text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def rebase(self, key, start=None, decimals=5):
"""Rebase a channel (key) on start.
The step (between elements) need to be constant all through,
else ValueError is raised. The exception to this is the border
step between data loaded from two different files.
key: int or str
The key for the channel to rebase.
start: int or float or None
If specified - replace the first element in the first loaded
data channel with start.
decimals: int
Diffs are rounded to this number of decimals before the step
through arrays are checked. The diffs are otherwise likely never to
be all equal.
Typically this would be used to make a time channel
continuous. Like, not start over from 0, when data is appended
from multiple files. Or simply to rebase a channel on 'start'.
If start is None, and the instance is loaded from one file only,
this method has no effect.
.. note::
The instance channel is modified on success.
"""
diffs = []
def diffsappend(d, sc):
diff = np.around(np.diff(d), decimals)
diffs.append((diff, diff[0], sc))
if hasattr(self, 'metamulti'):
for sc in self.metamulti['slices']:
diffsappend(self(key)[sc], sc)
else:
diffsappend(self(key), slice(0, self.rec_cnt))
for diff, d, sc in diffs:
if not np.all(diff == d):
raise ValueError('All diffs not equal within ' +
'indexes ' + str(sc))
S = set([t[1] for t in diffs])
if len(S) > 1:
raise ValueError('Diffs not equal between appended data files: ' +
str(S))
# Now modify:
if start is None:
start = self(key)[0]
self.D[self._key(key)] = np.linspace(start, d * self.rec_cnt + start,
num=self.rec_cnt, endpoint=False)
assert len(self(key)) == self.rec_cnt, 'Semantic error' | 0.000933 |
def create_local_copy(self, effects=None, store=None):
"""Creates a Local File Copy on Uploadcare Storage.
Args:
- effects:
Adds CDN image effects. If ``self.default_effects`` property
is set effects will be combined with default effects.
- store:
If ``store`` option is set to False the copy of your file will
be deleted in 24 hour period after the upload.
Works only if `autostore` is enabled in the project.
"""
effects = self._build_effects(effects)
store = store or ''
data = {
'source': self.cdn_path(effects)
}
if store:
data['store'] = store
return rest_request('POST', 'files/', data=data) | 0.0025 |
def import_demo_experience(self, states, internals, actions, terminal, reward):
"""
Stores demonstrations in the demo memory.
"""
fetches = self.import_demo_experience_output
feed_dict = self.get_feed_dict(
states=states,
internals=internals,
actions=actions,
terminal=terminal,
reward=reward
)
self.monitored_session.run(fetches=fetches, feed_dict=feed_dict) | 0.004193 |
def LT(classical_reg1, classical_reg2, classical_reg3):
"""
Produce an LT instruction.
:param classical_reg1: Memory address to which to store the comparison result.
:param classical_reg2: Left comparison operand.
:param classical_reg3: Right comparison operand.
:return: A ClassicalLessThan instance.
"""
classical_reg1, classical_reg2, classical_reg3 = prepare_ternary_operands(classical_reg1,
classical_reg2,
classical_reg3)
return ClassicalLessThan(classical_reg1, classical_reg2, classical_reg3) | 0.007215 |
def train(train_dir=None, train_csv=None, epochs=30, batch_size=32):
"""Function responsible for running the training the model."""
if not train_dir or not os.path.exists(train_dir) or not train_csv:
warnings.warn("No train directory could be found ")
return
# Make a dataset from the local folder containing Audio data
print("\nMaking an Audio Dataset...\n")
tick = time.time()
aud_dataset = AudioFolderDataset(train_dir, train_csv=train_csv, file_format='.wav', skip_header=True)
tock = time.time()
print("Loading the dataset took ", (tock-tick), " seconds.")
print("\n=======================================\n")
print("Number of output classes = ", len(aud_dataset.synsets))
print("\nThe labels are : \n")
print(aud_dataset.synsets)
# Get the model to train
net = model.get_net(len(aud_dataset.synsets))
print("\nNeural Network = \n")
print(net)
print("\nModel - Neural Network Generated!\n")
print("=======================================\n")
#Define the loss - Softmax CE Loss
softmax_loss = gluon.loss.SoftmaxCELoss(from_logits=False, sparse_label=True)
print("Loss function initialized!\n")
print("=======================================\n")
#Define the trainer with the optimizer
trainer = gluon.Trainer(net.collect_params(), 'adadelta')
print("Optimizer - Trainer function initialized!\n")
print("=======================================\n")
print("Loading the dataset to the Gluon's OOTB Dataloader...")
#Getting the data loader out of the AudioDataset and passing the transform
from transforms import MFCC
aud_transform = MFCC()
tick = time.time()
audio_train_loader = gluon.data.DataLoader(aud_dataset.transform_first(aud_transform), batch_size=32, shuffle=True)
tock = time.time()
print("Time taken to load data and apply transform here is ", (tock-tick), " seconds.")
print("=======================================\n")
print("Starting the training....\n")
# Training loop
tick = time.time()
batch_size = batch_size
num_examples = len(aud_dataset)
for epoch in range(epochs):
cumulative_loss = 0
for data, label in audio_train_loader:
with autograd.record():
output = net(data)
loss = softmax_loss(output, label)
loss.backward()
trainer.step(batch_size)
cumulative_loss += mx.nd.sum(loss).asscalar()
if epoch%5 == 0:
train_accuracy = evaluate_accuracy(audio_train_loader, net)
print("Epoch {}. Loss: {} Train accuracy : {} ".format(epoch, cumulative_loss/num_examples, train_accuracy))
print("\n------------------------------\n")
train_accuracy = evaluate_accuracy(audio_train_loader, net)
tock = time.time()
print("\nFinal training accuracy: ", train_accuracy)
print("Training the sound classification for ", epochs, " epochs, MLP model took ", (tock-tick), " seconds")
print("====================== END ======================\n")
print("Trying to save the model parameters here...")
net.save_parameters("./net.params")
print("Saved the model parameters in current directory.") | 0.003686 |
def _vis_calibrate(self, data):
"""Calibrate visible channels to reflectance."""
solar_irradiance = self['esun']
esd = self["earth_sun_distance_anomaly_in_AU"].astype(float)
factor = np.pi * esd * esd / solar_irradiance
res = data * factor
res.attrs = data.attrs
res.attrs['units'] = '1'
res.attrs['standard_name'] = 'toa_bidirectional_reflectance'
return res | 0.004619 |
def integrate(self, outevent, inevent):
"""Propagate function time ratio along the function calls.
Must be called after finding the cycles.
See also:
- http://citeseer.ist.psu.edu/graham82gprof.html
"""
# Sanity checking
assert outevent not in self
for function in compat_itervalues(self.functions):
assert outevent not in function
assert inevent in function
for call in compat_itervalues(function.calls):
assert outevent not in call
if call.callee_id != function.id:
assert call.ratio is not None
# Aggregate the input for each cycle
for cycle in self.cycles:
total = inevent.null()
for function in compat_itervalues(self.functions):
total = inevent.aggregate(total, function[inevent])
self[inevent] = total
# Integrate along the edges
total = inevent.null()
for function in compat_itervalues(self.functions):
total = inevent.aggregate(total, function[inevent])
self._integrate_function(function, outevent, inevent)
self[outevent] = total | 0.002457 |
def endSubscription(self, subscriber):
"""
Unregister a live subscription.
"""
self._reqId2Contract.pop(subscriber.reqId, None)
self.reqId2Subscriber.pop(subscriber.reqId, None) | 0.009217 |
async def open(self) -> 'Issuer':
"""
Explicit entry. Perform ancestor opening operations,
then synchronize revocation registry to tails tree content.
:return: current object
"""
LOGGER.debug('Issuer.open >>>')
await super().open()
for path_rr_id in Tails.links(self.dir_tails, self.did):
await self._sync_revoc_for_issue(basename(path_rr_id))
LOGGER.debug('Issuer.open <<<')
return self | 0.004141 |
def call(fun, **kwargs):
'''
Directly call a function inside a loader directory
'''
args = kwargs.get('args', [])
dirs = kwargs.get('dirs', [])
funcs = LazyLoader(
[os.path.join(SALT_BASE_PATH, 'modules')] + dirs,
None,
tag='modules',
virtual_enable=False,
)
return funcs[fun](*args) | 0.002874 |
def create_machine(self, name=None, package=None, dataset=None,
metadata=None, tags=None, boot_script=None, credentials=False,
image=None, networks=None):
"""
::
POST /:login/machines
Provision a machine in the current
:py:class:`smartdc.datacenter.DataCenter`, returning an instantiated
:py:class:`smartdc.machine.Machine` object. All of the parameter
values are optional, as they are assigned default values by the
datacenter's API itself.
:param name: a human-readable label for the machine
:type name: :py:class:`basestring`
:param package: cluster of resource values identified by name
:type package: :py:class:`basestring` or :py:class:`dict`
:param image: an identifier for the base operating system image
(formerly a ``dataset``)
:type image: :py:class:`basestring` or :py:class:`dict`
:param dataset: base operating system image identified by a globally
unique ID or URN (deprecated)
:type dataset: :py:class:`basestring` or :py:class:`dict`
:param metadata: keys & values with arbitrary supplementary
details for the machine, accessible from the machine itself
:type metadata: :py:class:`dict`
:param tags: keys & values with arbitrary supplementary
identifying information for filtering when querying for machines
:type tags: :py:class:`dict`
:param networks: list of networks where this machine will belong to
:type networks: :py:class:`list`
:param boot_script: path to a file to upload for execution on boot
:type boot_script: :py:class:`basestring` as file path
:rtype: :py:class:`smartdc.machine.Machine`
If `package`, `image`, or `dataset` are passed a :py:class:`dict` containing a
`name` key (in the case of `package`) or an `id` key (in the case of
`image` or `dataset`), it passes the corresponding value. The server API
appears to resolve incomplete or ambiguous dataset URNs with the
highest version number.
"""
params = {}
if name:
assert re.match(r'[a-zA-Z0-9]([a-zA-Z0-9\-\.]*[a-zA-Z0-9])?$',
name), "Illegal name"
params['name'] = name
if package:
if isinstance(package, dict):
package = package['name']
params['package'] = package
if image:
if isinstance(image, dict):
image = image['id']
params['image'] = image
if dataset and not image:
if isinstance(dataset, dict):
dataset = dataset.get('id', dataset['urn'])
params['dataset'] = dataset
if metadata:
for k, v in metadata.items():
params['metadata.' + str(k)] = v
if tags:
for k, v in tags.items():
params['tag.' + str(k)] = v
if boot_script:
with open(boot_script) as f:
params['metadata.user-script'] = f.read()
if networks:
if isinstance(networks, list):
params['networks'] = networks
elif isinstance(networks, basestring):
params['networks'] = [networks]
j, r = self.request('POST', 'machines', data=params)
if r.status_code >= 400:
print(j, file=sys.stderr)
r.raise_for_status()
return Machine(datacenter=self, data=j) | 0.007654 |
def Pack(cls, obj, version):
"""Pack the given object using AdWords-specific logic.
Args:
obj: an object to be packed for SOAP using AdWords-specific logic, if
applicable.
version: the version of the current API, e.g. 'v201809'
Returns:
The given object packed with AdWords-specific logic for SOAP, if
applicable. Otherwise, returns the given object unmodified.
"""
if isinstance(obj, ServiceQuery):
return str(obj)
return obj | 0.004065 |
def enver(*args):
"""
%prog [<name>=[value]]
To show all environment variables, call with no parameters:
%prog
To Add/Modify/Delete environment variable:
%prog <name>=[value]
If <name> is PATH or PATHEXT, %prog will by default append the value using
a semicolon as a separator. Use -r to disable this behavior or -a to force
it for variables other than PATH and PATHEXT.
If append is prescribed, but the value doesn't exist, the value will be
created.
