constants(gs.export_onnx(graph), allow_onnxruntime_shape_inference=True)
onnx.save(onnxModel, onnxFile2, save_as_external_data=True, all_tensors_to_one_file=True, location=onnxFile2.split('/')[-1] + ".weight")
print("Finish graph surgery!")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/10-AdvanceAPI.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
from copy import deepcopy
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def markGraphOutput(graph, lNode, bMarkOutput=True, bMarkInput=False, lMarkOutput=None, lMarkInput=None, bRemoveOldOutput=True):
# graph: The ONNX graph for edition
# lNode: The list of nodes we want to mark as output
# bMarkOutput: Whether to mark the output tensor(s) of the nodes in the lNode
# bMarkInput: Whether to mark the input tensor(s) of the nodes in the lNode
# lMarkOutput: The index of output tensor(s) of the node are marked as output, only available when len(lNode) == 1
# lMarkInput: The index of input tensor(s) of the node are marked as output, only available when len(lNode) == 1
# bRemoveOldOutput: Whether to remove the original output of the network (cutting the graph to the node we want to mark to save ytime of building)
# In most cases, using the first 4 parameters is enough, for example:
#markGraphOutput(graph, ["/Conv"]) # mark output tensor of the node "/Conv" as output
#markGraphOutput(graph, ["/Conv"], False, True) # mark input tensors of the node "/Conv" (input tensor + weight + bias) as output
#markGraphOutput(graph, ["/TopK"], lMarkOutput=[1]) # mark the second output tensor of the node "/TopK" as output
#markGraphOutput(graph, ["/Conv"], bRemoveOldOutput=False) # mark output tensor of the node "/Conv" as output, and keep the original output of the network
if bRemoveOldOutput:
graph.outputs = []
for node in graph.nodes:
if node.name in lNode:
if bMarkOutput:
if lMarkOutput is None or len(lNode) > 1:
lMarkOutput = range(len(node.outputs))
for index in lMarkOutput:
graph.outputs.append(node.outputs[index])
print("Mark node [%s] output tensor [%s]" % (node.name, node.outputs[index].name))
if bMarkInput:
if lMarkInput is None or len(lNode) > 1:
lMarkInput = range(len(node.inputs))
for index in lMarkInput:
graph.outputs.append(node.inputs[index])
print("Mark node [%s] input tensor [%s]" % (node.name, node.inputs[index].name))
graph.cleanup().toposort()
return len(lNode)
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/surgeryCommon.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx_graphsurgeon as gs
# the same model as 08-Tool/OnnxGraphSurgeon/01-CreateModel
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64])
tensor1 = gs.Variable("tensor1", np.float32, ["B", 1, 64, 64])
tensor2 = gs.Variable("tensor2", np.float32, None)
tensor3 = gs.Variable("tensor3", np.float32, None)
constant0 = gs.Constant(name="constant0", values=np.ones(shape=[1, 3, 3, 3], dtype=np.float32))
constant1 = gs.Constant(name="constant1", values=np.ones(shape=[1], dtype=np.float32))
node0 = gs.Node("Conv", "myConv", inputs=[tensor0, constant0], outputs=[tensor1])
node0.attrs = OrderedDict([
["dilations", [1, 1]],
["kernel_shape", [3, 3]],
["pads", [1, 1, 1, 1]],
["strides", [1, 1]],
])
node1 = gs.Node("Add", "myAdd", inputs=[tensor1, constant1], outputs=[tensor2])
node2 = gs.Node("Relu", "myRelu", inputs=[tensor2], outputs=[tensor3])
graph = gs.Graph(nodes=[node0, node1, node2], inputs=[tensor0], outputs=[tensor3])
print("graph.DEFAULT_OPSET = %s" % graph.DEFAULT_OPSET) # equivalent to graph.opset
print("graph.GLOBAL_FUNC_MAP = %s" % graph.GLOBAL_FUNC_MAP)
print("graph.OPSET_FUNC_MAP = %s" % graph.OPSET_FUNC_MAP)
print("graph._generate_name('myGraph') = %s" % graph._generate_name("myGraph"))
print("graph._local_tensors() = %s" % graph._local_tensors()) # equivalent to dict(graph.tensors())
print("graph._foreign_tensors() = %s" % graph._foreign_tensors())
#print("graph._get_node_id() = %s" % graph._get_node_id(node0))
#print("graph._get_used_node_ids() = %s" % graph._get_used_node_ids(node0))
print(graph.name)
print(graph.opset)
print(graph.doc_string)
print(graph.import_domains)
print(graph.producer_name)
print(graph.producer_version)
print(graph.inputs)
print(graph.outputs)
print(graph.nodes)
print(graph.tensors())
print(graph.graph.name_idx)
print(graph.node_ids())
graph2 = graph.copy
graph.layer(inputs=[tensor0, constant0], outputs=[tensor1], op='MyOp') # add nodes into graph
"""
Member of IBuilder:
++++ shown above
---- not shown above
[no prefix] others
++++DEFAULT_OPSET
++++GLOBAL_FUNC_MAP
++++OPSET_FUNC_MAP
----__class__
__delattr__
__dict__
__dir__
__doc__
__eq__
__format__
__ge__
__getattr__
__getattribute__
__gt__
__hash__
__init__
__init_subclass__
__le__
__lt__
__module__
__name__
__ne__
__new__
__reduce__
__reduce_ex__
__repr__
__setattr__
__sizeof__
__str__
__subclasshook__
__weakref__
++++_foreign_tensors
++++_generate_name
++++_get_node_id
++++_get_used_node_ids
++++_local_tensors
----cleanup refer to 08-Tool/OnnxGraphSurgeon/06-Fold.py
++++copy
++++doc_string
----fold_constants refer to 08-Tool/OnnxGraphSurgeon/06-Fold.py
++++import_domains
++++inputs
++++layer
++++name
++++name_idx
++++node_ids
++++nodes
++++opset
++++outputs
++++producer_name
++++producer_version
----register refer to 08-Tool/OnnxGraphSurgeon/09-BuildModelWithAPI.py
++++tensors
----toposort refer to 08-Tool/OnnxGraphSurgeon/06-Fold.py
"""
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/API/graphAPI.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx_graphsurgeon as gs
# the same model as 08-Tool/OnnxGraphSurgeon/01-CreateModel
tensor0 = gs.Variable("tensor0", np.float32, ["B", 3, 64, 64])
tensor1 = gs.Variable("tensor1", np.float32, ["B", 1, 64, 64])
tensor2 = gs.Variable("tensor2", np.float32, None)
tensor3 = gs.Variable("tensor3", np.float32, None)
constant0 = gs.Constant(name="constant0", values=np.ones(shape=[1, 3, 3, 3], dtype=np.float32))
constant1 = gs.Constant(name="constant1", values=np.ones(shape=[1], dtype=np.float32))
node0 = gs.Node("Conv", "myConv", inputs=[tensor0, constant0], outputs=[tensor1])
node0.attrs = OrderedDict([
["dilations", [1, 1]],
["kernel_shape", [3, 3]],
["pads", [1, 1, 1, 1]],
["strides", [1, 1]],
])
node1 = gs.Node("Add", "myAdd", inputs=[tensor1, constant1], outputs=[tensor2])
node2 = gs.Node("Relu", "myRelu", inputs=[tensor2], outputs=[tensor3])
graph = gs.Graph(nodes=[node0, node1, node2], inputs=[tensor0], outputs=[tensor3])
"""
Member of IBuilder:
++++ shown above
---- not shown above
[no prefix] others
Constant
++++Graph
++++Node
OnnxGraphSurgeonException
Tensor
++++Variable
__builtins__
__cached__
__doc__
__file__
__loader__
__name__
__package__
__path__
__spec__
__version__
export_onnx
exporters
import_onnx
importers
ir
logger
util']
"""
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/OnnxGraphSurgeon/API/gsAPI-TODO.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
onnxFile = "./model.onnx"
tensor0 = gs.Variable("tensor-0", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
graphNodeList = []
tensor1 = gs.Variable("tensor-1", np.float32, None)
node1 = gs.Node("Conv", "Conv-1", inputs=[tensor0, constant32x1, constant32], outputs=[tensor1])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor2 = gs.Variable("tensor-2", np.float32, None)
node2 = gs.Node("Relu", "ReLU-2", inputs=[tensor1], outputs=[tensor2])
graphNodeList.append(node2)
tensor3 = gs.Variable("tensor-3", np.float32, None)
node3 = gs.Node("MaxPool", "MaxPool-3", inputs=[tensor2], outputs=[tensor3])
node3.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node3)
tensor4 = gs.Variable("tensor-4", np.float32, None)
node1 = gs.Node("Conv", "Conv-4", inputs=[tensor3, constant64x32, constant64], outputs=[tensor4])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor5 = gs.Variable("tensor-5", np.float32, None)
node5 = gs.Node("Relu", "ReLU-5", inputs=[tensor4], outputs=[tensor5])
graphNodeList.append(node5)
tensor6 = gs.Variable("tensor-6", np.float32, None)
node6 = gs.Node("MaxPool", "MaxPool-6", inputs=[tensor5], outputs=[tensor6])
node6.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node6)
tensor7 = gs.Variable("tensor-7", np.float32, None)
node7 = gs.Node("Transpose", "Transpose-7", inputs=[tensor6], outputs=[tensor7], attrs=OrderedDict([("perm", [0, 2, 3, 1])]))
graphNodeList.append(node7)
tensor8 = gs.Variable("tensor-8", np.float32, None)
node8 = gs.Node("Reshape", "Reshape-7", inputs=[tensor7, constantM1Comma3136], outputs=[tensor8])
graphNodeList.append(node8)
tensor9 = gs.Variable("tensor-9", np.float32, None)
node9 = gs.Node("MatMul", "MatMul-9", inputs=[tensor8, constant3136x1024], outputs=[tensor9])
graphNodeList.append(node9)
tensor10 = gs.Variable("tensor-10", np.float32, None)
node10 = gs.Node("Add", "Add-10", inputs=[tensor9, constant1024], outputs=[tensor10])
graphNodeList.append(node10)
tensor11 = gs.Variable("tensor-11", np.float32, None)
node11 = gs.Node("Relu", "ReLU-11", inputs=[tensor10], outputs=[tensor11])
graphNodeList.append(node11)
tensor12 = gs.Variable("tensor-12", np.float32, None)
node12 = gs.Node("MatMul", "MatMul-12", inputs=[tensor11, constant1024x10], outputs=[tensor12])
graphNodeList.append(node12)
tensor13 = gs.Variable("tensor-13", np.float32, None)
node13 = gs.Node("Add", "Add-13", inputs=[tensor12, constant10], outputs=[tensor13])
graphNodeList.append(node13)
"""
# we do not need Softmax or ArgMax here because we want output tensor of data type float32
tensor14 = gs.Variable("tensor-14", np.float32, None)
node14 = gs.Node("Softmax", "Softmax-14", inputs=[tensor13], outputs=[tensor14], attrs=OrderedDict([("axis", 1)]))
graphNodeList.append(node14)
tensor15 = gs.Variable("tensor-15", np.int64, None)
node15 = gs.Node("ArgMax", "ArgMax-15", inputs=[tensor14], outputs=[tensor15], attrs=OrderedDict([("axis", 1), ("keepdims", 0)]))
graphNodeList.append(node15)
"""
graph = gs.Graph(nodes=graphNodeList, inputs=[tensor0], outputs=[tensor13])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), onnxFile)
print("Succeeded create %s" % onnxFile)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/FP16FineTuning/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
os.chdir("/w/gitlab/tensorrt-cookbook/08-Tool/FP16FineTuning")
import numpy as np
import onnx
import onnxruntime
onnxFile = "model.onnx"
np.random.seed(31193)
shape = [2,1,28,28]
print("Onnxruntime using device: %s" % onnxruntime.get_device())
session = onnxruntime.InferenceSession(onnxFile)
ioData = {}
for i, inputTensor in enumerate(session.get_inputs()):
print("Input %2d: %s, %s, %s" % (i, inputTensor.name, inputTensor.shape, inputTensor.type))
if inputTensor.type == "tensor(float)":
dataType = np.float32
if inputTensor.type == "tensor(int32)":
dataType = np.int32
data = np.random.rand(np.prod(shape)).astype(dataType).reshape(shape)
ioData[inputTensor.name] = data
for i, outputTensor in enumerate(session.get_outputs()):
print("Output%2d: %s, %s, %s" % (i, outputTensor.name, outputTensor.shape, outputTensor.type))
outputList = session.run(None, ioData)
for i, outputTensor in enumerate(session.get_outputs()):
print(outputList[i])
ioData[outputTensor.name] = outputList[i]
np.savez("IOData.npz", **ioData)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/FP16FineTuning/getReferenceInputOutput.py |
import ctypes
import os
from copy import deepcopy
from datetime import datetime as dt
import numpy as np
import tensorrt as trt
from cuda import cudart
from tqdm import tqdm
os.chdir("/w/gitlab/tensorrt-cookbook/08-Tool/FP16FineTuning") # fro debug
# Customized variable ----------------------------------------------------------
onnxFile = "model.onnx" # required
pluginFileList = [] # optional
ioDataFile = "IOData.npz" # optional
targetAccuracy = 5 # optional
reportFile = "report.txt"
# Other cariable ---------------------------------------------------------------
trtFile = "model.plan"
timingCacheFile = "model.timingCache"
bPrintNetwork = False
bUseOnnxruntime = False
bDrawPlot = False
excludeList = {"SHAPE", "PLUGIN", "PLUGIN_V2", "CONSTANT", "ASSERTION", "SHUFFLE", "IDENTITY", "CONCATENATION", "GATHER", "SLICE", "RESIZE", "UNARY", "CONDITION", "CONDITIONAL_INPUT", "CONDITIONAL_OUTPUT", "FILL", "NON_ZERO", "ONE_HOT"}
resultList = []
np.random.seed(31193)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
# preparation work -------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
if not os.path.exists(onnxFile):
print("Failed finding %s" % onnxFile)
exit()
if len(pluginFileList) > 0:
bUseOnnxruntime = False
trt.init_libnvinfer_plugins(logger, '')
for soFile in pluginFileList:
if not os.path.exists(soFile):
print("Failed finding %s" % soFile)
exit()
ctypes.cdll.LoadLibrary(soFile)
# parse ONNX file to get metadata of network -----------------------------------
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, logger)
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing %s" % onnxFile)
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing %s" % onnxFile)
layerList = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layerList.append([layer.name, layer.type.name])
if bPrintNetwork:
print("%4d->%s,in=%d,out=%d,%s" % (i, str(layer.type)[10:], layer.num_inputs, layer.num_outputs, layer.name))
for j in range(layer.num_inputs):
tensor = layer.get_input(j)
print("\tInput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
for j in range(layer.num_outputs):
tensor = layer.get_output(j)
print("\tOutput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
# preare data for inference ----------------------------------------------------
dataMap = {}
if ioDataFile != "": # use IO data from file and create shape list from
ioData = np.load(ioDataFile)
for key, value in ioData.items():
dataMap[key] = value
else: # use random input data
for i in range(network.num_inputs):
inputTensor = network.get_input(i)
shape = [x if x != -1 else 1 for x in inputTensor.shape]
dataMap[inputTensor.name] = np.random.rand(np.prod(shape)).astype(trt.nptype(inputTensor.dtype)).reshape(shape)
# Main process -----------------------------------------------------------------
def run(bFP32, layerNameListInFP32=[]):
#print("%s, Build engine of %s: %s" % (dt.now(), ("FP32" if bFP32 else "FP16"), [x[0] for x in layerNameListInFP32])) # for debug
command = "trtexec --onnx=%s --useSpinWait --noDataTransfers" % onnxFile
command += " " + "--saveEngine=%s" % trtFile
#command += " " + "--verbose" # for debug
if not bFP32:
command += " " + "--fp16" + " "
if len(layerNameListInFP32) > 0:
command += " " + "--precisionConstraints=prefer"
for layerName, layerType in layerNameListInFP32:
if layerType not in excludeList:
command += " " + "--layerPrecisions=%s:fp32" % layerName
else:
#print("Skip Layer %s, Type = %s" % (layerName, layerType))
return
command += " " + "2>/dev/null"
output = os.popen(command)
time = "+inf"
for line in output.readlines():
#print(line) # for debug
if "[I] GPU Compute Time" in line:
time = float(line.split("ms")[3].split("=")[1])
with open(trtFile, "rb") as f:
engineString = f.read()
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) # create inference Engine using Runtime
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
for key, value in dataMap.items():
if engine.get_tensor_mode(key) == trt.TensorIOMode.INPUT:
context.set_input_shape(key, value.shape)
#for i in range(nIO): # for debug
# print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
for i in range(nInput):
bufferH.append(np.ascontiguousarray(dataMap[lTensorName[i]]))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
if bFP32:
for i in range(nInput, nIO):
dataMap[lTensorName[i]] = bufferH[i]
else:
maxErrorList = []
mediumErrorList = []
for i in range(nInput, nIO):
a = bufferH[i]
b = dataMap[lTensorName[i]]
maxErrorList.append(np.max(np.abs(a - b)))
mediumErrorList.append(np.median(np.abs(a - b)))
resultList.append([time, maxErrorList, mediumErrorList, layerNameListInFP32])
for b in bufferD: # free the GPU memory buffer after all work
cudart.cudaFree(b)
return
# Build model in FP32 mode
run(True)
# Build model in FP16 mode
run(False)
for layer in tqdm(layerList):
run(False, [layer])
print(resultList)
resultList = sorted(resultList, key=(lambda x: x[1][0])) # sort by max absolute error
with open(reportFile, "w") as ff:
for line in resultList:
ff.write(str(line))
ff.write("\n")
if targetAccuracy > 0:
n = np.argmin(np.cumsum([x[1][0] for x in resultList]) >= resultList[-1][1][0] - targetAccuracy)
for i in range(n):
print(resultList[i])
# double check
#run(False, None)
if bDrawPlot:
from matplotlib import pyplot as plt
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/FP16FineTuning/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
# ModelB -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
n = 0
scopeName = "B"
tensor1, n = addNode(graph, "AddScalar", scopeName, n, [tensorX], OrderedDict([["scalar", 1.0]]), "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor1]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelB.onnx")
print("Succeeded create %s" % "modelB.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/trtexec/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import tensorrt as trt
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, 28, 28])
profile.set_shape(inputTensor.name, [1, 1, 28, 28], [4, 1, 28, 28], [16, 1, 28, 28])
config.add_optimization_profile(profile)
w = np.random.rand(32, 1, 5, 5).astype(np.float32).reshape(-1)
b = np.random.rand(32).astype(np.float32).reshape(-1)
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], w, b)
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.random.rand(64, 32, 5, 5).astype(np.float32).reshape(-1)
b = np.random.rand(64).astype(np.float32).reshape(-1)
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], w, b)
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.first_transpose = (0, 2, 3, 1)
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.random.rand(64 * 7 * 7, 1024).astype(np.float32)
b = np.random.rand(1, 1024).astype(np.float32)
_7 = network.add_constant(w.shape, trt.Weights(np.ascontiguousarray(w)))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(np.ascontiguousarray(b)))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.random.rand(1024, 10).astype(np.float32)
b = np.random.rand(1, 10).astype(np.float32)
_12 = network.add_constant(w.shape, trt.Weights(np.ascontiguousarray(w)))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(np.ascontiguousarray(b)))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
# Core code of Network Printer
for i in range(network.num_layers):
layer = network.get_layer(i)
print("%4d->%s,in=%d,out=%d,%s" % (i, str(layer.type)[10:], layer.num_inputs, layer.num_outputs, layer.name))
for j in range(layer.num_inputs):
tensor = layer.get_input(j)
print("\tInput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
for j in range(layer.num_outputs):
tensor = layer.get_output(j)
print("\tOutput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name))
#engineString = builder.build_serialized_network(network, config)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/NetworkPrinter/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
# ModelB -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
n = 0
scopeName = "B"
tensor1, n = addNode(graph, "Identity", scopeName, n, [tensorX], None, "", np.float32, ["B"])
tensor2, n = addNode(graph, "UnknownNode1", scopeName, n, [tensor1], None, "", np.float32, ["B"])
tensor3, n = addNode(graph, "Identity", scopeName, n, [tensor2], None, "", np.float32, ["B"])
tensor4, n = addNode(graph, "UnknownNode2", scopeName, n, [tensor3], None, "", np.float32, ["B"])
tensor5, n = addNode(graph, "Identity", scopeName, n, [tensor4], None, "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor5]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelB.onnx")
print("Succeeded create %s" % "modelB.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/DebugExample/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
# ModelB -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
n = 0
scopeName = "B"
tensor1, n = addNode(graph, "Identity", scopeName, n, [tensorX], None, "", np.float32, ["B"])
tensor2, n = addNode(graph, "UnknownNode", scopeName, n, [tensor1], None, "", np.float32, ["B"])
tensor3, n = addNode(graph, "Identity", scopeName, n, [tensor2], None, "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor3]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelB.onnx")
print("Succeeded create %s" % "modelB.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/InspectExample/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
# ModelB -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
n = 0
scopeName = "B"
tensor1, n = addNode(graph, "AddScalar", scopeName, n, [tensorX], OrderedDict([["scalar", 1.0]]), "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor1]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelB.onnx")
print("Succeeded create %s" % "modelB.onnx")
# ModelC -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
constant0 = gs.Constant("constant0", np.ascontiguousarray(np.zeros([1], dtype=np.float32)))
n = 0
scopeName = "C"
tensor1, n = addNode(graph, "Div", scopeName, n, [tensorX, constant0], None, "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor1]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelC.onnx")
print("Succeeded create %s" % "modelC.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/RunExample/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
onnxFile = "./model.onnx"
tensor0 = gs.Variable("tensor-0", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
graphNodeList = []
tensor1 = gs.Variable("tensor-1", np.float32, None)
node1 = gs.Node("Conv", "Conv-1", inputs=[tensor0, constant32x1, constant32], outputs=[tensor1])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor2 = gs.Variable("tensor-2", np.float32, None)
node2 = gs.Node("Relu", "ReLU-2", inputs=[tensor1], outputs=[tensor2])
graphNodeList.append(node2)
tensor3 = gs.Variable("tensor-3", np.float32, None)
node3 = gs.Node("MaxPool", "MaxPool-3", inputs=[tensor2], outputs=[tensor3])
node3.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node3)
tensor4 = gs.Variable("tensor-4", np.float32, None)
node1 = gs.Node("Conv", "Conv-4", inputs=[tensor3, constant64x32, constant64], outputs=[tensor4])
node1.attrs = OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]])
graphNodeList.append(node1)
tensor5 = gs.Variable("tensor-5", np.float32, None)
node5 = gs.Node("Relu", "ReLU-5", inputs=[tensor4], outputs=[tensor5])
graphNodeList.append(node5)
tensor6 = gs.Variable("tensor-6", np.float32, None)
node6 = gs.Node("MaxPool", "MaxPool-6", inputs=[tensor5], outputs=[tensor6])
node6.attrs = OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]])
graphNodeList.append(node6)
tensor7 = gs.Variable("tensor-7", np.float32, None)
node7 = gs.Node("Transpose", "Transpose-7", inputs=[tensor6], outputs=[tensor7], attrs=OrderedDict([("perm", [0, 2, 3, 1])]))
graphNodeList.append(node7)
tensor8 = gs.Variable("tensor-8", np.float32, None)
node8 = gs.Node("Reshape", "Reshape-7", inputs=[tensor7, constantM1Comma3136], outputs=[tensor8])
graphNodeList.append(node8)
tensor9 = gs.Variable("tensor-9", np.float32, None)
node9 = gs.Node("MatMul", "MatMul-9", inputs=[tensor8, constant3136x1024], outputs=[tensor9])
graphNodeList.append(node9)
tensor10 = gs.Variable("tensor-10", np.float32, None)
node10 = gs.Node("Add", "Add-10", inputs=[tensor9, constant1024], outputs=[tensor10])
graphNodeList.append(node10)
tensor11 = gs.Variable("tensor-11", np.float32, None)
node11 = gs.Node("Relu", "ReLU-11", inputs=[tensor10], outputs=[tensor11])
graphNodeList.append(node11)
tensor12 = gs.Variable("tensor-12", np.float32, None)
node12 = gs.Node("MatMul", "MatMul-12", inputs=[tensor11, constant1024x10], outputs=[tensor12])
graphNodeList.append(node12)
tensor13 = gs.Variable("tensor-13", np.float32, None)
node13 = gs.Node("Add", "Add-13", inputs=[tensor12, constant10], outputs=[tensor13])
graphNodeList.append(node13)
tensor14 = gs.Variable("tensor-14", np.float32, None)
node14 = gs.Node("Softmax", "Softmax-14", inputs=[tensor13], outputs=[tensor14], attrs=OrderedDict([("axis", 1)]))
graphNodeList.append(node14)
tensor15 = gs.Variable("tensor-15", np.int64, None)
node15 = gs.Node("ArgMax", "ArgMax-15", inputs=[tensor14], outputs=[tensor15], attrs=OrderedDict([("axis", 1), ("keepdims", 0)]))
graphNodeList.append(node15)
graph = gs.Graph(nodes=graphNodeList, inputs=[tensor0], outputs=[tensor15])
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), onnxFile)
print("Succeeded create %s" % onnxFile)
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/TemplateExample/getOnnxModel.py |
#!/usr/bin/env python3
# Template auto-generated by polygraphy [v0.33.0] on 10/09/22 at 09:13:18
# Generation Command: /opt/conda/bin/polygraphy template trt-network model.onnx --output modifyNetwork.py
# Creates a TensorRT Network using the Network API.
import tensorrt as trt
from polygraphy import func
from polygraphy.backend.trt import NetworkFromOnnxPath
# Loaders
parse_network_from_onnx = NetworkFromOnnxPath('/work/gitlab/tensorrt-cookbook/08-Tool/Polygraphy/templateExample/model.onnx')
@func.extend(parse_network_from_onnx)
def load_network(builder, network, parser):
pass # TODO: Set up the network here. This function should not return anything.
