text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def gauss_fit(X, Y):
"""
Fit the function to a gaussian.
Parameters
----------
X: 1d array
X values
Y: 1d array
Y values
Returns
-------
(The return from scipy.optimize.curve_fit)
popt : array
Optimal values for the parameters
pcov : 2d array
The estimated covariance of popt.
Notes
-----
/!\ This uses a slow curve_fit function! do not use if need speed!
"""
X = np.asarray(X)
Y = np.asarray(Y)
# Can not have negative values
Y[Y < 0] = 0
# define gauss function
def gauss(x, a, x0, sigma):
return a * np.exp(-(x - x0)**2 / (2 * sigma**2))
# get first estimation for parameter
mean = (X * Y).sum() / Y.sum()
sigma = np.sqrt((Y * ((X - mean)**2)).sum() / Y.sum())
height = Y.max()
# fit with curve_fit
return curve_fit(gauss, X, Y, p0=[height, mean, sigma]) | 0.0022 |
def process_spawn_qty(self, name):
"""Return the number of processes to spawn for the given consumer name.
:param str name: The consumer name
:rtype: int
"""
return self.consumers[name].qty - self.process_count(name) | 0.007752 |
def track_end(self):
"""
Ends tracking of attributes changes.
Returns the changes that occurred to the attributes.
Only the final state of each attribute is obtained
"""
self.__tracking = False
changes = self.__changes
self.__changes = {}
return changes | 0.006116 |
def modify_endpoint(EndpointArn=None, EndpointIdentifier=None, EndpointType=None, EngineName=None, Username=None, Password=None, ServerName=None, Port=None, DatabaseName=None, ExtraConnectionAttributes=None, CertificateArn=None, SslMode=None, DynamoDbSettings=None, S3Settings=None, MongoDbSettings=None):
"""
Modifies the specified endpoint.
See also: AWS API Documentation
:example: response = client.modify_endpoint(
EndpointArn='string',
EndpointIdentifier='string',
EndpointType='source'|'target',
EngineName='string',
Username='string',
Password='string',
ServerName='string',
Port=123,
DatabaseName='string',
ExtraConnectionAttributes='string',
CertificateArn='string',
SslMode='none'|'require'|'verify-ca'|'verify-full',
DynamoDbSettings={
'ServiceAccessRoleArn': 'string'
},
S3Settings={
'ServiceAccessRoleArn': 'string',
'ExternalTableDefinition': 'string',
'CsvRowDelimiter': 'string',
'CsvDelimiter': 'string',
'BucketFolder': 'string',
'BucketName': 'string',
'CompressionType': 'none'|'gzip'
},
MongoDbSettings={
'Username': 'string',
'Password': 'string',
'ServerName': 'string',
'Port': 123,
'DatabaseName': 'string',
'AuthType': 'no'|'password',
'AuthMechanism': 'default'|'mongodb_cr'|'scram_sha_1',
'NestingLevel': 'none'|'one',
'ExtractDocId': 'string',
'DocsToInvestigate': 'string',
'AuthSource': 'string'
}
)
:type EndpointArn: string
:param EndpointArn: [REQUIRED]
The Amazon Resource Name (ARN) string that uniquely identifies the endpoint.
:type EndpointIdentifier: string
:param EndpointIdentifier: The database endpoint identifier. Identifiers must begin with a letter; must contain only ASCII letters, digits, and hyphens; and must not end with a hyphen or contain two consecutive hyphens.
:type EndpointType: string
:param EndpointType: The type of endpoint.
:type EngineName: string
:param EngineName: The type of engine for the endpoint. Valid values, depending on the EndPointType, include MYSQL, ORACLE, POSTGRES, MARIADB, AURORA, REDSHIFT, S3, DYNAMODB, MONGODB, SYBASE, and SQLSERVER.
:type Username: string
:param Username: The user name to be used to login to the endpoint database.
:type Password: string
:param Password: The password to be used to login to the endpoint database.
:type ServerName: string
:param ServerName: The name of the server where the endpoint database resides.
:type Port: integer
:param Port: The port used by the endpoint database.
:type DatabaseName: string
:param DatabaseName: The name of the endpoint database.
:type ExtraConnectionAttributes: string
:param ExtraConnectionAttributes: Additional attributes associated with the connection.