If there is no value, %prog will delete the <name> environment variable.
i.e. "PATH="
To remove a specific value or values from a semicolon-separated
multi-value variable (such as PATH), use --remove-value.
e.g. enver --remove-value PATH=C:\\Unwanted\\Dir\\In\\Path
Remove-value matches case-insensitive and also matches any substring
so the following would also be sufficient to remove the aforementioned
undesirable dir.
enver --remove-value PATH=UNWANTED
Note that %prog does not affect the current running environment, and can
only affect subsequently spawned applications.
"""
from optparse import OptionParser
parser = OptionParser(usage=trim(enver.__doc__))
parser.add_option(
'-U', '--user-environment',
action='store_const', const=UserRegisteredEnvironment,
default=MachineRegisteredEnvironment,
dest='class_',
help="Use the current user's environment",
)
parser.add_option(
'-a', '--append',
action='store_true', default=False,
help="Append the value to any existing value (default for PATH and PATHEXT)",
)
parser.add_option(
'-r', '--replace',
action='store_true', default=False,
help="Replace any existing value (used to override default append "
"for PATH and PATHEXT)",
)
parser.add_option(
'--remove-value', action='store_true', default=False,
help="Remove any matching values from a semicolon-separated "
"multi-value variable",
)
parser.add_option(
'-e', '--edit', action='store_true', default=False,
help="Edit the value in a local editor",
)
options, args = parser.parse_args(*args)
try:
param = args.pop()
if args:
parser.error("Too many parameters specified")
raise SystemExit(1)
if '=' not in param and not options.edit:
parser.error("Expected <name>= or <name>=<value>")
raise SystemExit(2)
name, sep, value = param.partition('=')
method_name = 'set'
if options.remove_value:
method_name = 'remove_values'
if options.edit:
method_name = 'edit'
method = getattr(options.class_, method_name)
method(name, value, options)
except IndexError:
options.class_.show() | 0.028158 |
def report(zap_helper, output, output_format):
"""Generate XML, MD or HTML report."""
if output_format == 'html':
zap_helper.html_report(output)
elif output_format == 'md':
zap_helper.md_report(output)
else:
zap_helper.xml_report(output)
console.info('Report saved to "{0}"'.format(output)) | 0.002985 |
def ErrorMessage(text, **kwargs):
"""Show an error message dialog to the user.
This will raise a Zenity Error Dialog with a description of the error.
text - A description of the error.
kwargs - Optional command line parameters for Zenity such as height,
width, etc."""
args = ['--text=%s' % text]
for generic_args in kwargs_helper(kwargs):
args.append('--%s=%s' % generic_args)
run_zenity('--error', *args).wait() | 0.006329 |
def _auto_adjust_panel_spans(dashboard):
'''Adjust panel spans to take up the available width.
For each group of panels that would be laid out on the same level, scale up
the unspecified panel spans to fill up the level.
'''
for row in dashboard.get('rows', []):
levels = []
current_level = []
levels.append(current_level)
for panel in row.get('panels', []):
current_level_span = sum(panel.get('span', _DEFAULT_PANEL_SPAN)
for panel in current_level)
span = panel.get('span', _DEFAULT_PANEL_SPAN)
if current_level_span + span > _FULL_LEVEL_SPAN:
current_level = [panel]
levels.append(current_level)
else:
current_level.append(panel)
for level in levels:
specified_panels = [panel for panel in level if 'span' in panel]
unspecified_panels = [panel for panel in level
if 'span' not in panel]
if not unspecified_panels:
continue
specified_span = sum(panel['span'] for panel in specified_panels)
available_span = _FULL_LEVEL_SPAN - specified_span
auto_span = float(available_span) / len(unspecified_panels)
for panel in unspecified_panels:
panel['span'] = auto_span | 0.000711 |
def verifyChainFromCAPath(self, capath, untrusted_file=None):
"""
Does the same job as .verifyChainFromCAFile() but using the list
of anchors in capath directory. The directory should (only) contain
certificates files in PEM format. As for .verifyChainFromCAFile(),
a list of untrusted certificates can be passed as a file
(concatenation of the certificates in PEM format).
"""
try:
anchors = []
for cafile in os.listdir(capath):
anchors.append(Cert(open(os.path.join(capath, cafile), "rb").read())) # noqa: E501
except Exception:
raise Exception("capath provided is not a valid cert path")
untrusted = None
if untrusted_file:
try:
f = open(untrusted_file, "rb")
untrusted_certs = f.read()
f.close()
except Exception:
raise Exception("Could not read from untrusted_file")
untrusted = [Cert(c) for c in split_pem(untrusted_certs)]
return self.verifyChain(anchors, untrusted) | 0.001779 |
def get_file_list():
"""Return a list of strings corresponding to file names supplied by drag and drop or standard input."""
if len(sys.argv) > 1:
file_list = list(sys.argv[1:]) # make copy
else:
files_str = input('Select the files you want to process and drag and drop them onto this window, '
'or type their names separated by spaces. Paths containing spaces should be '
'surrounded by quotation marks.\nPress ENTER when you\'re done: ')
if "win" in sys.platform:
# the POSIX shlex.split uses backslashes for escape sequences, so Windows paths need to set posix=False
file_list = shlex.split(files_str, posix=False)
# the non-POSIX shlex.split does not automatically clean quotation marks from the final product
file_list = [f.replace('"', '').replace("'", "") for f in file_list]
else:
file_list = shlex.split(files_str, posix=True)
# substitute in shell variables and get absolute paths
for i in range(len(file_list)):
file_list[i] = os.path.abspath( os.path.expanduser(os.path.expandvars(file_list[i])) )
return file_list | 0.009106 |
def campaign_name(self, campaign_name):
"""
Sets the campaign_name of this ServicePackageQuotaHistoryReservation.
Textual campaign name for this reservation.
:param campaign_name: The campaign_name of this ServicePackageQuotaHistoryReservation.
:type: str
"""
if campaign_name is None:
raise ValueError("Invalid value for `campaign_name`, must not be `None`")
if campaign_name is not None and len(campaign_name) > 250:
raise ValueError("Invalid value for `campaign_name`, length must be less than or equal to `250`")
if campaign_name is not None and len(campaign_name) < 1:
raise ValueError("Invalid value for `campaign_name`, length must be greater than or equal to `1`")
self._campaign_name = campaign_name | 0.007264 |
def _setDriftList(self, drift_length):
""" set drift length list of three elements
:param drift_length: input drift_length in [m], single float, or list/tuple of float numbers
"""
if isinstance(drift_length, tuple) or isinstance(drift_length, list):
if len(drift_length) == 1:
self.dflist = drift_length * 3
elif len(drift_length) == 2:
self.dflist = []
self.dflist.extend(drift_length)
self.dflist.append(drift_length[0])
elif len(drift_length) >= 3:
self.dflist = drift_length[0:3]
if self.dflist[0] != self.dflist[-1]:
print("warning: chicane is not symmetric.")
else:
print("drift_length is not a valid list or tuple.")
self.mflag = False
else:
self.dflist = []
self.dflist.extend([drift_length, drift_length, drift_length]) | 0.003033 |
def CreateConstMuskingumXFile(x_value,
in_connectivity_file,
out_x_file):
"""
Create muskingum X file from value that is constant all the way through
for each river segment.
Parameters
----------
x_value: float
Value for the muskingum X parameter [0-0.5].
in_connectivity_file: str
The path to the RAPID connectivity file.
out_x_file: str
The path to the output x file.
Example::
from RAPIDpy.gis.muskingum import CreateConstMuskingumXFile
CreateConstMuskingumXFile(
x_value=0.3,
in_connectivity_file='/path/to/rapid_connect.csv',
out_x_file='/path/to/x.csv')
"""
num_rivers = 0
with open_csv(in_connectivity_file, "r") as csvfile:
reader = csv_reader(csvfile)
for _ in reader:
num_rivers += 1
with open_csv(out_x_file, 'w') as kfile:
x_writer = csv_writer(kfile)
for _ in xrange(num_rivers):
x_writer.writerow([x_value]) | 0.000933 |
def get_importer(path_item):
"""Retrieve a PEP 302 "importer" for the given path item
If there is no importer, this returns a wrapper around the builtin import
machinery. The returned importer is only cached if it was created by a
path hook.
"""
try:
importer = sys.path_importer_cache[path_item]
except KeyError:
for hook in sys.path_hooks:
try:
importer = hook(path_item)
except ImportError:
pass
else:
break
else:
importer = None
sys.path_importer_cache.setdefault(path_item,importer)
if importer is None:
try:
importer = ImpWrapper(path_item)
except ImportError:
pass
return importer | 0.002532 |
def _getInputImage (input,group=None):
""" Factory function to return appropriate imageObject class instance"""
# extract primary header and SCI,1 header from input image
sci_ext = 'SCI'
if group in [None,'']:
exten = '[sci,1]'
phdu = fits.getheader(input, memmap=False)
else:
# change to use fits more directly here?
if group.find(',') > 0:
grp = group.split(',')
if grp[0].isalpha():
grp = (grp[0],int(grp[1]))
else:
grp = int(grp[0])
else:
grp = int(group)
phdu = fits.getheader(input, memmap=False)
phdu.extend(fits.getheader(input, ext=grp, memmap=False))
# Extract the instrument name for the data that is being processed by Multidrizzle
_instrument = phdu['INSTRUME']
# Determine the instrument detector in use. NICMOS is a special case because it does
# not use the 'DETECTOR' keyword. It instead used 'CAMERA' to identify which of it's
# 3 camera's is in use. All other instruments support the 'DETECTOR' keyword.
if _instrument == 'NICMOS':
_detector = phdu['CAMERA']
else:
try:
_detector = phdu['DETECTOR']
except KeyError:
# using the phdu as set above (fits.getheader) is MUCH faster and
# works for the majority of data; but fileutil handles waivered fits
phdu = fileutil.getHeader(input+exten)
_detector = phdu['DETECTOR'] # if this fails, let it throw
del phdu # just to keep clean
# Match up the instrument and detector with the right class
# only importing the instrument modules as needed.
try:
if _instrument == 'ACS':
from . import acsData
if _detector == 'HRC': return acsData.HRCInputImage(input,group=group)
if _detector == 'WFC': return acsData.WFCInputImage(input,group=group)
if _detector == 'SBC': return acsData.SBCInputImage(input,group=group)
if _instrument == 'NICMOS':
from . import nicmosData
if _detector == 1: return nicmosData.NIC1InputImage(input)
if _detector == 2: return nicmosData.NIC2InputImage(input)
if _detector == 3: return nicmosData.NIC3InputImage(input)
if _instrument == 'WFPC2':
from . import wfpc2Data
return wfpc2Data.WFPC2InputImage(input,group=group)
"""
if _detector == 1: return wfpc2Data.PCInputImage(input)
if _detector == 2: return wfpc2Data.WF2InputImage(input)
if _detector == 3: return wfpc2Data.WF3InputImage(input)
if _detector == 4: return wfpc2Data.WF4InputImage(input)
"""
if _instrument == 'STIS':
from . import stisData
if _detector == 'CCD': return stisData.CCDInputImage(input,group=group)
if _detector == 'FUV-MAMA': return stisData.FUVInputImage(input,group=group)
if _detector == 'NUV-MAMA': return stisData.NUVInputImage(input,group=group)
if _instrument == 'WFC3':
from . import wfc3Data
if _detector == 'UVIS': return wfc3Data.WFC3UVISInputImage(input,group=group)
if _detector == 'IR': return wfc3Data.WFC3IRInputImage(input,group=group)
except ImportError:
msg = 'No module implemented for '+str(_instrument)+'!'
raise ValueError(msg)
# If a supported instrument is not detected, print the following error message
# and raise an exception.
msg = 'Instrument: ' + str(_instrument) + '/' + str(_detector) + ' not yet supported!'
raise ValueError(msg) | 0.011729 |
def deephash(obj):
"""
Given an object, return a hash using HashableJSON. This hash is not
architecture, Python version or platform independent.
"""
try:
return hash(json.dumps(obj, cls=HashableJSON, sort_keys=True))
except:
return None | 0.007246 |
def get_memory_map_xml(self):
"""! @brief Generate GDB memory map XML.