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/TemplateExample/modifyNetwork.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
batchName = 12 # Static Shape mode
#batchName = "B" # Dynamic Shape mode
tensorX = gs.Variable("tensorX", np.float32, [batchName, 2, 3, 4])
constant0C1 = gs.Constant("constant0C1", np.ascontiguousarray(np.array([0, 1], dtype=np.int64)))
constant2C3 = gs.Constant("constant2C3", np.ascontiguousarray(np.array([2, 3], dtype=np.int64)))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Shape", scopeName, n, [tensorX], None, "", np.int64, [4])
tensor2, n = addNode(graph, "ReduceProd", scopeName, n, [tensor1], OrderedDict([["axes", [0]], ["keepdims", 1]]), "", np.int64, [1])
tensor3, n = addNode(graph, "Reshape", scopeName, n, [tensorX, tensor2], None, "", np.float32, ["%s*24" % str(batchName)])
tensor4, n = addNode(graph, "Gather", scopeName, n, [tensor1, constant0C1], None, "", np.int64, [2])
tensor5, n = addNode(graph, "Gather", scopeName, n, [tensor1, constant2C3], None, "", np.int64, [2])
tensor6, n = addNode(graph, "ReduceProd", scopeName, n, [tensor5], OrderedDict([["axes", [0]], ["keepdims", 1]]), "", np.int64, [1])
tensor7, n = addNode(graph, "Concat", scopeName, n, [tensor4, tensor6], OrderedDict([["axis", 0]]), "", np.int64, [4])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensorX, tensor7], None, "", np.float32, [batchName, 2, 12])
graph.inputs = [tensorX]
graph.outputs = [tensor3, tensor8]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/SurgeonExample/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/DataExample/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def addNode(graph, nodeType, prefix, number, inputList, attribution=None, suffix="", dtype=None, shape=None):
# ONLY for the node with one output tensor!
# graph: The ONNX graph for edition
# nodeType: The type of the node to add, for example, "Concat"
# prefix: Optimization type, for example "RemoveLoop"
# number: An incremental number to prevent duplicate names
# inputlist: The list of input tensors for the node
# attribution: The attribution dictionary of the node, for example, OrderedDict([('axis',0)])
# suffix: Extra name for marking the tensor, for example "bTensor"
# dtype: The data type of the output tensor (optional)
# shape: The shape of the output tensor (optional)
tensorName = prefix + "-V-" + str(number) + "-" + nodeType
nodeName = prefix + "-N-" + str(number) + "-" + nodeType
if attribution == None:
attribution = OrderedDict()
if len(suffix) > 0:
tensorName += "-" + suffix
tensor = gs.Variable(tensorName, dtype, shape)
node = gs.Node(nodeType, nodeName, inputs=inputList, outputs=[tensor], attrs=attribution)
graph.nodes.append(node)
return tensor, number + 1
# ModelA -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B", 1, 28, 28])
constant32x1 = gs.Constant("constant32x1", np.ascontiguousarray(np.random.rand(32, 1, 5, 5).reshape(32, 1, 5, 5).astype(np.float32) * 2 - 1))
constant32 = gs.Constant("constant32", np.ascontiguousarray(np.random.rand(32).reshape(32).astype(np.float32) * 2 - 1))
constant64x32 = gs.Constant("constant64x32", np.ascontiguousarray(np.random.rand(64, 32, 5, 5).reshape(64, 32, 5, 5).astype(np.float32) * 2 - 1))
constant64 = gs.Constant("constant64", np.ascontiguousarray(np.random.rand(64).reshape(64).astype(np.float32) * 2 - 1))
constantM1Comma3136 = gs.Constant("constantM1Comma3136", np.ascontiguousarray(np.array([-1, 7 * 7 * 64], dtype=np.int64)))
constant3136x1024 = gs.Constant("constant3136x1024", np.ascontiguousarray(np.random.rand(3136, 1024).reshape(3136, 1024).astype(np.float32) * 2 - 1))
constant1024 = gs.Constant("constant1024", np.ascontiguousarray(np.random.rand(1024).reshape(1024).astype(np.float32) * 2 - 1))
constant1024x10 = gs.Constant("constant1024x10", np.ascontiguousarray(np.random.rand(1024, 10).reshape(1024, 10).astype(np.float32) * 2 - 1))
constant10 = gs.Constant("constant10", np.ascontiguousarray(np.random.rand(10).reshape(10).astype(np.float32) * 2 - 1))
n = 0
scopeName = "A"
tensor1, n = addNode(graph, "Conv", scopeName, n, [tensorX, constant32x1, constant32], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 32, 28, 28])
tensor2, n = addNode(graph, "Relu", scopeName, n, [tensor1], None, "", np.float32, ["B", 32, 28, 28])
tensor3, n = addNode(graph, "MaxPool", scopeName, n, [tensor2], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 32, 14, 14])
tensor4, n = addNode(graph, "Conv", scopeName, n, [tensor3, constant64x32, constant64], OrderedDict([["kernel_shape", [5, 5]], ["pads", [2, 2, 2, 2]]]), "", np.float32, ["B", 64, 14, 14])
tensor5, n = addNode(graph, "Relu", scopeName, n, [tensor4], None, "", np.float32, ["B", 64, 14, 14])
tensor6, n = addNode(graph, "MaxPool", scopeName, n, [tensor5], OrderedDict([["kernel_shape", [2, 2]], ["pads", [0, 0, 0, 0]], ["strides", [2, 2]]]), "", np.float32, ["B", 64, 7, 7])
tensor7, n = addNode(graph, "Transpose", scopeName, n, [tensor6], OrderedDict([["perm", [0, 2, 3, 1]]]), "", np.float32, ["B", 7, 7, 64])
tensor8, n = addNode(graph, "Reshape", scopeName, n, [tensor7, constantM1Comma3136], None, "", np.float32, ["B", 3136])
tensor9, n = addNode(graph, "MatMul", scopeName, n, [tensor8, constant3136x1024], None, "", np.float32, ["B", 1024])
tensor10, n = addNode(graph, "Add", scopeName, n, [tensor9, constant1024], None, "", np.float32, ["B", 1024])
tensor11, n = addNode(graph, "Relu", scopeName, n, [tensor10], None, "", np.float32, ["B", 1024])
tensor12, n = addNode(graph, "MatMul", scopeName, n, [tensor11, constant1024x10], None, "", np.float32, ["B", 10])
tensor13, n = addNode(graph, "Add", scopeName, n, [tensor12, constant10], None, "", np.float32, ["B", 10])
tensor14, n = addNode(graph, "Softmax", scopeName, n, [tensor13], OrderedDict([["axis", 1]]), "", np.float32, ["B", 10])
tensor15, n = addNode(graph, "ArgMax", scopeName, n, [tensor14], OrderedDict([["axis", 1], ["keepdims", 0]]), "", np.int64, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor13, tensor15]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelA.onnx")
print("Succeeded create %s" % "modelA.onnx")
# ModelB -----------------------------------------------------------------------
graph = gs.Graph(nodes=[], inputs=[], outputs=[])
tensorX = gs.Variable("tensorX", np.float32, ["B"])
n = 0
scopeName = "B"
tensor1, n = addNode(graph, "AddScalar", scopeName, n, [tensorX], OrderedDict([["scalar", 1.0]]), "", np.float32, ["B"])
graph.inputs = [tensorX]
graph.outputs = [tensor1]
graph.cleanup().toposort()
onnx.save(gs.export_onnx(graph), "modelB.onnx")
print("Succeeded create %s" % "modelB.onnx")
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/Polygraphy-CLI/ConvertExample/getOnnxModel.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import numpy as np
import nvtx
import tensorrt as trt
from cuda import cudart
trtFile = "./model.plan"
data = np.arange(3 * 4 * 5, dtype=np.float32).reshape(3, 4, 5)
def run():
logger = trt.Logger(trt.Logger.ERROR)
if os.path.isfile(trtFile):
with open(trtFile, "rb") as f:
engineString = f.read()
if engineString == None:
print("Failed getting serialized engine!")
return
print("Succeeded getting serialized engine!")
else:
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputTensor = network.add_input("inputT0", trt.float32, [-1, -1, -1])
profile.set_shape(inputTensor.name, [1, 1, 1], [3, 4, 5], [6, 8, 10])
config.add_optimization_profile(profile)
identityLayer = network.add_identity(inputTensor)
network.mark_output(identityLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building serialized engine!")
return
print("Succeeded building serialized engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
print("Succeeded saving .plan file!")
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
if engine == None:
print("Failed building engine!")
return
print("Succeeded building engine!")
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [3, 4, 5])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
#nvtx.push_range("Inference part, with nvtx marked", color="green") # another way to use
with nvtx.annotate("Inference part, with nvtx marked", color="green"):
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
#nvtx.pop_range() # another way to use
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
if __name__ == "__main__":
os.system("rm -rf ./*.plan")
run()
run()
| trt-samples-for-hackathon-cn-master | cookbook/07-Tool/nvtx/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-TensorFlow1/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf1
import tensorrt as trt
np.random.seed(31193)
tf1.compat.v1.set_random_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
paraFile = "./para.npz"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
trtVersion = trt.__version__.split(".")
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.npz ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf1.compat.v1.disable_eager_execution()
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow1 --------------------------------
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
x = tf1.compat.v1.placeholder(tf1.float32, [None, nHeight, nWidth, 1], name="x")
y_ = tf1.compat.v1.placeholder(tf1.float32, [None, 10], name="y_")
w1 = tf1.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf1.compat.v1.get_variable("b1", shape=[32], initializer=tf1.constant_initializer(value=0.1))
h1 = tf1.nn.conv2d(x, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf1.nn.relu(h2)
h4 = tf1.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf1.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf1.compat.v1.get_variable("b2", shape=[64], initializer=tf1.constant_initializer(value=0.1))
h5 = tf1.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf1.nn.relu(h6)
h8 = tf1.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf1.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf1.compat.v1.get_variable("b3", shape=[1024], initializer=tf1.constant_initializer(value=0.1))
h9 = tf1.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf1.matmul(h9, w3)
h11 = h10 + b3
h12 = tf1.nn.relu(h11)
w4 = tf1.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf1.compat.v1.get_variable("b4", shape=[10], initializer=tf1.constant_initializer(value=0.1))
h13 = tf1.matmul(h12, w4)
h14 = h13 + b4
y = tf1.nn.softmax(h14, name="y")
z = tf1.argmax(y, 1, name="z")
crossEntropy = -tf1.reduce_sum(y_ * tf1.math.log(y))
trainStep = tf1.compat.v1.train.AdamOptimizer(1e-4).minimize(crossEntropy)
accuracy = tf1.reduce_mean(tf1.cast(tf1.equal(z, tf1.argmax(y_, 1)), tf1.float32), name="accuracy")
tfConfig = tf1.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf1.compat.v1.Session(config=tfConfig)
sess.run(tf1.compat.v1.global_variables_initializer())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
trainStep.run(session=sess, feed_dict={x: xSample, y_: ySample})
if i % 10 == 0:
accuracyValue = accuracy.eval(session=sess, feed_dict={x: xSample, y_: ySample})
print("%s, batch %3d, train acc = %f" % (dt.now(), 10 + i, accuracyValue))
xTest, yTest = getBatch(testFileList, nTrainBatchSize, False)
accuracyValue = 0
for i in range(len(testFileList) // nTrainBatchSize):
xSample = xTest[i * nTrainBatchSize:(i + 1) * nTrainBatchSize]
ySample = yTest[i * nTrainBatchSize:(i + 1) * nTrainBatchSize]
accuracyValue += accuracy.eval(session=sess, feed_dict={x: xSample, y_: ySample})
print("%s, test acc = %f" % (dt.now(), accuracyValue / (len(testFileList) // nTrainBatchSize)))
para = {} # save weight as file
print("Parameter of the model:")
for i in tf1.compat.v1.get_collection(tf1.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print("%s:\t%s" % (name, value.shape))
para[name] = value
np.savez(paraFile, **para)
sess.close()
del para
print("Succeeded building model in TensorFlow1!")
# Rebuild network, load weights and do inference in TensorRT -------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, nHeight, nWidth])
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
para = np.load(paraFile)
w = np.ascontiguousarray(para["w1:0"].transpose(3, 2, 0, 1))
b = np.ascontiguousarray(para["b1:0"])
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.ascontiguousarray(para["w2:0"].transpose(3, 2, 0, 1))
b = np.ascontiguousarray(para["b2:0"])
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.first_transpose = (0, 2, 3, 1)
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.ascontiguousarray(para["w3:0"])
b = np.ascontiguousarray(para["b3:0"].reshape(1, -1))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.ascontiguousarray(para["w4:0"])
b = np.ascontiguousarray(para["b4:0"].reshape(1, -1))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-TensorFlow1/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-Paddlepaddle/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import calibrator
import cv2
import numpy as np
import paddle
import paddle.nn.functional as F
import tensorrt as trt
from cuda import cudart
np.random.seed(31193)
paddle.seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
paddleFilePath = "./model/model"
paraFile = "./para.npz"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.npz ./*.plan ./*.cache " + paddleFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, 1, nHeight, nWidth], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(1, nHeight, nWidth).astype(np.float32) / 255
yData[i] = label
return xData, yData
# Create network and train model in Paddlepaddle -------------------------------
class Net(paddle.nn.Layer):
def __init__(self, num_classes=1):
super(Net, self).__init__()
self.conv1 = paddle.nn.Conv2D(1, 32, [5, 5], 1, 2)
self.pool1 = paddle.nn.MaxPool2D(2, 2)
self.conv2 = paddle.nn.Conv2D(32, 64, [5, 5], 1, 2)
self.pool2 = paddle.nn.MaxPool2D(2, 2)
self.flatten = paddle.nn.Flatten(1)
self.fc1 = paddle.nn.Linear(64 * 7 * 7, 1024)
self.fc2 = paddle.nn.Linear(1024, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.flatten(x)
x = self.fc1(x)
x = F.relu(x)
y = self.fc2(x)
z = F.softmax(y, 1)
z = paddle.argmax(z, 1)
return y, z
model = Net()
model.train()
opt = paddle.optimizer.Adam(0.001, parameters=model.parameters())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
xSample = paddle.to_tensor(xSample)
ySample = paddle.to_tensor(ySample)
y, z = model(xSample)
loss = F.cross_entropy(y, paddle.argmax(ySample, 1, keepdim=True))
loss.backward()
opt.step()
opt.clear_grad()
if i % 10 == 0:
accuracyValue = paddle.sum(z - paddle.argmax(ySample, 1) == 0).numpy().item() / nTrainBatchSize
print("%s, batch %3d, train acc = %f" % (dt.now(), 10 + i, accuracyValue))
model.eval()
xTest, yTest = getBatch(testFileList, nTrainBatchSize, False)
xTest = paddle.to_tensor(xTest)
yTest = paddle.to_tensor(yTest)
accuracyValue = 0
for i in range(len(testFileList) // nTrainBatchSize):
xSample = xTest[i * nTrainBatchSize:(i + 1) * nTrainBatchSize]
ySample = yTest[i * nTrainBatchSize:(i + 1) * nTrainBatchSize]
y, z = model(xSample)
accuracyValue += paddle.sum(z - paddle.argmax(ySample, 1) == 0).numpy().item()
print("%s, test acc = %f" % (dt.now(), accuracyValue / (len(testFileList) // nTrainBatchSize * nTrainBatchSize)))
# Two methods to save weights as file
if True: # extract weights from model
print("Parameter of the model:")
para = {}
for item in model.named_parameters():
print(item[0], ":", item[1].shape)
para[item[0]] = item[1]
np.savez(paraFile, **para)
else: # etract weights from file
inputDescList = []
inputDescList.append(paddle.static.InputSpec(shape=[None, 1, nHeight, nWidth], dtype='float32', name='x'))
modelStatic = paddle.jit.to_static(model, inputDescList)
paddle.jit.save(modelStatic, paddleFilePath)
stateDict = paddle.load(paddleFilePath)
print("Parameter of the model:")
para = {}
for key in stateDict.keys():
print(key, ":", stateDict[key].shape)
para[key] = stateDict[key]
np.savez(paraFile, **para)
del para
print("Succeeded building model in Paddlepaddle!")