:type CertificateArn: string
:param CertificateArn: The Amazon Resource Name (ARN) of the certificate used for SSL connection.
:type SslMode: string
:param SslMode: The SSL mode to be used.
SSL mode can be one of four values: none, require, verify-ca, verify-full.
The default value is none.
:type DynamoDbSettings: dict
:param DynamoDbSettings: Settings in JSON format for the target Amazon DynamoDB endpoint. For more information about the available settings, see the Using Object Mapping to Migrate Data to DynamoDB section at Using an Amazon DynamoDB Database as a Target for AWS Database Migration Service .
ServiceAccessRoleArn (string) -- [REQUIRED]The Amazon Resource Name (ARN) used by the service access IAM role.
:type S3Settings: dict
:param S3Settings: Settings in JSON format for the target S3 endpoint. For more information about the available settings, see the Extra Connection Attributes section at Using Amazon S3 as a Target for AWS Database Migration Service .
ServiceAccessRoleArn (string) --The Amazon Resource Name (ARN) used by the service access IAM role.
ExternalTableDefinition (string) --
CsvRowDelimiter (string) --The delimiter used to separate rows in the source files. The default is a carriage return (n).
CsvDelimiter (string) --The delimiter used to separate columns in the source files. The default is a comma.
BucketFolder (string) --An optional parameter to set a folder name in the S3 bucket. If provided, tables are created in the path bucketFolder/schema_name/table_name/. If this parameter is not specified, then the path used is schema_name/table_name/.
BucketName (string) --The name of the S3 bucket.
CompressionType (string) --An optional parameter to use GZIP to compress the target files. Set to GZIP to compress the target files. Set to NONE (the default) or do not use to leave the files uncompressed.
:type MongoDbSettings: dict
:param MongoDbSettings: Settings in JSON format for the source MongoDB endpoint. For more information about the available settings, see the Configuration Properties When Using MongoDB as a Source for AWS Database Migration Service section at Using Amazon S3 as a Target for AWS Database Migration Service .
Username (string) --The user name you use to access the MongoDB source endpoint.
Password (string) --The password for the user account you use to access the MongoDB source endpoint.
ServerName (string) --The name of the server on the MongoDB source endpoint.
Port (integer) --The port value for the MongoDB source endpoint.
DatabaseName (string) --The database name on the MongoDB source endpoint.
AuthType (string) --The authentication type you use to access the MongoDB source endpoint.
Valid values: NO, PASSWORD
When NO is selected, user name and password parameters are not used and can be empty.
AuthMechanism (string) --The authentication mechanism you use to access the MongoDB source endpoint.
Valid values: DEFAULT, MONGODB_CR, SCRAM_SHA_1
DEFAULT For MongoDB version 2.x, use MONGODB_CR. For MongoDB version 3.x, use SCRAM_SHA_1. This attribute is not used when authType=No.
NestingLevel (string) --Specifies either document or table mode.
Valid values: NONE, ONE
Default value is NONE. Specify NONE to use document mode. Specify ONE to use table mode.
ExtractDocId (string) --Specifies the document ID. Use this attribute when NestingLevel is set to NONE.
Default value is false.
DocsToInvestigate (string) --Indicates the number of documents to preview to determine the document organization. Use this attribute when NestingLevel is set to ONE.
Must be a positive value greater than 0. Default value is 1000.
AuthSource (string) --The MongoDB database name. This attribute is not used when authType=NO .
The default is admin.
:rtype: dict
:return: {
'Endpoint': {
'EndpointIdentifier': 'string',
'EndpointType': 'source'|'target',
'EngineName': 'string',
'Username': 'string',
'ServerName': 'string',
'Port': 123,
'DatabaseName': 'string',
'ExtraConnectionAttributes': 'string',
'Status': 'string',
'KmsKeyId': 'string',
'EndpointArn': 'string',
'CertificateArn': 'string',
'SslMode': 'none'|'require'|'verify-ca'|'verify-full',
'ExternalId': 'string',
'DynamoDbSettings': {
'ServiceAccessRoleArn': 'string'
},
'S3Settings': {
'ServiceAccessRoleArn': 'string',
'ExternalTableDefinition': 'string',
'CsvRowDelimiter': 'string',
'CsvDelimiter': 'string',
'BucketFolder': 'string',
'BucketName': 'string',
'CompressionType': 'none'|'gzip'
},
'MongoDbSettings': {
'Username': 'string',
'Password': 'string',
'ServerName': 'string',
'Port': 123,
'DatabaseName': 'string',
'AuthType': 'no'|'password',
'AuthMechanism': 'default'|'mongodb_cr'|'scram_sha_1',
'NestingLevel': 'none'|'one',
'ExtractDocId': 'string',
'DocsToInvestigate': 'string',
'AuthSource': 'string'
}
}
}
"""
pass | 0.004688 |
def list_user_access(self, user):
"""
Returns a list of all database names for which the specified user
has access rights.
