python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data0 = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data0 = data0.reshape(nB, nC, nH, nW).astype(np.float32) data1 = np.array([0, 0, 0, 0], dtype=np.int32) data2 = np.array([1, 2, 3, 4], dtype=np.int32) data3 = np.array([1, 1, 1, 1], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # 需要使用 profile config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (4, )) inputT2 = network.add_input("inputT2", trt.int32, (4, )) inputT3 = network.add_input("inputT3", trt.int32, (4, )) profile.set_shape_input(inputT1.name, (0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2)) # 这里设置的不是 shape input 的形状而是值 profile.set_shape_input(inputT2.name, (1, 1, 1, 1), (1, 2, 3, 4), (1, 3, 4, 5)) profile.set_shape_input(inputT3.name, (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1)) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)) #sliceLayer.set_input(0,inputT0) sliceLayer.set_input(1, inputT1) sliceLayer.set_input(2, inputT2) sliceLayer.set_input(3, inputT3) #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() context.set_shape_input(1, data1) # 运行时绑定真实形状张量值 context.set_shape_input(2, data2) context.set_shape_input(3, data3) nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data0) bufferH.append(data1) bufferH.append(data2) bufferH.append(data3) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/DynamicSlice.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, -1, -1)) profile.set_shape(inputT0.name, [1, 1, 1, 1], [nB, nC, nH, nW], [nB * 2, nC * 2, nH * 2, nW * 2]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network oneLayer = network.add_constant([4], np.array([0, 1, 1, 1], dtype=np.int32)) shape0Layer = network.add_shape(inputT0) shape1Layer = network.add_elementwise(shape0Layer.get_output(0), oneLayer.get_output(0), trt.ElementWiseOperation.SUB) sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) # 给 inputT0 除了最高维以外每一维减少 1 sliceLayer.set_input(2, shape1Layer.get_output(0)) #shape1 = [1] + [ x-1 for x in inputT0.shape[1:] ] #sliceLayer = network.add_slice(inputT0,(0,0,0,0),shape1,(1,1,1,1)) # 错误的做法,因为 dynamic shape 模式下 inputT0.shape 可能含有 -1,不能作为新形状 #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/DynamicShuffleSlice.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (1, 2, 3, 4), (1, 2, 2, 2)) sliceLayer.mode = trt.SliceMode.WRAP #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/Mode.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer = network.add_constant([1], np.array([-1], dtype=np.float32)) sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (1, 2, 3, 4), (1, 2, 2, 2)) sliceLayer.mode = trt.SliceMode.FILL sliceLayer.set_input(4, constantLayer.get_output(0)) # 在 4 号位上设置固定值 #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/Set_input+ModeFill.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer0 = network.add_constant([4], np.array([0, 0, 0, 0], dtype=np.int32)) constantLayer1 = network.add_constant([4], np.array([1, 2, 3, 4], dtype=np.int32)) constantLayer2 = network.add_constant([4], np.array([1, 1, 1, 1], dtype=np.int32)) sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)) #sliceLayer.set_input(0,inputT0) # 0 号输入是被 slice 的张量 sliceLayer.set_input(1, constantLayer0.get_output(0)) # 2、3、4 号输入分别对应起点、形状和步长 sliceLayer.set_input(2, constantLayer1.get_output(0)) sliceLayer.set_input(3, constantLayer2.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/StaticSlice.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)) sliceLayer.start = (0, 0, 0, 0) # 重设起点位置 sliceLayer.shape = (1, 2, 3, 4) # 重设输出张量形状 sliceLayer.stride = (1, 1, 1, 1) # 重设切割步长,1 为连续提取元素 #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/Start+Shape+Stride.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network sliceLayer = network.add_slice(inputT0, (0, 0, 0, 0), (1, 2, 3, 4), (1, 1, 1, 1)) #------------------------------------------------------------------------------- Network network.mark_output(sliceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(1, 1 + nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) # 输入数据 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network if False: paddingLayer = network.add_padding_nd(inputT0, (1, 2), (3, 4)) network.mark_output(paddingLayer.get_output(0)) else: padU = 1 padD = 3 padL = 2 padR = 4 # 需要在 B 和 C 维度上做 padding 时可以继续添加 sliceLayer = network.add_slice(inputT0, (0, 0, -padU, -padL), (nB, nC, nH + padU + padD, nW + padL + padR), (1, 1, 1, 1)) sliceLayer.mode = trt.SliceMode.FILL network.mark_output(sliceLayer.get_output(0)) #------------------------------------------------------------------------------- Network engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SliceLayer/Padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.ones([nB, nC, nH, nW], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network reduceLayer = network.add_reduce(inputT0, trt.ReduceOperation.SUM, 1 << 1, False) reduceLayer.keep_dims = True # 重设是否保留被规约维度 #------------------------------------------------------------------------------- Network network.mark_output(reduceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ReduceLayer/Keep_dims.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.ones([nB, nC, nH, nW], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network reduceLayer = network.add_reduce(inputT0, trt.ReduceOperation.PROD, 1 << 0, False) reduceLayer.op = trt.ReduceOperation.SUM # 重设规约运算种类 #------------------------------------------------------------------------------- Network network.mark_output(reduceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ReduceLayer/Op.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.ones([nB, nC, nH, nW], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network reduceLayer = network.add_reduce(inputT0, trt.ReduceOperation.SUM, 1 << 1, False) #------------------------------------------------------------------------------- Network network.mark_output(reduceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ReduceLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.ones([nB, nC, nH, nW], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network axesIndex = 0 reduceLayer = network.add_reduce(inputT0, trt.ReduceOperation.SUM, 1 << 1, False) reduceLayer.axes = 1 << axesIndex # 规约计算的轴号 #------------------------------------------------------------------------------- Network network.mark_output(reduceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ReduceLayer/Axes.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) resizeLayer.scales = (nOut / nB, nCOut / nC, nHOut / nH, nWOut / nW) # 各维扩张比率,newShape = np.floor(oldShape * factor) #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Scales.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, -1, -1)) profile.set_shape(inputT0.name, [1, 1, 1, 1], [nB, nC, nH, nW], [nB * 2, nC * 2, nH * 2, nW * 2]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network shape0Layer = network.add_shape(inputT0) shape1Layer = network.add_elementwise(shape0Layer.get_output(0), shape0Layer.get_output(0), trt.ElementWiseOperation.SUM) resizeLayer = network.add_resize(inputT0) resizeLayer.set_input(1, shape1Layer.get_output(0)) #resizeLayer.shape = np.array(inputT0.shape)*2 # wrong practice, because shape in dynamic shape mode may contain -1 and cannot be used as a new shape #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/DynamicResize.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) resizeLayer.shape = (nB, nCOut, nHOut, nWOut) # 线性插值只对末 3 维有效 resizeLayer.resize_mode = trt.ResizeMode.LINEAR # 指定插值方法,默认值 trt.ResizeMode.NEAREST #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Resize_mode.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer = network.add_constant([4], np.array([nOut, nCOut, nHOut, nWOut], dtype=np.int32)) # 静态新形状 resizeLayer = network.add_resize(inputT0) #resizeLayer.set_input(0,inputT0) # 0 号输入是被 resize 的张量 resizeLayer.set_input(1, constantLayer.get_output(0)) # 1 号输入是新形状张量 #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/StaticResize.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Coordinate_transformation.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) resizeLayer.shape = (nB, nCOut, 1, 1) resizeLayer.resize_mode = trt.ResizeMode.LINEAR resizeLayer.selector_for_single_pixel = trt.ResizeSelector.UPPER # 设定单像素映射方法,默认值 FORMULA #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Selector_for_single_pixel.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data0 = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) data1 = np.array([nOut, nCOut, nHOut, nWOut], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # 需要使用 profile config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (4, )) profile.set_shape_input(inputT1.name, (1, 1, 1, 1), (nB, nC, nH, nW), (nOut + 1, nCOut + 2, nHOut + 3, nWOut + 4)) # 这里设置的不是 shape input 的形状而是值,范围覆盖住之后需要的值就好 config.add_optimization_profile(profile) resizeLayer = network.add_resize(inputT0) #resizeLayer.set_input(0,inputT0) resizeLayer.set_input(1, inputT1) network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() context.set_shape_input(1, data1) # 运行时绑定真实形状张量值 nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data0) bufferH.append(np.zeros([4], dtype=np.int32).reshape(-1)) # 传形状张量数据可用垃圾值 for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/DynamicResizeWithShapeTensor.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) resizeLayer.shape = (nOut, nCOut, nHOut, nWOut) # 设置输出张量形状 #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Shape.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) resizeLayer.shape = (nB, nCOut, nHOut, nWOut) resizeLayer.resize_mode = trt.ResizeMode.LINEAR # 使用线性插值,与上面的 coordinate_transformation 统一 resizeLayer.align_corners = True # 指定角落对齐,默认值 False #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) #engineString = builder.build_serialized_network(network, config) #engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) engine = builder.build_engine(network, config) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Align_corners-TRT7.