# Rebuild network, load weights and do inference in TensorRT -------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, nHeight, nWidth])
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
para = np.load(paraFile)
w = np.ascontiguousarray(para["conv1.weight"])
b = np.ascontiguousarray(para["conv1.bias"])
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.ascontiguousarray(para["conv2.weight"])
b = np.ascontiguousarray(para["conv2.bias"])
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.ascontiguousarray(para["fc1.weight"])
b = np.ascontiguousarray(para["fc1.bias"].reshape(1, -1))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.ascontiguousarray(para["fc2.weight"])
b = np.ascontiguousarray(para["fc2.bias"].reshape(1, -1))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-Paddlepaddle/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
from datetime import datetime as dt
import numpy as np
import tensorrt as trt
from cuda import cudart
os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf.compat.v1.set_random_seed(97)
nB, nC, nH, nW = 2, 1, 28, 28
cOut, hW, wW = 32, 5, 5
inputData = np.random.rand(nB, nH, nW, nC).astype(np.float32).reshape([nB, nH, nW, nC]) # NHWC format
def printArrayInformation(x, info="", n=5):
if 0 in x.shape:
print('%s:%s' % (info, str(x.shape)))
print()
return
print( '%s:%s,SumAbs=%.5e,Var=%.5f,Max=%.5f,Min=%.5f,SAD=%.5f'%( \
info,str(x.shape),np.sum(abs(x)),np.var(x),np.max(x),np.min(x),np.sum(np.abs(np.diff(x.reshape(-1)))) ))
print('\t', x.reshape(-1)[:n], x.reshape(-1)[-n:])
def check(a, b, weak=False, checkEpsilon=1e-5):
if weak:
a = a.astype(np.float32)
b = b.astype(np.float32)
res = np.all(np.abs(a - b) < checkEpsilon)
else:
res = np.all(a == b)
diff0 = np.max(np.abs(a - b))
diff1 = np.max(np.abs(a - b) / (np.abs(b) + checkEpsilon))
print("check:%s, absDiff=%f, relDiff=%f" % (res, diff0, diff1))
def test_tf_nn_conv2d():
print("\ntf.nn.conv2d ------------------------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nH, nW, nC], name="x")
weight = tf.compat.v1.get_variable("w1", shape=[hW, wW, nC, cOut], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
y = tf.nn.conv2d( \
x,
filter=weight,
strides=None,
padding="SAME",
use_cudnn_on_gpu=True,
data_format="NHWC",
dilations=[1, 1, 1, 1],
name="y",
filters=None
)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF = sess.run(y, feed_dict={x: inputData})
tfPara = {} # save weight as file
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("para_tf_nn_conv2d.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, -1, nC))
profile.set_shape(inputT0.name, [1, 1, 1, nC], [nB, nH, nW, nC], [nB * 2, nH * 2, nW * 2, nC])
config.add_optimization_profile(profile)
_h1 = network.add_shuffle(inputT0) # NHWC to NCHW
_h1.first_transpose = (0, 3, 1, 2)
weight = np.load("./para_tf_nn_conv2d.npz")["w1:0"].transpose(3, 2, 0, 1).reshape(-1)
_h2 = network.add_convolution_nd(_h1.get_output(0), cOut, [hW, wW], weight, None)
_h2.padding_nd = (2, 2)
_h3 = network.add_shuffle(_h2.get_output(0)) # NCHW to NHWC, align with TF
_h3.first_transpose = (0, 2, 3, 1)
network.mark_output(_h3.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nB, nH, nW, nC])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputData.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
printArrayInformation(inputData, "input")
#print(inputData)
printArrayInformation(outputTF, "TF output")
#print(outputTF)
printArrayInformation(outputH0, "TRT output")
#print(outputH0)
check(outputTF, outputH0, True)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
def test_tf_layers_Conv2D():
print("\ntf.layers.Conv2D --------------------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nH, nW, nC], name="x")
conv = tf.compat.v1.layers.Conv2D( \
cOut,
[hW,wW],
strides=(1, 1),
padding="same",
data_format="channels_last",
dilation_rate=(1, 1),
activation=tf.nn.relu,
use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=False,
name="convolution",
)
y = conv(x)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF = sess.run(y, feed_dict={x: inputData})
tfPara = {} # save weight as file
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("para_tf_layers_Conv2D.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, -1, nC))
profile.set_shape(inputT0.name, [1, 1, 1, nC], [nB, nH, nW, nC], [nB * 2, nH * 2, nW * 2, nC])
config.add_optimization_profile(profile)
_h1 = network.add_shuffle(inputT0) # NHWC to NCHW
_h1.first_transpose = (0, 3, 1, 2)
para = np.load("./para_tf_layers_Conv2D.npz")
weight = np.ascontiguousarray(para["convolution/kernel:0"].transpose(3, 2, 0, 1).reshape(-1))
bias = np.ascontiguousarray(para["convolution/bias:0"].reshape(-1))
_h2 = network.add_convolution_nd(_h1.get_output(0), cOut, [hW, wW], weight, bias)
_h2.padding_nd = (2, 2)
_h3 = network.add_activation(_h2.get_output(0), trt.ActivationType.RELU)
_h4 = network.add_shuffle(_h3.get_output(0)) # NCHW to NHWC, align with TF
_h4.first_transpose = (0, 2, 3, 1)
network.mark_output(_h4.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nB, nH, nW, nC])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputData.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
printArrayInformation(inputData, "input")
#print(inputData)
printArrayInformation(outputTF, "TF output")
#print(outputTF)
printArrayInformation(outputH0, "TRT output")
#print(outputH0)
check(outputTF, outputH0, True)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
def test_tf_keras_layer_Conv2D():
print("\ntf.keras.layers.Conv2D --------------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nH, nW, nC], name="x")
conv = tf.keras.layers.Conv2D( \
cOut,
[hW,wW],
strides=(1, 1),
padding="same",
data_format="channels_last",
dilation_rate=(1, 1),
activation=tf.nn.relu,
use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None
)
y = conv(x)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF = sess.run(y, feed_dict={x: inputData})
tfPara = {} # save weight as file
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("para_tf_keras_layer_Conv2D.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, -1, nC))
profile.set_shape(inputT0.name, [1, 1, 1, nC], [nB, nH, nW, nC], [nB * 2, nH * 2, nW * 2, nC])
config.add_optimization_profile(profile)
_h1 = network.add_shuffle(inputT0) # NHWC to NCHW
_h1.first_transpose = (0, 3, 1, 2)
para = np.load("./para_tf_keras_layer_Conv2D.npz")
weight = np.ascontiguousarray(para["conv2d/kernel:0"].transpose(3, 2, 0, 1).reshape(-1))
bias = np.ascontiguousarray(para["conv2d/bias:0"].reshape(-1))
_h2 = network.add_convolution_nd(_h1.get_output(0), cOut, [hW, wW], weight, bias)
_h2.padding_nd = (2, 2)
_h3 = network.add_activation(_h2.get_output(0), trt.ActivationType.RELU)
_h4 = network.add_shuffle(_h3.get_output(0)) # NCHW to NHWC, align with TF
_h4.first_transpose = (0, 2, 3, 1)
network.mark_output(_h4.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nB, nH, nW, nC])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputData.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
printArrayInformation(inputData, "input")
#print(inputData)
printArrayInformation(outputTF, "TF output")
#print(outputTF)
printArrayInformation(outputH0, "TRT output")
#print(outputH0)
check(outputTF, outputH0, True)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
np.set_printoptions(precision=3, linewidth=200, suppress=True)
test_tf_nn_conv2d()
test_tf_layers_Conv2D()
test_tf_keras_layer_Conv2D()
print("\ntest finish!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/TypicalAPI-TensorFlow1/Convolution.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
from datetime import datetime as dt
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf.compat.v1.set_random_seed(97)
nB, nC, nH, nW = 2, 1, 28, 28
cOut = 32
inputData = np.random.rand(nB, nH, nW, nC).astype(np.float32).reshape([nB, nH, nW, nC]) # NHWC format
def printArrayInformation(x, info="", n=5):
if 0 in x.shape:
print('%s:%s' % (info, str(x.shape)))
print()
return
print( '%s:%s,SumAbs=%.5e,Var=%.5f,Max=%.5f,Min=%.5f,SAD=%.5f'%( \
info,str(x.shape),np.sum(abs(x)),np.var(x),np.max(x),np.min(x),np.sum(np.abs(np.diff(x.reshape(-1)))) ))
print('\t', x.reshape(-1)[:n], x.reshape(-1)[-n:])
def check(a, b, weak=False, checkEpsilon=1e-5):
if weak:
a = a.astype(np.float32)
b = b.astype(np.float32)
res = np.all(np.abs(a - b) < checkEpsilon)
else:
res = np.all(a == b)
diff0 = np.max(np.abs(a - b))
diff1 = np.max(np.abs(a - b) / (np.abs(b) + checkEpsilon))
print("check:%s, absDiff=%f, relDiff=%f" % (res, diff0, diff1))
def test_tf_nn_linalg_matmul():
print("\ntf.nn.linalg.matmul -----------------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nH, nW, nC], name="x")
weight = tf.compat.v1.get_variable("w1", shape=[nH * nW * nC, cOut], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
_h1 = tf.reshape(x, [-1, nH * nW * nC])
y = tf.linalg.matmul( \
_h1,
weight,
transpose_a=False,
transpose_b=False,
adjoint_a=False,
adjoint_b=False,
a_is_sparse=False,
b_is_sparse=False,
name="y"
)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF = sess.run(y, feed_dict={x: inputData})
tfPara = {} # save weight as file
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("para_tf_nn_linalg_matmul.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, nH, nW, nC))
profile.set_shape(inputT0.name, [1, nH, nW, nC], [nB, nH, nW, nC], [nB * 2, nH, nW, nC])
config.add_optimization_profile(profile)
weight = np.load("./para_tf_nn_linalg_matmul.npz")["w1:0"].transpose(1, 0).reshape(-1)
_h1 = network.add_fully_connected(inputT0, cOut, weight, None)
_h2 = network.add_shape(_h1.get_output(0)) # remove the last two dimension (1,1), align with TF
_h3 = network.add_slice(_h2.get_output(0), [0], [2], [1])
_h4 = network.add_shuffle(_h1.get_output(0))
_h4.set_input(1, _h3.get_output(0))
network.mark_output(_h4.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nB, nH, nW, nC])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputData.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
printArrayInformation(inputData, "input")
#print(inputData)
printArrayInformation(outputTF, "TF output")
#print(outputTF)
printArrayInformation(outputH0, "TRT output")
#print(outputH0)
check(outputTF, outputH0, True)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
def test_tf_layers_Dense():
print("\ntf.layers.Dense ---------------------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nH, nW, nC], name="x")
_h1 = tf.reshape(x, [-1, nH * nW * nC])
fc = tf.compat.v1.layers.Dense( \
cOut,
activation=tf.nn.relu,
use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=False,
name="tf-layers-Dense-FC"
)
y = fc(_h1)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF = sess.run(y, feed_dict={x: inputData})
tfPara = {} # save weight as file
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("para_tf_layers_Dense.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, nH, nW, nC))
profile.set_shape(inputT0.name, [1, nH, nW, nC], [nB, nH, nW, nC], [nB * 2, nH, nW, nC])
config.add_optimization_profile(profile)
para = np.load("./para_tf_layers_Dense.npz")
weight = para["tf-layers-Dense-FC/kernel:0"].transpose(1, 0).reshape(-1)
bias = para["tf-layers-Dense-FC/bias:0"].reshape(-1)
_h1 = network.add_fully_connected(inputT0, cOut, weight, bias)
_h2 = network.add_activation(_h1.get_output(0), trt.ActivationType.RELU)
_h3 = network.add_shape(_h2.get_output(0)) # remove the last two dimension (1,1), align with TF
_h4 = network.add_slice(_h3.get_output(0), [0], [2], [1])
_h5 = network.add_shuffle(_h2.get_output(0))
_h5.set_input(1, _h4.get_output(0))
network.mark_output(_h5.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nB, nH, nW, nC])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputData.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
printArrayInformation(inputData, "input")
#print(inputData)
printArrayInformation(outputTF, "TF output")
#print(outputTF)
printArrayInformation(outputH0, "TRT output")
#print(outputH0)
check(outputTF, outputH0, True)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
def test_tf_keras_layers_Dense():
print("\ntf.keras.layers.Dense ---------------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nH, nW, nC], name="x")
_h1 = tf.reshape(x, [-1, nH * nW * nC])
fc = tf.keras.layers.Dense( \
cOut,
activation=tf.nn.relu,
use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
name="tf-keras-layers-Dense-FC"
)
y = fc(_h1)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF = sess.run(y, feed_dict={x: inputData})
tfPara = {} # save weight as file
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("para_tf_keras_layers_Dense.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, nH, nW, nC))
profile.set_shape(inputT0.name, [1, nH, nW, nC], [nB, nH, nW, nC], [nB * 2, nH, nW, nC])
config.add_optimization_profile(profile)
para = np.load("./para_tf_keras_layers_Dense.npz")
weight = para["tf-keras-layers-Dense-FC/kernel:0"].transpose(1, 0).reshape(-1)
bias = para["tf-keras-layers-Dense-FC/bias:0"].reshape(-1)
_h1 = network.add_fully_connected(inputT0, cOut, weight, bias)
_h2 = network.add_activation(_h1.get_output(0), trt.ActivationType.RELU)
_h3 = network.add_shape(_h2.get_output(0)) # remove the last two dimension (1,1), align with TF
_h4 = network.add_slice(_h3.get_output(0), [0], [2], [1])
_h5 = network.add_shuffle(_h2.get_output(0))
_h5.set_input(1, _h4.get_output(0))
network.mark_output(_h5.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nB, nH, nW, nC])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputData.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
printArrayInformation(inputData, "input")
#print(inputData)
printArrayInformation(outputTF, "TF output")
#print(outputTF)
printArrayInformation(outputH0, "TRT output")
#print(outputH0)
check(outputTF, outputH0, True)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
np.set_printoptions(precision=3, linewidth=200, suppress=True)
test_tf_nn_linalg_matmul()
test_tf_layers_Dense()
test_tf_keras_layers_Dense()
print("\ntest finish!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/TypicalAPI-TensorFlow1/FullyConnected.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
import numpy as np
import tensorrt as trt
from cuda import cudart
os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf.compat.v1.set_random_seed(97)
epsilon = 1e-6
nBatchSize, nSequenceLength, nInputDim, nHiddenDim = 2, 4, 7, 5
inputX = np.random.rand(nBatchSize, nSequenceLength, nInputDim).astype(np.float32).reshape([nBatchSize, nSequenceLength, nInputDim])
inputH = np.random.rand(nBatchSize, nHiddenDim).astype(np.float32).reshape([nBatchSize, nHiddenDim])
inputC = np.random.rand(nBatchSize, nHiddenDim).astype(np.float32).reshape([nBatchSize, nHiddenDim])
def printArrayInformation(x, info="", n=5):
if 0 in x.shape:
print('%s:%s' % (info, str(x.shape)))
print()
return
print( '%s:%s,SumAbs=%.5e,Var=%.5f,Max=%.5f,Min=%.5f,SAD=%.5f'%( \
info,str(x.shape),np.sum(abs(x)),np.var(x),np.max(x),np.min(x),np.sum(np.abs(np.diff(x.reshape(-1)))) ))
print('\t', x.reshape(-1)[:n], x.reshape(-1)[-n:])
def check(a, b, weak=False, checkEpsilon=1e-5):
if weak:
a = a.astype(np.float32)
b = b.astype(np.float32)
res = np.all(np.abs(a - b) < checkEpsilon)
else:
res = np.all(a == b)
diff0 = np.max(np.abs(a - b))
diff1 = np.max(np.abs(a - b) / (np.abs(b) + checkEpsilon))
print("check:%s, absDiff=%f, relDiff=%f" % (res, diff0, diff1))
# for debug
def smallTest(x0, h0, c0):
def sigmoid(x):
return 1 / (1 + np.exp(-x))
para = np.load("test?.npz")
weight = [np.split(i, [nInputDim], axis=0) for i in np.split(para["?/kernel:0"], 4, axis=1)]
bias = np.split(para["?/bias:0"], 4)
h, c = h0, c0
for t in range(nSequenceLength):
x = x0[:, t, :]
it = sigmoid(np.matmul(x, weight[0][0]) + np.matmul(h, weight[0][1]) + bias[0])
ct_ = np.tanh(np.matmul(x, weight[1][0]) + np.matmul(h, weight[1][1]) + bias[1])
ft = sigmoid(np.matmul(x, weight[2][0]) + np.matmul(h, weight[2][1]) + bias[2])
ot = sigmoid(np.matmul(x, weight[3][0]) + np.matmul(h, weight[3][1]) + bias[3])
ct = ft * c0 + it * ct_
ht = ot * np.tanh(ct)
print("ht=\n", ht, "\nct=\n", ct)
h = ht
c = ct
print("here")
return
def test1():
print("\ntf.keras.layers.LSTM or tf.keras.layers.LSTMCell + tf.keras.layers.RNN")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nSequenceLength, nInputDim], name="x")
h0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="h0")
c0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="c0")
# Two equivalent realization
if True: # tf.keras.layers.LSTM
lstm = tf.compat.v1.keras.layers.LSTM( \
nHiddenDim,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
recurrent_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
unit_forget_bias=False,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
implementation=1,
return_sequences=True,
return_state=True,
go_backwards=False,
stateful=False,
unroll=False,
time_major=False
)
else: # tf.keras.layers.LSTMCell + tf.keras.layers.RNN
cell = tf.keras.layers.LSTMCell( \
nHiddenDim,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
recurrent_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
unit_forget_bias=False,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
)
lstm = tf.keras.layers.RNN( \
cell,
return_sequences=True,
return_state=True,
go_backwards=False,
stateful=False,
unroll=False,
time_major=False
)
y, h1, c1 = lstm(x, initial_state=[h0, c0])
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF, outputTFh1, outputTFc1 = sess.run([y, h1, c1], feed_dict={x: inputX, h0: inputH, c0: inputC})
tfPara = {}
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("test1.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
# Two equivalent realization
if True: # use Loop Structure, Dynamic Shape mode is supported but Refit is not supported
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (-1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (-1, nHiddenDim))
profile.set_shape(inputT0.name, [1, 1, nInputDim], [nBatchSize, nSequenceLength, nInputDim], [nBatchSize * 2, nSequenceLength * 2, nInputDim])
profile.set_shape(inputT1.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
profile.set_shape(inputT2.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
config.add_optimization_profile(profile)
para = np.load("test1.npz")
weightXLayerList = [network.add_constant([nInputDim, nHiddenDim], np.ascontiguousarray(i.reshape(-1))) for i in np.split(para["lstm/kernel:0"], 4, axis=1)]
weightHLayerList = [network.add_constant([nHiddenDim, nHiddenDim], np.ascontiguousarray(i.reshape(-1))) for i in np.split(para["lstm/recurrent_kernel:0"], 4, axis=1)]
biasLayerList = [network.add_constant([1, nHiddenDim], np.ascontiguousarray(i.reshape(-1))) for i in np.split(para["lstm/bias:0"], 4)]
loop = network.add_loop()
def gate(network, xTensor, wx, hTensor, wh, b, isSigmoid):
_h0 = network.add_matrix_multiply(xTensor, trt.MatrixOperation.NONE, wx, trt.MatrixOperation.NONE)
_h1 = network.add_matrix_multiply(hTensor, trt.MatrixOperation.NONE, wh, trt.MatrixOperation.NONE)
_h2 = network.add_elementwise(_h0.get_output(0), _h1.get_output(0), trt.ElementWiseOperation.SUM)
_h3 = network.add_elementwise(_h2.get_output(0), b, trt.ElementWiseOperation.SUM)
_h4 = network.add_activation(_h3.get_output(0), trt.ActivationType.SIGMOID if isSigmoid else trt.ActivationType.TANH)
return _h4
_t0 = network.add_shape(inputT0)
_t1 = network.add_slice(_t0.get_output(0), [1], [1], [1])
_t2 = network.add_shuffle(_t1.get_output(0))
_t2.reshape_dims = ()
loop.add_trip_limit(_t2.get_output(0), trt.TripLimit.COUNT)
iteratorLayer = loop.add_iterator(inputT0, 1, False) # iterator throws one piece of inputT0 each time, shape: [nBatchSize, nInputDim]
hiddenStateLayer = loop.add_recurrence(inputT1) # initial hidden state and cell state
cellStateLayer = loop.add_recurrence(inputT2)
gateI = gate(network, iteratorLayer.get_output(0), weightXLayerList[0].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[0].get_output(0), biasLayerList[0].get_output(0), True)
gateF = gate(network, iteratorLayer.get_output(0), weightXLayerList[1].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[1].get_output(0), biasLayerList[1].get_output(0), True)
gateC = gate(network, iteratorLayer.get_output(0), weightXLayerList[2].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[2].get_output(0), biasLayerList[2].get_output(0), False)
gateO = gate(network, iteratorLayer.get_output(0), weightXLayerList[3].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[3].get_output(0), biasLayerList[3].get_output(0), True)
_h5 = network.add_elementwise(gateF.get_output(0), cellStateLayer.get_output(0), trt.ElementWiseOperation.PROD)
_h6 = network.add_elementwise(gateI.get_output(0), gateC.get_output(0), trt.ElementWiseOperation.PROD)
newCellStateLayer = network.add_elementwise(_h5.get_output(0), _h6.get_output(0), trt.ElementWiseOperation.SUM)
_h7 = network.add_activation(newCellStateLayer.get_output(0), trt.ActivationType.TANH)
newHiddenStateLayer = network.add_elementwise(gateO.get_output(0), _h7.get_output(0), trt.ElementWiseOperation.PROD)
hiddenStateLayer.set_input(1, newHiddenStateLayer.get_output(0))
cellStateLayer.set_input(1, newCellStateLayer.get_output(0))
loopOutput0 = loop.add_loop_output(hiddenStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final hidden state, shape: [nBatchSize,nHiddenSize]
loopOutput1 = loop.add_loop_output(newHiddenStateLayer.get_output(0), trt.LoopOutput.CONCATENATE, 1) # output all hidden state, shape: [nBatchSize,nSequenceLength,nHiddenSize]
loopOutput1.set_input(1, _t2.get_output(0))
loopOutput2 = loop.add_loop_output(cellStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final cell state, shape: [nBatchSize,nHiddenSize]
network.mark_output(loopOutput0.get_output(0))
network.mark_output(loopOutput1.get_output(0))
network.mark_output(loopOutput2.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nBatchSize, nSequenceLength, nInputDim])
context.set_input_shape(engine.get_tensor_name(1), [nBatchSize, nHiddenDim])
context.set_input_shape(engine.get_tensor_name(2), [nBatchSize, nHiddenDim])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
#printArrayInformation(inputX,"x")
#print(inputX)
#printArrayInformation(inputH,"h0")
#print(inputH)
#printArrayInformation(inputC,"c0")
#print(inputC)
#printArrayInformation(outputTFh1,"TF h1")
#printArrayInformation(outputH0,"TRT h1")
#printArrayInformation(outputTFc1,"TF c1")
#printArrayInformation(outputH2,"TRT c1")
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH1,"TRT AllOutput")
check(outputTFh1, outputH0, True, "h1")
check(outputTFc1, outputH2, True, "c1")
check(outputTF, outputH1, True, "AllOutput")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
else: # use RNNV2 layer, Dynamic Shape mode is not supported, deprecated since TensorRT 8.5
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (nBatchSize, nSequenceLength, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (nBatchSize, 1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (nBatchSize, 1, nHiddenDim))
rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHiddenDim, nSequenceLength, trt.RNNOperation.LSTM)
rnnV2Layer.direction = trt.RNNDirection.UNIDIRECTION
rnnV2Layer.input_mode = trt.RNNInputMode.LINEAR
rnnV2Layer.hidden_state = inputT1
rnnV2Layer.cell_state = inputT2
gateList = [trt.RNNGateType.INPUT, trt.RNNGateType.FORGET, trt.RNNGateType.CELL, trt.RNNGateType.OUTPUT]
para = np.load("test1.npz")
weightXList = [i.transpose().reshape(-1) for i in np.split(para["lstm/kernel:0"], 4, axis=1)]
weightHList = [i.transpose().reshape(-1) for i in np.split(para["lstm/recurrent_kernel:0"], 4, axis=1)]
biasList = [i.reshape(-1) for i in np.split(para["lstm/bias:0"], 4)]
for gate, weightX, weightH, bias in zip(gateList, weightXList, weightHList, biasList):
rnnV2Layer.set_weights_for_gate(0, gate, True, weightX)
rnnV2Layer.set_weights_for_gate(0, gate, False, weightH)
rnnV2Layer.set_bias_for_gate(0, gate, True, bias)
rnnV2Layer.set_bias_for_gate(0, gate, False, np.zeros([nHiddenDim], dtype=np.float32))
network.mark_output(rnnV2Layer.get_output(0))
network.mark_output(rnnV2Layer.get_output(1))
