python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
from torch import nn as nn from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['roipoint_pool3d_forward']) class RoIPointPool3d(nn.Module): """Encode the geometry-specific features of each 3D proposal. Please refer to `Paper of PartA2 <https://arxiv.org/pdf/1907.03670.pdf>`_ for more details. Args: num_sampled_points (int, optional): Number of samples in each roi. Default: 512. """ def __init__(self, num_sampled_points=512): super().__init__() self.num_sampled_points = num_sampled_points def forward(self, points, point_features, boxes3d): """ Args: points (torch.Tensor): Input points whose shape is (B, N, C). point_features (torch.Tensor): Features of input points whose shape is (B, N, C). boxes3d (B, M, 7), Input bounding boxes whose shape is (B, M, 7). Returns: pooled_features (torch.Tensor): The output pooled features whose shape is (B, M, 512, 3 + C). pooled_empty_flag (torch.Tensor): Empty flag whose shape is (B, M). """ return RoIPointPool3dFunction.apply(points, point_features, boxes3d, self.num_sampled_points) class RoIPointPool3dFunction(Function): @staticmethod def forward(ctx, points, point_features, boxes3d, num_sampled_points=512): """ Args: points (torch.Tensor): Input points whose shape is (B, N, C). point_features (torch.Tensor): Features of input points whose shape is (B, N, C). boxes3d (B, M, 7), Input bounding boxes whose shape is (B, M, 7). num_sampled_points (int, optional): The num of sampled points. Default: 512. Returns: pooled_features (torch.Tensor): The output pooled features whose shape is (B, M, 512, 3 + C). pooled_empty_flag (torch.Tensor): Empty flag whose shape is (B, M). """ assert len(points.shape) == 3 and points.shape[2] == 3 batch_size, boxes_num, feature_len = points.shape[0], boxes3d.shape[ 1], point_features.shape[2] pooled_boxes3d = boxes3d.view(batch_size, -1, 7) pooled_features = point_features.new_zeros( (batch_size, boxes_num, num_sampled_points, 3 + feature_len)) pooled_empty_flag = point_features.new_zeros( (batch_size, boxes_num)).int() ext_module.roipoint_pool3d_forward(points.contiguous(), pooled_boxes3d.contiguous(), point_features.contiguous(), pooled_features, pooled_empty_flag) return pooled_features, pooled_empty_flag @staticmethod def backward(ctx, grad_out): raise NotImplementedError
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/roipoint_pool3d.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function from torch.nn.modules.module import Module from ..cnn import UPSAMPLE_LAYERS, normal_init, xavier_init from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'carafe_naive_forward', 'carafe_naive_backward', 'carafe_forward', 'carafe_backward' ]) class CARAFENaiveFunction(Function): @staticmethod def symbolic(g, features, masks, kernel_size, group_size, scale_factor): return g.op( 'mmcv::MMCVCARAFENaive', features, masks, kernel_size_i=kernel_size, group_size_i=group_size, scale_factor_f=scale_factor) @staticmethod def forward(ctx, features, masks, kernel_size, group_size, scale_factor): assert scale_factor >= 1 assert masks.size(1) == kernel_size * kernel_size * group_size assert masks.size(-1) == features.size(-1) * scale_factor assert masks.size(-2) == features.size(-2) * scale_factor assert features.size(1) % group_size == 0 assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1 ctx.kernel_size = kernel_size ctx.group_size = group_size ctx.scale_factor = scale_factor ctx.feature_size = features.size() ctx.mask_size = masks.size() n, c, h, w = features.size() output = features.new_zeros((n, c, h * scale_factor, w * scale_factor)) ext_module.carafe_naive_forward( features, masks, output, kernel_size=kernel_size, group_size=group_size, scale_factor=scale_factor) if features.requires_grad or masks.requires_grad: ctx.save_for_backward(features, masks) return output @staticmethod def backward(ctx, grad_output): assert grad_output.is_cuda features, masks = ctx.saved_tensors kernel_size = ctx.kernel_size group_size = ctx.group_size scale_factor = ctx.scale_factor grad_input = torch.zeros_like(features) grad_masks = torch.zeros_like(masks) ext_module.carafe_naive_backward( grad_output.contiguous(), features, masks, grad_input, grad_masks, kernel_size=kernel_size, group_size=group_size, scale_factor=scale_factor) return grad_input, grad_masks, None, None, None carafe_naive = CARAFENaiveFunction.apply class CARAFENaive(Module): def __init__(self, kernel_size, group_size, scale_factor): super(CARAFENaive, self).__init__() assert isinstance(kernel_size, int) and isinstance( group_size, int) and isinstance(scale_factor, int) self.kernel_size = kernel_size self.group_size = group_size self.scale_factor = scale_factor def forward(self, features, masks): return carafe_naive(features, masks, self.kernel_size, self.group_size, self.scale_factor) class CARAFEFunction(Function): @staticmethod def symbolic(g, features, masks, kernel_size, group_size, scale_factor): return g.op( 'mmcv::MMCVCARAFE', features, masks, kernel_size_i=kernel_size, group_size_i=group_size, scale_factor_f=scale_factor) @staticmethod def forward(ctx, features, masks, kernel_size, group_size, scale_factor): assert scale_factor >= 1 assert masks.size(1) == kernel_size * kernel_size * group_size assert masks.size(-1) == features.size(-1) * scale_factor assert masks.size(-2) == features.size(-2) * scale_factor assert features.size(1) % group_size == 0 assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1 ctx.kernel_size = kernel_size ctx.group_size = group_size ctx.scale_factor = scale_factor ctx.feature_size = features.size() ctx.mask_size = masks.size() n, c, h, w = features.size() output = features.new_zeros((n, c, h * scale_factor, w * scale_factor)) routput = features.new_zeros(output.size(), requires_grad=False) rfeatures = features.new_zeros(features.size(), requires_grad=False) rmasks = masks.new_zeros(masks.size(), requires_grad=False) ext_module.carafe_forward( features, masks, rfeatures, routput, rmasks, output, kernel_size=kernel_size, group_size=group_size, scale_factor=scale_factor) if features.requires_grad or masks.requires_grad: ctx.save_for_backward(features, masks, rfeatures) return output @staticmethod def backward(ctx, grad_output): assert grad_output.is_cuda features, masks, rfeatures = ctx.saved_tensors kernel_size = ctx.kernel_size group_size = ctx.group_size scale_factor = ctx.scale_factor rgrad_output = torch.zeros_like(grad_output, requires_grad=False) rgrad_input_hs = torch.zeros_like(grad_output, requires_grad=False) rgrad_input = torch.zeros_like(features, requires_grad=False) rgrad_masks = torch.zeros_like(masks, requires_grad=False) grad_input = torch.zeros_like(features, requires_grad=False) grad_masks = torch.zeros_like(masks, requires_grad=False) ext_module.carafe_backward( grad_output.contiguous(), rfeatures, masks, rgrad_output, rgrad_input_hs, rgrad_input, rgrad_masks, grad_input, grad_masks, kernel_size=kernel_size, group_size=group_size, scale_factor=scale_factor) return grad_input, grad_masks, None, None, None carafe = CARAFEFunction.apply class CARAFE(Module): """ CARAFE: Content-Aware ReAssembly of FEatures Please refer to https://arxiv.org/abs/1905.02188 for more details. Args: kernel_size (int): reassemble kernel size group_size (int): reassemble group size scale_factor (int): upsample ratio Returns: upsampled feature map """ def __init__(self, kernel_size, group_size, scale_factor): super(CARAFE, self).__init__() assert isinstance(kernel_size, int) and isinstance( group_size, int) and isinstance(scale_factor, int) self.kernel_size = kernel_size self.group_size = group_size self.scale_factor = scale_factor def forward(self, features, masks): return carafe(features, masks, self.kernel_size, self.group_size, self.scale_factor) @UPSAMPLE_LAYERS.register_module(name='carafe') class CARAFEPack(nn.Module): """A unified package of CARAFE upsampler that contains: 1) channel compressor 2) content encoder 3) CARAFE op. Official implementation of ICCV 2019 paper CARAFE: Content-Aware ReAssembly of FEatures Please refer to https://arxiv.org/abs/1905.02188 for more details. Args: channels (int): input feature channels scale_factor (int): upsample ratio up_kernel (int): kernel size of CARAFE op up_group (int): group size of CARAFE op encoder_kernel (int): kernel size of content encoder encoder_dilation (int): dilation of content encoder compressed_channels (int): output channels of channels compressor Returns: upsampled feature map """ def __init__(self, channels, scale_factor, up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64): super(CARAFEPack, self).__init__() self.channels = channels self.scale_factor = scale_factor self.up_kernel = up_kernel self.up_group = up_group self.encoder_kernel = encoder_kernel self.encoder_dilation = encoder_dilation self.compressed_channels = compressed_channels self.channel_compressor = nn.Conv2d(channels, self.compressed_channels, 1) self.content_encoder = nn.Conv2d( self.compressed_channels, self.up_kernel * self.up_kernel * self.up_group * self.scale_factor * self.scale_factor, self.encoder_kernel, padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2), dilation=self.encoder_dilation, groups=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): xavier_init(m, distribution='uniform') normal_init(self.content_encoder, std=0.001) def kernel_normalizer(self, mask): mask = F.pixel_shuffle(mask, self.scale_factor) n, mask_c, h, w = mask.size() # use float division explicitly, # to void inconsistency while exporting to onnx mask_channel = int(mask_c / float(self.up_kernel**2)) mask = mask.view(n, mask_channel, -1, h, w) mask = F.softmax(mask, dim=2, dtype=mask.dtype) mask = mask.view(n, mask_c, h, w).contiguous() return mask def feature_reassemble(self, x, mask): x = carafe(x, mask, self.up_kernel, self.up_group, self.scale_factor) return x def forward(self, x): compressed_x = self.channel_compressor(x) mask = self.content_encoder(compressed_x) mask = self.kernel_normalizer(mask) x = self.feature_reassemble(x, mask) return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/carafe.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from ..utils import deprecated_api_warning, ext_loader ext_module = ext_loader.load_ext('_ext', ['roi_align_forward', 'roi_align_backward']) class RoIAlignFunction(Function): @staticmethod def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio, pool_mode, aligned): from ..onnx import is_custom_op_loaded has_custom_op = is_custom_op_loaded() if has_custom_op: return g.op( 'mmcv::MMCVRoiAlign', input, rois, output_height_i=output_size[0], output_width_i=output_size[1], spatial_scale_f=spatial_scale, sampling_ratio_i=sampling_ratio, mode_s=pool_mode, aligned_i=aligned) else: from torch.onnx.symbolic_opset9 import sub, squeeze from torch.onnx.symbolic_helper import _slice_helper from torch.onnx import TensorProtoDataType # batch_indices = rois[:, 0].long() batch_indices = _slice_helper( g, rois, axes=[1], starts=[0], ends=[1]) batch_indices = squeeze(g, batch_indices, 1) batch_indices = g.op( 'Cast', batch_indices, to_i=TensorProtoDataType.INT64) # rois = rois[:, 1:] rois = _slice_helper(g, rois, axes=[1], starts=[1], ends=[5]) if aligned: # rois -= 0.5/spatial_scale aligned_offset = g.op( 'Constant', value_t=torch.tensor([0.5 / spatial_scale], dtype=torch.float32)) rois = sub(g, rois, aligned_offset) # roi align return g.op( 'RoiAlign', input, rois, batch_indices, output_height_i=output_size[0], output_width_i=output_size[1], spatial_scale_f=spatial_scale, sampling_ratio_i=max(0, sampling_ratio), mode_s=pool_mode) @staticmethod def forward(ctx, input, rois, output_size, spatial_scale=1.0, sampling_ratio=0, pool_mode='avg', aligned=True): ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.sampling_ratio = sampling_ratio assert pool_mode in ('max', 'avg') ctx.pool_mode = 0 if pool_mode == 'max' else 1 ctx.aligned = aligned ctx.input_shape = input.size() assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' output_shape = (rois.size(0), input.size(1), ctx.output_size[0], ctx.output_size[1]) output = input.new_zeros(output_shape) if ctx.pool_mode == 0: argmax_y = input.new_zeros(output_shape) argmax_x = input.new_zeros(output_shape) else: argmax_y = input.new_zeros(0) argmax_x = input.new_zeros(0) ext_module.roi_align_forward( input, rois, output, argmax_y, argmax_x, aligned_height=ctx.output_size[0], aligned_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale, sampling_ratio=ctx.sampling_ratio, pool_mode=ctx.pool_mode, aligned=ctx.aligned) ctx.save_for_backward(rois, argmax_y, argmax_x) return output @staticmethod @once_differentiable def backward(ctx, grad_output): rois, argmax_y, argmax_x = ctx.saved_tensors grad_input = grad_output.new_zeros(ctx.input_shape) # complex head architecture may cause grad_output uncontiguous. grad_output = grad_output.contiguous() ext_module.roi_align_backward( grad_output, rois, argmax_y, argmax_x, grad_input, aligned_height=ctx.output_size[0], aligned_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale, sampling_ratio=ctx.sampling_ratio, pool_mode=ctx.pool_mode, aligned=ctx.aligned) return grad_input, None, None, None, None, None, None roi_align = RoIAlignFunction.apply class RoIAlign(nn.Module): """RoI align pooling layer. Args: output_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sampling_ratio (int): number of inputs samples to take for each output sample. 0 to take samples densely for current models. pool_mode (str, 'avg' or 'max'): pooling mode in each bin. aligned (bool): if False, use the legacy implementation in MMDetection. If True, align the results more perfectly. use_torchvision (bool): whether to use roi_align from torchvision. Note: The implementation of RoIAlign when aligned=True is modified from https://github.com/facebookresearch/detectron2/ The meaning of aligned=True: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). But the original roi_align (aligned=False) does not subtract the 0.5 when computing neighboring pixel indices and therefore it uses pixels with a slightly incorrect alignment (relative to our pixel model) when performing bilinear interpolation. With `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5 prior to calling roi_align. This produces the correct neighbors; The difference does not make a difference to the model's performance if ROIAlign is used together with conv layers. """ @deprecated_api_warning( { 'out_size': 'output_size', 'sample_num': 'sampling_ratio' }, cls_name='RoIAlign') def __init__(self, output_size, spatial_scale=1.0, sampling_ratio=0, pool_mode='avg', aligned=True, use_torchvision=False): super(RoIAlign, self).__init__() self.output_size = _pair(output_size) self.spatial_scale = float(spatial_scale) self.sampling_ratio = int(sampling_ratio) self.pool_mode = pool_mode self.aligned = aligned self.use_torchvision = use_torchvision def forward(self, input, rois): """ Args: input: NCHW images rois: Bx5 boxes. First column is the index into N.\ The other 4 columns are xyxy. """ if self.use_torchvision: from torchvision.ops import roi_align as tv_roi_align if 'aligned' in tv_roi_align.__code__.co_varnames: return tv_roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned) else: if self.aligned: rois -= rois.new_tensor([0.] + [0.5 / self.spatial_scale] * 4) return tv_roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio) else: return roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.pool_mode, self.aligned) def __repr__(self): s = self.__class__.__name__ s += f'(output_size={self.output_size}, ' s += f'spatial_scale={self.spatial_scale}, ' s += f'sampling_ratio={self.sampling_ratio}, ' s += f'pool_mode={self.pool_mode}, ' s += f'aligned={self.aligned}, ' s += f'use_torchvision={self.use_torchvision})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/roi_align.py
from typing import List import torch from torch import nn as nn from annotator.uniformer.mmcv.runner import force_fp32 from .furthest_point_sample import (furthest_point_sample, furthest_point_sample_with_dist) def calc_square_dist(point_feat_a, point_feat_b, norm=True): """Calculating square distance between a and b. Args: point_feat_a (Tensor): (B, N, C) Feature vector of each point. point_feat_b (Tensor): (B, M, C) Feature vector of each point. norm (Bool, optional): Whether to normalize the distance. Default: True. Returns: Tensor: (B, N, M) Distance between each pair points. """ num_channel = point_feat_a.shape[-1] # [bs, n, 1] a_square = torch.sum(point_feat_a.unsqueeze(dim=2).pow(2), dim=-1) # [bs, 1, m] b_square = torch.sum(point_feat_b.unsqueeze(dim=1).pow(2), dim=-1) corr_matrix = torch.matmul(point_feat_a, point_feat_b.transpose(1, 2)) dist = a_square + b_square - 2 * corr_matrix if norm: dist = torch.sqrt(dist) / num_channel return dist def get_sampler_cls(sampler_type): """Get the type and mode of points sampler. Args: sampler_type (str): The type of points sampler. The valid value are "D-FPS", "F-FPS", or "FS". Returns: class: Points sampler type. """ sampler_mappings = { 'D-FPS': DFPSSampler, 'F-FPS': FFPSSampler, 'FS': FSSampler, } try: return sampler_mappings[sampler_type] except KeyError: raise KeyError( f'Supported `sampler_type` are {sampler_mappings.keys()}, but got \ {sampler_type}') class PointsSampler(nn.Module): """Points sampling. Args: num_point (list[int]): Number of sample points. fps_mod_list (list[str], optional): Type of FPS method, valid mod ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS']. F-FPS: using feature distances for FPS. D-FPS: using Euclidean distances of points for FPS. FS: using F-FPS and D-FPS simultaneously. fps_sample_range_list (list[int], optional): Range of points to apply FPS. Default: [-1]. """ def __init__(self, num_point: List[int], fps_mod_list: List[str] = ['D-FPS'], fps_sample_range_list: List[int] = [-1]): super().__init__() # FPS would be applied to different fps_mod in the list, # so the length of the num_point should be equal to # fps_mod_list and fps_sample_range_list. assert len(num_point) == len(fps_mod_list) == len( fps_sample_range_list) self.num_point = num_point self.fps_sample_range_list = fps_sample_range_list self.samplers = nn.ModuleList() for fps_mod in fps_mod_list: self.samplers.append(get_sampler_cls(fps_mod)()) self.fp16_enabled = False @force_fp32() def forward(self, points_xyz, features): """ Args: points_xyz (Tensor): (B, N, 3) xyz coordinates of the features. features (Tensor): (B, C, N) Descriptors of the features. Returns: Tensor: (B, npoint, sample_num) Indices of sampled points. """ indices = [] last_fps_end_index = 0 for fps_sample_range, sampler, npoint in zip( self.fps_sample_range_list, self.samplers, self.num_point): assert fps_sample_range < points_xyz.shape[1] if fps_sample_range == -1: sample_points_xyz = points_xyz[:, last_fps_end_index:] if features is not None: sample_features = features[:, :, last_fps_end_index:] else: sample_features = None else: sample_points_xyz = \ points_xyz[:, last_fps_end_index:fps_sample_range] if features is not None: sample_features = features[:, :, last_fps_end_index: fps_sample_range] else: sample_features = None fps_idx = sampler(sample_points_xyz.contiguous(), sample_features, npoint) indices.append(fps_idx + last_fps_end_index) last_fps_end_index += fps_sample_range indices = torch.cat(indices, dim=1) return indices class DFPSSampler(nn.Module): """Using Euclidean distances of points for FPS.""" def __init__(self): super().__init__() def forward(self, points, features, npoint): """Sampling points with D-FPS.""" fps_idx = furthest_point_sample(points.contiguous(), npoint) return fps_idx class FFPSSampler(nn.Module): """Using feature distances for FPS.""" def __init__(self): super().__init__() def forward(self, points, features, npoint): """Sampling points with F-FPS.""" assert features is not None, \ 'feature input to FFPS_Sampler should not be None' features_for_fps = torch.cat([points, features.transpose(1, 2)], dim=2) features_dist = calc_square_dist( features_for_fps, features_for_fps, norm=False) fps_idx = furthest_point_sample_with_dist(features_dist, npoint) return fps_idx class FSSampler(nn.Module): """Using F-FPS and D-FPS simultaneously.""" def __init__(self): super().__init__() def forward(self, points, features, npoint): """Sampling points with FS_Sampling.""" assert features is not None, \ 'feature input to FS_Sampler should not be None' ffps_sampler = FFPSSampler() dfps_sampler = DFPSSampler() fps_idx_ffps = ffps_sampler(points, features, npoint) fps_idx_dfps = dfps_sampler(points, features, npoint) fps_idx = torch.cat([fps_idx_ffps, fps_idx_dfps], dim=1) return fps_idx
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/points_sampler.py
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward']) class RoIAlignRotatedFunction(Function): @staticmethod def symbolic(g, features, rois, out_size, spatial_scale, sample_num, aligned, clockwise): if isinstance(out_size, int): out_h = out_size out_w = out_size elif isinstance(out_size, tuple): assert len(out_size) == 2 assert isinstance(out_size[0], int) assert isinstance(out_size[1], int) out_h, out_w = out_size else: raise TypeError( '"out_size" must be an integer or tuple of integers') return g.op( 'mmcv::MMCVRoIAlignRotated', features, rois, output_height_i=out_h, output_width_i=out_h, spatial_scale_f=spatial_scale, sampling_ratio_i=sample_num, aligned_i=aligned, clockwise_i=clockwise) @staticmethod def forward(ctx, features, rois, out_size, spatial_scale, sample_num=0, aligned=True, clockwise=False): if isinstance(out_size, int): out_h = out_size out_w = out_size elif isinstance(out_size, tuple): assert len(out_size) == 2 assert isinstance(out_size[0], int) assert isinstance(out_size[1], int) out_h, out_w = out_size else: raise TypeError( '"out_size" must be an integer or tuple of integers') ctx.spatial_scale = spatial_scale ctx.sample_num = sample_num ctx.aligned = aligned ctx.clockwise = clockwise ctx.save_for_backward(rois) ctx.feature_size = features.size() batch_size, num_channels, data_height, data_width = features.size() num_rois = rois.size(0) output = features.new_zeros(num_rois, num_channels, out_h, out_w) ext_module.roi_align_rotated_forward( features, rois, output, pooled_height=out_h, pooled_width=out_w, spatial_scale=spatial_scale, sample_num=sample_num, aligned=aligned, clockwise=clockwise) return output @staticmethod def backward(ctx, grad_output): feature_size = ctx.feature_size spatial_scale = ctx.spatial_scale aligned = ctx.aligned clockwise = ctx.clockwise sample_num = ctx.sample_num rois = ctx.saved_tensors[0] assert feature_size is not None batch_size, num_channels, data_height, data_width = feature_size out_w = grad_output.size(3) out_h = grad_output.size(2) grad_input = grad_rois = None if ctx.needs_input_grad[0]: grad_input = rois.new_zeros(batch_size, num_channels, data_height, data_width) ext_module.roi_align_rotated_backward( grad_output.contiguous(), rois, grad_input, pooled_height=out_h, pooled_width=out_w, spatial_scale=spatial_scale, sample_num=sample_num, aligned=aligned, clockwise=clockwise) return grad_input, grad_rois, None, None, None, None, None roi_align_rotated = RoIAlignRotatedFunction.apply class RoIAlignRotated(nn.Module): """RoI align pooling layer for rotated proposals. It accepts a feature map of shape (N, C, H, W) and rois with shape (n, 6) with each roi decoded as (batch_index, center_x, center_y, w, h, angle). The angle is in radian. Args: out_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sample_num (int): number of inputs samples to take for each output sample. 0 to take samples densely for current models. aligned (bool): if False, use the legacy implementation in MMDetection. If True, align the results more perfectly. Default: True. clockwise (bool): If True, the angle in each proposal follows a clockwise fashion in image space, otherwise, the angle is counterclockwise. Default: False. Note: The implementation of RoIAlign when aligned=True is modified from https://github.com/facebookresearch/detectron2/ The meaning of aligned=True: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). But the original roi_align (aligned=False) does not subtract the 0.5 when computing neighboring pixel indices and therefore it uses pixels with a slightly incorrect alignment (relative to our pixel model) when performing bilinear interpolation. With `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5 prior to calling roi_align. This produces the correct neighbors; The difference does not make a difference to the model's performance if ROIAlign is used together with conv layers. """ def __init__(self, out_size, spatial_scale, sample_num=0, aligned=True, clockwise=False): super(RoIAlignRotated, self).__init__() self.out_size = out_size self.spatial_scale = float(spatial_scale) self.sample_num = int(sample_num) self.aligned = aligned self.clockwise = clockwise def forward(self, features, rois): return RoIAlignRotatedFunction.apply(features, rois, self.out_size, self.spatial_scale, self.sample_num, self.aligned, self.clockwise)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/roi_align_rotated.py
# Copyright (c) OpenMMLab. All rights reserved. import math import warnings import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd.function import Function, once_differentiable from annotator.uniformer.mmcv import deprecated_api_warning from annotator.uniformer.mmcv.cnn import constant_init, xavier_init from annotator.uniformer.mmcv.cnn.bricks.registry import ATTENTION from annotator.uniformer.mmcv.runner import BaseModule from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['ms_deform_attn_backward', 'ms_deform_attn_forward']) class MultiScaleDeformableAttnFunction(Function): @staticmethod def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step): """GPU version of multi-scale deformable attention. Args: value (Tensor): The value has shape (bs, num_keys, mum_heads, embed_dims//num_heads) value_spatial_shapes (Tensor): Spatial shape of each feature map, has shape (num_levels, 2), last dimension 2 represent (h, w) sampling_locations (Tensor): The location of sampling points, has shape (bs ,num_queries, num_heads, num_levels, num_points, 2), the last dimension 2 represent (x, y). attention_weights (Tensor): The weight of sampling points used when calculate the attention, has shape (bs ,num_queries, num_heads, num_levels, num_points), im2col_step (Tensor): The step used in image to column. Returns: Tensor: has shape (bs, num_queries, embed_dims) """ ctx.im2col_step = im2col_step output = ext_module.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step=ctx.im2col_step) ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) return output @staticmethod @once_differentiable def backward(ctx, grad_output): """GPU version of backward function. Args: grad_output (Tensor): Gradient of output tensor of forward. Returns: Tuple[Tensor]: Gradient of input tensors in forward. """ value, value_spatial_shapes, value_level_start_index,\ sampling_locations, attention_weights = ctx.saved_tensors grad_value = torch.zeros_like(value) grad_sampling_loc = torch.zeros_like(sampling_locations) grad_attn_weight = torch.zeros_like(attention_weights) ext_module.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output.contiguous(), grad_value, grad_sampling_loc, grad_attn_weight, im2col_step=ctx.im2col_step) return grad_value, None, None, \ grad_sampling_loc, grad_attn_weight, None def multi_scale_deformable_attn_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights): """CPU version of multi-scale deformable attention. Args: value (Tensor): The value has shape (bs, num_keys, mum_heads, embed_dims//num_heads) value_spatial_shapes (Tensor): Spatial shape of each feature map, has shape (num_levels, 2), last dimension 2 represent (h, w) sampling_locations (Tensor): The location of sampling points, has shape (bs ,num_queries, num_heads, num_levels, num_points, 2), the last dimension 2 represent (x, y). attention_weights (Tensor): The weight of sampling points used when calculate the attention, has shape (bs ,num_queries, num_heads, num_levels, num_points), Returns: Tensor: has shape (bs, num_queries, embed_dims) """ bs, _, num_heads, embed_dims = value.shape _, num_queries, num_heads, num_levels, num_points, _ =\ sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for level, (H_, W_) in enumerate(value_spatial_shapes): # bs, H_*W_, num_heads, embed_dims -> # bs, H_*W_, num_heads*embed_dims -> # bs, num_heads*embed_dims, H_*W_ -> # bs*num_heads, embed_dims, H_, W_ value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape( bs * num_heads, embed_dims, H_, W_) # bs, num_queries, num_heads, num_points, 2 -> # bs, num_heads, num_queries, num_points, 2 -> # bs*num_heads, num_queries, num_points, 2 sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) # bs*num_heads, embed_dims, num_queries, num_points sampling_value_l_ = F.grid_sample( value_l_, sampling_grid_l_, mode='bilinear', padding_mode='zeros', align_corners=False) sampling_value_list.append(sampling_value_l_) # (bs, num_queries, num_heads, num_levels, num_points) -> # (bs, num_heads, num_queries, num_levels, num_points) -> # (bs, num_heads, 1, num_queries, num_levels*num_points) attention_weights = attention_weights.transpose(1, 2).reshape( bs * num_heads, 1, num_queries, num_levels * num_points) output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(bs, num_heads * embed_dims, num_queries) return output.transpose(1, 2).contiguous() @ATTENTION.register_module() class MultiScaleDeformableAttention(BaseModule): """An attention module used in Deformable-Detr. `Deformable DETR: Deformable Transformers for End-to-End Object Detection. <https://arxiv.org/pdf/2010.04159.pdf>`_. Args: embed_dims (int): The embedding dimension of Attention. Default: 256. num_heads (int): Parallel attention heads. Default: 64. num_levels (int): The number of feature map used in Attention. Default: 4. num_points (int): The number of sampling points for each query in each head. Default: 4. im2col_step (int): The step used in image_to_column. Default: 64. dropout (float): A Dropout layer on `inp_identity`. Default: 0.1. batch_first (bool): Key, Query and Value are shape of (batch, n, embed_dim) or (n, batch, embed_dim). Default to False. norm_cfg (dict): Config dict for normalization layer. Default: None. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ def __init__(self, embed_dims=256, num_heads=8, num_levels=4, num_points=4, im2col_step=64, dropout=0.1, batch_first=False, norm_cfg=None, init_cfg=None): super().__init__(init_cfg) if embed_dims % num_heads != 0: raise ValueError(f'embed_dims must be divisible by num_heads, ' f'but got {embed_dims} and {num_heads}') dim_per_head = embed_dims // num_heads self.norm_cfg = norm_cfg self.dropout = nn.Dropout(dropout) self.batch_first = batch_first # you'd better set dim_per_head to a power of 2 # which is more efficient in the CUDA implementation def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError( 'invalid input for _is_power_of_2: {} (type: {})'.format( n, type(n))) return (n & (n - 1) == 0) and n != 0 if not _is_power_of_2(dim_per_head): warnings.warn( "You'd better set embed_dims in " 'MultiScaleDeformAttention to make ' 'the dimension of each attention head a power of 2 ' 'which is more efficient in our CUDA implementation.') self.im2col_step = im2col_step self.embed_dims = embed_dims self.num_levels = num_levels self.num_heads = num_heads self.num_points = num_points self.sampling_offsets = nn.Linear( embed_dims, num_heads * num_levels * num_points * 2) self.attention_weights = nn.Linear(embed_dims, num_heads * num_levels * num_points) self.value_proj = nn.Linear(embed_dims, embed_dims) self.output_proj = nn.Linear(embed_dims, embed_dims) self.init_weights() def init_weights(self): """Default initialization for Parameters of Module.""" constant_init(self.sampling_offsets, 0.) thetas = torch.arange( self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view( self.num_heads, 1, 1, 2).repeat(1, self.num_levels, self.num_points, 1) for i in range(self.num_points): grid_init[:, :, i, :] *= i + 1 self.sampling_offsets.bias.data = grid_init.view(-1) constant_init(self.attention_weights, val=0., bias=0.) xavier_init(self.value_proj, distribution='uniform', bias=0.) xavier_init(self.output_proj, distribution='uniform', bias=0.) self._is_init = True @deprecated_api_warning({'residual': 'identity'}, cls_name='MultiScaleDeformableAttention') def forward(self, query, key=None, value=None, identity=None, query_pos=None, key_padding_mask=None, reference_points=None, spatial_shapes=None, level_start_index=None, **kwargs): """Forward Function of MultiScaleDeformAttention. Args: query (Tensor): Query of Transformer with shape (num_query, bs, embed_dims). key (Tensor): The key tensor with shape `(num_key, bs, embed_dims)`. value (Tensor): The value tensor with shape `(num_key, bs, embed_dims)`. identity (Tensor): The tensor used for addition, with the same shape as `query`. Default None. If None, `query` will be used. query_pos (Tensor): The positional encoding for `query`. Default: None. key_pos (Tensor): The positional encoding for `key`. Default None. reference_points (Tensor): The normalized reference points with shape (bs, num_query, num_levels, 2), all elements is range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area. or (N, Length_{query}, num_levels, 4), add additional two dimensions is (w, h) to form reference boxes. key_padding_mask (Tensor): ByteTensor for `query`, with shape [bs, num_key]. spatial_shapes (Tensor): Spatial shape of features in different levels. With shape (num_levels, 2), last dimension represents (h, w). level_start_index (Tensor): The start index of each level. A tensor has shape ``(num_levels, )`` and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...]. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ if value is None: value = query if identity is None: identity = query if query_pos is not None: query = query + query_pos if not self.batch_first: # change to (bs, num_query ,embed_dims) query = query.permute(1, 0, 2) value = value.permute(1, 0, 2) bs, num_query, _ = query.shape bs, num_value, _ = value.shape assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value value = self.value_proj(value) if key_padding_mask is not None: value = value.masked_fill(key_padding_mask[..., None], 0.0) value = value.view(bs, num_value, self.num_heads, -1) sampling_offsets = self.sampling_offsets(query).view( bs, num_query, self.num_heads, self.num_levels, self.num_points, 2) attention_weights = self.attention_weights(query).view( bs, num_query, self.num_heads, self.num_levels * self.num_points) attention_weights = attention_weights.softmax(-1) attention_weights = attention_weights.view(bs, num_query, self.num_heads, self.num_levels, self.num_points) if reference_points.shape[-1] == 2: offset_normalizer = torch.stack( [spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets \ / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.num_points \ * reference_points[:, :, None, :, None, 2:] \ * 0.5 else: raise ValueError( f'Last dim of reference_points must be' f' 2 or 4, but get {reference_points.shape[-1]} instead.') if torch.cuda.is_available() and value.is_cuda: output = MultiScaleDeformableAttnFunction.apply( value, spatial_shapes, level_start_index, sampling_locations, attention_weights, self.im2col_step) else: output = multi_scale_deformable_attn_pytorch( value, spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) if not self.batch_first: # (num_query, bs ,embed_dims) output = output.permute(1, 0, 2) return self.dropout(output) + identity
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/multi_scale_deform_attn.py
# Copyright (c) OpenMMLab. All rights reserved. from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['box_iou_rotated']) def box_iou_rotated(bboxes1, bboxes2, mode='iou', aligned=False): """Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x_center, y_center, width, height, angle) format. If ``aligned`` is ``False``, then calculate the ious between each bbox of bboxes1 and bboxes2, otherwise the ious between each aligned pair of bboxes1 and bboxes2. Arguments: boxes1 (Tensor): rotated bboxes 1. \ It has shape (N, 5), indicating (x, y, w, h, theta) for each row. Note that theta is in radian. boxes2 (Tensor): rotated bboxes 2. \ It has shape (M, 5), indicating (x, y, w, h, theta) for each row. Note that theta is in radian. mode (str): "iou" (intersection over union) or iof (intersection over foreground). Returns: ious(Tensor): shape (N, M) if aligned == False else shape (N,) """ assert mode in ['iou', 'iof'] mode_dict = {'iou': 0, 'iof': 1} mode_flag = mode_dict[mode] rows = bboxes1.size(0) cols = bboxes2.size(0) if aligned: ious = bboxes1.new_zeros(rows) else: ious = bboxes1.new_zeros((rows * cols)) bboxes1 = bboxes1.contiguous() bboxes2 = bboxes2.contiguous() ext_module.box_iou_rotated( bboxes1, bboxes2, ious, mode_flag=mode_flag, aligned=aligned) if not aligned: ious = ious.view(rows, cols) return ious
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/box_iou_rotated.py
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa from os import path as osp import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair from torch.onnx.operators import shape_as_tensor def bilinear_grid_sample(im, grid, align_corners=False): """Given an input and a flow-field grid, computes the output using input values and pixel locations from grid. Supported only bilinear interpolation method to sample the input pixels. Args: im (torch.Tensor): Input feature map, shape (N, C, H, W) grid (torch.Tensor): Point coordinates, shape (N, Hg, Wg, 2) align_corners {bool}: If set to True, the extrema (-1 and 1) are considered as referring to the center points of the input’s corner pixels. If set to False, they are instead considered as referring to the corner points of the input’s corner pixels, making the sampling more resolution agnostic. Returns: torch.Tensor: A tensor with sampled points, shape (N, C, Hg, Wg) """ n, c, h, w = im.shape gn, gh, gw, _ = grid.shape assert n == gn x = grid[:, :, :, 0] y = grid[:, :, :, 1] if align_corners: x = ((x + 1) / 2) * (w - 1) y = ((y + 1) / 2) * (h - 1) else: x = ((x + 1) * w - 1) / 2 y = ((y + 1) * h - 1) / 2 x = x.view(n, -1) y = y.view(n, -1) x0 = torch.floor(x).long() y0 = torch.floor(y).long() x1 = x0 + 1 y1 = y0 + 1 wa = ((x1 - x) * (y1 - y)).unsqueeze(1) wb = ((x1 - x) * (y - y0)).unsqueeze(1) wc = ((x - x0) * (y1 - y)).unsqueeze(1) wd = ((x - x0) * (y - y0)).unsqueeze(1) # Apply default for grid_sample function zero padding im_padded = F.pad(im, pad=[1, 1, 1, 1], mode='constant', value=0) padded_h = h + 2 padded_w = w + 2 # save points positions after padding x0, x1, y0, y1 = x0 + 1, x1 + 1, y0 + 1, y1 + 1 # Clip coordinates to padded image size x0 = torch.where(x0 < 0, torch.tensor(0), x0) x0 = torch.where(x0 > padded_w - 1, torch.tensor(padded_w - 1), x0) x1 = torch.where(x1 < 0, torch.tensor(0), x1) x1 = torch.where(x1 > padded_w - 1, torch.tensor(padded_w - 1), x1) y0 = torch.where(y0 < 0, torch.tensor(0), y0) y0 = torch.where(y0 > padded_h - 1, torch.tensor(padded_h - 1), y0) y1 = torch.where(y1 < 0, torch.tensor(0), y1) y1 = torch.where(y1 > padded_h - 1, torch.tensor(padded_h - 1), y1) im_padded = im_padded.view(n, c, -1) x0_y0 = (x0 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1) x0_y1 = (x0 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1) x1_y0 = (x1 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1) x1_y1 = (x1 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1) Ia = torch.gather(im_padded, 2, x0_y0) Ib = torch.gather(im_padded, 2, x0_y1) Ic = torch.gather(im_padded, 2, x1_y0) Id = torch.gather(im_padded, 2, x1_y1) return (Ia * wa + Ib * wb + Ic * wc + Id * wd).reshape(n, c, gh, gw) def is_in_onnx_export_without_custom_ops(): from annotator.uniformer.mmcv.ops import get_onnxruntime_op_path ort_custom_op_path = get_onnxruntime_op_path() return torch.onnx.is_in_onnx_export( ) and not osp.exists(ort_custom_op_path) def normalize(grid): """Normalize input grid from [-1, 1] to [0, 1] Args: grid (Tensor): The grid to be normalize, range [-1, 1]. Returns: Tensor: Normalized grid, range [0, 1]. """ return (grid + 1.0) / 2.0 def denormalize(grid): """Denormalize input grid from range [0, 1] to [-1, 1] Args: grid (Tensor): The grid to be denormalize, range [0, 1]. Returns: Tensor: Denormalized grid, range [-1, 1]. """ return grid * 2.0 - 1.0 def generate_grid(num_grid, size, device): """Generate regular square grid of points in [0, 1] x [0, 1] coordinate space. Args: num_grid (int): The number of grids to sample, one for each region. size (tuple(int, int)): The side size of the regular grid. device (torch.device): Desired device of returned tensor. Returns: (torch.Tensor): A tensor of shape (num_grid, size[0]*size[1], 2) that contains coordinates for the regular grids. """ affine_trans = torch.tensor([[[1., 0., 0.], [0., 1., 0.]]], device=device) grid = F.affine_grid( affine_trans, torch.Size((1, 1, *size)), align_corners=False) grid = normalize(grid) return grid.view(1, -1, 2).expand(num_grid, -1, -1) def rel_roi_point_to_abs_img_point(rois, rel_roi_points): """Convert roi based relative point coordinates to image based absolute point coordinates. Args: rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5) rel_roi_points (Tensor): Point coordinates inside RoI, relative to RoI, location, range (0, 1), shape (N, P, 2) Returns: Tensor: Image based absolute point coordinates, shape (N, P, 2) """ with torch.no_grad(): assert rel_roi_points.size(0) == rois.size(0) assert rois.dim() == 2 assert rel_roi_points.dim() == 3 assert rel_roi_points.size(2) == 2 # remove batch idx if rois.size(1) == 5: rois = rois[:, 1:] abs_img_points = rel_roi_points.clone() # To avoid an error during exporting to onnx use independent # variables instead inplace computation xs = abs_img_points[:, :, 0] * (rois[:, None, 2] - rois[:, None, 0]) ys = abs_img_points[:, :, 1] * (rois[:, None, 3] - rois[:, None, 1]) xs += rois[:, None, 0] ys += rois[:, None, 1] abs_img_points = torch.stack([xs, ys], dim=2) return abs_img_points def get_shape_from_feature_map(x): """Get spatial resolution of input feature map considering exporting to onnx mode. Args: x (torch.Tensor): Input tensor, shape (N, C, H, W) Returns: torch.Tensor: Spatial resolution (width, height), shape (1, 1, 2) """ if torch.onnx.is_in_onnx_export(): img_shape = shape_as_tensor(x)[2:].flip(0).view(1, 1, 2).to( x.device).float() else: img_shape = torch.tensor(x.shape[2:]).flip(0).view(1, 1, 2).to( x.device).float() return img_shape def abs_img_point_to_rel_img_point(abs_img_points, img, spatial_scale=1.): """Convert image based absolute point coordinates to image based relative coordinates for sampling. Args: abs_img_points (Tensor): Image based absolute point coordinates, shape (N, P, 2) img (tuple/Tensor): (height, width) of image or feature map. spatial_scale (float): Scale points by this factor. Default: 1. Returns: Tensor: Image based relative point coordinates for sampling, shape (N, P, 2) """ assert (isinstance(img, tuple) and len(img) == 2) or \ (isinstance(img, torch.Tensor) and len(img.shape) == 4) if isinstance(img, tuple): h, w = img scale = torch.tensor([w, h], dtype=torch.float, device=abs_img_points.device) scale = scale.view(1, 1, 2) else: scale = get_shape_from_feature_map(img) return abs_img_points / scale * spatial_scale def rel_roi_point_to_rel_img_point(rois, rel_roi_points, img, spatial_scale=1.): """Convert roi based relative point coordinates to image based absolute point coordinates. Args: rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5) rel_roi_points (Tensor): Point coordinates inside RoI, relative to RoI, location, range (0, 1), shape (N, P, 2) img (tuple/Tensor): (height, width) of image or feature map. spatial_scale (float): Scale points by this factor. Default: 1. Returns: Tensor: Image based relative point coordinates for sampling, shape (N, P, 2) """ abs_img_point = rel_roi_point_to_abs_img_point(rois, rel_roi_points) rel_img_point = abs_img_point_to_rel_img_point(abs_img_point, img, spatial_scale) return rel_img_point def point_sample(input, points, align_corners=False, **kwargs): """A wrapper around :func:`grid_sample` to support 3D point_coords tensors Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to lie inside ``[0, 1] x [0, 1]`` square. Args: input (Tensor): Feature map, shape (N, C, H, W). points (Tensor): Image based absolute point coordinates (normalized), range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2). align_corners (bool): Whether align_corners. Default: False Returns: Tensor: Features of `point` on `input`, shape (N, C, P) or (N, C, Hgrid, Wgrid). """ add_dim = False if points.dim() == 3: add_dim = True points = points.unsqueeze(2) if is_in_onnx_export_without_custom_ops(): # If custom ops for onnx runtime not compiled use python # implementation of grid_sample function to make onnx graph # with supported nodes output = bilinear_grid_sample( input, denormalize(points), align_corners=align_corners) else: output = F.grid_sample( input, denormalize(points), align_corners=align_corners, **kwargs) if add_dim: output = output.squeeze(3) return output class SimpleRoIAlign(nn.Module): def __init__(self, output_size, spatial_scale, aligned=True): """Simple RoI align in PointRend, faster than standard RoIAlign. Args: output_size (tuple[int]): h, w spatial_scale (float): scale the input boxes by this number aligned (bool): if False, use the legacy implementation in MMDetection, align_corners=True will be used in F.grid_sample. If True, align the results more perfectly. """ super(SimpleRoIAlign, self).__init__() self.output_size = _pair(output_size) self.spatial_scale = float(spatial_scale) # to be consistent with other RoI ops self.use_torchvision = False self.aligned = aligned def forward(self, features, rois): num_imgs = features.size(0) num_rois = rois.size(0) rel_roi_points = generate_grid( num_rois, self.output_size, device=rois.device) if torch.onnx.is_in_onnx_export(): rel_img_points = rel_roi_point_to_rel_img_point( rois, rel_roi_points, features, self.spatial_scale) rel_img_points = rel_img_points.reshape(num_imgs, -1, *rel_img_points.shape[1:]) point_feats = point_sample( features, rel_img_points, align_corners=not self.aligned) point_feats = point_feats.transpose(1, 2) else: point_feats = [] for batch_ind in range(num_imgs): # unravel batch dim feat = features[batch_ind].unsqueeze(0) inds = (rois[:, 0].long() == batch_ind) if inds.any(): rel_img_points = rel_roi_point_to_rel_img_point( rois[inds], rel_roi_points[inds], feat, self.spatial_scale).unsqueeze(0) point_feat = point_sample( feat, rel_img_points, align_corners=not self.aligned) point_feat = point_feat.squeeze(0).transpose(0, 1) point_feats.append(point_feat) point_feats = torch.cat(point_feats, dim=0) channels = features.size(1) roi_feats = point_feats.reshape(num_rois, channels, *self.output_size) return roi_feats def __repr__(self): format_str = self.__class__.__name__ format_str += '(output_size={}, spatial_scale={}'.format( self.output_size, self.spatial_scale) return format_str
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/point_sample.py