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 nOut, nCOut, nHOut, nWOut = 2, 3, 6, 10 # 输出张量 CHW data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network resizeLayer = network.add_resize(inputT0) resizeLayer.shape = (nB, nCOut, nHOut, nWOut) resizeLayer.nearest_rounding = trt.ResizeRoundMode.CEIL # 设置最近邻插值舍入方法,默认值 FLOOR #------------------------------------------------------------------------------- Network network.mark_output(resizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ResizeLayer/Nearest_rounding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.stride_nd = (2, 2) # add stride to observe the reuslt easily. convolutionLayer.padding_mode = trt.PaddingMode.SAME_UPPER #convolutionLayer.padding_mode = trt.PaddingMode.SAME_LOWER #convolutionLayer.padding_mode = trt.PaddingMode.EXPLICIT_ROUND_UP #convolutionLayer.padding_mode = trt.PaddingMode.EXPLICIT_ROUND_DOWN #convolutionLayer.padding_mode = trt.PaddingMode.CAFFE_ROUND_UP #convolutionLayer.padding_mode = trt.PaddingMode.CAFFE_ROUND_DOWN #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Pading_mode.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 2, 6, 9 nGroup = 2 nCOut, nKernelHeight, nKernelWidth = nGroup, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(nB, nC, nH, nW) weight = np.power(10, range(4, -5, -1), dtype=np.float32) weight = np.ascontiguousarray(np.concatenate([weight, -weight], 0)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.num_groups = nGroup #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Num_groups.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hPre = wPre = 1 convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.pre_padding = (hPre, wPre) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Pre_padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network convolutionLayer = network.add_convolution_nd(inputT0, 1, (1, 1), np.zeros(1, dtype=np.float32)) convolutionLayer.num_output_maps = nCOut convolutionLayer.kernel_size_nd = (nKernelHeight, nKernelWidth) convolutionLayer.kernel = trt.Weights(weight) convolutionLayer.bias = trt.Weights(bias) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Num_output_Maps+Kernel_size_nd+Kernel+Bias.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 2, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(nB, 1, nC, nH, nW) weight = np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth) weight = np.ascontiguousarray(np.concatenate([weight, -weight], 0)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, 1, nC, nH, nW)) # dimension of input tensor is greater or equal to 5 #------------------------------------------------------------------------------- Network convolutionLayer = network.add_convolution_nd(inputT0, nCOut, weight.shape, trt.Weights(weight), trt.Weights(bias)) # dimension of convolution kernel is 3 #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Convolution3D.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hD = wD = 2 convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.dilation_nd = (hD, wD) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Dilation_nd.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() config.set_flag(trt.BuilderFlag.INT8) # need INT8 mode inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer0 = network.add_constant([], np.array([1], dtype=np.float32)) constantLayer1 = network.add_constant([], np.array([1], dtype=np.float32)) weightLayer = network.add_constant([nCOut, nC, nKernelHeight, nKernelWidth], weight) quantizeLayer0 = network.add_quantize(inputT0, constantLayer0.get_output(0)) quantizeLayer0.axis = 0 dequantizeLayer0 = network.add_dequantize(quantizeLayer0.get_output(0), constantLayer1.get_output(0)) dequantizeLayer0.axis = 0 quantizeLayer1 = network.add_quantize(weightLayer.get_output(0), constantLayer0.get_output(0)) quantizeLayer1.axis = 0 dequantizeLayer1 = network.add_dequantize(quantizeLayer1.get_output(0), constantLayer1.get_output(0)) dequantizeLayer1.axis = 0 convolutionLayer = network.add_convolution_nd(dequantizeLayer0.get_output(0), nCOut, (nKernelHeight, nKernelWidth), trt.Weights(), trt.Weights(bias)) # set weight as empty in the constructor convolutionLayer.set_input(1, dequantizeLayer1.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Set_input+INT8QDQ.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hPost = wPost = 1 convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.post_padding = (hPost, wPost) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Post_padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hP = wP = 1 convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.padding_nd = (hP, wP) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Padding_nd.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nCOut, nKernelHeight, nKernelWidth = 1, 3, 3 data = np.tile(np.arange(1, 1 + nKernelHeight * nKernelWidth, dtype=np.float32).reshape(nKernelHeight, nKernelWidth), (nC, nH // nKernelHeight, nW // nKernelWidth)).reshape(1, nC, nH, nW) weight = np.ascontiguousarray(np.power(10, range(4, -5, -1), dtype=np.float32).reshape(nCOut, nKernelHeight, nKernelWidth)) bias = np.ascontiguousarray(np.zeros(nCOut, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hS = wS = 2 convolutionLayer = network.add_convolution_nd(inputT0, nCOut, (nKernelHeight, nKernelWidth), trt.Weights(weight), trt.Weights(bias)) convolutionLayer.stride_nd = (hS, wS) #------------------------------------------------------------------------------- Network network.mark_output(convolutionLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ConvolutionNdLayer/Stride_nd.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 2, 3, 4, 5 data0 = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) data1 = np.array([[[0, 2, 1, 1], [1, 0, 3, 2], [0, 1, 2, 3]], [[1, 2, 1, 1], [0, 0, 3, 2], [1, 1, 2, 3]]], dtype=np.int32) data2 = -np.arange(nB * nC, dtype=np.float32).reshape(nB, nC) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() def scatterCPU(data0, data1, data2): output = data0 for i in range(2): for j in range(3): #print("i=%d,j=%d,index=%s,updateValue=%f" % (i, j, data1[i, j], data2[i, j])) output[data1[i, j][0], data1[i, j][1], data1[i, j][2], data1[i, j][3]] = data2[i, j] return output logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, [nB, nC, nH, nW]) inputT1 = network.add_input("inputT1", trt.int32, [nB, nC, nH]) inputT2 = network.add_input("inputT2", trt.float32, [nB, nC]) #------------------------------------------------------------------------------- Network scatterLayer = network.add_scatter(inputT0, inputT1, inputT2, trt.ScatterMode.ND) #------------------------------------------------------------------------------- Network network.mark_output(scatterLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data0) bufferH.append(data1) bufferH.append(data2) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer) resCPU = scatterCPU(data0, data1, data2) print("diff:\n", bufferH[nInput] - resCPU)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScatterLayer/ModeND.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) nB, nC, nH, nW = 1, 3, 4, 5 data0 = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) data1 = np.tile(np.arange(nH), [nB, nC, 1, nW]).astype(np.int32).reshape(nB, nC, nH, nW) data2 = -data0 scatterAxis = 2 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() def scatterCPU(data0, data1, data2, axis): # 用于说明算法 nB, nC, nH, nW = data0.shape output = data0 if axis == 0: for n in range(nB): for c in range(nC): for h in range(nH): for w in range(nW): output[data1[n, c, h, w], c, h, w] = data2[n, c, h, w] #print("<%d,%d,%d,%d>[%d,%d,%d,%d],%f>"%(n,c,h,w,n,c,data1[n,c,h,w],w,data2[n,c,h,w])) #print(output) elif axis == 1: for n in range(nB): for c in range(nC): for h in range(nH): for w in range(nW): output[n, data1[n, c, h, w], h, w] = data2[n, c, h, w] #print("<%d,%d,%d,%d>[%d,%d,%d,%d],%f>"%(n,c,h,w,n,c,data1[n,c,h,w],w,data2[n,c,h,w])) #print(output) elif axis == 2: for n in range(nB): for c in range(nC): for h in range(nH): for w in range(nW): output[n, c, data1[n, c, h, w], w] = data2[n, c, h, w] #print("<%d,%d,%d,%d>[%d,%d,%d,%d],%f>"%(n,c,h,w,n,c,data1[n,c,h,w],w,data2[n,c,h,w])) #print(output) elif axis == 3: for n in range(nB): for c in range(nC): for h in range(nH): for w in range(nW): output[n, c, h, data1[n, c, h, w]] = data2[n, c, h, w] #print("<%d,%d,%d,%d>[%d,%d,%d,%d],%f>"%(n,c,h,w,n,c,data1[n,c,h,w],w,data2[n,c,h,w])) #print(output) else: print("Failed scattering at axis %d !" % axis) return None return output logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (nB, nC, nH, nW)) inputT2 = network.add_input("inputT2", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network scatterLayer = network.add_scatter(inputT0, inputT1, inputT2, trt.ScatterMode.ELEMENT) scatterLayer.axis = scatterAxis #------------------------------------------------------------------------------- Network network.mark_output(scatterLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data0) bufferH.append(data1) bufferH.append(data2) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer) resCPU = scatterCPU(data0, data1, data2, scatterAxis) print("diff:\n", bufferH[nInput] - resCPU)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScatterLayer/ModeElement.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 2, 3, 4, 5 data0 = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) data1 = np.array([[0, 2, 1], [1, 0, 3], [0, 1, 2], [1, 2, 1], [0, 0, 3], [1, 1, 2]], dtype=np.int32) data2 = -np.arange(6 * 5, dtype=np.float32).reshape(6, 5) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() def scatterCPU(data0, data1, data2): output = data0 for i in range(6): #print("i=%d,index=%s,updateValue="%(i,data1[i]),data2[i]) output[data1[i][0], data1[i][1], data1[i][2]] = data2[i] return output logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (6, 3)) inputT2 = network.add_input("inputT2", trt.float32, (6, 5)) #------------------------------------------------------------------------------- Network scatterLayer = network.add_scatter(inputT0, inputT1, inputT2, trt.ScatterMode.ND) #------------------------------------------------------------------------------- Network network.mark_output(scatterLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data0) bufferH.append(data1) bufferH.append(data2) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer) resCPU = scatterCPU(data0, data1, data2) print("diff:\n", bufferH[nInput] - resCPU)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScatterLayer/ModeND2.