network.mark_output(rnnV2Layer.get_output(2))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
#print("inputH0 :", inputX.shape)
#print(inputX)
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH0,"TRT AllOutput")
#printArrayInformation(outputTFh1,"TF h1")
#printArrayInformation(outputH1,"TRT h1")
#printArrayInformation(outputTFc1,"TF c1")
#printArrayInformation(outputH2,"TRT c1")
check(outputTF, outputH0, True, "AllOutput")
check(outputTFh1, outputH1.reshape(nBatchSize, nHiddenDim), True, "h1")
check(outputTFc1, outputH2.reshape(nBatchSize, nHiddenDim), True, "c1")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
def test2():
print("\ntf.keras.layers.CuDNNLSTM -----------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nSequenceLength, nInputDim], name="x")
h0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="h0")
c0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="c0")
lstm = tf.compat.v1.keras.layers.CuDNNLSTM( \
nHiddenDim,
kernel_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
recurrent_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
bias_initializer=tf.truncated_normal_initializer(mean=0,stddev=0.1),
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
return_sequences=True,
return_state=True,
go_backwards=False,
stateful=False,
time_major=False
)
y, h1, c1 = lstm(x, initial_state=[h0, c0])
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF, outputTFh1, outputTFc1 = sess.run([y, h1, c1], feed_dict={x: inputX, h0: inputH, c0: inputC})
tfPara = {}
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("test2.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (-1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (-1, nHiddenDim))
profile.set_shape(inputT0.name, [1, 1, nInputDim], [nBatchSize, nSequenceLength, nInputDim], [nBatchSize * 2, nSequenceLength * 2, nInputDim])
profile.set_shape(inputT1.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
profile.set_shape(inputT2.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
config.add_optimization_profile(profile)
para = np.load("test2.npz") # the shape and order of the weights is different from keras.layers.LSTM
weightXLayerList = [network.add_constant([nInputDim, nHiddenDim], i.reshape(nHiddenDim, nInputDim).transpose().reshape(-1)) for i in np.split(para["cu_dnnlstm/kernel:0"], 4, axis=1)]
weightHLayerList = [network.add_constant([nHiddenDim, nHiddenDim], i.transpose().reshape(-1)) for i in np.split(para["cu_dnnlstm/recurrent_kernel:0"], 4, axis=1)]
biasLayerList = [network.add_constant([1, nHiddenDim], i.reshape(-1)) for i in np.split(np.sum(para["cu_dnnlstm/bias:0"].reshape(2, -1), axis=0), 4)]
loop = network.add_loop()
def gate(network, xTensor, wx, hTensor, wh, b, isSigmoid):
_h0 = network.add_matrix_multiply(xTensor, trt.MatrixOperation.NONE, wx, trt.MatrixOperation.NONE)
_h1 = network.add_matrix_multiply(hTensor, trt.MatrixOperation.NONE, wh, trt.MatrixOperation.NONE)
_h2 = network.add_elementwise(_h0.get_output(0), _h1.get_output(0), trt.ElementWiseOperation.SUM)
_h3 = network.add_elementwise(_h2.get_output(0), b, trt.ElementWiseOperation.SUM)
_h4 = network.add_activation(_h3.get_output(0), trt.ActivationType.SIGMOID if isSigmoid else trt.ActivationType.TANH)
return _h4
_t0 = network.add_shape(inputT0)
_t1 = network.add_slice(_t0.get_output(0), [1], [1], [1])
_t2 = network.add_shuffle(_t1.get_output(0))
_t2.reshape_dims = ()
loop.add_trip_limit(_t2.get_output(0), trt.TripLimit.COUNT)
iteratorLayer = loop.add_iterator(inputT0, 1, False) # iterator throws one piece of inputT0 each time, shape: [nBatchSize, nInputDim]
hiddenStateLayer = loop.add_recurrence(inputT1) # initial hidden state and cell state
cellStateLayer = loop.add_recurrence(inputT2)
gateI = gate(network, iteratorLayer.get_output(0), weightXLayerList[0].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[0].get_output(0), biasLayerList[0].get_output(0), True)
gateF = gate(network, iteratorLayer.get_output(0), weightXLayerList[1].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[1].get_output(0), biasLayerList[1].get_output(0), True)
gateC = gate(network, iteratorLayer.get_output(0), weightXLayerList[2].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[2].get_output(0), biasLayerList[2].get_output(0), False)
gateO = gate(network, iteratorLayer.get_output(0), weightXLayerList[3].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[3].get_output(0), biasLayerList[3].get_output(0), True)
_h5 = network.add_elementwise(gateF.get_output(0), cellStateLayer.get_output(0), trt.ElementWiseOperation.PROD)
_h6 = network.add_elementwise(gateI.get_output(0), gateC.get_output(0), trt.ElementWiseOperation.PROD)
newCellStateLayer = network.add_elementwise(_h5.get_output(0), _h6.get_output(0), trt.ElementWiseOperation.SUM)
_h7 = network.add_activation(newCellStateLayer.get_output(0), trt.ActivationType.TANH)
newHiddenStateLayer = network.add_elementwise(gateO.get_output(0), _h7.get_output(0), trt.ElementWiseOperation.PROD)
hiddenStateLayer.set_input(1, newHiddenStateLayer.get_output(0))
cellStateLayer.set_input(1, newCellStateLayer.get_output(0))
loopOutput0 = loop.add_loop_output(hiddenStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final hidden state, shape: [nBatchSize,nHiddenSize]
loopOutput1 = loop.add_loop_output(newHiddenStateLayer.get_output(0), trt.LoopOutput.CONCATENATE, 1) # output all hidden state, shape: [nBatchSize,nSequenceLength,nHiddenSize]
loopOutput1.set_input(1, _t2.get_output(0))
loopOutput2 = loop.add_loop_output(cellStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final cell state, shape: [nBatchSize,nHiddenSize]
network.mark_output(loopOutput0.get_output(0))
network.mark_output(loopOutput1.get_output(0))
network.mark_output(loopOutput2.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nBatchSize, nSequenceLength, nInputDim])
context.set_input_shape(engine.get_tensor_name(1), [nBatchSize, nHiddenDim])
context.set_input_shape(engine.get_tensor_name(2), [nBatchSize, nHiddenDim])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
#printArrayInformation(inputX,"input")
#print(inputX)
#printArrayInformation(outputTFh1,"TF h1")
#printArrayInformation(outputH0,"TRT h1")
#printArrayInformation(outputTFc1,"TF c1")
#printArrayInformation(outputH2,"TRT c1")
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH1,"TRT AllOutput")
check(outputTFh1, outputH0, True, "h1")
check(outputTFc1, outputH2, True, "c1")
check(outputTF, outputH1, True, "AllOutput")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
def test3():
print("\n[tf.nn.rnn_cell.BasicLSTMCell / tf.contrib.rnn.BasicLSTMCell] + [tf.nn.static_rnn / tf.nn.dynamic_rnn]")
forgetBias = 1.0
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nSequenceLength, nInputDim], name="x")
h0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="h0")
c0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="c0")
# tf.nn.rnn_cell.BasicLSTMCell and tf.contrib.rnn.BasicLSTMCell are alias
cell = tf.nn.rnn_cell.BasicLSTMCell( \
#cell = tf.contrib.rnn.BasicLSTMCell( \
nHiddenDim,
forget_bias=forgetBias,
state_is_tuple=True,
activation=None,
reuse=None,
name=None,
dtype=None
)
# Two equivalent realization
if True:
y,hc = tf.nn.static_rnn( \
cell,
[ x[:,i,:] for i in range(nSequenceLength) ],
initial_state=[c0,h0],
dtype=None,
sequence_length=None,
scope=None
)
else:
y,hc = tf.nn.dynamic_rnn( \
cell,
x,
sequence_length=None,
initial_state=[c0,h0],
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF, outputTFhc = sess.run([y, hc], feed_dict={x: inputX, h0: inputH, c0: inputC})
tfPara = {}
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("test3.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (-1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (-1, nHiddenDim))
profile.set_shape(inputT0.name, [1, 1, nInputDim], [nBatchSize, nSequenceLength, nInputDim], [nBatchSize * 2, nSequenceLength * 2, nInputDim])
profile.set_shape(inputT1.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
profile.set_shape(inputT2.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
config.add_optimization_profile(profile)
para = np.load("test3.npz")
weight = [np.split(i, [nInputDim], axis=0) for i in np.split(para["rnn/basic_lstm_cell/kernel:0"], 4, axis=1)]
bias = np.split(para["rnn/basic_lstm_cell/bias:0"], 4)
weightXLayerList = [network.add_constant([nInputDim, nHiddenDim], weight[i][0].reshape(-1)) for i in range(4)]
weightHLayerList = [network.add_constant([nHiddenDim, nHiddenDim], weight[i][1].reshape(-1)) for i in range(4)]
biasLayerList = [network.add_constant([1, nHiddenDim], bias[i]) for i in range(4)]
loop = network.add_loop()
def gate(network, xTensor, wx, hTensor, wh, b, gateName):
_h0 = network.add_matrix_multiply(xTensor, trt.MatrixOperation.NONE, wx, trt.MatrixOperation.NONE)
_h1 = network.add_matrix_multiply(hTensor, trt.MatrixOperation.NONE, wh, trt.MatrixOperation.NONE)
_h2 = network.add_elementwise(_h0.get_output(0), _h1.get_output(0), trt.ElementWiseOperation.SUM)
_h3 = network.add_elementwise(_h2.get_output(0), b, trt.ElementWiseOperation.SUM)
if gateName == "F" and np.abs(forgetBias) > epsilon:
_constant = network.add_constant([1, 1], np.array(forgetBias, dtype=np.float32))
_h4 = network.add_elementwise(_h3.get_output(0), _constant.get_output(0), trt.ElementWiseOperation.SUM)
else:
_h4 = _h3
if gateName == "C":
_h5 = network.add_activation(_h4.get_output(0), trt.ActivationType.TANH)
else:
_h5 = network.add_activation(_h4.get_output(0), trt.ActivationType.SIGMOID)
return _h5
_t0 = network.add_shape(inputT0)
_t1 = network.add_slice(_t0.get_output(0), [1], [1], [1])
_t2 = network.add_shuffle(_t1.get_output(0))
_t2.reshape_dims = ()
loop.add_trip_limit(_t2.get_output(0), trt.TripLimit.COUNT)
iteratorLayer = loop.add_iterator(inputT0, 1, False) # iterator throws one piece of inputT0 each time, shape: [nBatchSize, nInputDim]
hiddenStateLayer = loop.add_recurrence(inputT1) # initial hidden state and cell state
cellStateLayer = loop.add_recurrence(inputT2)
# order if weights is ICFO, rather than IFCO
gateI = gate(network, iteratorLayer.get_output(0), weightXLayerList[0].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[0].get_output(0), biasLayerList[0].get_output(0), "I")
gateC = gate(network, iteratorLayer.get_output(0), weightXLayerList[1].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[1].get_output(0), biasLayerList[1].get_output(0), "C")
gateF = gate(network, iteratorLayer.get_output(0), weightXLayerList[2].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[2].get_output(0), biasLayerList[2].get_output(0), "F")
gateO = gate(network, iteratorLayer.get_output(0), weightXLayerList[3].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[3].get_output(0), biasLayerList[3].get_output(0), "O")
_h5 = network.add_elementwise(gateF.get_output(0), cellStateLayer.get_output(0), trt.ElementWiseOperation.PROD)
_h6 = network.add_elementwise(gateI.get_output(0), gateC.get_output(0), trt.ElementWiseOperation.PROD)
newCellStateLayer = network.add_elementwise(_h5.get_output(0), _h6.get_output(0), trt.ElementWiseOperation.SUM)
_h7 = network.add_activation(newCellStateLayer.get_output(0), trt.ActivationType.TANH)
newHiddenStateLayer = network.add_elementwise(gateO.get_output(0), _h7.get_output(0), trt.ElementWiseOperation.PROD)
hiddenStateLayer.set_input(1, newHiddenStateLayer.get_output(0))
cellStateLayer.set_input(1, newCellStateLayer.get_output(0))
loopOutput0 = loop.add_loop_output(hiddenStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final hidden state, shape: [nBatchSize,nHiddenSize]
loopOutput1 = loop.add_loop_output(newHiddenStateLayer.get_output(0), trt.LoopOutput.CONCATENATE, 1) # output all hidden state, shape: [nBatchSize,nSequenceLength,nHiddenSize]
loopOutput1.set_input(1, _t2.get_output(0))
loopOutput2 = loop.add_loop_output(cellStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final cell state, shape: [nBatchSize,nHiddenSize]
network.mark_output(loopOutput0.get_output(0))
network.mark_output(loopOutput1.get_output(0))
network.mark_output(loopOutput2.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nBatchSize, nSequenceLength, nInputDim])
context.set_input_shape(engine.get_tensor_name(1), [nBatchSize, nHiddenDim])
context.set_input_shape(engine.get_tensor_name(2), [nBatchSize, nHiddenDim])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
outputTF = np.concatenate([x[:, np.newaxis, :] for x in outputTF], axis=1)
#printArrayInformation(inputX,"input")
#print(inputX)
#printArrayInformation(outputTFhc[1],"TF h1")
#printArrayInformation(outputH0,"TRT h1")
#printArrayInformation(outputTFhc[0],"TF c1")
#printArrayInformation(outputH2,"TRT c1")
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH1,"TRT AllOutput")
check(outputTFhc[1], outputH0, True, "h1")
check(outputTFhc[0], outputH2, True, "c1")
check(outputTF, outputH1, True, "AllOutput")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
def test4():
print("\n[tf.nn.rnn_cell.LSTMCell / tf.contrib.rnn.LSTMCell] + [tf.nn.static_rnn / tf.nn.dynamic_rnn]")
forgetBias = 1.0
useProjection = True
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nSequenceLength, nInputDim], name="x")
h0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="h0")
c0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="c0")
# tf.nn.rnn_cell.LSTMCell and tf.contrib.rnn.LSTMCell are alias
cell = tf.nn.rnn_cell.LSTMCell( \
#cell = tf.contrib.rnn.LSTMCell( \
nHiddenDim,
use_peepholes=False,
cell_clip=None,
initializer=None,
num_proj=(nHiddenDim if useProjection else None), # only None or nHiddenDim are supported? the order of weights using None is the same as the version which name contains Basic.
proj_clip=None,
num_unit_shards=None,
num_proj_shards=None,
forget_bias=forgetBias,
state_is_tuple=True,
activation=None,
reuse=None,
name=None,
dtype=None,
)
# Two equivalent realization
if True:
y,hc = tf.nn.static_rnn( \
cell,
[ x[:,i,:] for i in range(nSequenceLength) ],
initial_state=[c0,h0],
dtype=None,
sequence_length=None,
scope=None
)
else:
y,hc = tf.nn.dynamic_rnn( \
cell,
x,
sequence_length=None,
initial_state=[c0,h0],
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF, outputTFhc = sess.run([y, hc], feed_dict={x: inputX, h0: inputH, c0: inputC})
tfPara = {}
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("test4.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (-1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (-1, nHiddenDim))
profile.set_shape(inputT0.name, [1, 1, nInputDim], [nBatchSize, nSequenceLength, nInputDim], [nBatchSize * 2, nSequenceLength * 2, nInputDim])
profile.set_shape(inputT1.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
profile.set_shape(inputT2.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
config.add_optimization_profile(profile)
para = np.load("test4.npz")
weight = [np.split(i, [nInputDim], axis=0) for i in np.split(para["rnn/lstm_cell/kernel:0"], 4, axis=1)]
bias = np.split(para["rnn/lstm_cell/bias:0"], 4)
weightXLayerList = [network.add_constant([nInputDim, nHiddenDim], weight[i][0].reshape(-1)) for i in range(4)]
weightHLayerList = [network.add_constant([nHiddenDim, nHiddenDim], weight[i][1].reshape(-1)) for i in range(4)]
biasLayerList = [network.add_constant([1, nHiddenDim], bias[i]) for i in range(4)]
loop = network.add_loop()
def gate(network, xTensor, wx, hTensor, wh, b, gateName):
_h0 = network.add_matrix_multiply(xTensor, trt.MatrixOperation.NONE, wx, trt.MatrixOperation.NONE)
_h1 = network.add_matrix_multiply(hTensor, trt.MatrixOperation.NONE, wh, trt.MatrixOperation.NONE)
_h2 = network.add_elementwise(_h0.get_output(0), _h1.get_output(0), trt.ElementWiseOperation.SUM)
_h3 = network.add_elementwise(_h2.get_output(0), b, trt.ElementWiseOperation.SUM)
if gateName == "F" and np.abs(forgetBias) > epsilon:
_constant = network.add_constant([1, 1], np.array(forgetBias, dtype=np.float32))
_h4 = network.add_elementwise(_h3.get_output(0), _constant.get_output(0), trt.ElementWiseOperation.SUM)
else:
_h4 = _h3
if gateName == "C":
_h5 = network.add_activation(_h4.get_output(0), trt.ActivationType.TANH)
else:
_h5 = network.add_activation(_h4.get_output(0), trt.ActivationType.SIGMOID)
return _h5
_t0 = network.add_shape(inputT0)
_t1 = network.add_slice(_t0.get_output(0), [1], [1], [1])
_t2 = network.add_shuffle(_t1.get_output(0))
_t2.reshape_dims = ()
loop.add_trip_limit(_t2.get_output(0), trt.TripLimit.COUNT)
iteratorLayer = loop.add_iterator(inputT0, 1, False) # iterator throws one piece of inputT0 each time, shape: [nBatchSize, nInputDim]
hiddenStateLayer = loop.add_recurrence(inputT1) # initial hidden state and cell state
cellStateLayer = loop.add_recurrence(inputT2)
# the order of weights is ICFO rather than IFCO
gateI = gate(network, iteratorLayer.get_output(0), weightXLayerList[0].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[0].get_output(0), biasLayerList[0].get_output(0), "I")
gateC = gate(network, iteratorLayer.get_output(0), weightXLayerList[1].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[1].get_output(0), biasLayerList[1].get_output(0), "C")
gateF = gate(network, iteratorLayer.get_output(0), weightXLayerList[2].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[2].get_output(0), biasLayerList[2].get_output(0), "F")
gateO = gate(network, iteratorLayer.get_output(0), weightXLayerList[3].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[3].get_output(0), biasLayerList[3].get_output(0), "O")
_h5 = network.add_elementwise(gateF.get_output(0), cellStateLayer.get_output(0), trt.ElementWiseOperation.PROD)
_h6 = network.add_elementwise(gateI.get_output(0), gateC.get_output(0), trt.ElementWiseOperation.PROD)
newCellStateLayer = network.add_elementwise(_h5.get_output(0), _h6.get_output(0), trt.ElementWiseOperation.SUM)
_h7 = network.add_activation(newCellStateLayer.get_output(0), trt.ActivationType.TANH)
_h8 = network.add_elementwise(gateO.get_output(0), _h7.get_output(0), trt.ElementWiseOperation.PROD)
if useProjection:
matrix2D = network.add_constant([nHiddenDim, nHiddenDim], para["rnn/lstm_cell/projection/kernel:0"].astype(np.float32))
newHiddenStateLayer = network.add_matrix_multiply(_h8.get_output(0), trt.MatrixOperation.NONE, matrix2D.get_output(0), trt.MatrixOperation.NONE)
else:
newHiddenStateLayer = _h8
hiddenStateLayer.set_input(1, newHiddenStateLayer.get_output(0))
cellStateLayer.set_input(1, newCellStateLayer.get_output(0))
loopOutput0 = loop.add_loop_output(hiddenStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final hidden state, shape: [nBatchSize,nHiddenSize]
loopOutput1 = loop.add_loop_output(newHiddenStateLayer.get_output(0), trt.LoopOutput.CONCATENATE, 1) # output all hidden state, shape: [nBatchSize,nSequenceLength,nHiddenSize]
loopOutput1.set_input(1, _t2.get_output(0))
loopOutput2 = loop.add_loop_output(cellStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final cell state, shape: [nBatchSize,nHiddenSize]
network.mark_output(loopOutput0.get_output(0))
network.mark_output(loopOutput1.get_output(0))
network.mark_output(loopOutput2.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nBatchSize, nSequenceLength, nInputDim])
context.set_input_shape(engine.get_tensor_name(1), [nBatchSize, nHiddenDim])
context.set_input_shape(engine.get_tensor_name(2), [nBatchSize, nHiddenDim])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
outputTF = np.concatenate([x[:, np.newaxis, :] for x in outputTF], axis=1)
#printArrayInformation(inputX,"input")
#print(inputX)
#printArrayInformation(outputTFhc[1],"TF h1")
#printArrayInformation(outputH0,"TRT h1")
#printArrayInformation(outputTFhc[0],"TF c1")
#printArrayInformation(outputH2,"TRT c1")
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH1,"TRT AllOutput")
check(outputTFhc[1], outputH0, True, "h1")
check(outputTFhc[0], outputH2, True, "c1")
check(outputTF, outputH1, True, "AllOutput")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
def test5():
print("\ntf.contrib.cudnn_rnn.CudnnLSTM ------------------------------------")
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nSequenceLength, nInputDim], name="x")
h0 = tf.compat.v1.placeholder(tf.float32, [None, 1, nHiddenDim], name="h0")
c0 = tf.compat.v1.placeholder(tf.float32, [None, 1, nHiddenDim], name="c0")
lstm = tf.contrib.cudnn_rnn.CudnnLSTM( \
1,
nHiddenDim,
input_mode="linear_input",
direction="unidirectional",
dropout=0.0,
seed=None,
dtype=tf.dtypes.float32,
kernel_initializer=None,
bias_initializer=None,
name=None
)
y, hc = lstm(
x,
initial_state=(h0, c0), # [h0,c0] rather than [c0,h0]
sequence_lengths=None,
time_major=False,
training=False
)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF, outputTFhc = sess.run([y, hc], feed_dict={x: inputX, h0: inputH.reshape([nBatchSize, 1, nHiddenDim]), c0: inputC.reshape([nBatchSize, 1, nHiddenDim])})
tfPara = {}
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("test5.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (-1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (-1, nHiddenDim))
profile.set_shape(inputT0.name, [1, 1, nInputDim], [nBatchSize, nSequenceLength, nInputDim], [nBatchSize * 2, nSequenceLength * 2, nInputDim])
profile.set_shape(inputT1.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
profile.set_shape(inputT2.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
config.add_optimization_profile(profile)
para = np.load("test5.npz")["cudnn_lstm/opaque_kernel:0"]
# --------------------------------+-------------------------------+
# | weight | bias |
# --------------------------------+-------------------------------+
# |wIX|wCX|wFX|wOX|wIH|wCH|wFH|wOH|bIX|bCX|bFX|bOX|bIH|bCH|bFH|bOH|
# --------------------------------+-------------------------------+
weightX, weightH, bias = np.split(para, [nInputDim * nHiddenDim * 4, (nInputDim + nHiddenDim) * nHiddenDim * 4])
weightXLayerList = [network.add_constant([nInputDim, nHiddenDim], i.reshape(nHiddenDim, nInputDim).transpose().reshape(-1)) for i in np.split(weightX, 4)]
weightHLayerList = [network.add_constant([nHiddenDim, nHiddenDim], i.reshape(nHiddenDim, nHiddenDim).transpose().reshape(-1)) for i in np.split(weightH, 4)]
biasLayerList = [network.add_constant([1, nHiddenDim], i.reshape(-1)) for i in np.split(np.sum(bias.reshape(2, -1), axis=0), 4)]
def gate(network, xTensor, wx, hTensor, wh, b, isSigmoid):
_h0 = network.add_matrix_multiply(xTensor, trt.MatrixOperation.NONE, wx, trt.MatrixOperation.NONE)
_h1 = network.add_matrix_multiply(hTensor, trt.MatrixOperation.NONE, wh, trt.MatrixOperation.NONE)
_h2 = network.add_elementwise(_h0.get_output(0), _h1.get_output(0), trt.ElementWiseOperation.SUM)
_h3 = network.add_elementwise(_h2.get_output(0), b, trt.ElementWiseOperation.SUM)
_h4 = network.add_activation(_h3.get_output(0), trt.ActivationType.SIGMOID if isSigmoid else trt.ActivationType.TANH)
return _h4
loop = network.add_loop()
_t0 = network.add_shape(inputT0)
_t1 = network.add_slice(_t0.get_output(0), [1], [1], [1])
_t2 = network.add_shuffle(_t1.get_output(0))
_t2.reshape_dims = ()
loop.add_trip_limit(_t2.get_output(0), trt.TripLimit.COUNT)
iteratorLayer = loop.add_iterator(inputT0, 1, False) # iterator throws one piece of inputT0 each time, shape: [nBatchSize, nInputDim]
hiddenStateLayer = loop.add_recurrence(inputT1) # initial hidden state and cell state
cellStateLayer = loop.add_recurrence(inputT2)
gateI = gate(network, iteratorLayer.get_output(0), weightXLayerList[0].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[0].get_output(0), biasLayerList[0].get_output(0), True)
gateF = gate(network, iteratorLayer.get_output(0), weightXLayerList[1].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[1].get_output(0), biasLayerList[1].get_output(0), True)
gateC = gate(network, iteratorLayer.get_output(0), weightXLayerList[2].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[2].get_output(0), biasLayerList[2].get_output(0), False)
gateO = gate(network, iteratorLayer.get_output(0), weightXLayerList[3].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[3].get_output(0), biasLayerList[3].get_output(0), True)
_h5 = network.add_elementwise(gateF.get_output(0), cellStateLayer.get_output(0), trt.ElementWiseOperation.PROD)