"""
root = ElementTree.Element('memory-map')
for r in self._context.core.memory_map:
# Look up the region type name. Regions default to ram if gdb doesn't
# have a concept of the region type.
gdbType = GDB_TYPE_MAP.get(r.type, 'ram')
start = hex(r.start).rstrip("L")
length = hex(r.length).rstrip("L")
mem = ElementTree.SubElement(root, 'memory', type=gdbType, start=start, length=length)
if r.is_flash:
prop = ElementTree.SubElement(mem, 'property', name='blocksize')
prop.text = hex(r.blocksize).rstrip("L")
return MAP_XML_HEADER + ElementTree.tostring(root) | 0.008739 |
def volume(self):
"""
Volume of the simplex.
"""
return abs(np.linalg.det(self.T)) / math.factorial(self.space_dim) | 0.013605 |
def _token_to_subwords(self, token):
"""Greedily split token into subwords."""
subwords = []
start = 0
while start < len(token):
subword = None
for end in range(
min(len(token), start + self._max_subword_len), start, -1):
candidate = token[start:end]
if (candidate in self._subword_to_id or
candidate == _UNDERSCORE_REPLACEMENT):
subword = candidate
subwords.append(subword)
start = end
break
# No subword match found. Consume a single (unicode) character.
if subword is None:
subwords.append(token[start])
start += 1
return subwords | 0.016345 |
def one(self):
"""Return exactly one record or raise an exception.
:return:
- Dictionary containing the only item in the response content
:raise:
- MultipleResults: If more than one records are present in the content
- NoResults: If the result is empty
"""
result, count = self._get_buffered_response()
if count == 0:
raise NoResults("No records found")
elif count > 1:
raise MultipleResults("Expected single-record result, got multiple")
return result[0] | 0.006849 |
def update_assessment_taken(self, assessment_taken_form):
"""Updates an existing assessment taken.
arg: assessment_taken_form
(osid.assessment.AssessmentTakenForm): the form
containing the elements to be updated
raise: IllegalState - ``assessment_taken_form`` already used in
an update transaction
raise: InvalidArgument - the form contains an invalid value
raise: NullArgument - ``assessment_taken_form`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure occurred
raise: Unsupported - ``assessment_offered_form`` did not
originate from
``get_assessment_taken_form_for_update()``
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceAdminSession.update_resource_template
collection = JSONClientValidated('assessment',
collection='AssessmentTaken',
runtime=self._runtime)
if not isinstance(assessment_taken_form, ABCAssessmentTakenForm):
raise errors.InvalidArgument('argument type is not an AssessmentTakenForm')
if not assessment_taken_form.is_for_update():
raise errors.InvalidArgument('the AssessmentTakenForm is for update only, not create')
try:
if self._forms[assessment_taken_form.get_id().get_identifier()] == UPDATED:
raise errors.IllegalState('assessment_taken_form already used in an update transaction')
except KeyError:
raise errors.Unsupported('assessment_taken_form did not originate from this session')
if not assessment_taken_form.is_valid():
raise errors.InvalidArgument('one or more of the form elements is invalid')
collection.save(assessment_taken_form._my_map)
self._forms[assessment_taken_form.get_id().get_identifier()] = UPDATED
# Note: this is out of spec. The OSIDs don't require an object to be returned:
return objects.AssessmentTaken(
osid_object_map=assessment_taken_form._my_map,
runtime=self._runtime,
proxy=self._proxy) | 0.003838 |
def process(name):
'''
Return whether the specified signature is found in the process tree. This
differs slightly from the services states, in that it may refer to a
process that is not managed via the init system.
'''
# Monitoring state, no changes will be made so no test interface needed
ret = {'name': name,
'result': False,
'comment': '',
'changes': {},
'data': {}} # Data field for monitoring state
data = __salt__['status.pid'](name)
if not data:
ret['result'] = False
ret['comment'] += 'Process signature "{0}" not found '.format(
name
)
return ret
ret['data'] = data
ret['comment'] += 'Process signature "{0}" was found '.format(
name
)
ret['result'] = True
return ret | 0.001203 |
def annotate_video(
self,
input_uri=None,
input_content=None,
features=None,
video_context=None,
output_uri=None,
location_id=None,
retry=google.api_core.gapic_v1.method.DEFAULT,
timeout=google.api_core.gapic_v1.method.DEFAULT,
metadata=None,
):
"""
Performs asynchronous video annotation. Progress and results can be
retrieved through the ``google.longrunning.Operations`` interface.
``Operation.metadata`` contains ``AnnotateVideoProgress`` (progress).
``Operation.response`` contains ``AnnotateVideoResponse`` (results).
Example:
>>> from google.cloud import videointelligence_v1beta2
>>> from google.cloud.videointelligence_v1beta2 import enums
>>>
>>> client = videointelligence_v1beta2.VideoIntelligenceServiceClient()
>>>
>>> input_uri = 'gs://demomaker/cat.mp4'
>>> features_element = enums.Feature.LABEL_DETECTION
>>> features = [features_element]
>>>
>>> response = client.annotate_video(input_uri=input_uri, features=features)
>>>
>>> def callback(operation_future):
... # Handle result.
... result = operation_future.result()
>>>
>>> response.add_done_callback(callback)
>>>
>>> # Handle metadata.
>>> metadata = response.metadata()
Args:
input_uri (str): Input video location. Currently, only `Google Cloud
Storage <https://cloud.google.com/storage/>`__ URIs are supported, which
must be specified in the following format: ``gs://bucket-id/object-id``
(other URI formats return ``google.rpc.Code.INVALID_ARGUMENT``). For
more information, see `Request
URIs <https://cloud.google.com/storage/docs/reference-uris>`__. A video
URI may include wildcards in ``object-id``, and thus identify multiple
videos. Supported wildcards: '\*' to match 0 or more characters; '?' to
match 1 character. If unset, the input video should be embedded in the
request as ``input_content``. If set, ``input_content`` should be unset.
input_content (bytes): The video data bytes. If unset, the input video(s) should be specified
via ``input_uri``. If set, ``input_uri`` should be unset.
features (list[~google.cloud.videointelligence_v1beta2.types.Feature]): Requested video annotation features.
video_context (Union[dict, ~google.cloud.videointelligence_v1beta2.types.VideoContext]): Additional video context and/or feature-specific parameters.
If a dict is provided, it must be of the same form as the protobuf
message :class:`~google.cloud.videointelligence_v1beta2.types.VideoContext`
output_uri (str): Optional location where the output (in JSON format) should be stored.
Currently, only `Google Cloud
Storage <https://cloud.google.com/storage/>`__ URIs are supported, which
must be specified in the following format: ``gs://bucket-id/object-id``
(other URI formats return ``google.rpc.Code.INVALID_ARGUMENT``). For
more information, see `Request
URIs <https://cloud.google.com/storage/docs/reference-uris>`__.
location_id (str): Optional cloud region where annotation should take place. Supported
cloud regions: ``us-east1``, ``us-west1``, ``europe-west1``,
``asia-east1``. If no region is specified, a region will be determined
based on video file location.
retry (Optional[google.api_core.retry.Retry]): A retry object used
to retry requests. If ``None`` is specified, requests will not
be retried.
timeout (Optional[float]): The amount of time, in seconds, to wait
for the request to complete. Note that if ``retry`` is
specified, the timeout applies to each individual attempt.
metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata
that is provided to the method.
Returns:
A :class:`~google.cloud.videointelligence_v1beta2.types._OperationFuture` instance.
Raises:
google.api_core.exceptions.GoogleAPICallError: If the request
failed for any reason.
google.api_core.exceptions.RetryError: If the request failed due
to a retryable error and retry attempts failed.
ValueError: If the parameters are invalid.
"""
# Wrap the transport method to add retry and timeout logic.
if "annotate_video" not in self._inner_api_calls:
self._inner_api_calls[
"annotate_video"
] = google.api_core.gapic_v1.method.wrap_method(
self.transport.annotate_video,
default_retry=self._method_configs["AnnotateVideo"].retry,
default_timeout=self._method_configs["AnnotateVideo"].timeout,
client_info=self._client_info,
)
request = video_intelligence_pb2.AnnotateVideoRequest(
input_uri=input_uri,
input_content=input_content,
features=features,
video_context=video_context,
output_uri=output_uri,
location_id=location_id,
)
operation = self._inner_api_calls["annotate_video"](
request, retry=retry, timeout=timeout, metadata=metadata
)
return google.api_core.operation.from_gapic(
operation,
self.transport._operations_client,
video_intelligence_pb2.AnnotateVideoResponse,
metadata_type=video_intelligence_pb2.AnnotateVideoProgress,
) | 0.004461 |
def score_function(self, x, W):
# need refector
'''
Score function to calculate score
'''
score = self.sign * np.sign(x[self.feature_index] - self.theta)
return score | 0.013825 |
def configure(self, config):
"""
Configures component by passing configuration parameters.
:param config: configuration parameters to be set.
"""
self._timeout = config.get_as_long_with_default("options.timeout", self._default_timeout)
self._max_size = config.get_as_long_with_default("options.max_size", self._default_max_size) | 0.01061 |
def update(self, **kwargs):
"""Change the configuration of the resource on the device.
This method uses Http PUT alter the service state on the device.
The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:
* read-only attributes that are unchangeable are removed
* ``agent`` attribute removed prior to PUT
* ``post`` attribute removed prior to PUT
* ``method`` attribute removed prior to PUT
:param kwargs: keys and associated values to alter on the device
"""
self.__dict__.pop('agent', '')
self.__dict__.pop('post', '')
self.__dict__.pop('method', '')
super(Wmi, self).update(**kwargs) | 0.002361 |
def records(account_id):
"""Fetch locks data
"""
s = boto3.Session()
table = s.resource('dynamodb').Table('Sphere11.Dev.ResourceLocks')
results = table.scan()
for r in results['Items']:
if 'LockDate' in r:
r['LockDate'] = datetime.fromtimestamp(r['LockDate'])
if 'RevisionDate' in r:
r['RevisionDate'] = datetime.fromtimestamp(r['RevisionDate'])
print(tabulate.tabulate(
results['Items'],
headers="keys",
tablefmt='fancy_grid')) | 0.001916 |
def color_palette(name=None, n_colors=6, desat=None):
"""Return a list of colors defining a color palette.
Availible seaborn palette names:
deep, muted, bright, pastel, dark, colorblind
Other options:
hls, husl, any matplotlib palette
Matplotlib paletes can be specified as reversed palettes by appending
"_r" to the name or as dark palettes by appending "_d" to the name.
This function can also be used in a ``with`` statement to temporarily
set the color cycle for a plot or set of plots.
Parameters
----------
name: None, string, or sequence
Name of palette or None to return current palette. If a
sequence, input colors are used but possibly cycled and
desaturated.
n_colors : int
Number of colors in the palette. If larger than the number of
colors in the palette, they will cycle.
desat : float
Value to desaturate each color by.
Returns
-------
palette : list of RGB tuples.
Color palette.
Examples
--------
>>> p = color_palette("muted")
>>> p = color_palette("Blues_d", 10)
>>> p = color_palette("Set1", desat=.7)
>>> import matplotlib.pyplot as plt
>>> with color_palette("husl", 8):
... f, ax = plt.subplots()
... ax.plot(x, y) # doctest: +SKIP
See Also
--------
set_palette : set the default color cycle for all plots.
axes_style : define parameters to set the style of plots
plotting_context : define parameters to scale plot elements
"""
seaborn_palettes = dict(
deep=["#4C72B0", "#55A868", "#C44E52",
"#8172B2", "#CCB974", "#64B5CD"],
muted=["#4878CF", "#6ACC65", "#D65F5F",
"#B47CC7", "#C4AD66", "#77BEDB"],
pastel=["#92C6FF", "#97F0AA", "#FF9F9A",
"#D0BBFF", "#FFFEA3", "#B0E0E6"],
bright=["#003FFF", "#03ED3A", "#E8000B",
"#8A2BE2", "#FFC400", "#00D7FF"],
dark=["#001C7F", "#017517", "#8C0900",
"#7600A1", "#B8860B", "#006374"],
colorblind=["#0072B2", "#009E73", "#D55E00",
"#CC79A7", "#F0E442", "#56B4E9"],
)
if name is None:
palette = mpl.rcParams["axes.color_cycle"]
elif not isinstance(name, string_types):
palette = name
elif name == "hls":
palette = hls_palette(n_colors)
elif name == "husl":
palette = husl_palette(n_colors)
elif name in seaborn_palettes:
palette = seaborn_palettes[name]
elif name in dir(mpl.cm):
palette = mpl_palette(name, n_colors)
elif name[:-2] in dir(mpl.cm):
palette = mpl_palette(name, n_colors)
else:
raise ValueError("%s is not a valid palette name" % name)
if desat is not None:
palette = [desaturate(c, desat) for c in palette]
# Always return as many colors as we asked for
pal_cycle = cycle(palette)
palette = [next(pal_cycle) for _ in range(n_colors)]
# Always return in r, g, b tuple format
try:
palette = map(mpl.colors.colorConverter.to_rgb, palette)
palette = _ColorPalette(palette)
except ValueError:
raise ValueError("Could not generate a palette for %s" % str(name))
return palette | 0.000304 |
def forward_message(self, chat_id, from_chat_id, message_id, disable_notification=None):
"""
Use this method to forward messages of any kind.