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart data0 = np.load("NMSIOData.npz")["box"] data1 = np.load("NMSIOData.npz")["score"] nB = 1 nC = data0.shape[0] np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # need OptimizationProfile though in Static Shape mode config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, 4)) inputT1 = network.add_input("inputT1", trt.float32, (nB, nC, 1)) profile.set_shape(inputT0.name, [nB, nC, 4], [nB, nC, 4], [nB, nC, 4]) profile.set_shape(inputT1.name, [nB, nC, 1], [nB, nC, 1], [nB, nC, 1]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network maxOutput = network.add_constant([], np.int32(5000).reshape(-1)) nmsLayer = network.add_nms(inputT0, inputT1, maxOutput.get_output(0)) nmsLayer.bounding_box_format = trt.BoundingBoxFormat.CENTER_SIZES # set box format #------------------------------------------------------------------------------- Network network.mark_output(nmsLayer.get_output(0)) network.mark_output(nmsLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] dDDTensor = {} # note whether a tensor is data-dependent nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() print("Before inference") # context.get_tensor_shape(lTensorName[1]) here returns (-1, 3) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) dDDTensor[lTensorName[i]] = (-1 in context.get_tensor_shape(lTensorName[i])) bufferH = [] bufferH.append(data0) bufferH.append(data1) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # deal with data-dependent output tensor # context.get_tensor_shape(lTensorName[i]) here returns (-1, 3), which can not be used as size of a buffer nMaxByteOutput = context.get_max_output_size(lTensorName[i]) # use get_max_output_size to get maximum of the output (padding to 2^k byte) dataType = engine.get_tensor_dtype(lTensorName[i]) bufferH.append(np.empty([nMaxByteOutput // dataType.itemsize], dtype=trt.nptype(dataType))) #bufferH.append(np.empty([nB * nC * 3], dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) # we can also calculate it manually, case by case else: # normal output tensor bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) print("After inference") # once after inference, context.get_tensor_shape(lTensorName[1]) will return real shape of output tensor, which can be used as the size of a buffer for i in range(nIO): # context.get_tensor_shape(lTensorName[1]) here returns real shape of output tensor print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # cut the data-dependent output buffer into real shape shapeReal = context.get_tensor_shape(lTensorName[i]) bufferH[i] = bufferH[i].reshape(-1)[:np.prod(shapeReal)].reshape(shapeReal) # take first np.prod(shapeReal) elements for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/NMSLayer/BoundingBoxFormat.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart data0 = np.load("NMSIOData.npz")["box"] data1 = np.load("NMSIOData.npz")["score"] nB = 1 nC = data0.shape[0] np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # need OptimizationProfile though in Static Shape mode config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, 4)) inputT1 = network.add_input("inputT1", trt.float32, (nB, nC, 1)) profile.set_shape(inputT0.name, [nB, nC, 4], [nB, nC, 4], [nB, nC, 4]) profile.set_shape(inputT1.name, [nB, nC, 1], [nB, nC, 1], [nB, nC, 1]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network maxOutput = network.add_constant([], np.int32(5000).reshape(-1)) nmsLayer = network.add_nms(inputT0, inputT1, maxOutput.get_output(0)) nmsLayer.topk_box_limit = 100 # set maximum of operator TopK #------------------------------------------------------------------------------- Network network.mark_output(nmsLayer.get_output(0)) network.mark_output(nmsLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] dDDTensor = {} # note whether a tensor is data-dependent nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() print("Before inference") # context.get_tensor_shape(lTensorName[1]) here returns (-1, 3) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) dDDTensor[lTensorName[i]] = (-1 in context.get_tensor_shape(lTensorName[i])) bufferH = [] bufferH.append(data0) bufferH.append(data1) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # deal with data-dependent output tensor # context.get_tensor_shape(lTensorName[i]) here returns (-1, 3), which can not be used as size of a buffer nMaxByteOutput = context.get_max_output_size(lTensorName[i]) # use get_max_output_size to get maximum of the output (padding to 2^k byte) dataType = engine.get_tensor_dtype(lTensorName[i]) bufferH.append(np.empty([nMaxByteOutput // dataType.itemsize], dtype=trt.nptype(dataType))) #bufferH.append(np.empty([nB * nC * 3], dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) # we can also calculate it manually, case by case else: # normal output tensor bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) print("After inference") # once after inference, context.get_tensor_shape(lTensorName[1]) will return real shape of output tensor, which can be used as the size of a buffer for i in range(nIO): # context.get_tensor_shape(lTensorName[1]) here returns real shape of output tensor print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # cut the data-dependent output buffer into real shape shapeReal = context.get_tensor_shape(lTensorName[i]) bufferH[i] = bufferH[i].reshape(-1)[:np.prod(shapeReal)].reshape(shapeReal) # take first np.prod(shapeReal) elements for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/NMSLayer/TopkBoxLimit.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart data0 = np.load("NMSIOData.npz")["box"] data1 = np.load("NMSIOData.npz")["score"] nB = 1 nC = data0.shape[0] np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # need OptimizationProfile though in Static Shape mode config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, 4)) inputT1 = network.add_input("inputT1", trt.float32, (nB, nC, 1)) profile.set_shape(inputT0.name, [nB, nC, 4], [nB, nC, 4], [nB, nC, 4]) profile.set_shape(inputT1.name, [nB, nC, 1], [nB, nC, 1], [nB, nC, 1]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network maxOutput = network.add_constant([], np.int32(5000).reshape(-1)) nmsLayer = network.add_nms(inputT0, inputT1, maxOutput.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(nmsLayer.get_output(0)) network.mark_output(nmsLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] dDDTensor = {} # note whether a tensor is data-dependent nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() print("Before inference") # context.get_tensor_shape(lTensorName[1]) here returns (-1, 3) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) dDDTensor[lTensorName[i]] = (-1 in context.get_tensor_shape(lTensorName[i])) bufferH = [] bufferH.append(data0) bufferH.append(data1) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # deal with data-dependent output tensor # context.get_tensor_shape(lTensorName[i]) here returns (-1, 3), which can not be used as size of a buffer nMaxByteOutput = context.get_max_output_size(lTensorName[i]) # use get_max_output_size to get maximum of the output (padding to 2^k byte) dataType = engine.get_tensor_dtype(lTensorName[i]) bufferH.append(np.empty([nMaxByteOutput // dataType.itemsize], dtype=trt.nptype(dataType))) #bufferH.append(np.empty([nB * nC * 3], dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) # we can also calculate it manually, case by case else: # normal output tensor bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) print("After inference") # once after inference, context.get_tensor_shape(lTensorName[1]) will return real shape of output tensor, which can be used as the size of a buffer for i in range(nIO): # context.get_tensor_shape(lTensorName[1]) here returns real shape of output tensor print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # cut the data-dependent output buffer into real shape shapeReal = context.get_tensor_shape(lTensorName[i]) bufferH[i] = bufferH[i].reshape(-1)[:np.prod(shapeReal)].reshape(shapeReal) # take first np.prod(shapeReal) elements for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/NMSLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 lenIndex = 3 data0 = np.arange(nC).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data0 = data0.reshape(nB, nC, nH, nW).astype(np.float32) data1 = np.array([1, 0, 2], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (len(data1), )) #------------------------------------------------------------------------------- Network gatherLayer = network.add_gather(inputT0, inputT1, 1) gatherLayer.axis = 0 # default value: 1 #------------------------------------------------------------------------------- Network network.mark_output(gatherLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GatherLayer/Axis.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data0 = np.arange(nC).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data0 = data0.reshape(nB, nC, nH, nW).astype(np.float32) data1 = np.array([[0, 1, 2], [0, 2, -1]], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, data1.shape) #------------------------------------------------------------------------------- Network gatherLayer = network.add_gather(inputT0, inputT1, 1) gatherLayer.mode = trt.GatherMode.ND #gatherLayer.num_elementwise_dims = 0 #------------------------------------------------------------------------------- Network network.mark_output(gatherLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GatherLayer/ModeND.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 lenIndex = 3 data0 = np.arange(nC).