import os import numpy as np import torch from annotator.uniformer.mmcv.utils import deprecated_api_warning from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['nms', 'softnms', 'nms_match', 'nms_rotated']) # This function is modified from: https://github.com/pytorch/vision/ class NMSop(torch.autograd.Function): @staticmethod def forward(ctx, bboxes, scores, iou_threshold, offset, score_threshold, max_num): is_filtering_by_score = score_threshold > 0 if is_filtering_by_score: valid_mask = scores > score_threshold bboxes, scores = bboxes[valid_mask], scores[valid_mask] valid_inds = torch.nonzero( valid_mask, as_tuple=False).squeeze(dim=1) inds = ext_module.nms( bboxes, scores, iou_threshold=float(iou_threshold), offset=offset) if max_num > 0: inds = inds[:max_num] if is_filtering_by_score: inds = valid_inds[inds] return inds @staticmethod def symbolic(g, bboxes, scores, iou_threshold, offset, score_threshold, max_num): from ..onnx import is_custom_op_loaded has_custom_op = is_custom_op_loaded() # TensorRT nms plugin is aligned with original nms in ONNXRuntime is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT' if has_custom_op and (not is_trt_backend): return g.op( 'mmcv::NonMaxSuppression', bboxes, scores, iou_threshold_f=float(iou_threshold), offset_i=int(offset)) else: from torch.onnx.symbolic_opset9 import select, squeeze, unsqueeze from ..onnx.onnx_utils.symbolic_helper import _size_helper boxes = unsqueeze(g, bboxes, 0) scores = unsqueeze(g, unsqueeze(g, scores, 0), 0) if max_num > 0: max_num = g.op( 'Constant', value_t=torch.tensor(max_num, dtype=torch.long)) else: dim = g.op('Constant', value_t=torch.tensor(0)) max_num = _size_helper(g, bboxes, dim) max_output_per_class = max_num iou_threshold = g.op( 'Constant', value_t=torch.tensor([iou_threshold], dtype=torch.float)) score_threshold = g.op( 'Constant', value_t=torch.tensor([score_threshold], dtype=torch.float)) nms_out = g.op('NonMaxSuppression', boxes, scores, max_output_per_class, iou_threshold, score_threshold) return squeeze( g, select( g, nms_out, 1, g.op( 'Constant', value_t=torch.tensor([2], dtype=torch.long))), 1) class SoftNMSop(torch.autograd.Function): @staticmethod def forward(ctx, boxes, scores, iou_threshold, sigma, min_score, method, offset): dets = boxes.new_empty((boxes.size(0), 5), device='cpu') inds = ext_module.softnms( boxes.cpu(), scores.cpu(), dets.cpu(), iou_threshold=float(iou_threshold), sigma=float(sigma), min_score=float(min_score), method=int(method), offset=int(offset)) return dets, inds @staticmethod def symbolic(g, boxes, scores, iou_threshold, sigma, min_score, method, offset): from packaging import version assert version.parse(torch.__version__) >= version.parse('1.7.0') nms_out = g.op( 'mmcv::SoftNonMaxSuppression', boxes, scores, iou_threshold_f=float(iou_threshold), sigma_f=float(sigma), min_score_f=float(min_score), method_i=int(method), offset_i=int(offset), outputs=2) return nms_out @deprecated_api_warning({'iou_thr': 'iou_threshold'}) def nms(boxes, scores, iou_threshold, offset=0, score_threshold=0, max_num=-1): """Dispatch to either CPU or GPU NMS implementations. The input can be either torch tensor or numpy array. GPU NMS will be used if the input is gpu tensor, otherwise CPU NMS will be used. The returned type will always be the same as inputs. Arguments: boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4). scores (torch.Tensor or np.ndarray): scores in shape (N, ). iou_threshold (float): IoU threshold for NMS. offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset). score_threshold (float): score threshold for NMS. max_num (int): maximum number of boxes after NMS. Returns: tuple: kept dets(boxes and scores) and indice, which is always the \ same data type as the input. Example: >>> boxes = np.array([[49.1, 32.4, 51.0, 35.9], >>> [49.3, 32.9, 51.0, 35.3], >>> [49.2, 31.8, 51.0, 35.4], >>> [35.1, 11.5, 39.1, 15.7], >>> [35.6, 11.8, 39.3, 14.2], >>> [35.3, 11.5, 39.9, 14.5], >>> [35.2, 11.7, 39.7, 15.7]], dtype=np.float32) >>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.5, 0.4, 0.3],\ dtype=np.float32) >>> iou_threshold = 0.6 >>> dets, inds = nms(boxes, scores, iou_threshold) >>> assert len(inds) == len(dets) == 3 """ assert isinstance(boxes, (torch.Tensor, np.ndarray)) assert isinstance(scores, (torch.Tensor, np.ndarray)) is_numpy = False if isinstance(boxes, np.ndarray): is_numpy = True boxes = torch.from_numpy(boxes) if isinstance(scores, np.ndarray): scores = torch.from_numpy(scores) assert boxes.size(1) == 4 assert boxes.size(0) == scores.size(0) assert offset in (0, 1) if torch.__version__ == 'parrots': indata_list = [boxes, scores] indata_dict = { 'iou_threshold': float(iou_threshold), 'offset': int(offset) } inds = ext_module.nms(*indata_list, **indata_dict) else: inds = NMSop.apply(boxes, scores, iou_threshold, offset, score_threshold, max_num) dets = torch.cat((boxes[inds], scores[inds].reshape(-1, 1)), dim=1) if is_numpy: dets = dets.cpu().numpy() inds = inds.cpu().numpy() return dets, inds @deprecated_api_warning({'iou_thr': 'iou_threshold'}) def soft_nms(boxes, scores, iou_threshold=0.3, sigma=0.5, min_score=1e-3, method='linear', offset=0): """Dispatch to only CPU Soft NMS implementations. The input can be either a torch tensor or numpy array. The returned type will always be the same as inputs. Arguments: boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4). scores (torch.Tensor or np.ndarray): scores in shape (N, ). iou_threshold (float): IoU threshold for NMS. sigma (float): hyperparameter for gaussian method min_score (float): score filter threshold method (str): either 'linear' or 'gaussian' offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset). Returns: tuple: kept dets(boxes and scores) and indice, which is always the \ same data type as the input. Example: >>> boxes = np.array([[4., 3., 5., 3.], >>> [4., 3., 5., 4.], >>> [3., 1., 3., 1.], >>> [3., 1., 3., 1.], >>> [3., 1., 3., 1.], >>> [3., 1., 3., 1.]], dtype=np.float32) >>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.4, 0.0], dtype=np.float32) >>> iou_threshold = 0.6 >>> dets, inds = soft_nms(boxes, scores, iou_threshold, sigma=0.5) >>> assert len(inds) == len(dets) == 5 """ assert isinstance(boxes, (torch.Tensor, np.ndarray)) assert isinstance(scores, (torch.Tensor, np.ndarray)) is_numpy = False if isinstance(boxes, np.ndarray): is_numpy = True boxes = torch.from_numpy(boxes) if isinstance(scores, np.ndarray): scores = torch.from_numpy(scores) assert boxes.size(1) == 4 assert boxes.size(0) == scores.size(0) assert offset in (0, 1) method_dict = {'naive': 0, 'linear': 1, 'gaussian': 2} assert method in method_dict.keys() if torch.__version__ == 'parrots': dets = boxes.new_empty((boxes.size(0), 5), device='cpu') indata_list = [boxes.cpu(), scores.cpu(), dets.cpu()] indata_dict = { 'iou_threshold': float(iou_threshold), 'sigma': float(sigma), 'min_score': min_score, 'method': method_dict[method], 'offset': int(offset) } inds = ext_module.softnms(*indata_list, **indata_dict) else: dets, inds = SoftNMSop.apply(boxes.cpu(), scores.cpu(), float(iou_threshold), float(sigma), float(min_score), method_dict[method], int(offset)) dets = dets[:inds.size(0)] if is_numpy: dets = dets.cpu().numpy() inds = inds.cpu().numpy() return dets, inds else: return dets.to(device=boxes.device), inds.to(device=boxes.device) def batched_nms(boxes, scores, idxs, nms_cfg, class_agnostic=False): """Performs non-maximum suppression in a batched fashion. Modified from https://github.com/pytorch/vision/blob /505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39. In order to perform NMS independently per class, we add an offset to all the boxes. The offset is dependent only on the class idx, and is large enough so that boxes from different classes do not overlap. Arguments: boxes (torch.Tensor): boxes in shape (N, 4). scores (torch.Tensor): scores in shape (N, ). idxs (torch.Tensor): each index value correspond to a bbox cluster, and NMS will not be applied between elements of different idxs, shape (N, ). nms_cfg (dict): specify nms type and other parameters like iou_thr. Possible keys includes the following. - iou_thr (float): IoU threshold used for NMS. - split_thr (float): threshold number of boxes. In some cases the number of boxes is large (e.g., 200k). To avoid OOM during training, the users could set `split_thr` to a small value. If the number of boxes is greater than the threshold, it will perform NMS on each group of boxes separately and sequentially. Defaults to 10000. class_agnostic (bool): if true, nms is class agnostic, i.e. IoU thresholding happens over all boxes, regardless of the predicted class. Returns: tuple: kept dets and indice. """ nms_cfg_ = nms_cfg.copy() class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic) if class_agnostic: boxes_for_nms = boxes else: max_coordinate = boxes.max() offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes)) boxes_for_nms = boxes + offsets[:, None] nms_type = nms_cfg_.pop('type', 'nms') nms_op = eval(nms_type) split_thr = nms_cfg_.pop('split_thr', 10000) # Won't split to multiple nms nodes when exporting to onnx if boxes_for_nms.shape[0] < split_thr or torch.onnx.is_in_onnx_export(): dets, keep = nms_op(boxes_for_nms, scores, **nms_cfg_) boxes = boxes[keep] # -1 indexing works abnormal in TensorRT # This assumes `dets` has 5 dimensions where # the last dimension is score. # TODO: more elegant way to handle the dimension issue. # Some type of nms would reweight the score, such as SoftNMS scores = dets[:, 4] else: max_num = nms_cfg_.pop('max_num', -1) total_mask = scores.new_zeros(scores.size(), dtype=torch.bool) # Some type of nms would reweight the score, such as SoftNMS scores_after_nms = scores.new_zeros(scores.size()) for id in torch.unique(idxs): mask = (idxs == id).nonzero(as_tuple=False).view(-1) dets, keep = nms_op(boxes_for_nms[mask], scores[mask], **nms_cfg_) total_mask[mask[keep]] = True scores_after_nms[mask[keep]] = dets[:, -1] keep = total_mask.nonzero(as_tuple=False).view(-1) scores, inds = scores_after_nms[keep].sort(descending=True) keep = keep[inds] boxes = boxes[keep] if max_num > 0: keep = keep[:max_num] boxes = boxes[:max_num] scores = scores[:max_num] return torch.cat([boxes, scores[:, None]], -1), keep def nms_match(dets, iou_threshold): """Matched dets into different groups by NMS. NMS match is Similar to NMS but when a bbox is suppressed, nms match will record the indice of suppressed bbox and form a group with the indice of kept bbox. In each group, indice is sorted as score order. Arguments: dets (torch.Tensor | np.ndarray): Det boxes with scores, shape (N, 5). iou_thr (float): IoU thresh for NMS. Returns: List[torch.Tensor | np.ndarray]: The outer list corresponds different matched group, the inner Tensor corresponds the indices for a group in score order. """ if dets.shape[0] == 0: matched = [] else: assert dets.shape[-1] == 5, 'inputs dets.shape should be (N, 5), ' \ f'but get {dets.shape}' if isinstance(dets, torch.Tensor): dets_t = dets.detach().cpu() else: dets_t = torch.from_numpy(dets) indata_list = [dets_t] indata_dict = {'iou_threshold': float(iou_threshold)} matched = ext_module.nms_match(*indata_list, **indata_dict) if torch.__version__ == 'parrots': matched = matched.tolist() if isinstance(dets, torch.Tensor): return [dets.new_tensor(m, dtype=torch.long) for m in matched] else: return [np.array(m, dtype=np.int) for m in matched] def nms_rotated(dets, scores, iou_threshold, labels=None): """Performs non-maximum suppression (NMS) on the rotated boxes according to their intersection-over-union (IoU). Rotated NMS iteratively removes lower scoring rotated boxes which have an IoU greater than iou_threshold with another (higher scoring) rotated box. Args: boxes (Tensor): Rotated boxes in shape (N, 5). They are expected to \ be in (x_ctr, y_ctr, width, height, angle_radian) format. scores (Tensor): scores in shape (N, ). iou_threshold (float): IoU thresh for NMS. labels (Tensor): boxes' label in shape (N,). Returns: tuple: kept dets(boxes and scores) and indice, which is always the \ same data type as the input. """ if dets.shape[0] == 0: return dets, None multi_label = labels is not None if multi_label: dets_wl = torch.cat((dets, labels.unsqueeze(1)), 1) else: dets_wl = dets _, order = scores.sort(0, descending=True) dets_sorted = dets_wl.index_select(0, order) if torch.__version__ == 'parrots': keep_inds = ext_module.nms_rotated( dets_wl, scores, order, dets_sorted, iou_threshold=iou_threshold, multi_label=multi_label) else: keep_inds = ext_module.nms_rotated(dets_wl, scores, order, dets_sorted, iou_threshold, multi_label) dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)), dim=1) return dets, keep_inds
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/nms.py
# Copyright (c) OpenMMLab. All rights reserved. from .assign_score_withk import assign_score_withk from .ball_query import ball_query from .bbox import bbox_overlaps from .border_align import BorderAlign, border_align from .box_iou_rotated import box_iou_rotated from .carafe import CARAFE, CARAFENaive, CARAFEPack, carafe, carafe_naive from .cc_attention import CrissCrossAttention from .contour_expand import contour_expand from .corner_pool import CornerPool from .correlation import Correlation from .deform_conv import DeformConv2d, DeformConv2dPack, deform_conv2d from .deform_roi_pool import (DeformRoIPool, DeformRoIPoolPack, ModulatedDeformRoIPoolPack, deform_roi_pool) from .deprecated_wrappers import Conv2d_deprecated as Conv2d from .deprecated_wrappers import ConvTranspose2d_deprecated as ConvTranspose2d from .deprecated_wrappers import Linear_deprecated as Linear from .deprecated_wrappers import MaxPool2d_deprecated as MaxPool2d from .focal_loss import (SigmoidFocalLoss, SoftmaxFocalLoss, sigmoid_focal_loss, softmax_focal_loss) from .furthest_point_sample import (furthest_point_sample, furthest_point_sample_with_dist) from .fused_bias_leakyrelu import FusedBiasLeakyReLU, fused_bias_leakyrelu from .gather_points import gather_points from .group_points import GroupAll, QueryAndGroup, grouping_operation from .info import (get_compiler_version, get_compiling_cuda_version, get_onnxruntime_op_path) from .iou3d import boxes_iou_bev, nms_bev, nms_normal_bev from .knn import knn from .masked_conv import MaskedConv2d, masked_conv2d from .modulated_deform_conv import (ModulatedDeformConv2d, ModulatedDeformConv2dPack, modulated_deform_conv2d) from .multi_scale_deform_attn import MultiScaleDeformableAttention from .nms import batched_nms, nms, nms_match, nms_rotated, soft_nms from .pixel_group import pixel_group from .point_sample import (SimpleRoIAlign, point_sample, rel_roi_point_to_rel_img_point) from .points_in_boxes import (points_in_boxes_all, points_in_boxes_cpu, points_in_boxes_part) from .points_sampler import PointsSampler from .psa_mask import PSAMask from .roi_align import RoIAlign, roi_align from .roi_align_rotated import RoIAlignRotated, roi_align_rotated from .roi_pool import RoIPool, roi_pool from .roiaware_pool3d import RoIAwarePool3d from .roipoint_pool3d import RoIPointPool3d from .saconv import SAConv2d from .scatter_points import DynamicScatter, dynamic_scatter from .sync_bn import SyncBatchNorm from .three_interpolate import three_interpolate from .three_nn import three_nn from .tin_shift import TINShift, tin_shift from .upfirdn2d import upfirdn2d from .voxelize import Voxelization, voxelization __all__ = [ 'bbox_overlaps', 'CARAFE', 'CARAFENaive', 'CARAFEPack', 'carafe', 'carafe_naive', 'CornerPool', 'DeformConv2d', 'DeformConv2dPack', 'deform_conv2d', 'DeformRoIPool', 'DeformRoIPoolPack', 'ModulatedDeformRoIPoolPack', 'deform_roi_pool', 'SigmoidFocalLoss', 'SoftmaxFocalLoss', 'sigmoid_focal_loss', 'softmax_focal_loss', 'get_compiler_version', 'get_compiling_cuda_version', 'get_onnxruntime_op_path', 'MaskedConv2d', 'masked_conv2d', 'ModulatedDeformConv2d', 'ModulatedDeformConv2dPack', 'modulated_deform_conv2d', 'batched_nms', 'nms', 'soft_nms', 'nms_match', 'RoIAlign', 'roi_align', 'RoIPool', 'roi_pool', 'SyncBatchNorm', 'Conv2d', 'ConvTranspose2d', 'Linear', 'MaxPool2d', 'CrissCrossAttention', 'PSAMask', 'point_sample', 'rel_roi_point_to_rel_img_point', 'SimpleRoIAlign', 'SAConv2d', 'TINShift', 'tin_shift', 'assign_score_withk', 'box_iou_rotated', 'RoIPointPool3d', 'nms_rotated', 'knn', 'ball_query', 'upfirdn2d', 'FusedBiasLeakyReLU', 'fused_bias_leakyrelu', 'RoIAlignRotated', 'roi_align_rotated', 'pixel_group', 'QueryAndGroup', 'GroupAll', 'grouping_operation', 'contour_expand', 'three_nn', 'three_interpolate', 'MultiScaleDeformableAttention', 'BorderAlign', 'border_align', 'gather_points', 'furthest_point_sample', 'furthest_point_sample_with_dist', 'PointsSampler', 'Correlation', 'boxes_iou_bev', 'nms_bev', 'nms_normal_bev', 'Voxelization', 'voxelization', 'dynamic_scatter', 'DynamicScatter', 'RoIAwarePool3d', 'points_in_boxes_part', 'points_in_boxes_cpu', 'points_in_boxes_all' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/__init__.py
import torch from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'furthest_point_sampling_forward', 'furthest_point_sampling_with_dist_forward' ]) class FurthestPointSampling(Function): """Uses iterative furthest point sampling to select a set of features whose corresponding points have the furthest distance.""" @staticmethod def forward(ctx, points_xyz: torch.Tensor, num_points: int) -> torch.Tensor: """ Args: points_xyz (Tensor): (B, N, 3) where N > num_points. num_points (int): Number of points in the sampled set. Returns: Tensor: (B, num_points) indices of the sampled points. """ assert points_xyz.is_contiguous() B, N = points_xyz.size()[:2] output = torch.cuda.IntTensor(B, num_points) temp = torch.cuda.FloatTensor(B, N).fill_(1e10) ext_module.furthest_point_sampling_forward( points_xyz, temp, output, b=B, n=N, m=num_points, ) if torch.__version__ != 'parrots': ctx.mark_non_differentiable(output) return output @staticmethod def backward(xyz, a=None): return None, None class FurthestPointSamplingWithDist(Function): """Uses iterative furthest point sampling to select a set of features whose corresponding points have the furthest distance.""" @staticmethod def forward(ctx, points_dist: torch.Tensor, num_points: int) -> torch.Tensor: """ Args: points_dist (Tensor): (B, N, N) Distance between each point pair. num_points (int): Number of points in the sampled set. Returns: Tensor: (B, num_points) indices of the sampled points. """ assert points_dist.is_contiguous() B, N, _ = points_dist.size() output = points_dist.new_zeros([B, num_points], dtype=torch.int32) temp = points_dist.new_zeros([B, N]).fill_(1e10) ext_module.furthest_point_sampling_with_dist_forward( points_dist, temp, output, b=B, n=N, m=num_points) if torch.__version__ != 'parrots': ctx.mark_non_differentiable(output) return output @staticmethod def backward(xyz, a=None): return None, None furthest_point_sample = FurthestPointSampling.apply furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/furthest_point_sample.py
# modified from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py # noqa:E501 # Copyright (c) 2021, NVIDIA Corporation. All rights reserved. # NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator # Augmentation (ADA) # ======================================================================= # 1. Definitions # "Licensor" means any person or entity that distributes its Work. # "Software" means the original work of authorship made available under # this License. # "Work" means the Software and any additions to or derivative works of # the Software that are made available under this License. # The terms "reproduce," "reproduction," "derivative works," and # "distribution" have the meaning as provided under U.S. copyright law; # provided, however, that for the purposes of this License, derivative # works shall not include works that remain separable from, or merely # link (or bind by name) to the interfaces of, the Work. # Works, including the Software, are "made available" under this License # by including in or with the Work either (a) a copyright notice # referencing the applicability of this License to the Work, or (b) a # copy of this License. # 2. License Grants # 2.1 Copyright Grant. Subject to the terms and conditions of this # License, each Licensor grants to you a perpetual, worldwide, # non-exclusive, royalty-free, copyright license to reproduce, # prepare derivative works of, publicly display, publicly perform, # sublicense and distribute its Work and any resulting derivative # works in any form. # 3. Limitations # 3.1 Redistribution. You may reproduce or distribute the Work only # if (a) you do so under this License, (b) you include a complete # copy of this License with your distribution, and (c) you retain # without modification any copyright, patent, trademark, or # attribution notices that are present in the Work. # 3.2 Derivative Works. You may specify that additional or different # terms apply to the use, reproduction, and distribution of your # derivative works of the Work ("Your Terms") only if (a) Your Terms # provide that the use limitation in Section 3.3 applies to your # derivative works, and (b) you identify the specific derivative # works that are subject to Your Terms. Notwithstanding Your Terms, # this License (including the redistribution requirements in Section # 3.1) will continue to apply to the Work itself. # 3.3 Use Limitation. The Work and any derivative works thereof only # may be used or intended for use non-commercially. Notwithstanding # the foregoing, NVIDIA and its affiliates may use the Work and any # derivative works commercially. As used herein, "non-commercially" # means for research or evaluation purposes only. # 3.4 Patent Claims. If you bring or threaten to bring a patent claim # against any Licensor (including any claim, cross-claim or # counterclaim in a lawsuit) to enforce any patents that you allege # are infringed by any Work, then your rights under this License from # such Licensor (including the grant in Section 2.1) will terminate # immediately. # 3.5 Trademarks. This License does not grant any rights to use any # Licensor’s or its affiliates’ names, logos, or trademarks, except # as necessary to reproduce the notices described in this License. # 3.6 Termination. If you violate any term of this License, then your # rights under this License (including the grant in Section 2.1) will # terminate immediately. # 4. Disclaimer of Warranty. # THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR # NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER # THIS LICENSE. # 5. Limitation of Liability. # EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL # THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE # SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, # INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF # OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK # (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, # LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER # COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF # THE POSSIBILITY OF SUCH DAMAGES. # ======================================================================= import torch from torch.autograd import Function from torch.nn import functional as F from annotator.uniformer.mmcv.utils import to_2tuple from ..utils import ext_loader upfirdn2d_ext = ext_loader.load_ext('_ext', ['upfirdn2d']) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d( grad_output, grad_kernel, up_x=down_x, up_y=down_y, down_x=up_x, down_y=up_y, pad_x0=g_pad_x0, pad_x1=g_pad_x1, pad_y0=g_pad_y0, pad_y1=g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) gradgrad_out = upfirdn2d_ext.upfirdn2d( gradgrad_input, kernel, up_x=ctx.up_x, up_y=ctx.up_y, down_x=ctx.down_x, down_y=ctx.down_y, pad_x0=ctx.pad_x0, pad_x1=ctx.pad_x1, pad_y0=ctx.pad_y0, pad_y1=ctx.pad_y1) # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], # ctx.out_size[1], ctx.in_size[3]) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = (out_h, out_w) ctx.up = (up_x, up_y) ctx.down = (down_x, down_y) ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) out = upfirdn2d_ext.upfirdn2d( input, kernel, up_x=up_x, up_y=up_y, down_x=down_x, down_y=down_y, pad_x0=pad_x0, pad_x1=pad_x1, pad_y0=pad_y0, pad_y1=pad_y1) # out = out.view(major, out_h, out_w, minor) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply( grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size, ) return grad_input, None, None, None, None def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): """UpFRIDn for 2d features. UpFIRDn is short for upsample, apply FIR filter and downsample. More details can be found in: https://www.mathworks.com/help/signal/ref/upfirdn.html Args: input (Tensor): Tensor with shape of (n, c, h, w). kernel (Tensor): Filter kernel. up (int | tuple[int], optional): Upsampling factor. If given a number, we will use this factor for the both height and width side. Defaults to 1. down (int | tuple[int], optional): Downsampling factor. If given a number, we will use this factor for the both height and width side. Defaults to 1. pad (tuple[int], optional): Padding for tensors, (x_pad, y_pad) or (x_pad_0, x_pad_1, y_pad_0, y_pad_1). Defaults to (0, 0). Returns: Tensor: Tensor after UpFIRDn. """ if input.device.type == 'cpu': if len(pad) == 2: pad = (pad[0], pad[1], pad[0], pad[1]) up = to_2tuple(up) down = to_2tuple(down) out = upfirdn2d_native(input, kernel, up[0], up[1], down[0], down[1], pad[0], pad[1], pad[2], pad[3]) else: _up = to_2tuple(up) _down = to_2tuple(down) if len(pad) == 4: _pad = pad elif len(pad) == 2: _pad = (pad[0], pad[1], pad[0], pad[1]) out = UpFirDn2d.apply(input, kernel, _up, _down, _pad) return out def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad( out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :, ] out = out.permute(0, 3, 1, 2) out = out.reshape( [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/upfirdn2d.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['roi_pool_forward', 'roi_pool_backward']) class RoIPoolFunction(Function): @staticmethod def symbolic(g, input, rois, output_size, spatial_scale): return g.op( 'MaxRoiPool', input, rois, pooled_shape_i=output_size, spatial_scale_f=spatial_scale) @staticmethod def forward(ctx, input, rois, output_size, spatial_scale=1.0): ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.input_shape = input.size() assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' output_shape = (rois.size(0), input.size(1), ctx.output_size[0], ctx.output_size[1]) output = input.new_zeros(output_shape) argmax = input.new_zeros(output_shape, dtype=torch.int) ext_module.roi_pool_forward( input, rois, output, argmax, pooled_height=ctx.output_size[0], pooled_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale) ctx.save_for_backward(rois, argmax) return output @staticmethod @once_differentiable def backward(ctx, grad_output): rois, argmax = ctx.saved_tensors grad_input = grad_output.new_zeros(ctx.input_shape) ext_module.roi_pool_backward( grad_output, rois, argmax, grad_input, pooled_height=ctx.output_size[0], pooled_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale) return grad_input, None, None, None roi_pool = RoIPoolFunction.apply class RoIPool(nn.Module): def __init__(self, output_size, spatial_scale=1.0): super(RoIPool, self).__init__() self.output_size = _pair(output_size) self.spatial_scale = float(spatial_scale) def forward(self, input, rois): return roi_pool(input, rois, self.output_size, self.spatial_scale) def __repr__(self): s = self.__class__.__name__ s += f'(output_size={self.output_size}, ' s += f'spatial_scale={self.spatial_scale})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/roi_pool.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch import nn as nn from torch.autograd import Function import annotator.uniformer.mmcv as mmcv from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['roiaware_pool3d_forward', 'roiaware_pool3d_backward']) class RoIAwarePool3d(nn.Module): """Encode the geometry-specific features of each 3D proposal. Please refer to `PartA2 <https://arxiv.org/pdf/1907.03670.pdf>`_ for more details. Args: out_size (int or tuple): The size of output features. n or [n1, n2, n3]. max_pts_per_voxel (int, optional): The maximum number of points per voxel. Default: 128. mode (str, optional): Pooling method of RoIAware, 'max' or 'avg'. Default: 'max'. """ def __init__(self, out_size, max_pts_per_voxel=128, mode='max'): super().__init__() self.out_size = out_size self.max_pts_per_voxel = max_pts_per_voxel assert mode in ['max', 'avg'] pool_mapping = {'max': 0, 'avg': 1} self.mode = pool_mapping[mode] def forward(self, rois, pts, pts_feature): """ Args: rois (torch.Tensor): [N, 7], in LiDAR coordinate, (x, y, z) is the bottom center of rois. pts (torch.Tensor): [npoints, 3], coordinates of input points. pts_feature (torch.Tensor): [npoints, C], features of input points. Returns: pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C] """ return RoIAwarePool3dFunction.apply(rois, pts, pts_feature, self.out_size, self.max_pts_per_voxel, self.mode) class RoIAwarePool3dFunction(Function): @staticmethod def forward(ctx, rois, pts, pts_feature, out_size, max_pts_per_voxel, mode): """ Args: rois (torch.Tensor): [N, 7], in LiDAR coordinate, (x, y, z) is the bottom center of rois. pts (torch.Tensor): [npoints, 3], coordinates of input points. pts_feature (torch.Tensor): [npoints, C], features of input points. out_size (int or tuple): The size of output features. n or [n1, n2, n3]. max_pts_per_voxel (int): The maximum number of points per voxel. Default: 128. mode (int): Pooling method of RoIAware, 0 (max pool) or 1 (average pool). Returns: pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C], output pooled features. """ if isinstance(out_size, int): out_x = out_y = out_z = out_size else: assert len(out_size) == 3 assert mmcv.is_tuple_of(out_size, int) out_x, out_y, out_z = out_size num_rois = rois.shape[0] num_channels = pts_feature.shape[-1] num_pts = pts.shape[0] pooled_features = pts_feature.new_zeros( (num_rois, out_x, out_y, out_z, num_channels)) argmax = pts_feature.new_zeros( (num_rois, out_x, out_y, out_z, num_channels), dtype=torch.int) pts_idx_of_voxels = pts_feature.new_zeros( (num_rois, out_x, out_y, out_z, max_pts_per_voxel), dtype=torch.int) ext_module.roiaware_pool3d_forward(rois, pts, pts_feature, argmax, pts_idx_of_voxels, pooled_features, mode) ctx.roiaware_pool3d_for_backward = (pts_idx_of_voxels, argmax, mode, num_pts, num_channels) return pooled_features @staticmethod def backward(ctx, grad_out): ret = ctx.roiaware_pool3d_for_backward pts_idx_of_voxels, argmax, mode, num_pts, num_channels = ret grad_in = grad_out.new_zeros((num_pts, num_channels)) ext_module.roiaware_pool3d_backward(pts_idx_of_voxels, argmax, grad_out.contiguous(), grad_in, mode) return None, None, grad_in, None, None, None
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/roiaware_pool3d.py
# Copyright (c) OpenMMLab. All rights reserved. # This file is for backward compatibility. # Module wrappers for empty tensor have been moved to mmcv.cnn.bricks. import warnings from ..cnn.bricks.wrappers import Conv2d, ConvTranspose2d, Linear, MaxPool2d class Conv2d_deprecated(Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn( 'Importing Conv2d wrapper from "mmcv.ops" will be deprecated in' ' the future. Please import them from "mmcv.cnn" instead') class ConvTranspose2d_deprecated(ConvTranspose2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn( 'Importing ConvTranspose2d wrapper from "mmcv.ops" will be ' 'deprecated in the future. Please import them from "mmcv.cnn" ' 'instead') class MaxPool2d_deprecated(MaxPool2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn( 'Importing MaxPool2d wrapper from "mmcv.ops" will be deprecated in' ' the future. Please import them from "mmcv.cnn" instead') class Linear_deprecated(Linear): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn( 'Importing Linear wrapper from "mmcv.ops" will be deprecated in' ' the future. Please import them from "mmcv.cnn" instead')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/deprecated_wrappers.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import CONV_LAYERS, ConvAWS2d, constant_init from annotator.uniformer.mmcv.ops.deform_conv import deform_conv2d from annotator.uniformer.mmcv.utils import TORCH_VERSION, digit_version @CONV_LAYERS.register_module(name='SAC') class SAConv2d(ConvAWS2d): """SAC (Switchable Atrous Convolution) This is an implementation of SAC in DetectoRS (https://arxiv.org/pdf/2006.02334.pdf). Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 padding_mode (string, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` use_deform: If ``True``, replace convolution with deformable convolution. Default: ``False``. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, use_deform=False): super().__init__( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.use_deform = use_deform self.switch = nn.Conv2d( self.in_channels, 1, kernel_size=1, stride=stride, bias=True) self.weight_diff = nn.Parameter(torch.Tensor(self.weight.size())) self.pre_context = nn.Conv2d( self.in_channels, self.in_channels, kernel_size=1, bias=True) self.post_context = nn.Conv2d( self.out_channels, self.out_channels, kernel_size=1, bias=True) if self.use_deform: self.offset_s = nn.Conv2d( self.in_channels, 18, kernel_size=3, padding=1, stride=stride, bias=True) self.offset_l = nn.Conv2d( self.in_channels, 18, kernel_size=3, padding=1, stride=stride, bias=True) self.init_weights() def init_weights(self): constant_init(self.switch, 0, bias=1) self.weight_diff.data.zero_() constant_init(self.pre_context, 0) constant_init(self.post_context, 0) if self.use_deform: constant_init(self.offset_s, 0) constant_init(self.offset_l, 0) def forward(self, x): # pre-context avg_x = F.adaptive_avg_pool2d(x, output_size=1) avg_x = self.pre_context(avg_x) avg_x = avg_x.expand_as(x) x = x + avg_x # switch avg_x = F.pad(x, pad=(2, 2, 2, 2), mode='reflect') avg_x = F.avg_pool2d(avg_x, kernel_size=5, stride=1, padding=0) switch = self.switch(avg_x) # sac weight = self._get_weight(self.weight) zero_bias = torch.zeros( self.out_channels, device=weight.device, dtype=weight.dtype) if self.use_deform: offset = self.offset_s(avg_x) out_s = deform_conv2d(x, offset, weight, self.stride, self.padding, self.dilation, self.groups, 1) else: if (TORCH_VERSION == 'parrots' or digit_version(TORCH_VERSION) < digit_version('1.5.0')): out_s = super().conv2d_forward(x, weight) elif digit_version(TORCH_VERSION) >= digit_version('1.8.0'): # bias is a required argument of _conv_forward in torch 1.8.0 out_s = super()._conv_forward(x, weight, zero_bias) else: out_s = super()._conv_forward(x, weight) ori_p = self.padding ori_d = self.dilation self.padding = tuple(3 * p for p in self.padding) self.dilation = tuple(3 * d for d in self.dilation) weight = weight + self.weight_diff if self.use_deform: offset = self.offset_l(avg_x) out_l = deform_conv2d(x, offset, weight, self.stride, self.padding, self.dilation, self.groups, 1) else: if (TORCH_VERSION == 'parrots' or digit_version(TORCH_VERSION) < digit_version('1.5.0')): out_l = super().conv2d_forward(x, weight) elif digit_version(TORCH_VERSION) >= digit_version('1.8.0'): # bias is a required argument of _conv_forward in torch 1.8.0 out_l = super()._conv_forward(x, weight, zero_bias) else: out_l = super()._conv_forward(x, weight) out = switch * out_s + (1 - switch) * out_l self.padding = ori_p self.dilation = ori_d # post-context avg_x = F.adaptive_avg_pool2d(out, output_size=1) avg_x = self.post_context(avg_x) avg_x = avg_x.expand_as(out) out = out + avg_x return out
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/saconv.py
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['contour_expand']) def contour_expand(kernel_mask, internal_kernel_label, min_kernel_area, kernel_num): """Expand kernel contours so that foreground pixels are assigned into instances. Arguments: kernel_mask (np.array or Tensor): The instance kernel mask with size hxw. internal_kernel_label (np.array or Tensor): The instance internal kernel label with size hxw. min_kernel_area (int): The minimum kernel area. kernel_num (int): The instance kernel number. Returns: label (list): The instance index map with size hxw. """ assert isinstance(kernel_mask, (torch.Tensor, np.ndarray)) assert isinstance(internal_kernel_label, (torch.Tensor, np.ndarray)) assert isinstance(min_kernel_area, int) assert isinstance(kernel_num, int) if isinstance(kernel_mask, np.ndarray): kernel_mask = torch.from_numpy(kernel_mask) if isinstance(internal_kernel_label, np.ndarray): internal_kernel_label = torch.from_numpy(internal_kernel_label) if torch.__version__ == 'parrots': if kernel_mask.shape[0] == 0 or internal_kernel_label.shape[0] == 0: label = [] else: label = ext_module.contour_expand( kernel_mask, internal_kernel_label, min_kernel_area=min_kernel_area, kernel_num=kernel_num) label = label.tolist() else: label = ext_module.contour_expand(kernel_mask, internal_kernel_label, min_kernel_area, kernel_num) return label
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/contour_expand.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch import nn from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'top_pool_forward', 'top_pool_backward', 'bottom_pool_forward', 'bottom_pool_backward', 'left_pool_forward', 'left_pool_backward', 'right_pool_forward', 'right_pool_backward' ]) _mode_dict = {'top': 0, 'bottom': 1, 'left': 2, 'right': 3} class TopPoolFunction(Function): @staticmethod def symbolic(g, input): output = g.op( 'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['top'])) return output @staticmethod def forward(ctx, input): output = ext_module.top_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.top_pool_backward(input, grad_output) return output class BottomPoolFunction(Function): @staticmethod def symbolic(g, input): output = g.op( 'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['bottom'])) return output @staticmethod def forward(ctx, input): output = ext_module.bottom_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.bottom_pool_backward(input, grad_output) return output class LeftPoolFunction(Function): @staticmethod def symbolic(g, input): output = g.op( 'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['left'])) return output @staticmethod def forward(ctx, input): output = ext_module.left_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.left_pool_backward(input, grad_output) return output class RightPoolFunction(Function): @staticmethod def symbolic(g, input): output = g.op( 'mmcv::MMCVCornerPool', input, mode_i=int(_mode_dict['right'])) return output @staticmethod def forward(ctx, input): output = ext_module.right_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.right_pool_backward(input, grad_output) return output class CornerPool(nn.Module): """Corner Pooling. Corner Pooling is a new type of pooling layer that helps a convolutional network better localize corners of bounding boxes. Please refer to https://arxiv.org/abs/1808.01244 for more details. Code is modified from https://github.com/princeton-vl/CornerNet-Lite. Args: mode(str): Pooling orientation for the pooling layer - 'bottom': Bottom Pooling - 'left': Left Pooling - 'right': Right Pooling - 'top': Top Pooling Returns: Feature map after pooling. """ pool_functions = { 'bottom': BottomPoolFunction, 'left': LeftPoolFunction, 'right': RightPoolFunction, 'top': TopPoolFunction, } cummax_dim_flip = { 'bottom': (2, False), 'left': (3, True), 'right': (3, False), 'top': (2, True), } def __init__(self, mode): super(CornerPool, self).__init__() assert mode in self.pool_functions self.mode = mode self.corner_pool = self.pool_functions[mode] def forward(self, x): if torch.__version__ != 'parrots' and torch.__version__ >= '1.5.0': if torch.onnx.is_in_onnx_export(): assert torch.__version__ >= '1.7.0', \ 'When `cummax` serves as an intermediate component whose '\ 'outputs is used as inputs for another modules, it\'s '\ 'expected that pytorch version must be >= 1.7.0, '\ 'otherwise Error appears like: `RuntimeError: tuple '\ 'appears in op that does not forward tuples, unsupported '\ 'kind: prim::PythonOp`.' dim, flip = self.cummax_dim_flip[self.mode] if flip: x = x.flip(dim) pool_tensor, _ = torch.cummax(x, dim=dim) if flip: pool_tensor = pool_tensor.flip(dim) return pool_tensor else: return self.corner_pool.apply(x)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/corner_pool.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'sigmoid_focal_loss_forward', 'sigmoid_focal_loss_backward', 'softmax_focal_loss_forward', 'softmax_focal_loss_backward' ]) class SigmoidFocalLossFunction(Function): @staticmethod def symbolic(g, input, target, gamma, alpha, weight, reduction): return g.op( 'mmcv::MMCVSigmoidFocalLoss', input, target, gamma_f=gamma, alpha_f=alpha, weight_f=weight, reduction_s=reduction) @staticmethod def forward(ctx, input, target, gamma=2.0, alpha=0.25, weight=None, reduction='mean'): assert isinstance(target, (torch.LongTensor, torch.cuda.LongTensor)) assert input.dim() == 2 assert target.dim() == 1 assert input.size(0) == target.size(0) if weight is None: weight = input.new_empty(0) else: assert weight.dim() == 1 assert input.size(1) == weight.size(0) ctx.reduction_dict = {'none': 0, 'mean': 1, 'sum': 2} assert reduction in ctx.reduction_dict.keys() ctx.gamma = float(gamma) ctx.alpha = float(alpha) ctx.reduction = ctx.reduction_dict[reduction] output = input.new_zeros(input.size()) ext_module.sigmoid_focal_loss_forward( input, target, weight, output, gamma=ctx.gamma, alpha=ctx.alpha) if ctx.reduction == ctx.reduction_dict['mean']: output = output.sum() / input.size(0) elif ctx.reduction == ctx.reduction_dict['sum']: output = output.sum() ctx.save_for_backward(input, target, weight) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input, target, weight = ctx.saved_tensors grad_input = input.new_zeros(input.size()) ext_module.sigmoid_focal_loss_backward( input, target, weight, grad_input, gamma=ctx.gamma, alpha=ctx.alpha) grad_input *= grad_output if ctx.reduction == ctx.reduction_dict['mean']: grad_input /= input.size(0) return grad_input, None, None, None, None, None sigmoid_focal_loss = SigmoidFocalLossFunction.apply class SigmoidFocalLoss(nn.Module): def __init__(self, gamma, alpha, weight=None, reduction='mean'): super(SigmoidFocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.register_buffer('weight', weight) self.reduction = reduction def forward(self, input, target): return sigmoid_focal_loss(input, target, self.gamma, self.alpha, self.weight, self.reduction) def __repr__(self): s = self.__class__.__name__ s += f'(gamma={self.gamma}, ' s += f'alpha={self.alpha}, ' s += f'reduction={self.reduction})' return s class SoftmaxFocalLossFunction(Function): @staticmethod def symbolic(g, input, target, gamma, alpha, weight, reduction): return g.op( 'mmcv::MMCVSoftmaxFocalLoss', input, target, gamma_f=gamma, alpha_f=alpha, weight_f=weight, reduction_s=reduction) @staticmethod def forward(ctx, input, target, gamma=2.0, alpha=0.25, weight=None, reduction='mean'): assert isinstance(target, (torch.LongTensor, torch.cuda.LongTensor)) assert input.dim() == 2 assert target.dim() == 1 assert input.size(0) == target.size(0) if weight is None: weight = input.new_empty(0) else: assert weight.dim() == 1 assert input.size(1) == weight.size(0) ctx.reduction_dict = {'none': 0, 'mean': 1, 'sum': 2} assert reduction in ctx.reduction_dict.keys() ctx.gamma = float(gamma) ctx.alpha = float(alpha) ctx.reduction = ctx.reduction_dict[reduction] channel_stats, _ = torch.max(input, dim=1) input_softmax = input - channel_stats.unsqueeze(1).expand_as(input) input_softmax.exp_() channel_stats = input_softmax.sum(dim=1) input_softmax /= channel_stats.unsqueeze(1).expand_as(input) output = input.new_zeros(input.size(0)) ext_module.softmax_focal_loss_forward( input_softmax, target, weight, output, gamma=ctx.gamma, alpha=ctx.alpha) if ctx.reduction == ctx.reduction_dict['mean']: output = output.sum() / input.size(0) elif ctx.reduction == ctx.reduction_dict['sum']: output = output.sum() ctx.save_for_backward(input_softmax, target, weight) return output @staticmethod def backward(ctx, grad_output): input_softmax, target, weight = ctx.saved_tensors buff = input_softmax.new_zeros(input_softmax.size(0)) grad_input = input_softmax.new_zeros(input_softmax.size()) ext_module.softmax_focal_loss_backward( input_softmax, target, weight, buff, grad_input, gamma=ctx.gamma, alpha=ctx.alpha) grad_input *= grad_output if ctx.reduction == ctx.reduction_dict['mean']: grad_input /= input_softmax.size(0) return grad_input, None, None, None, None, None softmax_focal_loss = SoftmaxFocalLossFunction.apply class SoftmaxFocalLoss(nn.Module): def __init__(self, gamma, alpha, weight=None, reduction='mean'): super(SoftmaxFocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.register_buffer('weight', weight) self.reduction = reduction def forward(self, input, target): return softmax_focal_loss(input, target, self.gamma, self.alpha, self.weight, self.reduction) def __repr__(self): s = self.__class__.__name__ s += f'(gamma={self.gamma}, ' s += f'alpha={self.alpha}, ' s += f'reduction={self.reduction})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/focal_loss.py
from typing import Tuple import torch from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['three_nn_forward']) class ThreeNN(Function): """Find the top-3 nearest neighbors of the target set from the source set. Please refer to `Paper of PointNet++ <https://arxiv.org/abs/1706.02413>`_ for more details. """ @staticmethod def forward(ctx, target: torch.Tensor, source: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: target (Tensor): shape (B, N, 3), points set that needs to find the nearest neighbors. source (Tensor): shape (B, M, 3), points set that is used to find the nearest neighbors of points in target set. Returns: Tensor: shape (B, N, 3), L2 distance of each point in target set to their corresponding nearest neighbors. """ target = target.contiguous() source = source.contiguous() B, N, _ = target.size() m = source.size(1) dist2 = torch.cuda.FloatTensor(B, N, 3) idx = torch.cuda.IntTensor(B, N, 3) ext_module.three_nn_forward(target, source, dist2, idx, b=B, n=N, m=m) if torch.__version__ != 'parrots': ctx.mark_non_differentiable(idx) return torch.sqrt(dist2), idx @staticmethod def backward(ctx, a=None, b=None): return None, None three_nn = ThreeNN.apply
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/three_nn.py
# Modified from https://github.com/hszhao/semseg/blob/master/lib/psa from torch import nn from torch.autograd import Function from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['psamask_forward', 'psamask_backward']) class PSAMaskFunction(Function): @staticmethod def symbolic(g, input, psa_type, mask_size): return g.op( 'mmcv::MMCVPSAMask', input, psa_type_i=psa_type, mask_size_i=mask_size) @staticmethod def forward(ctx, input, psa_type, mask_size): ctx.psa_type = psa_type ctx.mask_size = _pair(mask_size) ctx.save_for_backward(input) h_mask, w_mask = ctx.mask_size batch_size, channels, h_feature, w_feature = input.size() assert channels == h_mask * w_mask output = input.new_zeros( (batch_size, h_feature * w_feature, h_feature, w_feature)) ext_module.psamask_forward( input, output, psa_type=psa_type, num_=batch_size, h_feature=h_feature, w_feature=w_feature, h_mask=h_mask, w_mask=w_mask, half_h_mask=(h_mask - 1) // 2, half_w_mask=(w_mask - 1) // 2) return output @staticmethod def backward(ctx, grad_output): input = ctx.saved_tensors[0] psa_type = ctx.psa_type h_mask, w_mask = ctx.mask_size batch_size, channels, h_feature, w_feature = input.size() grad_input = grad_output.new_zeros( (batch_size, channels, h_feature, w_feature)) ext_module.psamask_backward( grad_output, grad_input, psa_type=psa_type, num_=batch_size, h_feature=h_feature, w_feature=w_feature, h_mask=h_mask, w_mask=w_mask, half_h_mask=(h_mask - 1) // 2, half_w_mask=(w_mask - 1) // 2) return grad_input, None, None, None psa_mask = PSAMaskFunction.apply class PSAMask(nn.Module): def __init__(self, psa_type, mask_size=None): super(PSAMask, self).__init__() assert psa_type in ['collect', 'distribute'] if psa_type == 'collect': psa_type_enum = 0 else: psa_type_enum = 1 self.psa_type_enum = psa_type_enum self.mask_size = mask_size self.psa_type = psa_type def forward(self, input): return psa_mask(input, self.psa_type_enum, self.mask_size) def __repr__(self): s = self.__class__.__name__ s += f'(psa_type={self.psa_type}, ' s += f'mask_size={self.mask_size})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/psa_mask.py
# Copyright (c) OpenMMLab. All rights reserved. from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['deform_roi_pool_forward', 'deform_roi_pool_backward']) class DeformRoIPoolFunction(Function): @staticmethod def symbolic(g, input, rois, offset, output_size, spatial_scale, sampling_ratio, gamma): return g.op( 'mmcv::MMCVDeformRoIPool', input, rois, offset, pooled_height_i=output_size[0], pooled_width_i=output_size[1], spatial_scale_f=spatial_scale, sampling_ratio_f=sampling_ratio, gamma_f=gamma) @staticmethod def forward(ctx, input, rois, offset, output_size, spatial_scale=1.0, sampling_ratio=0, gamma=0.1): if offset is None: offset = input.new_zeros(0) ctx.output_size = _pair(output_size) ctx.spatial_scale = float(spatial_scale) ctx.sampling_ratio = int(sampling_ratio) ctx.gamma = float(gamma) assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' output_shape = (rois.size(0), input.size(1), ctx.output_size[0], ctx.output_size[1]) output = input.new_zeros(output_shape) ext_module.deform_roi_pool_forward( input, rois, offset, output, pooled_height=ctx.output_size[0], pooled_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale, sampling_ratio=ctx.sampling_ratio, gamma=ctx.gamma) ctx.save_for_backward(input, rois, offset) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input, rois, offset = ctx.saved_tensors grad_input = grad_output.new_zeros(input.shape) grad_offset = grad_output.new_zeros(offset.shape) ext_module.deform_roi_pool_backward( grad_output, input, rois, offset, grad_input, grad_offset, pooled_height=ctx.output_size[0], pooled_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale, sampling_ratio=ctx.sampling_ratio, gamma=ctx.gamma) if grad_offset.numel() == 0: grad_offset = None return grad_input, None, grad_offset, None, None, None, None deform_roi_pool = DeformRoIPoolFunction.apply class DeformRoIPool(nn.Module): def __init__(self, output_size, spatial_scale=1.0, sampling_ratio=0, gamma=0.1): super(DeformRoIPool, self).__init__() self.output_size = _pair(output_size) self.spatial_scale = float(spatial_scale) self.sampling_ratio = int(sampling_ratio) self.gamma = float(gamma) def forward(self, input, rois, offset=None): return deform_roi_pool(input, rois, offset, self.output_size, self.spatial_scale, self.sampling_ratio, self.gamma) class DeformRoIPoolPack(DeformRoIPool): def __init__(self, output_size, output_channels, deform_fc_channels=1024, spatial_scale=1.0, sampling_ratio=0, gamma=0.1): super(DeformRoIPoolPack, self).__init__(output_size, spatial_scale, sampling_ratio, gamma) self.output_channels = output_channels self.deform_fc_channels = deform_fc_channels self.offset_fc = nn.Sequential( nn.Linear( self.output_size[0] * self.output_size[1] * self.output_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.output_size[0] * self.output_size[1] * 2)) self.offset_fc[-1].weight.data.zero_() self.offset_fc[-1].bias.data.zero_() def forward(self, input, rois): assert input.size(1) == self.output_channels x = deform_roi_pool(input, rois, None, self.output_size, self.spatial_scale, self.sampling_ratio, self.gamma) rois_num = rois.size(0) offset = self.offset_fc(x.view(rois_num, -1)) offset = offset.view(rois_num, 2, self.output_size[0], self.output_size[1]) return deform_roi_pool(input, rois, offset, self.output_size, self.spatial_scale, self.sampling_ratio, self.gamma) class ModulatedDeformRoIPoolPack(DeformRoIPool): def __init__(self, output_size, output_channels, deform_fc_channels=1024, spatial_scale=1.0, sampling_ratio=0, gamma=0.1): super(ModulatedDeformRoIPoolPack, self).__init__(output_size, spatial_scale, sampling_ratio, gamma) self.output_channels = output_channels self.deform_fc_channels = deform_fc_channels self.offset_fc = nn.Sequential( nn.Linear( self.output_size[0] * self.output_size[1] * self.output_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.output_size[0] * self.output_size[1] * 2)) self.offset_fc[-1].weight.data.zero_() self.offset_fc[-1].bias.data.zero_() self.mask_fc = nn.Sequential( nn.Linear( self.output_size[0] * self.output_size[1] * self.output_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.output_size[0] * self.output_size[1] * 1), nn.Sigmoid()) self.mask_fc[2].weight.data.zero_() self.mask_fc[2].bias.data.zero_() def forward(self, input, rois): assert input.size(1) == self.output_channels x = deform_roi_pool(input, rois, None, self.output_size, self.spatial_scale, self.sampling_ratio, self.gamma) rois_num = rois.size(0) offset = self.offset_fc(x.view(rois_num, -1)) offset = offset.view(rois_num, 2, self.output_size[0], self.output_size[1]) mask = self.mask_fc(x.view(rois_num, -1)) mask = mask.view(rois_num, 1, self.output_size[0], self.output_size[1]) d = deform_roi_pool(input, rois, offset, self.output_size, self.spatial_scale, self.sampling_ratio, self.gamma) return d * mask
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/deform_roi_pool.py
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['pixel_group']) def pixel_group(score, mask, embedding, kernel_label, kernel_contour, kernel_region_num, distance_threshold): """Group pixels into text instances, which is widely used text detection methods. Arguments: score (np.array or Tensor): The foreground score with size hxw. mask (np.array or Tensor): The foreground mask with size hxw. embedding (np.array or Tensor): The embedding with size hxwxc to distinguish instances. kernel_label (np.array or Tensor): The instance kernel index with size hxw. kernel_contour (np.array or Tensor): The kernel contour with size hxw. kernel_region_num (int): The instance kernel region number. distance_threshold (float): The embedding distance threshold between kernel and pixel in one instance. Returns: pixel_assignment (List[List[float]]): The instance coordinate list. Each element consists of averaged confidence, pixel number, and coordinates (x_i, y_i for all pixels) in order. """ assert isinstance(score, (torch.Tensor, np.ndarray)) assert isinstance(mask, (torch.Tensor, np.ndarray)) assert isinstance(embedding, (torch.Tensor, np.ndarray)) assert isinstance(kernel_label, (torch.Tensor, np.ndarray)) assert isinstance(kernel_contour, (torch.Tensor, np.ndarray)) assert isinstance(kernel_region_num, int) assert isinstance(distance_threshold, float) if isinstance(score, np.ndarray): score = torch.from_numpy(score) if isinstance(mask, np.ndarray): mask = torch.from_numpy(mask) if isinstance(embedding, np.ndarray): embedding = torch.from_numpy(embedding) if isinstance(kernel_label, np.ndarray): kernel_label = torch.from_numpy(kernel_label) if isinstance(kernel_contour, np.ndarray): kernel_contour = torch.from_numpy(kernel_contour) if torch.__version__ == 'parrots': label = ext_module.pixel_group( score, mask, embedding, kernel_label, kernel_contour, kernel_region_num=kernel_region_num, distance_threshold=distance_threshold) label = label.tolist() label = label[0] list_index = kernel_region_num pixel_assignment = [] for x in range(kernel_region_num): pixel_assignment.append( np.array( label[list_index:list_index + int(label[x])], dtype=np.float)) list_index = list_index + int(label[x]) else: pixel_assignment = ext_module.pixel_group(score, mask, embedding, kernel_label, kernel_contour, kernel_region_num, distance_threshold) return pixel_assignment
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/pixel_group.py