"""
user = utils.get_name(user)
uri = "/%s/%s/databases" % (self.uri_base, user)
try:
resp, resp_body = self.api.method_get(uri)
except exc.NotFound as e:
raise exc.NoSuchDatabaseUser("User '%s' does not exist." % user)
dbs = resp_body.get("databases", {})
return [CloudDatabaseDatabase(self, db) for db in dbs] | 0.003717 |
def tarbell_configure(command, args):
"""
Tarbell configuration routine.
"""
puts("Configuring Tarbell. Press ctrl-c to bail out!")
# Check if there's settings configured
settings = Settings()
path = settings.path
prompt = True
if len(args):
prompt = False
config = _get_or_create_config(path)
if prompt or "drive" in args:
config.update(_setup_google_spreadsheets(config, path, prompt))
if prompt or "s3" in args:
config.update(_setup_s3(config, path, prompt))
if prompt or "path" in args:
config.update(_setup_tarbell_project_path(config, path, prompt))
if prompt or "templates" in args:
if "project_templates" in config:
override_templates = raw_input("\nFound Base Template config. Would you like to override them? [Default: No, 'none' to skip]")
if override_templates and override_templates != "No" and override_templates != "no" and override_templates != "N" and override_templates != "n":
config.update(_setup_default_templates(config, path, prompt))
else:
puts("\nPreserving Base Template config...")
else:
config.update(_setup_default_templates(config, path, prompt))
settings.config = config
with open(path, 'w') as f:
puts("\nWriting {0}".format(colored.green(path)))
settings.save()
if all:
puts("\n- Done configuring Tarbell. Type `{0}` for help.\n"
.format(colored.green("tarbell")))
return settings | 0.002566 |
def filter_inactive_ports(query):
"""Filter ports that aren't in active status """
port_model = models_v2.Port
query = (query
.filter(port_model.status == n_const.PORT_STATUS_ACTIVE))
return query | 0.004444 |
def get_history_tags(self, exp, rep=0):
""" returns all available tags (logging keys) of the given experiment
repetition.
Note: Technically, each repetition could have different
tags, therefore the rep number can be passed in as parameter,
even though usually all repetitions have the same tags. The default
repetition is 0 and in most cases, can be omitted.
"""
history = self.get_history(exp, rep, 'all')
return history.keys() | 0.013035 |
def to_yaml_file(obj, f):
"""
Convert Python objects (including rpcq messages) to yaml and write it to `f`.
"""
yaml.dump(rapidjson.loads(to_json(obj)), f) | 0.011696 |
def load_machine(self, descriptor):
"""
Load a complete register machine.
The descriptor is a map, unspecified values are loaded from the default values.
"""
def get_cfg(name):
if(name in descriptor):
return descriptor[name]
else:
return defaults[name]
self.processor = Processor(width = get_cfg("width"))
self.rom = ROM(get_cfg("rom_size"), get_cfg("rom_width"))
self.processor.register_memory_device(self.rom)
self.registers = []
if(get_cfg("ram_enable")):
self.ram = RAM(get_cfg("ram_size"), get_cfg("ram_width"))
self.processor.register_memory_device(self.ram)
else:
self.ram = None
if(get_cfg("flash_enable")):
self.flash = Flash(get_cfg("flash_size"), get_cfg("flash_width"))
self.processor.register_device(self.flash)
else:
self.flash = None
for register in get_cfg("registers"):
self.processor.add_register(register)
self.registers.append(register)
for command in get_cfg("commands"):
self.processor.register_command(command)
self.processor.setup_done() | 0.032724 |
def rerank(args: argparse.Namespace):
"""
Reranks a list of hypotheses according to a sentence-level metric.
Writes all output to STDOUT.