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data0 = data0.reshape(nB, nC, nH, nW).astype(np.float32) data1 = np.zeros(data0.shape, dtype=np.int32) np.random.seed(31193) axis = 2 # use random permutation for i in range(data0.shape[0]): for j in range(data0.shape[1]): for k in range(data0.shape[3]): data1[i, j, :, k] = np.random.permutation(range(data0.shape[2])) """# use random number for i in range(data0.shape[0]): for j in range(data0.shape[1]): for k in range(data0.shape[3]): data1[i,j,:,k] = [ np.random.randint(0,data0.shape[2]) for i in range(data0.shape[2]) ] """ np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network gatherLayer = network.add_gather(inputT0, inputT1, 1) gatherLayer.mode = trt.GatherMode.ELEMENT gatherLayer.axis = 2 #------------------------------------------------------------------------------- Network network.mark_output(gatherLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GatherLayer/ModeElement.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 lenIndex = 3 data0 = np.arange(nC).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data0 = data0.reshape(nB, nC, nH, nW).astype(np.float32) data1 = np.array([[0, 1, 2], [0, 2, -1]], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, data1.shape) #------------------------------------------------------------------------------- Network gatherLayer = network.add_gather(inputT0, inputT1, 1) gatherLayer.mode = trt.GatherMode.ND #gatherLayer.num_elementwise_dims = 0 #------------------------------------------------------------------------------- Network network.mark_output(gatherLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GatherLayer/ModeDefault.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart data0 = np.arange(3 * 3 * 4 * 5, dtype=np.float32).reshape(3, 3, 4, 5) data1 = np.zeros([3, 1, 4], dtype=np.int32) + 0 data2 = np.zeros([3, 1, 4], dtype=np.int32) + 1 data3 = np.zeros([3, 1, 4], dtype=np.int32) + 2 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, [-1, -1, -1, -1]) profile.set_shape(inputT0.name, [1, 3, 4, 5], [3, 3, 4, 5], [6, 6, 8, 10]) indexT0 = network.add_input("indexT0", trt.int32, [-1, 1, 4]) profile.set_shape(indexT0.name, [1, 1, 4], [3, 1, 4], [6, 1, 4]) indexT1 = network.add_input("indexT1", trt.int32, [-1, 1, 4]) profile.set_shape(indexT1.name, [1, 1, 4], [3, 1, 4], [6, 1, 4]) indexT2 = network.add_input("indexT2", trt.int32, [-1, 1, 4]) profile.set_shape(indexT2.name, [1, 1, 4], [3, 1, 4], [6, 1, 4]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network indexL = network.add_concatenation([indexT0, indexT1, indexT2]) indexL.axis = 1 indexTL = network.add_shuffle(indexL.get_output(0)) indexTL.first_transpose = [0, 2, 1] outputL = network.add_gather(inputT0, indexTL.get_output(0), 1) outputL.mode = trt.GatherMode.ND outputL.num_elementwise_dims = 1 #------------------------------------------------------------------------------- Network network.mark_output(outputL.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], [3, 3, 4, 5]) context.set_input_shape(lTensorName[1], [3, 1, 4]) context.set_input_shape(lTensorName[2], [3, 1, 4]) context.set_input_shape(lTensorName[3], [3, 1, 4]) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) bufferH.append(np.ascontiguousarray(data2)) bufferH.append(np.ascontiguousarray(data3)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GatherLayer/AnotherExampleOfGatherND.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 lenIndex = 3 data0 = np.arange(nC).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data0 = data0.reshape(nB, nC, nH, nW).astype(np.float32) data1 = np.array([1, 0, 2], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (len(data1), )) #------------------------------------------------------------------------------- Network gatherLayer = network.add_gather(inputT0, inputT1, 1) #------------------------------------------------------------------------------- Network network.mark_output(gatherLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GatherLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart shape = [3, 4] data = np.array([[0, 1, 2, 3], [5, 4, 3, 2], [5, 7, 9, 11]], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.int32, shape) #------------------------------------------------------------------------------- Network value = network.add_constant([2], np.ascontiguousarray([0, 1], dtype=np.float32)) # [offValue, onValue] depth = network.add_constant([], np.ascontiguousarray(16, dtype=np.int32)) # width of the embedding table, MUST be buildtime constant tensor oneHotLayer = network.add_one_hot(inputT0, value.get_output(0), depth.get_output(0), -1) oneHotLayer.axis = 1 # set axis #------------------------------------------------------------------------------- Network network.mark_output(oneHotLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], shape) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) bufferH[0] = data for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/OneHotLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) nB, nC, nH, nW = 1, 3, 4, 5 data = np.random.permutation(np.arange(nB * nC * nH * nW, dtype=np.float32)).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network topKLayer = network.add_topk(inputT0, trt.TopKOperation.MAX, 3, 1 << 1) topKLayer.k = 2 # 重设取极值个数 #------------------------------------------------------------------------------- Network network.mark_output(topKLayer.get_output(0)) network.mark_output(topKLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/TopKLayer/K.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) shape = [1, 3, 4, 5] data = np.random.permutation(np.arange(np.prod(shape), dtype=np.float32)).reshape(shape) k = np.array([2], dtype=np.int32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # both input shape tensor and data-dependent need OptimizationProfile though in Static Shape mode config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, shape) inputT1 = network.add_input("inputT1", trt.int32, []) profile.set_shape_input(inputT1.name, [1], [2], [3]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network topKLayer = network.add_topk(inputT0, trt.TopKOperation.MAX, 3840, 1 << 1) topKLayer.set_input(1, inputT1) # set K by tensor #------------------------------------------------------------------------------- Network network.mark_output(topKLayer.get_output(0)) network.mark_output(topKLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] dDDTensor = {} # note whether a tensor is data-dependent nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_tensor_address(lTensorName[1], k.ctypes.data) # set input shape tensor using CPU buffer print("Before inference") # context.get_tensor_shape(lTensorName[2 or 3]) here returns (1, -1, 4, 5) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) dDDTensor[lTensorName[i]] = (-1 in context.get_tensor_shape(lTensorName[i])) bufferH = [] bufferH.append(data) bufferH.append([]) # placeholder for input shape tensor, we need not to pass input shape tensor to GPU for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # deal with data-dependent output tensor # context.get_tensor_shape(lTensorName[i]) here returns (3,-1), which can not be used as size of a buffer nMaxByteOutput = context.get_max_output_size(lTensorName[i]) # use get_max_output_size to get maximum of the output (padding to 2^k byte) dataType = engine.get_tensor_dtype(lTensorName[i]) bufferH.append(np.empty([nMaxByteOutput // dataType.itemsize], dtype=trt.nptype(dataType))) #bufferH.append(np.empty([len(shape) * np.prod(shape)], dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) # we can also calculate it manually, case by case else: # deal with normal output tensor bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): if engine.is_shape_inference_io(lTensorName[i]): # skip input shape tensor bufferD.append(int(0)) else: bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): if engine.is_shape_inference_io(lTensorName[i]): # skip input shape tensor continue cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): if engine.is_shape_inference_io(lTensorName[i]): # skip input shape tensor continue context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) print("After inference") # once after inference, context.get_tensor_shape(lTensorName[1]) will return real shape of output tensor, which can be used as the size of a buffer for i in range(nIO): # context.get_tensor_shape(lTensorName[1]) here returns real shape of output tensor print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) for i in range(nInput, nIO): if engine.is_shape_inference_io(lTensorName[i]): # skip input shape tensor continue cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # cut the data-dependent output buffer into real shape shapeReal = context.get_tensor_shape(lTensorName[i]) bufferH[i] = bufferH[i].reshape(-1)[:np.prod(shapeReal)].reshape(shapeReal) # take first np.prod(shapeReal) elements for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/TopKLayer/K-SetInput.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) nB, nC, nH, nW = 1, 3, 4, 5 data = np.random.permutation(np.arange(nB * nC * nH * nW, dtype=np.float32)).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network topKLayer = network.add_topk(inputT0, trt.TopKOperation.MIN, 2, 1 << 1) topKLayer.op = trt.TopKOperation.MAX # 重设 topk 取极值方向 #------------------------------------------------------------------------------- Network network.mark_output(topKLayer.get_output(0)) network.mark_output(topKLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/TopKLayer/Op.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) nB, nC, nH, nW = 1, 3, 4, 5 data = np.random.permutation(np.arange(nB * nC * nH * nW, dtype=np.float32)).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network topKLayer = network.add_topk(inputT0, trt.TopKOperation.MAX, 2, 1 << 1) #------------------------------------------------------------------------------- Network network.mark_output(topKLayer.get_output(0)) network.mark_output(topKLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/TopKLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) nB, nC, nH, nW = 1, 3, 4, 5 data = np.random.permutation(np.arange(nB * nC * nH * nW, dtype=np.float32)).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network topKLayer = network.add_topk(inputT0, trt.TopKOperation.MAX, 2, 1 << 2) topKLayer.axes = 1 << 1 # 重设取极值的维度 #------------------------------------------------------------------------------- Network network.mark_output(topKLayer.get_output(0)) network.mark_output(topKLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/TopKLayer/Axes.