_h6 = network.add_elementwise(gateI.get_output(0), gateC.get_output(0), trt.ElementWiseOperation.PROD)
newCellStateLayer = network.add_elementwise(_h5.get_output(0), _h6.get_output(0), trt.ElementWiseOperation.SUM)
_h7 = network.add_activation(newCellStateLayer.get_output(0), trt.ActivationType.TANH)
newHiddenStateLayer = network.add_elementwise(gateO.get_output(0), _h7.get_output(0), trt.ElementWiseOperation.PROD)
hiddenStateLayer.set_input(1, newHiddenStateLayer.get_output(0))
cellStateLayer.set_input(1, newCellStateLayer.get_output(0))
loopOutput0 = loop.add_loop_output(hiddenStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final hidden state, shape: [nBatchSize,nHiddenSize]
loopOutput1 = loop.add_loop_output(newHiddenStateLayer.get_output(0), trt.LoopOutput.CONCATENATE, 1) # output all hidden state, shape: [nBatchSize,nSequenceLength,nHiddenSize]
loopOutput1.set_input(1, _t2.get_output(0))
loopOutput2 = loop.add_loop_output(cellStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final cell state, shape: [nBatchSize,nHiddenSize]
network.mark_output(loopOutput0.get_output(0))
network.mark_output(loopOutput1.get_output(0))
network.mark_output(loopOutput2.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nBatchSize, nSequenceLength, nInputDim])
context.set_input_shape(engine.get_tensor_name(1), [nBatchSize, nHiddenDim])
context.set_input_shape(engine.get_tensor_name(2), [nBatchSize, nHiddenDim])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
outputTFhc = [i[:, 0, :] for i in outputTFhc]
#printArrayInformation(inputX,"input")
#print(inputX)
#printArrayInformation(outputTFhc[0],"TF h1")
#printArrayInformation(outputH0,"TRT h1")
#printArrayInformation(outputTFhc[1],"TF c1")
#printArrayInformation(outputH2,"TRT c1")
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH1,"TRT AllOutput")
check(outputTFhc[0], outputH0, True, "h1")
check(outputTFhc[1], outputH2, True, "c1")
check(outputTF, outputH1, True, "AllOutput")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
def test6():
print("\n[tf.contrib.rnn.LSTMBlockCell / tf.contrib.rnn.LSTMBlockFusedCell] + [tf.nn.static_rnn / tf.nn.dynamic_rnn]")
forgetBias = 1.0
# TensorFlow part ----------------------------------------------------------
x = tf.compat.v1.placeholder(tf.float32, [None, nSequenceLength, nInputDim], name="x")
h0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="h0")
c0 = tf.compat.v1.placeholder(tf.float32, [None, nHiddenDim], name="c0")
# tf.contrib.rnn.LSTMBlockCell and tf.contrib.rnn.LSTMBlockFusedCell shares the same API and the order of weights
cell = tf.contrib.rnn.LSTMBlockCell( \
#cell = tf.contrib.rnn.LSTMBlockFusedCell( \
nHiddenDim,
forget_bias=forgetBias,
cell_clip=None,
use_peephole=False,
dtype=None,
reuse=None,
name="tf-contrib-rnn-LSTMBlockCell-LSTM"
)
# Two equivalent realization
if True:
y,hc = tf.nn.static_rnn( \
cell,
[ x[:,i,:] for i in range(nSequenceLength) ],
initial_state=[c0,h0],
dtype=None,
sequence_length=None,
scope=None
)
else:
y,hc = tf.nn.dynamic_rnn( \
cell,
x,
sequence_length=None,
initial_state=[c0,h0],
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
tfConfig = tf.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf.compat.v1.Session(config=tfConfig)
sess.run(tf.compat.v1.global_variables_initializer())
outputTF, outputTFhc = sess.run([y, hc], feed_dict={x: inputX, h0: inputH, c0: inputC})
tfPara = {}
print("Weight:")
for i in tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES):
name, value = i.name, sess.run(i)
print(name, value.shape)
tfPara[name] = value
np.savez("test6.npz", **tfPara)
sess.close()
# TensorRT part ------------------------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, nInputDim))
inputT1 = network.add_input("inputT1", trt.float32, (-1, nHiddenDim))
inputT2 = network.add_input("inputT2", trt.float32, (-1, nHiddenDim))
profile.set_shape(inputT0.name, [1, 1, nInputDim], [nBatchSize, nSequenceLength, nInputDim], [nBatchSize * 2, nSequenceLength * 2, nInputDim])
profile.set_shape(inputT1.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
profile.set_shape(inputT2.name, [1, nHiddenDim], [nBatchSize, nHiddenDim], [nBatchSize * 2, nHiddenDim])
config.add_optimization_profile(profile)
para = np.load("test6.npz")
weight = [np.split(i, [nInputDim], axis=0) for i in np.split(para["rnn/tf-contrib-rnn-LSTMBlockCell-LSTM/kernel:0"], 4, axis=1)]
bias = np.split(para["rnn/tf-contrib-rnn-LSTMBlockCell-LSTM/bias:0"], 4)
weightXLayerList = [network.add_constant([nInputDim, nHiddenDim], weight[i][0].reshape(-1)) for i in range(4)]
weightHLayerList = [network.add_constant([nHiddenDim, nHiddenDim], weight[i][1].reshape(-1)) for i in range(4)]
biasLayerList = [network.add_constant([1, nHiddenDim], bias[i]) for i in range(4)]
loop = network.add_loop()
def gate(network, xTensor, wx, hTensor, wh, b, gateName):
_h0 = network.add_matrix_multiply(xTensor, trt.MatrixOperation.NONE, wx, trt.MatrixOperation.NONE)
_h1 = network.add_matrix_multiply(hTensor, trt.MatrixOperation.NONE, wh, trt.MatrixOperation.NONE)
_h2 = network.add_elementwise(_h0.get_output(0), _h1.get_output(0), trt.ElementWiseOperation.SUM)
_h3 = network.add_elementwise(_h2.get_output(0), b, trt.ElementWiseOperation.SUM)
if gateName == "F" and np.abs(forgetBias) > epsilon:
_constant = network.add_constant([1, 1], np.array(forgetBias, dtype=np.float32))
_h4 = network.add_elementwise(_h3.get_output(0), _constant.get_output(0), trt.ElementWiseOperation.SUM)
else:
_h4 = _h3
if gateName == "C":
_h5 = network.add_activation(_h4.get_output(0), trt.ActivationType.TANH)
else:
_h5 = network.add_activation(_h4.get_output(0), trt.ActivationType.SIGMOID)
return _h5
_t0 = network.add_shape(inputT0)
_t1 = network.add_slice(_t0.get_output(0), [1], [1], [1])
_t2 = network.add_shuffle(_t1.get_output(0))
_t2.reshape_dims = ()
loop.add_trip_limit(_t2.get_output(0), trt.TripLimit.COUNT)
iteratorLayer = loop.add_iterator(inputT0, 1, False) # iterator throws one piece of inputT0 each time, shape: [nBatchSize, nInputDim]
hiddenStateLayer = loop.add_recurrence(inputT1) # initial hidden state and cell state
cellStateLayer = loop.add_recurrence(inputT2)
# ICFO not IFCO
gateI = gate(network, iteratorLayer.get_output(0), weightXLayerList[0].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[0].get_output(0), biasLayerList[0].get_output(0), "I")
gateC = gate(network, iteratorLayer.get_output(0), weightXLayerList[1].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[1].get_output(0), biasLayerList[1].get_output(0), "C")
gateF = gate(network, iteratorLayer.get_output(0), weightXLayerList[2].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[2].get_output(0), biasLayerList[2].get_output(0), "F")
gateO = gate(network, iteratorLayer.get_output(0), weightXLayerList[3].get_output(0), hiddenStateLayer.get_output(0), weightHLayerList[3].get_output(0), biasLayerList[3].get_output(0), "O")
_h5 = network.add_elementwise(gateF.get_output(0), cellStateLayer.get_output(0), trt.ElementWiseOperation.PROD)
_h6 = network.add_elementwise(gateI.get_output(0), gateC.get_output(0), trt.ElementWiseOperation.PROD)
newCellStateLayer = network.add_elementwise(_h5.get_output(0), _h6.get_output(0), trt.ElementWiseOperation.SUM)
_h7 = network.add_activation(newCellStateLayer.get_output(0), trt.ActivationType.TANH)
newHiddenStateLayer = network.add_elementwise(gateO.get_output(0), _h7.get_output(0), trt.ElementWiseOperation.PROD)
hiddenStateLayer.set_input(1, newHiddenStateLayer.get_output(0))
cellStateLayer.set_input(1, newCellStateLayer.get_output(0))
loopOutput0 = loop.add_loop_output(hiddenStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final hidden state, shape: [nBatchSize,nHiddenSize]
loopOutput1 = loop.add_loop_output(newHiddenStateLayer.get_output(0), trt.LoopOutput.CONCATENATE, 1) # output all hidden state, shape: [nBatchSize,nSequenceLength,nHiddenSize]
loopOutput1.set_input(1, _t2.get_output(0))
loopOutput2 = loop.add_loop_output(cellStateLayer.get_output(0), trt.LoopOutput.LAST_VALUE, 0) # output final cell state, shape: [nBatchSize,nHiddenSize]
network.mark_output(loopOutput0.get_output(0))
network.mark_output(loopOutput1.get_output(0))
network.mark_output(loopOutput2.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_input_shape(engine.get_tensor_name(0), [nBatchSize, nSequenceLength, nInputDim])
context.set_input_shape(engine.get_tensor_name(1), [nBatchSize, nHiddenDim])
context.set_input_shape(engine.get_tensor_name(2), [nBatchSize, nHiddenDim])
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(inputX.reshape(-1))
inputH1 = np.ascontiguousarray(inputH.reshape(-1))
inputH2 = np.ascontiguousarray(inputC.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(3), dtype=trt.nptype(engine.get_binding_dtype(3)))
outputH1 = np.empty(context.get_binding_shape(4), dtype=trt.nptype(engine.get_binding_dtype(4)))
outputH2 = np.empty(context.get_binding_shape(5), dtype=trt.nptype(engine.get_binding_dtype(5)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, inputD1 = cudart.cudaMallocAsync(inputH1.nbytes, stream)
_, inputD2 = cudart.cudaMallocAsync(inputH2.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
_, outputD1 = cudart.cudaMallocAsync(outputH1.nbytes, stream)
_, outputD2 = cudart.cudaMallocAsync(outputH2.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD1, inputH1.ctypes.data, inputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
cudart.cudaMemcpyAsync(inputD2, inputH2.ctypes.data, inputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(inputD1), int(inputD2), int(outputD0), int(outputD1), int(outputD2)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH1.ctypes.data, outputD1, outputH1.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaMemcpyAsync(outputH2.ctypes.data, outputD2, outputH2.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
outputTF = np.concatenate([x[:, np.newaxis, :] for x in outputTF], axis=1)
#printArrayInformation(inputX,"input")
#print(inputX)
#printArrayInformation(outputTFhc[1],"TF h1")
#printArrayInformation(outputH0,"TRT h1")
#printArrayInformation(outputTFhc[0],"TF c1")
#printArrayInformation(outputH2,"TRT c1")
#printArrayInformation(outputTF,"TF AllOutput")
#printArrayInformation(outputH1,"TRT AllOutput")
check(outputTFhc[1], outputH0, True, "h1")
check(outputTFhc[0], outputH2, True, "c1")
check(outputTF, outputH1, True, "AllOutput")
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(inputD1)
cudart.cudaFree(inputD2)
cudart.cudaFree(outputD0)
cudart.cudaFree(outputD1)
cudart.cudaFree(outputD2)
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
np.set_printoptions(precision=3, linewidth=200, suppress=True)
test1() # tf.keras.layers.LSTM or tf.keras.layers.LSTMCell + tf.keras.layers.RNN
test2() # tf.keras.layers.CuDNNLSTM
test3() # tf.nn.rnn_cell.BasicLSTMCell / tf.contrib.rnn.BasicLSTMCell + tf.nn.static_rnn / tf.nn.dynamic_rnn
test4() # tf.nn.rnn_cell.LSTMCell / tf.contrib.rnn.LSTMCell + tf.nn.static_rnn / tf.nn.dynamic_rnn
test5() # tf.contrib.cudnn_rnn.CudnnLSTM
test6() # tf.contrib.rnn.LSTMBlockCell / tf.contrib.rnn.LSTMBlockFusedCell + tf.nn.static_rnn / tf.nn.dynamic_rnn
print("\ntest finish!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/TypicalAPI-TensorFlow1/RNN-LSTM.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-TensorFlow2/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf2
import tensorrt as trt
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
paraFile = "./para.npz"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.npz ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow2 --------------------------------
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
model = tf2.keras.Model(inputs=modelInput, outputs=z, name="MNISTExample")
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
para = {} # save weight as file
print("Parameter of the model:")
for weight in model.weights:
name, value = weight.name, weight.numpy()
print("%s:\t%s" % (name, value.shape))
para[name] = value
np.savez(paraFile, **para)
del para
print("Succeeded building model in TensorFlow2!")
# Rebuild network, load weights and do inference in TensorRT -------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, nHeight, nWidth])
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
para = np.load(paraFile)
w = np.ascontiguousarray(para["conv1/kernel:0"].transpose(3, 2, 0, 1))
b = np.ascontiguousarray(para["conv1/bias:0"])
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.ascontiguousarray(para["conv2/kernel:0"].transpose(3, 2, 0, 1))
b = np.ascontiguousarray(para["conv2/bias:0"])
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.first_transpose = (0, 2, 3, 1)
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.ascontiguousarray(para["dense1/kernel:0"])
b = np.ascontiguousarray(para["dense1/bias:0"].reshape(1, -1))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.ascontiguousarray(para["dense2/kernel:0"])
b = np.ascontiguousarray(para["dense2/bias:0"].reshape(1, -1))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-TensorFlow2/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-pyTorch/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import calibrator
import cv2
import numpy as np
import tensorrt as trt
import torch as t
import torch.nn.functional as F
from cuda import cudart
from torch.autograd import Variable
np.random.seed(31193)
t.manual_seed(97)
t.cuda.manual_seed_all(97)
t.backends.cudnn.deterministic = True
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
paraFile = "./para.npz"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.npz ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
# Create network and train model in pyTorch ------------------------------------
class Net(t.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = t.nn.Conv2d(1, 32, (5, 5), padding=(2, 2), bias=True)
self.conv2 = t.nn.Conv2d(32, 64, (5, 5), padding=(2, 2), bias=True)
self.fc1 = t.nn.Linear(64 * 7 * 7, 1024, bias=True)
self.fc2 = t.nn.Linear(1024, 10, bias=True)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = x.reshape(-1, 64 * 7 * 7)
x = F.relu(self.fc1(x))
y = self.fc2(x)
z = F.softmax(y, dim=1)
z = t.argmax(z, dim=1)
return y, z
class MyData(t.utils.data.Dataset):
def __init__(self, isTrain=True):
if isTrain:
self.data = trainFileList
else:
self.data = testFileList
def __getitem__(self, index):
imageName = self.data[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
index = int(imageName[-7])
label[index] = 1
return t.from_numpy(data.reshape(1, nHeight, nWidth).astype(np.float32)), t.from_numpy(label)
def __len__(self):
return len(self.data)
model = Net().cuda()
ceLoss = t.nn.CrossEntropyLoss()
opt = t.optim.Adam(model.parameters(), lr=0.001)
trainDataset = MyData(True)
testDataset = MyData(False)
trainLoader = t.utils.data.DataLoader(dataset=trainDataset, batch_size=nTrainBatchSize, shuffle=True)
testLoader = t.utils.data.DataLoader(dataset=testDataset, batch_size=nTrainBatchSize, shuffle=True)
for epoch in range(10):
for xTrain, yTrain in trainLoader:
xTrain = Variable(xTrain).cuda()
yTrain = Variable(yTrain).cuda()
opt.zero_grad()
y_, z = model(xTrain)
loss = ceLoss(y_, yTrain)
loss.backward()
opt.step()
with t.no_grad():
acc = 0
n = 0
for xTest, yTest in testLoader:
xTest = Variable(xTest).cuda()
yTest = Variable(yTest).cuda()
y_, z = model(xTest)
acc += t.sum(z == t.matmul(yTest, t.Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).to("cuda:0"))).cpu().numpy()
n += xTest.shape[0]
print("%s, epoch %2d, loss = %f, test acc = %f" % (dt.now(), epoch + 1, loss.data, acc / n))
para = {} # save weight as file
for name, parameter in model.named_parameters():
#print(name, parameter.detach().cpu().numpy().shape)
para[name] = parameter.detach().cpu().numpy()
np.savez(paraFile, **para)
del para
print("Succeeded building model in pyTorch!")
# Rebuild network, load weights and do inference in TensorRT -------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
inputTensor = network.add_input("inputT0", trt.float32, [-1, 1, nHeight, nWidth])
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
para = np.load(paraFile)
w = np.ascontiguousarray(para["conv1.weight"])
b = np.ascontiguousarray(para["conv1.bias"])
_0 = network.add_convolution_nd(inputTensor, 32, [5, 5], trt.Weights(w), trt.Weights(b))
_0.padding_nd = [2, 2]
_1 = network.add_activation(_0.get_output(0), trt.ActivationType.RELU)
_2 = network.add_pooling_nd(_1.get_output(0), trt.PoolingType.MAX, [2, 2])
_2.stride_nd = [2, 2]
w = np.ascontiguousarray(para["conv2.weight"])
b = np.ascontiguousarray(para["conv2.bias"])
_3 = network.add_convolution_nd(_2.get_output(0), 64, [5, 5], trt.Weights(w), trt.Weights(b))
_3.padding_nd = [2, 2]
_4 = network.add_activation(_3.get_output(0), trt.ActivationType.RELU)
_5 = network.add_pooling_nd(_4.get_output(0), trt.PoolingType.MAX, [2, 2])
_5.stride_nd = [2, 2]
_6 = network.add_shuffle(_5.get_output(0))
_6.reshape_dims = (-1, 64 * 7 * 7)
w = np.ascontiguousarray(para["fc1.weight"].transpose())
b = np.ascontiguousarray(para["fc1.bias"].reshape(1, -1))
_7 = network.add_constant(w.shape, trt.Weights(w))
_8 = network.add_matrix_multiply(_6.get_output(0), trt.MatrixOperation.NONE, _7.get_output(0), trt.MatrixOperation.NONE)
_9 = network.add_constant(b.shape, trt.Weights(b))
_10 = network.add_elementwise(_8.get_output(0), _9.get_output(0), trt.ElementWiseOperation.SUM)
_11 = network.add_activation(_10.get_output(0), trt.ActivationType.RELU)
w = np.ascontiguousarray(para["fc2.weight"].transpose())
b = np.ascontiguousarray(para["fc2.bias"].reshape(1, -1))
_12 = network.add_constant(w.shape, trt.Weights(w))
_13 = network.add_matrix_multiply(_11.get_output(0), trt.MatrixOperation.NONE, _12.get_output(0), trt.MatrixOperation.NONE)
_14 = network.add_constant(b.shape, trt.Weights(b))
_15 = network.add_elementwise(_13.get_output(0), _14.get_output(0), trt.ElementWiseOperation.SUM)
_16 = network.add_softmax(_15.get_output(0))
_16.axes = 1 << 1
_17 = network.add_topk(_16.get_output(0), trt.TopKOperation.MAX, 1, 1 << 1)
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-pyTorch/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from glob import glob
import cv2
import numpy as np
nCalibrationData = 100
nHeight = 28
nWidth = 28
dataPath = "../../../00-MNISTData/"
calibrationDataPath = dataPath + "test/"
inferenceDataFile = dataPath + "8.png"
inferenceData = cv2.imread(inferenceDataFile, cv2.IMREAD_GRAYSCALE).astype(np.float32)
calibrationDataFileList = sorted(glob(calibrationDataPath + "*.jpg"))[:nCalibrationData]
calibrationData = np.empty([nCalibrationData, 1, nHeight, nWidth])
for i in range(nCalibrationData):
calibrationData[i, 0] = cv2.imread(calibrationDataFileList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
dataDictionary = {}
dataDictionary["inferenceData"] = inferenceData
dataDictionary["calibrationData"] = calibrationData
np.savez("data.npz", **dataDictionary)
print("Succeeded creating data for calibration and inference!")
| trt-samples-for-hackathon-cn-master | cookbook/03-BuildEngineByTensorRTAPI/MNISTExample-pyTorch/C++/createCalibrationAndInferenceData.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
import pytorch_quantization.calib as calib
import pytorch_quantization.nn as qnn
import tensorrt as trt
import torch as t
import torch.nn.functional as F
from cuda import cudart
from pytorch_quantization import quant_modules
from pytorch_quantization.tensor_quant import QuantDescriptor
from torch.autograd import Variable
np.random.seed(31193)
t.manual_seed(97)
t.cuda.manual_seed_all(97)
t.backends.cudnn.deterministic = True
nTrainBatchSize = 128
nCalibrationBatch = 4
nHeight = 28
nWidth = 28
onnxFile = "./model.onnx"
onnxFilePolygraphy = "./model-p.onnx"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for QAT
calibrator = ["max", "histogram"][0]
percentileList = [99.9, 99.99, 99.999, 99.9999]
quant_desc_input = QuantDescriptor(calib_method=calibrator, axis=None)
qnn.QuantConv2d.set_default_quant_desc_input(quant_desc_input)
qnn.QuantConvTranspose2d.set_default_quant_desc_input(quant_desc_input)
qnn.QuantLinear.set_default_quant_desc_input(quant_desc_input)
quant_desc_weight = QuantDescriptor(calib_method=calibrator, axis=None)
qnn.QuantConv2d.set_default_quant_desc_weight(quant_desc_weight)
qnn.QuantConvTranspose2d.set_default_quant_desc_weight(quant_desc_weight)
qnn.QuantLinear.set_default_quant_desc_weight(quant_desc_weight)
os.system("rm -rf ./*.onnx ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
# Create network and train model in pyTorch ------------------------------------
class Net(t.nn.Module):
def __init__(self):
super(Net, self).__init__()
#self.conv1 = t.nn.Conv2d(1, 32, (5, 5), padding=(2, 2), bias=True) # replace into corresponding Quantize API
self.conv1 = qnn.QuantConv2d(1, 32, (5, 5), padding=(2, 2), bias=True)
#self.conv2 = t.nn.Conv2d(32, 64, (5, 5), padding=(2, 2), bias=True)
self.conv2 = qnn.QuantConv2d(32, 64, (5, 5), padding=(2, 2), bias=True)
#self.fc1 = t.nn.Linear(64 * 7 * 7, 1024, bias=True)
self.fc1 = qnn.QuantLinear(64 * 7 * 7, 1024, bias=True)
#self.fc2 = t.nn.Linear(1024, 10, bias=True)
self.fc2 = qnn.QuantLinear(1024, 10, bias=True)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = x.reshape(-1, 64 * 7 * 7)
x = F.relu(self.fc1(x))
y = self.fc2(x)
z = F.softmax(y, dim=1)
z = t.argmax(z, dim=1)
return y, z
class MyData(t.utils.data.Dataset):
def __init__(self, isTrain=True):
if isTrain:
self.data = trainFileList
else:
self.data = testFileList
def __getitem__(self, index):
imageName = self.data[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
index = int(imageName[-7])
label[index] = 1
return t.from_numpy(data.reshape(1, nHeight, nWidth).astype(np.float32)), t.from_numpy(label)
def __len__(self):
return len(self.data)
model = Net().cuda()
ceLoss = t.nn.CrossEntropyLoss()
opt = t.optim.Adam(model.parameters(), lr=0.001)
trainDataset = MyData(True)
testDataset = MyData(False)
trainLoader = t.utils.data.DataLoader(dataset=trainDataset, batch_size=nTrainBatchSize, shuffle=True)
testLoader = t.utils.data.DataLoader(dataset=testDataset, batch_size=nTrainBatchSize, shuffle=True)
for epoch in range(10):
for xTrain, yTrain in trainLoader:
xTrain = Variable(xTrain).cuda()
yTrain = Variable(yTrain).cuda()
opt.zero_grad()
y_, z = model(xTrain)
loss = ceLoss(y_, yTrain)
loss.backward()
opt.step()
with t.no_grad():
acc = 0
n = 0
for xTest, yTest in testLoader:
xTest = Variable(xTest).cuda()
yTest = Variable(yTest).cuda()
y_, z = model(xTest)
acc += t.sum(z == t.matmul(yTest, t.Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).to("cuda:0"))).cpu().numpy()
n += xTest.shape[0]
print("%s, epoch %2d, loss = %f, test acc = %f" % (dt.now(), epoch + 1, loss.data, acc / n))
print("Succeeded building model in pyTorch!")
# Calibrate model in pyTorch ---------------------------------------------------
quant_modules.initialize()
with t.no_grad():
# turn on calibration tool
for name, module in model.named_modules():
if isinstance(module, qnn.TensorQuantizer):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
for i, (xTrain, yTrain) in enumerate(trainLoader):
if i >= nCalibrationBatch:
break
model(Variable(xTrain).cuda())
# turn off calibration tool
for name, module in model.named_modules():
if isinstance(module, qnn.TensorQuantizer):
if module._calibrator is not None:
module.enable_quant()
module.disable_calib()
else:
module.enable()
def computeArgMax(model, **kwargs):
for _, module in model.named_modules():
if isinstance(module, qnn.TensorQuantizer) and module._calibrator is not None:
if isinstance(module._calibrator, calib.MaxCalibrator):
module.load_calib_amax()
else:
module.load_calib_amax(**kwargs)
if calibrator == "max":
computeArgMax(model, method="max")
#modelName = "./model-max-%d.pth" % (nCalibrationBatch * trainLoader.batch_size)
else:
for percentile in percentileList:
computeArgMax(model, method="percentile")
#modelName = "./model-percentile-%f-%d.pth" % (percentile, nCalibrationBatch * trainLoader.batch_size)
for method in ["mse", "entropy"]:
computeArgMax(model, method=method)
#modelName = "./model-%s-%f.pth" % (method, percentile)
#t.save(model.state_dict(), modelName)
print("Succeeded calibrating model in pyTorch!")