:param disable_notification:
:param chat_id: which chat to forward
:param from_chat_id: which chat message from
:param message_id: message id
:return: API reply.
"""
return types.Message.de_json(
apihelper.forward_message(self.token, chat_id, from_chat_id, message_id, disable_notification)) | 0.007737 |
def _rgb_triangle(ax, r_label, g_label, b_label, loc):
"""
Draw an RGB triangle legend on the desired axis
"""
if not loc in range(1, 11):
loc = 2
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
inset_ax = inset_axes(ax, width=1, height=1, loc=loc)
mesh = 35
x = []
y = []
color = []
for r in range(0, mesh):
for g in range(0, mesh):
for b in range(0, mesh):
if not (r == 0 and b == 0 and g == 0):
r1 = r / (r + g + b)
g1 = g / (r + g + b)
b1 = b / (r + g + b)
x.append(0.33 * (2. * g1 + r1) / (r1 + b1 + g1))
y.append(0.33 * np.sqrt(3) * r1 / (r1 + b1 + g1))
rc = math.sqrt(r ** 2 / (r ** 2 + g ** 2 + b ** 2))
gc = math.sqrt(g ** 2 / (r ** 2 + g ** 2 + b ** 2))
bc = math.sqrt(b ** 2 / (r ** 2 + g ** 2 + b ** 2))
color.append([rc, gc, bc])
# x = [n + 0.25 for n in x] # nudge x coordinates
# y = [n + (max_y - 1) for n in y] # shift y coordinates to top
# plot the triangle
inset_ax.scatter(x, y, s=7, marker='.', edgecolor=color)
inset_ax.set_xlim([-0.35, 1.00])
inset_ax.set_ylim([-0.35, 1.00])
# add the labels
inset_ax.text(0.70, -0.2, g_label, fontsize=13,
family='Times New Roman', color=(0, 0, 0),
horizontalalignment='left')
inset_ax.text(0.325, 0.70, r_label, fontsize=13,
family='Times New Roman', color=(0, 0, 0),
horizontalalignment='center')
inset_ax.text(-0.05, -0.2, b_label, fontsize=13,
family='Times New Roman', color=(0, 0, 0),
horizontalalignment='right')
inset_ax.get_xaxis().set_visible(False)
inset_ax.get_yaxis().set_visible(False) | 0.00145 |
def update_translations(request):
"""
Update translations: delete orphan translations and creates empty translations for new objects in database.
"""
FieldTranslation.delete_orphan_translations()
num_translations = FieldTranslation.update_translations()
return render_to_response('modeltranslation/admin/update_translations_ok.html',{"num_translations":num_translations}, RequestContext(request)) | 0.027363 |
def namedb_get_name_preorder( db, preorder_hash, current_block ):
"""
Get a (singular) name preorder record outstanding at the given block, given the preorder hash.
NOTE: returns expired preorders.
Return the preorder record on success.
Return None if not found.
"""
select_query = "SELECT * FROM preorders WHERE preorder_hash = ? AND op = ? AND block_number < ?;"
args = (preorder_hash, NAME_PREORDER, current_block + NAME_PREORDER_EXPIRE)
cur = db.cursor()
preorder_rows = namedb_query_execute( cur, select_query, args )
preorder_row = preorder_rows.fetchone()
if preorder_row is None:
# no such preorder
return None
preorder_rec = {}
preorder_rec.update( preorder_row )
unexpired_query, unexpired_args = namedb_select_where_unexpired_names( current_block )
# make sure that the name doesn't already exist
select_query = "SELECT name_records.preorder_hash " + \
"FROM name_records JOIN namespaces ON name_records.namespace_id = namespaces.namespace_id " + \
"WHERE name_records.preorder_hash = ? AND " + \
unexpired_query + ";"
args = (preorder_hash,) + unexpired_args
cur = db.cursor()
nm_rows = namedb_query_execute( cur, select_query, args )
nm_row = nm_rows.fetchone()
if nm_row is not None:
# name with this preorder exists
return None
return preorder_rec | 0.015636 |
def set_bucket_props(self, bucket, props):
"""
Set the properties on the bucket object given
"""
bucket_type = self._get_bucket_type(bucket.bucket_type)
url = self.bucket_properties_path(bucket.name,
bucket_type=bucket_type)
headers = {'Content-Type': 'application/json'}
content = json.dumps({'props': props})
# Run the request...
status, _, body = self._request('PUT', url, headers, content)
if status == 401:
raise SecurityError('Not authorized to set bucket properties.')
elif status != 204:
raise RiakError('Error setting bucket properties.')
return True | 0.002766 |
def _accumulateFrequencyCounts(values, freqCounts=None):
"""
Accumulate a list of values 'values' into the frequency counts 'freqCounts',
and return the updated frequency counts
For example, if values contained the following: [1,1,3,5,1,3,5], and the initial
freqCounts was None, then the return value would be:
[0,3,0,2,0,2]
which corresponds to how many of each value we saw in the input, i.e. there
were 0 0's, 3 1's, 0 2's, 2 3's, 0 4's, and 2 5's.
If freqCounts is not None, the values will be added to the existing counts and
the length of the frequency Counts will be automatically extended as necessary
Parameters:
-----------------------------------------------
values: The values to accumulate into the frequency counts
freqCounts: Accumulated frequency counts so far, or none
"""
# How big does our freqCounts vector need to be?
values = numpy.array(values)
numEntries = values.max() + 1
if freqCounts is not None:
numEntries = max(numEntries, freqCounts.size)
# Where do we accumulate the results?
if freqCounts is not None:
if freqCounts.size != numEntries:
newCounts = numpy.zeros(numEntries, dtype='int32')
newCounts[0:freqCounts.size] = freqCounts
else:
newCounts = freqCounts
else:
newCounts = numpy.zeros(numEntries, dtype='int32')
# Accumulate the new values
for v in values:
newCounts[v] += 1
return newCounts | 0.012535 |
def convert(args):
"""
Download VM disks, and OVF from vCenter
:param args:
:return: created vmdk
"""
exporter = OvfExporter(user=args.vcenter_user,password=args.vcenter_pass, host=args.vcenter_host, port=args.vcenter_port,
vm_name=args.vm_name, dir=args.directory)
return exporter.export_ovf() | 0.008596 |
def minutes_for_session(self, session_label):
"""
Given a session label, return the minutes for that session.
Parameters
----------
session_label: pd.Timestamp (midnight UTC)
A session label whose session's minutes are desired.
Returns
-------
pd.DateTimeIndex
All the minutes for the given session.
"""
return self.minutes_in_range(
start_minute=self.schedule.at[session_label, 'market_open'],
end_minute=self.schedule.at[session_label, 'market_close'],
) | 0.003367 |
def exists(self, vars_list: List[str]) -> 'TensorFluent':
'''Returns the TensorFluent for the exists aggregation function.
Args:
vars_list: The list of variables to be aggregated over.
Returns:
A TensorFluent wrapping the exists aggregation function.
'''
return self._aggregation_op(tf.reduce_any, self, vars_list) | 0.005263 |
def populate(self, priority, address, rtr, data):
"""
data bytes (high + low)
1 + 2 = current temp
3 + 4 = min temp
5 + 6 = max temp
:return: None
"""
assert isinstance(data, bytes)
self.needs_no_rtr(rtr)
self.needs_data(data, 6)
self.set_attributes(priority, address, rtr)
self.cur = (((data[0] << 8)| data[1]) / 32 ) * 0.0625
self.min = (((data[2] << 8) | data[3]) / 32 ) * 0.0625
self.max = (((data[4] << 8) | data[5]) / 32 ) * 0.0625 | 0.010582 |
def __gen_token_anno_file(self, top_level_layer):
"""
creates an etree representation of a <multiFeat> file that describes
all the annotations that only span one token (e.g. POS, lemma etc.).
Note: discoursegraphs will create one token annotation file for each
top level layer (e.g. conano, tiger etc.).
"""
base_paula_id = '{0}.{1}.tok'.format(self.corpus_name, self.name)
paula_id = '{0}.{1}.{2}.tok_multiFeat'.format(top_level_layer,
self.corpus_name,
self.name)
E, tree = gen_paula_etree(paula_id)
mflist = E('multiFeatList',
{XMLBASE: base_paula_id+'.xml'})
for token_id in self.dg.tokens:
mfeat = E('multiFeat',
{XLINKHREF: '#{0}'.format(token_id)})
token_dict = self.dg.node[token_id]
for feature in token_dict:
# TODO: highly inefficient! refactor!1!!
if feature not in IGNORED_TOKEN_ATTRIBS \
and feature.startswith(top_level_layer):
mfeat.append(E('feat',
{'name': feature,
'value': token_dict[feature]}))
if self.human_readable: # adds token string as a <!-- comment -->
mfeat.append(Comment(token_dict[self.dg.ns+':token']))
mflist.append(mfeat)
tree.append(mflist)
self.files[paula_id] = tree
self.file2dtd[paula_id] = PaulaDTDs.multifeat
return paula_id | 0.00242 |
def get_updates(self, *args, **kwargs):
"""See :func:`get_updates`"""
return get_updates(*args, **self._merge_overrides(**kwargs)).run() | 0.013158 |
def modules(self):
"""
:return: dictionary {index: object} of all modules.
"""
if not self.get_objects_by_type('module'):
self.inventory()
return {int(c.index): c for c in self.get_objects_by_type('module')} | 0.007692 |
def cooccurrences(self, domain):
'''Get the cooccurrences of the given domain.