# Copyright (c) OpenMMLab. All rights reserved. import math import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['masked_im2col_forward', 'masked_col2im_forward']) class MaskedConv2dFunction(Function): @staticmethod def symbolic(g, features, mask, weight, bias, padding, stride): return g.op( 'mmcv::MMCVMaskedConv2d', features, mask, weight, bias, padding_i=padding, stride_i=stride) @staticmethod def forward(ctx, features, mask, weight, bias, padding=0, stride=1): assert mask.dim() == 3 and mask.size(0) == 1 assert features.dim() == 4 and features.size(0) == 1 assert features.size()[2:] == mask.size()[1:] pad_h, pad_w = _pair(padding) stride_h, stride_w = _pair(stride) if stride_h != 1 or stride_w != 1: raise ValueError( 'Stride could not only be 1 in masked_conv2d currently.') out_channel, in_channel, kernel_h, kernel_w = weight.size() batch_size = features.size(0) out_h = int( math.floor((features.size(2) + 2 * pad_h - (kernel_h - 1) - 1) / stride_h + 1)) out_w = int( math.floor((features.size(3) + 2 * pad_w - (kernel_h - 1) - 1) / stride_w + 1)) mask_inds = torch.nonzero(mask[0] > 0, as_tuple=False) output = features.new_zeros(batch_size, out_channel, out_h, out_w) if mask_inds.numel() > 0: mask_h_idx = mask_inds[:, 0].contiguous() mask_w_idx = mask_inds[:, 1].contiguous() data_col = features.new_zeros(in_channel * kernel_h * kernel_w, mask_inds.size(0)) ext_module.masked_im2col_forward( features, mask_h_idx, mask_w_idx, data_col, kernel_h=kernel_h, kernel_w=kernel_w, pad_h=pad_h, pad_w=pad_w) masked_output = torch.addmm(1, bias[:, None], 1, weight.view(out_channel, -1), data_col) ext_module.masked_col2im_forward( masked_output, mask_h_idx, mask_w_idx, output, height=out_h, width=out_w, channels=out_channel) return output @staticmethod @once_differentiable def backward(ctx, grad_output): return (None, ) * 5 masked_conv2d = MaskedConv2dFunction.apply class MaskedConv2d(nn.Conv2d): """A MaskedConv2d which inherits the official Conv2d. The masked forward doesn't implement the backward function and only supports the stride parameter to be 1 currently. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(MaskedConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) def forward(self, input, mask=None): if mask is None: # fallback to the normal Conv2d return super(MaskedConv2d, self).forward(input) else: return masked_conv2d(input, mask, self.weight, self.bias, self.padding)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/masked_conv.py
from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['assign_score_withk_forward', 'assign_score_withk_backward']) class AssignScoreWithK(Function): r"""Perform weighted sum to generate output features according to scores. Modified from `PAConv <https://github.com/CVMI-Lab/PAConv/tree/main/ scene_seg/lib/paconv_lib/src/gpu>`_. This is a memory-efficient CUDA implementation of assign_scores operation, which first transform all point features with weight bank, then assemble neighbor features with ``knn_idx`` and perform weighted sum of ``scores``. See the `paper <https://arxiv.org/pdf/2103.14635.pdf>`_ appendix Sec. D for more detailed descriptions. Note: This implementation assumes using ``neighbor`` kernel input, which is (point_features - center_features, point_features). See https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/model/ pointnet2/paconv.py#L128 for more details. """ @staticmethod def forward(ctx, scores, point_features, center_features, knn_idx, aggregate='sum'): """ Args: scores (torch.Tensor): (B, npoint, K, M), predicted scores to aggregate weight matrices in the weight bank. ``npoint`` is the number of sampled centers. ``K`` is the number of queried neighbors. ``M`` is the number of weight matrices in the weight bank. point_features (torch.Tensor): (B, N, M, out_dim) Pre-computed point features to be aggregated. center_features (torch.Tensor): (B, N, M, out_dim) Pre-computed center features to be aggregated. knn_idx (torch.Tensor): (B, npoint, K), index of sampled kNN. We assume the first idx in each row is the idx of the center. aggregate (str, optional): Aggregation method. Can be 'sum', 'avg' or 'max'. Defaults: 'sum'. Returns: torch.Tensor: (B, out_dim, npoint, K), the aggregated features. """ agg = {'sum': 0, 'avg': 1, 'max': 2} B, N, M, out_dim = point_features.size() _, npoint, K, _ = scores.size() output = point_features.new_zeros((B, out_dim, npoint, K)) ext_module.assign_score_withk_forward( point_features.contiguous(), center_features.contiguous(), scores.contiguous(), knn_idx.contiguous(), output, B=B, N0=N, N1=npoint, M=M, K=K, O=out_dim, aggregate=agg[aggregate]) ctx.save_for_backward(output, point_features, center_features, scores, knn_idx) ctx.agg = agg[aggregate] return output @staticmethod def backward(ctx, grad_out): """ Args: grad_out (torch.Tensor): (B, out_dim, npoint, K) Returns: grad_scores (torch.Tensor): (B, npoint, K, M) grad_point_features (torch.Tensor): (B, N, M, out_dim) grad_center_features (torch.Tensor): (B, N, M, out_dim) """ _, point_features, center_features, scores, knn_idx = ctx.saved_tensors agg = ctx.agg B, N, M, out_dim = point_features.size() _, npoint, K, _ = scores.size() grad_point_features = point_features.new_zeros(point_features.shape) grad_center_features = center_features.new_zeros(center_features.shape) grad_scores = scores.new_zeros(scores.shape) ext_module.assign_score_withk_backward( grad_out.contiguous(), point_features.contiguous(), center_features.contiguous(), scores.contiguous(), knn_idx.contiguous(), grad_point_features, grad_center_features, grad_scores, B=B, N0=N, N1=npoint, M=M, K=K, O=out_dim, aggregate=agg) return grad_scores, grad_point_features, \ grad_center_features, None, None assign_score_withk = AssignScoreWithK.apply
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/assign_score_withk.py
# modified from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501 # Copyright (c) 2021, NVIDIA Corporation. All rights reserved. # NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator # Augmentation (ADA) # ======================================================================= # 1. Definitions # "Licensor" means any person or entity that distributes its Work. # "Software" means the original work of authorship made available under # this License. # "Work" means the Software and any additions to or derivative works of # the Software that are made available under this License. # The terms "reproduce," "reproduction," "derivative works," and # "distribution" have the meaning as provided under U.S. copyright law; # provided, however, that for the purposes of this License, derivative # works shall not include works that remain separable from, or merely # link (or bind by name) to the interfaces of, the Work. # Works, including the Software, are "made available" under this License # by including in or with the Work either (a) a copyright notice # referencing the applicability of this License to the Work, or (b) a # copy of this License. # 2. License Grants # 2.1 Copyright Grant. Subject to the terms and conditions of this # License, each Licensor grants to you a perpetual, worldwide, # non-exclusive, royalty-free, copyright license to reproduce, # prepare derivative works of, publicly display, publicly perform, # sublicense and distribute its Work and any resulting derivative # works in any form. # 3. Limitations # 3.1 Redistribution. You may reproduce or distribute the Work only # if (a) you do so under this License, (b) you include a complete # copy of this License with your distribution, and (c) you retain # without modification any copyright, patent, trademark, or # attribution notices that are present in the Work. # 3.2 Derivative Works. You may specify that additional or different # terms apply to the use, reproduction, and distribution of your # derivative works of the Work ("Your Terms") only if (a) Your Terms # provide that the use limitation in Section 3.3 applies to your # derivative works, and (b) you identify the specific derivative # works that are subject to Your Terms. Notwithstanding Your Terms, # this License (including the redistribution requirements in Section # 3.1) will continue to apply to the Work itself. # 3.3 Use Limitation. The Work and any derivative works thereof only # may be used or intended for use non-commercially. Notwithstanding # the foregoing, NVIDIA and its affiliates may use the Work and any # derivative works commercially. As used herein, "non-commercially" # means for research or evaluation purposes only. # 3.4 Patent Claims. If you bring or threaten to bring a patent claim # against any Licensor (including any claim, cross-claim or # counterclaim in a lawsuit) to enforce any patents that you allege # are infringed by any Work, then your rights under this License from # such Licensor (including the grant in Section 2.1) will terminate # immediately. # 3.5 Trademarks. This License does not grant any rights to use any # Licensor’s or its affiliates’ names, logos, or trademarks, except # as necessary to reproduce the notices described in this License. # 3.6 Termination. If you violate any term of this License, then your # rights under this License (including the grant in Section 2.1) will # terminate immediately. # 4. Disclaimer of Warranty. # THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR # NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER # THIS LICENSE. # 5. Limitation of Liability. # EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL # THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE # SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, # INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF # OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK # (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, # LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER # COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF # THE POSSIBILITY OF SUCH DAMAGES. # ======================================================================= import torch import torch.nn.functional as F from torch import nn from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['fused_bias_leakyrelu']) class FusedBiasLeakyReLUFunctionBackward(Function): """Calculate second order deviation. This function is to compute the second order deviation for the fused leaky relu operation. """ @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = ext_module.fused_bias_leakyrelu( grad_output, empty, out, act=3, grad=1, alpha=negative_slope, scale=scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors # The second order deviation, in fact, contains two parts, while the # the first part is zero. Thus, we direct consider the second part # which is similar with the first order deviation in implementation. gradgrad_out = ext_module.fused_bias_leakyrelu( gradgrad_input, gradgrad_bias.to(out.dtype), out, act=3, grad=1, alpha=ctx.negative_slope, scale=ctx.scale) return gradgrad_out, None, None, None class FusedBiasLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = ext_module.fused_bias_leakyrelu( input, bias, empty, act=3, grad=0, alpha=negative_slope, scale=scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedBiasLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class FusedBiasLeakyReLU(nn.Module): """Fused bias leaky ReLU. This function is introduced in the StyleGAN2: http://arxiv.org/abs/1912.04958 The bias term comes from the convolution operation. In addition, to keep the variance of the feature map or gradients unchanged, they also adopt a scale similarly with Kaiming initialization. However, since the :math:`1+{alpha}^2` : is too small, we can just ignore it. Therefore, the final scale is just :math:`\sqrt{2}`:. Of course, you may change it with # noqa: W605, E501 your own scale. TODO: Implement the CPU version. Args: channel (int): The channel number of the feature map. negative_slope (float, optional): Same as nn.LeakyRelu. Defaults to 0.2. scale (float, optional): A scalar to adjust the variance of the feature map. Defaults to 2**0.5. """ def __init__(self, num_channels, negative_slope=0.2, scale=2**0.5): super(FusedBiasLeakyReLU, self).__init__() self.bias = nn.Parameter(torch.zeros(num_channels)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): return fused_bias_leakyrelu(input, self.bias, self.negative_slope, self.scale) def fused_bias_leakyrelu(input, bias, negative_slope=0.2, scale=2**0.5): """Fused bias leaky ReLU function. This function is introduced in the StyleGAN2: http://arxiv.org/abs/1912.04958 The bias term comes from the convolution operation. In addition, to keep the variance of the feature map or gradients unchanged, they also adopt a scale similarly with Kaiming initialization. However, since the :math:`1+{alpha}^2` : is too small, we can just ignore it. Therefore, the final scale is just :math:`\sqrt{2}`:. Of course, you may change it with # noqa: W605, E501 your own scale. Args: input (torch.Tensor): Input feature map. bias (nn.Parameter): The bias from convolution operation. negative_slope (float, optional): Same as nn.LeakyRelu. Defaults to 0.2. scale (float, optional): A scalar to adjust the variance of the feature map. Defaults to 2**0.5. Returns: torch.Tensor: Feature map after non-linear activation. """ if not input.is_cuda: return bias_leakyrelu_ref(input, bias, negative_slope, scale) return FusedBiasLeakyReLUFunction.apply(input, bias.to(input.dtype), negative_slope, scale) def bias_leakyrelu_ref(x, bias, negative_slope=0.2, scale=2**0.5): if bias is not None: assert bias.ndim == 1 assert bias.shape[0] == x.shape[1] x = x + bias.reshape([-1 if i == 1 else 1 for i in range(x.ndim)]) x = F.leaky_relu(x, negative_slope) if scale != 1: x = x * scale return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/fused_bias_leakyrelu.py
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import torch if torch.__version__ == 'parrots': import parrots def get_compiler_version(): return 'GCC ' + parrots.version.compiler def get_compiling_cuda_version(): return parrots.version.cuda else: from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['get_compiler_version', 'get_compiling_cuda_version']) def get_compiler_version(): return ext_module.get_compiler_version() def get_compiling_cuda_version(): return ext_module.get_compiling_cuda_version() def get_onnxruntime_op_path(): wildcard = os.path.join( os.path.abspath(os.path.dirname(os.path.dirname(__file__))), '_ext_ort.*.so') paths = glob.glob(wildcard) if len(paths) > 0: return paths[0] else: return ''
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/info.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch import nn from torch.autograd import Function from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['dynamic_voxelize_forward', 'hard_voxelize_forward']) class _Voxelization(Function): @staticmethod def forward(ctx, points, voxel_size, coors_range, max_points=35, max_voxels=20000): """Convert kitti points(N, >=3) to voxels. Args: points (torch.Tensor): [N, ndim]. Points[:, :3] contain xyz points and points[:, 3:] contain other information like reflectivity. voxel_size (tuple or float): The size of voxel with the shape of [3]. coors_range (tuple or float): The coordinate range of voxel with the shape of [6]. max_points (int, optional): maximum points contained in a voxel. if max_points=-1, it means using dynamic_voxelize. Default: 35. max_voxels (int, optional): maximum voxels this function create. for second, 20000 is a good choice. Users should shuffle points before call this function because max_voxels may drop points. Default: 20000. Returns: voxels_out (torch.Tensor): Output voxels with the shape of [M, max_points, ndim]. Only contain points and returned when max_points != -1. coors_out (torch.Tensor): Output coordinates with the shape of [M, 3]. num_points_per_voxel_out (torch.Tensor): Num points per voxel with the shape of [M]. Only returned when max_points != -1. """ if max_points == -1 or max_voxels == -1: coors = points.new_zeros(size=(points.size(0), 3), dtype=torch.int) ext_module.dynamic_voxelize_forward(points, coors, voxel_size, coors_range, 3) return coors else: voxels = points.new_zeros( size=(max_voxels, max_points, points.size(1))) coors = points.new_zeros(size=(max_voxels, 3), dtype=torch.int) num_points_per_voxel = points.new_zeros( size=(max_voxels, ), dtype=torch.int) voxel_num = ext_module.hard_voxelize_forward( points, voxels, coors, num_points_per_voxel, voxel_size, coors_range, max_points, max_voxels, 3) # select the valid voxels voxels_out = voxels[:voxel_num] coors_out = coors[:voxel_num] num_points_per_voxel_out = num_points_per_voxel[:voxel_num] return voxels_out, coors_out, num_points_per_voxel_out voxelization = _Voxelization.apply class Voxelization(nn.Module): """Convert kitti points(N, >=3) to voxels. Please refer to `PVCNN <https://arxiv.org/abs/1907.03739>`_ for more details. Args: voxel_size (tuple or float): The size of voxel with the shape of [3]. point_cloud_range (tuple or float): The coordinate range of voxel with the shape of [6]. max_num_points (int): maximum points contained in a voxel. if max_points=-1, it means using dynamic_voxelize. max_voxels (int, optional): maximum voxels this function create. for second, 20000 is a good choice. Users should shuffle points before call this function because max_voxels may drop points. Default: 20000. """ def __init__(self, voxel_size, point_cloud_range, max_num_points, max_voxels=20000): super().__init__() self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range self.max_num_points = max_num_points if isinstance(max_voxels, tuple): self.max_voxels = max_voxels else: self.max_voxels = _pair(max_voxels) point_cloud_range = torch.tensor( point_cloud_range, dtype=torch.float32) voxel_size = torch.tensor(voxel_size, dtype=torch.float32) grid_size = (point_cloud_range[3:] - point_cloud_range[:3]) / voxel_size grid_size = torch.round(grid_size).long() input_feat_shape = grid_size[:2] self.grid_size = grid_size # the origin shape is as [x-len, y-len, z-len] # [w, h, d] -> [d, h, w] self.pcd_shape = [*input_feat_shape, 1][::-1] def forward(self, input): if self.training: max_voxels = self.max_voxels[0] else: max_voxels = self.max_voxels[1] return voxelization(input, self.voxel_size, self.point_cloud_range, self.max_num_points, max_voxels) def __repr__(self): s = self.__class__.__name__ + '(' s += 'voxel_size=' + str(self.voxel_size) s += ', point_cloud_range=' + str(self.point_cloud_range) s += ', max_num_points=' + str(self.max_num_points) s += ', max_voxels=' + str(self.max_voxels) s += ')' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/voxelize.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch import Tensor, nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['correlation_forward', 'correlation_backward']) class CorrelationFunction(Function): @staticmethod def forward(ctx, input1, input2, kernel_size=1, max_displacement=1, stride=1, padding=1, dilation=1, dilation_patch=1): ctx.save_for_backward(input1, input2) kH, kW = ctx.kernel_size = _pair(kernel_size) patch_size = max_displacement * 2 + 1 ctx.patch_size = patch_size dH, dW = ctx.stride = _pair(stride) padH, padW = ctx.padding = _pair(padding) dilationH, dilationW = ctx.dilation = _pair(dilation) dilation_patchH, dilation_patchW = ctx.dilation_patch = _pair( dilation_patch) output_size = CorrelationFunction._output_size(ctx, input1) output = input1.new_zeros(output_size) ext_module.correlation_forward( input1, input2, output, kH=kH, kW=kW, patchH=patch_size, patchW=patch_size, padH=padH, padW=padW, dilationH=dilationH, dilationW=dilationW, dilation_patchH=dilation_patchH, dilation_patchW=dilation_patchW, dH=dH, dW=dW) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input1, input2 = ctx.saved_tensors kH, kW = ctx.kernel_size patch_size = ctx.patch_size padH, padW = ctx.padding dilationH, dilationW = ctx.dilation dilation_patchH, dilation_patchW = ctx.dilation_patch dH, dW = ctx.stride grad_input1 = torch.zeros_like(input1) grad_input2 = torch.zeros_like(input2) ext_module.correlation_backward( grad_output, input1, input2, grad_input1, grad_input2, kH=kH, kW=kW, patchH=patch_size, patchW=patch_size, padH=padH, padW=padW, dilationH=dilationH, dilationW=dilationW, dilation_patchH=dilation_patchH, dilation_patchW=dilation_patchW, dH=dH, dW=dW) return grad_input1, grad_input2, None, None, None, None, None, None @staticmethod def _output_size(ctx, input1): iH, iW = input1.size(2), input1.size(3) batch_size = input1.size(0) kH, kW = ctx.kernel_size patch_size = ctx.patch_size dH, dW = ctx.stride padH, padW = ctx.padding dilationH, dilationW = ctx.dilation dilatedKH = (kH - 1) * dilationH + 1 dilatedKW = (kW - 1) * dilationW + 1 oH = int((iH + 2 * padH - dilatedKH) / dH + 1) oW = int((iW + 2 * padW - dilatedKW) / dW + 1) output_size = (batch_size, patch_size, patch_size, oH, oW) return output_size class Correlation(nn.Module): r"""Correlation operator This correlation operator works for optical flow correlation computation. There are two batched tensors with shape :math:`(N, C, H, W)`, and the correlation output's shape is :math:`(N, max\_displacement \times 2 + 1, max\_displacement * 2 + 1, H_{out}, W_{out})` where .. math:: H_{out} = \left\lfloor\frac{H_{in} + 2 \times padding - dilation \times (kernel\_size - 1) - 1} {stride} + 1\right\rfloor .. math:: W_{out} = \left\lfloor\frac{W_{in} + 2 \times padding - dilation \times (kernel\_size - 1) - 1} {stride} + 1\right\rfloor the correlation item :math:`(N_i, dy, dx)` is formed by taking the sliding window convolution between input1 and shifted input2, .. math:: Corr(N_i, dx, dy) = \sum_{c=0}^{C-1} input1(N_i, c) \star \mathcal{S}(input2(N_i, c), dy, dx) where :math:`\star` is the valid 2d sliding window convolution operator, and :math:`\mathcal{S}` means shifting the input features (auto-complete zero marginal), and :math:`dx, dy` are shifting distance, :math:`dx, dy \in [-max\_displacement \times dilation\_patch, max\_displacement \times dilation\_patch]`. Args: kernel_size (int): The size of sliding window i.e. local neighborhood representing the center points and involved in correlation computation. Defaults to 1. max_displacement (int): The radius for computing correlation volume, but the actual working space can be dilated by dilation_patch. Defaults to 1. stride (int): The stride of the sliding blocks in the input spatial dimensions. Defaults to 1. padding (int): Zero padding added to all four sides of the input1. Defaults to 0. dilation (int): The spacing of local neighborhood that will involved in correlation. Defaults to 1. dilation_patch (int): The spacing between position need to compute correlation. Defaults to 1. """ def __init__(self, kernel_size: int = 1, max_displacement: int = 1, stride: int = 1, padding: int = 0, dilation: int = 1, dilation_patch: int = 1) -> None: super().__init__() self.kernel_size = kernel_size self.max_displacement = max_displacement self.stride = stride self.padding = padding self.dilation = dilation self.dilation_patch = dilation_patch def forward(self, input1: Tensor, input2: Tensor) -> Tensor: return CorrelationFunction.apply(input1, input2, self.kernel_size, self.max_displacement, self.stride, self.padding, self.dilation, self.dilation_patch) def __repr__(self) -> str: s = self.__class__.__name__ s += f'(kernel_size={self.kernel_size}, ' s += f'max_displacement={self.max_displacement}, ' s += f'stride={self.stride}, ' s += f'padding={self.padding}, ' s += f'dilation={self.dilation}, ' s += f'dilation_patch={self.dilation_patch})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/correlation.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import PLUGIN_LAYERS, Scale def NEG_INF_DIAG(n, device): """Returns a diagonal matrix of size [n, n]. The diagonal are all "-inf". This is for avoiding calculating the overlapped element in the Criss-Cross twice. """ return torch.diag(torch.tensor(float('-inf')).to(device).repeat(n), 0) @PLUGIN_LAYERS.register_module() class CrissCrossAttention(nn.Module): """Criss-Cross Attention Module. .. note:: Before v1.3.13, we use a CUDA op. Since v1.3.13, we switch to a pure PyTorch and equivalent implementation. For more details, please refer to https://github.com/open-mmlab/mmcv/pull/1201. Speed comparison for one forward pass - Input size: [2,512,97,97] - Device: 1 NVIDIA GeForce RTX 2080 Ti +-----------------------+---------------+------------+---------------+ | |PyTorch version|CUDA version|Relative speed | +=======================+===============+============+===============+ |with torch.no_grad() |0.00554402 s |0.0299619 s |5.4x | +-----------------------+---------------+------------+---------------+ |no with torch.no_grad()|0.00562803 s |0.0301349 s |5.4x | +-----------------------+---------------+------------+---------------+ Args: in_channels (int): Channels of the input feature map. """ def __init__(self, in_channels): super().__init__() self.query_conv = nn.Conv2d(in_channels, in_channels // 8, 1) self.key_conv = nn.Conv2d(in_channels, in_channels // 8, 1) self.value_conv = nn.Conv2d(in_channels, in_channels, 1) self.gamma = Scale(0.) self.in_channels = in_channels def forward(self, x): """forward function of Criss-Cross Attention. Args: x (Tensor): Input feature. \ shape (batch_size, in_channels, height, width) Returns: Tensor: Output of the layer, with shape of \ (batch_size, in_channels, height, width) """ B, C, H, W = x.size() query = self.query_conv(x) key = self.key_conv(x) value = self.value_conv(x) energy_H = torch.einsum('bchw,bciw->bwhi', query, key) + NEG_INF_DIAG( H, query.device) energy_H = energy_H.transpose(1, 2) energy_W = torch.einsum('bchw,bchj->bhwj', query, key) attn = F.softmax( torch.cat([energy_H, energy_W], dim=-1), dim=-1) # [B,H,W,(H+W)] out = torch.einsum('bciw,bhwi->bchw', value, attn[..., :H]) out += torch.einsum('bchj,bhwj->bchw', value, attn[..., H:]) out = self.gamma(out) + x out = out.contiguous() return out def __repr__(self): s = self.__class__.__name__ s += f'(in_channels={self.in_channels})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/cc_attention.py
# Copyright (c) OpenMMLab. All rights reserved. import torch from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'iou3d_boxes_iou_bev_forward', 'iou3d_nms_forward', 'iou3d_nms_normal_forward' ]) def boxes_iou_bev(boxes_a, boxes_b): """Calculate boxes IoU in the Bird's Eye View. Args: boxes_a (torch.Tensor): Input boxes a with shape (M, 5). boxes_b (torch.Tensor): Input boxes b with shape (N, 5). Returns: ans_iou (torch.Tensor): IoU result with shape (M, N). """ ans_iou = boxes_a.new_zeros( torch.Size((boxes_a.shape[0], boxes_b.shape[0]))) ext_module.iou3d_boxes_iou_bev_forward(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou) return ans_iou def nms_bev(boxes, scores, thresh, pre_max_size=None, post_max_size=None): """NMS function GPU implementation (for BEV boxes). The overlap of two boxes for IoU calculation is defined as the exact overlapping area of the two boxes. In this function, one can also set ``pre_max_size`` and ``post_max_size``. Args: boxes (torch.Tensor): Input boxes with the shape of [N, 5] ([x1, y1, x2, y2, ry]). scores (torch.Tensor): Scores of boxes with the shape of [N]. thresh (float): Overlap threshold of NMS. pre_max_size (int, optional): Max size of boxes before NMS. Default: None. post_max_size (int, optional): Max size of boxes after NMS. Default: None. Returns: torch.Tensor: Indexes after NMS. """ assert boxes.size(1) == 5, 'Input boxes shape should be [N, 5]' order = scores.sort(0, descending=True)[1] if pre_max_size is not None: order = order[:pre_max_size] boxes = boxes[order].contiguous() keep = torch.zeros(boxes.size(0), dtype=torch.long) num_out = ext_module.iou3d_nms_forward(boxes, keep, thresh) keep = order[keep[:num_out].cuda(boxes.device)].contiguous() if post_max_size is not None: keep = keep[:post_max_size] return keep def nms_normal_bev(boxes, scores, thresh): """Normal NMS function GPU implementation (for BEV boxes). The overlap of two boxes for IoU calculation is defined as the exact overlapping area of the two boxes WITH their yaw angle set to 0. Args: boxes (torch.Tensor): Input boxes with shape (N, 5). scores (torch.Tensor): Scores of predicted boxes with shape (N). thresh (float): Overlap threshold of NMS. Returns: torch.Tensor: Remaining indices with scores in descending order. """ assert boxes.shape[1] == 5, 'Input boxes shape should be [N, 5]' order = scores.sort(0, descending=True)[1] boxes = boxes[order].contiguous() keep = torch.zeros(boxes.size(0), dtype=torch.long) num_out = ext_module.iou3d_nms_normal_forward(boxes, keep, thresh) return order[keep[:num_out].cuda(boxes.device)].contiguous()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/iou3d.py
# Copyright (c) OpenMMLab. All rights reserved. from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps']) def bbox_overlaps(bboxes1, bboxes2, mode='iou', aligned=False, offset=0): """Calculate overlap between two set of bboxes. If ``aligned`` is ``False``, then calculate the ious between each bbox of bboxes1 and bboxes2, otherwise the ious between each aligned pair of bboxes1 and bboxes2. Args: bboxes1 (Tensor): shape (m, 4) in <x1, y1, x2, y2> format or empty. bboxes2 (Tensor): shape (n, 4) in <x1, y1, x2, y2> format or empty. If aligned is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union) or iof (intersection over foreground). Returns: ious(Tensor): shape (m, n) if aligned == False else shape (m, 1) Example: >>> bboxes1 = torch.FloatTensor([ >>> [0, 0, 10, 10], >>> [10, 10, 20, 20], >>> [32, 32, 38, 42], >>> ]) >>> bboxes2 = torch.FloatTensor([ >>> [0, 0, 10, 20], >>> [0, 10, 10, 19], >>> [10, 10, 20, 20], >>> ]) >>> bbox_overlaps(bboxes1, bboxes2) tensor([[0.5000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000], [0.0000, 0.0000, 0.0000]]) Example: >>> empty = torch.FloatTensor([]) >>> nonempty = torch.FloatTensor([ >>> [0, 0, 10, 9], >>> ]) >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1) >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0) >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0) """ mode_dict = {'iou': 0, 'iof': 1} assert mode in mode_dict.keys() mode_flag = mode_dict[mode] # Either the boxes are empty or the length of boxes' last dimension is 4 assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0) assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0) assert offset == 1 or offset == 0 rows = bboxes1.size(0) cols = bboxes2.size(0) if aligned: assert rows == cols if rows * cols == 0: return bboxes1.new(rows, 1) if aligned else bboxes1.new(rows, cols) if aligned: ious = bboxes1.new_zeros(rows) else: ious = bboxes1.new_zeros((rows, cols)) ext_module.bbox_overlaps( bboxes1, bboxes2, ious, mode=mode_flag, aligned=aligned, offset=offset) return ious
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/bbox.py
from typing import Tuple import torch from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['three_interpolate_forward', 'three_interpolate_backward']) class ThreeInterpolate(Function): """Performs weighted linear interpolation on 3 features. Please refer to `Paper of PointNet++ <https://arxiv.org/abs/1706.02413>`_ for more details. """ @staticmethod def forward(ctx, features: torch.Tensor, indices: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: """ Args: features (Tensor): (B, C, M) Features descriptors to be interpolated indices (Tensor): (B, n, 3) index three nearest neighbors of the target features in features weight (Tensor): (B, n, 3) weights of interpolation Returns: Tensor: (B, C, N) tensor of the interpolated features """ assert features.is_contiguous() assert indices.is_contiguous() assert weight.is_contiguous() B, c, m = features.size() n = indices.size(1) ctx.three_interpolate_for_backward = (indices, weight, m) output = torch.cuda.FloatTensor(B, c, n) ext_module.three_interpolate_forward( features, indices, weight, output, b=B, c=c, m=m, n=n) return output @staticmethod def backward( ctx, grad_out: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: grad_out (Tensor): (B, C, N) tensor with gradients of outputs Returns: Tensor: (B, C, M) tensor with gradients of features """ idx, weight, m = ctx.three_interpolate_for_backward B, c, n = grad_out.size() grad_features = torch.cuda.FloatTensor(B, c, m).zero_() grad_out_data = grad_out.data.contiguous() ext_module.three_interpolate_backward( grad_out_data, idx, weight, grad_features.data, b=B, c=c, n=n, m=m) return grad_features, None, None three_interpolate = ThreeInterpolate.apply
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/three_interpolate.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.distributed as dist import torch.nn.functional as F from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.module import Module from torch.nn.parameter import Parameter from annotator.uniformer.mmcv.cnn import NORM_LAYERS from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'sync_bn_forward_mean', 'sync_bn_forward_var', 'sync_bn_forward_output', 'sync_bn_backward_param', 'sync_bn_backward_data' ]) class SyncBatchNormFunction(Function): @staticmethod def symbolic(g, input, running_mean, running_var, weight, bias, momentum, eps, group, group_size, stats_mode): return g.op( 'mmcv::MMCVSyncBatchNorm', input, running_mean, running_var, weight, bias, momentum_f=momentum, eps_f=eps, group_i=group, group_size_i=group_size, stats_mode=stats_mode) @staticmethod def forward(self, input, running_mean, running_var, weight, bias, momentum, eps, group, group_size, stats_mode): self.momentum = momentum self.eps = eps self.group = group self.group_size = group_size self.stats_mode = stats_mode assert isinstance( input, (torch.HalfTensor, torch.FloatTensor, torch.cuda.HalfTensor, torch.cuda.FloatTensor)), \ f'only support Half or Float Tensor, but {input.type()}' output = torch.zeros_like(input) input3d = input.flatten(start_dim=2) output3d = output.view_as(input3d) num_channels = input3d.size(1) # ensure mean/var/norm/std are initialized as zeros # ``torch.empty()`` does not guarantee that mean = torch.zeros( num_channels, dtype=torch.float, device=input3d.device) var = torch.zeros( num_channels, dtype=torch.float, device=input3d.device) norm = torch.zeros_like( input3d, dtype=torch.float, device=input3d.device) std = torch.zeros( num_channels, dtype=torch.float, device=input3d.device) batch_size = input3d.size(0) if batch_size > 0: ext_module.sync_bn_forward_mean(input3d, mean) batch_flag = torch.ones([1], device=mean.device, dtype=mean.dtype) else: # skip updating mean and leave it as zeros when the input is empty batch_flag = torch.zeros([1], device=mean.device, dtype=mean.dtype) # synchronize mean and the batch flag vec = torch.cat([mean, batch_flag]) if self.stats_mode == 'N': vec *= batch_size if self.group_size > 1: dist.all_reduce(vec, group=self.group) total_batch = vec[-1].detach() mean = vec[:num_channels] if self.stats_mode == 'default': mean = mean / self.group_size elif self.stats_mode == 'N': mean = mean / total_batch.clamp(min=1) else: raise NotImplementedError # leave var as zeros when the input is empty if batch_size > 0: ext_module.sync_bn_forward_var(input3d, mean, var) if self.stats_mode == 'N': var *= batch_size if self.group_size > 1: dist.all_reduce(var, group=self.group) if self.stats_mode == 'default': var /= self.group_size elif self.stats_mode == 'N': var /= total_batch.clamp(min=1) else: raise NotImplementedError # if the total batch size over all the ranks is zero, # we should not update the statistics in the current batch update_flag = total_batch.clamp(max=1) momentum = update_flag * self.momentum ext_module.sync_bn_forward_output( input3d, mean, var, weight, bias, running_mean, running_var, norm, std, output3d, eps=self.eps, momentum=momentum, group_size=self.group_size) self.save_for_backward(norm, std, weight) return output @staticmethod @once_differentiable def backward(self, grad_output): norm, std, weight = self.saved_tensors grad_weight = torch.zeros_like(weight) grad_bias = torch.zeros_like(weight) grad_input = torch.zeros_like(grad_output) grad_output3d = grad_output.flatten(start_dim=2) grad_input3d = grad_input.view_as(grad_output3d) batch_size = grad_input3d.size(0) if batch_size > 0: ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight, grad_bias) # all reduce if self.group_size > 1: dist.all_reduce(grad_weight, group=self.group) dist.all_reduce(grad_bias, group=self.group) grad_weight /= self.group_size grad_bias /= self.group_size if batch_size > 0: ext_module.sync_bn_backward_data(grad_output3d, weight, grad_weight, grad_bias, norm, std, grad_input3d) return grad_input, None, None, grad_weight, grad_bias, \ None, None, None, None, None @NORM_LAYERS.register_module(name='MMSyncBN') class SyncBatchNorm(Module): """Synchronized Batch Normalization. Args: num_features (int): number of features/chennels in input tensor eps (float, optional): a value added to the denominator for numerical stability. Defaults to 1e-5. momentum (float, optional): the value used for the running_mean and running_var computation. Defaults to 0.1. affine (bool, optional): whether to use learnable affine parameters. Defaults to True. track_running_stats (bool, optional): whether to track the running mean and variance during training. When set to False, this module does not track such statistics, and initializes statistics buffers ``running_mean`` and ``running_var`` as ``None``. When these buffers are ``None``, this module always uses batch statistics in both training and eval modes. Defaults to True. group (int, optional): synchronization of stats happen within each process group individually. By default it is synchronization across the whole world. Defaults to None. stats_mode (str, optional): The statistical mode. Available options includes ``'default'`` and ``'N'``. Defaults to 'default'. When ``stats_mode=='default'``, it computes the overall statistics using those from each worker with equal weight, i.e., the statistics are synchronized and simply divied by ``group``. This mode will produce inaccurate statistics when empty tensors occur. When ``stats_mode=='N'``, it compute the overall statistics using the total number of batches in each worker ignoring the number of group, i.e., the statistics are synchronized and then divied by the total batch ``N``. This mode is beneficial when empty tensors occur during training, as it average the total mean by the real number of batch. """ def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, group=None, stats_mode='default'): super(SyncBatchNorm, self).__init__() self.num_features = num_features self.eps = eps self.momentum = momentum self.affine = affine self.track_running_stats = track_running_stats group = dist.group.WORLD if group is None else group self.group = group self.group_size = dist.get_world_size(group) assert stats_mode in ['default', 'N'], \ f'"stats_mode" only accepts "default" and "N", got "{stats_mode}"' self.stats_mode = stats_mode if self.affine: self.weight = Parameter(torch.Tensor(num_features)) self.bias = Parameter(torch.Tensor(num_features)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) if self.track_running_stats: self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long)) else: self.register_buffer('running_mean', None) self.register_buffer('running_var', None) self.register_buffer('num_batches_tracked', None) self.reset_parameters() def reset_running_stats(self): if self.track_running_stats: self.running_mean.zero_() self.running_var.fill_(1) self.num_batches_tracked.zero_() def reset_parameters(self): self.reset_running_stats() if self.affine: self.weight.data.uniform_() # pytorch use ones_() self.bias.data.zero_() def forward(self, input): if input.dim() < 2: raise ValueError( f'expected at least 2D input, got {input.dim()}D input') if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: if self.num_batches_tracked is not None: self.num_batches_tracked += 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float( self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum if self.training or not self.track_running_stats: return SyncBatchNormFunction.apply( input, self.running_mean, self.running_var, self.weight, self.bias, exponential_average_factor, self.eps, self.group, self.group_size, self.stats_mode) else: return F.batch_norm(input, self.running_mean, self.running_var, self.weight, self.bias, False, exponential_average_factor, self.eps) def __repr__(self): s = self.__class__.__name__ s += f'({self.num_features}, ' s += f'eps={self.eps}, ' s += f'momentum={self.momentum}, ' s += f'affine={self.affine}, ' s += f'track_running_stats={self.track_running_stats}, ' s += f'group_size={self.group_size},' s += f'stats_mode={self.stats_mode})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/sync_bn.py
# Copyright (c) OpenMMLab. All rights reserved. # modified from # https://github.com/Megvii-BaseDetection/cvpods/blob/master/cvpods/layers/border_align.py import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['border_align_forward', 'border_align_backward']) class BorderAlignFunction(Function): @staticmethod def symbolic(g, input, boxes, pool_size): return g.op( 'mmcv::MMCVBorderAlign', input, boxes, pool_size_i=pool_size) @staticmethod def forward(ctx, input, boxes, pool_size): ctx.pool_size = pool_size ctx.input_shape = input.size() assert boxes.ndim == 3, 'boxes must be with shape [B, H*W, 4]' assert boxes.size(2) == 4, \ 'the last dimension of boxes must be (x1, y1, x2, y2)' assert input.size(1) % 4 == 0, \ 'the channel for input feature must be divisible by factor 4' # [B, C//4, H*W, 4] output_shape = (input.size(0), input.size(1) // 4, boxes.size(1), 4) output = input.new_zeros(output_shape) # `argmax_idx` only used for backward argmax_idx = input.new_zeros(output_shape).to(torch.int) ext_module.border_align_forward( input, boxes, output, argmax_idx, pool_size=ctx.pool_size) ctx.save_for_backward(boxes, argmax_idx) return output @staticmethod @once_differentiable def backward(ctx, grad_output): boxes, argmax_idx = ctx.saved_tensors grad_input = grad_output.new_zeros(ctx.input_shape) # complex head architecture may cause grad_output uncontiguous grad_output = grad_output.contiguous() ext_module.border_align_backward( grad_output, boxes, argmax_idx, grad_input, pool_size=ctx.pool_size) return grad_input, None, None border_align = BorderAlignFunction.apply class BorderAlign(nn.Module): r"""Border align pooling layer. Applies border_align over the input feature based on predicted bboxes. The details were described in the paper `BorderDet: Border Feature for Dense Object Detection <https://arxiv.org/abs/2007.11056>`_. For each border line (e.g. top, left, bottom or right) of each box, border_align does the following: 1. uniformly samples `pool_size`+1 positions on this line, involving \ the start and end points. 2. the corresponding features on these points are computed by \ bilinear interpolation. 3. max pooling over all the `pool_size`+1 positions are used for \ computing pooled feature. Args: pool_size (int): number of positions sampled over the boxes' borders (e.g. top, bottom, left, right). """ def __init__(self, pool_size): super(BorderAlign, self).__init__() self.pool_size = pool_size def forward(self, input, boxes): """ Args: input: Features with shape [N,4C,H,W]. Channels ranged in [0,C), [C,2C), [2C,3C), [3C,4C) represent the top, left, bottom, right features respectively. boxes: Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2). Returns: Tensor: Pooled features with shape [N,C,H*W,4]. The order is (top,left,bottom,right) for the last dimension. """ return border_align(input, boxes, self.pool_size) def __repr__(self): s = self.__class__.__name__ s += f'(pool_size={self.pool_size})' return s
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/border_align.py
import torch from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['knn_forward']) class KNN(Function): r"""KNN (CUDA) based on heap data structure. Modified from `PAConv <https://github.com/CVMI-Lab/PAConv/tree/main/ scene_seg/lib/pointops/src/knnquery_heap>`_. Find k-nearest points. """ @staticmethod def forward(ctx, k: int, xyz: torch.Tensor, center_xyz: torch.Tensor = None, transposed: bool = False) -> torch.Tensor: """ Args: k (int): number of nearest neighbors. xyz (Tensor): (B, N, 3) if transposed == False, else (B, 3, N). xyz coordinates of the features. center_xyz (Tensor, optional): (B, npoint, 3) if transposed == False, else (B, 3, npoint). centers of the knn query. Default: None. transposed (bool, optional): whether the input tensors are transposed. Should not explicitly use this keyword when calling knn (=KNN.apply), just add the fourth param. Default: False. Returns: Tensor: (B, k, npoint) tensor with the indices of the features that form k-nearest neighbours. """ assert (k > 0) & (k < 100), 'k should be in range(0, 100)' if center_xyz is None: center_xyz = xyz if transposed: xyz = xyz.transpose(2, 1).contiguous() center_xyz = center_xyz.transpose(2, 1).contiguous() assert xyz.is_contiguous() # [B, N, 3] assert center_xyz.is_contiguous() # [B, npoint, 3] center_xyz_device = center_xyz.get_device() assert center_xyz_device == xyz.get_device(), \ 'center_xyz and xyz should be put on the same device' if torch.cuda.current_device() != center_xyz_device: torch.cuda.set_device(center_xyz_device) B, npoint, _ = center_xyz.shape N = xyz.shape[1] idx = center_xyz.new_zeros((B, npoint, k)).int() dist2 = center_xyz.new_zeros((B, npoint, k)).float() ext_module.knn_forward( xyz, center_xyz, idx, dist2, b=B, n=N, m=npoint, nsample=k) # idx shape to [B, k, npoint] idx = idx.transpose(2, 1).contiguous() if torch.__version__ != 'parrots': ctx.mark_non_differentiable(idx) return idx @staticmethod def backward(ctx, a=None): return None, None, None knn = KNN.apply
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/ops/knn.py
# Copyright (c) OpenMMLab. All rights reserved. from .test import (collect_results_cpu, collect_results_gpu, multi_gpu_test, single_gpu_test) __all__ = [ 'collect_results_cpu', 'collect_results_gpu', 'multi_gpu_test', 'single_gpu_test' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/engine/__init__.py
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import pickle import shutil import tempfile import time import torch import torch.distributed as dist import annotator.uniformer.mmcv as mmcv from annotator.uniformer.mmcv.runner import get_dist_info def single_gpu_test(model, data_loader): """Test model with a single gpu. This method tests model with a single gpu and displays test progress bar. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for data in data_loader: with torch.no_grad(): result = model(return_loss=False, **data) results.extend(result) # Assume result has the same length of batch_size # refer to https://github.com/open-mmlab/mmcv/issues/985 batch_size = len(result) for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting ``gpu_collect=True``, it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to ``tmpdir`` and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) time.sleep(2) # This line can prevent deadlock problem in some cases. for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, **data) results.extend(result) if rank == 0: batch_size = len(result) batch_size_all = batch_size * world_size if batch_size_all + prog_bar.completed > len(dataset): batch_size_all = len(dataset) - prog_bar.completed for _ in range(batch_size_all): prog_bar.update() # collect results from all ranks if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results def collect_results_cpu(result_part, size, tmpdir=None): """Collect results under cpu mode. On cpu mode, this function will save the results on different gpus to ``tmpdir`` and collect them by the rank 0 worker. Args: result_part (list): Result list containing result parts to be collected. size (int): Size of the results, commonly equal to length of the results. tmpdir (str | None): temporal directory for collected results to store. If set to None, it will create a random temporal directory for it. Returns: list: The collected results. """ rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: mmcv.mkdir_or_exist('.dist_test') tmpdir = tempfile.mkdtemp(dir='.dist_test') tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, f'part_{i}.pkl') part_result = mmcv.load(part_file) # When data is severely insufficient, an empty part_result # on a certain gpu could makes the overall outputs empty. if part_result: part_list.append(part_result) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def collect_results_gpu(result_part, size): """Collect results under gpu mode. On gpu mode, this function will encode results to gpu tensors and use gpu communication for results collection. Args: result_part (list): Result list containing result parts to be collected. size (int): Size of the results, commonly equal to length of the results. Returns: list: The collected results. """ rank, world_size = get_dist_info() # dump result part to tensor with pickle part_tensor = torch.tensor( bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') # gather all result part tensor shape shape_tensor = torch.tensor(part_tensor.shape, device='cuda') shape_list = [shape_tensor.clone() for _ in range(world_size)] dist.all_gather(shape_list, shape_tensor) # padding result part tensor to max length shape_max = torch.tensor(shape_list).max() part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') part_send[:shape_tensor[0]] = part_tensor part_recv_list = [ part_tensor.new_zeros(shape_max) for _ in range(world_size) ] # gather all result part dist.all_gather(part_recv_list, part_send) if rank == 0: part_list = [] for recv, shape in zip(part_recv_list, shape_list): part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()) # When data is severely insufficient, an empty part_result # on a certain gpu could makes the overall outputs empty. if part_result: part_list.append(part_result) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] return ordered_results
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmcv/engine/test.py
_base_ = [ '../../configs/_base_/models/upernet_uniformer.py', '../../configs/_base_/datasets/ade20k.py', '../../configs/_base_/default_runtime.py', '../../configs/_base_/schedules/schedule_160k.py' ] model = dict( backbone=dict( type='UniFormer', embed_dim=[64, 128, 320, 512], layers=[3, 4, 8, 3], head_dim=64, drop_path_rate=0.25, windows=False, hybrid=False ), decode_head=dict( in_channels=[64, 128, 320, 512], num_classes=150 ), auxiliary_head=dict( in_channels=320, num_classes=150 )) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/exp/upernet_global_small/config.py
_base_ = [ '../../configs/_base_/models/upernet_uniformer.py', '../../configs/_base_/datasets/ade20k.py', '../../configs/_base_/default_runtime.py', '../../configs/_base_/schedules/schedule_160k.py' ] model = dict( backbone=dict( type='UniFormer', embed_dim=[64, 128, 320, 512], layers=[3, 4, 8, 3], head_dim=64, drop_path_rate=0.25, windows=True, hybrid=False, window_size=32 ), decode_head=dict( in_channels=[64, 128, 320, 512], num_classes=150 ), auxiliary_head=dict( in_channels=320, num_classes=150 )) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/exp/upernet_global_small/test_config_w32.py
_base_ = [ '../../configs/_base_/models/upernet_uniformer.py', '../../configs/_base_/datasets/ade20k.py', '../../configs/_base_/default_runtime.py', '../../configs/_base_/schedules/schedule_160k.py' ] model = dict( backbone=dict( type='UniFormer', embed_dim=[64, 128, 320, 512], layers=[3, 4, 8, 3], head_dim=64, drop_path_rate=0.25, windows=False, hybrid=False, ), decode_head=dict( in_channels=[64, 128, 320, 512], num_classes=150 ), auxiliary_head=dict( in_channels=320, num_classes=150 )) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/exp/upernet_global_small/test_config_g.py