:param args: Namespace object holding CLI arguments.
"""
reranker = Reranker(args.metric, args.return_score)
with utils.smart_open(args.reference) as reference, utils.smart_open(args.hypotheses) as hypotheses:
for i, (reference_line, hypothesis_line) in enumerate(zip(reference, hypotheses), 1):
reference = reference_line.strip()
# Expects a JSON object with keys containing at least 'translations',
# as returned by sockeye.translate's nbest output
hypotheses = json.loads(hypothesis_line.strip())
utils.check_condition('translations' in hypotheses,
"Reranking requires nbest JSON input with 'translations' key present.")
num_hypotheses = len(hypotheses['translations'])
if not num_hypotheses > 1:
logger.info("Line %d contains %d hypotheses. Nothing to rerank.", i, num_hypotheses)
reranked_hypotheses = hypotheses
else:
reranked_hypotheses = reranker.rerank(hypotheses, reference)
if args.output_best:
if not num_hypotheses:
print()
else:
print(reranked_hypotheses['translations'][0])
else:
print(json.dumps(reranked_hypotheses, sort_keys=True)) | 0.003955 |
def numericalize(self, t:Collection[str]) -> List[int]:
"Convert a list of tokens `t` to their ids."
return [self.stoi[w] for w in t] | 0.020134 |
def matches_address(self, address):
"""returns whether this account knows about an email address
:param str address: address to look up
:rtype: bool
"""
if self.address == address:
return True
for alias in self.aliases:
if alias == address:
return True
if self._alias_regexp and self._alias_regexp.match(address):
return True
return False | 0.004396 |
def finish(self):
"""Finishes transconding and returns the video.
Returns:
bytes
Raises:
IOError: in case of transcoding error.
"""
if self.proc is None:
return None
self.proc.stdin.close()
for thread in (self._out_thread, self._err_thread):
thread.join()
(out, err) = [
b"".join(chunks) for chunks in (self._out_chunks, self._err_chunks)
]
self.proc.stdout.close()
self.proc.stderr.close()
if self.proc.returncode:
err = "\n".join([" ".join(self.cmd), err.decode("utf8")])
raise IOError(err)
del self.proc
self.proc = None
return out | 0.007813 |
def _bcbio_variation_ensemble(vrn_files, out_file, ref_file, config_file, base_dir, data):
"""Run a variant comparison using the bcbio.variation toolkit, given an input configuration.
"""
vrn_files = [_handle_somatic_ensemble(v, data) for v in vrn_files]
tmp_dir = utils.safe_makedir(os.path.join(base_dir, "tmp"))
resources = config_utils.get_resources("bcbio_variation", data["config"])
jvm_opts = resources.get("jvm_opts", ["-Xms750m", "-Xmx2g"])
java_args = ["-Djava.io.tmpdir=%s" % tmp_dir]
cmd = ["bcbio-variation"] + jvm_opts + java_args + \
["variant-ensemble", config_file, ref_file, out_file] + vrn_files
with utils.chdir(base_dir):
cmd = "%s %s" % (utils.local_path_export(), " ".join(str(x) for x in cmd))
do.run(cmd, "Ensemble calling: %s" % os.path.basename(base_dir)) | 0.004739 |
def compute(self, tdb, tdb2, derivative=True):
"""Generate angles and derivatives for time `tdb` plus `tdb2`.
If ``derivative`` is true, return a tuple containing both the
angle and its derivative; otherwise simply return the angles.
"""
scalar = not getattr(tdb, 'shape', 0) and not getattr(tdb2, 'shape', 0)
if scalar:
tdb = array((tdb,))
data = self._data
if data is None:
self._data = data = self._load()
initial_epoch, interval_length, coefficients = data
component_count, n, coefficient_count = coefficients.shape
# Subtracting tdb before adding tdb2 affords greater precision.
index, offset = divmod((tdb - initial_epoch) + tdb2, interval_length)
index = index.astype(int)
if (index < 0).any() or (index > n).any():
final_epoch = initial_epoch + interval_length * n
raise ValueError('segment only covers dates %.1f through %.1f'
% (initial_epoch, final_epoch))
omegas = (index == n)
index[omegas] -= 1
offset[omegas] += interval_length
coefficients = coefficients[:,index]