For details, see https://investigate.umbrella.com/docs/api#co-occurrences
'''
uri = self._uris["cooccurrences"].format(domain)
return self.get_parse(uri) | 0.010989 |
def fulfill(self, method, *args, **kwargs):
""" Fulfill an HTTP request to Keen's API. """
return getattr(self.session, method)(*args, **kwargs) | 0.012346 |
def log(self, _from=None, to=None):
"""Run git-log."""
command = ["git", "log"]
if _from:
to = "HEAD" if not to else to
revision_range = f"{_from}..{to}"
command.append(revision_range)
git_log_text = _run_command(command)
commit_text_lst = _extract_commit_texts(git_log_text)
return [Commit(commit_text) for commit_text in commit_text_lst] | 0.004684 |
def toposort_flatten(data, sort=True):
"""Returns a single list of dependencies. For any set returned by
toposort(), those items are sorted and appended to the result (just to
make the results deterministic)."""
result = []
for d in toposort(data):
try:
result.extend((sorted if sort else list)(d))
except TypeError as e:
result.extend(list(d))
return result | 0.00241 |
def get_instance(self, payload):
"""
Build an instance of DefaultsInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.autopilot.v1.assistant.defaults.DefaultsInstance
:rtype: twilio.rest.autopilot.v1.assistant.defaults.DefaultsInstance
"""
return DefaultsInstance(self._version, payload, assistant_sid=self._solution['assistant_sid'], ) | 0.007075 |
def genericCameraMatrix(shape, angularField=60):
'''
Return a generic camera matrix
[[fx, 0, cx],
[ 0, fy, cy],
[ 0, 0, 1]]
for a given image shape
'''
# http://nghiaho.com/?page_id=576
# assume that the optical centre is in the middle:
cy = int(shape[0] / 2)
cx = int(shape[1] / 2)
# assume that the FOV is 60 DEG (webcam)
fx = fy = cx / np.tan(angularField / 2 * np.pi /
180) # camera focal length
# see
# http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
return np.array([[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]
], dtype=np.float32) | 0.001339 |
def set_hosts_file_entry_for_role(self, role_name, network_name='user-net', fqdn=None, domain_name=None):
"""Adds an entry to the hosts file for a scenario host given
the role name and network name
:param role_name: (str) role name of the host to add
:param network_name: (str) Name of the network to add to the hosts file
:param fqdn: (str) Fully qualified domain name to use in the hosts file entry (trumps domain name)
:param domain_name: (str) Domain name to include in the hosts file entries if provided
:return:
"""
log = logging.getLogger(self.cls_logger + '.set_hosts_file_entry_for_role')
# Determine the host file entry portion
if fqdn:
host_file_entry = fqdn
else:
if domain_name:
host_file_entry = '{r}.{d} {r}'.format(r=role_name, d=domain_name)
else:
host_file_entry = role_name
log.info('Using hosts file entry: {e}'.format(e=host_file_entry))
log.info('Scanning scenario hosts for role name [{r}] and network: {n}'.format(r=role_name, n=network_name))
for scenario_host in self.scenario_network_info:
if scenario_host['scenario_role_name'] == role_name:
for host_network_info in scenario_host['network_info']:
if host_network_info['network_name'] == network_name:
self.update_hosts_file(ip=host_network_info['internal_ip'], entry=host_file_entry) | 0.005906 |
def user_cache_dir(self):
"""Return ``user_cache_dir``."""
directory = appdirs.user_cache_dir(self.appname, self.appauthor,
version=self.version)
if self.create:
self._ensure_directory_exists(directory)
return directory | 0.010239 |
def ln(label):
"""Draw a 70-char-wide divider, with label in the middle.
>>> ln('hello there')
'---------------------------- hello there -----------------------------'
"""
label_len = len(label) + 2
chunk = (70 - label_len) // 2
out = '%s %s %s' % ('-' * chunk, label, '-' * chunk)
pad = 70 - len(out)
if pad > 0:
out = out + ('-' * pad)
return out | 0.002519 |
def parse_request(cls, request_string):
"""JSONRPC allows for **batch** requests to be communicated
as array of dicts. This method parses out each individual
element in the batch and returns a list of tuples, each
tuple a result of parsing of each item in the batch.
:Returns: | tuple of (results, is_batch_mode_flag)
| where:
| - results is a tuple describing the request
| - Is_batch_mode_flag is a Bool indicating if the
| request came in in batch mode (as array of requests) or not.
:Raises: RPCParseError, RPCInvalidRequest
"""
try:
batch = cls.json_loads(request_string)
except ValueError as err:
raise errors.RPCParseError("No valid JSON. (%s)" % str(err))
if isinstance(batch, (list, tuple)) and batch:
# batch is true batch.
# list of parsed request objects, is_batch_mode_flag
return [cls._parse_single_request_trap_errors(request) for request in batch], True
elif isinstance(batch, dict):
# `batch` is actually single request object
return [cls._parse_single_request_trap_errors(batch)], False
raise errors.RPCInvalidRequest("Neither a batch array nor a single request object found in the request.") | 0.003621 |
def pluralize(word, pos=NOUN, custom=None, classical=True):
""" Returns the plural of a given word, e.g., child => children.
Handles nouns and adjectives, using classical inflection by default
(i.e., where "matrix" pluralizes to "matrices" and not "matrixes").
The custom dictionary is for user-defined replacements.
"""
if custom and word in custom:
return custom[word]
# Recurse genitives.
# Remove the apostrophe and any trailing -s,
# form the plural of the resultant noun, and then append an apostrophe (dog's => dogs').
if word.endswith(("'", "'s")):
w = word.rstrip("'s")
w = pluralize(w, pos, custom, classical)
if w.endswith("s"):
return w + "'"
else:
return w + "'s"
# Recurse compound words
# (e.g., Postmasters General, mothers-in-law, Roman deities).
w = word.replace("-", " ").split(" ")
if len(w) > 1:
if w[1] == "general" or \
w[1] == "General" and \
w[0] not in plural_categories["general-generals"]:
return word.replace(w[0], pluralize(w[0], pos, custom, classical))
elif w[1] in plural_prepositions:
return word.replace(w[0], pluralize(w[0], pos, custom, classical))
else:
return word.replace(w[-1], pluralize(w[-1], pos, custom, classical))
# Only a very few number of adjectives inflect.
n = range(len(plural_rules))
if pos.startswith(ADJECTIVE):
n = [0, 1]
# Apply pluralization rules.
for i in n:
for suffix, inflection, category, classic in plural_rules[i]:
# A general rule, or a classic rule in classical mode.
if category is None:
if not classic or (classic and classical):
if suffix.search(word) is not None:
return suffix.sub(inflection, word)
# A rule pertaining to a specific category of words.
if category is not None:
if word in plural_categories[category] and (not classic or (classic and classical)):
if suffix.search(word) is not None:
return suffix.sub(inflection, word)
return word | 0.001785 |
def _make_agent(self, entrez_id, text_id):
"""Make an Agent object, appropriately grounded.
Parameters
----------
entrez_id : str
Entrez id number
text_id : str
A plain text systematic name, or None if not listed.
Returns
-------
agent : indra.statements.Agent
A grounded agent object.
"""
hgnc_name, db_refs = self._make_db_refs(entrez_id, text_id)
if hgnc_name is not None:
name = hgnc_name
elif text_id is not None:
name = text_id
# Handle case where the name is None
else:
return None
return Agent(name, db_refs=db_refs) | 0.002782 |
def movMF(
X,
n_clusters,
posterior_type="soft",
force_weights=None,
n_init=10,
n_jobs=1,
max_iter=300,
verbose=False,
init="random-class",
random_state=None,
tol=1e-6,
copy_x=True,
):
"""Wrapper for parallelization of _movMF and running n_init times.
"""
if n_init <= 0:
raise ValueError(
"Invalid number of initializations."
" n_init=%d must be bigger than zero." % n_init
)
random_state = check_random_state(random_state)
if max_iter <= 0:
raise ValueError(
"Number of iterations should be a positive number,"
" got %d instead" % max_iter
)
best_inertia = np.infty
X = as_float_array(X, copy=copy_x)
tol = _tolerance(X, tol)
if hasattr(init, "__array__"):
init = check_array(init, dtype=X.dtype.type, copy=True)
_validate_center_shape(X, n_clusters, init)
if n_init != 1:
warnings.warn(
"Explicit initial center position passed: "
"performing only one init in k-means instead of n_init=%d" % n_init,
RuntimeWarning,
stacklevel=2,
)
n_init = 1
# defaults
best_centers = None
best_labels = None
best_weights = None
best_concentrations = None
best_posterior = None
best_inertia = None
if n_jobs == 1:
# For a single thread, less memory is needed if we just store one set
# of the best results (as opposed to one set per run per thread).
for it in range(n_init):
# cluster on the sphere
(centers, weights, concentrations, posterior, labels, inertia) = _movMF(
X,
n_clusters,
posterior_type=posterior_type,
force_weights=force_weights,
max_iter=max_iter,
verbose=verbose,
init=init,
random_state=random_state,
tol=tol,
)
# determine if these results are the best so far
if best_inertia is None or inertia < best_inertia:
best_centers = centers.copy()
best_labels = labels.copy()
best_weights = weights.copy()
best_concentrations = concentrations.copy()
best_posterior = posterior.copy()
best_inertia = inertia
else:
# parallelisation of movMF runs
seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
results = Parallel(n_jobs=n_jobs, verbose=0)(
delayed(_movMF)(
X,
n_clusters,
posterior_type=posterior_type,
force_weights=force_weights,
max_iter=max_iter,
verbose=verbose,
init=init,
random_state=random_state,
tol=tol,
)
for seed in seeds
)
# Get results with the lowest inertia
centers, weights, concentrations, posteriors, labels, inertia = zip(*results)
best = np.argmin(inertia)
best_labels = labels[best]
best_inertia = inertia[best]
best_centers = centers[best]
best_concentrations = concentrations[best]
best_posterior = posteriors[best]
best_weights = weights[best]
return (
best_centers,
best_labels,
best_inertia,
best_weights,
best_concentrations,
best_posterior,
) | 0.001115 |
def mousePressEvent( self, event ):
"""
Changes the current date to the clicked on date.
:param event | <QMousePressEvent>
"""
XPopupWidget.hideToolTip()
# update the current date
self.setCurrentDate(self.dateAt(event.scenePos()))
super(XCalendarScene, self).mousePressEvent(event) | 0.018041 |
def analyze_string_content(self, string, line_num, filename):
"""Searches string for custom pattern, and captures all high entropy strings that
match self.regex, with a limit defined as self.entropy_limit.
"""
output = {}
for result in self.secret_generator(string):
if self._is_sequential_string(result):
continue
secret = PotentialSecret(self.secret_type, filename, result, line_num)
output[secret] = secret
return output | 0.007619 |
def check_error(self, response, status, err_cd):
" Check an error in the response."
if 'status' not in response:
return False
if response['status'] != status:
return False
if 'msgs' not in response:
return False
if not isinstance(response['msgs'], list):
return False
for msg in response['msgs']:
if 'LVL' in msg and msg['LVL'] != 'ERROR':
continue
if 'ERR_CD' in msg and msg['ERR_CD'] == err_cd:
return True
return False | 0.003396 |
def convert_type(self, type):
"""Convert type to BigQuery
"""
# Mapping
mapping = {
'any': 'STRING',
'array': None,
'boolean': 'BOOLEAN',
'date': 'DATE',
'datetime': 'DATETIME',
'duration': None,
'geojson': None,
'geopoint': None,
'integer': 'INTEGER',
'number': 'FLOAT',
'object': None,
'string': 'STRING',
'time': 'TIME',
'year': 'INTEGER',
'yearmonth': None,
}
# Not supported type
if type not in mapping:
message = 'Type %s is not supported' % type
raise tableschema.exceptions.StorageError(message)
return mapping[type] | 0.002516 |
def decode_message(cls, protocol_version, user_type_map, stream_id, flags, opcode, body,
decompressor, result_metadata):
"""
Decodes a native protocol message body
:param protocol_version: version to use decoding contents
:param user_type_map: map[keyspace name] = map[type name] = custom type to instantiate when deserializing this type
:param stream_id: native protocol stream id from the frame header
:param flags: native protocol flags bitmap from the header
:param opcode: native protocol opcode from the header
:param body: frame body
:param decompressor: optional decompression function to inflate the body
:return: a message decoded from the body and frame attributes
"""
if flags & COMPRESSED_FLAG:
if decompressor is None:
raise RuntimeError("No de-compressor available for compressed frame!")
body = decompressor(body)
flags ^= COMPRESSED_FLAG
body = io.BytesIO(body)
if flags & TRACING_FLAG:
trace_id = UUID(bytes=body.read(16))
flags ^= TRACING_FLAG
else:
trace_id = None
if flags & WARNING_FLAG:
warnings = read_stringlist(body)
flags ^= WARNING_FLAG
else:
warnings = None
if flags & CUSTOM_PAYLOAD_FLAG:
custom_payload = read_bytesmap(body)
flags ^= CUSTOM_PAYLOAD_FLAG
else:
custom_payload = None
flags &= USE_BETA_MASK # will only be set if we asserted it in connection estabishment
if flags:
log.warning("Unknown protocol flags set: %02x. May cause problems.", flags)
msg_class = cls.message_types_by_opcode[opcode]
msg = msg_class.recv_body(body, protocol_version, user_type_map, result_metadata)
msg.stream_id = stream_id
msg.trace_id = trace_id
msg.custom_payload = custom_payload
msg.warnings = warnings
if msg.warnings:
for w in msg.warnings:
log.warning("Server warning: %s", w)
return msg | 0.005053 |
def supprime(cls,table, **kwargs):
""" Remove entries matchin given condition
kwargs is a dict of column name : value , with length ONE.