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 # 隐藏层宽度 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) weightX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) # 权重矩阵 (X->H) weightH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 权重矩阵 (H->H) biasX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (X->H) biasH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.LSTM) rnnV2Layer.op = trt.RNNOperation.RELU # 重设 RNN 类型 rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(weightX)) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasX)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) print("num_layers=%d\nhidden_size=%d\nmax_seq_length=%d\ndata_length=%d\n"% \ (rnnV2Layer.num_layers,rnnV2Layer.hidden_size,rnnV2Layer.max_seq_length,rnnV2Layer.data_length))# 仅供输出,不能更改 #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/Num_layers+Hidden_size+Max_seq_length+Data_length+Op.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) weightFX = np.ascontiguousarray(np.ones((nW, nHidden), dtype=np.float32)) # 正向权重矩阵 (X->H) weightFH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 正向权重矩阵 (H->H) weightBX = np.ascontiguousarray(np.ones((nW, nHidden), dtype=np.float32)) # 反向权重矩阵 (X->H) weightBH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 反向权重矩阵 (H->H) biasFX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 正向偏置 (X->H) biasFH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 正向偏置 (H->H) biasBX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 反向偏置 (X->H) biasBH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 反向偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.RELU) rnnV2Layer.direction = trt.RNNDirection.BIDIRECTION # RNN 方向,默认值 trt.RNNDirection.UNIDIRECTION 为单向 rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(weightFX)) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightFH)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasFX)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasFH)) rnnV2Layer.set_weights_for_gate(1, trt.RNNGateType.INPUT, True, trt.Weights(weightBX)) # 反向为第 1 层 rnnV2Layer.set_weights_for_gate(1, trt.RNNGateType.INPUT, False, trt.Weights(weightBH)) rnnV2Layer.set_bias_for_gate(1, trt.RNNGateType.INPUT, True, trt.Weights(biasBX)) rnnV2Layer.set_bias_for_gate(1, trt.RNNGateType.INPUT, False, trt.Weights(biasBH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/Direction.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) seqLen = np.array([4, 3, 2], dtype=np.int32).reshape(nB, nC) # 每个输入的真实长度 weightX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) weightH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) biasX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) biasH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.int32, (nB, nC)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.RELU) rnnV2Layer.seq_lengths = inputT1 # 设置每个独立输入的真实长度,默认均为 nH rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(weightX)) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasX)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) bufferH.append(seqLen) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/Seq_lengths.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 #7 # 输入 nW 与 nHidden 相等 nHidden = 5 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) weightH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # RNN 权重矩阵只剩 H->H 部分 biasX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # RNN 偏置仍然两个都要 biasH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.RELU) rnnV2Layer.input_mode = trt.RNNInputMode.SKIP # 是否对输入张量线性变换,默认值 trt.RNNInputMode.LINEAR(需要线性变换) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasX)) # 无论什么输入模式,都需要 X 的偏置 rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/InputMode.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 # 隐藏层宽度 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) weightX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) # 权重矩阵 (X->H) weightH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 权重矩阵 (H->H) biasX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (X->H) biasH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.RELU) # 1 层 ReLU 型 RNN,隐藏层元素宽 nHidden,序列长度 nH,单词编码宽度 nW,batchSize 为 nC rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(weightX)) # 0 层 INPUT 门,输入元 X 变换阵,wX.shape=(nHidden,nW) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) # 0 层 INPUT 门,隐藏元 H 变换阵,wH.shape=(nHidden,nHidden) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasX)) # 0 层 INPUT 门,输入元 X 偏置,bX.shape=(nHidden,) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) # 0 层 INPUT 门,隐藏元 H 偏置,bH.shape=(nHidden,) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/ReLURNN.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 # 隐藏层宽度 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) weightX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) # 权重矩阵 (X->H) weightH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 权重矩阵 (H->H) biasX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (X->H) biasH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 2, nHidden, nH, trt.RNNOperation.RELU) # 2 层 ReLU 型 RNN rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(weightX)) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasX)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) rnnV2Layer.set_weights_for_gate(1, trt.RNNGateType.INPUT, True, trt.Weights(weightH)) # 第二层的权重,注意尺寸与隐藏层相等 rnnV2Layer.set_weights_for_gate(1, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) rnnV2Layer.set_bias_for_gate(1, trt.RNNGateType.INPUT, True, trt.Weights(biasH)) rnnV2Layer.set_bias_for_gate(1, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/DoubleRNN.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) h0 = np.zeros(nC * 1 * nHidden, dtype=np.float32).reshape(nC, 1, nHidden) c0 = np.zeros(nC * 1 * nHidden, dtype=np.float32).reshape(nC, 1, nHidden) weightAllX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) # 权重矩阵 (X->H) weightAllH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 权重矩阵 (H->H) biasAllX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (X->H) biasAllH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.float32, (nC, 2, nHidden)) inputT2 = network.add_input("inputT2", trt.float32, (nC, 2, nHidden)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.LSTM) # 基于单输入初始范例代码 rnnV2Layer.direction = trt.RNNDirection.BIDIRECTION rnnV2Layer.hidden_state = inputT1 rnnV2Layer.cell_state = inputT2 for layer in range(2): for kind in [trt.RNNGateType.INPUT, trt.RNNGateType.CELL, trt.RNNGateType.FORGET, trt.RNNGateType.OUTPUT]: rnnV2Layer.set_weights_for_gate(layer, kind, True, trt.Weights(weightAllX)) rnnV2Layer.set_weights_for_gate(layer, kind, False, trt.Weights(weightAllH)) rnnV2Layer.set_bias_for_gate(layer, kind, True, trt.Weights(biasAllX)) rnnV2Layer.set_bias_for_gate(layer, kind, False, trt.Weights(biasAllH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) network.mark_output(rnnV2Layer.get_output(2)) # 多了一个最终细胞状态可以输出 engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) bufferH.append(h0) bufferH.append(c0) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/BidirectionLSTM.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 # 隐藏层宽度 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) weightX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) # 权重矩阵 (X->H) weightH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 权重矩阵 (H->H) biasX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (X->H) biasH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network h0Shape = [nC, 1, nHidden] h0 = network.add_constant(h0Shape, trt.Weights(np.ascontiguousarray(np.ones(h0Shape, dtype=np.float32)))) # 初始隐藏状态 rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.RELU) # 基于单输入初始范例代码 rnnV2Layer.hidden_state = h0.get_output(0) # 设置初始隐藏状态,默认为全 0 rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(weightX)) rnnV2Layer.set_weights_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(weightH)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, True, trt.Weights(biasX)) rnnV2Layer.set_bias_for_gate(0, trt.RNNGateType.INPUT, False, trt.Weights(biasH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/Hidden_state.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 7 nHidden = 5 data = np.ones(nC * nH * nW, dtype=np.float32).reshape(nC, nH, nW) h0 = np.zeros(nC * 1 * nHidden, dtype=np.float32).reshape(nC, 1, nHidden) c0 = np.zeros(nC * 1 * nHidden, dtype=np.float32).reshape(nC, 1, nHidden) weightAllX = np.ascontiguousarray(np.ones((nHidden, nW), dtype=np.float32)) # 权重矩阵 (X->H) weightAllH = np.ascontiguousarray(np.ones((nHidden, nHidden), dtype=np.float32)) # 权重矩阵 (H->H) biasAllX = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (X->H) biasAllH = np.ascontiguousarray(np.zeros(nHidden, dtype=np.float32)) # 偏置 (H->H) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) inputT1 = network.add_input("inputT1", trt.float32, (nC, 1, nHidden)) inputT2 = network.add_input("inputT2", trt.float32, (nC, 1, nHidden)) #------------------------------------------------------------------------------- Network rnnV2Layer = network.add_rnn_v2(inputT0, 1, nHidden, nH, trt.RNNOperation.LSTM) # 基于单输入初始范例代码 rnnV2Layer.hidden_state = inputT1 rnnV2Layer.cell_state = inputT2 for kind in [trt.RNNGateType.INPUT, trt.RNNGateType.CELL, trt.RNNGateType.FORGET, trt.RNNGateType.OUTPUT]: rnnV2Layer.set_weights_for_gate(0, kind, True, trt.Weights(weightAllX)) rnnV2Layer.set_weights_for_gate(0, kind, False, trt.Weights(weightAllH)) rnnV2Layer.set_bias_for_gate(0, kind, True, trt.Weights(biasAllX)) rnnV2Layer.set_bias_for_gate(0, kind, False, trt.Weights(biasAllH)) #------------------------------------------------------------------------------- Network network.mark_output(rnnV2Layer.get_output(0)) network.mark_output(rnnV2Layer.get_output(1)) network.mark_output(rnnV2Layer.get_output(2)) # 多了一个最终细胞状态可以输出 engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) bufferH.append(h0) bufferH.append(c0) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/RNNv2Layer/Cell_state.