# Chebyshev polynomial.
T = empty((coefficient_count, len(index)))
T[0] = 1.0
T[1] = t1 = 2.0 * offset / interval_length - 1.0
twot1 = t1 + t1
for i in range(2, coefficient_count):
T[i] = twot1 * T[i-1] - T[i-2]
components = (T.T * coefficients).sum(axis=2)
if scalar:
components = components[:,0]
if not derivative:
return components
# Chebyshev differentiation.
dT = empty_like(T)
dT[0] = 0.0
dT[1] = 1.0
if coefficient_count > 2:
dT[2] = twot1 + twot1
for i in range(3, coefficient_count):
dT[i] = twot1 * dT[i-1] - dT[i-2] + T[i-1] + T[i-1]
dT *= 2.0
dT /= interval_length
rates = (dT.T * coefficients).sum(axis=2)
if scalar:
rates = rates[:,0]
return components, rates | 0.002818 |
def _call(self, x, out=None):
"""Apply resampling operator.
The element ``x`` is resampled using the sampling and interpolation
operators of the underlying spaces.
"""
if out is None:
return x.interpolation
else:
out.sampling(x.interpolation) | 0.006349 |
def type_from_ast(schema, type_node): # noqa: F811
"""Get the GraphQL type definition from an AST node.
Given a Schema and an AST node describing a type, return a GraphQLType definition
which applies to that type. For example, if provided the parsed AST node for
`[User]`, a GraphQLList instance will be returned, containing the type called
"User" found in the schema. If a type called "User" is not found in the schema,
then None will be returned.
"""
if isinstance(type_node, ListTypeNode):
inner_type = type_from_ast(schema, type_node.type)
return GraphQLList(inner_type) if inner_type else None
if isinstance(type_node, NonNullTypeNode):
inner_type = type_from_ast(schema, type_node.type)
return GraphQLNonNull(inner_type) if inner_type else None
if isinstance(type_node, NamedTypeNode):
return schema.get_type(type_node.name.value)
# Not reachable. All possible type nodes have been considered.
raise TypeError( # pragma: no cover
f"Unexpected type node: '{inspect(type_node)}'."
) | 0.004587 |
def vcenter_id(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
vcenter = ET.SubElement(config, "vcenter", xmlns="urn:brocade.com:mgmt:brocade-vswitch")
id = ET.SubElement(vcenter, "id")
id.text = kwargs.pop('id')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.007958 |
def process_data(data, models):
""" Convert ``data`` to processed data using ``models``.
Data from dictionary ``data`` is processed by each model
in list ``models``, and the results collected into a new
dictionary ``pdata`` for use in :meth:`MultiFitter.lsqfit`
and :meth:`MultiFitter.chained_lsqft`.
"""
pdata = gvar.BufferDict()
for m in MultiFitter.flatten_models(models):
pdata[m.datatag] = (
m.builddata(data) if m.ncg <= 1 else
MultiFitter.coarse_grain(m.builddata(data), ncg=m.ncg)
)
return pdata | 0.003145 |
def _iter_from_annotations_dict(graph: BELGraph,
annotations_dict: AnnotationsDict,
) -> Iterable[Tuple[str, Set[str]]]:
"""Iterate over the key/value pairs in this edge data dictionary normalized to their source URLs."""
for key, names in annotations_dict.items():
if key in graph.annotation_url:
url = graph.annotation_url[key]
elif key in graph.annotation_list:
continue # skip those
elif key in graph.annotation_pattern:
log.debug('pattern annotation in database not implemented yet not implemented') # FIXME
continue
else:
raise ValueError('Graph resources does not contain keyword: {}'.format(key))
yield url, set(names) | 0.008168 |
def _generate_docker_image_version(layers, runtime):
"""
Generate the Docker TAG that will be used to create the image
Parameters
----------
layers list(samcli.commands.local.lib.provider.Layer)
List of the layers
runtime str
Runtime of the image to create
Returns
-------
str
String representing the TAG to be attached to the image
"""
# Docker has a concept of a TAG on an image. This is plus the REPOSITORY is a way to determine
# a version of the image. We will produced a TAG for a combination of the runtime with the layers
# specified in the template. This will allow reuse of the runtime and layers across different
# functions that are defined. If two functions use the same runtime with the same layers (in the
# same order), SAM CLI will only produce one image and use this image across both functions for invoke.
return runtime + '-' + hashlib.sha256(
"-".join([layer.name for layer in layers]).encode('utf-8')).hexdigest()[0:25] | 0.007136 |
def unpack_rawr_zip_payload(table_sources, payload):
"""unpack a zipfile and turn it into a callable "tables" object."""