_base_ = [ '../../configs/_base_/models/upernet_uniformer.py', '../../configs/_base_/datasets/ade20k.py', '../../configs/_base_/default_runtime.py', '../../configs/_base_/schedules/schedule_160k.py' ] model = dict( backbone=dict( type='UniFormer', embed_dim=[64, 128, 320, 512], layers=[3, 4, 8, 3], head_dim=64, drop_path_rate=0.25, windows=False, hybrid=True, window_size=32 ), decode_head=dict( in_channels=[64, 128, 320, 512], num_classes=150 ), auxiliary_head=dict( in_channels=320, num_classes=150 )) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) data=dict(samples_per_gpu=2)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/exp/upernet_global_small/test_config_h32.py
# This is an improved version and model of HED edge detection with Apache License, Version 2.0. # Please use this implementation in your products # This implementation may produce slightly different results from Saining Xie's official implementations, # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. # Different from official models and other implementations, this is an RGB-input model (rather than BGR) # and in this way it works better for gradio's RGB protocol import os import cv2 import torch import numpy as np from einops import rearrange from annotator.util import annotator_ckpts_path class DoubleConvBlock(torch.nn.Module): def __init__(self, input_channel, output_channel, layer_number): super().__init__() self.convs = torch.nn.Sequential() self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) for i in range(1, layer_number): self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) def __call__(self, x, down_sampling=False): h = x if down_sampling: h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) for conv in self.convs: h = conv(h) h = torch.nn.functional.relu(h) return h, self.projection(h) class ControlNetHED_Apache2(torch.nn.Module): def __init__(self): super().__init__() self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) def __call__(self, x): h = x - self.norm h, projection1 = self.block1(h) h, projection2 = self.block2(h, down_sampling=True) h, projection3 = self.block3(h, down_sampling=True) h, projection4 = self.block4(h, down_sampling=True) h, projection5 = self.block5(h, down_sampling=True) return projection1, projection2, projection3, projection4, projection5 class HEDdetector: def __init__(self): remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth" modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) self.netNetwork = ControlNetHED_Apache2().float().cuda().eval() self.netNetwork.load_state_dict(torch.load(modelpath)) def __call__(self, input_image): assert input_image.ndim == 3 H, W, C = input_image.shape with torch.no_grad(): image_hed = torch.from_numpy(input_image.copy()).float().cuda() image_hed = rearrange(image_hed, 'h w c -> 1 c h w') edges = self.netNetwork(image_hed) edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) return edge def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/hed/__init__.py
import cv2 import numpy as np import math import time from scipy.ndimage.filters import gaussian_filter import matplotlib.pyplot as plt import matplotlib import torch from torchvision import transforms from . import util from .model import bodypose_model class Body(object): def __init__(self, model_path): self.model = bodypose_model() if torch.cuda.is_available(): self.model = self.model.cuda() print('cuda') model_dict = util.transfer(self.model, torch.load(model_path)) self.model.load_state_dict(model_dict) self.model.eval() def __call__(self, oriImg): # scale_search = [0.5, 1.0, 1.5, 2.0] scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre1 = 0.1 thre2 = 0.05 multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() if torch.cuda.is_available(): data = data.cuda() # data = data.permute([2, 0, 1]).unsqueeze(0).float() with torch.no_grad(): Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() # extract outputs, resize, and remove padding # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg += heatmap_avg + heatmap / len(multiplier) paf_avg += + paf / len(multiplier) all_peaks = [] peak_counter = 0 for part in range(18): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(one_heatmap.shape) map_left[1:, :] = one_heatmap[:-1, :] map_right = np.zeros(one_heatmap.shape) map_right[:-1, :] = one_heatmap[1:, :] map_up = np.zeros(one_heatmap.shape) map_up[:, 1:] = one_heatmap[:, :-1] map_down = np.zeros(one_heatmap.shape) map_down[:, :-1] = one_heatmap[:, 1:] peaks_binary = np.logical_and.reduce( (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] peak_id = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) # find connection in the specified sequence, center 29 is in the position 15 limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] # the middle joints heatmap correpondence mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \ [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \ [55, 56], [37, 38], [45, 46]] connection_all = [] special_k = [] mid_num = 10 for k in range(len(mapIdx)): score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] candA = all_peaks[limbSeq[k][0] - 1] candB = all_peaks[limbSeq[k][1] - 1] nA = len(candA) nB = len(candB) indexA, indexB = limbSeq[k] if (nA != 0 and nB != 0): connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) norm = max(0.001, norm) vec = np.divide(vec, norm) startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ np.linspace(candA[i][1], candB[j][1], num=mid_num))) vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ for I in range(len(startend))]) vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( 0.5 * oriImg.shape[0] / norm - 1, 0) criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append( [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if (i not in connection[:, 3] and j not in connection[:, 4]): connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) if (len(connection) >= min(nA, nB)): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, 20)) candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in range(len(mapIdx)): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array(limbSeq[k]) - 1 for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if subset[j][indexB] != partBs[i]: subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found and k < 17: row = -1 * np.ones(20) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur deleteIdx = [] for i in range(len(subset)): if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: deleteIdx.append(i) subset = np.delete(subset, deleteIdx, axis=0) # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts # candidate: x, y, score, id return candidate, subset if __name__ == "__main__": body_estimation = Body('../model/body_pose_model.pth') test_image = '../images/ski.jpg' oriImg = cv2.imread(test_image) # B,G,R order candidate, subset = body_estimation(oriImg) canvas = util.draw_bodypose(oriImg, candidate, subset) plt.imshow(canvas[:, :, [2, 1, 0]]) plt.show()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/openpose/body.py
import math import numpy as np import matplotlib import cv2 def padRightDownCorner(img, stride, padValue): h = img.shape[0] w = img.shape[1] pad = 4 * [None] pad[0] = 0 # up pad[1] = 0 # left pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right img_padded = img pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) img_padded = np.concatenate((pad_up, img_padded), axis=0) pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) img_padded = np.concatenate((pad_left, img_padded), axis=1) pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) img_padded = np.concatenate((img_padded, pad_down), axis=0) pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) img_padded = np.concatenate((img_padded, pad_right), axis=1) return img_padded, pad # transfer caffe model to pytorch which will match the layer name def transfer(model, model_weights): transfered_model_weights = {} for weights_name in model.state_dict().keys(): transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] return transfered_model_weights # draw the body keypoint and lims def draw_bodypose(canvas, candidate, subset): stickwidth = 4 limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] if -1 in index: continue cur_canvas = canvas.copy() Y = candidate[index.astype(int), 0] X = candidate[index.astype(int), 1] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]]) # plt.imshow(canvas[:, :, [2, 1, 0]]) return canvas # image drawed by opencv is not good. def draw_handpose(canvas, all_hand_peaks, show_number=False): edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] for peaks in all_hand_peaks: for ie, e in enumerate(edges): if np.sum(np.all(peaks[e], axis=1)==0)==0: x1, y1 = peaks[e[0]] x2, y2 = peaks[e[1]] cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2) for i, keyponit in enumerate(peaks): x, y = keyponit cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) if show_number: cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA) return canvas # detect hand according to body pose keypoints # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp def handDetect(candidate, subset, oriImg): # right hand: wrist 4, elbow 3, shoulder 2 # left hand: wrist 7, elbow 6, shoulder 5 ratioWristElbow = 0.33 detect_result = [] image_height, image_width = oriImg.shape[0:2] for person in subset.astype(int): # if any of three not detected has_left = np.sum(person[[5, 6, 7]] == -1) == 0 has_right = np.sum(person[[2, 3, 4]] == -1) == 0 if not (has_left or has_right): continue hands = [] #left hand if has_left: left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] x1, y1 = candidate[left_shoulder_index][:2] x2, y2 = candidate[left_elbow_index][:2] x3, y3 = candidate[left_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, True]) # right hand if has_right: right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] x1, y1 = candidate[right_shoulder_index][:2] x2, y2 = candidate[right_elbow_index][:2] x3, y3 = candidate[right_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, False]) for x1, y1, x2, y2, x3, y3, is_left in hands: # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); x = x3 + ratioWristElbow * (x3 - x2) y = y3 + ratioWristElbow * (y3 - y2) distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) # x-y refers to the center --> offset to topLeft point # handRectangle.x -= handRectangle.width / 2.f; # handRectangle.y -= handRectangle.height / 2.f; x -= width / 2 y -= width / 2 # width = height # overflow the image if x < 0: x = 0 if y < 0: y = 0 width1 = width width2 = width if x + width > image_width: width1 = image_width - x if y + width > image_height: width2 = image_height - y width = min(width1, width2) # the max hand box value is 20 pixels if width >= 20: detect_result.append([int(x), int(y), int(width), is_left]) ''' return value: [[x, y, w, True if left hand else False]]. width=height since the network require squared input. x, y is the coordinate of top left ''' return detect_result # get max index of 2d array def npmax(array): arrayindex = array.argmax(1) arrayvalue = array.max(1) i = arrayvalue.argmax() j = arrayindex[i] return i, j
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/openpose/util.py
# Openpose # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose # 2nd Edited by https://github.com/Hzzone/pytorch-openpose # 3rd Edited by ControlNet import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import torch import numpy as np from . import util from .body import Body from .hand import Hand from annotator.util import annotator_ckpts_path body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth" hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth" class OpenposeDetector: def __init__(self): body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") if not os.path.exists(hand_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) self.body_estimation = Body(body_modelpath) self.hand_estimation = Hand(hand_modelpath) def __call__(self, oriImg, hand=False): oriImg = oriImg[:, :, ::-1].copy() with torch.no_grad(): candidate, subset = self.body_estimation(oriImg) canvas = np.zeros_like(oriImg) canvas = util.draw_bodypose(canvas, candidate, subset) if hand: hands_list = util.handDetect(candidate, subset, oriImg) all_hand_peaks = [] for x, y, w, is_left in hands_list: peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]) peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x) peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y) all_hand_peaks.append(peaks) canvas = util.draw_handpose(canvas, all_hand_peaks) return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/openpose/__init__.py
import torch from collections import OrderedDict import torch import torch.nn as nn def make_layers(block, no_relu_layers): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(('relu_'+layer_name, nn.ReLU(inplace=True))) return nn.Sequential(OrderedDict(layers)) class bodypose_model(nn.Module): def __init__(self): super(bodypose_model, self).__init__() # these layers have no relu layer no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\ 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\ 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\ 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] blocks = {} block0 = OrderedDict([ ('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2, 0]), ('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]), ('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]), ('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]), ('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]), ('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]), ('conv4_3_CPM', [512, 256, 3, 1, 1]), ('conv4_4_CPM', [256, 128, 3, 1, 1]) ]) # Stage 1 block1_1 = OrderedDict([ ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), ('conv5_5_CPM_L1', [512, 38, 1, 1, 0]) ]) block1_2 = OrderedDict([ ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), ('conv5_5_CPM_L2', [512, 19, 1, 1, 0]) ]) blocks['block1_1'] = block1_1 blocks['block1_2'] = block1_2 self.model0 = make_layers(block0, no_relu_layers) # Stages 2 - 6 for i in range(2, 7): blocks['block%d_1' % i] = OrderedDict([ ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) ]) blocks['block%d_2' % i] = OrderedDict([ ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) ]) for k in blocks.keys(): blocks[k] = make_layers(blocks[k], no_relu_layers) self.model1_1 = blocks['block1_1'] self.model2_1 = blocks['block2_1'] self.model3_1 = blocks['block3_1'] self.model4_1 = blocks['block4_1'] self.model5_1 = blocks['block5_1'] self.model6_1 = blocks['block6_1'] self.model1_2 = blocks['block1_2'] self.model2_2 = blocks['block2_2'] self.model3_2 = blocks['block3_2'] self.model4_2 = blocks['block4_2'] self.model5_2 = blocks['block5_2'] self.model6_2 = blocks['block6_2'] def forward(self, x): out1 = self.model0(x) out1_1 = self.model1_1(out1) out1_2 = self.model1_2(out1) out2 = torch.cat([out1_1, out1_2, out1], 1) out2_1 = self.model2_1(out2) out2_2 = self.model2_2(out2) out3 = torch.cat([out2_1, out2_2, out1], 1) out3_1 = self.model3_1(out3) out3_2 = self.model3_2(out3) out4 = torch.cat([out3_1, out3_2, out1], 1) out4_1 = self.model4_1(out4) out4_2 = self.model4_2(out4) out5 = torch.cat([out4_1, out4_2, out1], 1) out5_1 = self.model5_1(out5) out5_2 = self.model5_2(out5) out6 = torch.cat([out5_1, out5_2, out1], 1) out6_1 = self.model6_1(out6) out6_2 = self.model6_2(out6) return out6_1, out6_2 class handpose_model(nn.Module): def __init__(self): super(handpose_model, self).__init__() # these layers have no relu layer no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\ 'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6'] # stage 1 block1_0 = OrderedDict([ ('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2, 0]), ('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]), ('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]), ('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]), ('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]), ('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]), ('conv4_3', [512, 512, 3, 1, 1]), ('conv4_4', [512, 512, 3, 1, 1]), ('conv5_1', [512, 512, 3, 1, 1]), ('conv5_2', [512, 512, 3, 1, 1]), ('conv5_3_CPM', [512, 128, 3, 1, 1]) ]) block1_1 = OrderedDict([ ('conv6_1_CPM', [128, 512, 1, 1, 0]), ('conv6_2_CPM', [512, 22, 1, 1, 0]) ]) blocks = {} blocks['block1_0'] = block1_0 blocks['block1_1'] = block1_1 # stage 2-6 for i in range(2, 7): blocks['block%d' % i] = OrderedDict([ ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) ]) for k in blocks.keys(): blocks[k] = make_layers(blocks[k], no_relu_layers) self.model1_0 = blocks['block1_0'] self.model1_1 = blocks['block1_1'] self.model2 = blocks['block2'] self.model3 = blocks['block3'] self.model4 = blocks['block4'] self.model5 = blocks['block5'] self.model6 = blocks['block6'] def forward(self, x): out1_0 = self.model1_0(x) out1_1 = self.model1_1(out1_0) concat_stage2 = torch.cat([out1_1, out1_0], 1) out_stage2 = self.model2(concat_stage2) concat_stage3 = torch.cat([out_stage2, out1_0], 1) out_stage3 = self.model3(concat_stage3) concat_stage4 = torch.cat([out_stage3, out1_0], 1) out_stage4 = self.model4(concat_stage4) concat_stage5 = torch.cat([out_stage4, out1_0], 1) out_stage5 = self.model5(concat_stage5) concat_stage6 = torch.cat([out_stage5, out1_0], 1) out_stage6 = self.model6(concat_stage6) return out_stage6
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/openpose/model.py
import cv2 import json import numpy as np import math import time from scipy.ndimage.filters import gaussian_filter import matplotlib.pyplot as plt import matplotlib import torch from skimage.measure import label from .model import handpose_model from . import util class Hand(object): def __init__(self, model_path): self.model = handpose_model() if torch.cuda.is_available(): self.model = self.model.cuda() print('cuda') model_dict = util.transfer(self.model, torch.load(model_path)) self.model.load_state_dict(model_dict) self.model.eval() def __call__(self, oriImg): scale_search = [0.5, 1.0, 1.5, 2.0] # scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre = 0.05 multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() if torch.cuda.is_available(): data = data.cuda() # data = data.permute([2, 0, 1]).unsqueeze(0).float() with torch.no_grad(): output = self.model(data).cpu().numpy() # output = self.model(data).numpy()q # extract outputs, resize, and remove padding heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg += heatmap / len(multiplier) all_peaks = [] for part in range(21): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) # 全部小于阈值 if np.sum(binary) == 0: all_peaks.append([0, 0]) continue label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 label_img[label_img != max_index] = 0 map_ori[label_img == 0] = 0 y, x = util.npmax(map_ori) all_peaks.append([x, y]) return np.array(all_peaks) if __name__ == "__main__": hand_estimation = Hand('../model/hand_pose_model.pth') # test_image = '../images/hand.jpg' test_image = '../images/hand.jpg' oriImg = cv2.imread(test_image) # B,G,R order peaks = hand_estimation(oriImg) canvas = util.draw_handpose(oriImg, peaks, True) cv2.imshow('', canvas) cv2.waitKey(0)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/openpose/hand.py
# Midas Depth Estimation # From https://github.com/isl-org/MiDaS # MIT LICENSE import cv2 import numpy as np import torch from einops import rearrange from .api import MiDaSInference class MidasDetector: def __init__(self): self.model = MiDaSInference(model_type="dpt_hybrid").cuda() def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1): assert input_image.ndim == 3 image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float().cuda() image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model(image_depth)[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) depth_np = depth.cpu().numpy() x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) z = np.ones_like(x) * a x[depth_pt < bg_th] = 0 y[depth_pt < bg_th] = 0 normal = np.stack([x, y, z], axis=2) normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8) return depth_image, normal_image
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/__init__.py
# based on https://github.com/isl-org/MiDaS import cv2 import os import torch import torch.nn as nn from torchvision.transforms import Compose from .midas.dpt_depth import DPTDepthModel from .midas.midas_net import MidasNet from .midas.midas_net_custom import MidasNet_small from .midas.transforms import Resize, NormalizeImage, PrepareForNet from annotator.util import annotator_ckpts_path ISL_PATHS = { "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"), "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"), "midas_v21": "", "midas_v21_small": "", } remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def load_midas_transform(model_type): # https://github.com/isl-org/MiDaS/blob/master/run.py # load transform only if model_type == "dpt_large": # DPT-Large net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) elif model_type == "midas_v21_small": net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: assert False, f"model_type '{model_type}' not implemented, use: --model_type large" transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) return transform def load_model(model_type): # https://github.com/isl-org/MiDaS/blob/master/run.py # load network model_path = ISL_PATHS[model_type] if model_type == "dpt_large": # DPT-Large model = DPTDepthModel( path=model_path, backbone="vitl16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid if not os.path.exists(model_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) model = DPTDepthModel( path=model_path, backbone="vitb_rn50_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": model = MidasNet(model_path, non_negative=True) net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) elif model_type == "midas_v21_small": model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) else: print(f"model_type '{model_type}' not implemented, use: --model_type large") assert False transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) return model.eval(), transform class MiDaSInference(nn.Module): MODEL_TYPES_TORCH_HUB = [ "DPT_Large", "DPT_Hybrid", "MiDaS_small" ] MODEL_TYPES_ISL = [ "dpt_large", "dpt_hybrid", "midas_v21", "midas_v21_small", ] def __init__(self, model_type): super().__init__() assert (model_type in self.MODEL_TYPES_ISL) model, _ = load_model(model_type) self.model = model self.model.train = disabled_train def forward(self, x): with torch.no_grad(): prediction = self.model(x) return prediction
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/api.py
"""Utils for monoDepth.""" import sys import re import numpy as np import cv2 import torch def read_pfm(path): """Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale) """ with open(path, "rb") as file: color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode("ascii") == "PF": color = True elif header.decode("ascii") == "Pf": color = False else: raise Exception("Not a PFM file: " + path) dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception("Malformed PFM header.") scale = float(file.readline().decode("ascii").rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: # big-endian endian = ">" data = np.fromfile(file, endian + "f") shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, "wb") as file: color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32.") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif ( len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 ): # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write("PF\n" if color else "Pf\n".encode()) file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write("%f\n".encode() % scale) image.tofile(file) def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img def resize_image(img): """Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network """ height_orig = img.shape[0] width_orig = img.shape[1] if width_orig > height_orig: scale = width_orig / 384 else: scale = height_orig / 384 height = (np.ceil(height_orig / scale / 32) * 32).astype(int) width = (np.ceil(width_orig / scale / 32) * 32).astype(int) img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) img_resized = ( torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float() ) img_resized = img_resized.unsqueeze(0) return img_resized def resize_depth(depth, width, height): """Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = torch.squeeze(depth[0, :, :, :]).to("cpu") depth_resized = cv2.resize( depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC ) return depth_resized def write_depth(path, depth, bits=1): """Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth """ write_pfm(path + ".pfm", depth.astype(np.float32)) depth_min = depth.min() depth_max = depth.max() max_val = (2**(8*bits))-1 if depth_max - depth_min > np.finfo("float").eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape, dtype=depth.type) if bits == 1: cv2.imwrite(path + ".png", out.astype("uint8")) elif bits == 2: cv2.imwrite(path + ".png", out.astype("uint16")) return
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/utils.py
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder class MidasNet_small(BaseModel): """Network for monocular depth estimation. """ def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True, blocks={'expand': True}): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print("Loading weights: ", path) super(MidasNet_small, self).__init__() use_pretrained = False if path else True self.channels_last = channels_last self.blocks = blocks self.backbone = backbone self.groups = 1 features1=features features2=features features3=features features4=features self.expand = False if "expand" in self.blocks and self.blocks['expand'] == True: self.expand = True features1=features features2=features*2 features3=features*4 features4=features*8 self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable) self.scratch.activation = nn.ReLU(False) self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups), Interpolate(scale_factor=2, mode="bilinear"), nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1), self.scratch.activation, nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ if self.channels_last==True: print("self.channels_last = ", self.channels_last) x.contiguous(memory_format=torch.channels_last) layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1) def fuse_model(m): prev_previous_type = nn.Identity() prev_previous_name = '' previous_type = nn.Identity() previous_name = '' for name, module in m.named_modules(): if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU: # print("FUSED ", prev_previous_name, previous_name, name) torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True) elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d: # print("FUSED ", prev_previous_name, previous_name) torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True) # elif previous_type == nn.Conv2d and type(module) == nn.ReLU: # print("FUSED ", previous_name, name) # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True) prev_previous_type = previous_type prev_previous_name = previous_name previous_type = type(module) previous_name = name
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/midas_net_custom.py
import numpy as np import cv2 import math def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): """Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size """ shape = list(sample["disparity"].shape) if shape[0] >= size[0] and shape[1] >= size[1]: return sample scale = [0, 0] scale[0] = size[0] / shape[0] scale[1] = size[1] / shape[1] scale = max(scale) shape[0] = math.ceil(scale * shape[0]) shape[1] = math.ceil(scale * shape[1]) # resize sample["image"] = cv2.resize( sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method ) sample["disparity"] = cv2.resize( sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return tuple(shape) class Resize(object): """Resize sample to given size (width, height). """ def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method def constrain_to_multiple_of(self, x, min_val=0, max_val=None): y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) if max_val is not None and y > max_val: y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) if y < min_val: y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) return y def get_size(self, width, height): # determine new height and width scale_height = self.__height / height scale_width = self.__width / width if self.__keep_aspect_ratio: if self.__resize_method == "lower_bound": # scale such that output size is lower bound if scale_width > scale_height: # fit width scale_height = scale_width else: # fit height scale_width = scale_height elif self.__resize_method == "upper_bound": # scale such that output size is upper bound if scale_width < scale_height: # fit width scale_height = scale_width else: # fit height scale_width = scale_height elif self.__resize_method == "minimal": # scale as least as possbile if abs(1 - scale_width) < abs(1 - scale_height): # fit width scale_height = scale_width else: # fit height scale_width = scale_height else: raise ValueError( f"resize_method {self.__resize_method} not implemented" ) if self.__resize_method == "lower_bound": new_height = self.constrain_to_multiple_of( scale_height * height, min_val=self.__height ) new_width = self.constrain_to_multiple_of( scale_width * width, min_val=self.__width ) elif self.__resize_method == "upper_bound": new_height = self.constrain_to_multiple_of( scale_height * height, max_val=self.__height ) new_width = self.constrain_to_multiple_of( scale_width * width, max_val=self.__width ) elif self.__resize_method == "minimal": new_height = self.constrain_to_multiple_of(scale_height * height) new_width = self.constrain_to_multiple_of(scale_width * width) else: raise ValueError(f"resize_method {self.__resize_method} not implemented") return (new_width, new_height) def __call__(self, sample): width, height = self.get_size( sample["image"].shape[1], sample["image"].shape[0] ) # resize sample sample["image"] = cv2.resize( sample["image"], (width, height), interpolation=self.__image_interpolation_method, ) if self.__resize_target: if "disparity" in sample: sample["disparity"] = cv2.resize( sample["disparity"], (width, height), interpolation=cv2.INTER_NEAREST, ) if "depth" in sample: sample["depth"] = cv2.resize( sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return sample class NormalizeImage(object): """Normlize image by given mean and std. """ def __init__(self, mean, std): self.__mean = mean self.__std = std def __call__(self, sample): sample["image"] = (sample["image"] - self.__mean) / self.__std return sample class PrepareForNet(object): """Prepare sample for usage as network input. """ def __init__(self): pass def __call__(self, sample): image = np.transpose(sample["image"], (2, 0, 1)) sample["image"] = np.ascontiguousarray(image).astype(np.float32) if "mask" in sample: sample["mask"] = sample["mask"].astype(np.float32) sample["mask"] = np.ascontiguousarray(sample["mask"]) if "disparity" in sample: disparity = sample["disparity"].astype(np.float32) sample["disparity"] = np.ascontiguousarray(disparity) if "depth" in sample: depth = sample["depth"].astype(np.float32) sample["depth"] = np.ascontiguousarray(depth) return sample
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/transforms.py
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock, Interpolate, _make_encoder class MidasNet(BaseModel): """Network for monocular depth estimation. """ def __init__(self, path=None, features=256, non_negative=True): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print("Loading weights: ", path) super(MidasNet, self).__init__() use_pretrained = False if path is None else True self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained) self.scratch.refinenet4 = FeatureFusionBlock(features) self.scratch.refinenet3 = FeatureFusionBlock(features) self.scratch.refinenet2 = FeatureFusionBlock(features) self.scratch.refinenet1 = FeatureFusionBlock(features) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear"), nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/midas_net.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from .base_model import BaseModel from .blocks import ( FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder, forward_vit, ) def _make_fusion_block(features, use_bn): return FeatureFusionBlock_custom( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, ) class DPT(BaseModel): def __init__( self, head, features=256, backbone="vitb_rn50_384", readout="project", channels_last=False, use_bn=False, ): super(DPT, self).__init__() self.channels_last = channels_last hooks = { "vitb_rn50_384": [0, 1, 8, 11], "vitb16_384": [2, 5, 8, 11], "vitl16_384": [5, 11, 17, 23], } # Instantiate backbone and reassemble blocks self.pretrained, self.scratch = _make_encoder( backbone, features, False, # Set to true of you want to train from scratch, uses ImageNet weights groups=1, expand=False, exportable=False, hooks=hooks[backbone], use_readout=readout, ) self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) self.scratch.output_conv = head def forward(self, x): if self.channels_last == True: x.contiguous(memory_format=torch.channels_last) layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return out class DPTDepthModel(DPT): def __init__(self, path=None, non_negative=True, **kwargs): features = kwargs["features"] if "features" in kwargs else 256 head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) super().__init__(head, **kwargs) if path is not None: self.load(path) def forward(self, x): return super().forward(x).squeeze(dim=1)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/dpt_depth.py
import torch class BaseModel(torch.nn.Module): def load(self, path): """Load model from file. Args: path (str): file path """ parameters = torch.load(path, map_location=torch.device('cpu')) if "optimizer" in parameters: parameters = parameters["model"] self.load_state_dict(parameters)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/base_model.py
import torch import torch.nn as nn import timm import types import math import torch.nn.functional as F class Slice(nn.Module): def __init__(self, start_index=1): super(Slice, self).__init__() self.start_index = start_index def forward(self, x): return x[:, self.start_index :] class AddReadout(nn.Module): def __init__(self, start_index=1): super(AddReadout, self).__init__() self.start_index = start_index def forward(self, x): if self.start_index == 2: readout = (x[:, 0] + x[:, 1]) / 2 else: readout = x[:, 0] return x[:, self.start_index :] + readout.unsqueeze(1) class ProjectReadout(nn.Module): def __init__(self, in_features, start_index=1): super(ProjectReadout, self).__init__() self.start_index = start_index self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) def forward(self, x): readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) features = torch.cat((x[:, self.start_index :], readout), -1) return self.project(features) class Transpose(nn.Module): def __init__(self, dim0, dim1): super(Transpose, self).__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x): x = x.transpose(self.dim0, self.dim1) return x def forward_vit(pretrained, x): b, c, h, w = x.shape glob = pretrained.model.forward_flex(x) layer_1 = pretrained.activations["1"] layer_2 = pretrained.activations["2"] layer_3 = pretrained.activations["3"] layer_4 = pretrained.activations["4"] layer_1 = pretrained.act_postprocess1[0:2](layer_1) layer_2 = pretrained.act_postprocess2[0:2](layer_2) layer_3 = pretrained.act_postprocess3[0:2](layer_3) layer_4 = pretrained.act_postprocess4[0:2](layer_4) unflatten = nn.Sequential( nn.Unflatten( 2, torch.Size( [ h // pretrained.model.patch_size[1], w // pretrained.model.patch_size[0], ] ), ) ) if layer_1.ndim == 3: layer_1 = unflatten(layer_1) if layer_2.ndim == 3: layer_2 = unflatten(layer_2) if layer_3.ndim == 3: layer_3 = unflatten(layer_3) if layer_4.ndim == 3: layer_4 = unflatten(layer_4) layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) return layer_1, layer_2, layer_3, layer_4 def _resize_pos_embed(self, posemb, gs_h, gs_w): posemb_tok, posemb_grid = ( posemb[:, : self.start_index], posemb[0, self.start_index :], ) gs_old = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward_flex(self, x): b, c, h, w = x.shape pos_embed = self._resize_pos_embed( self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] ) B = x.shape[0] if hasattr(self.patch_embed, "backbone"): x = self.patch_embed.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) if getattr(self, "dist_token", None) is not None: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) else: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x activations = {} def get_activation(name): def hook(model, input, output): activations[name] = output return hook def get_readout_oper(vit_features, features, use_readout, start_index=1): if use_readout == "ignore": readout_oper = [Slice(start_index)] * len(features) elif use_readout == "add": readout_oper = [AddReadout(start_index)] * len(features) elif use_readout == "project": readout_oper = [ ProjectReadout(vit_features, start_index) for out_feat in features ] else: assert ( False ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" return readout_oper def _make_vit_b16_backbone( model, features=[96, 192, 384, 768], size=[384, 384], hooks=[2, 5, 8, 11], vit_features=768, use_readout="ignore", start_index=1, ): pretrained = nn.Module() pretrained.model = model pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) # 32, 48, 136, 384 pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) hooks = [5, 11, 17, 23] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[256, 512, 1024, 1024], hooks=hooks, vit_features=1024, use_readout=use_readout, ) def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout ) def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout ) def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model( "vit_deit_base_distilled_patch16_384", pretrained=pretrained ) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout, start_index=2, ) def _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=[0, 1, 8, 11], vit_features=768, use_vit_only=False, use_readout="ignore", start_index=1, ): pretrained = nn.Module() pretrained.model = model if use_vit_only == True: pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) else: pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( get_activation("1") ) pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( get_activation("2") ) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) if use_vit_only == True: pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) else: pretrained.act_postprocess1 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess2 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitb_rn50_384( pretrained, use_readout="ignore", hooks=None, use_vit_only=False ): model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) hooks = [0, 1, 8, 11] if hooks == None else hooks return _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, )
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/vit.py
import torch import torch.nn as nn from .vit import ( _make_pretrained_vitb_rn50_384, _make_pretrained_vitl16_384, _make_pretrained_vitb16_384, forward_vit, ) def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",): if backbone == "vitl16_384": pretrained = _make_pretrained_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) # ViT-L/16 - 85.0% Top1 (backbone) elif backbone == "vitb_rn50_384": pretrained = _make_pretrained_vitb_rn50_384( use_pretrained, hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, ) scratch = _make_scratch( [256, 512, 768, 768], features, groups=groups, expand=expand ) # ViT-H/16 - 85.0% Top1 (backbone) elif backbone == "vitb16_384": pretrained = _make_pretrained_vitb16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [96, 192, 384, 768], features, groups=groups, expand=expand ) # ViT-B/16 - 84.6% Top1 (backbone) elif backbone == "resnext101_wsl": pretrained = _make_pretrained_resnext101_wsl(use_pretrained) scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3 elif backbone == "efficientnet_lite3": pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable) scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3 else: print(f"Backbone '{backbone}' not implemented") assert False return pretrained, scratch def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape out_shape4 = out_shape if expand==True: out_shape1 = out_shape out_shape2 = out_shape*2 out_shape3 = out_shape*4 out_shape4 = out_shape*8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) return scratch def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): efficientnet = torch.hub.load( "rwightman/gen-efficientnet-pytorch", "tf_efficientnet_lite3", pretrained=use_pretrained, exportable=exportable ) return _make_efficientnet_backbone(efficientnet) def _make_efficientnet_backbone(effnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] ) pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) return pretrained def _make_resnet_backbone(resnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 ) pretrained.layer2 = resnet.layer2 pretrained.layer3 = resnet.layer3 pretrained.layer4 = resnet.layer4 return pretrained def _make_pretrained_resnext101_wsl(use_pretrained): resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") return _make_resnet_backbone(resnet) class Interpolate(nn.Module): """Interpolation module. """ def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners ) return x class ResidualConvUnit(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x class FeatureFusionBlock(nn.Module): """Feature fusion block. """ def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features) def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: output += self.resConfUnit1(xs[1]) output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=True ) return output class ResidualConvUnit_custom(nn.Module): """Residual convolution module. """ def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups=1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) if self.bn==True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn==True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn==True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) # return out + x class FeatureFusionBlock_custom(nn.Module): """Feature fusion block. """ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups=1 self.expand = expand out_features = features if self.expand==True: out_features = features//2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) # output += res output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/midas/midas/blocks.py
# MLSD Line Detection # From https://github.com/navervision/mlsd # Apache-2.0 license import cv2 import numpy as np import torch import os from einops import rearrange from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny from .models.mbv2_mlsd_large import MobileV2_MLSD_Large from .utils import pred_lines from annotator.util import annotator_ckpts_path remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" class MLSDdetector: def __init__(self): model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth") if not os.path.exists(model_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) model = MobileV2_MLSD_Large() model.load_state_dict(torch.load(model_path), strict=True) self.model = model.cuda().eval() def __call__(self, input_image, thr_v, thr_d): assert input_image.ndim == 3 img = input_image img_output = np.zeros_like(img) try: with torch.no_grad(): lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) except Exception as e: pass return img_output[:, :, 0]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/mlsd/__init__.py
''' modified by lihaoweicv pytorch version ''' ''' M-LSD Copyright 2021-present NAVER Corp. Apache License v2.0 ''' import os import numpy as np import cv2 import torch from torch.nn import functional as F def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5): ''' tpMap: center: tpMap[1, 0, :, :] displacement: tpMap[1, 1:5, :, :] ''' b, c, h, w = tpMap.shape assert b==1, 'only support bsize==1' displacement = tpMap[:, 1:5, :, :][0] center = tpMap[:, 0, :, :] heat = torch.sigmoid(center) hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2) keep = (hmax == heat).float() heat = heat * keep heat = heat.reshape(-1, ) scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True) yy = torch.floor_divide(indices, w).unsqueeze(-1) xx = torch.fmod(indices, w).unsqueeze(-1) ptss = torch.cat((yy, xx),dim=-1) ptss = ptss.detach().cpu().numpy() scores = scores.detach().cpu().numpy() displacement = displacement.detach().cpu().numpy() displacement = displacement.transpose((1,2,0)) return ptss, scores, displacement def pred_lines(image, model, input_shape=[512, 512], score_thr=0.10, dist_thr=20.0): h, w, _ = image.shape h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]] resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1) resized_image = resized_image.transpose((2,0,1)) batch_image = np.expand_dims(resized_image, axis=0).astype('float32') batch_image = (batch_image / 127.5) - 1.0 batch_image = torch.from_numpy(batch_image).float().cuda() outputs = model(batch_image) pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) start = vmap[:, :, :2] end = vmap[:, :, 2:] dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) segments_list = [] for center, score in zip(pts, pts_score): y, x = center distance = dist_map[y, x] if score > score_thr and distance > dist_thr: disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] x_start = x + disp_x_start y_start = y + disp_y_start x_end = x + disp_x_end y_end = y + disp_y_end segments_list.append([x_start, y_start, x_end, y_end]) lines = 2 * np.array(segments_list) # 256 > 512 lines[:, 0] = lines[:, 0] * w_ratio lines[:, 1] = lines[:, 1] * h_ratio lines[:, 2] = lines[:, 2] * w_ratio lines[:, 3] = lines[:, 3] * h_ratio return lines def pred_squares(image, model, input_shape=[512, 512], params={'score': 0.06, 'outside_ratio': 0.28, 'inside_ratio': 0.45, 'w_overlap': 0.0, 'w_degree': 1.95, 'w_length': 0.0, 'w_area': 1.86, 'w_center': 0.14}): ''' shape = [height, width] ''' h, w, _ = image.shape original_shape = [h, w] resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1) resized_image = resized_image.transpose((2, 0, 1)) batch_image = np.expand_dims(resized_image, axis=0).astype('float32') batch_image = (batch_image / 127.5) - 1.0 batch_image = torch.from_numpy(batch_image).float().cuda() outputs = model(batch_image) pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) start = vmap[:, :, :2] # (x, y) end = vmap[:, :, 2:] # (x, y) dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) junc_list = [] segments_list = [] for junc, score in zip(pts, pts_score): y, x = junc distance = dist_map[y, x] if score > params['score'] and distance > 20.0: junc_list.append([x, y]) disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] d_arrow = 1.0 x_start = x + d_arrow * disp_x_start y_start = y + d_arrow * disp_y_start x_end = x + d_arrow * disp_x_end y_end = y + d_arrow * disp_y_end segments_list.append([x_start, y_start, x_end, y_end]) segments = np.array(segments_list) ####### post processing for squares # 1. get unique lines point = np.array([[0, 0]]) point = point[0] start = segments[:, :2] end = segments[:, 2:] diff = start - end a = diff[:, 1] b = -diff[:, 0] c = a * start[:, 0] + b * start[:, 1] d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10) theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi theta[theta < 0.0] += 180 hough = np.concatenate([d[:, None], theta[:, None]], axis=-1) d_quant = 1 theta_quant = 2 hough[:, 0] //= d_quant hough[:, 1] //= theta_quant _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True) acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32') idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1 yx_indices = hough[indices, :].astype('int32') acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices acc_map_np = acc_map # acc_map = acc_map[None, :, :, None] # # ### fast suppression using tensorflow op # acc_map = tf.constant(acc_map, dtype=tf.float32) # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map) # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32) # flatten_acc_map = tf.reshape(acc_map, [1, -1]) # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts)) # _, h, w, _ = acc_map.shape # y = tf.expand_dims(topk_indices // w, axis=-1) # x = tf.expand_dims(topk_indices % w, axis=-1) # yx = tf.concat([y, x], axis=-1) ### fast suppression using pytorch op acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0) _,_, h, w = acc_map.shape max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2) acc_map = acc_map * ( (acc_map == max_acc_map).float() ) flatten_acc_map = acc_map.reshape([-1, ]) scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True) yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1) xx = torch.fmod(indices, w).unsqueeze(-1) yx = torch.cat((yy, xx), dim=-1) yx = yx.detach().cpu().numpy() topk_values = scores.detach().cpu().numpy() indices = idx_map[yx[:, 0], yx[:, 1]] basis = 5 // 2 merged_segments = [] for yx_pt, max_indice, value in zip(yx, indices, topk_values): y, x = yx_pt if max_indice == -1 or value == 0: continue segment_list = [] for y_offset in range(-basis, basis + 1): for x_offset in range(-basis, basis + 1): indice = idx_map[y + y_offset, x + x_offset] cnt = int(acc_map_np[y + y_offset, x + x_offset]) if indice != -1: segment_list.append(segments[indice]) if cnt > 1: check_cnt = 1 current_hough = hough[indice] for new_indice, new_hough in enumerate(hough): if (current_hough == new_hough).all() and indice != new_indice: segment_list.append(segments[new_indice]) check_cnt += 1 if check_cnt == cnt: break group_segments = np.array(segment_list).reshape([-1, 2]) sorted_group_segments = np.sort(group_segments, axis=0) x_min, y_min = sorted_group_segments[0, :] x_max, y_max = sorted_group_segments[-1, :] deg = theta[max_indice] if deg >= 90: merged_segments.append([x_min, y_max, x_max, y_min]) else: merged_segments.append([x_min, y_min, x_max, y_max]) # 2. get intersections new_segments = np.array(merged_segments) # (x1, y1, x2, y2) start = new_segments[:, :2] # (x1, y1) end = new_segments[:, 2:] # (x2, y2) new_centers = (start + end) / 2.0 diff = start - end dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1)) # ax + by = c a = diff[:, 1] b = -diff[:, 0] c = a * start[:, 0] + b * start[:, 1] pre_det = a[:, None] * b[None, :] det = pre_det - np.transpose(pre_det) pre_inter_y = a[:, None] * c[None, :] inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10) pre_inter_x = c[:, None] * b[None, :] inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10) inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32') # 3. get corner information # 3.1 get distance ''' dist_segments: | dist(0), dist(1), dist(2), ...