# Fine-tune model in pyTorch, not required -------------------------------------
model.cuda()
for epoch in range(10):
for xTrain, yTrain in trainLoader:
xTrain = Variable(xTrain).cuda()
yTrain = Variable(yTrain).cuda()
opt.zero_grad()
y_, z = model(xTrain)
loss = ceLoss(y_, yTrain)
loss.backward()
opt.step()
with t.no_grad():
acc = 0
n = 0
for xTest, yTest in testLoader:
xTest = Variable(xTest).cuda()
yTest = Variable(yTest).cuda()
y_, z = model(xTest)
acc += t.sum(z == t.matmul(yTest, t.Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).to("cuda:0"))).cpu().numpy()
n += xTest.shape[0]
print("%s, epoch %2d, loss = %f, test acc = %f" % (dt.now(), epoch + 1, loss.data, acc / n))
print("Succeeded fine tuning model in pyTorch!")
# Export model as ONNX file ----------------------------------------------------
model.eval()
qnn.TensorQuantizer.use_fb_fake_quant = True
t.onnx.export(model, t.randn(1, 1, nHeight, nWidth, device="cuda"), onnxFile, input_names=["x"], output_names=["y", "z"], do_constant_folding=True, verbose=True, keep_initializers_as_inputs=True, opset_version=13, dynamic_axes={"x": {0: "nBatchSize"}})
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
os.system("polygraphy surgeon sanitize --fold-constant %s -o %s" % (onnxFile, onnxFilePolygraphy))
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.INT8)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFilePolygraphy):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFilePolygraphy, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
network.unmark_output(network.get_output(0)) # remove output tensor "y"
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/pyTorch-ONNX-TensorRT-QAT/main.py |
"""
from cuda import cudart
#from datetime import datetime as dt
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import config_pb2, meta_graph_pb2, rewriter_config_pb2
from tensorflow.python.framework import importer, ops
from tensorflow.python.grappler import tf_optimizer
from tensorflow.python.training import saver
import tensorrt as trt
import cv2
tf2.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf2.compat.v1.set_random_seed(97)
nTrainbatchSize = 256
ckptFile = "./model.ckpt"
pbFile = "model-V1.pb"
pb2File = "model-V2.pb"
onnxFile = "model-V1.onnx"
onnx2File = "model-V2.onnx"
trtFile = "model.plan"
#inferenceImage = dataPath + "8.png"
outputNodeName = "z"
isRemoveTransposeNode = False # 变量说明见用到该变量的地方
isAddQDQForInput = False # 变量说明见用到该变量的地方
"""
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
#===============================================================================
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
import tensorrt as trt
from tensorflow.python.framework.convert_to_constants import \
convert_variables_to_constants_v2
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFilePath = "./model/"
pbFile = "model.pb"
onnxFile = "./model.onnx"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# 是否保存为单独的一个 .pb文件(两种导出方式),这里选 True 或 Flase 都能导出为 .onnx
bSinglePbFile = True
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
#===============================================================================
isAddQDQForInput = False
#===============================================================================
#os.system("rm -rf %s ./*.plan ./*.cache" % pbFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
# TensorFlow 中创建网络并保存为 .pb 文件 -------------------------------------------
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
x = modelInput
tf2.quantization.quantize(x, )
tf2.quantization.dequantize
"""
tf.quantization.quantize(
input,
min_range,
max_range,
T,
mode="MIN_COMBINED",
round_mode="HALF_AWAY_FROM_ZERO",
name=None,
narrow_range=False,
axis=None,
ensure_minimum_range=0.01
)
tf.quantization.dequantize(
input,
min_range,
max_range,
mode="MIN_COMBINED",
name=None,
axis=None,
narrow_range=False,
dtype=tf.dtypes.float32
)
"""
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
model = tf2.keras.Model(inputs=modelInput, outputs=z, name="MNISTExample")
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
#history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=1, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
#checkpoint = tf2.train.Checkpoint(model)
#checkpoint.save(checkpointPath)
#print("Succeeded saving .ckpt in TensorFlow!")
import tensorflow_model_optimization as tfmot
modelQAT = tfmot.quantization.keras.quantize_model(model)
modelQAT.summary()
# `quantize_model` requires a recompile.
modelQAT.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
modelQAT.fit(xTrain, yTrain, batch_size=nTrainBatchSize, epochs=1, validation_split=0.1)
print("Baseline test accuracy: %.4f" % model.evaluate(xTest, yTest, verbose=0)[1])
print("Quantize test accuracy: %.4f" % modelQAT.evaluate(xTest, yTest, verbose=0)[1])
tf2.saved_model.save(model, pbFilePath)
if bSinglePbFile:
modelFunction = tf2.function(lambda Input: modelQAT(Input)).get_concrete_function(tf2.TensorSpec(modelQAT.inputs[0].shape, modelQAT.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(modelFunction)
frozen_func.graph.as_graph_def()
print("_________________________________________________________________")
print("Frozen model inputs:\n", frozen_func.inputs)
print("Frozen model outputs:\n", frozen_func.outputs)
print("Frozen model layers:")
for op in frozen_func.graph.get_operations():
print(op.name)
tf2.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=pbFilePath, name=pbFile, as_text=False)
print("Succeeded building model in TensorFlow2!")
# 将 .pb 文件转换为 .onnx 文件 ----------------------------------------------------
if bSinglePbFile:
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs-as-nchw 'Input:0' --opset 13 --inputs 'Input:0' --outputs 'Identity:0'" % (pbFilePath + pbFile, onnxFile))
else:
os.system("python3 -m tf2onnx.convert --saved-model %s --output %s --inputs-as-nchw 'Input:0' --opset 13" % (pbFilePath, onnxFile))
print("Succeeded converting model into ONNX!")
# TensorRT 中加载 .onnx 创建 engine ---------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
networkFlag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
network = builder.create_network(networkFlag)
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.INT8)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, 28, 28]
profile.set_shape(inputTensor.name, [1, 1, 28, 28], [4, 1, 28, 28], [16, 1, 28, 28])
config.add_optimization_profile(profile)
# 为所有输入张量添加 quantize 节点,这里使用经验值 127 <-> 1.0
# 理想状态下需要在 QAT 过程中获取这些取值并添加到输入节点上
if isAddQDQForInput:
quantizeScale = np.array([1.0 / 127.0], dtype=np.float32)
dequantizeScale = np.array([127.0 / 1.0], dtype=np.float32)
one = np.array([1], dtype=np.float32)
zero = np.array([0], dtype=np.float32)
for i in range(network.num_inputs):
inputTensor = network.get_input(i)
for j in range(network.num_layers):
layer = network.get_layer(j)
for k in range(layer.num_inputs):
if (layer.get_input(k) == inputTensor):
print(i, layer, k)
#quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, quantizeScale)
quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, one)
quantizeLayer.set_output_type(0, trt.int8)
quantizeLayer.name = "InputQuantizeNode"
quantizeLayer.get_output(0).name = "QuantizedInputTensor"
#dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, dequantizeScale)
dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, one)
dequantizeLayer.set_output_type(0, trt.float32)
dequantizeLayer.name = "InputDequantizeNode"
dequantizeLayer.get_output(0).name = "DequantizedInputTensor"
layer.set_input(k, dequantizeLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_binding_shape(0, [1, 1, 28, 28])
_, stream = cudart.cudaStreamCreate()
print("Binding0->", engine.get_binding_shape(0), context.get_binding_shape(0), engine.get_binding_dtype(0))
print("Binding1->", engine.get_binding_shape(1), context.get_binding_shape(1), engine.get_binding_dtype(1))
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32)
inputH0 = np.ascontiguousarray(data.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
print("inputH0 :", data.shape)
#print(data)
print("outputH0:", outputH0.shape)
print(outputH0)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT-QAT-TODO/mainV3.py |
"""
from cuda import cudart
#from datetime import datetime as dt
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import config_pb2, meta_graph_pb2, rewriter_config_pb2
from tensorflow.python.framework import importer, ops
from tensorflow.python.grappler import tf_optimizer
from tensorflow.python.training import saver
import tensorrt as trt
import cv2
tf2.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf2.compat.v1.set_random_seed(97)
nTrainbatchSize = 256
ckptFile = "./model.ckpt"
pbFile = "model-V1.pb"
pb2File = "model-V2.pb"
onnxFile = "model-V1.onnx"
onnx2File = "model-V2.onnx"
trtFile = "model.plan"
#inferenceImage = dataPath + "8.png"
outputNodeName = "z"
isRemoveTransposeNode = False # 变量说明见用到该变量的地方
isAddQDQForInput = False # 变量说明见用到该变量的地方
"""
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
#===============================================================================
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
import tensorrt as trt
from tensorflow.python.framework.convert_to_constants import \
convert_variables_to_constants_v2
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFilePath = "./model/"
pbFile = "model.pb"
onnxFile = "./model.onnx"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# 是否保存为单独的一个 .pb文件(两种导出方式),这里选 True 或 Flase 都能导出为 .onnx
bSinglePbFile = True
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
#===============================================================================
isAddQDQForInput = False
checkpointPath = "./checkpoint/model"
checkpointSuffix = "-1"
#===============================================================================
os.system("rm -rf %s ./checkpoint/ ./*.plan ./*.cache" % pbFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
# TensorFlow 中创建网络并保存为 .pb 文件 -------------------------------------------
model = tf2.keras.Sequential([tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32), tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1"), tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1"), tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2"), tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2"), tf2.keras.layers.Reshape([-1], name="reshape"), tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1"), tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2"), tf2.keras.layers.Softmax(axis=1, name="softmax")])
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
#history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
checkpoint = tf2.train.Checkpoint(model)
checkpoint.save(checkpointPath)
print("Succeeded saving .ckpt in TensorFlow!")
import tensorflow_model_optimization as tfmot
LastValueQuantizer = tfmot.quantization.keras.quantizers.LastValueQuantizer
MovingAverageQuantizer = tfmot.quantization.keras.quantizers.MovingAverageQuantizer
class DefaultDenseQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
# Configure how to quantize weights.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return [(layer.activation, MovingAverageQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]
def set_quantize_weights(self, layer, quantize_weights):
# Add this line for each item returned in `get_weights_and_quantizers`
# , in the same order
layer.kernel = quantize_weights[0]
def set_quantize_activations(self, layer, quantize_activations):
# Add this line for each item returned in `get_activations_and_quantizers`
# , in the same order.
layer.activation = quantize_activations[0]
# Configure how to quantize outputs (may be equivalent to activations).
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
#modelQAT = quantize_annotate_model(tf2.keras.Sequential([quantize_annotate_layer(CustomLayer(20, input_shape=(20, )), DefaultDenseQuantizeConfig()), tf.keras.layers.Flatten()]))
model2 = tf2.keras.Sequential([
tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32),
quantize_annotate_layer(tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1"), DefaultDenseQuantizeConfig()),
tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1"),
quantize_annotate_layer(tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2"), DefaultDenseQuantizeConfig()),
tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2"),
tf2.keras.layers.Reshape([-1], name="reshape"),
quantize_annotate_layer(tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1"), DefaultDenseQuantizeConfig()),
quantize_annotate_layer(tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2"), DefaultDenseQuantizeConfig()),
tf2.keras.layers.Softmax(axis=1, name="softmax"),
])
checkpoint = tf2.train.Checkpoint(model)
checkpoint.restore(checkpointPath + checkpointSuffix)
modelQAT = quantize_annotate_model(model2)
with quantize_scope({"DefaultDenseQuantizeConfig": DefaultDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
modelQAT = tfmot.quantization.keras.quantize_apply(modelQAT)
modelQAT.summary()
# `quantize_model` requires a recompile.
modelQAT.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
modelQAT.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
print("Baseline test accuracy: %.4f" % model.evaluate(xTest, yTest, verbose=0)[1])
print("Quantize test accuracy: %.4f" % modelQAT.evaluate(xTest, yTest, verbose=0)[1])
tf2.saved_model.save(modelQAT, pbFilePath)
if bSinglePbFile:
modelFunction = tf2.function(lambda Input: modelQAT(Input)).get_concrete_function(tf2.TensorSpec(modelQAT.inputs[0].shape, modelQAT.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(modelFunction)
frozen_func.graph.as_graph_def()
print("_________________________________________________________________")
print("Frozen model inputs:\n", frozen_func.inputs)
print("Frozen model outputs:\n", frozen_func.outputs)
print("Frozen model layers:")
for op in frozen_func.graph.get_operations():
print(op.name)
tf2.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=pbFilePath, name=pbFile, as_text=False)
print("Succeeded building model in TensorFlow2!")
# 将 .pb 文件转换为 .onnx 文件 ----------------------------------------------------
if bSinglePbFile:
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs-as-nchw 'Input:0' --opset 13 --inputs 'Input:0' --outputs 'Identity:0'" % (pbFilePath + pbFile, onnxFile))
else:
os.system("python3 -m tf2onnx.convert --saved-model %s --output %s --inputs-as-nchw 'Input:0' --opset 13" % (pbFilePath, onnxFile))
print("Succeeded converting model into ONNX!")
# TensorRT 中加载 .onnx 创建 engine ---------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
networkFlag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
network = builder.create_network(networkFlag)
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.INT8)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, 28, 28]
profile.set_shape(inputTensor.name, [1, 1, 28, 28], [4, 1, 28, 28], [16, 1, 28, 28])
config.add_optimization_profile(profile)
# 为所有输入张量添加 quantize 节点,这里使用经验值 127 <-> 1.0
# 理想状态下需要在 QAT 过程中获取这些取值并添加到输入节点上
if isAddQDQForInput:
quantizeScale = np.array([1.0 / 127.0], dtype=np.float32)
dequantizeScale = np.array([127.0 / 1.0], dtype=np.float32)
one = np.array([1], dtype=np.float32)
zero = np.array([0], dtype=np.float32)
for i in range(network.num_inputs):
inputTensor = network.get_input(i)
for j in range(network.num_layers):
layer = network.get_layer(j)
for k in range(layer.num_inputs):
if (layer.get_input(k) == inputTensor):
print(i, layer, k)
#quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, quantizeScale)
quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, one)
quantizeLayer.set_output_type(0, trt.int8)
quantizeLayer.name = "InputQuantizeNode"
quantizeLayer.get_output(0).name = "QuantizedInputTensor"
#dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, dequantizeScale)
dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, one)
dequantizeLayer.set_output_type(0, trt.float32)
dequantizeLayer.name = "InputDequantizeNode"
dequantizeLayer.get_output(0).name = "DequantizedInputTensor"
layer.set_input(k, dequantizeLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_binding_shape(0, [1, 1, 28, 28])
_, stream = cudart.cudaStreamCreate()
print("Binding0->", engine.get_binding_shape(0), context.get_binding_shape(0), engine.get_binding_dtype(0))
print("Binding1->", engine.get_binding_shape(1), context.get_binding_shape(1), engine.get_binding_dtype(1))
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32)
inputH0 = np.ascontiguousarray(data.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
print("inputH0 :", data.shape)
#print(data)
print("outputH0:", outputH0.shape)
print(outputH0)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT-QAT-TODO/mainV2.py |
"""
from cuda import cudart
#from datetime import datetime as dt
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import config_pb2, meta_graph_pb2, rewriter_config_pb2
from tensorflow.python.framework import importer, ops
from tensorflow.python.grappler import tf_optimizer
from tensorflow.python.training import saver
import tensorrt as trt
import cv2
tf2.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf2.compat.v1.set_random_seed(97)
nTrainbatchSize = 256
ckptFile = "./model.ckpt"
pbFile = "model-V1.pb"
pb2File = "model-V2.pb"
onnxFile = "model-V1.onnx"
onnx2File = "model-V2.onnx"
trtFile = "model.plan"
#inferenceImage = dataPath + "8.png"
outputNodeName = "z"
isRemoveTransposeNode = False # 变量说明见用到该变量的地方
isAddQDQForInput = False # 变量说明见用到该变量的地方
"""
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
#===============================================================================
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
import tensorrt as trt
from tensorflow.python.framework.convert_to_constants import \
convert_variables_to_constants_v2
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFilePath = "./model/"
pbFile = "model.pb"
onnxFile = "./model.onnx"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# 是否保存为单独的一个 .pb文件(两种导出方式),这里选 True 或 Flase 都能导出为 .onnx
bSinglePbFile = True
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
#===============================================================================
isAddQDQForInput = False
#===============================================================================
#os.system("rm -rf %s ./*.plan ./*.cache" % pbFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
# TensorFlow 中创建网络并保存为 .pb 文件 -------------------------------------------
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
model = tf2.keras.Model(inputs=modelInput, outputs=z, name="MNISTExample")
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
#history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=1, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
#checkpoint = tf2.train.Checkpoint(model)
#checkpoint.save(checkpointPath)
#print("Succeeded saving .ckpt in TensorFlow!")
import tensorflow_model_optimization as tfmot
modelQAT = tfmot.quantization.keras.quantize_model(model)
modelQAT.summary()
# `quantize_model` requires a recompile.
modelQAT.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
modelQAT.fit(xTrain, yTrain, batch_size=nTrainBatchSize, epochs=1, validation_split=0.1)
print("Baseline test accuracy: %.4f" % model.evaluate(xTest, yTest, verbose=0)[1])
print("Quantize test accuracy: %.4f" % modelQAT.evaluate(xTest, yTest, verbose=0)[1])
tf2.saved_model.save(model, pbFilePath)
if bSinglePbFile:
modelFunction = tf2.function(lambda Input: modelQAT(Input)).get_concrete_function(tf2.TensorSpec(modelQAT.inputs[0].shape, modelQAT.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(modelFunction)
frozen_func.graph.as_graph_def()
print("_________________________________________________________________")
print("Frozen model inputs:\n", frozen_func.inputs)
print("Frozen model outputs:\n", frozen_func.outputs)
print("Frozen model layers:")
for op in frozen_func.graph.get_operations():
print(op.name)
tf2.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=pbFilePath, name=pbFile, as_text=False)
print("Succeeded building model in TensorFlow2!")
# 将 .pb 文件转换为 .onnx 文件 ----------------------------------------------------
if bSinglePbFile:
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs-as-nchw 'Input:0' --opset 13 --inputs 'Input:0' --outputs 'Identity:0'" % (pbFilePath + pbFile, onnxFile))
else:
os.system("python3 -m tf2onnx.convert --saved-model %s --output %s --inputs-as-nchw 'Input:0' --opset 13" % (pbFilePath, onnxFile))
print("Succeeded converting model into ONNX!")
# TensorRT 中加载 .onnx 创建 engine ---------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
networkFlag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
network = builder.create_network(networkFlag)
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.INT8)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, 28, 28]
profile.set_shape(inputTensor.name, [1, 1, 28, 28], [4, 1, 28, 28], [16, 1, 28, 28])
config.add_optimization_profile(profile)
# 为所有输入张量添加 quantize 节点,这里使用经验值 127 <-> 1.0
# 理想状态下需要在 QAT 过程中获取这些取值并添加到输入节点上
if isAddQDQForInput:
quantizeScale = np.array([1.0 / 127.0], dtype=np.float32)
dequantizeScale = np.array([127.0 / 1.0], dtype=np.float32)
one = np.array([1], dtype=np.float32)
zero = np.array([0], dtype=np.float32)
for i in range(network.num_inputs):
inputTensor = network.get_input(i)
for j in range(network.num_layers):
layer = network.get_layer(j)
for k in range(layer.num_inputs):
if (layer.get_input(k) == inputTensor):
print(i, layer, k)
#quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, quantizeScale)
quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, one)
quantizeLayer.set_output_type(0, trt.int8)
quantizeLayer.name = "InputQuantizeNode"
quantizeLayer.get_output(0).name = "QuantizedInputTensor"
#dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, dequantizeScale)
dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, one)
dequantizeLayer.set_output_type(0, trt.float32)
dequantizeLayer.name = "InputDequantizeNode"
dequantizeLayer.get_output(0).name = "DequantizedInputTensor"
layer.set_input(k, dequantizeLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_binding_shape(0, [1, 1, 28, 28])
_, stream = cudart.cudaStreamCreate()
print("Binding0->", engine.get_binding_shape(0), context.get_binding_shape(0), engine.get_binding_dtype(0))
print("Binding1->", engine.get_binding_shape(1), context.get_binding_shape(1), engine.get_binding_dtype(1))
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32)
inputH0 = np.ascontiguousarray(data.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
print("inputH0 :", data.shape)
#print(data)
print("outputH0:", outputH0.shape)
print(outputH0)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT-QAT-TODO/mainV1.py |
import os
import sys
#from datetime import datetime as dt
import numpy as np
import onnx
import onnx_graphsurgeon as gs
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import cv2
import tensorflow as tf2
import tensorrt as trt
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import (config_pb2, meta_graph_pb2,
rewriter_config_pb2)
from tensorflow.python.framework import importer, ops
from tensorflow.python.grappler import tf_optimizer
from tensorflow.python.training import saver
#dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
#sys.path.append(dataPath)
#import loadMnistData
tf2.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf2.compat.v1.set_random_seed(97)
nTrainbatchSize = 256
ckptFile = "./model.ckpt"
pbFile = "./model-V1.pb"
pb2File = "./model-V2.pb"
onnxFile = "./model-V1.onnx"
onnx2File = "./model-V2.onnx"
trtFile = "./model.plan"
#inferenceImage = dataPath + "8.png"
outputNodeName = "z"
isRemoveTransposeNode = False # 变量说明见用到该变量的地方
isAddQDQForInput = False # 变量说明见用到该变量的地方
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
#===============================================================================
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf2
import tensorrt as trt
from tensorflow.python.framework.convert_to_constants import \
convert_variables_to_constants_v2
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFilePath = "./model-NCHW/"
pbFile = "model-NCHW.pb"
onnxFile = "./model-NCHW.onnx"
trtFile = "./model-NCHW.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
#===============================================================================
checkpointPath = "./checkpoint/model"
checkpointSuffix = "-1"
#===============================================================================
#os.system("rm -rf %s ./*.plan ./*.cache" % pbFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
# TensorFlow 中创建网络并保存为 .pb 文件 -------------------------------------------
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
model = tf2.keras.Model(inputs=modelInput, outputs=z, name="MNISTExample")
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
#history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=1, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
#checkpoint = tf2.train.Checkpoint(model)
#checkpoint.save(checkpointPath)
#print("Succeeded saving .ckpt in TensorFlow!")
import tensorflow_model_optimization as tfmot
quantize_model = tfmot.quantization.keras.quantize_model
# q_aware stands for for quantization aware.
q_aware_model = quantize_model(model)
q_aware_model.summary()
# `quantize_model` requires a recompile.
q_aware_model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
train_images_subset = xTrain[:1000] # out of 3000
train_labels_subset = yTrain[:1000]
q_aware_model.fit(train_images_subset, train_labels_subset, batch_size=100, epochs=1, validation_split=0.1)
_, baseline_model_accuracy = model.evaluate(xTest, yTest, verbose=0)
_, q_aware_model_accuracy = q_aware_model.evaluate(xTest, yTest, verbose=0)
print("Baseline test accuracy:", baseline_model_accuracy)
print("Quant test accuracy:", q_aware_model_accuracy)
#----------------
"""
# TensorFlow 中创建推理网络并保存为 .pb -----------------------------------------
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
w = tf2.math.argmax(z)
model = tf2.keras.Model(inputs=modelInput, outputs=w, name="MNISTExample2")
checkpoint = tf2.train.Checkpoint(model)
checkpoint.restore(checkpointPath + checkpointSuffix)
tf2.quantize.experimental_create_eval_graph(symmetric=True, use_qdq=True)
print("Finish!")
exit()
tf2.contrib.quantize.experimental_create_eval_graph(symmetric=True, use_qdq=True)
with tf2.Session(graph=g2) as sess:
tf2.compat.v1.train.Saver().restore(sess, ckptFile)
constantGraph = tf2.graph_util.convert_variables_to_constants(sess, g2.as_graph_def(), [outputNodeName])
with tf2.gfile.FastGFile(pbFile, mode="wb") as f:
f.write(constantGraph.SerializeToString())
print("Succeeded saving .pb in TensorFlow!")