"""
assert len(kwargs) == 1
field, value = kwargs.popitem()
req = f"""DELETE FROM {table} WHERE {field} = """ + cls.mark_style
args = (value,)
return MonoExecutant((req, args)) | 0.007937 |
def ensure_yx_order(func):
"""Wrap a function to ensure all array arguments are y, x ordered, based on kwarg."""
@functools.wraps(func)
def wrapper(*args, **kwargs):
# Check what order we're given
dim_order = kwargs.pop('dim_order', None)
x_first = _is_x_first_dim(dim_order)
# If x is the first dimension, flip (transpose) every array within the function args.
if x_first:
args = tuple(_check_and_flip(arr) for arr in args)
for k, v in kwargs:
kwargs[k] = _check_and_flip(v)
ret = func(*args, **kwargs)
# If we flipped on the way in, need to flip on the way out so that output array(s)
# match the dimension order of the original input.
if x_first:
return _check_and_flip(ret)
else:
return ret
# Inject a docstring for the dim_order argument into the function's docstring.
dim_order_doc = """
dim_order : str or ``None``, optional
The ordering of dimensions in passed in arrays. Can be one of ``None``, ``'xy'``,
or ``'yx'``. ``'xy'`` indicates that the dimension corresponding to x is the leading
dimension, followed by y. ``'yx'`` indicates that x is the last dimension, preceded
by y. ``None`` indicates that the default ordering should be assumed,
which is 'yx'. Can only be passed as a keyword argument, i.e.
func(..., dim_order='xy')."""
# Find the first blank line after the start of the parameters section
params = wrapper.__doc__.find('Parameters')
blank = wrapper.__doc__.find('\n\n', params)
wrapper.__doc__ = wrapper.__doc__[:blank] + dim_order_doc + wrapper.__doc__[blank:]
return wrapper | 0.005161 |
def load(self, fileobj):
'''Load the dict from the file object'''
# try formats from most restrictive to least restrictive
for loader in (pickle.load, json.load, csv.reader):
fileobj.seek(0)
try:
return self.initial_update(loader(fileobj))
except Exception as e:
pass
raise ValueError('File not in a supported format') | 0.004785 |
def check(text):
"""Suggest the preferred forms.
source: Garner's Modern American Usage
source_url: http://bit.ly/1T4alrY
"""
err = "terms.denizen_labels.garner"
msg = "'{}' is the preferred denizen label."
preferences = [
["Afrikaner", ["Afrikaaner"]],
["Afrikaner", ["Afrikander"]],
["Alabamian", ["Alabaman"]],
["Albuquerquean", ["Albuquerquian"]],
["Anchorageite", ["Anchoragite"]],
["Angeleno", ["Los Angelean"]],
["Arizonan", ["Arizonian"]],
["Arkansan", ["Arkansawyer"]],
["Belarusian", ["Belarusan"]],
["Caymanian", ["Cayman Islander"]],
["Coloradan", ["Coloradoan"]],
["Fairbanksan", ["Fairbanksian"]],
["Fort Worthian", ["Fort Worther"]],
["Grenadan", ["Grenadian"]],
["Hong Konger", ["Hong Kongite", "Hong Kongian"]],
["Hoosier", ["Indianan", "Indianian"]],
["Illinoisan", ["Illinoisian"]],
["Iowan", ["Iowegian"]],
["Louisianian", ["Louisianan"]],
["Michigander", ["Michiganite", "Michiganian"]],
["Missourian", ["Missouran"]],
["Monegasque", ["Monacan"]],
["Neapolitan", ["Neopolitan"]],
["New Hampshirite", ["New Hampshireite", "New Hampshireman"]],
["New Jerseyan", ["New Jerseyite"]],
["New Orleanian", ["New Orleansian"]],
["Nutmegger", ["Connecticuter"]],
["Oklahoma Cityan", ["Oklahoma Citian"]],
["Oklahoman", ["Oklahomian"]],
["Seattleite", ["Seattlite"]],
["Surinamese", ["Surinamer"]],
["Tallahasseean", ["Tallahassean"]],
["Tennessean", ["Tennesseean"]],
["Tusconan", ["Tusconian", "Tusconite"]],
["Utahn", ["Utahan"]],
["Saudi", ["Saudi Arabian"]],
]
return preferred_forms_check(text, preferences, err, msg) | 0.000471 |
def write_numeric_array(fd, header, array):
"""Write the numeric array"""
# make a memory file for writing array data
bd = BytesIO()
# write matrix header to memory file
write_var_header(bd, header)
if not isinstance(array, basestring) and header['dims'][0] > 1:
# list array data in column major order
array = list(chain.from_iterable(izip(*array)))
# write matrix data to memory file
write_elements(bd, header['mtp'], array)
# write the variable to disk file
data = bd.getvalue()
bd.close()
write_var_data(fd, data) | 0.001709 |
def VFSMultiOpen(pathspecs, progress_callback=None):
"""Opens multiple files specified by given path-specs.
See documentation for `VFSOpen` for more information.
Args:
pathspecs: A list of pathspec instances of files to open.
progress_callback: A callback function to call to notify about progress
Returns:
A context manager yielding file-like objects.
"""
precondition.AssertIterableType(pathspecs, rdf_paths.PathSpec)
vfs_open = functools.partial(VFSOpen, progress_callback=progress_callback)
return context.MultiContext(map(vfs_open, pathspecs)) | 0.008621 |
def scored_to_phenotype(self,phenotypes):
"""
Convert binary pehnotypes to mutually exclusive phenotypes.
If none of the phenotypes are set, then phenotype_label becomes nan
If any of the phenotypes are multiply set then it throws a fatal error.
Args:
phenotypes (list): a list of scored_names to convert to phenotypes
Returns:
CellDataFrame
"""
def _apply_score(scored_calls,phenotypes):
present = sorted(list(set(phenotypes)&set(scored_calls.keys())))
total = sum([scored_calls[x] for x in present])
if total > 1:
raise ValueError("You cant extract phenotypes from scores if they are not mutually exclusive")
if total == 0: return np.nan
for label in present:
if scored_calls[label] == 1: return label
raise ValueError("Should have hit an exit criteria already")
output = self.copy()
output['phenotype_label'] = output.apply(lambda x: _apply_score(x['scored_calls'],phenotypes),1)
# now update the phenotypes with these
output['phenotype_calls'] = output.apply(lambda x:
dict([(y,1 if x['phenotype_label']==y else 0) for y in phenotypes])
,1)
return output | 0.015209 |
def _add_dependency(self, key, dependlist, i, isSubroutine, anexec):
"""Determines whether the item in the dependency list is a valid function
call by excluding local variables and members."""
#First determine if the reference is to a derived type variable
lkey = key.lower()
if "%" in key:
#Find the type of the base variable and then perform a tree
#search at the module level to determine if the final reference
#is a valid executable
base = key.split("%")[0]
ftype = None
if base in anexec.members and anexec.members[base].is_custom:
ftype = anexec.members[base].kind
elif base in anexec.parameters and anexec.parameters[base].is_custom:
ftype = anexec.parameters[base].kind
if ftype is not None:
end = anexec.module.type_search(ftype, key)
if end is not None and isinstance(end, TypeExecutable):
#We have to overwrite the key to include the actual name of the type
#that is being referenced instead of the local name of its variable.
tname = "{}%{}".format(ftype, '%'.join(key.split('%')[1:]))
d = Dependency(tname, dependlist[i + 1], isSubroutine, anexec)
anexec.add_dependency(d)
elif lkey not in ["for", "forall", "do"]:
#This is a straight forward function/subroutine call, make sure that
#the symbol is not a local variable or parameter, then add it
if not lkey in anexec.members and not lkey in anexec.parameters \
and not lkey in self._intrinsic:
#One issue with the logic until now is that some one-line statements
#like "if (cond) call subroutine" don't trigger the subroutine flag
#of the dependency.
if dependlist[i-1] == "call":
isSubroutine = True
d = Dependency(dependlist[i], dependlist[i + 1], isSubroutine, anexec)
anexec.add_dependency(d) | 0.0115 |
def on_remove_row(self, event, row_num=-1):
"""
Remove specified grid row.
If no row number is given, remove the last row.
"""
if row_num == -1:
default = (255, 255, 255, 255)
# unhighlight any selected rows:
for row in self.selected_rows:
attr = wx.grid.GridCellAttr()
attr.SetBackgroundColour(default)
self.grid.SetRowAttr(row, attr)
row_num = self.grid.GetNumberRows() - 1
self.deleteRowButton.Disable()
self.selected_rows = {row_num}
function_mapping = {'specimen': self.er_magic.delete_specimen,
'sample': self.er_magic.delete_sample,
'site': self.er_magic.delete_site,
'location': self.er_magic.delete_location,
'result': self.er_magic.delete_result}
names = [self.grid.GetCellValue(row, 0) for row in self.selected_rows]
orphans = []
for name in names:
if name:
try:
row = self.grid.row_labels.index(name)
function_mapping[self.grid_type](name)
orphans.extend([name])
# if user entered a name, then deletes the row before saving,
# there will be a ValueError
except ValueError:
pass
self.grid.remove_row(row)
self.selected_rows = set()
self.deleteRowButton.Disable()
self.grid.Refresh()
self.main_sizer.Fit(self) | 0.001231 |
async def get_historic_data(self, n_data):
"""Get historic data."""
query = gql(
"""
{
viewer {
home(id: "%s") {
consumption(resolution: HOURLY, last: %s) {
nodes {
from
totalCost
consumption
}
}
}
}
}
"""
% (self.home_id, n_data)
)
data = await self._tibber_control.execute(query)
if not data:
_LOGGER.error("Could not find current the data.")
return
data = data["viewer"]["home"]["consumption"]
if data is None:
self._data = []
return
self._data = data["nodes"] | 0.002255 |
def build_url(api_key, spot_id, fields=None, unit=None,
start=None, end=None):
"""
This function builds the request url
API details https://magicseaweed.com/developer/forecast-api
key: Magic Seaweed API key
spot_id: The ID of a location, available from the URL when visiting the
corresponding spot on the Magic Seaweed website. IE '616' in
http://magicseaweed.com/Pipeline-Backdoor-Surf-Report/616/
fields: Comma separated list of fields to include in the request
URL. Defaults to none, which returns all information. Specifying
fields may reduce response time. Example:
fields=timestamp,wind.*,condition.temperature
units: A string of the preferred unit of measurement. Defaults to unit at
location of spot_id. eu, uk, us are available
start: Local timestamp for the start of a desired forecast range
end: Local timestamp for the end of the desired forecast range
"""
params = {'spot_id': spot_id}
if fields:
_validate_field_types(fields)
params['fields'] = ','.join(fields)
if unit:
_validate_unit_types(unit)
params['units'] = unit
if start and end:
params['start'] = start
params['end'] = end
baseURL = requests.Request(HTTP_GET, MSW_URL.format(api_key), params=params).prepare().url
return baseURL | 0.004614 |
def _joint_sample_n(self, n, seed=None):
"""Draw a joint sample from the prior over latents and observations."""