| dist_inter_to_segment1: | dist(inter,0), dist(inter,0), dist(inter,0), ... | | dist(inter,1), dist(inter,1), dist(inter,1), ... | ... dist_inter_to_semgnet2: | dist(inter,0), dist(inter,1), dist(inter,2), ... | | dist(inter,0), dist(inter,1), dist(inter,2), ... | ... ''' dist_inter_to_segment1_start = np.sqrt( np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] dist_inter_to_segment1_end = np.sqrt( np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] dist_inter_to_segment2_start = np.sqrt( np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] dist_inter_to_segment2_end = np.sqrt( np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] # sort ascending dist_inter_to_segment1 = np.sort( np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), axis=-1) # [n_batch, n_batch, 2] dist_inter_to_segment2 = np.sort( np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), axis=-1) # [n_batch, n_batch, 2] # 3.2 get degree inter_to_start = new_centers[:, None, :] - inter_pts deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi deg_inter_to_start[deg_inter_to_start < 0.0] += 360 inter_to_end = new_centers[None, :, :] - inter_pts deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi deg_inter_to_end[deg_inter_to_end < 0.0] += 360 ''' B -- G | | C -- R B : blue / G: green / C: cyan / R: red 0 -- 1 | | 3 -- 2 ''' # rename variables deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end # sort deg ascending deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1) deg_diff_map = np.abs(deg1_map - deg2_map) # we only consider the smallest degree of intersect deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180] # define available degree range deg_range = [60, 120] corner_dict = {corner_info: [] for corner_info in range(4)} inter_points = [] for i in range(inter_pts.shape[0]): for j in range(i + 1, inter_pts.shape[1]): # i, j > line index, always i < j x, y = inter_pts[i, j, :] deg1, deg2 = deg_sort[i, j, :] deg_diff = deg_diff_map[i, j] check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1] outside_ratio = params['outside_ratio'] # over ratio >>> drop it! inside_ratio = params['inside_ratio'] # over ratio >>> drop it! check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \ dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \ (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \ dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \ ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \ dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \ (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \ dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio)) if check_degree and check_distance: corner_info = None if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \ (deg2 >= 315 and deg1 >= 45 and deg1 <= 120): corner_info, color_info = 0, 'blue' elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225): corner_info, color_info = 1, 'green' elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315): corner_info, color_info = 2, 'black' elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \ (deg2 >= 315 and deg1 >= 225 and deg1 <= 315): corner_info, color_info = 3, 'cyan' else: corner_info, color_info = 4, 'red' # we don't use it continue corner_dict[corner_info].append([x, y, i, j]) inter_points.append([x, y]) square_list = [] connect_list = [] segments_list = [] for corner0 in corner_dict[0]: for corner1 in corner_dict[1]: connect01 = False for corner0_line in corner0[2:]: if corner0_line in corner1[2:]: connect01 = True break if connect01: for corner2 in corner_dict[2]: connect12 = False for corner1_line in corner1[2:]: if corner1_line in corner2[2:]: connect12 = True break if connect12: for corner3 in corner_dict[3]: connect23 = False for corner2_line in corner2[2:]: if corner2_line in corner3[2:]: connect23 = True break if connect23: for corner3_line in corner3[2:]: if corner3_line in corner0[2:]: # SQUARE!!! ''' 0 -- 1 | | 3 -- 2 square_list: order: 0 > 1 > 2 > 3 | x0, y0, x1, y1, x2, y2, x3, y3 | | x0, y0, x1, y1, x2, y2, x3, y3 | ... connect_list: order: 01 > 12 > 23 > 30 | line_idx01, line_idx12, line_idx23, line_idx30 | | line_idx01, line_idx12, line_idx23, line_idx30 | ... segments_list: order: 0 > 1 > 2 > 3 | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | ... ''' square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2]) connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line]) segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:]) def check_outside_inside(segments_info, connect_idx): # return 'outside or inside', min distance, cover_param, peri_param if connect_idx == segments_info[0]: check_dist_mat = dist_inter_to_segment1 else: check_dist_mat = dist_inter_to_segment2 i, j = segments_info min_dist, max_dist = check_dist_mat[i, j, :] connect_dist = dist_segments[connect_idx] if max_dist > connect_dist: return 'outside', min_dist, 0, 1 else: return 'inside', min_dist, -1, -1 top_square = None try: map_size = input_shape[0] / 2 squares = np.array(square_list).reshape([-1, 4, 2]) score_array = [] connect_array = np.array(connect_list) segments_array = np.array(segments_list).reshape([-1, 4, 2]) # get degree of corners: squares_rollup = np.roll(squares, 1, axis=1) squares_rolldown = np.roll(squares, -1, axis=1) vec1 = squares_rollup - squares normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10) vec2 = squares_rolldown - squares normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10) inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4] squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4] # get square score overlap_scores = [] degree_scores = [] length_scores = [] for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree): ''' 0 -- 1 | | 3 -- 2 # segments: [4, 2] # connects: [4] ''' ###################################### OVERLAP SCORES cover = 0 perimeter = 0 # check 0 > 1 > 2 > 3 square_length = [] for start_idx in range(4): end_idx = (start_idx + 1) % 4 connect_idx = connects[start_idx] # segment idx of segment01 start_segments = segments[start_idx] end_segments = segments[end_idx] start_point = square[start_idx] end_point = square[end_idx] # check whether outside or inside start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, connect_idx) end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx) cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min square_length.append( dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min) overlap_scores.append(cover / perimeter) ###################################### ###################################### DEGREE SCORES ''' deg0 vs deg2 deg1 vs deg3 ''' deg0, deg1, deg2, deg3 = degree deg_ratio1 = deg0 / deg2 if deg_ratio1 > 1.0: deg_ratio1 = 1 / deg_ratio1 deg_ratio2 = deg1 / deg3 if deg_ratio2 > 1.0: deg_ratio2 = 1 / deg_ratio2 degree_scores.append((deg_ratio1 + deg_ratio2) / 2) ###################################### ###################################### LENGTH SCORES ''' len0 vs len2 len1 vs len3 ''' len0, len1, len2, len3 = square_length len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0 len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1 length_scores.append((len_ratio1 + len_ratio2) / 2) ###################################### overlap_scores = np.array(overlap_scores) overlap_scores /= np.max(overlap_scores) degree_scores = np.array(degree_scores) # degree_scores /= np.max(degree_scores) length_scores = np.array(length_scores) ###################################### AREA SCORES area_scores = np.reshape(squares, [-1, 4, 2]) area_x = area_scores[:, :, 0] area_y = area_scores[:, :, 1] correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0] area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1) area_scores = 0.5 * np.abs(area_scores + correction) area_scores /= (map_size * map_size) # np.max(area_scores) ###################################### ###################################### CENTER SCORES centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2] # squares: [n, 4, 2] square_centers = np.mean(squares, axis=1) # [n, 2] center2center = np.sqrt(np.sum((centers - square_centers) ** 2)) center_scores = center2center / (map_size / np.sqrt(2.0)) ''' score_w = [overlap, degree, area, center, length] ''' score_w = [0.0, 1.0, 10.0, 0.5, 1.0] score_array = params['w_overlap'] * overlap_scores \ + params['w_degree'] * degree_scores \ + params['w_area'] * area_scores \ - params['w_center'] * center_scores \ + params['w_length'] * length_scores best_square = [] sorted_idx = np.argsort(score_array)[::-1] score_array = score_array[sorted_idx] squares = squares[sorted_idx] except Exception as e: pass '''return list merged_lines, squares, scores ''' try: new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1] new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0] new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1] new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0] except: new_segments = [] try: squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1] squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0] except: squares = [] score_array = [] try: inter_points = np.array(inter_points) inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1] inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0] except: inter_points = [] return new_segments, squares, score_array, inter_points
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/mlsd/utils.py
import os import sys import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo from torch.nn import functional as F class BlockTypeA(nn.Module): def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True): super(BlockTypeA, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_c2, out_c2, kernel_size=1), nn.BatchNorm2d(out_c2), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(in_c1, out_c1, kernel_size=1), nn.BatchNorm2d(out_c1), nn.ReLU(inplace=True) ) self.upscale = upscale def forward(self, a, b): b = self.conv1(b) a = self.conv2(a) b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True) return torch.cat((a, b), dim=1) class BlockTypeB(nn.Module): def __init__(self, in_c, out_c): super(BlockTypeB, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), nn.BatchNorm2d(in_c), nn.ReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(in_c, out_c, kernel_size=3, padding=1), nn.BatchNorm2d(out_c), nn.ReLU() ) def forward(self, x): x = self.conv1(x) + x x = self.conv2(x) return x class BlockTypeC(nn.Module): def __init__(self, in_c, out_c): super(BlockTypeC, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5), nn.BatchNorm2d(in_c), nn.ReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), nn.BatchNorm2d(in_c), nn.ReLU() ) self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) return x def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): self.channel_pad = out_planes - in_planes self.stride = stride #padding = (kernel_size - 1) // 2 # TFLite uses slightly different padding than PyTorch if stride == 2: padding = 0 else: padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True) ) self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride) def forward(self, x): # TFLite uses different padding if self.stride == 2: x = F.pad(x, (0, 1, 0, 1), "constant", 0) #print(x.shape) for module in self: if not isinstance(module, nn.MaxPool2d): x = module(x) return x class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, pretrained=True): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 width_mult = 1.0 round_nearest = 8 inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], #[6, 96, 3, 1], #[6, 160, 3, 2], #[6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features = [ConvBNReLU(4, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel self.features = nn.Sequential(*features) self.fpn_selected = [3, 6, 10] # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) #if pretrained: # self._load_pretrained_model() def _forward_impl(self, x): # This exists since TorchScript doesn't support inheritance, so the superclass method # (this one) needs to have a name other than `forward` that can be accessed in a subclass fpn_features = [] for i, f in enumerate(self.features): if i > self.fpn_selected[-1]: break x = f(x) if i in self.fpn_selected: fpn_features.append(x) c2, c3, c4 = fpn_features return c2, c3, c4 def forward(self, x): return self._forward_impl(x) def _load_pretrained_model(self): pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth') model_dict = {} state_dict = self.state_dict() for k, v in pretrain_dict.items(): if k in state_dict: model_dict[k] = v state_dict.update(model_dict) self.load_state_dict(state_dict) class MobileV2_MLSD_Tiny(nn.Module): def __init__(self): super(MobileV2_MLSD_Tiny, self).__init__() self.backbone = MobileNetV2(pretrained=True) self.block12 = BlockTypeA(in_c1= 32, in_c2= 64, out_c1= 64, out_c2=64) self.block13 = BlockTypeB(128, 64) self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64, out_c1= 32, out_c2= 32) self.block15 = BlockTypeB(64, 64) self.block16 = BlockTypeC(64, 16) def forward(self, x): c2, c3, c4 = self.backbone(x) x = self.block12(c3, c4) x = self.block13(x) x = self.block14(c2, x) x = self.block15(x) x = self.block16(x) x = x[:, 7:, :, :] #print(x.shape) x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True) return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/mlsd/models/mbv2_mlsd_tiny.py
import os import sys import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo from torch.nn import functional as F class BlockTypeA(nn.Module): def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True): super(BlockTypeA, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_c2, out_c2, kernel_size=1), nn.BatchNorm2d(out_c2), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(in_c1, out_c1, kernel_size=1), nn.BatchNorm2d(out_c1), nn.ReLU(inplace=True) ) self.upscale = upscale def forward(self, a, b): b = self.conv1(b) a = self.conv2(a) if self.upscale: b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True) return torch.cat((a, b), dim=1) class BlockTypeB(nn.Module): def __init__(self, in_c, out_c): super(BlockTypeB, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), nn.BatchNorm2d(in_c), nn.ReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(in_c, out_c, kernel_size=3, padding=1), nn.BatchNorm2d(out_c), nn.ReLU() ) def forward(self, x): x = self.conv1(x) + x x = self.conv2(x) return x class BlockTypeC(nn.Module): def __init__(self, in_c, out_c): super(BlockTypeC, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5), nn.BatchNorm2d(in_c), nn.ReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), nn.BatchNorm2d(in_c), nn.ReLU() ) self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) return x def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): self.channel_pad = out_planes - in_planes self.stride = stride #padding = (kernel_size - 1) // 2 # TFLite uses slightly different padding than PyTorch if stride == 2: padding = 0 else: padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True) ) self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride) def forward(self, x): # TFLite uses different padding if self.stride == 2: x = F.pad(x, (0, 1, 0, 1), "constant", 0) #print(x.shape) for module in self: if not isinstance(module, nn.MaxPool2d): x = module(x) return x class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, pretrained=True): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 width_mult = 1.0 round_nearest = 8 inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], #[6, 160, 3, 2], #[6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features = [ConvBNReLU(4, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel self.features = nn.Sequential(*features) self.fpn_selected = [1, 3, 6, 10, 13] # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) if pretrained: self._load_pretrained_model() def _forward_impl(self, x): # This exists since TorchScript doesn't support inheritance, so the superclass method # (this one) needs to have a name other than `forward` that can be accessed in a subclass fpn_features = [] for i, f in enumerate(self.features): if i > self.fpn_selected[-1]: break x = f(x) if i in self.fpn_selected: fpn_features.append(x) c1, c2, c3, c4, c5 = fpn_features return c1, c2, c3, c4, c5 def forward(self, x): return self._forward_impl(x) def _load_pretrained_model(self): pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth') model_dict = {} state_dict = self.state_dict() for k, v in pretrain_dict.items(): if k in state_dict: model_dict[k] = v state_dict.update(model_dict) self.load_state_dict(state_dict) class MobileV2_MLSD_Large(nn.Module): def __init__(self): super(MobileV2_MLSD_Large, self).__init__() self.backbone = MobileNetV2(pretrained=False) ## A, B self.block15 = BlockTypeA(in_c1= 64, in_c2= 96, out_c1= 64, out_c2=64, upscale=False) self.block16 = BlockTypeB(128, 64) ## A, B self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64, out_c1= 64, out_c2= 64) self.block18 = BlockTypeB(128, 64) ## A, B self.block19 = BlockTypeA(in_c1=24, in_c2=64, out_c1=64, out_c2=64) self.block20 = BlockTypeB(128, 64) ## A, B, C self.block21 = BlockTypeA(in_c1=16, in_c2=64, out_c1=64, out_c2=64) self.block22 = BlockTypeB(128, 64) self.block23 = BlockTypeC(64, 16) def forward(self, x): c1, c2, c3, c4, c5 = self.backbone(x) x = self.block15(c4, c5) x = self.block16(x) x = self.block17(c3, x) x = self.block18(x) x = self.block19(c2, x) x = self.block20(x) x = self.block21(c1, x) x = self.block22(x) x = self.block23(x) x = x[:, 7:, :, :] return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/mlsd/models/mbv2_mlsd_large.py
import cv2 class CannyDetector: def __call__(self, img, low_threshold, high_threshold): return cv2.Canny(img, low_threshold, high_threshold)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/canny/__init__.py
import importlib import torch from torch import optim import numpy as np from inspect import isfunction from PIL import Image, ImageDraw, ImageFont def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) font = ImageFont.truetype('font/DejaVuSans.ttf', size=size) nc = int(40 * (wh[0] / 256)) lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x,torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) class AdamWwithEMAandWings(optim.Optimizer): # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code ema_power=1., param_names=()): """AdamW that saves EMA versions of the parameters.""" if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= ema_decay <= 1.0: raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, ema_power=ema_power, param_names=param_names) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] ema_params_with_grad = [] state_sums = [] max_exp_avg_sqs = [] state_steps = [] amsgrad = group['amsgrad'] beta1, beta2 = group['betas'] ema_decay = group['ema_decay'] ema_power = group['ema_power'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('AdamW does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of parameter values state['param_exp_avg'] = p.detach().float().clone() exp_avgs.append(state['exp_avg']) exp_avg_sqs.append(state['exp_avg_sq']) ema_params_with_grad.append(state['param_exp_avg']) if amsgrad: max_exp_avg_sqs.append(state['max_exp_avg_sq']) # update the steps for each param group update state['step'] += 1 # record the step after step update state_steps.append(state['step']) optim._functional.adamw(params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad=amsgrad, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], eps=group['eps'], maximize=False) cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) for param, ema_param in zip(params_with_grad, ema_params_with_grad): ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) return loss
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/util.py
import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.modules.distributions.distributions import DiagonalGaussianDistribution from ldm.util import instantiate_from_config from ldm.modules.ema import LitEma class AutoencoderKL(pl.LightningModule): def __init__(self, ddconfig, lossconfig, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, ema_decay=None, learn_logvar=False ): super().__init__() self.learn_logvar = learn_logvar self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor self.use_ema = ema_decay is not None if self.use_ema: self.ema_decay = ema_decay assert 0. < ema_decay < 1. self.model_ema = LitEma(self, decay=ema_decay) print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f"Restored from {path}") @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.parameters()) self.model_ema.copy_to(self) if context is not None: print(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.parameters()) if context is not None: print(f"{context}: Restored training weights") def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self) def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() return x def training_step(self, batch, batch_idx, optimizer_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) return aeloss if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) return discloss def validation_step(self, batch, batch_idx): log_dict = self._validation_step(batch, batch_idx) with self.ema_scope(): log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") return log_dict def _validation_step(self, batch, batch_idx, postfix=""): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split="val"+postfix) discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split="val"+postfix) self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"]) self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def configure_optimizers(self): lr = self.learning_rate ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list( self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()) if self.learn_logvar: print(f"{self.__class__.__name__}: Learning logvar") ae_params_list.append(self.loss.logvar) opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["samples"] = self.decode(torch.randn_like(posterior.sample())) log["reconstructions"] = xrec if log_ema or self.use_ema: with self.ema_scope(): xrec_ema, posterior_ema = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec_ema.shape[1] > 3 xrec_ema = self.to_rgb(xrec_ema) log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample())) log["reconstructions_ema"] = xrec_ema log["inputs"] = x return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x class IdentityFirstStage(torch.nn.Module): def __init__(self, *args, vq_interface=False, **kwargs): self.vq_interface = vq_interface super().__init__() def encode(self, x, *args, **kwargs): return x def decode(self, x, *args, **kwargs): return x def quantize(self, x, *args, **kwargs): if self.vq_interface: return x, None, [None, None, None] return x def forward(self, x, *args, **kwargs): return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/autoencoder.py
"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... dynamic_threshold=None, ucg_schedule=None, **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] while isinstance(ctmp, list): ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") elif isinstance(conditioning, list): for ctmp in conditioning: if ctmp.shape[0] != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for DDIM sampling is {size}, eta {eta}') samples, intermediates = self.ddim_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, dynamic_threshold=dynamic_threshold, ucg_schedule=ucg_schedule ) return samples, intermediates @torch.no_grad() def ddim_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, ucg_schedule=None): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img if ucg_schedule is not None: assert len(ucg_schedule) == len(time_range) unconditional_guidance_scale = ucg_schedule[i] outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, dynamic_threshold=dynamic_threshold) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: model_output = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) c_in = dict() for k in c: if isinstance(c[k], list): c_in[k] = [torch.cat([ unconditional_conditioning[k][i], c[k][i]]) for i in range(len(c[k]))] else: c_in[k] = torch.cat([ unconditional_conditioning[k], c[k]]) elif isinstance(c, list): c_in = list() assert isinstance(unconditional_conditioning, list) for i in range(len(c)): c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) else: c_in = torch.cat([unconditional_conditioning, c]) model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) if self.model.parameterization == "v": e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) else: e_t = model_output if score_corrector is not None: assert self.model.parameterization == "eps", 'not implemented' e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 if self.model.parameterization != "v": pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() else: pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) if dynamic_threshold is not None: raise NotImplementedError() # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 @torch.no_grad() def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] assert t_enc <= num_reference_steps num_steps = t_enc if use_original_steps: alphas_next = self.alphas_cumprod[:num_steps] alphas = self.alphas_cumprod_prev[:num_steps] else: alphas_next = self.ddim_alphas[:num_steps] alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) x_next = x0 intermediates = [] inter_steps = [] for i in tqdm(range(num_steps), desc='Encoding Image'): t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) if unconditional_guidance_scale == 1.: noise_pred = self.model.apply_model(x_next, t, c) else: assert unconditional_conditioning is not None e_t_uncond, noise_pred = torch.chunk( self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), torch.cat((unconditional_conditioning, c))), 2) noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next weighted_noise_pred = alphas_next[i].sqrt() * ( (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred x_next = xt_weighted + weighted_noise_pred if return_intermediates and i % ( num_steps // return_intermediates) == 0 and i < num_steps - 1: intermediates.append(x_next) inter_steps.append(i) elif return_intermediates and i >= num_steps - 2: intermediates.append(x_next) inter_steps.append(i) if callback: callback(i) out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} if return_intermediates: out.update({'intermediates': intermediates}) return x_next, out @torch.no_grad() def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): # fast, but does not allow for exact reconstruction # t serves as an index to gather the correct alphas if use_original_steps: sqrt_alphas_cumprod = self.sqrt_alphas_cumprod sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod else: sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas if noise is None: noise = torch.randn_like(x0) return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) @torch.no_grad() def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, use_original_steps=False, callback=None): timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps timesteps = timesteps[:t_start] time_range = np.flip(timesteps) total_steps = timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='Decoding image', total=total_steps) x_dec = x_latent for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning) if callback: callback(i) return x_dec
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/ddim.py
import torch import numpy as np def append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions. From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') return x[(...,) + (None,) * dims_to_append] def norm_thresholding(x0, value): s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) return x0 * (value / s) def spatial_norm_thresholding(x0, value): # b c h w s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) return x0 * (value / s)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/sampling_util.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/__init__.py
"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from functools import partial from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like from ldm.models.diffusion.sampling_util import norm_thresholding class PLMSSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): if ddim_eta != 0: raise ValueError('ddim_eta must be 0 for PLMS') self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... dynamic_threshold=None, **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for PLMS sampling is {size}') samples, intermediates = self.plms_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, dynamic_threshold=dynamic_threshold, ) return samples, intermediates @torch.no_grad() def plms_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running PLMS Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) old_eps = [] for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, old_eps=old_eps, t_next=ts_next, dynamic_threshold=dynamic_threshold) img, pred_x0, e_t = outs old_eps.append(e_t) if len(old_eps) >= 4: old_eps.pop(0) if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None): b, *_, device = *x.shape, x.device def get_model_output(x, t): if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, c]) e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) return e_t alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas def get_x_prev_and_pred_x0(e_t, index): # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) if dynamic_threshold is not None: pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 e_t = get_model_output(x, t) if len(old_eps) == 0: # Pseudo Improved Euler (2nd order) x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) e_t_next = get_model_output(x_prev, t_next) e_t_prime = (e_t + e_t_next) / 2 elif len(old_eps) == 1: # 2nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (3 * e_t - old_eps[-1]) / 2 elif len(old_eps) == 2: # 3nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 elif len(old_eps) >= 3: # 4nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) return x_prev, pred_x0, e_t
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/plms.py
""" wild mixture of https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py https://github.com/CompVis/taming-transformers -- merci """ import torch import torch.nn as nn import numpy as np import pytorch_lightning as pl from torch.optim.lr_scheduler import LambdaLR from einops import rearrange, repeat from contextlib import contextmanager, nullcontext from functools import partial import itertools from tqdm import tqdm from torchvision.utils import make_grid from pytorch_lightning.utilities.distributed import rank_zero_only from omegaconf import ListConfig from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config from ldm.modules.ema import LitEma from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like from ldm.models.diffusion.ddim import DDIMSampler __conditioning_keys__ = {'concat': 'c_concat', 'crossattn': 'c_crossattn', 'adm': 'y'} def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def uniform_on_device(r1, r2, shape, device): return (r1 - r2) * torch.rand(*shape, device=device) + r2 class DDPM(pl.LightningModule): # classic DDPM with Gaussian diffusion, in image space def __init__(self, unet_config, timesteps=1000, beta_schedule="linear", loss_type="l2", ckpt_path=None, ignore_keys=[], load_only_unet=False, monitor="val/loss", use_ema=True, first_stage_key="image", image_size=256, channels=3, log_every_t=100, clip_denoised=True, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, given_betas=None, original_elbo_weight=0., v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta l_simple_weight=1., conditioning_key=None, parameterization="eps", # all assuming fixed variance schedules scheduler_config=None, use_positional_encodings=False, learn_logvar=False, logvar_init=0., make_it_fit=False, ucg_training=None, reset_ema=False, reset_num_ema_updates=False, ): super().__init__() assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"' self.parameterization = parameterization print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") self.cond_stage_model = None self.clip_denoised = clip_denoised self.log_every_t = log_every_t self.first_stage_key = first_stage_key self.image_size = image_size # try conv? self.channels = channels self.use_positional_encodings = use_positional_encodings self.model = DiffusionWrapper(unet_config, conditioning_key) count_params(self.model, verbose=True) self.use_ema = use_ema if self.use_ema: self.model_ema = LitEma(self.model) print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") self.use_scheduler = scheduler_config is not None if self.use_scheduler: self.scheduler_config = scheduler_config self.v_posterior = v_posterior self.original_elbo_weight = original_elbo_weight self.l_simple_weight = l_simple_weight if monitor is not None: self.monitor = monitor self.make_it_fit = make_it_fit if reset_ema: assert exists(ckpt_path) if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) if reset_ema: assert self.use_ema print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") self.model_ema = LitEma(self.model) if reset_num_ema_updates: print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") assert self.use_ema self.model_ema.reset_num_updates() self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) self.loss_type = loss_type self.learn_logvar = learn_logvar logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) if self.learn_logvar: self.logvar = nn.Parameter(self.logvar, requires_grad=True) else: self.register_buffer('logvar', logvar) self.ucg_training = ucg_training or dict() if self.ucg_training: self.ucg_prng = np.random.RandomState() def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if exists(given_betas): betas = given_betas else: betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.linear_start = linear_start self.linear_end = linear_end assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' to_torch = partial(torch.tensor, dtype=torch.float32) self.register_buffer('betas', to_torch(betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( 1. - alphas_cumprod) + self.v_posterior * betas # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', to_torch(posterior_variance)) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) if self.parameterization == "eps": lvlb_weights = self.betas ** 2 / ( 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) elif self.parameterization == "x0": lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) elif self.parameterization == "v": lvlb_weights = torch.ones_like(self.betas ** 2 / ( 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))) else: raise NotImplementedError("mu not supported") lvlb_weights[0] = lvlb_weights[1] self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) assert not torch.isnan(self.lvlb_weights).all() @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.model.parameters()) self.model_ema.copy_to(self.model) if context is not None: print(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.model.parameters()) if context is not None: print(f"{context}: Restored training weights") @torch.no_grad() def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] if self.make_it_fit: n_params = len([name for name, _ in itertools.chain(self.named_parameters(), self.named_buffers())]) for name, param in tqdm( itertools.chain(self.named_parameters(), self.named_buffers()), desc="Fitting old weights to new weights", total=n_params ): if not name in sd: continue old_shape = sd[name].shape new_shape = param.shape assert len(old_shape) == len(new_shape) if len(new_shape) > 2: # we only modify first two axes assert new_shape[2:] == old_shape[2:] # assumes first axis corresponds to output dim if not new_shape == old_shape: new_param = param.clone() old_param = sd[name] if len(new_shape) == 1: for i in range(new_param.shape[0]): new_param[i] = old_param[i % old_shape[0]] elif len(new_shape) >= 2: for i in range(new_param.shape[0]): for j in range(new_param.shape[1]): new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]] n_used_old = torch.ones(old_shape[1]) for j in range(new_param.shape[1]): n_used_old[j % old_shape[1]] += 1 n_used_new = torch.zeros(new_shape[1]) for j in range(new_param.shape[1]): n_used_new[j] = n_used_old[j % old_shape[1]] n_used_new = n_used_new[None, :] while len(n_used_new.shape) < len(new_shape): n_used_new = n_used_new.unsqueeze(-1) new_param /= n_used_new sd[name] = new_param missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys:\n {missing}") if len(unexpected) > 0: print(f"\nUnexpected Keys:\n {unexpected}") def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def predict_start_from_z_and_v(self, x_t, t, v): # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v ) def predict_eps_from_z_and_v(self, x_t, t, v): return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, clip_denoised: bool): model_out = self.model(x, t) if self.parameterization == "eps": x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) elif self.parameterization == "x0": x_recon = model_out if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def p_sample_loop(self, shape, return_intermediates=False): device = self.betas.device b = shape[0] img = torch.randn(shape, device=device) intermediates = [img] for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), clip_denoised=self.clip_denoised) if i % self.log_every_t == 0 or i == self.num_timesteps - 1: intermediates.append(img) if return_intermediates: return img, intermediates return img @torch.no_grad() def sample(self, batch_size=16, return_intermediates=False): image_size = self.image_size channels = self.channels return self.p_sample_loop((batch_size, channels, image_size, image_size), return_intermediates=return_intermediates) def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) def get_v(self, x, noise, t): return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x ) def get_loss(self, pred, target, mean=True): if self.loss_type == 'l1': loss = (target - pred).abs() if mean: loss = loss.mean() elif self.loss_type == 'l2': if mean: loss = torch.nn.functional.mse_loss(target, pred) else: loss = torch.nn.functional.mse_loss(target, pred, reduction='none') else: raise NotImplementedError("unknown loss type '{loss_type}'") return loss def p_losses(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_out = self.model(x_noisy, t) loss_dict = {} if self.parameterization == "eps": target = noise elif self.parameterization == "x0": target = x_start elif self.parameterization == "v": target = self.get_v(x_start, noise, t) else: raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported") loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) log_prefix = 'train' if self.training else 'val' loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) loss_simple = loss.mean() * self.l_simple_weight loss_vlb = (self.lvlb_weights[t] * loss).mean() loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) loss = loss_simple + self.original_elbo_weight * loss_vlb loss_dict.update({f'{log_prefix}/loss': loss}) return loss, loss_dict def forward(self, x, *args, **kwargs): # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() return self.p_losses(x, t, *args, **kwargs) def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = rearrange(x, 'b h w c -> b c h w') x = x.to(memory_format=torch.contiguous_format).float() return x def shared_step(self, batch): x = self.get_input(batch, self.first_stage_key) loss, loss_dict = self(x) return loss, loss_dict def training_step(self, batch, batch_idx): for k in self.ucg_training: p = self.ucg_training[k]["p"] val = self.ucg_training[k]["val"] if val is None: val = "" for i in range(len(batch[k])): if self.ucg_prng.choice(2, p=[1 - p, p]): batch[k][i] = val loss, loss_dict = self.shared_step(batch) self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) if self.use_scheduler: lr = self.optimizers().param_groups[0]['lr'] self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) return loss @torch.no_grad() def validation_step(self, batch, batch_idx): _, loss_dict_no_ema = self.shared_step(batch) with self.ema_scope(): _, loss_dict_ema = self.shared_step(batch) loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self.model) def _get_rows_from_list(self, samples): n_imgs_per_row = len(samples) denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) return denoise_grid @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): log = dict() x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) x = x.to(self.device)[:N] log["inputs"] = x # get diffusion row diffusion_row = list() x_start = x[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(x_start) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) diffusion_row.append(x_noisy) log["diffusion_row"] = self._get_rows_from_list(diffusion_row) if sample: # get denoise row with self.ema_scope("Plotting"): samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) log["samples"] = samples log["denoise_row"] = self._get_rows_from_list(denoise_row) if return_keys: if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: return log else: return {key: log[key] for key in return_keys} return log def configure_optimizers(self): lr = self.learning_rate params = list(self.model.parameters()) if self.learn_logvar: params = params + [self.logvar] opt = torch.optim.AdamW(params, lr=lr) return opt class LatentDiffusion(DDPM): """main class""" def __init__(self, first_stage_config, cond_stage_config, num_timesteps_cond=None, cond_stage_key="image", cond_stage_trainable=False, concat_mode=True, cond_stage_forward=None, conditioning_key=None, scale_factor=1.0, scale_by_std=False, force_null_conditioning=False, *args, **kwargs): self.force_null_conditioning = force_null_conditioning self.num_timesteps_cond = default(num_timesteps_cond, 1) self.scale_by_std = scale_by_std assert self.num_timesteps_cond <= kwargs['timesteps'] # for backwards compatibility after implementation of DiffusionWrapper if conditioning_key is None: conditioning_key = 'concat' if concat_mode else 'crossattn' if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning: conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) reset_ema = kwargs.pop("reset_ema", False) reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) ignore_keys = kwargs.pop("ignore_keys", []) super().__init__(conditioning_key=conditioning_key, *args, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 except: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor else: self.register_buffer('scale_factor', torch.tensor(scale_factor)) self.instantiate_first_stage(first_stage_config) self.instantiate_cond_stage(cond_stage_config) self.cond_stage_forward = cond_stage_forward self.clip_denoised = False self.bbox_tokenizer = None self.restarted_from_ckpt = False if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys) self.restarted_from_ckpt = True if reset_ema: assert self.use_ema print( f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") self.model_ema = LitEma(self.model) if reset_num_ema_updates: print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") assert self.use_ema self.model_ema.reset_num_updates() def make_cond_schedule(self, ): self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() self.cond_ids[:self.num_timesteps_cond] = ids @rank_zero_only @torch.no_grad() def on_train_batch_start(self, batch, batch_idx, dataloader_idx): # only for very first batch if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' # set rescale weight to 1./std of encodings print("### USING STD-RESCALING ###") x = super().get_input(batch, self.first_stage_key) x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() del self.scale_factor self.register_buffer('scale_factor', 1. / z.flatten().std()) print(f"setting self.scale_factor to {self.scale_factor}") print("### USING STD-RESCALING ###") def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) self.shorten_cond_schedule = self.num_timesteps_cond > 1 if self.shorten_cond_schedule: self.make_cond_schedule() def instantiate_first_stage(self, config): model = instantiate_from_config(config) self.first_stage_model = model.eval() self.first_stage_model.train = disabled_train for param in self.first_stage_model.parameters(): param.requires_grad = False def instantiate_cond_stage(self, config): if not self.cond_stage_trainable: if config == "__is_first_stage__": print("Using first stage also as cond stage.") self.cond_stage_model = self.first_stage_model elif config == "__is_unconditional__": print(f"Training {self.__class__.__name__} as an unconditional model.") self.cond_stage_model = None # self.be_unconditional = True else: model = instantiate_from_config(config) self.cond_stage_model = model.eval() self.cond_stage_model.train = disabled_train for param in self.cond_stage_model.parameters(): param.requires_grad = False else: assert config != '__is_first_stage__' assert config != '__is_unconditional__' model = instantiate_from_config(config) self.cond_stage_model = model def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): denoise_row = [] for zd in tqdm(samples, desc=desc): denoise_row.append(self.decode_first_stage(zd.to(self.device), force_not_quantize=force_no_decoder_quantization)) n_imgs_per_row = len(denoise_row) denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) return denoise_grid def get_first_stage_encoding(self, encoder_posterior): if isinstance(encoder_posterior, DiagonalGaussianDistribution): z = encoder_posterior.sample() elif isinstance(encoder_posterior, torch.Tensor): z = encoder_posterior else: raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") return self.scale_factor * z def get_learned_conditioning(self, c): if self.cond_stage_forward is None: if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): c = self.cond_stage_model.encode(c) if isinstance(c, DiagonalGaussianDistribution): c = c.mode() else: c = self.cond_stage_model(c) else: assert hasattr(self.cond_stage_model, self.cond_stage_forward) c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) return c def meshgrid(self, h, w): y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) arr = torch.cat([y, x], dim=-1) return arr def delta_border(self, h, w): """ :param h: height :param w: width :return: normalized distance to image border, wtith min distance = 0 at border and max dist = 0.5 at image center """ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) arr = self.meshgrid(h, w) / lower_right_corner dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] return edge_dist def get_weighting(self, h, w, Ly, Lx, device): weighting = self.delta_border(h, w) weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], self.split_input_params["clip_max_weight"], ) weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) if self.split_input_params["tie_braker"]: L_weighting = self.delta_border(Ly, Lx) L_weighting = torch.clip(L_weighting, self.split_input_params["clip_min_tie_weight"], self.split_input_params["clip_max_tie_weight"]) L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) weighting = weighting * L_weighting return weighting def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code """ :param x: img of size (bs, c, h, w) :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) """ bs, nc, h, w = x.shape # number of crops in image Ly = (h - kernel_size[0]) // stride[0] + 1 Lx = (w - kernel_size[1]) // stride[1] + 1 if uf == 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) elif uf > 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), dilation=1, padding=0, stride=(stride[0] * uf, stride[1] * uf)) fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) elif df > 1 and uf == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), dilation=1, padding=0, stride=(stride[0] // df, stride[1] // df)) fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) else: raise NotImplementedError return fold, unfold, normalization, weighting @torch.no_grad() def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, cond_key=None, return_original_cond=False, bs=None, return_x=False): x = super().get_input(batch, k) if bs is not None: x = x[:bs] x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() if self.model.conditioning_key is not None and not self.force_null_conditioning: if cond_key is None: cond_key = self.cond_stage_key if cond_key != self.first_stage_key: if cond_key in ['caption', 'coordinates_bbox', "txt"]: xc = batch[cond_key] elif cond_key in ['class_label', 'cls']: xc = batch else: xc = super().get_input(batch, cond_key).to(self.device) else: xc = x if not self.cond_stage_trainable or force_c_encode: if isinstance(xc, dict) or isinstance(xc, list): c = self.get_learned_conditioning(xc) else: c = self.get_learned_conditioning(xc.to(self.device)) else: c = xc if bs is not None: c = c[:bs] if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) ckey = __conditioning_keys__[self.model.conditioning_key] c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} else: c = None xc = None if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) c = {'pos_x': pos_x, 'pos_y': pos_y} out = [z, c] if return_first_stage_outputs: xrec = self.decode_first_stage(z) out.extend([x, xrec]) if return_x: out.extend([x]) if return_original_cond: out.append(xc) return out @torch.no_grad() def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z return self.first_stage_model.decode(z) @torch.no_grad() def encode_first_stage(self, x): return self.first_stage_model.encode(x) def shared_step(self, batch, **kwargs): x, c = self.get_input(batch, self.first_stage_key) loss = self(x, c) return loss def forward(self, x, c, *args, **kwargs): t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() if self.model.conditioning_key is not None: assert c is not None if self.cond_stage_trainable: c = self.get_learned_conditioning(c) if self.shorten_cond_schedule: # TODO: drop this option tc = self.cond_ids[t].to(self.device) c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): # hybrid case, cond is expected to be a dict pass else: if not isinstance(cond, list): cond = [cond] key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' cond = {key: cond} x_recon = self.model(x_noisy, t, **cond) if isinstance(x_recon, tuple) and not return_ids: return x_recon[0] else: return x_recon def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0) def p_losses(self, x_start, cond, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_output = self.apply_model(x_noisy, t, cond) loss_dict = {} prefix = 'train' if self.training else 'val' if self.parameterization == "x0": target = x_start elif self.parameterization == "eps": target = noise elif self.parameterization == "v": target = self.get_v(x_start, noise, t) else: raise NotImplementedError() loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) logvar_t = self.logvar[t].to(self.device) loss = loss_simple / torch.exp(logvar_t) + logvar_t # loss = loss_simple / torch.exp(self.logvar) + self.logvar if self.learn_logvar: loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) loss_dict.update({'logvar': self.logvar.data.mean()}) loss = self.l_simple_weight * loss.mean() loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) loss += (self.original_elbo_weight * loss_vlb) loss_dict.update({f'{prefix}/loss': loss}) return loss, loss_dict def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, return_x0=False, score_corrector=None, corrector_kwargs=None): t_in = t model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) if score_corrector is not None: assert self.parameterization == "eps" model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) if return_codebook_ids: model_out, logits = model_out if self.parameterization == "eps": x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) elif self.parameterization == "x0": x_recon = model_out else: raise NotImplementedError() if clip_denoised: x_recon.clamp_(-1., 1.) if quantize_denoised: x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) if return_codebook_ids: return model_mean, posterior_variance, posterior_log_variance, logits elif return_x0: return model_mean, posterior_variance, posterior_log_variance, x_recon else: return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_codebook_ids=False, quantize_denoised=False, return_x0=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): b, *_, device = *x.shape, x.device outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_codebook_ids=return_codebook_ids, quantize_denoised=quantize_denoised, return_x0=return_x0, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if return_codebook_ids: raise DeprecationWarning("Support dropped.") model_mean, _, model_log_variance, logits = outputs elif return_x0: model_mean, _, model_log_variance, x0 = outputs else: model_mean, _, model_log_variance = outputs noise = noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) if return_codebook_ids: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) if return_x0: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 else: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t timesteps = self.num_timesteps if batch_size is not None: b = batch_size if batch_size is not None else shape[0] shape = [batch_size] + list(shape) else: b = batch_size = shape[0] if x_T is None: img = torch.randn(shape, device=self.device) else: img = x_T intermediates = [] if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', total=timesteps) if verbose else reversed( range(0, timesteps)) if type(temperature) == float: temperature = [temperature] * timesteps for i in iterator: ts = torch.full((b,), i, device=self.device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img, x0_partial = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised, return_x0=True, temperature=temperature[i], noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if mask is not None: assert x0 is not None img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) if callback: callback(i) if img_callback: img_callback(img, i) return img, intermediates @torch.no_grad() def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t device = self.