# 优化 .pb ---------------------------------------------------------------------
with open(pbFile, "rb") as f:
graphdef = graph_pb2.GraphDef()
graphdef.ParseFromString(f.read())
graph = ops.Graph()
with graph.as_default():
outputCollection = meta_graph_pb2.CollectionDef()
for output in outputNodeName.split(","):
outputCollection.node_list.value.append(output)
importer.import_graph_def(graphdef, name="")
metagraph = saver.export_meta_graph(graph_def=graph.as_graph_def(add_shapes=True), graph=graph)
metagraph.collection_def["train_op"].CopyFrom(outputCollection)
rewriter_config = rewriter_config_pb2.RewriterConfig()
rewriter_config.optimizers.extend(["constfold"])
rewriter_config.meta_optimizer_iterations = (rewriter_config_pb2.RewriterConfig.ONE)
session_config = config_pb2.ConfigProto()
session_config.graph_options.rewrite_options.CopyFrom(rewriter_config)
folded_graph = tf_optimizer.OptimizeGraph(session_config, metagraph)
with open(pb2File, "wb") as f:
f.write(folded_graph.SerializeToString())
print("Succeeded optimizing .pb in TensorFlow!")
# 将 .pb 文件转换为 .onnx 文件 --------------------------------------------------
os.system("python3 -m tf2onnx.convert --opset 11 --input %s --output %s --inputs 'input_0:0' --outputs '%s:0' --inputs-as-nchw 'x:0'" % (pb2File, onnxFile, outputNodeName))
print("Succeeded converting model into ONNX!")
# 优化 .onnx 文件,去除 Conv 前的 Transpose 节点 --------------------------------
graph = gs.import_onnx(onnx.load(onnxFile))
# 原 repo 中解释,导出的计算图中 Conv 的 Weight 输入前会有一个 Transpose 节点,并且 TensorRT QAT 模式不支持这个节点,这里用于手工转置并去除该 Transpose 节点
# 但是在目前导出的计算图中已经没有了这个节点,不再需要这一步
if isRemoveTransposeNode:
for node in [n for n in graph.nodes if n.op == "Conv"]:
convKernelTensor = node.i(1).i().i().inputs[0]
convKernelTensor.values = convKernelTensor.values.transpose(3, 2, 0, 1)
node.inputs[1] = node.i(1).i(0).outputs[0]
onnx.save_model(gs.export_onnx(graph.cleanup().toposort()), onnx2File)
print("Succeeded optimizing .onnx in Onnx!")
# TensorRT 中加载 .onnx 创建 engine ---------------------------------------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
networkFlag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
network = builder.create_network(networkFlag)
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.INT8)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, 28, 28]
profile.set_shape(inputTensor.name, [1, 1, 28, 28], [4, 1, 28, 28], [16, 1, 28, 28])
config.add_optimization_profile(profile)
# 为所有输入张量添加 quantize 节点,这里使用经验值 127 <-> 1.0
# 理想状态下需要在 QAT 过程中获取这些取值并添加到输入节点上
if isAddQDQForInput:
quantizeScale = np.array([1.0 / 127.0], dtype=np.float32)
dequantizeScale = np.array([127.0 / 1.0], dtype=np.float32)
one = np.array([1], dtype=np.float32)
zero = np.array([0], dtype=np.float32)
for i in range(network.num_inputs):
inputTensor = network.get_input(i)
for j in range(network.num_layers):
layer = network.get_layer(j)
for k in range(layer.num_inputs):
if (layer.get_input(k) == inputTensor):
print(i, layer, k)
#quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, quantizeScale)
quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, one)
quantizeLayer.set_output_type(0, trt.int8)
quantizeLayer.name = "InputQuantizeNode"
quantizeLayer.get_output(0).name = "QuantizedInputTensor"
#dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, dequantizeScale)
dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, one)
dequantizeLayer.set_output_type(0, trt.float32)
dequantizeLayer.name = "InputDequantizeNode"
dequantizeLayer.get_output(0).name = "DequantizedInputTensor"
layer.set_input(k, dequantizeLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
context.set_binding_shape(0, [1, 1, 28, 28])
_, stream = cudart.cudaStreamCreate()
print("Binding0->", engine.get_binding_shape(0), context.get_binding_shape(0), engine.get_binding_dtype(0))
print("Binding1->", engine.get_binding_shape(1), context.get_binding_shape(1), engine.get_binding_dtype(1))
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32)
inputH0 = np.ascontiguousarray(data.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
print("inputH0 :", data.shape)
#print(data)
print("outputH0:", outputH0.shape)
print(outputH0)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
print("Succeeded running model in TensorRT!")
"""
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT-QAT-TODO/tf2-usageOfCheckpoint.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/pyTorch-ONNX-TensorRT/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import calibrator
import cv2
import numpy as np
import tensorrt as trt
import torch as t
import torch.nn.functional as F
from cuda import cudart
from torch.autograd import Variable
np.random.seed(31193)
t.manual_seed(97)
t.cuda.manual_seed_all(97)
t.backends.cudnn.deterministic = True
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
onnxFile = "./model.onnx"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.onnx ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
# Create network and train model in pyTorch ------------------------------------
class Net(t.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = t.nn.Conv2d(1, 32, (5, 5), padding=(2, 2), bias=True)
self.conv2 = t.nn.Conv2d(32, 64, (5, 5), padding=(2, 2), bias=True)
self.fc1 = t.nn.Linear(64 * 7 * 7, 1024, bias=True)
self.fc2 = t.nn.Linear(1024, 10, bias=True)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = x.reshape(-1, 64 * 7 * 7)
x = F.relu(self.fc1(x))
y = self.fc2(x)
z = F.softmax(y, dim=1)
z = t.argmax(z, dim=1)
return y, z
class MyData(t.utils.data.Dataset):
def __init__(self, isTrain=True):
if isTrain:
self.data = trainFileList
else:
self.data = testFileList
def __getitem__(self, index):
imageName = self.data[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
index = int(imageName[-7])
label[index] = 1
return t.from_numpy(data.reshape(1, nHeight, nWidth).astype(np.float32)), t.from_numpy(label)
def __len__(self):
return len(self.data)
model = Net().cuda()
ceLoss = t.nn.CrossEntropyLoss()
opt = t.optim.Adam(model.parameters(), lr=0.001)
trainDataset = MyData(True)
testDataset = MyData(False)
trainLoader = t.utils.data.DataLoader(dataset=trainDataset, batch_size=nTrainBatchSize, shuffle=True)
testLoader = t.utils.data.DataLoader(dataset=testDataset, batch_size=nTrainBatchSize, shuffle=True)
for epoch in range(10):
for xTrain, yTrain in trainLoader:
xTrain = Variable(xTrain).cuda()
yTrain = Variable(yTrain).cuda()
opt.zero_grad()
y_, z = model(xTrain)
loss = ceLoss(y_, yTrain)
loss.backward()
opt.step()
with t.no_grad():
acc = 0
n = 0
for xTest, yTest in testLoader:
xTest = Variable(xTest).cuda()
yTest = Variable(yTest).cuda()
y_, z = model(xTest)
acc += t.sum(z == t.matmul(yTest, t.Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).to("cuda:0"))).cpu().numpy()
n += xTest.shape[0]
print("%s, epoch %2d, loss = %f, test acc = %f" % (dt.now(), epoch + 1, loss.data, acc / n))
print("Succeeded building model in pyTorch!")
# Export model as ONNX file ----------------------------------------------------
t.onnx.export(model, t.randn(1, 1, nHeight, nWidth, device="cuda"), onnxFile, input_names=["x"], output_names=["y", "z"], do_constant_folding=True, verbose=True, keep_initializers_as_inputs=True, opset_version=12, dynamic_axes={"x": {0: "nBatchSize"}, "z": {0: "nBatchSize"}})
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
network.unmark_output(network.get_output(0)) # remove output tensor "y"
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/pyTorch-ONNX-TensorRT/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from glob import glob
import cv2
import numpy as np
nCalibrationData = 100
nHeight = 28
nWidth = 28
dataPath = "../../../00-MNISTData/"
calibrationDataPath = dataPath + "test/"
inferenceDataFile = dataPath + "8.png"
inferenceData = cv2.imread(inferenceDataFile, cv2.IMREAD_GRAYSCALE).astype(np.float32)
calibrationDataFileList = sorted(glob(calibrationDataPath + "*.jpg"))[:nCalibrationData]
calibrationData = np.empty([nCalibrationData, 1, nHeight, nWidth])
for i in range(nCalibrationData):
calibrationData[i, 0] = cv2.imread(calibrationDataFileList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
dataDictionary = {}
dataDictionary["inferenceData"] = inferenceData
dataDictionary["calibrationData"] = calibrationData
np.savez("data.npz", **dataDictionary)
print("Succeeded creating data for calibration and inference!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/pyTorch-ONNX-TensorRT/C++/createCalibrationAndInferenceData.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf1
import tensorrt as trt
import uff
np.random.seed(31193)
tf1.compat.v1.set_random_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFile = "./model.pb"
uffFile = "./model.uff"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
os.system("rm -rf ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf1.compat.v1.disable_eager_execution()
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow1 --------------------------------
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
x = tf1.compat.v1.placeholder(tf1.float32, [None, nHeight, nWidth, 1], name="x")
y_ = tf1.compat.v1.placeholder(tf1.float32, [None, 10], name="y_")
w1 = tf1.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf1.compat.v1.get_variable("b1", shape=[32], initializer=tf1.constant_initializer(value=0.1))
h1 = tf1.nn.conv2d(x, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf1.nn.relu(h2)
h4 = tf1.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf1.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf1.compat.v1.get_variable("b2", shape=[64], initializer=tf1.constant_initializer(value=0.1))
h5 = tf1.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf1.nn.relu(h6)
h8 = tf1.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf1.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf1.compat.v1.get_variable("b3", shape=[1024], initializer=tf1.constant_initializer(value=0.1))
h9 = tf1.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf1.matmul(h9, w3)
h11 = h10 + b3
h12 = tf1.nn.relu(h11)
w4 = tf1.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf1.compat.v1.get_variable("b4", shape=[10], initializer=tf1.constant_initializer(value=0.1))
h13 = tf1.matmul(h12, w4)
h14 = h13 + b4
y = tf1.nn.softmax(h14, name="y")
z = tf1.argmax(y, 1, name="z")
crossEntropy = -tf1.reduce_sum(y_ * tf1.math.log(y))
trainStep = tf1.compat.v1.train.AdamOptimizer(1e-4).minimize(crossEntropy)
accuracy = tf1.reduce_mean(tf1.cast(tf1.equal(z, tf1.argmax(y_, 1)), tf1.float32), name="accuracy")
tfConfig = tf1.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf1.compat.v1.Session(config=tfConfig)
sess.run(tf1.compat.v1.global_variables_initializer())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
trainStep.run(session=sess, feed_dict={x: xSample, y_: ySample})
if i % 10 == 0:
accuracyValue = accuracy.eval(session=sess, feed_dict={x: xSample, y_: ySample})
print("%s, batch %3d, acc = %f" % (dt.now(), 10 + i, accuracyValue))
constantGraph = tf1.graph_util.convert_variables_to_constants(sess, sess.graph_def, ["z"])
with tf1.gfile.FastGFile(pbFile, mode="wb") as f:
f.write(constantGraph.SerializeToString())
sess.close()
print("Succeeded building model in TensorFlow1!")
# Export model as UFF file ----------------------------------------------------
uff.from_tensorflow_frozen_model(
pbFile,
output_nodes=["y"],
output_filename=uffFile,
preprocessor=None,
write_preprocessed=False,
text=False,
quiet=False,
debug_mode=False,
#input_node=["x"],
#list_nodes=False,
return_graph_info=False
)
print("Succeeded converting model into .uff!")
# Parse UFF file, rebuild network and do inference in TensorRT ----------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network() # use Implicit Batch mode
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
parser = trt.UffParser()
parser.register_input("x", [28, 28, 1], trt.UffInputOrder.NHWC)
parser.register_output("y")
parser.parse(uffFile, network)
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
for i in range(nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) # we only use nBatchSize = 1
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, nHeight, nWidth, 1)
bufferH[0] = data
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow1-UFF-TensorRT/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
import onnx
import onnx_graphsurgeon as gs
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
import tensorrt as trt
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import (config_pb2, meta_graph_pb2,
rewriter_config_pb2)
from tensorflow.python.framework import importer, ops
from tensorflow.python.grappler import tf_optimizer
from tensorflow.python.training import saver
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
sys.path.append(dataPath)
import loadMnistData
tf.compat.v1.disable_eager_execution()
np.random.seed(31193)
tf.compat.v1.set_random_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
ckptFile = "./model/model.ckpt"
pbFile = "model-V1.pb"
pb2File = "model-V2.pb"
onnxFile = "model-V1.onnx"
onnx2File = "model-V2.onnx"
trtFile = "model.plan"
inferenceImage = dataPath + "8.png"
outputNodeName = "z"
isRemoveTransposeNode = False
isAddQDQForInput = False
os.system("rm -rf ./model*.* checkpoint")
# Create network and train model in TensorFlow1 --------------------------------
g1 = tf.Graph()
with g1.as_default():
x = tf.compat.v1.placeholder(tf.float32, [None, 1, 28, 28], name="input_0")
y_ = tf.compat.v1.placeholder(tf.float32, [None, 10], name="output_0")
h0 = tf.transpose(x, [0, 2, 3, 1])
w1 = tf.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf.compat.v1.get_variable("b1", shape=[32], initializer=tf.constant_initializer(value=0.1))
h1 = tf.nn.conv2d(h0, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf.nn.relu(h2)
h4 = tf.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf.compat.v1.get_variable("b2", shape=[64], initializer=tf.constant_initializer(value=0.1))
h5 = tf.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf.nn.relu(h6)
h8 = tf.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf.compat.v1.get_variable("b3", shape=[1024], initializer=tf.constant_initializer(value=0.1))
h9 = tf.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf.matmul(h9, w3)
h11 = h10 + b3
h12 = tf.nn.relu(h11)
w4 = tf.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf.compat.v1.get_variable("b4", shape=[10], initializer=tf.constant_initializer(value=0.1))
h13 = tf.matmul(h12, w4)
h14 = h13 + b4
loss = tf.compat.v1.losses.softmax_cross_entropy(onehot_labels=y_, logits=h14)
acc = tf.compat.v1.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(h14, axis=1))[1]
tf.contrib.quantize.experimental_create_training_graph(tf.compat.v1.get_default_graph(), symmetric=True, use_qdq=True, quant_delay=800)
trainStep = tf.compat.v1.train.AdamOptimizer(0.001).minimize(loss)
mnist = loadMnistData.MnistData(dataPath, isOneHot=True)
with tf.Session(graph=g1) as sess:
sess.run(tf.group(tf.compat.v1.global_variables_initializer(), tf.compat.v1.local_variables_initializer()))
for i in range(1000):
xSample, ySample = mnist.getBatch(nTrainBatchSize, True)
trainStep.run(session=sess, feed_dict={x: xSample.reshape(-1, 1, 28, 28), y_: ySample})
if (i % 100 == 0):
xSample, ySample = mnist.getBatch(100, False)
test_accuracy = sess.run(acc, {x: xSample.reshape(-1, 1, 28, 28), y_: ySample})
print("%s, Step=%d, test acc=%.3f" % (dt.now(), i, acc.eval(session=sess, feed_dict={x: xSample.reshape(-1, 1, 28, 28), y_: ySample})))
tf.compat.v1.train.Saver().save(sess, ckptFile)
xSample, ySample = mnist.getBatch(100, False)
print("%s, test acc = %.3f" % (dt.now(), acc.eval(session=sess, feed_dict={x: xSample.reshape(-1, 1, 28, 28), y_: ySample})))
print("Succeeded saving .ckpt in TensorFlow!")
# Save network as .pb ----------------------------------------------------------
g2 = tf.Graph()
with g2.as_default():
x = tf.compat.v1.placeholder(tf.float32, [None, 1, 28, 28], name="input_0")
h0 = tf.transpose(x, [0, 2, 3, 1])
w1 = tf.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf.compat.v1.get_variable("b1", shape=[32], initializer=tf.constant_initializer(value=0.1))
h1 = tf.nn.conv2d(h0, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf.nn.relu(h2)
h4 = tf.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf.compat.v1.get_variable("b2", shape=[64], initializer=tf.constant_initializer(value=0.1))
h5 = tf.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf.nn.relu(h6)
h8 = tf.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf.compat.v1.get_variable("b3", shape=[1024], initializer=tf.constant_initializer(value=0.1))
h9 = tf.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf.matmul(h9, w3)
h11 = h10 + b3
h12 = tf.nn.relu(h11)
w4 = tf.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf.compat.v1.get_variable("b4", shape=[10], initializer=tf.constant_initializer(value=0.1))
h13 = tf.matmul(h12, w4)
h14 = h13 + b4
h15 = tf.nn.softmax(h14, name="softmax", axis=1)
h16 = tf.argmax(h15, 1, name=outputNodeName)
tf.contrib.quantize.experimental_create_eval_graph(symmetric=True, use_qdq=True)
with tf.Session(graph=g2) as sess:
tf.compat.v1.train.Saver().restore(sess, ckptFile)
constantGraph = tf.graph_util.convert_variables_to_constants(sess, g2.as_graph_def(), [outputNodeName])
with tf.gfile.FastGFile(pbFile, mode="wb") as f:
f.write(constantGraph.SerializeToString())
print("Succeeded saving .pb in TensorFlow!")
# Optimize .pb -----------------------------------------------------------------
with open(pbFile, "rb") as f:
graphdef = graph_pb2.GraphDef()
graphdef.ParseFromString(f.read())
graph = ops.Graph()
with graph.as_default():
outputCollection = meta_graph_pb2.CollectionDef()
for output in outputNodeName.split(","):
outputCollection.node_list.value.append(output)
importer.import_graph_def(graphdef, name="")
metagraph = saver.export_meta_graph(graph_def=graph.as_graph_def(add_shapes=True), graph=graph)
metagraph.collection_def["train_op"].CopyFrom(outputCollection)
rewriter_config = rewriter_config_pb2.RewriterConfig()
rewriter_config.optimizers.extend(["constfold"])
rewriter_config.meta_optimizer_iterations = (rewriter_config_pb2.RewriterConfig.ONE)
session_config = config_pb2.ConfigProto()
session_config.graph_options.rewrite_options.CopyFrom(rewriter_config)
folded_graph = tf_optimizer.OptimizeGraph(session_config, metagraph)
with open(pb2File, "wb") as f:
f.write(folded_graph.SerializeToString())
print("Succeeded optimizing .pb in TensorFlow!")
# Export model as ONNX file ----------------------------------------------------
os.system("python3 -m tf2onnx.convert --opset 11 --input %s --output %s --inputs 'input_0:0' --outputs '%s:0' --inputs-as-nchw 'x:0'" % (pb2File, onnxFile, outputNodeName))
print("Succeeded converting model into ONNX!")
# Optimize ONNX file to remove Transpose node before Conv node -----------------
graph = gs.import_onnx(onnx.load(onnxFile))
# In the original repo there is a Transpose node before the weight input of the Conv node, which is not supported by the TensorRT QAT mode, so we need to transpose the weight manually and remove the Transpose node.
# However, this Transpose node does not appear in the current exported ONNX file, so this step is no longer needed.
if isRemoveTransposeNode:
for node in [n for n in graph.nodes if n.op == "Conv"]:
convKernelTensor = node.i(1).i().i().inputs[0]
convKernelTensor.values = convKernelTensor.values.transpose(3, 2, 0, 1)
node.inputs[1] = node.i(1).i(0).outputs[0]
onnx.save_model(gs.export_onnx(graph.cleanup().toposort()), onnx2File)
print("Succeeded optimizing .onnx in Onnx!")
# Parse ONNX file, rebuild network and do inference in TensorRT ----------------
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
networkFlag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
network = builder.create_network(networkFlag)
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.INT8)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, nHeight, nWidth]
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
# Add the Quantize/Dequantize node for all input tensors, here we use empirical value 127<->1.0.
# Ideally, these values need to be obtained in the QAT process.
if isAddQDQForInput:
quantizeScale = np.array([1.0 / 127.0], dtype=np.float32)
dequantizeScale = np.array([127.0 / 1.0], dtype=np.float32)
one = np.array([1], dtype=np.float32)
zero = np.array([0], dtype=np.float32)
for i in range(network.num_inputs):
inputTensor = network.get_input(i)
for j in range(network.num_layers):
layer = network.get_layer(j)
for k in range(layer.num_inputs):
if (layer.get_input(k) == inputTensor):
print(i, layer, k)
#quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, quantizeScale)
quantizeLayer = network.add_scale(inputTensor, trt.ScaleMode.UNIFORM, zero, one)
quantizeLayer.set_output_type(0, trt.int8)
quantizeLayer.name = "InputQuantizeNode"
quantizeLayer.get_output(0).name = "QuantizedInputTensor"
#dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, dequantizeScale)
dequantizeLayer = network.add_scale(quantizeLayer.get_output(0), trt.ScaleMode.UNIFORM, zero, one)
dequantizeLayer.set_output_type(0, trt.float32)
dequantizeLayer.name = "InputDequantizeNode"
dequantizeLayer.get_output(0).name = "DequantizedInputTensor"
layer.set_input(k, dequantizeLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
for i in range(nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH[0] = data
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow1-ONNX-TensorRT-QAT/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/Paddlepaddle-ONNX-TensorRT/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import calibrator
import cv2
import numpy as np
import paddle
import paddle.nn.functional as F
import tensorrt as trt
from cuda import cudart
np.random.seed(31193)
paddle.seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
paddleFilePath = "./model/model"
onnxFile = "./model.onnx"
trtFile = "./model.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.npz ./*.plan ./*.cache " + paddleFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, 1, nHeight, nWidth], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(1, nHeight, nWidth).astype(np.float32) / 255
yData[i] = label
return xData, yData
# Create network and train model in Paddlepaddle -------------------------------
class Net(paddle.nn.Layer):
def __init__(self, num_classes=1):
super(Net, self).__init__()
self.conv1 = paddle.nn.Conv2D(1, 32, [5, 5], 1, 2)
self.pool1 = paddle.nn.MaxPool2D(2, 2)
self.conv2 = paddle.nn.Conv2D(32, 64, [5, 5], 1, 2)
self.pool2 = paddle.nn.MaxPool2D(2, 2)
self.flatten = paddle.nn.Flatten(1)
self.fc1 = paddle.nn.Linear(64 * 7 * 7, 1024)
self.fc2 = paddle.nn.Linear(1024, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.flatten(x)
x = self.fc1(x)
x = F.relu(x)
y = self.fc2(x)
z = F.softmax(y, 1)
z = paddle.argmax(z, 1)
return y, z
model = Net()
model.train()
opt = paddle.optimizer.Adam(0.001, parameters=model.parameters())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
xSample = paddle.to_tensor(xSample)
ySample = paddle.to_tensor(ySample)
y, z = model(xSample)
loss = F.cross_entropy(y, paddle.argmax(ySample, 1, keepdim=True))
loss.backward()
opt.step()
opt.clear_grad()
if i % 10 == 0:
accuracyValue = paddle.sum(z - paddle.argmax(ySample, 1) == 0).numpy().item() / nTrainBatchSize
print("%s, batch %3d, train acc = %f" % (dt.now(), 10 + i, accuracyValue))
model.eval()
xTest, yTest = getBatch(testFileList, nTrainBatchSize, False)
xTest = paddle.to_tensor(xTest)
yTest = paddle.to_tensor(yTest)
accuracyValue = 0
for i in range(len(testFileList) // nTrainBatchSize):
xSample = xTest[i * nTrainBatchSize:(i + 1) * nTrainBatchSize]
ySample = yTest[i * nTrainBatchSize:(i + 1) * nTrainBatchSize]
y, z = model(xSample)
accuracyValue += paddle.sum(z - paddle.argmax(ySample, 1) == 0).numpy().item()
print("%s, test acc = %f" % (dt.now(), accuracyValue / (len(testFileList) // nTrainBatchSize * nTrainBatchSize)))
print("Succeeded building model in Paddlepaddle!")