with tf.name_scope("sample_n_joint"):
stream = seed_stream.SeedStream(
seed, salt="LinearGaussianStateSpaceModel_sample_n_joint")
sample_and_batch_shape = distribution_util.prefer_static_value(
tf.concat([[n], self.batch_shape_tensor()],
axis=0))
# Sample the initial timestep from the prior. Since we want
# this sample to have full batch shape (not just the batch shape
# of the self.initial_state_prior object which might in general be
# smaller), we augment the sample shape to include whatever
# extra batch dimensions are required.
with tf.control_dependencies(self.runtime_assertions):
initial_latent = self.initial_state_prior.sample(
sample_shape=_augment_sample_shape(
self.initial_state_prior,
sample_and_batch_shape,
self.validate_args),
seed=stream())
# Add a dummy dimension so that matmul() does matrix-vector
# multiplication.
initial_latent = initial_latent[..., tf.newaxis]
initial_observation_matrix = (
self.get_observation_matrix_for_timestep(self.initial_step))
initial_observation_noise = (
self.get_observation_noise_for_timestep(self.initial_step))
initial_observation_pred = initial_observation_matrix.matmul(
initial_latent)
initial_observation = (initial_observation_pred +
initial_observation_noise.sample(
sample_shape=_augment_sample_shape(
initial_observation_noise,
sample_and_batch_shape,
self.validate_args),
seed=stream())[..., tf.newaxis])
sample_step = build_kalman_sample_step(
self.get_transition_matrix_for_timestep,
self.get_transition_noise_for_timestep,
self.get_observation_matrix_for_timestep,
self.get_observation_noise_for_timestep,
full_sample_and_batch_shape=sample_and_batch_shape,
stream=stream,
validate_args=self.validate_args)
# Scan over all timesteps to sample latents and observations.
(latents, observations) = tf.scan(
sample_step,
elems=tf.range(self.initial_step+1, self.final_step),
initializer=(initial_latent, initial_observation))
# Combine the initial sampled timestep with the remaining timesteps.
latents = tf.concat([initial_latent[tf.newaxis, ...],
latents], axis=0)
observations = tf.concat([initial_observation[tf.newaxis, ...],
observations], axis=0)
# Put dimensions back in order. The samples we've computed are
# ordered by timestep, with shape `[num_timesteps, num_samples,
# batch_shape, size, 1]` where `size` represents `latent_size`
# or `observation_size` respectively. But timesteps are really
# part of each probabilistic event, so we need to return a Tensor
# of shape `[num_samples, batch_shape, num_timesteps, size]`.
latents = tf.squeeze(latents, -1)
latents = distribution_util.move_dimension(latents, 0, -2)
observations = tf.squeeze(observations, -1)
observations = distribution_util.move_dimension(observations, 0, -2)
return latents, observations | 0.008092 |
def probabilities(items, params):
"""Compute the comparison outcome probabilities given a subset of items.
This function computes, for each item in ``items``, the probability that it
would win (i.e., be chosen) in a comparison involving the items, given
model parameters.
Parameters
----------
items : list
Subset of items to compare.
params : array_like
Model parameters.
Returns
-------
probs : numpy.ndarray
A probability distribution over ``items``.
"""
params = np.asarray(params)
return softmax(params.take(items)) | 0.001658 |
def _check_delete_fw(self, tenant_id, drvr_name):
"""Deletes the Firewall, if all conditioms are met.
This function after modifying the DB with delete operation status,
calls the routine to remove the fabric cfg from DB and unconfigure
the device.
"""
fw_dict = self.fwid_attr[tenant_id].get_fw_dict()
ret = False
try:
with self.fwid_attr[tenant_id].mutex_lock:
self.update_fw_db_final_result(fw_dict.get('fw_id'), (
fw_constants.RESULT_FW_DELETE_INIT))
ret = self._delete_fw_fab_dev(tenant_id, drvr_name, fw_dict)
except Exception as exc:
LOG.error("Exception raised in delete fw %s", str(exc))
return ret | 0.002621 |
def add_record(self, record):
"""Add a record to the OAISet.
:param record: Record to be added.
:type record: `invenio_records.api.Record` or derivative.
"""
record.setdefault('_oai', {}).setdefault('sets', [])
assert not self.has_record(record)
record['_oai']['sets'].append(self.spec) | 0.005797 |
def _get_port_range(range_str):
""" Given a string with a port or port range: '80', '80-120'
Returns tuple with range start and end ports: (80, 80), (80, 120)
"""
if range_str == '*':
return PortsRangeHelper.PortsRange(start=0, end=65535)
s = range_str.split('-')
if len(s) == 2:
return PortsRangeHelper.PortsRange(start=int(s[0]), end=int(s[1]))
return PortsRangeHelper.PortsRange(start=int(s[0]), end=int(s[0])) | 0.004008 |
def write_chapter(self):
"""
Create a chapter
that contains a random number
of paragraphs
"""
self.paragraphs = []
self.paragraphs.append('\n')
for x in range(randint(0, 50)):
p = Paragraph(self.model)
self.paragraphs.append(p.get_paragraph())
self.paragraphs.append('\n')
return self.paragraphs | 0.004963 |
def run_algorithm(start,
end,
initialize,
capital_base,
handle_data=None,
before_trading_start=None,
analyze=None,
data_frequency='daily',
bundle='quantopian-quandl',
bundle_timestamp=None,
trading_calendar=None,
metrics_set='default',
benchmark_returns=None,
default_extension=True,
extensions=(),
strict_extensions=True,
environ=os.environ,
blotter='default'):
"""
Run a trading algorithm.
Parameters
----------
start : datetime
The start date of the backtest.
end : datetime
The end date of the backtest..
initialize : callable[context -> None]
The initialize function to use for the algorithm. This is called once
at the very begining of the backtest and should be used to set up
any state needed by the algorithm.
capital_base : float
The starting capital for the backtest.
handle_data : callable[(context, BarData) -> None], optional
The handle_data function to use for the algorithm. This is called
every minute when ``data_frequency == 'minute'`` or every day
when ``data_frequency == 'daily'``.
before_trading_start : callable[(context, BarData) -> None], optional
The before_trading_start function for the algorithm. This is called
once before each trading day (after initialize on the first day).
analyze : callable[(context, pd.DataFrame) -> None], optional
The analyze function to use for the algorithm. This function is called
once at the end of the backtest and is passed the context and the
performance data.
data_frequency : {'daily', 'minute'}, optional
The data frequency to run the algorithm at.
bundle : str, optional
The name of the data bundle to use to load the data to run the backtest
with. This defaults to 'quantopian-quandl'.
bundle_timestamp : datetime, optional
The datetime to lookup the bundle data for. This defaults to the
current time.
trading_calendar : TradingCalendar, optional
The trading calendar to use for your backtest.
metrics_set : iterable[Metric] or str, optional
The set of metrics to compute in the simulation. If a string is passed,
resolve the set with :func:`zipline.finance.metrics.load`.
default_extension : bool, optional
Should the default zipline extension be loaded. This is found at
``$ZIPLINE_ROOT/extension.py``
extensions : iterable[str], optional
The names of any other extensions to load. Each element may either be
a dotted module path like ``a.b.c`` or a path to a python file ending
in ``.py`` like ``a/b/c.py``.
strict_extensions : bool, optional
Should the run fail if any extensions fail to load. If this is false,
a warning will be raised instead.
environ : mapping[str -> str], optional
The os environment to use. Many extensions use this to get parameters.
This defaults to ``os.environ``.
blotter : str or zipline.finance.blotter.Blotter, optional
Blotter to use with this algorithm. If passed as a string, we look for
a blotter construction function registered with
``zipline.extensions.register`` and call it with no parameters.
Default is a :class:`zipline.finance.blotter.SimulationBlotter` that
never cancels orders.
Returns
-------
perf : pd.DataFrame
The daily performance of the algorithm.
See Also
--------
zipline.data.bundles.bundles : The available data bundles.
"""
load_extensions(default_extension, extensions, strict_extensions, environ)
return _run(
handle_data=handle_data,
initialize=initialize,
before_trading_start=before_trading_start,
analyze=analyze,
algofile=None,
algotext=None,
defines=(),
data_frequency=data_frequency,
capital_base=capital_base,
bundle=bundle,
bundle_timestamp=bundle_timestamp,
start=start,
end=end,
output=os.devnull,
trading_calendar=trading_calendar,
print_algo=False,
metrics_set=metrics_set,
local_namespace=False,
environ=environ,
blotter=blotter,
benchmark_returns=benchmark_returns,
) | 0.000217 |
def _get_targets_by_declared_platform_with_placeholders(self, targets_by_platform):
"""
Aggregates a dict that maps a platform string to a list of targets that specify the platform.
If no targets have platforms arguments, return a dict containing platforms inherited from
the PythonSetup object.
:param tgts: a list of :class:`Target` objects.
:returns: a dict mapping a platform string to a list of targets that specify the platform.
"""
if not targets_by_platform:
for platform in self._python_setup.platforms:
targets_by_platform[platform] = ['(No target) Platform inherited from either the '
'--platforms option or a pants.ini file.']
return targets_by_platform | 0.011858 |
def Get(self, name, default=utils.NotAValue, context=None):
"""Get the value contained by the named parameter.
This method applies interpolation/escaping of the named parameter and
retrieves the interpolated value.
Args:
name: The name of the parameter to retrieve. This should be in the format
of "Section.name"
default: If retrieving the value results in an error, return this default.
context: A list of context strings to resolve the configuration. This is a
set of roles the caller is current executing with. For example (client,
windows). If not specified we take the context from the current thread's
TLS stack.
Returns:
The value of the parameter.
Raises:
ConfigFormatError: if verify=True and the config doesn't validate.
RuntimeError: if a value is retrieved before the config is initialized.
ValueError: if a bad context is passed.
"""
if not self.initialized:
if name not in self.constants:
raise RuntimeError("Error while retrieving %s: "
"Configuration hasn't been initialized yet." % name)
if context:
# Make sure it's not just a string and is iterable.
if (isinstance(context, string_types) or
not isinstance(context, collections.Iterable)):
raise ValueError("context should be a list, got %r" % context)
calc_context = context
# Only use the cache if possible.
cache_key = (name, tuple(context or ()))
if default is utils.NotAValue and cache_key in self.cache:
return self.cache[cache_key]
# Use a default global context if context is not provided.
if context is None:
calc_context = self.context
type_info_obj = self.FindTypeInfo(name)
_, return_value = self._GetValue(
name, context=calc_context, default=default)
# If we returned the specified default, we just return it here.
if return_value is default:
return default
try:
return_value = self.InterpolateValue(
return_value,
default_section=name.split(".")[0],
type_info_obj=type_info_obj,
context=calc_context)
except (lexer.ParseError, ValueError) as e:
# We failed to parse the value, but a default was specified, so we just
# return that.
if default is not utils.NotAValue:
return default
raise ConfigFormatError("While parsing %s: %s" % (name, e))
try:
new_value = type_info_obj.Validate(return_value)
if new_value is not None:
# Update the stored value with the valid data.
return_value = new_value
except ValueError:
if default is not utils.NotAValue:
return default
raise
# Cache the value for next time.
if default is utils.NotAValue:
self.cache[cache_key] = return_value
return return_value | 0.007256 |
def chebyshev(point1, point2):
"""Computes distance between 2D points using chebyshev metric
:param point1: 1st point
:type point1: list
:param point2: 2nd point
:type point2: list
:returns: Distance between point1 and point2
:rtype: float
"""
return max(abs(point1[0] - point2[0]), abs(point1[1] - point2[1])) | 0.002874 |
def BC_Rigidity(self):
"""
Utility function to help implement boundary conditions by specifying
them for and applying them to the elastic thickness grid
"""
#########################################
# FLEXURAL RIGIDITY BOUNDARY CONDITIONS #
#########################################
# West
if self.BC_W == 'Periodic':
self.BC_Rigidity_W = 'periodic'
elif (self.BC_W == np.array(['0Displacement0Slope', '0Moment0Shear', '0Slope0Shear'])).any():
self.BC_Rigidity_W = '0 curvature'
elif self.BC_W == 'Mirror':
self.BC_Rigidity_W = 'mirror symmetry'
else:
sys.exit("Invalid Te B.C. case")
# East
if self.BC_E == 'Periodic':
self.BC_Rigidity_E = 'periodic'
elif (self.BC_E == np.array(['0Displacement0Slope', '0Moment0Shear', '0Slope0Shear'])).any():
self.BC_Rigidity_E = '0 curvature'
elif self.BC_E == 'Mirror':
self.BC_Rigidity_E = 'mirror symmetry'
else:
sys.exit("Invalid Te B.C. case")
# North
if self.BC_N == 'Periodic':
self.BC_Rigidity_N = 'periodic'
elif (self.BC_N == np.array(['0Displacement0Slope', '0Moment0Shear', '0Slope0Shear'])).any():
self.BC_Rigidity_N = '0 curvature'
elif self.BC_N == 'Mirror':
self.BC_Rigidity_N = 'mirror symmetry'
else:
sys.exit("Invalid Te B.C. case")
# South
if self.BC_S == 'Periodic':
self.BC_Rigidity_S = 'periodic'
elif (self.BC_S == np.array(['0Displacement0Slope', '0Moment0Shear', '0Slope0Shear'])).any():
self.BC_Rigidity_S = '0 curvature'
elif self.BC_S == 'Mirror':
self.BC_Rigidity_S = 'mirror symmetry'
else:
sys.exit("Invalid Te B.C. case")
#############
# PAD ARRAY #
#############
if np.isscalar(self.Te):
self.D *= np.ones(self.qs.shape) # And leave Te as a scalar for checks
else:
self.Te_unpadded = self.Te.copy()
self.Te = np.hstack(( np.nan*np.zeros((self.Te.shape[0], 1)), self.Te, np.nan*np.zeros((self.Te.shape[0], 1)) ))
self.Te = np.vstack(( np.nan*np.zeros(self.Te.shape[1]), self.Te, np.nan*np.zeros(self.Te.shape[1]) ))
self.D = np.hstack(( np.nan*np.zeros((self.D.shape[0], 1)), self.D, np.nan*np.zeros((self.D.shape[0], 1)) ))
self.D = np.vstack(( np.nan*np.zeros(self.D.shape[1]), self.D, np.nan*np.zeros(self.D.shape[1]) ))
###############################################################
# APPLY FLEXURAL RIGIDITY BOUNDARY CONDITIONS TO PADDED ARRAY #
###############################################################
if self.BC_Rigidity_W == "0 curvature":
self.D[:,0] = 2*self.D[:,1] - self.D[:,2]
if self.BC_Rigidity_E == "0 curvature":
self.D[:,-1] = 2*self.D[:,-2] - self.D[:,-3]
if self.BC_Rigidity_N == "0 curvature":
self.D[0,:] = 2*self.D[1,:] - self.D[2,:]
if self.BC_Rigidity_S == "0 curvature":
self.D[-1,:] = 2*self.D[-2,:] - self.D[-3,:]
if self.BC_Rigidity_W == "mirror symmetry":
self.D[:,0] = self.D[:,2]
if self.BC_Rigidity_E == "mirror symmetry":
self.D[:,-1] = self.D[:,-3]
if self.BC_Rigidity_N == "mirror symmetry":
self.D[0,:] = self.D[2,:] # Yes, will work on corners -- double-reflection
if self.BC_Rigidity_S == "mirror symmetry":
self.D[-1,:] = self.D[-3,:]
if self.BC_Rigidity_W == "periodic":
self.D[:,0] = self.D[:,-2]
if self.BC_Rigidity_E == "periodic":
self.D[:,-1] = self.D[:,-3]
if self.BC_Rigidity_N == "periodic":
self.D[0,:] = self.D[-2,:]
if self.BC_Rigidity_S == "periodic":
self.D[-1,:] = self.D[-3,:] | 0.0235 |
def MatrixDiagPart(a):
"""
Batched diag op that returns only the diagonal elements.
"""
r = np.zeros(a.shape[:-2] + (min(a.shape[-2:]),))
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = np.diagonal(a[pos])
return r, | 0.003559 |
def remove_nesting(dom, tag_name):
"""
Unwrap items in the node list that have ancestors with the same tag.
"""
for node in dom.getElementsByTagName(tag_name):
for ancestor in ancestors(node):
if ancestor is node:
continue
if ancestor is dom.documentElement:
break
if ancestor.tagName == tag_name:
unwrap(node)
break | 0.002273 |
def power_cycle_vm(virtual_machine, action='on'):
'''
Powers on/off a virtual machine specified by it's name.
virtual_machine
vim.VirtualMachine object to power on/off virtual machine
action
Operation option to power on/off the machine
'''
if action == 'on':
try:
task = virtual_machine.PowerOn()
task_name = 'power on'
except vim.fault.NoPermission as exc:
log.exception(exc)
raise salt.exceptions.VMwareApiError(
'Not enough permissions. Required privilege: '
'{}'.format(exc.privilegeId))
except vim.fault.VimFault as exc:
log.exception(exc)
raise salt.exceptions.VMwareApiError(exc.msg)
except vmodl.RuntimeFault as exc:
log.exception(exc)
raise salt.exceptions.VMwareRuntimeError(exc.msg)
elif action == 'off':
try:
task = virtual_machine.PowerOff()
task_name = 'power off'
except vim.fault.NoPermission as exc:
log.exception(exc)
raise salt.exceptions.VMwareApiError(
'Not enough permissions. Required privilege: '
'{}'.format(exc.privilegeId))
except vim.fault.VimFault as exc:
log.exception(exc)
raise salt.exceptions.VMwareApiError(exc.msg)
except vmodl.RuntimeFault as exc:
log.exception(exc)
raise salt.exceptions.VMwareRuntimeError(exc.msg)
else:
raise salt.exceptions.ArgumentValueError('The given action is not supported')
try:
wait_for_task(task, get_managed_object_name(virtual_machine), task_name)
except salt.exceptions.VMwareFileNotFoundError as exc:
raise salt.exceptions.VMwarePowerOnError(' '.join([
'An error occurred during power',
'operation, a file was not found: {0}'.format(exc)]))
return virtual_machine | 0.001529 |
def manual_update_license(self, fd, filename='cdrouter.lic'):
"""Update the license on your CDRouter system manually by uploading a
.lic license from the CDRouter Support Lounge.
:param fd: File-like object to upload.
:param filename: (optional) Filename to use for license as string.
:return: :class:`system.Upgrade <system.Upgrade>` object
:rtype: system.Upgrade
"""
schema = UpgradeSchema()
resp = self.service.post(self.base+'license/',
files={'file': (filename, fd)})
return self.service.decode(schema, resp) | 0.00319 |
def Bahadori_gas(T, MW):
r'''Estimates the thermal conductivity of hydrocarbons gases at low P.
Fits their data well, and is useful as only MW is required.
Y is the Molecular weight, and X the temperature.
.. math::
K = a + bY + CY^2 + dY^3
a = A_1 + B_1 X + C_1 X^2 + D_1 X^3
b = A_2 + B_2 X + C_2 X^2 + D_2 X^3
c = A_3 + B_3 X + C_3 X^2 + D_3 X^3
d = A_4 + B_4 X + C_4 X^2 + D_4 X^3
Parameters
----------
T : float
Temperature of the gas [K]
MW : float
Molecular weight of the gas [g/mol]
Returns
-------
kg : float
Estimated gas thermal conductivity [W/m/k]
Notes
-----
The accuracy of this equation has not been reviewed.
Examples
--------
>>> Bahadori_gas(40+273.15, 20) # Point from article
0.031968165337873326
References
----------
.. [1] Bahadori, Alireza, and Saeid Mokhatab. "Estimating Thermal
Conductivity of Hydrocarbons." Chemical Engineering 115, no. 13
(December 2008): 52-54
'''
A = [4.3931323468E-1, -3.88001122207E-2, 9.28616040136E-4, -6.57828995724E-6]
B = [-2.9624238519E-3, 2.67956145820E-4, -6.40171884139E-6, 4.48579040207E-8]
C = [7.54249790107E-6, -6.46636219509E-7, 1.5124510261E-8, -1.0376480449E-10]
D = [-6.0988433456E-9, 5.20752132076E-10, -1.19425545729E-11, 8.0136464085E-14]
X, Y = T, MW
a = A[0] + B[0]*X + C[0]*X**2 + D[0]*X**3
b = A[1] + B[1]*X + C[1]*X**2 + D[1]*X**3
c = A[2] + B[2]*X + C[2]*X**2 + D[2]*X**3
d = A[3] + B[3]*X + C[3]*X**2 + D[3]*X**3
return a + b*Y + c*Y**2 + d*Y**3 | 0.003049 |
def add_dict_to_hash(a_hash, a_dict):
"""Adds `a_dict` to `a_hash`
Args:
a_hash (`Hash`): the secure hash, e.g created by hashlib.md5
a_dict (dict[string, [string]]): the dictionary to add to the hash
"""
if a_dict is None:
return
for k, v in a_dict.items():
a_hash.update(b'\x00' + k.encode('utf-8') + b'\x00' + v.encode('utf-8')) | 0.005222 |
def _set_mirror(self, v, load=False):
"""
Setter method for mirror, mapped from YANG variable /openflow_global/openflow/mirror (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_mirror is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_mirror() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=mirror.mirror, is_container='container', presence=False, yang_name="mirror", rest_name="mirror", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Openflow Mirror interface', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-openflow', defining_module='brocade-openflow', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """mirror must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=mirror.mirror, is_container='container', presence=False, yang_name="mirror", rest_name="mirror", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Openflow Mirror interface', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-openflow', defining_module='brocade-openflow', yang_type='container', is_config=True)""",
})
self.__mirror = t
if hasattr(self, '_set'):
self._set() | 0.006046 |
def _pack(cls, tensors):
"""Pack a list of `Tensor`s into a single, flattened, rank-1 `Tensor`."""
if not tensors:
return None
elif len(tensors) == 1:
return array_ops.reshape(tensors[0], [-1])
else:
flattened = [array_ops.reshape(tensor, [-1]) for tensor in tensors]
return array_ops.concat(flattened, 0) | 0.014493 |
def build_time(start_time):
"""
Calculate build time per package
"""
diff_time = round(time.time() - start_time, 2)
if diff_time <= 59.99:
sum_time = str(diff_time) + " Sec"
elif diff_time > 59.99 and diff_time <= 3599.99:
sum_time = round(diff_time / 60, 2)
sum_time_list = re.findall(r"\d+", str(sum_time))
sum_time = ("{0} Min {1} Sec".format(sum_time_list[0],
sum_time_list[1]))
elif diff_time > 3599.99:
sum_time = round(diff_time / 3600, 2)
sum_time_list = re.findall(r"\d+", str(sum_time))
sum_time = ("{0} Hours {1} Min".format(sum_time_list[0],
sum_time_list[1]))
return sum_time | 0.001302 |
def replace_in_file(workspace, src_file_path, from_str, to_str):
"""Replace from_str with to_str in the name and content of the given file.
If any edits were necessary, returns the new filename (which may be the same as the old filename).
"""
from_bytes = from_str.encode('ascii')
to_bytes = to_str.encode('ascii')
data = read_file(os.path.join(workspace, src_file_path), binary_mode=True)
if from_bytes not in data and from_str not in src_file_path:
return None
dst_file_path = src_file_path.replace(from_str, to_str)
safe_file_dump(os.path.join(workspace, dst_file_path),
data.replace(from_bytes, to_bytes),
mode='wb')
if src_file_path != dst_file_path:
os.unlink(os.path.join(workspace, src_file_path))
return dst_file_path | 0.013889 |
def checkout(repo, ref):
"""Checkout a repoself."""
# Delete local branch if it exists, remote branch will be tracked
# automatically. This prevents stale local branches from causing problems.
# It also avoids problems with appending origin/ to refs as that doesn't
# work with tags, SHAs, and upstreams not called origin.
if ref in repo.branches:
# eg delete master but leave origin/master
log.warn("Removing local branch {b} for repo {r}".format(b=ref,
r=repo))
# Can't delete currently checked out branch, so make sure head is
# detached before deleting.
repo.head.reset(index=True, working_tree=True)
repo.git.checkout(repo.head.commit.hexsha)
repo.delete_head(ref, '--force')
log.info("Checkout out repo {repo} to ref {ref}".format(repo=repo,
ref=ref))
repo.head.reset(index=True, working_tree=True)
repo.git.checkout(ref)
repo.head.reset(index=True, working_tree=True)
sha = repo.head.commit.hexsha
log.info("Current SHA for repo {repo} is {sha}".format(repo=repo, sha=sha)) | 0.000826 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.