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T intermediates = [img] if timesteps is None: timesteps = self.num_timesteps if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( range(0, timesteps)) if mask is not None: assert x0 is not None assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match for i in iterator: ts = torch.full((b,), i, device=device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised) if mask is not None: img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) if callback: callback(i) if img_callback: img_callback(img, i) if return_intermediates: return img, intermediates return img @torch.no_grad() def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, verbose=True, timesteps=None, quantize_denoised=False, mask=None, x0=None, shape=None, **kwargs): if shape is None: shape = (batch_size, self.channels, self.image_size, self.image_size) if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, shape, return_intermediates=return_intermediates, x_T=x_T, verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, mask=mask, x0=x0) @torch.no_grad() def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): if ddim: ddim_sampler = DDIMSampler(self) shape = (self.channels, self.image_size, self.image_size) samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) else: samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs) return samples, intermediates @torch.no_grad() def get_unconditional_conditioning(self, batch_size, null_label=None): if null_label is not None: xc = null_label if isinstance(xc, ListConfig): xc = list(xc) if isinstance(xc, dict) or isinstance(xc, list): c = self.get_learned_conditioning(xc) else: if hasattr(xc, "to"): xc = xc.to(self.device) c = self.get_learned_conditioning(xc) else: if self.cond_stage_key in ["class_label", "cls"]: xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device) return self.get_learned_conditioning(xc) else: raise NotImplementedError("todo") if isinstance(c, list): # in case the encoder gives us a list for i in range(len(c)): c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device) else: c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device) return c @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, **kwargs): ema_scope = self.ema_scope if use_ema_scope else nullcontext use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=N) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x log["reconstruction"] = xrec if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode"): xc = self.cond_stage_model.decode(c) log["conditioning"] = xc elif self.cond_stage_key in ["caption", "txt"]: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) log["conditioning"] = xc elif self.cond_stage_key in ['class_label', "cls"]: try: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) log['conditioning'] = xc except KeyError: # probably no "human_label" in batch pass elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row with ema_scope("Sampling"): samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( self.first_stage_model, IdentityFirstStage): # also display when quantizing x0 while sampling with ema_scope("Plotting Quantized Denoised"): samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta, quantize_denoised=True) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, # quantize_denoised=True) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_x0_quantized"] = x_samples if unconditional_guidance_scale > 1.0: uc = self.get_unconditional_conditioning(N, unconditional_guidance_label) if self.model.conditioning_key == "crossattn-adm": uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]} with ema_scope("Sampling with classifier-free guidance"): samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=uc, ) x_samples_cfg = self.decode_first_stage(samples_cfg) log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg if inpaint: # make a simple center square b, h, w = z.shape[0], z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. mask = mask[:, None, ...] with ema_scope("Plotting Inpaint"): samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_inpainting"] = x_samples log["mask"] = mask # outpaint mask = 1. - mask with ema_scope("Plotting Outpaint"): samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_outpainting"] = x_samples if plot_progressive_rows: with ema_scope("Plotting Progressives"): img, progressives = self.progressive_denoising(c, shape=(self.channels, self.image_size, self.image_size), batch_size=N) prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") log["progressive_row"] = prog_row if return_keys: if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: return log else: return {key: log[key] for key in return_keys} return log def configure_optimizers(self): lr = self.learning_rate params = list(self.model.parameters()) if self.cond_stage_trainable: print(f"{self.__class__.__name__}: Also optimizing conditioner params!") params = params + list(self.cond_stage_model.parameters()) if self.learn_logvar: print('Diffusion model optimizing logvar') params.append(self.logvar) opt = torch.optim.AdamW(params, lr=lr) if self.use_scheduler: assert 'target' in self.scheduler_config scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }] return [opt], scheduler return opt @torch.no_grad() def to_rgb(self, x): x = x.float() if not hasattr(self, "colorize"): self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) x = nn.functional.conv2d(x, weight=self.colorize) x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. return x class DiffusionWrapper(pl.LightningModule): def __init__(self, diff_model_config, conditioning_key): super().__init__() self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False) self.diffusion_model = instantiate_from_config(diff_model_config) self.conditioning_key = conditioning_key assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm'] def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None): if self.conditioning_key is None: out = self.diffusion_model(x, t) elif self.conditioning_key == 'concat': xc = torch.cat([x] + c_concat, dim=1) out = self.diffusion_model(xc, t) elif self.conditioning_key == 'crossattn': if not self.sequential_cross_attn: cc = torch.cat(c_crossattn, 1) else: cc = c_crossattn out = self.diffusion_model(x, t, context=cc) elif self.conditioning_key == 'hybrid': xc = torch.cat([x] + c_concat, dim=1) cc = torch.cat(c_crossattn, 1) out = self.diffusion_model(xc, t, context=cc) elif self.conditioning_key == 'hybrid-adm': assert c_adm is not None xc = torch.cat([x] + c_concat, dim=1) cc = torch.cat(c_crossattn, 1) out = self.diffusion_model(xc, t, context=cc, y=c_adm) elif self.conditioning_key == 'crossattn-adm': assert c_adm is not None cc = torch.cat(c_crossattn, 1) out = self.diffusion_model(x, t, context=cc, y=c_adm) elif self.conditioning_key == 'adm': cc = c_crossattn[0] out = self.diffusion_model(x, t, y=cc) else: raise NotImplementedError() return out class LatentUpscaleDiffusion(LatentDiffusion): def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs): super().__init__(*args, **kwargs) # assumes that neither the cond_stage nor the low_scale_model contain trainable params assert not self.cond_stage_trainable self.instantiate_low_stage(low_scale_config) self.low_scale_key = low_scale_key self.noise_level_key = noise_level_key def instantiate_low_stage(self, config): model = instantiate_from_config(config) self.low_scale_model = model.eval() self.low_scale_model.train = disabled_train for param in self.low_scale_model.parameters(): param.requires_grad = False @torch.no_grad() def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): if not log_mode: z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) else: z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=bs) x_low = batch[self.low_scale_key][:bs] x_low = rearrange(x_low, 'b h w c -> b c h w') x_low = x_low.to(memory_format=torch.contiguous_format).float() zx, noise_level = self.low_scale_model(x_low) if self.noise_level_key is not None: # get noise level from batch instead, e.g. when extracting a custom noise level for bsr raise NotImplementedError('TODO') all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level} if log_mode: # TODO: maybe disable if too expensive x_low_rec = self.low_scale_model.decode(zx) return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level return z, all_conds @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, **kwargs): ema_scope = self.ema_scope if use_ema_scope else nullcontext use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x log["reconstruction"] = xrec log["x_lr"] = x_low log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode"): xc = self.cond_stage_model.decode(c) log["conditioning"] = xc elif self.cond_stage_key in ["caption", "txt"]: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) log["conditioning"] = xc elif self.cond_stage_key in ['class_label', 'cls']: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) log['conditioning'] = xc elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row with ema_scope("Sampling"): samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if unconditional_guidance_scale > 1.0: uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label) # TODO explore better "unconditional" choices for the other keys # maybe guide away from empty text label and highest noise level and maximally degraded zx? uc = dict() for k in c: if k == "c_crossattn": assert isinstance(c[k], list) and len(c[k]) == 1 uc[k] = [uc_tmp] elif k == "c_adm": # todo: only run with text-based guidance? assert isinstance(c[k], torch.Tensor) #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level uc[k] = c[k] elif isinstance(c[k], list): uc[k] = [c[k][i] for i in range(len(c[k]))] else: uc[k] = c[k] with ema_scope("Sampling with classifier-free guidance"): samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=uc, ) x_samples_cfg = self.decode_first_stage(samples_cfg) log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg if plot_progressive_rows: with ema_scope("Plotting Progressives"): img, progressives = self.progressive_denoising(c, shape=(self.channels, self.image_size, self.image_size), batch_size=N) prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") log["progressive_row"] = prog_row return log class LatentFinetuneDiffusion(LatentDiffusion): """ Basis for different finetunas, such as inpainting or depth2image To disable finetuning mode, set finetune_keys to None """ def __init__(self, concat_keys: tuple, finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight" ), keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels c_concat_log_start=None, # to log reconstruction of c_concat codes c_concat_log_end=None, *args, **kwargs ): ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", list()) super().__init__(*args, **kwargs) self.finetune_keys = finetune_keys self.concat_keys = concat_keys self.keep_dims = keep_finetune_dims self.c_concat_log_start = c_concat_log_start self.c_concat_log_end = c_concat_log_end if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint' if exists(ckpt_path): self.init_from_ckpt(ckpt_path, ignore_keys) def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] # make it explicit, finetune by including extra input channels if exists(self.finetune_keys) and k in self.finetune_keys: new_entry = None for name, param in self.named_parameters(): if name in self.finetune_keys: print( f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only") new_entry = torch.zeros_like(param) # zero init assert exists(new_entry), 'did not find matching parameter to modify' new_entry[:, :self.keep_dims, ...] = sd[k] sd[k] = new_entry missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, **kwargs): ema_scope = self.ema_scope if use_ema_scope else nullcontext use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True) c_cat, c = c["c_concat"][0], c["c_crossattn"][0] N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x log["reconstruction"] = xrec if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode"): xc = self.cond_stage_model.decode(c) log["conditioning"] = xc elif self.cond_stage_key in ["caption", "txt"]: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) log["conditioning"] = xc elif self.cond_stage_key in ['class_label', 'cls']: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) log['conditioning'] = xc elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if not (self.c_concat_log_start is None and self.c_concat_log_end is None): log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end]) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row with ema_scope("Sampling"): samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if unconditional_guidance_scale > 1.0: uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label) uc_cat = c_cat uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} with ema_scope("Sampling with classifier-free guidance"): samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=uc_full, ) x_samples_cfg = self.decode_first_stage(samples_cfg) log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg return log class LatentInpaintDiffusion(LatentFinetuneDiffusion): """ can either run as pure inpainting model (only concat mode) or with mixed conditionings, e.g. mask as concat and text via cross-attn. To disable finetuning mode, set finetune_keys to None """ def __init__(self, concat_keys=("mask", "masked_image"), masked_image_key="masked_image", *args, **kwargs ): super().__init__(concat_keys, *args, **kwargs) self.masked_image_key = masked_image_key assert self.masked_image_key in concat_keys @torch.no_grad() def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): # note: restricted to non-trainable encoders currently assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting' z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=bs) assert exists(self.concat_keys) c_cat = list() for ck in self.concat_keys: cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() if bs is not None: cc = cc[:bs] cc = cc.to(self.device) bchw = z.shape if ck != self.masked_image_key: cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) else: cc = self.get_first_stage_encoding(self.encode_first_stage(cc)) c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} if return_first_stage_outputs: return z, all_conds, x, xrec, xc return z, all_conds @torch.no_grad() def log_images(self, *args, **kwargs): log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs) log["masked_image"] = rearrange(args[0]["masked_image"], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() return log class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion): """ condition on monocular depth estimation """ def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs): super().__init__(concat_keys=concat_keys, *args, **kwargs) self.depth_model = instantiate_from_config(depth_stage_config) self.depth_stage_key = concat_keys[0] @torch.no_grad() def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): # note: restricted to non-trainable encoders currently assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img' z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=bs) assert exists(self.concat_keys) assert len(self.concat_keys) == 1 c_cat = list() for ck in self.concat_keys: cc = batch[ck] if bs is not None: cc = cc[:bs] cc = cc.to(self.device) cc = self.depth_model(cc) cc = torch.nn.functional.interpolate( cc, size=z.shape[2:], mode="bicubic", align_corners=False, ) depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], keepdim=True) cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1. c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} if return_first_stage_outputs: return z, all_conds, x, xrec, xc return z, all_conds @torch.no_grad() def log_images(self, *args, **kwargs): log = super().log_images(*args, **kwargs) depth = self.depth_model(args[0][self.depth_stage_key]) depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \ torch.amax(depth, dim=[1, 2, 3], keepdim=True) log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1. return log class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion): """ condition on low-res image (and optionally on some spatial noise augmentation) """ def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None, low_scale_config=None, low_scale_key=None, *args, **kwargs): super().__init__(concat_keys=concat_keys, *args, **kwargs) self.reshuffle_patch_size = reshuffle_patch_size self.low_scale_model = None if low_scale_config is not None: print("Initializing a low-scale model") assert exists(low_scale_key) self.instantiate_low_stage(low_scale_config) self.low_scale_key = low_scale_key def instantiate_low_stage(self, config): model = instantiate_from_config(config) self.low_scale_model = model.eval() self.low_scale_model.train = disabled_train for param in self.low_scale_model.parameters(): param.requires_grad = False @torch.no_grad() def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): # note: restricted to non-trainable encoders currently assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft' z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=bs) assert exists(self.concat_keys) assert len(self.concat_keys) == 1 # optionally make spatial noise_level here c_cat = list() noise_level = None for ck in self.concat_keys: cc = batch[ck] cc = rearrange(cc, 'b h w c -> b c h w') if exists(self.reshuffle_patch_size): assert isinstance(self.reshuffle_patch_size, int) cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w', p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size) if bs is not None: cc = cc[:bs] cc = cc.to(self.device) if exists(self.low_scale_model) and ck == self.low_scale_key: cc, noise_level = self.low_scale_model(cc) c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) if exists(noise_level): all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level} else: all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} if return_first_stage_outputs: return z, all_conds, x, xrec, xc return z, all_conds @torch.no_grad() def log_images(self, *args, **kwargs): log = super().log_images(*args, **kwargs) log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w') return log
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/ddpm.py
import torch import torch.nn.functional as F import math from tqdm import tqdm class NoiseScheduleVP: def __init__( self, schedule='discrete', betas=None, alphas_cumprod=None, continuous_beta_0=0.1, continuous_beta_1=20., ): """Create a wrapper class for the forward SDE (VP type). *** Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. *** The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: log_alpha_t = self.marginal_log_mean_coeff(t) sigma_t = self.marginal_std(t) lambda_t = self.marginal_lambda(t) Moreover, as lambda(t) is an invertible function, we also support its inverse function: t = self.inverse_lambda(lambda_t) =============================================================== We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). 1. For discrete-time DPMs: For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: t_i = (i + 1) / N e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. Args: betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. **Important**: Please pay special attention for the args for `alphas_cumprod`: The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have alpha_{t_n} = \sqrt{\hat{alpha_n}}, and log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). 2. For continuous-time DPMs: We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise schedule are the default settings in DDPM and improved-DDPM: Args: beta_min: A `float` number. The smallest beta for the linear schedule. beta_max: A `float` number. The largest beta for the linear schedule. cosine_s: A `float` number. The hyperparameter in the cosine schedule. cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. T: A `float` number. The ending time of the forward process. =============================================================== Args: schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, 'linear' or 'cosine' for continuous-time DPMs. Returns: A wrapper object of the forward SDE (VP type). =============================================================== Example: # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): >>> ns = NoiseScheduleVP('discrete', betas=betas) # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) # For continuous-time DPMs (VPSDE), linear schedule: >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) """ if schedule not in ['discrete', 'linear', 'cosine']: raise ValueError( "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( schedule)) self.schedule = schedule if schedule == 'discrete': if betas is not None: log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) else: assert alphas_cumprod is not None log_alphas = 0.5 * torch.log(alphas_cumprod) self.total_N = len(log_alphas) self.T = 1. self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) self.log_alpha_array = log_alphas.reshape((1, -1,)) else: self.total_N = 1000 self.beta_0 = continuous_beta_0 self.beta_1 = continuous_beta_1 self.cosine_s = 0.008 self.cosine_beta_max = 999. self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * ( 1. + self.cosine_s) / math.pi - self.cosine_s self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) self.schedule = schedule if schedule == 'cosine': # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. self.T = 0.9946 else: self.T = 1. def marginal_log_mean_coeff(self, t): """ Compute log(alpha_t) of a given continuous-time label t in [0, T]. """ if self.schedule == 'discrete': return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) elif self.schedule == 'linear': return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 elif self.schedule == 'cosine': log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 return log_alpha_t def marginal_alpha(self, t): """ Compute alpha_t of a given continuous-time label t in [0, T]. """ return torch.exp(self.marginal_log_mean_coeff(t)) def marginal_std(self, t): """ Compute sigma_t of a given continuous-time label t in [0, T]. """ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) def marginal_lambda(self, t): """ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. """ log_mean_coeff = self.marginal_log_mean_coeff(t) log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) return log_mean_coeff - log_std def inverse_lambda(self, lamb): """ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. """ if self.schedule == 'linear': tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) Delta = self.beta_0 ** 2 + tmp return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) elif self.schedule == 'discrete': log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) return t.reshape((-1,)) else: log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * ( 1. + self.cosine_s) / math.pi - self.cosine_s t = t_fn(log_alpha) return t def model_wrapper( model, noise_schedule, model_type="noise", model_kwargs={}, guidance_type="uncond", condition=None, unconditional_condition=None, guidance_scale=1., classifier_fn=None, classifier_kwargs={}, ): """Create a wrapper function for the noise prediction model. DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. We support four types of the diffusion model by setting `model_type`: 1. "noise": noise prediction model. (Trained by predicting noise). 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). 3. "v": velocity prediction model. (Trained by predicting the velocity). The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." arXiv preprint arXiv:2202.00512 (2022). [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." arXiv preprint arXiv:2210.02303 (2022). 4. "score": marginal score function. (Trained by denoising score matching). Note that the score function and the noise prediction model follows a simple relationship: ``` noise(x_t, t) = -sigma_t * score(x_t, t) ``` We support three types of guided sampling by DPMs by setting `guidance_type`: 1. "uncond": unconditional sampling by DPMs. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise | x_start | v | score `` 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise | x_start | v | score `` The input `classifier_fn` has the following format: `` classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) `` [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. The input `model` has the following format: `` model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score `` And if cond == `unconditional_condition`, the model output is the unconditional DPM output. [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." arXiv preprint arXiv:2207.12598 (2022). The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) or continuous-time labels (i.e. epsilon to T). We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: `` def model_fn(x, t_continuous) -> noise: t_input = get_model_input_time(t_continuous) return noise_pred(model, x, t_input, **model_kwargs) `` where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. =============================================================== Args: model: A diffusion model with the corresponding format described above. noise_schedule: A noise schedule object, such as NoiseScheduleVP. model_type: A `str`. The parameterization type of the diffusion model. "noise" or "x_start" or "v" or "score". model_kwargs: A `dict`. A dict for the other inputs of the model function. guidance_type: A `str`. The type of the guidance for sampling. "uncond" or "classifier" or "classifier-free". condition: A pytorch tensor. The condition for the guided sampling. Only used for "classifier" or "classifier-free" guidance type. unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. Only used for "classifier-free" guidance type. guidance_scale: A `float`. The scale for the guided sampling. classifier_fn: A classifier function. Only used for the classifier guidance. classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. Returns: A noise prediction model that accepts the noised data and the continuous time as the inputs. """ def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. For continuous-time DPMs, we just use `t_continuous`. """ if noise_schedule.schedule == 'discrete': return (t_continuous - 1. / noise_schedule.total_N) * 1000. else: return t_continuous def noise_pred_fn(x, t_continuous, cond=None): if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) t_input = get_model_input_time(t_continuous) if cond is None: output = model(x, t_input, **model_kwargs) else: output = model(x, t_input, cond, **model_kwargs) if model_type == "noise": return output elif model_type == "x_start": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) elif model_type == "v": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x elif model_type == "score": sigma_t = noise_schedule.marginal_std(t_continuous) dims = x.dim() return -expand_dims(sigma_t, dims) * output def cond_grad_fn(x, t_input): """ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). """ with torch.enable_grad(): x_in = x.detach().requires_grad_(True) log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) return torch.autograd.grad(log_prob.sum(), x_in)[0] def model_fn(x, t_continuous): """ The noise predicition model function that is used for DPM-Solver. """ if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) if guidance_type == "uncond": return noise_pred_fn(x, t_continuous) elif guidance_type == "classifier": assert classifier_fn is not None t_input = get_model_input_time(t_continuous) cond_grad = cond_grad_fn(x, t_input) sigma_t = noise_schedule.marginal_std(t_continuous) noise = noise_pred_fn(x, t_continuous) return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad elif guidance_type == "classifier-free": if guidance_scale == 1. or unconditional_condition is None: return noise_pred_fn(x, t_continuous, cond=condition) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) return noise_uncond + guidance_scale * (noise - noise_uncond) assert model_type in ["noise", "x_start", "v"] assert guidance_type in ["uncond", "classifier", "classifier-free"] return model_fn class DPM_Solver: def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.): """Construct a DPM-Solver. We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0"). If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver). If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++). In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True. The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales. Args: model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): `` def model_fn(x, t_continuous): return noise `` noise_schedule: A noise schedule object, such as NoiseScheduleVP. predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model. thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1]. max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding. [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. """ self.model = model_fn self.noise_schedule = noise_schedule self.predict_x0 = predict_x0 self.thresholding = thresholding self.max_val = max_val def noise_prediction_fn(self, x, t): """ Return the noise prediction model. """ return self.model(x, t) def data_prediction_fn(self, x, t): """ Return the data prediction model (with thresholding). """ noise = self.noise_prediction_fn(x, t) dims = x.dim() alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) if self.thresholding: p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) x0 = torch.clamp(x0, -s, s) / s return x0 def model_fn(self, x, t): """ Convert the model to the noise prediction model or the data prediction model. """ if self.predict_x0: return self.data_prediction_fn(x, t) else: return self.noise_prediction_fn(x, t) def get_time_steps(self, skip_type, t_T, t_0, N, device): """Compute the intermediate time steps for sampling. Args: skip_type: A `str`. The type for the spacing of the time steps. We support three types: - 'logSNR': uniform logSNR for the time steps. - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). N: A `int`. The total number of the spacing of the time steps. device: A torch device. Returns: A pytorch tensor of the time steps, with the shape (N + 1,). """ if skip_type == 'logSNR': lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) return self.noise_schedule.inverse_lambda(logSNR_steps) elif skip_type == 'time_uniform': return torch.linspace(t_T, t_0, N + 1).to(device) elif skip_type == 'time_quadratic': t_order = 2 t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device) return t else: raise ValueError( "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): """ Get the order of each step for sampling by the singlestep DPM-Solver. We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: - If order == 1: We take `steps` of DPM-Solver-1 (i.e. DDIM). - If order == 2: - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. - If steps % 2 == 0, we use K steps of DPM-Solver-2. - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. - If order == 3: - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. ============================================ Args: order: A `int`. The max order for the solver (2 or 3). steps: A `int`. The total number of function evaluations (NFE). skip_type: A `str`. The type for the spacing of the time steps. We support three types: - 'logSNR': uniform logSNR for the time steps. - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). device: A torch device. Returns: orders: A list of the solver order of each step. """ if order == 3: K = steps // 3 + 1 if steps % 3 == 0: orders = [3, ] * (K - 2) + [2, 1] elif steps % 3 == 1: orders = [3, ] * (K - 1) + [1] else: orders = [3, ] * (K - 1) + [2] elif order == 2: if steps % 2 == 0: K = steps // 2 orders = [2, ] * K else: K = steps // 2 + 1 orders = [2, ] * (K - 1) + [1] elif order == 1: K = 1 orders = [1, ] * steps else: raise ValueError("'order' must be '1' or '2' or '3'.") if skip_type == 'logSNR': # To reproduce the results in DPM-Solver paper timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) else: timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[ torch.cumsum(torch.tensor([0, ] + orders)).to(device)] return timesteps_outer, orders def denoise_to_zero_fn(self, x, s): """ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. """ return self.data_prediction_fn(x, s) def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): """ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). model_s: A pytorch tensor. The model function evaluated at time `s`. If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. return_intermediate: A `bool`. If true, also return the model value at time `s`. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ ns = self.noise_schedule dims = x.dim() lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) if self.predict_x0: phi_1 = torch.expm1(-h) if model_s is None: model_s = self.model_fn(x, s) x_t = ( expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s ) if return_intermediate: return x_t, {'model_s': model_s} else: return x_t else: phi_1 = torch.expm1(h) if model_s is None: model_s = self.model_fn(x, s) x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - expand_dims(sigma_t * phi_1, dims) * model_s ) if return_intermediate: return x_t, {'model_s': model_s} else: return x_t def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'): """ Singlestep solver DPM-Solver-2 from time `s` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). r1: A `float`. The hyperparameter of the second-order solver. model_s: A pytorch tensor. The model function evaluated at time `s`. If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if solver_type not in ['dpm_solver', 'taylor']: raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) if r1 is None: r1 = 0.5 ns = self.noise_schedule dims = x.dim() lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s lambda_s1 = lambda_s + r1 * h s1 = ns.inverse_lambda(lambda_s1) log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff( s1), ns.marginal_log_mean_coeff(t) sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t) alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) if self.predict_x0: phi_11 = torch.expm1(-r1 * h) phi_1 = torch.expm1(-h) if model_s is None: model_s = self.model_fn(x, s) x_s1 = ( expand_dims(sigma_s1 / sigma_s, dims) * x - expand_dims(alpha_s1 * phi_11, dims) * model_s ) model_s1 = self.model_fn(x_s1, s1) if solver_type == 'dpm_solver': x_t = ( expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s) ) elif solver_type == 'taylor': x_t = ( expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * ( model_s1 - model_s) ) else: phi_11 = torch.expm1(r1 * h) phi_1 = torch.expm1(h) if model_s is None: model_s = self.model_fn(x, s) x_s1 = ( expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x - expand_dims(sigma_s1 * phi_11, dims) * model_s ) model_s1 = self.model_fn(x_s1, s1) if solver_type == 'dpm_solver': x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - expand_dims(sigma_t * phi_1, dims) * model_s - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s) ) elif solver_type == 'taylor': x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - expand_dims(sigma_t * phi_1, dims) * model_s - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s) ) if return_intermediate: return x_t, {'model_s': model_s, 'model_s1': model_s1} else: return x_t def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'): """ Singlestep solver DPM-Solver-3 from time `s` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). r1: A `float`. The hyperparameter of the third-order solver. r2: A `float`. The hyperparameter of the third-order solver. model_s: A pytorch tensor. The model function evaluated at time `s`. If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`). If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it. return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if solver_type not in ['dpm_solver', 'taylor']: raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) if r1 is None: r1 = 1. / 3. if r2 is None: r2 = 2. / 3. ns = self.noise_schedule dims = x.dim() lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s lambda_s1 = lambda_s + r1 * h lambda_s2 = lambda_s + r2 * h s1 = ns.inverse_lambda(lambda_s1) s2 = ns.inverse_lambda(lambda_s2) log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff( s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t) sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std( s2), ns.marginal_std(t) alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t) if self.predict_x0: phi_11 = torch.expm1(-r1 * h) phi_12 = torch.expm1(-r2 * h) phi_1 = torch.expm1(-h) phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1. phi_2 = phi_1 / h + 1. phi_3 = phi_2 / h - 0.5 if model_s is None: model_s = self.model_fn(x, s) if model_s1 is None: x_s1 = ( expand_dims(sigma_s1 / sigma_s, dims) * x - expand_dims(alpha_s1 * phi_11, dims) * model_s ) model_s1 = self.model_fn(x_s1, s1) x_s2 = ( expand_dims(sigma_s2 / sigma_s, dims) * x - expand_dims(alpha_s2 * phi_12, dims) * model_s + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s) ) model_s2 = self.model_fn(x_s2, s2) if solver_type == 'dpm_solver': x_t = ( expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s) ) elif solver_type == 'taylor': D1_0 = (1. / r1) * (model_s1 - model_s) D1_1 = (1. / r2) * (model_s2 - model_s) D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) D2 = 2. * (D1_1 - D1_0) / (r2 - r1) x_t = ( expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s + expand_dims(alpha_t * phi_2, dims) * D1 - expand_dims(alpha_t * phi_3, dims) * D2 ) else: phi_11 = torch.expm1(r1 * h) phi_12 = torch.expm1(r2 * h) phi_1 = torch.expm1(h) phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1. phi_2 = phi_1 / h - 1. phi_3 = phi_2 / h - 0.5 if model_s is None: model_s = self.model_fn(x, s) if model_s1 is None: x_s1 = ( expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x - expand_dims(sigma_s1 * phi_11, dims) * model_s ) model_s1 = self.model_fn(x_s1, s1) x_s2 = ( expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x - expand_dims(sigma_s2 * phi_12, dims) * model_s - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s) ) model_s2 = self.model_fn(x_s2, s2) if solver_type == 'dpm_solver': x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - expand_dims(sigma_t * phi_1, dims) * model_s - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s) ) elif solver_type == 'taylor': D1_0 = (1. / r1) * (model_s1 - model_s) D1_1 = (1. / r2) * (model_s2 - model_s) D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) D2 = 2. * (D1_1 - D1_0) / (r2 - r1) x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - expand_dims(sigma_t * phi_1, dims) * model_s - expand_dims(sigma_t * phi_2, dims) * D1 - expand_dims(sigma_t * phi_3, dims) * D2 ) if return_intermediate: return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2} else: return x_t def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"): """ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. model_prev_list: A list of pytorch tensor. The previous computed model values. t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) t: A pytorch tensor. The ending time, with the shape (x.shape[0],). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if solver_type not in ['dpm_solver', 'taylor']: raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) ns = self.noise_schedule dims = x.dim() model_prev_1, model_prev_0 = model_prev_list t_prev_1, t_prev_0 = t_prev_list lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda( t_prev_0), ns.marginal_lambda(t) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) h_0 = lambda_prev_0 - lambda_prev_1 h = lambda_t - lambda_prev_0 r0 = h_0 / h D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) if self.predict_x0: if solver_type == 'dpm_solver': x_t = ( expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0 ) elif solver_type == 'taylor': x_t = ( expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0 ) else: if solver_type == 'dpm_solver': x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0 ) elif solver_type == 'taylor': x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0 ) return x_t def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'): """ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. model_prev_list: A list of pytorch tensor. The previous computed model values. t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) t: A pytorch tensor. The ending time, with the shape (x.shape[0],). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ ns = self.noise_schedule dims = x.dim() model_prev_2, model_prev_1, model_prev_0 = model_prev_list t_prev_2, t_prev_1, t_prev_0 = t_prev_list lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda( t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) h_1 = lambda_prev_1 - lambda_prev_2 h_0 = lambda_prev_0 - lambda_prev_1 h = lambda_t - lambda_prev_0 r0, r1 = h_0 / h, h_1 / h D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2) D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1) D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1) if self.predict_x0: x_t = ( expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1 - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2 ) else: x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1 - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2 ) return x_t def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None): """ Singlestep DPM-Solver with the order `order` from time `s` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. r1: A `float`. The hyperparameter of the second-order or third-order solver. r2: A `float`. The hyperparameter of the third-order solver. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if order == 1: return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate) elif order == 2: return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1) elif order == 3: return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2) else: raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'): """ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. model_prev_list: A list of pytorch tensor. The previous computed model values. t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) t: A pytorch tensor. The ending time, with the shape (x.shape[0],). order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if order == 1: return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) elif order == 2: return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) elif order == 3: return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) else: raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'): """ The adaptive step size solver based on singlestep DPM-Solver. Args: x: A pytorch tensor. The initial value at time `t_T`. order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). h_init: A `float`. The initial step size (for logSNR). atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the current time and `t_0` is less than `t_err`. The default setting is 1e-5. solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_0: A pytorch tensor. The approximated solution at time `t_0`. [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. """ ns = self.noise_schedule s = t_T * torch.ones((x.shape[0],)).to(x) lambda_s = ns.marginal_lambda(s) lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) h = h_init * torch.ones_like(s).to(x) x_prev = x nfe = 0 if order == 2: r1 = 0.5 lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True) higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs) elif order == 3: r1, r2 = 1. / 3., 2. / 3. lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type) higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs) else: raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) while torch.abs((s - t_0)).mean() > t_err: t = ns.inverse_lambda(lambda_s + h) x_lower, lower_noise_kwargs = lower_update(x, s, t) x_higher = higher_update(x, s, t, **lower_noise_kwargs) delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) E = norm_fn((x_higher - x_lower) / delta).max() if torch.all(E <= 1.): x = x_higher s = t x_prev = x_lower lambda_s = ns.marginal_lambda(s) h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s) nfe += order print('adaptive solver nfe', nfe) return x def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform', method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', atol=0.0078, rtol=0.05, ): """ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`. ===================================================== We support the following algorithms for both noise prediction model and data prediction model: - 'singlestep': Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver. We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps). The total number of function evaluations (NFE) == `steps`. Given a fixed NFE == `steps`, the sampling procedure is: - If `order` == 1: - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM). - If `order` == 2: - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling. - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2. - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. - If `order` == 3: - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1. - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2. - 'multistep': Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`. We initialize the first `order` values by lower order multistep solvers. Given a fixed NFE == `steps`, the sampling procedure is: Denote K = steps. - If `order` == 1: - We use K steps of DPM-Solver-1 (i.e. DDIM). - If `order` == 2: - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2. - If `order` == 3: - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3. - 'singlestep_fixed': Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3). We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. - 'adaptive': Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper). We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs (NFE) and the sample quality. - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2. - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3. ===================================================== Some advices for choosing the algorithm: - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs: Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`. e.g. >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False) >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, skip_type='time_uniform', method='singlestep') - For **guided sampling with large guidance scale** by DPMs: Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`. e.g. >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True) >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2, skip_type='time_uniform', method='multistep') We support three types of `skip_type`: - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images** - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**. - 'time_quadratic': quadratic time for the time steps. ===================================================== Args: x: A pytorch tensor. The initial value at time `t_start` e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution. steps: A `int`. The total number of function evaluations (NFE). t_start: A `float`. The starting time of the sampling. If `T` is None, we use self.noise_schedule.T (default is 1.0). t_end: A `float`. The ending time of the sampling. If `t_end` is None, we use 1. / self.noise_schedule.total_N. e.g. if total_N == 1000, we have `t_end` == 1e-3. For discrete-time DPMs: - We recommend `t_end` == 1. / self.noise_schedule.total_N. For continuous-time DPMs: - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15. order: A `int`. The order of DPM-Solver. skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'. method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'. denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step. Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1). This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID for diffusion models sampling by diffusion SDEs for low-resolutional images (such as CIFAR-10). However, we observed that such trick does not matter for high-resolutional images. As it needs an additional NFE, we do not recommend it for high-resolutional images. lower_order_final: A `bool`. Whether to use lower order solvers at the final steps. Only valid for `method=multistep` and `steps < 15`. We empirically find that this trick is a key to stabilizing the sampling by DPM-Solver with very few steps (especially for steps <= 10). So we recommend to set it to be `True`. solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`. atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. Returns: x_end: A pytorch tensor. The approximated solution at time `t_end`. """ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end t_T = self.noise_schedule.T if t_start is None else t_start device = x.device if method == 'adaptive': with torch.no_grad(): x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type) elif method == 'multistep': assert steps >= order timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) assert timesteps.shape[0] - 1 == steps with torch.no_grad(): vec_t = timesteps[0].expand((x.shape[0])) model_prev_list = [self.model_fn(x, vec_t)] t_prev_list = [vec_t] # Init the first `order` values by lower order multistep DPM-Solver. for init_order in tqdm(range(1, order), desc="DPM init order"): vec_t = timesteps[init_order].expand(x.shape[0]) x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type) model_prev_list.append(self.model_fn(x, vec_t)) t_prev_list.append(vec_t) # Compute the remaining values by `order`-th order multistep DPM-Solver. for step in tqdm(range(order, steps + 1), desc="DPM multistep"): vec_t = timesteps[step].expand(x.shape[0]) if lower_order_final and steps < 15: step_order = min(order, steps + 1 - step) else: step_order = order x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type) for i in range(order - 1): t_prev_list[i] = t_prev_list[i + 1] model_prev_list[i] = model_prev_list[i + 1] t_prev_list[-1] = vec_t # We do not need to evaluate the final model value. if step < steps: model_prev_list[-1] = self.model_fn(x, vec_t) elif method in ['singlestep', 'singlestep_fixed']: if method == 'singlestep': timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device) elif method == 'singlestep_fixed': K = steps // order orders = [order, ] * K timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device) for i, order in enumerate(orders): t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1] timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device) lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner) vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0]) h = lambda_inner[-1] - lambda_inner[0] r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2) if denoise_to_zero: x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) return x ############################################################# # other utility functions ############################################################# def interpolate_fn(x, xp, yp): """ A piecewise linear function y = f(x), using xp and yp as keypoints. We implement f(x) in a differentiable way (i.e. applicable for autograd). The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) Args: x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. yp: PyTorch tensor with shape [C, K]. Returns: The function values f(x), with shape [N, C]. """ N, K = x.shape[0], xp.shape[1] all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) sorted_all_x, x_indices = torch.sort(all_x, dim=2) x_idx = torch.argmin(x_indices, dim=2) cand_start_idx = x_idx - 1 start_idx = torch.where( torch.eq(x_idx, 0), torch.tensor(1, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) start_idx2 = torch.where( torch.eq(x_idx, 0), torch.tensor(0, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) return cand def expand_dims(v, dims): """ Expand the tensor `v` to the dim `dims`. Args: `v`: a PyTorch tensor with shape [N]. `dim`: a `int`. Returns: a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. """ return v[(...,) + (None,) * (dims - 1)]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/dpm_solver/dpm_solver.py