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart shape = [4, 5, 6] data = np.zeros(shape).astype(np.float32) data[0, 0, 1] = 1 data[0, 2, 3] = 2 data[0, 3, 4] = 3 data[1, 1, 0] = 4 data[1, 1, 1] = 5 data[1, 1, 2] = 6 data[1, 1, 3] = 7 data[1, 1, 4] = 8 data[1, 1, 5] = 9 data[2, 0, 1] = 10 data[2, 1, 1] = 11 data[2, 2, 1] = 12 data[2, 3, 1] = 13 data[2, 4, 1] = 14 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() # need OptimizationProfile though in Static Shape mode config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, shape) profile.set_shape(inputT0.name, shape, shape, shape) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network nonZeroLayer = network.add_non_zero(inputT0) #------------------------------------------------------------------------------- Network network.mark_output(nonZeroLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] dDDTensor = {} # note whether a tensor is data-dependent nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() print("Before inference") # context.get_tensor_shape(lTensorName[1]) here returns (3,-1) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) dDDTensor[lTensorName[i]] = (-1 in context.get_tensor_shape(lTensorName[i])) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # deal with data-dependent output tensor # context.get_tensor_shape(lTensorName[i]) here returns (3,-1), which can not be used as size of a buffer nMaxByteOutput = context.get_max_output_size(lTensorName[i]) # use get_max_output_size to get maximum of the output (padding to 2^k byte) dataType = engine.get_tensor_dtype(lTensorName[i]) bufferH.append(np.empty([nMaxByteOutput // dataType.itemsize], dtype=trt.nptype(dataType))) #bufferH.append(np.empty([len(shape) * np.prod(shape)], dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) # we can also calculate it manually, case by case else: # deal with normal output tensor bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) print("After inference") # once after inference, context.get_tensor_shape(lTensorName[1]) will return real shape of output tensor, which can be used as the size of a buffer for i in range(nIO): # context.get_tensor_shape(lTensorName[1]) here returns real shape of output tensor print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput, nIO): if dDDTensor[lTensorName[i]]: # cut the data-dependent output buffer into real shape shapeReal = context.get_tensor_shape(lTensorName[i]) bufferH[i] = bufferH[i].reshape(-1)[:np.prod(shapeReal)].reshape(shapeReal) # take first np.prod(shapeReal) elements for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/NonZeroLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (-1, -1, -1, -1)) profile.set_shape(inputT0.name, [1, 1, 1, 1], [nB, nC, nH, nW], [nB * 2, nC * 2, nH * 2, nW * 2]) config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network shapeLayer = network.add_shape(inputT0) #------------------------------------------------------------------------------- Network network.mark_output(shapeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ShapeLayer/DynamicShape.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nC, dtype=np.float32).reshape(nC, 1, 1) * 100 + np.arange(nH).reshape(1, nH, 1) * 10 + np.arange(nW).reshape(1, 1, nW) data = data.reshape(nB, nC, nH, nW).astype(np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network shapeLayer = network.add_shape(inputT0) #------------------------------------------------------------------------------- Network network.mark_output(shapeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ShapeLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() config.set_flag(trt.BuilderFlag.INT8) # 需要打开 int8 模式 inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer0 = network.add_constant([3], np.array([60 / 127, 120 / 127, 240 / 127], dtype=np.float32)) constantLayer1 = network.add_constant([], np.array([1], dtype=np.float32)) quantizeLayer = network.add_quantize(inputT0, constantLayer0.get_output(0)) quantizeLayer.axis = 1 dequantizeLayer = network.add_dequantize(quantizeLayer.get_output(0), constantLayer1.get_output(0)) dequantizeLayer.axis = 0 #------------------------------------------------------------------------------- Network network.mark_output(dequantizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/QuantizeDequantizeLayer/Axis.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() config.set_flag(trt.BuilderFlag.INT8) # 需要打开 int8 模式 inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer0 = network.add_constant([3], np.array([20 / 127, 40 / 127, 60 / 127], dtype=np.float32)) constantLayer1 = network.add_constant([], np.array([1], dtype=np.float32)) constantLayer2 = network.add_constant([3], np.array([-60, -96, -106], dtype=np.float32)) quantizeLayer = network.add_quantize(inputT0, constantLayer0.get_output(0)) quantizeLayer.axis = 1 quantizeLayer.set_input(0, inputT0) # 第 0 输入是被量化的张量 quantizeLayer.set_input(1, constantLayer0.get_output(0)) # 第 1 输入是 scale 张量 quantizeLayer.set_input(2, constantLayer2.get_output(0)) # 第 2 输入是 zeroPoint 张量(since TensorRT 8.2) dequantizeLayer = network.add_dequantize(quantizeLayer.get_output(0), constantLayer1.get_output(0)) dequantizeLayer.axis = 0 #------------------------------------------------------------------------------- Network network.mark_output(dequantizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/QuantizeDequantizeLayer/Set_input+ZeroPt.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() config.set_flag(trt.BuilderFlag.INT8) # 需要打开 int8 模式 inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network constantLayer0 = network.add_constant([], np.array([60 / 127], dtype=np.float32)) # 目前只支持构建期常量 constantLayer1 = network.add_constant([], np.array([1], dtype=np.float32)) quantizeLayer = network.add_quantize(inputT0, constantLayer0.get_output(0)) # 目前只支持 float32 的量化 quantizeLayer.axis = 0 # 指定量化轴 dequantizeLayer = network.add_dequantize(quantizeLayer.get_output(0), constantLayer1.get_output(0)) dequantizeLayer.axis = 0 #------------------------------------------------------------------------------- Network network.mark_output(dequantizeLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/QuantizeDequantizeLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 2, 2, 3, 4 data = np.zeros([nB, nC, nH, nW], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) scale = np.ascontiguousarray(np.array([1.0, 1.0], dtype=np.float32)) shift = np.ascontiguousarray(np.array([2.0, 3.0], dtype=np.float32)) power = np.ascontiguousarray(np.array([1.0, 1.0], dtype=np.float32)) scaleLayer = network.add_scale_nd(inputT0, trt.ScaleMode.CHANNEL, trt.Weights(shift), trt.Weights(scale), trt.Weights(power), 0) scaleLayer.channel_axis = 0 network.mark_output(scaleLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScaleLayer/Add_scale_nd+Channel_axis.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 3, 3 data = np.arange(1, 1 + nB * nC * nW * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network shift = np.ascontiguousarray(np.array([-2.5, -7.0, -11.5], dtype=np.float32)) # number of elements is equal to the number of channels scale = np.ascontiguousarray(np.full(3, 0.5, dtype=np.float32)) power = np.ascontiguousarray(np.ones(3, dtype=np.float32)) scaleLayer = network.add_scale(inputT0, trt.ScaleMode.CHANNEL, trt.Weights(shift), trt.Weights(scale), trt.Weights(power)) print("scaleLayer->", scaleLayer.get_output(0).shape) #------------------------------------------------------------------------------- Network network.mark_output(scaleLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScaleLayer/ModeChannel.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 3, 3 data = np.arange(1, 1 + nB * nC * nW * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network one = np.ascontiguousarray(np.array([1], dtype=np.float32)) scaleLayer = network.add_scale(inputT0, trt.ScaleMode.UNIFORM, None, None, None) # some None scaleLayer.scale = np.ascontiguousarray(np.array([0.5], dtype=np.float32)) # edit parameter scaleLayer.shift = np.ascontiguousarray(np.array([-7.0], dtype=np.float32)) # edit parameter scaleLayer.power = np.ascontiguousarray(np.array([1.0], dtype=np.float32)) # edit parameter #------------------------------------------------------------------------------- Network network.mark_output(scaleLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScaleLayer/Mode+Scale+Shift+Power.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 3, 3 data = np.arange(1, 1 + nB * nC * nW * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network shift = np.ascontiguousarray(np.full([nC, nH, nW], -7.0, dtype=np.float32)) # number of elements is equal to the number of elements in input tensor scale = np.ascontiguousarray(np.full([nC, nH, nW], 0.5, dtype=np.float32)) power = np.ascontiguousarray(np.ones([nC, nH, nW], dtype=np.float32)) scaleLayer = network.add_scale(inputT0, trt.ScaleMode.ELEMENTWISE, trt.Weights(shift), trt.Weights(scale), trt.Weights(power)) #------------------------------------------------------------------------------- Network network.mark_output(scaleLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScaleLayer/ModeElement.