# Export model as ONNX file ----------------------------------------------------
inputDescList = []
inputDescList.append(paddle.static.InputSpec(shape=[None, 1, nHeight, nWidth], dtype='float32', name='x'))
paddle.onnx.export(model, onnxFile[:-5], input_spec=inputDescList, opset_version=11)
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
network.unmark_output(network.get_output(0)) # remove output tensor "y"
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/Paddlepaddle-ONNX-TensorRT/main.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow1-ONNX-TensorRT/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf1
import tensorrt as trt
np.random.seed(31193)
tf1.compat.v1.set_random_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFile = "./model-NHWC.pb"
onnxFile = "./model-NHWC.onnx"
trtFile = "./model-NHWC.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
trtVersion = trt.__version__.split(".")
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf1.compat.v1.disable_eager_execution()
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow1 --------------------------------
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
x = tf1.compat.v1.placeholder(tf1.float32, [None, nHeight, nWidth, 1], name="x")
y_ = tf1.compat.v1.placeholder(tf1.float32, [None, 10], name="y_")
w1 = tf1.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf1.compat.v1.get_variable("b1", shape=[32], initializer=tf1.constant_initializer(value=0.1))
h1 = tf1.nn.conv2d(x, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf1.nn.relu(h2)
h4 = tf1.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf1.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf1.compat.v1.get_variable("b2", shape=[64], initializer=tf1.constant_initializer(value=0.1))
h5 = tf1.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf1.nn.relu(h6)
h8 = tf1.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf1.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf1.compat.v1.get_variable("b3", shape=[1024], initializer=tf1.constant_initializer(value=0.1))
h9 = tf1.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf1.matmul(h9, w3)
h11 = h10 + b3
h12 = tf1.nn.relu(h11)
w4 = tf1.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf1.compat.v1.get_variable("b4", shape=[10], initializer=tf1.constant_initializer(value=0.1))
h13 = tf1.matmul(h12, w4)
h14 = h13 + b4
y = tf1.nn.softmax(h14, name="y")
z = tf1.argmax(y, 1, name="z")
crossEntropy = -tf1.reduce_sum(y_ * tf1.math.log(y))
trainStep = tf1.compat.v1.train.AdamOptimizer(1e-4).minimize(crossEntropy)
accuracy = tf1.reduce_mean(tf1.cast(tf1.equal(z, tf1.argmax(y_, 1)), tf1.float32), name="accuracy")
tfConfig = tf1.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf1.compat.v1.Session(config=tfConfig)
sess.run(tf1.compat.v1.global_variables_initializer())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
trainStep.run(session=sess, feed_dict={x: xSample, y_: ySample})
if i % 10 == 0:
accuracyValue = accuracy.eval(session=sess, feed_dict={x: xSample, y_: ySample})
print("%s, batch %3d, acc = %f" % (dt.now(), 10 + i, accuracyValue))
constantGraph = tf1.graph_util.convert_variables_to_constants(sess, sess.graph_def, ["z"])
with tf1.gfile.FastGFile(pbFile, mode="wb") as f:
f.write(constantGraph.SerializeToString())
sess.close()
print("Succeeded building model in TensorFlow1!")
# Export model as ONNX file ----------------------------------------------------
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs 'x:0' --outputs 'z:0'" % (pbFile, onnxFile))
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, nHeight, nWidth, 1]
profile.set_shape(inputTensor.name, [1, nHeight, nWidth, 1], [4, nHeight, nWidth, 1], [8, nHeight, nWidth, 1])
config.add_optimization_profile(profile)
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, nHeight, nWidth, 1])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow1-ONNX-TensorRT/main-NHWC.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf1
import tensorrt as trt
np.random.seed(31193)
tf1.compat.v1.set_random_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFile = "./model-NCHW.pb"
onnxFile = "./model-NCHW.onnx"
trtFile = "./model-NCHW.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
trtVersion = trt.__version__.split(".")
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf1.compat.v1.disable_eager_execution()
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow1 --------------------------------
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
x = tf1.compat.v1.placeholder(tf1.float32, [None, nHeight, nWidth, 1], name="x")
y_ = tf1.compat.v1.placeholder(tf1.float32, [None, 10], name="y_")
w1 = tf1.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf1.compat.v1.get_variable("b1", shape=[32], initializer=tf1.constant_initializer(value=0.1))
h1 = tf1.nn.conv2d(x, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf1.nn.relu(h2)
h4 = tf1.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf1.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf1.compat.v1.get_variable("b2", shape=[64], initializer=tf1.constant_initializer(value=0.1))
h5 = tf1.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf1.nn.relu(h6)
h8 = tf1.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf1.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf1.compat.v1.get_variable("b3", shape=[1024], initializer=tf1.constant_initializer(value=0.1))
h9 = tf1.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf1.matmul(h9, w3)
h11 = h10 + b3
h12 = tf1.nn.relu(h11)
w4 = tf1.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf1.compat.v1.get_variable("b4", shape=[10], initializer=tf1.constant_initializer(value=0.1))
h13 = tf1.matmul(h12, w4)
h14 = h13 + b4
y = tf1.nn.softmax(h14, name="y")
z = tf1.argmax(y, 1, name="z")
crossEntropy = -tf1.reduce_sum(y_ * tf1.math.log(y))
trainStep = tf1.compat.v1.train.AdamOptimizer(1e-4).minimize(crossEntropy)
accuracy = tf1.reduce_mean(tf1.cast(tf1.equal(z, tf1.argmax(y_, 1)), tf1.float32), name="accuracy")
tfConfig = tf1.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf1.compat.v1.Session(config=tfConfig)
sess.run(tf1.compat.v1.global_variables_initializer())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
trainStep.run(session=sess, feed_dict={x: xSample, y_: ySample})
if i % 10 == 0:
accuracyValue = accuracy.eval(session=sess, feed_dict={x: xSample, y_: ySample})
print("%s, batch %3d, acc = %f" % (dt.now(), 10 + i, accuracyValue))
constantGraph = tf1.graph_util.convert_variables_to_constants(sess, sess.graph_def, ["z"])
with tf1.gfile.FastGFile(pbFile, mode="wb") as f:
f.write(constantGraph.SerializeToString())
sess.close()
print("Succeeded building model in TensorFlow1!")
# Export model as ONNX file ----------------------------------------------------
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs 'x:0' --outputs 'z:0' --inputs-as-nchw 'x:0'" % (pbFile, onnxFile))
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, nHeight, nWidth]
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(data))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow1-ONNX-TensorRT/main-NCHW.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf1
import tensorrt as trt
np.random.seed(31193)
tf1.compat.v1.set_random_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFile = "./model-NHWC-C2.pb"
onnxFile = "./model-NHWC-C2.onnx"
trtFile = "./model-NHWC-C2.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
trtVersion = trt.__version__.split(".")
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf ./*.plan ./*.cache")
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf1.compat.v1.disable_eager_execution()
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow1 --------------------------------
def getBatch(fileList, nSize=1, isTrain=True):
if isTrain:
indexList = np.random.choice(len(fileList), nSize)
else:
nSize = len(fileList)
indexList = np.arange(nSize)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i, index in enumerate(indexList):
imageName = fileList[index]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
x = tf1.compat.v1.placeholder(tf1.float32, [None, nHeight, nWidth, 2], name="x")
y_ = tf1.compat.v1.placeholder(tf1.float32, [None, 10], name="y_")
w1 = tf1.compat.v1.get_variable("w1", shape=[5, 5, 1, 32], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b1 = tf1.compat.v1.get_variable("b1", shape=[32], initializer=tf1.constant_initializer(value=0.1))
h1 = tf1.nn.conv2d(x, w1, strides=[1, 1, 1, 1], padding="SAME")
h2 = h1 + b1
h3 = tf1.nn.relu(h2)
h4 = tf1.nn.max_pool2d(h3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w2 = tf1.compat.v1.get_variable("w2", shape=[5, 5, 32, 64], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b2 = tf1.compat.v1.get_variable("b2", shape=[64], initializer=tf1.constant_initializer(value=0.1))
h5 = tf1.nn.conv2d(h4, w2, strides=[1, 1, 1, 1], padding="SAME")
h6 = h5 + b2
h7 = tf1.nn.relu(h6)
h8 = tf1.nn.max_pool2d(h7, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
w3 = tf1.compat.v1.get_variable("w3", shape=[7 * 7 * 64, 1024], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b3 = tf1.compat.v1.get_variable("b3", shape=[1024], initializer=tf1.constant_initializer(value=0.1))
h9 = tf1.reshape(h8, [-1, 7 * 7 * 64])
h10 = tf1.matmul(h9, w3)
h11 = h10 + b3
h12 = tf1.nn.relu(h11)
w4 = tf1.compat.v1.get_variable("w4", shape=[1024, 10], initializer=tf1.truncated_normal_initializer(mean=0, stddev=0.1))
b4 = tf1.compat.v1.get_variable("b4", shape=[10], initializer=tf1.constant_initializer(value=0.1))
h13 = tf1.matmul(h12, w4)
h14 = h13 + b4
y = tf1.nn.softmax(h14, name="y")
z = tf1.argmax(y, 1, name="z")
crossEntropy = -tf1.reduce_sum(y_ * tf1.math.log(y))
trainStep = tf1.compat.v1.train.AdamOptimizer(1e-4).minimize(crossEntropy)
accuracy = tf1.reduce_mean(tf1.cast(tf1.equal(z, tf1.argmax(y_, 1)), tf1.float32), name="accuracy")
tfConfig = tf1.compat.v1.ConfigProto()
tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.5
sess = tf1.compat.v1.Session(config=tfConfig)
sess.run(tf1.compat.v1.global_variables_initializer())
for i in range(100):
xSample, ySample = getBatch(trainFileList, nTrainBatchSize, True)
xSample = np.tile(xSample, [1, 1, 1, 2])
trainStep.run(session=sess, feed_dict={x: xSample, y_: ySample})
if i % 10 == 0:
accuracyValue = accuracy.eval(session=sess, feed_dict={x: xSample, y_: ySample})
print("%s, batch %3d, acc = %f" % (dt.now(), 10 + i, accuracyValue))
constantGraph = tf1.graph_util.convert_variables_to_constants(sess, sess.graph_def, ["z"])
with tf1.gfile.FastGFile(pbFile, mode="wb") as f:
f.write(constantGraph.SerializeToString())
sess.close()
print("Succeeded building model in TensorFlow1!")
# Export model as ONNX file ----------------------------------------------------
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs 'x:0' --outputs 'z:0'" % (pbFile, onnxFile))
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, nHeight, nWidth, 2]
profile.set_shape(inputTensor.name, [1, nHeight, nWidth, 2], [4, nHeight, nWidth, 2], [8, nHeight, nWidth, 2])
config.add_optimization_profile(profile)
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, nHeight, nWidth, 2])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH.append(np.ascontiguousarray(np.tile(data, [1, 1, 1, 2])))
for i in range(nInput, nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow1-ONNX-TensorRT/main-NHWC-C2.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from glob import glob
import cv2
import numpy as np
import tensorrt as trt
from cuda import cudart
class MyCalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, calibrationDataPath, nCalibration, inputShape, cacheFile):
trt.IInt8EntropyCalibrator2.__init__(self)
self.imageList = glob(calibrationDataPath + "*.jpg")[:100]
self.nCalibration = nCalibration
self.shape = inputShape # (N,C,H,W)
self.buffeSize = trt.volume(inputShape) * trt.float32.itemsize
self.cacheFile = cacheFile
_, self.dIn = cudart.cudaMalloc(self.buffeSize)
self.oneBatch = self.batchGenerator()
print(int(self.dIn))
def __del__(self):
cudart.cudaFree(self.dIn)
def batchGenerator(self):
for i in range(self.nCalibration):
print("> calibration %d" % i)
subImageList = np.random.choice(self.imageList, self.shape[0], replace=False)
yield np.ascontiguousarray(self.loadImageList(subImageList))
def loadImageList(self, imageList):
res = np.empty(self.shape, dtype=np.float32)
for i in range(self.shape[0]):
res[i, 0] = cv2.imread(imageList[i], cv2.IMREAD_GRAYSCALE).astype(np.float32)
return res
def get_batch_size(self): # necessary API
return self.shape[0]
def get_batch(self, nameList=None, inputNodeName=None): # necessary API
try:
data = next(self.oneBatch)
cudart.cudaMemcpy(self.dIn, data.ctypes.data, self.buffeSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
return [int(self.dIn)]
except StopIteration:
return None
def read_calibration_cache(self): # necessary API
if os.path.exists(self.cacheFile):
print("Succeed finding cahce file: %s" % (self.cacheFile))
with open(self.cacheFile, "rb") as f:
cache = f.read()
return cache
else:
print("Failed finding int8 cache!")
return
def write_calibration_cache(self, cache): # necessary API
with open(self.cacheFile, "wb") as f:
f.write(cache)
print("Succeed saving int8 cache!")
return
if __name__ == "__main__":
cudart.cudaDeviceSynchronize()
m = MyCalibrator("../../00-MNISTData/test/", 5, (1, 1, 28, 28), "./int8.cache")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
m.get_batch("FakeNameList")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT/calibrator.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf2
import tensorrt as trt
from tensorflow.python.framework.convert_to_constants import \
convert_variables_to_constants_v2
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFilePath = "./model-NHWC/"
pbFile = "model-NHWC.pb"
onnxFile = "./model-NHWC.onnx"
trtFile = "./model-NHWC.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# Two equivalent method to export ONNX file, using single .pb file or several files in a directory
bSinglePbFile = True
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf %s ./*.plan ./*.cache" % pbFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow2 --------------------------------
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
model = tf2.keras.Model(inputs=modelInput, outputs=z, name="MNISTExample")
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
tf2.saved_model.save(model, pbFilePath)
if bSinglePbFile:
modelFunction = tf2.function(lambda Input: model(Input)).get_concrete_function(tf2.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(modelFunction)
frozen_func.graph.as_graph_def()
print("_________________________________________________________________")
print("Frozen model inputs:\n", frozen_func.inputs)
print("Frozen model outputs:\n", frozen_func.outputs)
print("Frozen model layers:")
for op in frozen_func.graph.get_operations():
print(op.name)
tf2.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=pbFilePath, name=pbFile, as_text=False)
print("Succeeded building model in TensorFlow2!")
# Export model as ONNX file ----------------------------------------------------
if bSinglePbFile:
os.system("python3 -m tf2onnx.convert --input %s --output %s --opset 13 --inputs 'Input:0' --outputs 'Identity:0'" % (pbFilePath + pbFile, onnxFile))
else:
os.system("python3 -m tf2onnx.convert --saved-model %s --output %s --opset 13" % (pbFilePath, onnxFile))
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, nHeight, nWidth, 1]
profile.set_shape(inputTensor.name, [1, nHeight, nWidth, 1], [4, nHeight, nWidth, 1], [8, nHeight, nWidth, 1])
config.add_optimization_profile(profile)
outputTensor = network.get_output(0)
network.unmark_output(outputTensor)
_17 = network.add_topk(outputTensor, trt.TopKOperation.MAX, 1, 1 << 1) # add last ArgMax node
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, nHeight, nWidth, 1])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
for i in range(nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, nHeight, nWidth, 1)
bufferH[0] = data
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT/main-NHWC.py |
#
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from datetime import datetime as dt
from glob import glob
import cv2
import numpy as np
from cuda import cudart
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import calibrator
import tensorflow as tf2
import tensorrt as trt
from tensorflow.python.framework.convert_to_constants import \
convert_variables_to_constants_v2
np.random.seed(31193)
tf2.random.set_seed(97)
nTrainBatchSize = 128
nHeight = 28
nWidth = 28
pbFilePath = "./model-NCHW/"
pbFile = "model-NCHW.pb"
onnxFile = "./model-NCHW.onnx"
trtFile = "./model-NCHW.plan"
dataPath = os.path.dirname(os.path.realpath(__file__)) + "/../../00-MNISTData/"
trainFileList = sorted(glob(dataPath + "train/*.jpg"))
testFileList = sorted(glob(dataPath + "test/*.jpg"))
inferenceImage = dataPath + "8.png"
# Two equivalent method to export ONNX file, using single .pb file or several files in a directory
bSinglePbFile = True
# for FP16 mode
bUseFP16Mode = False
# for INT8 model
bUseINT8Mode = False
nCalibration = 1
cacheFile = "./int8.cache"
calibrationDataPath = dataPath + "test/"
os.system("rm -rf %s ./*.plan ./*.cache" % pbFilePath)
np.set_printoptions(precision=3, linewidth=200, suppress=True)
tf2.config.experimental.set_memory_growth(tf2.config.list_physical_devices("GPU")[0], True)
cudart.cudaDeviceSynchronize()
# Create network and train model in TensorFlow2 --------------------------------
def getData(fileList):
nSize = len(fileList)
xData = np.zeros([nSize, nHeight, nWidth, 1], dtype=np.float32)
yData = np.zeros([nSize, 10], dtype=np.float32)
for i in range(nSize):
imageName = fileList[i]
data = cv2.imread(imageName, cv2.IMREAD_GRAYSCALE)
label = np.zeros(10, dtype=np.float32)
label[int(imageName[-7])] = 1
xData[i] = data.reshape(nHeight, nWidth, 1).astype(np.float32) / 255
yData[i] = label
return xData, yData
modelInput = tf2.keras.Input(shape=[nHeight, nWidth, 1], dtype=tf2.dtypes.float32)
layerConv1 = tf2.keras.layers.Conv2D(32, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv1")
x = layerConv1(modelInput)
layerPool1 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool1")
x = layerPool1(x)
layerConv2 = tf2.keras.layers.Conv2D(64, [5, 5], strides=[1, 1], padding="same", data_format=None, dilation_rate=[1, 1], groups=1, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="conv2")
x = layerConv2(x)
laerPool2 = tf2.keras.layers.MaxPool2D(pool_size=[2, 2], strides=[2, 2], padding="same", data_format=None, name="pool2")
x = laerPool2(x)
layerReshape = tf2.keras.layers.Reshape([-1], name="reshape")
x = layerReshape(x)
layerDense1 = tf2.keras.layers.Dense(1024, activation="relu", use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense1")
x = layerDense1(x)
layerDense2 = tf2.keras.layers.Dense(10, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name="dense2")
x = layerDense2(x)
layerSoftmax = tf2.keras.layers.Softmax(axis=1, name="softmax")
z = layerSoftmax(x)
model = tf2.keras.Model(inputs=modelInput, outputs=z, name="MNISTExample")
model.summary()
model.compile(
loss=tf2.keras.losses.CategoricalCrossentropy(from_logits=False),
optimizer=tf2.keras.optimizers.Adam(),
metrics=["accuracy"],
)
xTrain, yTrain = getData(trainFileList)
history = model.fit(xTrain, yTrain, batch_size=128, epochs=10, validation_split=0.1)
xTest, yTest = getData(testFileList)
testScore = model.evaluate(xTest, yTest, verbose=2)
print("%s, loss = %f, accuracy = %f" % (dt.now(), testScore[0], testScore[1]))
tf2.saved_model.save(model, pbFilePath)
if bSinglePbFile:
modelFunction = tf2.function(lambda Input: model(Input)).get_concrete_function(tf2.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(modelFunction)
frozen_func.graph.as_graph_def()
print("_________________________________________________________________")
print("Frozen model inputs:\n", frozen_func.inputs)
print("Frozen model outputs:\n", frozen_func.outputs)
print("Frozen model layers:")
for op in frozen_func.graph.get_operations():
print(op.name)
tf2.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=pbFilePath, name=pbFile, as_text=False)
print("Succeeded building model in TensorFlow2!")
# Export model as ONNX file ----------------------------------------------------
if bSinglePbFile:
os.system("python3 -m tf2onnx.convert --input %s --output %s --inputs-as-nchw 'Input:0' --opset 13 --inputs 'Input:0' --outputs 'Identity:0'" % (pbFilePath + pbFile, onnxFile))
else:
os.system("python3 -m tf2onnx.convert --saved-model %s --output %s --inputs-as-nchw 'Input:0' --opset 13" % (pbFilePath, onnxFile))
print("Succeeded converting model into ONNX!")
# Parse network, rebuild network and do inference in TensorRT ------------------
logger = trt.Logger(trt.Logger.VERBOSE)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()
if bUseFP16Mode:
config.set_flag(trt.BuilderFlag.FP16)
if bUseINT8Mode:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = calibrator.MyCalibrator(calibrationDataPath, nCalibration, (1, 1, nHeight, nWidth), cacheFile)
parser = trt.OnnxParser(network, logger)
if not os.path.exists(onnxFile):
print("Failed finding ONNX file!")
exit()
print("Succeeded finding ONNX file!")
with open(onnxFile, "rb") as model:
if not parser.parse(model.read()):
print("Failed parsing .onnx file!")
for error in range(parser.num_errors):
print(parser.get_error(error))
exit()
print("Succeeded parsing .onnx file!")
inputTensor = network.get_input(0)
inputTensor.shape = [-1, 1, nHeight, nWidth]
profile.set_shape(inputTensor.name, [1, 1, nHeight, nWidth], [4, 1, nHeight, nWidth], [8, 1, nHeight, nWidth])
config.add_optimization_profile(profile)
outputTensor = network.get_output(0)
network.unmark_output(outputTensor)
_17 = network.add_topk(outputTensor, trt.TopKOperation.MAX, 1, 1 << 1) # add last ArgMax node
network.mark_output(_17.get_output(1))
engineString = builder.build_serialized_network(network, config)
if engineString == None:
print("Failed building engine!")
exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:
f.write(engineString)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
nIO = engine.num_io_tensors
lTensorName = [engine.get_tensor_name(i) for i in range(nIO)]
nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT)
context = engine.create_execution_context()
context.set_input_shape(lTensorName[0], [1, 1, nHeight, nWidth])
for i in range(nIO):
print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i])
bufferH = []
for i in range(nIO):
bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i]))))
bufferD = []
for i in range(nIO):
bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1])
data = cv2.imread(inferenceImage, cv2.IMREAD_GRAYSCALE).astype(np.float32).reshape(1, 1, nHeight, nWidth)
bufferH[0] = data
for i in range(nInput):
cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)
for i in range(nIO):
context.set_tensor_address(lTensorName[i], int(bufferD[i]))
context.execute_async_v3(0)
for i in range(nInput, nIO):
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)
for i in range(nIO):
print(lTensorName[i])
print(bufferH[i])
for b in bufferD:
cudart.cudaFree(b)
print("Succeeded running model in TensorRT!")
| trt-samples-for-hackathon-cn-master | cookbook/04-BuildEngineByONNXParser/TensorFlow2-ONNX-TensorRT/main-NCHW.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.