from .sampler import DPMSolverSampler
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/dpm_solver/__init__.py
"""SAMPLING ONLY.""" import torch from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver MODEL_TYPES = { "eps": "noise", "v": "v" } class DPMSolverSampler(object): def __init__(self, model, **kwargs): super().__init__() self.model = model to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}') device = self.model.betas.device if x_T is None: img = torch.randn(size, device=device) else: img = x_T ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) model_fn = model_wrapper( lambda x, t, c: self.model.apply_model(x, t, c), ns, model_type=MODEL_TYPES[self.model.parameterization], guidance_type="classifier-free", condition=conditioning, unconditional_condition=unconditional_conditioning, guidance_scale=unconditional_guidance_scale, ) dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False) x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True) return x.to(device), None
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/models/diffusion/dpm_solver/sampler.py
from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from typing import Optional, Any from ldm.modules.diffusionmodules.util import checkpoint try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False # CrossAttn precision handling import os _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32") def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # force cast to fp32 to avoid overflowing if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): q, k = q.float(), k.float() sim = einsum('b i d, b j d -> b i j', q, k) * self.scale else: sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of sim = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) class MemoryEfficientCrossAttention(nn.Module): # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " f"{heads} heads.") inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) self.attention_op: Optional[Any] = None def forward(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) return self.to_out(out) class BasicTransformerBlock(nn.Module): ATTENTION_MODES = { "softmax": CrossAttention, # vanilla attention "softmax-xformers": MemoryEfficientCrossAttention } def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False): super().__init__() attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" assert attn_mode in self.ATTENTION_MODES attn_cls = self.ATTENTION_MODES[attn_mode] self.disable_self_attn = disable_self_attn self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image NEW: use_linear for more efficiency instead of the 1x1 convs """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True): super().__init__() if exists(context_dim) and not isinstance(context_dim, list): context_dim = [context_dim] self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) if not use_linear: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) else: self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)] ) if not use_linear: self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) else: self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) self.use_linear = use_linear def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention if not isinstance(context, list): context = [context] b, c, h, w = x.shape x_in = x x = self.norm(x) if not self.use_linear: x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c').contiguous() if self.use_linear: x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): x = block(x, context=context[i]) if self.use_linear: x = self.proj_out(x) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() if not self.use_linear: x = self.proj_out(x) return x + x_in
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/attention.py
import torch from torch import nn class LitEma(nn.Module): def __init__(self, model, decay=0.9999, use_num_upates=True): super().__init__() if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.m_name2s_name = {} self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates else torch.tensor(-1, dtype=torch.int)) for name, p in model.named_parameters(): if p.requires_grad: # remove as '.'-character is not allowed in buffers s_name = name.replace('.', '') self.m_name2s_name.update({name: s_name}) self.register_buffer(s_name, p.clone().detach().data) self.collected_params = [] def reset_num_updates(self): del self.num_updates self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) def forward(self, model): decay = self.decay if self.num_updates >= 0: self.num_updates += 1 decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: sname = self.m_name2s_name[key] shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: assert not key in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: assert not key in self.m_name2s_name def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/ema.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/__init__.py
# based on https://github.com/isl-org/MiDaS import cv2 import torch import torch.nn as nn from torchvision.transforms import Compose from ldm.modules.midas.midas.dpt_depth import DPTDepthModel from ldm.modules.midas.midas.midas_net import MidasNet from ldm.modules.midas.midas.midas_net_custom import MidasNet_small from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet ISL_PATHS = { "dpt_large": "midas_models/dpt_large-midas-2f21e586.pt", "dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt", "midas_v21": "", "midas_v21_small": "", } def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def load_midas_transform(model_type): # https://github.com/isl-org/MiDaS/blob/master/run.py # load transform only if model_type == "dpt_large": # DPT-Large net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) elif model_type == "midas_v21_small": net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: assert False, f"model_type '{model_type}' not implemented, use: --model_type large" transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) return transform def load_model(model_type): # https://github.com/isl-org/MiDaS/blob/master/run.py # load network model_path = ISL_PATHS[model_type] if model_type == "dpt_large": # DPT-Large model = DPTDepthModel( path=model_path, backbone="vitl16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "dpt_hybrid": # DPT-Hybrid model = DPTDepthModel( path=model_path, backbone="vitb_rn50_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif model_type == "midas_v21": model = MidasNet(model_path, non_negative=True) net_w, net_h = 384, 384 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) elif model_type == "midas_v21_small": model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 resize_mode = "upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) else: print(f"model_type '{model_type}' not implemented, use: --model_type large") assert False transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) return model.eval(), transform class MiDaSInference(nn.Module): MODEL_TYPES_TORCH_HUB = [ "DPT_Large", "DPT_Hybrid", "MiDaS_small" ] MODEL_TYPES_ISL = [ "dpt_large", "dpt_hybrid", "midas_v21", "midas_v21_small", ] def __init__(self, model_type): super().__init__() assert (model_type in self.MODEL_TYPES_ISL) model, _ = load_model(model_type) self.model = model self.model.train = disabled_train def forward(self, x): # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array # NOTE: we expect that the correct transform has been called during dataloading. with torch.no_grad(): prediction = self.model(x) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=x.shape[2:], mode="bicubic", align_corners=False, ) assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3]) return prediction
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/api.py
"""Utils for monoDepth.""" import sys import re import numpy as np import cv2 import torch def read_pfm(path): """Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale) """ with open(path, "rb") as file: color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode("ascii") == "PF": color = True elif header.decode("ascii") == "Pf": color = False else: raise Exception("Not a PFM file: " + path) dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception("Malformed PFM header.") scale = float(file.readline().decode("ascii").rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: # big-endian endian = ">" data = np.fromfile(file, endian + "f") shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, "wb") as file: color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32.") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif ( len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 ): # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write("PF\n" if color else "Pf\n".encode()) file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write("%f\n".encode() % scale) image.tofile(file) def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img def resize_image(img): """Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network """ height_orig = img.shape[0] width_orig = img.shape[1] if width_orig > height_orig: scale = width_orig / 384 else: scale = height_orig / 384 height = (np.ceil(height_orig / scale / 32) * 32).astype(int) width = (np.ceil(width_orig / scale / 32) * 32).astype(int) img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) img_resized = ( torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float() ) img_resized = img_resized.unsqueeze(0) return img_resized def resize_depth(depth, width, height): """Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = torch.squeeze(depth[0, :, :, :]).to("cpu") depth_resized = cv2.resize( depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC ) return depth_resized def write_depth(path, depth, bits=1): """Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth """ write_pfm(path + ".pfm", depth.astype(np.float32)) depth_min = depth.min() depth_max = depth.max() max_val = (2**(8*bits))-1 if depth_max - depth_min > np.finfo("float").eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape, dtype=depth.type) if bits == 1: cv2.imwrite(path + ".png", out.astype("uint8")) elif bits == 2: cv2.imwrite(path + ".png", out.astype("uint16")) return
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/utils.py
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder class MidasNet_small(BaseModel): """Network for monocular depth estimation. """ def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True, blocks={'expand': True}): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print("Loading weights: ", path) super(MidasNet_small, self).__init__() use_pretrained = False if path else True self.channels_last = channels_last self.blocks = blocks self.backbone = backbone self.groups = 1 features1=features features2=features features3=features features4=features self.expand = False if "expand" in self.blocks and self.blocks['expand'] == True: self.expand = True features1=features features2=features*2 features3=features*4 features4=features*8 self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable) self.scratch.activation = nn.ReLU(False) self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups), Interpolate(scale_factor=2, mode="bilinear"), nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1), self.scratch.activation, nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ if self.channels_last==True: print("self.channels_last = ", self.channels_last) x.contiguous(memory_format=torch.channels_last) layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1) def fuse_model(m): prev_previous_type = nn.Identity() prev_previous_name = '' previous_type = nn.Identity() previous_name = '' for name, module in m.named_modules(): if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU: # print("FUSED ", prev_previous_name, previous_name, name) torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True) elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d: # print("FUSED ", prev_previous_name, previous_name) torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True) # elif previous_type == nn.Conv2d and type(module) == nn.ReLU: # print("FUSED ", previous_name, name) # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True) prev_previous_type = previous_type prev_previous_name = previous_name previous_type = type(module) previous_name = name
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/midas_net_custom.py
import numpy as np import cv2 import math def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): """Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size """ shape = list(sample["disparity"].shape) if shape[0] >= size[0] and shape[1] >= size[1]: return sample scale = [0, 0] scale[0] = size[0] / shape[0] scale[1] = size[1] / shape[1] scale = max(scale) shape[0] = math.ceil(scale * shape[0]) shape[1] = math.ceil(scale * shape[1]) # resize sample["image"] = cv2.resize( sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method ) sample["disparity"] = cv2.resize( sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return tuple(shape) class Resize(object): """Resize sample to given size (width, height). """ def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method def constrain_to_multiple_of(self, x, min_val=0, max_val=None): y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) if max_val is not None and y > max_val: y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) if y < min_val: y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) return y def get_size(self, width, height): # determine new height and width scale_height = self.__height / height scale_width = self.__width / width if self.__keep_aspect_ratio: if self.__resize_method == "lower_bound": # scale such that output size is lower bound if scale_width > scale_height: # fit width scale_height = scale_width else: # fit height scale_width = scale_height elif self.__resize_method == "upper_bound": # scale such that output size is upper bound if scale_width < scale_height: # fit width scale_height = scale_width else: # fit height scale_width = scale_height elif self.__resize_method == "minimal": # scale as least as possbile if abs(1 - scale_width) < abs(1 - scale_height): # fit width scale_height = scale_width else: # fit height scale_width = scale_height else: raise ValueError( f"resize_method {self.__resize_method} not implemented" ) if self.__resize_method == "lower_bound": new_height = self.constrain_to_multiple_of( scale_height * height, min_val=self.__height ) new_width = self.constrain_to_multiple_of( scale_width * width, min_val=self.__width ) elif self.__resize_method == "upper_bound": new_height = self.constrain_to_multiple_of( scale_height * height, max_val=self.__height ) new_width = self.constrain_to_multiple_of( scale_width * width, max_val=self.__width ) elif self.__resize_method == "minimal": new_height = self.constrain_to_multiple_of(scale_height * height) new_width = self.constrain_to_multiple_of(scale_width * width) else: raise ValueError(f"resize_method {self.__resize_method} not implemented") return (new_width, new_height) def __call__(self, sample): width, height = self.get_size( sample["image"].shape[1], sample["image"].shape[0] ) # resize sample sample["image"] = cv2.resize( sample["image"], (width, height), interpolation=self.__image_interpolation_method, ) if self.__resize_target: if "disparity" in sample: sample["disparity"] = cv2.resize( sample["disparity"], (width, height), interpolation=cv2.INTER_NEAREST, ) if "depth" in sample: sample["depth"] = cv2.resize( sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return sample class NormalizeImage(object): """Normlize image by given mean and std. """ def __init__(self, mean, std): self.__mean = mean self.__std = std def __call__(self, sample): sample["image"] = (sample["image"] - self.__mean) / self.__std return sample class PrepareForNet(object): """Prepare sample for usage as network input. """ def __init__(self): pass def __call__(self, sample): image = np.transpose(sample["image"], (2, 0, 1)) sample["image"] = np.ascontiguousarray(image).astype(np.float32) if "mask" in sample: sample["mask"] = sample["mask"].astype(np.float32) sample["mask"] = np.ascontiguousarray(sample["mask"]) if "disparity" in sample: disparity = sample["disparity"].astype(np.float32) sample["disparity"] = np.ascontiguousarray(disparity) if "depth" in sample: depth = sample["depth"].astype(np.float32) sample["depth"] = np.ascontiguousarray(depth) return sample
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/transforms.py
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock, Interpolate, _make_encoder class MidasNet(BaseModel): """Network for monocular depth estimation. """ def __init__(self, path=None, features=256, non_negative=True): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print("Loading weights: ", path) super(MidasNet, self).__init__() use_pretrained = False if path is None else True self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained) self.scratch.refinenet4 = FeatureFusionBlock(features) self.scratch.refinenet3 = FeatureFusionBlock(features) self.scratch.refinenet2 = FeatureFusionBlock(features) self.scratch.refinenet1 = FeatureFusionBlock(features) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear"), nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/midas_net.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from .base_model import BaseModel from .blocks import ( FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder, forward_vit, ) def _make_fusion_block(features, use_bn): return FeatureFusionBlock_custom( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, ) class DPT(BaseModel): def __init__( self, head, features=256, backbone="vitb_rn50_384", readout="project", channels_last=False, use_bn=False, ): super(DPT, self).__init__() self.channels_last = channels_last hooks = { "vitb_rn50_384": [0, 1, 8, 11], "vitb16_384": [2, 5, 8, 11], "vitl16_384": [5, 11, 17, 23], } # Instantiate backbone and reassemble blocks self.pretrained, self.scratch = _make_encoder( backbone, features, False, # Set to true of you want to train from scratch, uses ImageNet weights groups=1, expand=False, exportable=False, hooks=hooks[backbone], use_readout=readout, ) self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) self.scratch.output_conv = head def forward(self, x): if self.channels_last == True: x.contiguous(memory_format=torch.channels_last) layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return out class DPTDepthModel(DPT): def __init__(self, path=None, non_negative=True, **kwargs): features = kwargs["features"] if "features" in kwargs else 256 head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) super().__init__(head, **kwargs) if path is not None: self.load(path) def forward(self, x): return super().forward(x).squeeze(dim=1)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/dpt_depth.py
import torch class BaseModel(torch.nn.Module): def load(self, path): """Load model from file. Args: path (str): file path """ parameters = torch.load(path, map_location=torch.device('cpu')) if "optimizer" in parameters: parameters = parameters["model"] self.load_state_dict(parameters)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/base_model.py
import torch import torch.nn as nn import timm import types import math import torch.nn.functional as F class Slice(nn.Module): def __init__(self, start_index=1): super(Slice, self).__init__() self.start_index = start_index def forward(self, x): return x[:, self.start_index :] class AddReadout(nn.Module): def __init__(self, start_index=1): super(AddReadout, self).__init__() self.start_index = start_index def forward(self, x): if self.start_index == 2: readout = (x[:, 0] + x[:, 1]) / 2 else: readout = x[:, 0] return x[:, self.start_index :] + readout.unsqueeze(1) class ProjectReadout(nn.Module): def __init__(self, in_features, start_index=1): super(ProjectReadout, self).__init__() self.start_index = start_index self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) def forward(self, x): readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) features = torch.cat((x[:, self.start_index :], readout), -1) return self.project(features) class Transpose(nn.Module): def __init__(self, dim0, dim1): super(Transpose, self).__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x): x = x.transpose(self.dim0, self.dim1) return x def forward_vit(pretrained, x): b, c, h, w = x.shape glob = pretrained.model.forward_flex(x) layer_1 = pretrained.activations["1"] layer_2 = pretrained.activations["2"] layer_3 = pretrained.activations["3"] layer_4 = pretrained.activations["4"] layer_1 = pretrained.act_postprocess1[0:2](layer_1) layer_2 = pretrained.act_postprocess2[0:2](layer_2) layer_3 = pretrained.act_postprocess3[0:2](layer_3) layer_4 = pretrained.act_postprocess4[0:2](layer_4) unflatten = nn.Sequential( nn.Unflatten( 2, torch.Size( [ h // pretrained.model.patch_size[1], w // pretrained.model.patch_size[0], ] ), ) ) if layer_1.ndim == 3: layer_1 = unflatten(layer_1) if layer_2.ndim == 3: layer_2 = unflatten(layer_2) if layer_3.ndim == 3: layer_3 = unflatten(layer_3) if layer_4.ndim == 3: layer_4 = unflatten(layer_4) layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) return layer_1, layer_2, layer_3, layer_4 def _resize_pos_embed(self, posemb, gs_h, gs_w): posemb_tok, posemb_grid = ( posemb[:, : self.start_index], posemb[0, self.start_index :], ) gs_old = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward_flex(self, x): b, c, h, w = x.shape pos_embed = self._resize_pos_embed( self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] ) B = x.shape[0] if hasattr(self.patch_embed, "backbone"): x = self.patch_embed.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) if getattr(self, "dist_token", None) is not None: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) else: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x activations = {} def get_activation(name): def hook(model, input, output): activations[name] = output return hook def get_readout_oper(vit_features, features, use_readout, start_index=1): if use_readout == "ignore": readout_oper = [Slice(start_index)] * len(features) elif use_readout == "add": readout_oper = [AddReadout(start_index)] * len(features) elif use_readout == "project": readout_oper = [ ProjectReadout(vit_features, start_index) for out_feat in features ] else: assert ( False ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" return readout_oper def _make_vit_b16_backbone( model, features=[96, 192, 384, 768], size=[384, 384], hooks=[2, 5, 8, 11], vit_features=768, use_readout="ignore", start_index=1, ): pretrained = nn.Module() pretrained.model = model pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) # 32, 48, 136, 384 pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) hooks = [5, 11, 17, 23] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[256, 512, 1024, 1024], hooks=hooks, vit_features=1024, use_readout=use_readout, ) def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout ) def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout ) def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model( "vit_deit_base_distilled_patch16_384", pretrained=pretrained ) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout, start_index=2, ) def _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=[0, 1, 8, 11], vit_features=768, use_vit_only=False, use_readout="ignore", start_index=1, ): pretrained = nn.Module() pretrained.model = model if use_vit_only == True: pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) else: pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( get_activation("1") ) pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( get_activation("2") ) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) if use_vit_only == True: pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) else: pretrained.act_postprocess1 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess2 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitb_rn50_384( pretrained, use_readout="ignore", hooks=None, use_vit_only=False ): model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) hooks = [0, 1, 8, 11] if hooks == None else hooks return _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, )
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/vit.py
import torch import torch.nn as nn from .vit import ( _make_pretrained_vitb_rn50_384, _make_pretrained_vitl16_384, _make_pretrained_vitb16_384, forward_vit, ) def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",): if backbone == "vitl16_384": pretrained = _make_pretrained_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) # ViT-L/16 - 85.0% Top1 (backbone) elif backbone == "vitb_rn50_384": pretrained = _make_pretrained_vitb_rn50_384( use_pretrained, hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, ) scratch = _make_scratch( [256, 512, 768, 768], features, groups=groups, expand=expand ) # ViT-H/16 - 85.0% Top1 (backbone) elif backbone == "vitb16_384": pretrained = _make_pretrained_vitb16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [96, 192, 384, 768], features, groups=groups, expand=expand ) # ViT-B/16 - 84.6% Top1 (backbone) elif backbone == "resnext101_wsl": pretrained = _make_pretrained_resnext101_wsl(use_pretrained) scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3 elif backbone == "efficientnet_lite3": pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable) scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3 else: print(f"Backbone '{backbone}' not implemented") assert False return pretrained, scratch def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape out_shape4 = out_shape if expand==True: out_shape1 = out_shape out_shape2 = out_shape*2 out_shape3 = out_shape*4 out_shape4 = out_shape*8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) return scratch def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): efficientnet = torch.hub.load( "rwightman/gen-efficientnet-pytorch", "tf_efficientnet_lite3", pretrained=use_pretrained, exportable=exportable ) return _make_efficientnet_backbone(efficientnet) def _make_efficientnet_backbone(effnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] ) pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) return pretrained def _make_resnet_backbone(resnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 ) pretrained.layer2 = resnet.layer2 pretrained.layer3 = resnet.layer3 pretrained.layer4 = resnet.layer4 return pretrained def _make_pretrained_resnext101_wsl(use_pretrained): resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") return _make_resnet_backbone(resnet) class Interpolate(nn.Module): """Interpolation module. """ def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners ) return x class ResidualConvUnit(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x class FeatureFusionBlock(nn.Module): """Feature fusion block. """ def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features) def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: output += self.resConfUnit1(xs[1]) output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=True ) return output class ResidualConvUnit_custom(nn.Module): """Residual convolution module. """ def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups=1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) if self.bn==True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn==True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn==True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) # return out + x class FeatureFusionBlock_custom(nn.Module): """Feature fusion block. """ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups=1 self.expand = expand out_features = features if self.expand==True: out_features = features//2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) # output += res output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/midas/midas/blocks.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/encoders/__init__.py
import torch import torch.nn as nn from torch.utils.checkpoint import checkpoint from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel import open_clip from ldm.util import default, count_params class AbstractEncoder(nn.Module): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError class IdentityEncoder(AbstractEncoder): def encode(self, x): return x class ClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): super().__init__() self.key = key self.embedding = nn.Embedding(n_classes, embed_dim) self.n_classes = n_classes self.ucg_rate = ucg_rate def forward(self, batch, key=None, disable_dropout=False): if key is None: key = self.key # this is for use in crossattn c = batch[key][:, None] if self.ucg_rate > 0. and not disable_dropout: mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1) c = c.long() c = self.embedding(c) return c def get_unconditional_conditioning(self, bs, device="cuda"): uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) uc = torch.ones((bs,), device=device) * uc_class uc = {self.key: uc} return uc def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class FrozenT5Embedder(AbstractEncoder): """Uses the T5 transformer encoder for text""" def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl super().__init__() self.tokenizer = T5Tokenizer.from_pretrained(version) self.transformer = T5EncoderModel.from_pretrained(version) self.device = device self.max_length = max_length # TODO: typical value? if freeze: self.freeze() def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state return z def encode(self, text): return self(text) class FrozenCLIPEmbedder(AbstractEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" LAYERS = [ "last", "pooled", "hidden" ] def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 super().__init__() assert layer in self.LAYERS self.tokenizer = CLIPTokenizer.from_pretrained(version) self.transformer = CLIPTextModel.from_pretrained(version) self.device = device self.max_length = max_length if freeze: self.freeze() self.layer = layer self.layer_idx = layer_idx if layer == "hidden": assert layer_idx is not None assert 0 <= abs(layer_idx) <= 12 def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") if self.layer == "last": z = outputs.last_hidden_state elif self.layer == "pooled": z = outputs.pooler_output[:, None, :] else: z = outputs.hidden_states[self.layer_idx] return z def encode(self, text): return self(text) class FrozenOpenCLIPEmbedder(AbstractEncoder): """ Uses the OpenCLIP transformer encoder for text """ LAYERS = [ #"pooled", "last", "penultimate" ] def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, freeze=True, layer="last"): super().__init__() assert layer in self.LAYERS model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) del model.visual self.model = model self.device = device self.max_length = max_length if freeze: self.freeze() self.layer = layer if self.layer == "last": self.layer_idx = 0 elif self.layer == "penultimate": self.layer_idx = 1 else: raise NotImplementedError() def freeze(self): self.model = self.model.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): tokens = open_clip.tokenize(text) z = self.encode_with_transformer(tokens.to(self.device)) return z def encode_with_transformer(self, text): x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] x = x + self.model.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) x = x.permute(1, 0, 2) # LND -> NLD x = self.model.ln_final(x) return x def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): for i, r in enumerate(self.model.transformer.resblocks): if i == len(self.model.transformer.resblocks) - self.layer_idx: break if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(r, x, attn_mask) else: x = r(x, attn_mask=attn_mask) return x def encode(self, text): return self(text) class FrozenCLIPT5Encoder(AbstractEncoder): def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", clip_max_length=77, t5_max_length=77): super().__init__() self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") def encode(self, text): return self(text) def forward(self, text): clip_z = self.clip_encoder.encode(text) t5_z = self.t5_encoder.encode(text) return [clip_z, t5_z]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/encoders/modules.py
# -*- coding: utf-8 -*- """ # -------------------------------------------- # Super-Resolution # -------------------------------------------- # # Kai Zhang ([email protected]) # https://github.com/cszn # From 2019/03--2021/08 # -------------------------------------------- """ import numpy as np import cv2 import torch from functools import partial import random from scipy import ndimage import scipy import scipy.stats as ss from scipy.interpolate import interp2d from scipy.linalg import orth import albumentations import ldm.modules.image_degradation.utils_image as util def modcrop_np(img, sf): ''' Args: img: numpy image, WxH or WxHxC sf: scale factor Return: cropped image ''' w, h = img.shape[:2] im = np.copy(img) return im[:w - w % sf, :h - h % sf, ...] """ # -------------------------------------------- # anisotropic Gaussian kernels # -------------------------------------------- """ def analytic_kernel(k): """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" k_size = k.shape[0] # Calculate the big kernels size big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) # Loop over the small kernel to fill the big one for r in range(k_size): for c in range(k_size): big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k # Crop the edges of the big kernel to ignore very small values and increase run time of SR crop = k_size // 2 cropped_big_k = big_k[crop:-crop, crop:-crop] # Normalize to 1 return cropped_big_k / cropped_big_k.sum() def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): """ generate an anisotropic Gaussian kernel Args: ksize : e.g., 15, kernel size theta : [0, pi], rotation angle range l1 : [0.1,50], scaling of eigenvalues l2 : [0.1,l1], scaling of eigenvalues If l1 = l2, will get an isotropic Gaussian kernel. Returns: k : kernel """ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) V = np.array([[v[0], v[1]], [v[1], -v[0]]]) D = np.array([[l1, 0], [0, l2]]) Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) return k def gm_blur_kernel(mean, cov, size=15): center = size / 2.0 + 0.5 k = np.zeros([size, size]) for y in range(size): for x in range(size): cy = y - center + 1 cx = x - center + 1 k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) k = k / np.sum(k) return k def shift_pixel(x, sf, upper_left=True): """shift pixel for super-resolution with different scale factors Args: x: WxHxC or WxH sf: scale factor upper_left: shift direction """ h, w = x.shape[:2] shift = (sf - 1) * 0.5 xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) if upper_left: x1 = xv + shift y1 = yv + shift else: x1 = xv - shift y1 = yv - shift x1 = np.clip(x1, 0, w - 1) y1 = np.clip(y1, 0, h - 1) if x.ndim == 2: x = interp2d(xv, yv, x)(x1, y1) if x.ndim == 3: for i in range(x.shape[-1]): x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) return x def blur(x, k): ''' x: image, NxcxHxW k: kernel, Nx1xhxw ''' n, c = x.shape[:2] p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') k = k.repeat(1, c, 1, 1) k = k.view(-1, 1, k.shape[2], k.shape[3]) x = x.view(1, -1, x.shape[2], x.shape[3]) x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) x = x.view(n, c, x.shape[2], x.shape[3]) return x def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): """" # modified version of https://github.com/assafshocher/BlindSR_dataset_generator # Kai Zhang # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var # max_var = 2.5 * sf """ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix lambda_1 = min_var + np.random.rand() * (max_var - min_var) lambda_2 = min_var + np.random.rand() * (max_var - min_var) theta = np.random.rand() * np.pi # random theta noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 # Set COV matrix using Lambdas and Theta LAMBDA = np.diag([lambda_1, lambda_2]) Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) SIGMA = Q @ LAMBDA @ Q.T INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] # Set expectation position (shifting kernel for aligned image) MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) MU = MU[None, None, :, None] # Create meshgrid for Gaussian [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) Z = np.stack([X, Y], 2)[:, :, :, None] # Calcualte Gaussian for every pixel of the kernel ZZ = Z - MU ZZ_t = ZZ.transpose(0, 1, 3, 2) raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) # shift the kernel so it will be centered # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) # Normalize the kernel and return # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) kernel = raw_kernel / np.sum(raw_kernel) return kernel def fspecial_gaussian(hsize, sigma): hsize = [hsize, hsize] siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] std = sigma [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) arg = -(x * x + y * y) / (2 * std * std) h = np.exp(arg) h[h < scipy.finfo(float).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h = h / sumh return h def fspecial_laplacian(alpha): alpha = max([0, min([alpha, 1])]) h1 = alpha / (alpha + 1) h2 = (1 - alpha) / (alpha + 1) h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] h = np.array(h) return h def fspecial(filter_type, *args, **kwargs): ''' python code from: https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py ''' if filter_type == 'gaussian': return fspecial_gaussian(*args, **kwargs) if filter_type == 'laplacian': return fspecial_laplacian(*args, **kwargs) """ # -------------------------------------------- # degradation models # -------------------------------------------- """ def bicubic_degradation(x, sf=3): ''' Args: x: HxWxC image, [0, 1] sf: down-scale factor Return: bicubicly downsampled LR image ''' x = util.imresize_np(x, scale=1 / sf) return x def srmd_degradation(x, k, sf=3): ''' blur + bicubic downsampling Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2018learning, title={Learning a single convolutional super-resolution network for multiple degradations}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3262--3271}, year={2018} } ''' x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' x = bicubic_degradation(x, sf=sf) return x def dpsr_degradation(x, k, sf=3): ''' bicubic downsampling + blur Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2019deep, title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } ''' x = bicubic_degradation(x, sf=sf) x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') return x def classical_degradation(x, k, sf=3): ''' blur + downsampling Args: x: HxWxC image, [0, 1]/[0, 255] k: hxw, double sf: down-scale factor Return: downsampled LR image ''' x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) st = 0 return x[st::sf, st::sf, ...] def add_sharpening(img, weight=0.5, radius=50, threshold=10): """USM sharpening. borrowed from real-ESRGAN Input image: I; Blurry image: B. 1. K = I + weight * (I - B) 2. Mask = 1 if abs(I - B) > threshold, else: 0 3. Blur mask: 4. Out = Mask * K + (1 - Mask) * I Args: img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. weight (float): Sharp weight. Default: 1. radius (float): Kernel size of Gaussian blur. Default: 50. threshold (int): """ if radius % 2 == 0: radius += 1 blur = cv2.GaussianBlur(img, (radius, radius), 0) residual = img - blur mask = np.abs(residual) * 255 > threshold mask = mask.astype('float32') soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) K = img + weight * residual K = np.clip(K, 0, 1) return soft_mask * K + (1 - soft_mask) * img def add_blur(img, sf=4): wd2 = 4.0 + sf wd = 2.0 + 0.2 * sf if random.random() < 0.5: l1 = wd2 * random.random() l2 = wd2 * random.random() k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) else: k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()) img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') return img def add_resize(img, sf=4): rnum = np.random.rand() if rnum > 0.8: # up sf1 = random.uniform(1, 2) elif rnum < 0.7: # down sf1 = random.uniform(0.5 / sf, 1) else: sf1 = 1.0 img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) img = np.clip(img, 0.0, 1.0) return img # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): # noise_level = random.randint(noise_level1, noise_level2) # rnum = np.random.rand() # if rnum > 0.6: # add color Gaussian noise # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) # elif rnum < 0.4: # add grayscale Gaussian noise # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) # else: # add noise # L = noise_level2 / 255. # D = np.diag(np.random.rand(3)) # U = orth(np.random.rand(3, 3)) # conv = np.dot(np.dot(np.transpose(U), D), U) # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) # img = np.clip(img, 0.0, 1.0) # return img def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) rnum = np.random.rand() if rnum > 0.6: # add color Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) elif rnum < 0.4: # add grayscale Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) else: # add noise L = noise_level2 / 255. D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_speckle_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) img = np.clip(img, 0.0, 1.0) rnum = random.random() if rnum > 0.6: img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) elif rnum < 0.4: img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) else: L = noise_level2 / 255. D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_Poisson_noise(img): img = np.clip((img * 255.0).round(), 0, 255) / 255. vals = 10 ** (2 * random.random() + 2.0) # [2, 4] if random.random() < 0.5: img = np.random.poisson(img * vals).astype(np.float32) / vals else: img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray img += noise_gray[:, :, np.newaxis] img = np.clip(img, 0.0, 1.0) return img def add_JPEG_noise(img): quality_factor = random.randint(30, 95) img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img = cv2.imdecode(encimg, 1) img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) return img def random_crop(lq, hq, sf=4, lq_patchsize=64): h, w = lq.shape[:2] rnd_h = random.randint(0, h - lq_patchsize) rnd_w = random.randint(0, w - lq_patchsize) lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] return lq, hq def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = img.shape[:2] img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f'img size ({h1}X{w1}) is too small!') hq = img.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), interpolation=random.choice([1, 2, 3])) else: img = util.imresize_np(img, 1 / 2, True) img = np.clip(img, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_blur(img, sf=sf) elif i == 2: a, b = img.shape[1], img.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) else: k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') img = img[0::sf, 0::sf, ...] # nearest downsampling img = np.clip(img, 0.0, 1.0) elif i == 3: # downsample3 img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) img = np.clip(img, 0.0, 1.0) elif i == 4: # add Gaussian noise img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: img = add_JPEG_noise(img) elif i == 6: # add processed camera sensor noise if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf_ori, lq_patchsize) return img, hq # todo no isp_model? def degradation_bsrgan_variant(image, sf=4, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ image = util.uint2single(image) isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = image.shape[:2] image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = image.shape[:2] hq = image.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), interpolation=random.choice([1, 2, 3])) else: image = util.imresize_np(image, 1 / 2, True) image = np.clip(image, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] for i in shuffle_order: if i == 0: image = add_blur(image, sf=sf) elif i == 1: image = add_blur(image, sf=sf) elif i == 2: a, b = image.shape[1], image.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), interpolation=random.choice([1, 2, 3])) else: k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') image = image[0::sf, 0::sf, ...] # nearest downsampling image = np.clip(image, 0.0, 1.0) elif i == 3: # downsample3 image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) image = np.clip(image, 0.0, 1.0) elif i == 4: # add Gaussian noise image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: image = add_JPEG_noise(image) # elif i == 6: # # add processed camera sensor noise # if random.random() < isp_prob and isp_model is not None: # with torch.no_grad(): # img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise image = add_JPEG_noise(image) image = util.single2uint(image) example = {"image":image} return example # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None): """ This is an extended degradation model by combining the degradation models of BSRGAN and Real-ESRGAN ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor use_shuffle: the degradation shuffle use_sharp: sharpening the img Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ h1, w1 = img.shape[:2] img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f'img size ({h1}X{w1}) is too small!') if use_sharp: img = add_sharpening(img) hq = img.copy() if random.random() < shuffle_prob: shuffle_order = random.sample(range(13), 13) else: shuffle_order = list(range(13)) # local shuffle for noise, JPEG is always the last one shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_resize(img, sf=sf) elif i == 2: img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 3: if random.random() < poisson_prob: img = add_Poisson_noise(img) elif i == 4: if random.random() < speckle_prob: img = add_speckle_noise(img) elif i == 5: if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) elif i == 6: img = add_JPEG_noise(img) elif i == 7: img = add_blur(img, sf=sf) elif i == 8: img = add_resize(img, sf=sf) elif i == 9: img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 10: if random.random() < poisson_prob: img = add_Poisson_noise(img) elif i == 11: if random.random() < speckle_prob: img = add_speckle_noise(img) elif i == 12: if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) else: print('check the shuffle!') # resize to desired size img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), interpolation=random.choice([1, 2, 3])) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf, lq_patchsize) return img, hq if __name__ == '__main__': print("hey") img = util.imread_uint('utils/test.png', 3) print(img) img = util.uint2single(img) print(img) img = img[:448, :448] h = img.shape[0] // 4 print("resizing to", h) sf = 4 deg_fn = partial(degradation_bsrgan_variant, sf=sf) for i in range(20): print(i) img_lq = deg_fn(img) print(img_lq) img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"] print(img_lq.shape) print("bicubic", img_lq_bicubic.shape) print(img_hq.shape) lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0) lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0) img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) util.imsave(img_concat, str(i) + '.png')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/image_degradation/bsrgan.py
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/image_degradation/__init__.py