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 3, 3 data = np.arange(1, 1 + nB * nC * nW * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network scale = np.ascontiguousarray(np.array([0.5], dtype=np.float32)) shift = np.ascontiguousarray(np.array([-7.0], dtype=np.float32)) power = np.ascontiguousarray(np.array([1.0], dtype=np.float32)) scaleLayer = network.add_scale(inputT0, trt.ScaleMode.UNIFORM, trt.Weights(shift), trt.Weights(scale), trt.Weights(power)) #------------------------------------------------------------------------------- Network network.mark_output(scaleLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], data.shape) bufferH = [] bufferH.append(data) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ScaleLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() nB, nC, nH0, nW0 = 1, 3, 4, 5 nH1, nW1 = 6, 10 data0 = np.arange(nB).reshape(nB, 1, 1, 1) * 1000 + np.arange(nC).reshape(1, nC, 1, 1) * 100 + np.arange(nH0).reshape(1, 1, nH0, 1) * 10 + np.arange(nW0).reshape(1, 1, 1, nW0) data0 = data0.astype(np.float32) dataX = np.random.randint(0, nH0, [nB, nH1, nW1, 1], dtype=np.int32) / (nH0 - 1) * 2 - 1 dataY = np.random.randint(0, nW0, [nB, nH1, nW1, 1], dtype=np.int32) / (nW0 - 1) * 2 - 1 data1 = np.concatenate([dataX, dataY], axis=3).astype(np.float32) logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH0, nW0)) inputT1 = network.add_input("inputT1", trt.float32, (nB, nH1, nW1, 2)) #------------------------------------------------------------------------------- Network gridSampleLayer = network.add_grid_sample(inputT0, inputT1) #gridSampleLayer.interpolation_mode = trt.InterpolationMode.LINEAR # default value #gridSampleLayer.interpolation_mode = trt.InterpolationMode.NEAREST #gridSampleLayer.interpolation_mode = trt.InterpolationMode.CUBIC #gridSampleLayer.align_corners = False # default value #gridSampleLayer.align_corners = True #gridSampleLayer.sample_mode = trt.SampleMode.FILL # default value #gridSampleLayer.sample_mode = trt.SampleMode.DEFAULT # the same as STRICT_BOUNDS, deprecated since TensorRT 8.5 #gridSampleLayer.sample_mode = trt.SampleMode.STRICT_BOUNDS #gridSampleLayer.sample_mode = trt.SampleMode.WRAP #gridSampleLayer.sample_mode = trt.SampleMode.CLAMP #gridSampleLayer.sample_mode = trt.SampleMode.REFLECT #------------------------------------------------------------------------------- Network network.mark_output(gridSampleLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) bufferH[0] = data0 bufferH[1] = data1 for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/GridSampleLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart shape = [1, 1, 3, 3] data = np.arange(-4, 5, dtype=np.float32).reshape(shape) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, shape) #------------------------------------------------------------------------------- Network activationLayer = network.add_activation(inputT0, trt.ActivationType.RELU) # use ReLU as activation function #------------------------------------------------------------------------------- Network network.mark_output(activationLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ActivationLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart shape = [1, 1, 3, 3] data = np.arange(-4, 5, dtype=np.float32).reshape(shape) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, shape) #------------------------------------------------------------------------------- Network activationLayer = network.add_activation(inputT0, trt.ActivationType.RELU) activationLayer.type = trt.ActivationType.CLIP # reset type of activation function activationLayer.alpha = -2 # set parameters for some kinds of activation function activationLayer.beta = 2 #------------------------------------------------------------------------------- Network network.mark_output(activationLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ActivationLayer/Type+Alpha+Beta.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(1, 1 + nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) # 输入数据 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network paddingLayer = network.add_padding_nd(inputT0, (0, 0), (0, 0)) paddingLayer.pre_padding_nd = (1, 2) # 重设上侧和左侧填充 0 层数 paddingLayer.post_padding_nd = (3, 4) # 重设下侧和右侧填充 0 层数 #------------------------------------------------------------------------------- Network network.mark_output(paddingLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PaddingNdLayer/Pre_padding+Post_padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(1, 1 + nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) # 输入数据 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network paddingLayer = network.add_padding_nd(inputT0, (-1, 0), (0, -2)) #------------------------------------------------------------------------------- Network network.mark_output(paddingLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PaddingNdLayer/Crop.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(1, 1 + nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) # 输入数据 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network paddingLayer = network.add_padding_nd(inputT0, (1, 2), (3, 4)) #------------------------------------------------------------------------------- Network network.mark_output(paddingLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PaddingNdLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart shape = [3, 4, 5] data = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, shape) #------------------------------------------------------------------------------- Network lengthLayer = network.add_constant(shape[1:2], trt.Weights(np.ascontiguousarray([0, 1, 2, 3], dtype=np.int32))) reverseSequenceLayer = network.add_reverse_sequence(inputT0, lengthLayer.get_output(0)) #reverseSequenceLayer.batch_axis = 0 #reverseSequenceLayer.sequence_axis = 1 print("reverseSequenceLayer.batch_axis = %d" % reverseSequenceLayer.batch_axis) print("reverseSequenceLayer.sequence_axis = %d" % reverseSequenceLayer.sequence_axis) #------------------------------------------------------------------------------- Network network.mark_output(reverseSequenceLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/ReverseSequenceLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nOut, nCOut, hOut, wOut = 1, 3, 4, 5 data0 = np.array([nOut, nCOut, hOut, wOut], dtype=np.int32) data1 = np.float32(1000).reshape(-1) data2 = np.array([0, 100, 10, 1], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.int32, [4]) inputT1 = network.add_input("inputT1", trt.float32, []) inputT2 = network.add_input("inputT2", trt.float32, [4]) profile.set_shape_input(inputT0.name, (1, 1, 1, 1), (nOut, nCOut, hOut, wOut), (5, 5, 5, 5)) # range of value rather than shape config.add_optimization_profile(profile) #------------------------------------------------------------------------------- Network fillLayer = network.add_fill([-1], trt.FillOperation.LINSPACE) fillLayer.set_input(0, inputT0) fillLayer.set_input(1, inputT1) fillLayer.set_input(2, inputT2) #------------------------------------------------------------------------------- Network network.mark_output(fillLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_tensor_address("inputT0", np.array([nOut, nCOut, hOut, wOut], dtype=np.int32).ctypes.data) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) bufferH.append(np.ascontiguousarray(data2)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) # get_tensor_shape() will give (-1,-1,-1,-1) for output shape bufferD = [] bufferD.append(bufferH[0].ctypes.data) # the input shape tensor is on host for i in range(1, nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(1, nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(1, nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/FillLayer/LinearFill+RuntimeShapeRange.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nOut, nCOut, hOut, wOut = 1, 3, 4, 5 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() #------------------------------------------------------------------------------- Network constant1 = np.ascontiguousarray(np.array([-10], dtype=np.float32)) constant2 = np.ascontiguousarray(np.array([10], dtype=np.float32)) constantLayer1 = network.add_constant([], trt.Weights(constant1)) constantLayer2 = network.add_constant([], trt.Weights(constant2)) fillLayer = network.add_fill([nOut, nCOut, hOut, wOut], trt.FillOperation.RANDOM_UNIFORM) fillLayer.set_input(1, constantLayer1.get_output(0)) fillLayer.set_input(2, constantLayer2.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(fillLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/FillLayer/SimpleExampleUniformRandom.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nOut, nCOut, hOut, wOut = 1, 3, 4, 5 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() #------------------------------------------------------------------------------- Network constant1 = np.ascontiguousarray(np.array([5], dtype=np.float32)) constant2 = np.ascontiguousarray(np.array([1], dtype=np.float32)) constantLayer1 = network.add_constant([], trt.Weights(constant1)) constantLayer2 = network.add_constant([], trt.Weights(constant2)) fillLayer = network.add_fill([nOut, nCOut, hOut, wOut], trt.FillOperation.RANDOM_NORMAL) fillLayer.set_input(1, constantLayer1.get_output(0)) fillLayer.set_input(2, constantLayer2.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(fillLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/FillLayer/SimpleExampleNormalRandom.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nOut, nCOut, hOut, wOut = 1, 3, 4, 5 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() #------------------------------------------------------------------------------- Network #constant0 = np.ascontiguousarray(np.array([nOut, nCOut, hOut, wOut], dtype=np.int32)) constant1 = np.ascontiguousarray(np.array(1000, dtype=np.float32)) constant2 = np.ascontiguousarray(np.array([0, 100, 10, 1], dtype=np.float32)) #constantLayer0 = network.add_constant(constant0.shape, trt.Weights(constant0)) constantLayer1 = network.add_constant([], trt.Weights(constant1)) constantLayer2 = network.add_constant(constant2.shape, trt.Weights(constant2)) fillLayer = network.add_fill([nOut, nCOut, hOut, wOut], trt.FillOperation.LINSPACE) #fillLayer.set_input(0, constantLayer0.get_output(0)) fillLayer.set_input(1, constantLayer1.get_output(0)) fillLayer.set_input(2, constantLayer2.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(fillLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/FillLayer/SimpleExampleLinear.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nOut, nCOut, hOut, wOut = 1, 3, 4, 5 data0 = np.float32(1000).reshape(-1) data1 = np.array([0, 100, 10, 1], dtype=np.float32) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, []) inputT1 = network.add_input("inputT1", trt.float32, [4]) #------------------------------------------------------------------------------- Network fillLayer = network.add_fill([nOut, nCOut, hOut, wOut], trt.FillOperation.LINSPACE) fillLayer.set_input(1, inputT0) fillLayer.set_input(2, inputT1) #------------------------------------------------------------------------------- Network network.mark_output(fillLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] bufferH.append(np.ascontiguousarray(data0)) bufferH.append(np.ascontiguousarray(data1)) for i in range(nInput, nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/FillLayer/LinearFill+BuildtimeShape+RuntimeRange.