import os import math import random import numpy as np import torch import cv2 from torchvision.utils import make_grid from datetime import datetime #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" ''' # -------------------------------------------- # Kai Zhang (github: https://github.com/cszn) # 03/Mar/2019 # -------------------------------------------- # https://github.com/twhui/SRGAN-pyTorch # https://github.com/xinntao/BasicSR # -------------------------------------------- ''' IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def get_timestamp(): return datetime.now().strftime('%y%m%d-%H%M%S') def imshow(x, title=None, cbar=False, figsize=None): plt.figure(figsize=figsize) plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') if title: plt.title(title) if cbar: plt.colorbar() plt.show() def surf(Z, cmap='rainbow', figsize=None): plt.figure(figsize=figsize) ax3 = plt.axes(projection='3d') w, h = Z.shape[:2] xx = np.arange(0,w,1) yy = np.arange(0,h,1) X, Y = np.meshgrid(xx, yy) ax3.plot_surface(X,Y,Z,cmap=cmap) #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) plt.show() ''' # -------------------------------------------- # get image pathes # -------------------------------------------- ''' def get_image_paths(dataroot): paths = None # return None if dataroot is None if dataroot is not None: paths = sorted(_get_paths_from_images(dataroot)) return paths def _get_paths_from_images(path): assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images ''' # -------------------------------------------- # split large images into small images # -------------------------------------------- ''' def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): w, h = img.shape[:2] patches = [] if w > p_max and h > p_max: w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) w1.append(w-p_size) h1.append(h-p_size) # print(w1) # print(h1) for i in w1: for j in h1: patches.append(img[i:i+p_size, j:j+p_size,:]) else: patches.append(img) return patches def imssave(imgs, img_path): """ imgs: list, N images of size WxHxC """ img_name, ext = os.path.splitext(os.path.basename(img_path)) for i, img in enumerate(imgs): if img.ndim == 3: img = img[:, :, [2, 1, 0]] new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') cv2.imwrite(new_path, img) def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): """ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) will be splitted. Args: original_dataroot: taget_dataroot: p_size: size of small images p_overlap: patch size in training is a good choice p_max: images with smaller size than (p_max)x(p_max) keep unchanged. """ paths = get_image_paths(original_dataroot) for img_path in paths: # img_name, ext = os.path.splitext(os.path.basename(img_path)) img = imread_uint(img_path, n_channels=n_channels) patches = patches_from_image(img, p_size, p_overlap, p_max) imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) #if original_dataroot == taget_dataroot: #del img_path ''' # -------------------------------------------- # makedir # -------------------------------------------- ''' def mkdir(path): if not os.path.exists(path): os.makedirs(path) def mkdirs(paths): if isinstance(paths, str): mkdir(paths) else: for path in paths: mkdir(path) def mkdir_and_rename(path): if os.path.exists(path): new_name = path + '_archived_' + get_timestamp() print('Path already exists. Rename it to [{:s}]'.format(new_name)) os.rename(path, new_name) os.makedirs(path) ''' # -------------------------------------------- # read image from path # opencv is fast, but read BGR numpy image # -------------------------------------------- ''' # -------------------------------------------- # get uint8 image of size HxWxn_channles (RGB) # -------------------------------------------- def imread_uint(path, n_channels=3): # input: path # output: HxWx3(RGB or GGG), or HxWx1 (G) if n_channels == 1: img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE img = np.expand_dims(img, axis=2) # HxWx1 elif n_channels == 3: img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG else: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB return img # -------------------------------------------- # matlab's imwrite # -------------------------------------------- def imsave(img, img_path): img = np.squeeze(img) if img.ndim == 3: img = img[:, :, [2, 1, 0]] cv2.imwrite(img_path, img) def imwrite(img, img_path): img = np.squeeze(img) if img.ndim == 3: img = img[:, :, [2, 1, 0]] cv2.imwrite(img_path, img) # -------------------------------------------- # get single image of size HxWxn_channles (BGR) # -------------------------------------------- def read_img(path): # read image by cv2 # return: Numpy float32, HWC, BGR, [0,1] img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE img = img.astype(np.float32) / 255. if img.ndim == 2: img = np.expand_dims(img, axis=2) # some images have 4 channels if img.shape[2] > 3: img = img[:, :, :3] return img ''' # -------------------------------------------- # image format conversion # -------------------------------------------- # numpy(single) <---> numpy(unit) # numpy(single) <---> tensor # numpy(unit) <---> tensor # -------------------------------------------- ''' # -------------------------------------------- # numpy(single) [0, 1] <---> numpy(unit) # -------------------------------------------- def uint2single(img): return np.float32(img/255.) def single2uint(img): return np.uint8((img.clip(0, 1)*255.).round()) def uint162single(img): return np.float32(img/65535.) def single2uint16(img): return np.uint16((img.clip(0, 1)*65535.).round()) # -------------------------------------------- # numpy(unit) (HxWxC or HxW) <---> tensor # -------------------------------------------- # convert uint to 4-dimensional torch tensor def uint2tensor4(img): if img.ndim == 2: img = np.expand_dims(img, axis=2) return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) # convert uint to 3-dimensional torch tensor def uint2tensor3(img): if img.ndim == 2: img = np.expand_dims(img, axis=2) return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) # convert 2/3/4-dimensional torch tensor to uint def tensor2uint(img): img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) return np.uint8((img*255.0).round()) # -------------------------------------------- # numpy(single) (HxWxC) <---> tensor # -------------------------------------------- # convert single (HxWxC) to 3-dimensional torch tensor def single2tensor3(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() # convert single (HxWxC) to 4-dimensional torch tensor def single2tensor4(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) # convert torch tensor to single def tensor2single(img): img = img.data.squeeze().float().cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) return img # convert torch tensor to single def tensor2single3(img): img = img.data.squeeze().float().cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) elif img.ndim == 2: img = np.expand_dims(img, axis=2) return img def single2tensor5(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) def single32tensor5(img): return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) def single42tensor4(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() # from skimage.io import imread, imsave def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): ''' Converts a torch Tensor into an image Numpy array of BGR channel order Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) ''' tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] n_dim = tensor.dim() if n_dim == 4: n_img = len(tensor) img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 3: img_np = tensor.numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 2: img_np = tensor.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) if out_type == np.uint8: img_np = (img_np * 255.0).round() # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. return img_np.astype(out_type) ''' # -------------------------------------------- # Augmentation, flipe and/or rotate # -------------------------------------------- # The following two are enough. # (1) augmet_img: numpy image of WxHxC or WxH # (2) augment_img_tensor4: tensor image 1xCxWxH # -------------------------------------------- ''' def augment_img(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' if mode == 0: return img elif mode == 1: return np.flipud(np.rot90(img)) elif mode == 2: return np.flipud(img) elif mode == 3: return np.rot90(img, k=3) elif mode == 4: return np.flipud(np.rot90(img, k=2)) elif mode == 5: return np.rot90(img) elif mode == 6: return np.rot90(img, k=2) elif mode == 7: return np.flipud(np.rot90(img, k=3)) def augment_img_tensor4(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' if mode == 0: return img elif mode == 1: return img.rot90(1, [2, 3]).flip([2]) elif mode == 2: return img.flip([2]) elif mode == 3: return img.rot90(3, [2, 3]) elif mode == 4: return img.rot90(2, [2, 3]).flip([2]) elif mode == 5: return img.rot90(1, [2, 3]) elif mode == 6: return img.rot90(2, [2, 3]) elif mode == 7: return img.rot90(3, [2, 3]).flip([2]) def augment_img_tensor(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' img_size = img.size() img_np = img.data.cpu().numpy() if len(img_size) == 3: img_np = np.transpose(img_np, (1, 2, 0)) elif len(img_size) == 4: img_np = np.transpose(img_np, (2, 3, 1, 0)) img_np = augment_img(img_np, mode=mode) img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) if len(img_size) == 3: img_tensor = img_tensor.permute(2, 0, 1) elif len(img_size) == 4: img_tensor = img_tensor.permute(3, 2, 0, 1) return img_tensor.type_as(img) def augment_img_np3(img, mode=0): if mode == 0: return img elif mode == 1: return img.transpose(1, 0, 2) elif mode == 2: return img[::-1, :, :] elif mode == 3: img = img[::-1, :, :] img = img.transpose(1, 0, 2) return img elif mode == 4: return img[:, ::-1, :] elif mode == 5: img = img[:, ::-1, :] img = img.transpose(1, 0, 2) return img elif mode == 6: img = img[:, ::-1, :] img = img[::-1, :, :] return img elif mode == 7: img = img[:, ::-1, :] img = img[::-1, :, :] img = img.transpose(1, 0, 2) return img def augment_imgs(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 def _augment(img): if hflip: img = img[:, ::-1, :] if vflip: img = img[::-1, :, :] if rot90: img = img.transpose(1, 0, 2) return img return [_augment(img) for img in img_list] ''' # -------------------------------------------- # modcrop and shave # -------------------------------------------- ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img def shave(img_in, border=0): # img_in: Numpy, HWC or HW img = np.copy(img_in) h, w = img.shape[:2] img = img[border:h-border, border:w-border] return img ''' # -------------------------------------------- # image processing process on numpy image # channel_convert(in_c, tar_type, img_list): # rgb2ycbcr(img, only_y=True): # bgr2ycbcr(img, only_y=True): # ycbcr2rgb(img): # -------------------------------------------- ''' def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. # convert if only_y: rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def ycbcr2rgb(img): '''same as matlab ycbcr2rgb Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. # convert rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True): '''bgr version of rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. # convert if only_y: rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list ''' # -------------------------------------------- # metric, PSNR and SSIM # -------------------------------------------- ''' # -------------------------------------------- # PSNR # -------------------------------------------- def calculate_psnr(img1, img2, border=0): # img1 and img2 have range [0, 255] #img1 = img1.squeeze() #img2 = img2.squeeze() if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') h, w = img1.shape[:2] img1 = img1[border:h-border, border:w-border] img2 = img2[border:h-border, border:w-border] img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) # -------------------------------------------- # SSIM # -------------------------------------------- def calculate_ssim(img1, img2, border=0): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' #img1 = img1.squeeze() #img2 = img2.squeeze() if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') h, w = img1.shape[:2] img1 = img1[border:h-border, border:w-border] img2 = img2[border:h-border, border:w-border] if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1[:,:,i], img2[:,:,i])) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.') def ssim(img1, img2): C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() ''' # -------------------------------------------- # matlab's bicubic imresize (numpy and torch) [0, 1] # -------------------------------------------- ''' # matlab 'imresize' function, now only support 'bicubic' def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply cubic kernel if (scale < 1) and (antialiasing): weights = scale * cubic(distance_to_center * scale) else: weights = cubic(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) # -------------------------------------------- # imresize for tensor image [0, 1] # -------------------------------------------- def imresize(img, scale, antialiasing=True): # Now the scale should be the same for H and W # input: img: pytorch tensor, CHW or HW [0,1] # output: CHW or HW [0,1] w/o round need_squeeze = True if img.dim() == 2 else False if need_squeeze: img.unsqueeze_(0) in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) kernel_width = 4 kernel = 'cubic' # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) for j in range(out_C): out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) for j in range(out_C): out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) if need_squeeze: out_2.squeeze_() return out_2 # -------------------------------------------- # imresize for numpy image [0, 1] # -------------------------------------------- def imresize_np(img, scale, antialiasing=True): # Now the scale should be the same for H and W # input: img: Numpy, HWC or HW [0,1] # output: HWC or HW [0,1] w/o round img = torch.from_numpy(img) need_squeeze = True if img.dim() == 2 else False if need_squeeze: img.unsqueeze_(2) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) kernel_width = 4 kernel = 'cubic' # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) for j in range(out_C): out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) for j in range(out_C): out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) if need_squeeze: out_2.squeeze_() return out_2.numpy() if __name__ == '__main__': print('---') # img = imread_uint('test.bmp', 3) # img = uint2single(img) # img_bicubic = imresize_np(img, 1/4)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/image_degradation/utils_image.py
# -*- coding: utf-8 -*- import numpy as np import cv2 import torch from functools import partial import random from scipy import ndimage import scipy import scipy.stats as ss from scipy.interpolate import interp2d from scipy.linalg import orth import albumentations import ldm.modules.image_degradation.utils_image as util """ # -------------------------------------------- # Super-Resolution # -------------------------------------------- # # Kai Zhang ([email protected]) # https://github.com/cszn # From 2019/03--2021/08 # -------------------------------------------- """ def modcrop_np(img, sf): ''' Args: img: numpy image, WxH or WxHxC sf: scale factor Return: cropped image ''' w, h = img.shape[:2] im = np.copy(img) return im[:w - w % sf, :h - h % sf, ...] """ # -------------------------------------------- # anisotropic Gaussian kernels # -------------------------------------------- """ def analytic_kernel(k): """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" k_size = k.shape[0] # Calculate the big kernels size big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) # Loop over the small kernel to fill the big one for r in range(k_size): for c in range(k_size): big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k # Crop the edges of the big kernel to ignore very small values and increase run time of SR crop = k_size // 2 cropped_big_k = big_k[crop:-crop, crop:-crop] # Normalize to 1 return cropped_big_k / cropped_big_k.sum() def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): """ generate an anisotropic Gaussian kernel Args: ksize : e.g., 15, kernel size theta : [0, pi], rotation angle range l1 : [0.1,50], scaling of eigenvalues l2 : [0.1,l1], scaling of eigenvalues If l1 = l2, will get an isotropic Gaussian kernel. Returns: k : kernel """ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) V = np.array([[v[0], v[1]], [v[1], -v[0]]]) D = np.array([[l1, 0], [0, l2]]) Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) return k def gm_blur_kernel(mean, cov, size=15): center = size / 2.0 + 0.5 k = np.zeros([size, size]) for y in range(size): for x in range(size): cy = y - center + 1 cx = x - center + 1 k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) k = k / np.sum(k) return k def shift_pixel(x, sf, upper_left=True): """shift pixel for super-resolution with different scale factors Args: x: WxHxC or WxH sf: scale factor upper_left: shift direction """ h, w = x.shape[:2] shift = (sf - 1) * 0.5 xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) if upper_left: x1 = xv + shift y1 = yv + shift else: x1 = xv - shift y1 = yv - shift x1 = np.clip(x1, 0, w - 1) y1 = np.clip(y1, 0, h - 1) if x.ndim == 2: x = interp2d(xv, yv, x)(x1, y1) if x.ndim == 3: for i in range(x.shape[-1]): x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) return x def blur(x, k): ''' x: image, NxcxHxW k: kernel, Nx1xhxw ''' n, c = x.shape[:2] p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') k = k.repeat(1, c, 1, 1) k = k.view(-1, 1, k.shape[2], k.shape[3]) x = x.view(1, -1, x.shape[2], x.shape[3]) x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) x = x.view(n, c, x.shape[2], x.shape[3]) return x def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): """" # modified version of https://github.com/assafshocher/BlindSR_dataset_generator # Kai Zhang # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var # max_var = 2.5 * sf """ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix lambda_1 = min_var + np.random.rand() * (max_var - min_var) lambda_2 = min_var + np.random.rand() * (max_var - min_var) theta = np.random.rand() * np.pi # random theta noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 # Set COV matrix using Lambdas and Theta LAMBDA = np.diag([lambda_1, lambda_2]) Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) SIGMA = Q @ LAMBDA @ Q.T INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] # Set expectation position (shifting kernel for aligned image) MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) MU = MU[None, None, :, None] # Create meshgrid for Gaussian [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) Z = np.stack([X, Y], 2)[:, :, :, None] # Calcualte Gaussian for every pixel of the kernel ZZ = Z - MU ZZ_t = ZZ.transpose(0, 1, 3, 2) raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) # shift the kernel so it will be centered # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) # Normalize the kernel and return # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) kernel = raw_kernel / np.sum(raw_kernel) return kernel def fspecial_gaussian(hsize, sigma): hsize = [hsize, hsize] siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] std = sigma [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) arg = -(x * x + y * y) / (2 * std * std) h = np.exp(arg) h[h < scipy.finfo(float).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h = h / sumh return h def fspecial_laplacian(alpha): alpha = max([0, min([alpha, 1])]) h1 = alpha / (alpha + 1) h2 = (1 - alpha) / (alpha + 1) h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] h = np.array(h) return h def fspecial(filter_type, *args, **kwargs): ''' python code from: https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py ''' if filter_type == 'gaussian': return fspecial_gaussian(*args, **kwargs) if filter_type == 'laplacian': return fspecial_laplacian(*args, **kwargs) """ # -------------------------------------------- # degradation models # -------------------------------------------- """ def bicubic_degradation(x, sf=3): ''' Args: x: HxWxC image, [0, 1] sf: down-scale factor Return: bicubicly downsampled LR image ''' x = util.imresize_np(x, scale=1 / sf) return x def srmd_degradation(x, k, sf=3): ''' blur + bicubic downsampling Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2018learning, title={Learning a single convolutional super-resolution network for multiple degradations}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3262--3271}, year={2018} } ''' x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' x = bicubic_degradation(x, sf=sf) return x def dpsr_degradation(x, k, sf=3): ''' bicubic downsampling + blur Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2019deep, title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } ''' x = bicubic_degradation(x, sf=sf) x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') return x def classical_degradation(x, k, sf=3): ''' blur + downsampling Args: x: HxWxC image, [0, 1]/[0, 255] k: hxw, double sf: down-scale factor Return: downsampled LR image ''' x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) st = 0 return x[st::sf, st::sf, ...] def add_sharpening(img, weight=0.5, radius=50, threshold=10): """USM sharpening. borrowed from real-ESRGAN Input image: I; Blurry image: B. 1. K = I + weight * (I - B) 2. Mask = 1 if abs(I - B) > threshold, else: 0 3. Blur mask: 4. Out = Mask * K + (1 - Mask) * I Args: img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. weight (float): Sharp weight. Default: 1. radius (float): Kernel size of Gaussian blur. Default: 50. threshold (int): """ if radius % 2 == 0: radius += 1 blur = cv2.GaussianBlur(img, (radius, radius), 0) residual = img - blur mask = np.abs(residual) * 255 > threshold mask = mask.astype('float32') soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) K = img + weight * residual K = np.clip(K, 0, 1) return soft_mask * K + (1 - soft_mask) * img def add_blur(img, sf=4): wd2 = 4.0 + sf wd = 2.0 + 0.2 * sf wd2 = wd2/4 wd = wd/4 if random.random() < 0.5: l1 = wd2 * random.random() l2 = wd2 * random.random() k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) else: k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random()) img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror') return img def add_resize(img, sf=4): rnum = np.random.rand() if rnum > 0.8: # up sf1 = random.uniform(1, 2) elif rnum < 0.7: # down sf1 = random.uniform(0.5 / sf, 1) else: sf1 = 1.0 img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) img = np.clip(img, 0.0, 1.0) return img # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): # noise_level = random.randint(noise_level1, noise_level2) # rnum = np.random.rand() # if rnum > 0.6: # add color Gaussian noise # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) # elif rnum < 0.4: # add grayscale Gaussian noise # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) # else: # add noise # L = noise_level2 / 255. # D = np.diag(np.random.rand(3)) # U = orth(np.random.rand(3, 3)) # conv = np.dot(np.dot(np.transpose(U), D), U) # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) # img = np.clip(img, 0.0, 1.0) # return img def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) rnum = np.random.rand() if rnum > 0.6: # add color Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) elif rnum < 0.4: # add grayscale Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) else: # add noise L = noise_level2 / 255. D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_speckle_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) img = np.clip(img, 0.0, 1.0) rnum = random.random() if rnum > 0.6: img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) elif rnum < 0.4: img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) else: L = noise_level2 / 255. D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_Poisson_noise(img): img = np.clip((img * 255.0).round(), 0, 255) / 255. vals = 10 ** (2 * random.random() + 2.0) # [2, 4] if random.random() < 0.5: img = np.random.poisson(img * vals).astype(np.float32) / vals else: img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray img += noise_gray[:, :, np.newaxis] img = np.clip(img, 0.0, 1.0) return img def add_JPEG_noise(img): quality_factor = random.randint(80, 95) img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img = cv2.imdecode(encimg, 1) img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) return img def random_crop(lq, hq, sf=4, lq_patchsize=64): h, w = lq.shape[:2] rnd_h = random.randint(0, h - lq_patchsize) rnd_w = random.randint(0, w - lq_patchsize) lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] return lq, hq def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = img.shape[:2] img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f'img size ({h1}X{w1}) is too small!') hq = img.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), interpolation=random.choice([1, 2, 3])) else: img = util.imresize_np(img, 1 / 2, True) img = np.clip(img, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_blur(img, sf=sf) elif i == 2: a, b = img.shape[1], img.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) else: k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') img = img[0::sf, 0::sf, ...] # nearest downsampling img = np.clip(img, 0.0, 1.0) elif i == 3: # downsample3 img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) img = np.clip(img, 0.0, 1.0) elif i == 4: # add Gaussian noise img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: img = add_JPEG_noise(img) elif i == 6: # add processed camera sensor noise if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf_ori, lq_patchsize) return img, hq # todo no isp_model? def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ image = util.uint2single(image) isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = image.shape[:2] image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = image.shape[:2] hq = image.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), interpolation=random.choice([1, 2, 3])) else: image = util.imresize_np(image, 1 / 2, True) image = np.clip(image, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] for i in shuffle_order: if i == 0: image = add_blur(image, sf=sf) # elif i == 1: # image = add_blur(image, sf=sf) if i == 0: pass elif i == 2: a, b = image.shape[1], image.shape[0] # downsample2 if random.random() < 0.8: sf1 = random.uniform(1, 2 * sf) image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), interpolation=random.choice([1, 2, 3])) else: k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') image = image[0::sf, 0::sf, ...] # nearest downsampling image = np.clip(image, 0.0, 1.0) elif i == 3: # downsample3 image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) image = np.clip(image, 0.0, 1.0) elif i == 4: # add Gaussian noise image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: image = add_JPEG_noise(image) # # elif i == 6: # # add processed camera sensor noise # if random.random() < isp_prob and isp_model is not None: # with torch.no_grad(): # img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise image = add_JPEG_noise(image) image = util.single2uint(image) if up: image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then example = {"image": image} return example if __name__ == '__main__': print("hey") img = util.imread_uint('utils/test.png', 3) img = img[:448, :448] h = img.shape[0] // 4 print("resizing to", h) sf = 4 deg_fn = partial(degradation_bsrgan_variant, sf=sf) for i in range(20): print(i) img_hq = img img_lq = deg_fn(img)["image"] img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) print(img_lq) img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"] print(img_lq.shape) print("bicubic", img_lq_bicubic.shape) print(img_hq.shape) lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0) lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0) img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) util.imsave(img_concat, str(i) + '.png')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/image_degradation/bsrgan_light.py
# adopted from # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py # and # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py # and # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py # # thanks! import os import math import torch import torch.nn as nn import numpy as np from einops import repeat from ldm.util import instantiate_from_config def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if schedule == "linear": betas = ( torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 ) elif schedule == "cosine": timesteps = ( torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s ) alphas = timesteps / (1 + cosine_s) * np.pi / 2 alphas = torch.cos(alphas).pow(2) alphas = alphas / alphas[0] betas = 1 - alphas[1:] / alphas[:-1] betas = np.clip(betas, a_min=0, a_max=0.999) elif schedule == "sqrt_linear": betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) elif schedule == "sqrt": betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 else: raise ValueError(f"schedule '{schedule}' unknown.") return betas.numpy() def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): if ddim_discr_method == 'uniform': c = num_ddpm_timesteps // num_ddim_timesteps ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) elif ddim_discr_method == 'quad': ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) else: raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') # assert ddim_timesteps.shape[0] == num_ddim_timesteps # add one to get the final alpha values right (the ones from first scale to data during sampling) steps_out = ddim_timesteps + 1 if verbose: print(f'Selected timesteps for ddim sampler: {steps_out}') return steps_out def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): # select alphas for computing the variance schedule alphas = alphacums[ddim_timesteps] alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) # according the the formula provided in https://arxiv.org/abs/2010.02502 sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) if verbose: print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') print(f'For the chosen value of eta, which is {eta}, ' f'this results in the following sigma_t schedule for ddim sampler {sigmas}') return sigmas, alphas, alphas_prev def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: args = tuple(inputs) + tuple(params) return CheckpointFunction.apply(func, len(inputs), *args) else: return func(*inputs) class CheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, length, *args): ctx.run_function = run_function ctx.input_tensors = list(args[:length]) ctx.input_params = list(args[length:]) ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), "dtype": torch.get_autocast_gpu_dtype(), "cache_enabled": torch.is_autocast_cache_enabled()} with torch.no_grad(): output_tensors = ctx.run_function(*ctx.input_tensors) return output_tensors @staticmethod def backward(ctx, *output_grads): ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] with torch.enable_grad(), \ torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): # Fixes a bug where the first op in run_function modifies the # Tensor storage in place, which is not allowed for detach()'d # Tensors. shallow_copies = [x.view_as(x) for x in ctx.input_tensors] output_tensors = ctx.run_function(*shallow_copies) input_grads = torch.autograd.grad( output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True, ) del ctx.input_tensors del ctx.input_params del output_tensors return (None, None) + input_grads def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) else: embedding = repeat(timesteps, 'b -> b d', d=dim) return embedding def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def normalization(channels): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(32, channels) # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. class SiLU(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") class HybridConditioner(nn.Module): def __init__(self, c_concat_config, c_crossattn_config): super().__init__() self.concat_conditioner = instantiate_from_config(c_concat_config) self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) def forward(self, c_concat, c_crossattn): c_concat = self.concat_conditioner(c_concat) c_crossattn = self.crossattn_conditioner(c_crossattn) return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/diffusionmodules/util.py
import torch import torch.nn as nn import numpy as np from functools import partial from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule from ldm.util import default class AbstractLowScaleModel(nn.Module): # for concatenating a downsampled image to the latent representation def __init__(self, noise_schedule_config=None): super(AbstractLowScaleModel, self).__init__() if noise_schedule_config is not None: self.register_schedule(**noise_schedule_config) def register_schedule(self, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.linear_start = linear_start self.linear_end = linear_end assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' to_torch = partial(torch.tensor, dtype=torch.float32) self.register_buffer('betas', to_torch(betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) def forward(self, x): return x, None def decode(self, x): return x class SimpleImageConcat(AbstractLowScaleModel): # no noise level conditioning def __init__(self): super(SimpleImageConcat, self).__init__(noise_schedule_config=None) self.max_noise_level = 0 def forward(self, x): # fix to constant noise level return x, torch.zeros(x.shape[0], device=x.device).long() class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel): def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False): super().__init__(noise_schedule_config=noise_schedule_config) self.max_noise_level = max_noise_level def forward(self, x, noise_level=None): if noise_level is None: noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() else: assert isinstance(noise_level, torch.Tensor) z = self.q_sample(x, noise_level) return z, noise_level
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/diffusionmodules/upscaling.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/diffusionmodules/__init__.py
# pytorch_diffusion + derived encoder decoder import math import torch import torch.nn as nn import numpy as np from einops import rearrange from typing import Optional, Any from ldm.modules.attention import MemoryEfficientCrossAttention try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False print("No module 'xformers'. Proceeding without it.") def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0,1,0,0)) return emb def nonlinearity(x): # swish return x*torch.sigmoid(x) def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0,1,0,1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = q.reshape(b,c,h*w) q = q.permute(0,2,1) # b,hw,c k = k.reshape(b,c,h*w) # b,c,hw w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b,c,h*w) w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b,c,h,w) h_ = self.proj_out(h_) return x+h_ class MemoryEfficientAttnBlock(nn.Module): """ Uses xformers efficient implementation, see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 Note: this is a single-head self-attention operation """ # def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.attention_op: Optional[Any] = None def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention B, C, H, W = q.shape q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) q, k, v = map( lambda t: t.unsqueeze(3) .reshape(B, t.shape[1], 1, C) .permute(0, 2, 1, 3) .reshape(B * 1, t.shape[1], C) .contiguous(), (q, k, v), ) out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) out = ( out.unsqueeze(0) .reshape(B, 1, out.shape[1], C) .permute(0, 2, 1, 3) .reshape(B, out.shape[1], C) ) out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) out = self.proj_out(out) return x+out class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): def forward(self, x, context=None, mask=None): b, c, h, w = x.shape x = rearrange(x, 'b c h w -> b (h w) c') out = super().forward(x, context=context, mask=mask) out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c) return x + out def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown' if XFORMERS_IS_AVAILBLE and attn_type == "vanilla": attn_type = "vanilla-xformers" print(f"making attention of type '{attn_type}' with {in_channels} in_channels") if attn_type == "vanilla": assert attn_kwargs is None return AttnBlock(in_channels) elif attn_type == "vanilla-xformers": print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") return MemoryEfficientAttnBlock(in_channels) elif type == "memory-efficient-cross-attn": attn_kwargs["query_dim"] = in_channels return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) elif attn_type == "none": return nn.Identity(in_channels) else: raise NotImplementedError() class Model(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = self.ch*4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.use_timestep = use_timestep if self.use_timestep: # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList([ torch.nn.Linear(self.ch, self.temb_ch), torch.nn.Linear(self.temb_ch, self.temb_ch), ]) # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] skip_in = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): if i_block == self.num_res_blocks: skip_in = ch*in_ch_mult[i_level] block.append(ResnetBlock(in_channels=block_in+skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, t=None, context=None): #assert x.shape[2] == x.shape[3] == self.resolution if context is not None: # assume aligned context, cat along channel axis x = torch.cat((x, context), dim=1) if self.use_timestep: # timestep embedding assert t is not None temb = get_timestep_embedding(t, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) else: temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block]( torch.cat([h, hs.pop()], dim=1), temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h def get_last_layer(self): return self.conv_out.weight class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", **ignore_kwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, attn_type="vanilla", **ignorekwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) print("Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) if self.tanh_out: h = torch.tanh(h) return h class SimpleDecoder(nn.Module): def __init__(self, in_channels, out_channels, *args, **kwargs): super().__init__() self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), ResnetBlock(in_channels=in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0), ResnetBlock(in_channels=2 * in_channels, out_channels=4 * in_channels, temb_channels=0, dropout=0.0), ResnetBlock(in_channels=4 * in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0), nn.Conv2d(2*in_channels, in_channels, 1), Upsample(in_channels, with_conv=True)]) # end self.norm_out = Normalize(in_channels) self.conv_out = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): for i, layer in enumerate(self.model): if i in [1,2,3]: x = layer(x, None) else: x = layer(x) h = self.norm_out(x) h = nonlinearity(h) x = self.conv_out(h) return x class UpsampleDecoder(nn.Module): def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, ch_mult=(2,2), dropout=0.0): super().__init__() # upsampling self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks block_in = in_channels curr_res = resolution // 2 ** (self.num_resolutions - 1) self.res_blocks = nn.ModuleList() self.upsample_blocks = nn.ModuleList() for i_level in range(self.num_resolutions): res_block = [] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): res_block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out self.res_blocks.append(nn.ModuleList(res_block)) if i_level != self.num_resolutions - 1: self.upsample_blocks.append(Upsample(block_in, True)) curr_res = curr_res * 2 # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): # upsampling h = x for k, i_level in enumerate(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.res_blocks[i_level][i_block](h, None) if i_level != self.num_resolutions - 1: h = self.upsample_blocks[k](h) h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class LatentRescaler(nn.Module): def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): super().__init__() # residual block, interpolate, residual block self.factor = factor self.conv_in = nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1) self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0) for _ in range(depth)]) self.attn = AttnBlock(mid_channels) self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0) for _ in range(depth)]) self.conv_out = nn.Conv2d(mid_channels, out_channels, kernel_size=1, ) def forward(self, x): x = self.conv_in(x) for block in self.res_block1: x = block(x, None) x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) x = self.attn(x) for block in self.res_block2: x = block(x, None) x = self.conv_out(x) return x class MergedRescaleEncoder(nn.Module): def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): super().__init__() intermediate_chn = ch * ch_mult[-1] self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, z_channels=intermediate_chn, double_z=False, resolution=resolution, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, out_ch=None) self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) def forward(self, x): x = self.encoder(x) x = self.rescaler(x) return x class MergedRescaleDecoder(nn.Module): def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): super().__init__() tmp_chn = z_channels*ch_mult[-1] self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, ch_mult=ch_mult, resolution=resolution, ch=ch) self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, out_channels=tmp_chn, depth=rescale_module_depth) def forward(self, x): x = self.rescaler(x) x = self.decoder(x) return x class Upsampler(nn.Module): def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): super().__init__() assert out_size >= in_size num_blocks = int(np.log2(out_size//in_size))+1 factor_up = 1.+ (out_size % in_size) print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, out_channels=in_channels) self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, attn_resolutions=[], in_channels=None, ch=in_channels, ch_mult=[ch_mult for _ in range(num_blocks)]) def forward(self, x): x = self.rescaler(x) x = self.decoder(x) return x class Resize(nn.Module): def __init__(self, in_channels=None, learned=False, mode="bilinear"): super().__init__() self.with_conv = learned self.mode = mode if self.with_conv: print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") raise NotImplementedError() assert in_channels is not None # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1) def forward(self, x, scale_factor=1.0): if scale_factor==1.0: return x else: x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/diffusionmodules/model.py
from abc import abstractmethod import math import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F from ldm.modules.diffusionmodules.util import ( checkpoint, conv_nd, linear, avg_pool_nd, zero_module, normalization, timestep_embedding, ) from ldm.modules.attention import SpatialTransformer from ldm.util import exists # dummy replace def convert_module_to_f16(x): pass def convert_module_to_f32(x): pass ## go class AttentionPool2d(nn.Module): """ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py """ def __init__( self, spacial_dim: int, embed_dim: int, num_heads_channels: int, output_dim: int = None, ): super().__init__() self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) self.num_heads = embed_dim // num_heads_channels self.attention = QKVAttention(self.num_heads) def forward(self, x): b, c, *_spatial = x.shape x = x.reshape(b, c, -1) # NC(HW) x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) x = self.qkv_proj(x) x = self.attention(x) x = self.c_proj(x) return x[:, :, 0] class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward(self, x, emb, context=None): for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) elif isinstance(layer, SpatialTransformer): x = layer(x, context) else: x = layer(x) return x class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) def forward(self, x): assert x.shape[1] == self.channels if self.dims == 3: x = F.interpolate( x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" ) else: x = F.interpolate(x, scale_factor=2, mode="nearest") if self.use_conv: x = self.conv(x) return x class TransposedUpsample(nn.Module): 'Learned 2x upsampling without padding' def __init__(self, channels, out_channels=None, ks=5): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) def forward(self,x): return self.up(x) class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use a spatial convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for downsampling. """ def __init__( self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, use_checkpoint=False, up=False, down=False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, 3, padding=1), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, 3, padding=1 ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x, emb): """ Apply the block to a Tensor, conditioned on a timestep embedding. :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. :return: an [N x C x ...] Tensor of outputs. """ return checkpoint( self._forward, (x, emb), self.parameters(), self.use_checkpoint ) def _forward(self, x, emb): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = th.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, use_new_attention_order=False, ): super().__init__() self.channels = channels if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.norm = normalization(channels) self.qkv = conv_nd(1, channels, channels * 3, 1) if use_new_attention_order: # split qkv before split heads self.attention = QKVAttention(self.num_heads) else: # split heads before split qkv self.attention = QKVAttentionLegacy(self.num_heads) self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) def forward(self, x): return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! #return pt_checkpoint(self._forward, x) # pytorch def _forward(self, x): b, c, *spatial = x.shape x = x.reshape(b, c, -1) qkv = self.qkv(self.norm(x)) h = self.attention(qkv) h = self.proj_out(h) return (x + h).reshape(b, c, *spatial) def count_flops_attn(model, _x, y): """ A counter for the `thop` package to count the operations in an attention operation. Meant to be used like: macs, params = thop.profile( model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops}, ) """ b, c, *spatial = y[0].shape num_spatial = int(np.prod(spatial)) # We perform two matmuls with the same number of ops. # The first computes the weight matrix, the second computes # the combination of the value vectors. matmul_ops = 2 * b * (num_spatial ** 2) * c model.total_ops += th.DoubleTensor([matmul_ops]) class QKVAttentionLegacy(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", (q * scale).view(bs * self.n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length), ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class UNetModel(nn.Module): """ The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample rates at which attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x downsampling, attention will be used. :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param conv_resample: if True, use learned convolutions for upsampling and downsampling. :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this model will be class-conditional with `num_classes` classes. :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use a fixed channel width per attention head. :param num_heads_upsample: works with num_heads to set a different number of heads for upsampling. Deprecated. :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially increased efficiency. """ def __init__( self, image_size, in_channels, model_channels, out_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, use_fp16=False, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, use_spatial_transformer=False, # custom transformer support transformer_depth=1, # custom transformer support context_dim=None, # custom transformer support n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model legacy=True, disable_self_attentions=None, num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, ): super().__init__() if use_spatial_transformer: assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' if context_dim is not None: assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' from omegaconf.listconfig import ListConfig if type(context_dim) == ListConfig: context_dim = list(context_dim) if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' if num_head_channels == -1: assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: if len(num_res_blocks) != len(channel_mult): raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " f"This option has LESS priority than attention_resolutions {attention_resolutions}, " f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " f"attention will still not be set.") self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.num_classes = num_classes self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample self.predict_codebook_ids = n_embed is not None time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) if self.num_classes is not None: if isinstance(self.num_classes, int): self.label_emb = nn.Embedding(num_classes, time_embed_dim) elif self.num_classes == "continuous": print("setting up linear c_adm embedding layer") self.label_emb = nn.Linear(1, time_embed_dim) else: raise ValueError() self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(self.num_res_blocks[level] + 1): ich = input_block_chans.pop() layers = [ ResBlock( ch + ich, time_embed_dim, dropout, out_channels=model_channels * mult, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = model_channels * mult if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or i < num_attention_blocks[level]: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads_upsample, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ) ) if level and i == self.num_res_blocks[level]: out_ch = ch layers.append( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, up=True, ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch self.out = nn.Sequential( normalization(ch), nn.SiLU(), zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), ) if self.predict_codebook_ids: self.id_predictor = nn.Sequential( normalization(ch), conv_nd(dims, model_channels, n_embed, 1), #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits ) def convert_to_fp16(self): """ Convert the torso of the model to float16. """ self.input_blocks.apply(convert_module_to_f16) self.middle_block.apply(convert_module_to_f16) self.output_blocks.apply(convert_module_to_f16) def convert_to_fp32(self): """ Convert the torso of the model to float32. """ self.input_blocks.apply(convert_module_to_f32) self.middle_block.apply(convert_module_to_f32) self.output_blocks.apply(convert_module_to_f32) def forward(self, x, timesteps=None, context=None, y=None,**kwargs): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param context: conditioning plugged in via crossattn :param y: an [N] Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs. """ assert (y is not None) == ( self.num_classes is not None ), "must specify y if and only if the model is class-conditional" hs = [] t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) if self.num_classes is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb, context) hs.append(h) h = self.middle_block(h, emb, context) for module in self.output_blocks: h = th.cat([h, hs.pop()], dim=1) h = module(h, emb, context) h = h.type(x.dtype) if self.predict_codebook_ids: return self.id_predictor(h) else: return self.out(h)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/diffusionmodules/openaimodel.py
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/distributions/__init__.py
import torch import numpy as np class AbstractDistribution: def sample(self): raise NotImplementedError() def mode(self): raise NotImplementedError() class DiracDistribution(AbstractDistribution): def __init__(self, value): self.value = value def sample(self): return self.value def mode(self): return self.value class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self): x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3]) def nll(self, sample, dims=[1,2,3]): if self.deterministic: return torch.Tensor([0.]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean def normal_kl(mean1, logvar1, mean2, logvar2): """ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 Compute the KL divergence between two gaussians. Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases. """ tensor = None for obj in (mean1, logvar1, mean2, logvar2): if isinstance(obj, torch.Tensor): tensor = obj break assert tensor is not None, "at least one argument must be a Tensor" # Force variances to be Tensors. Broadcasting helps convert scalars to # Tensors, but it does not work for torch.exp(). logvar1, logvar2 = [ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) for x in (logvar1, logvar2) ] return 0.5 * ( -1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) )
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/ldm/modules/distributions/distributions.py