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data0 = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) data1 = -data0 data2 = (np.arange(nB * nC * nH * nW) % 2).astype(np.int32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT2 = network.add_input("inputT2", trt.int32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network conditionLayer = network.add_identity(inputT2) # 条件张量需要转化为 BOOL 类型 conditionLayer.set_output_type(0, trt.bool) selectLayer = network.add_select(conditionLayer.get_output(0), inputT0, inputT1) #------------------------------------------------------------------------------- Network network.mark_output(selectLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data0) bufferH.append(data1) bufferH.append(data2) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/SelectLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 4, 5 data0 = np.arange(1, 1 + nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) data1 = data0 - 1 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network # condition: inputT0.reshape(-1)[0] != 0 _H0 = network.add_slice(inputT0, [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]) _H1 = network.add_reduce(_H0.get_output(0), trt.ReduceOperation.SUM, (1 << 0) + (1 << 1) + (1 << 2) + (1 << 3), False) _H2 = network.add_identity(_H1.get_output(0)) _H2.set_output_type(0, trt.bool) _H2.get_output(0).dtype = trt.bool ifCondition = network.add_if_conditional() ifConditionInputLayer = ifCondition.add_input(inputT0) ifConditionConditionLayer = ifCondition.set_condition(_H2.get_output(0)) # the condition tensor must be BOOL data type with 0 dimension # branch of condition is true _H3 = network.add_elementwise(ifConditionInputLayer.get_output(0), ifConditionInputLayer.get_output(0), trt.ElementWiseOperation.SUM) # branch of condition is false _H4 = network.add_identity(ifConditionInputLayer.get_output(0)) ifConditionOutputLayer = ifCondition.add_output(_H3.get_output(0), _H4.get_output(0)) #------------------------------------------------------------------------------- Network network.mark_output(ifConditionOutputLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() context.set_input_shape(lTensorName[0], [nB, nC, nH, nW]) for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) bufferH[0] = data0 # input data satisfies the condition for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) bufferH[0] = data1 # input data does not satisfy the condition for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/IfConditionStructure/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 3, 3 data = np.tile(np.array([1, 2, 5], dtype=np.float32).reshape(nC, 1, 1), (1, nH, nW)).reshape(nB, nC, nH, nW).reshape(nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network lrnLayer = network.add_lrn(inputT0, 5, 0.0, 2.0, 1.0) lrnLayer.window_size = 3 lrnLayer.alpha = 1.0 lrnLayer.beta = 1.0 lrnLayer.k = 0.0001 #------------------------------------------------------------------------------- Network network.mark_output(lrnLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) bufferH[0] = data for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/LRNLayer/Window_size+Alpha+Bbeta+K.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 3, 3, 3 data = np.tile(np.array([1, 2, 5], dtype=np.float32).reshape(nC, 1, 1), (1, nH, nW)).reshape(nB, nC, nH, nW).reshape(nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network lrnLayer = network.add_lrn(inputT0, 3, 1.0, 1.0, 0.0001) #------------------------------------------------------------------------------- Network network.mark_output(lrnLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) bufferH[0] = data for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/LRNLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hPre = wPre = 1 poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) poolLayer.pre_padding = (hPre, wPre) # 头部填充 0 层数,默认值 (0,0) #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Pre_padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (1, 1)) # 默认池化窗口大小和步长都设为给定参数 poolLayer.window_size_nd = (nKernelHeight, nKernelWidth) # 池化窗口大小 #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Window_size_nd.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) poolLayer.type = trt.PoolingType.AVERAGE #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Type.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network blendFactor = 0.5 poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX_AVERAGE_BLEND, (nKernelHeight, nKernelWidth)) poolLayer.blend_factor = blendFactor # 均值池化的比例,默认值 1.0 #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Blend_factor.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.AVERAGE, (nKernelHeight, nKernelWidth)) poolLayer.padding_nd = (1, 1) # 不支持 pre_padding 或 post_padding poolLayer.average_count_excludes_padding = False # 是否排除分母中填充 0 的计数,默认值 True #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Average_count_excludes_padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 2, 6, 9 cW, nKernelHeight, nKernelWidth = 2, 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(3, 3), (2, 2, 3)).reshape(nB, 1, nC, nH, nW) data[0, 0, 1] *= 10 np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, 1, nC, nH, nW)) #------------------------------------------------------------------------------- Network poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (cW, nKernelHeight, nKernelWidth)) #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Pooling3D.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hPost = wPost = 1 poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) poolLayer.post_padding = (hPost, wPost) # 尾部填充 0 层数,默认值 (0,0) #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Post_padding.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/SimpleExample.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH - 1, nW)) #------------------------------------------------------------------------------- Network poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) poolLayer.padding_mode = trt.PaddingMode.SAME_UPPER #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Padding_mode.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hP = wP = 1 poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) poolLayer.padding_nd = (hP, wP) # 四周填充 0 层数,默认值 (0,0) #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Padding_nd.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart nB, nC, nH, nW = 1, 1, 6, 9 nKernelHeight, nKernelWidth = 2, 2 # 池化窗口 HW data = np.tile(np.arange(1, 1 + 9, dtype=np.float32).reshape(1, 3, 3), (nB, nC, nH // 3, nW // 3)) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network hS = wS = 1 poolLayer = network.add_pooling_nd(inputT0, trt.PoolingType.MAX, (nKernelHeight, nKernelWidth)) poolLayer.stride_nd = (hS, wS) # 池化窗口步长 #------------------------------------------------------------------------------- Network network.mark_output(poolLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput bufferH = [] bufferH.append(data) for i in range(nOutput): bufferH.append(np.empty(context.get_binding_shape(nInput + i), dtype=trt.nptype(engine.get_binding_dtype(nInput + i)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)).ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nOutput): cudart.cudaMemcpy(bufferH[nInput + i].ctypes.data, bufferD[nInput + i], bufferH[nInput + i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nInput): print("Input %d:" % i, bufferH[i].shape, "\n", bufferH[i]) for i in range(nOutput): print("Output %d:" % i, bufferH[nInput + i].shape, "\n", bufferH[nInput + i]) for buffer in bufferD: cudart.cudaFree(buffer)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/PoolingNdLayer/Stride_nd.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorrt as trt from cuda import cudart np.random.seed(31193) nB, nC, nH, nW = 1, 3, 4, 5 data = np.arange(nB * nC * nH * nW, dtype=np.float32).reshape(nB, nC, nH, nW) np.set_printoptions(precision=3, linewidth=200, suppress=True) cudart.cudaDeviceSynchronize() logger = trt.Logger(trt.Logger.ERROR) builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) config = builder.create_builder_config() inputT0 = network.add_input("inputT0", trt.float32, (nB, nC, nH, nW)) #------------------------------------------------------------------------------- Network factorShape = data.shape[:-1] constantLayer = network.add_constant(factorShape, trt.Weights(np.ascontiguousarray(np.ones(factorShape, dtype=np.float32)))) matrixMultiplyLayer = network.add_matrix_multiply(constantLayer.get_output(0), trt.MatrixOperation.NONE, inputT0, trt.MatrixOperation.NONE) matrixMultiplyLayer.op0 = trt.MatrixOperation.VECTOR matrixMultiplyLayer.op1 = trt.MatrixOperation.NONE #------------------------------------------------------------------------------- Network network.mark_output(matrixMultiplyLayer.get_output(0)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) nIO = engine.num_io_tensors lTensorName = [engine.get_tensor_name(i) for i in range(nIO)] nInput = [engine.get_tensor_mode(lTensorName[i]) for i in range(nIO)].count(trt.TensorIOMode.INPUT) context = engine.create_execution_context() for i in range(nIO): print("[%2d]%s->" % (i, "Input " if i < nInput else "Output"), engine.get_tensor_dtype(lTensorName[i]), engine.get_tensor_shape(lTensorName[i]), context.get_tensor_shape(lTensorName[i]), lTensorName[i]) bufferH = [] for i in range(nIO): bufferH.append(np.empty(context.get_tensor_shape(lTensorName[i]), dtype=trt.nptype(engine.get_tensor_dtype(lTensorName[i])))) bufferD = [] for i in range(nIO): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) bufferH[0] = data for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) for i in range(nIO): context.set_tensor_address(lTensorName[i], int(bufferD[i])) context.execute_async_v3(0) for i in range(nInput, nIO): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) for i in range(nIO): print(lTensorName[i]) print(bufferH[i]) for b in bufferD: cudart.cudaFree(b)
trt-samples-for-hackathon-cn-master
cookbook/02-API/Layer/MatrixMultiplyLayer/MatrixWithVector2.py