# the io we get from S3 is streaming, so we can't seek on it, but zipfile
# seems to require that. so we buffer it all in memory. RAWR tiles are
# generally up to around 100MB in size, which should be safe to store in
# RAM.
from tilequeue.query.common import Table
from io import BytesIO
zfh = zipfile.ZipFile(BytesIO(payload), 'r')
def get_table(table_name):
# need to extract the whole compressed file from zip reader, as it
# doesn't support .tell() on the filelike, which gzip requires.
data = zfh.open(table_name, 'r').read()
unpacker = Unpacker(file_like=BytesIO(data))
source = table_sources[table_name]
return Table(source, unpacker)
return get_table | 0.001148 |
def create_was_invalidated_by_relation(self, activity_id, entity_kind, entity_id):
"""
Create a was invalidated by relationship between an activity and a entity(file).
:param activity_id: str: uuid of the activity
:param entity_kind: str: kind of entity('dds-file')
:param entity_id: str: uuid of the entity
:return: requests.Response containing the successful result
"""
return self._create_activity_relation(activity_id, entity_kind, entity_id, ActivityRelationTypes.WAS_INVALIDATED_BY) | 0.009058 |
def _validate_options(self):
'''
Make sure there are no conflicting or invalid options
'''
if self.obfuscate_hostname and not self.obfuscate:
raise ValueError(
'Option `obfuscate_hostname` requires `obfuscate`')
if self.analyze_image_id is not None and len(self.analyze_image_id) < 12:
raise ValueError(
'Image/Container ID must be at least twelve characters long.')
if self.enable_schedule and self.disable_schedule:
raise ValueError(
'Conflicting options: --enable-schedule and --disable-schedule')
if self.analyze_container and (self.register or self.unregister):
raise ValueError('Registration not supported with '
'image or container analysis.')
if self.to_json and self.to_stdout:
raise ValueError(
'Conflicting options: --to-stdout and --to-json')
if self.payload and not self.content_type:
raise ValueError(
'--payload requires --content-type')
if not self.legacy_upload:
if self.group:
raise ValueError(
'--group is not supported at this time.')
if self.analyze_image_id:
raise ValueError(
'--analyze-image-id is not supported at this time.')
if self.analyze_file:
raise ValueError(
'--analyze-file is not supported at this time.')
if self.analyze_mountpoint:
raise ValueError(
'--analyze-mountpoint is not supported at this time.')
if self.analyze_container:
raise ValueError(
'--analyze-container is not supported at this time.') | 0.002173 |
def scatter_plot(self, ax, topic_dims, t=None, ms_limits=True, **kwargs_plot):
""" 2D or 3D scatter plot.
:param axes ax: matplotlib axes (use Axes3D if 3D data)
:param tuple topic_dims: list of (topic, dims) tuples, where topic is a string and dims is a list of dimensions to be plotted for that topic.
:param int t: time indexes to be plotted
:param dict kwargs_plot: argument to be passed to matplotlib's plot function, e.g. the style of the plotted points 'or'
:param bool ms_limits: if set to True, automatically set axes boundaries to the sensorimotor boundaries (default: True)
"""
plot_specs = {'marker': 'o', 'linestyle': 'None'}
plot_specs.update(kwargs_plot)
# t_bound = float('inf')
# if t is None:
# for topic, _ in topic_dims:
# t_bound = min(t_bound, self.counts[topic])
# t = range(t_bound)
# data = self.pack(topic_dims, t)
data = self.data_t(topic_dims, t)
ax.plot(*(data.T), **plot_specs)
if ms_limits:
ax.axis(self.axes_limits(topic_dims)) | 0.006908 |
def _finish_fragment(self):
""" Creates fragment
"""
if self.fragment:
self.fragment.finish()
if self.fragment.headers:
# Regardless of what's been seen to this point, if we encounter a headers fragment,
# all the previous fragments should be marked hidden and found_visible set to False.
self.found_visible = False
for f in self.fragments:
f.hidden = True
if not self.found_visible:
if self.fragment.quoted \
or self.fragment.headers \
or self.fragment.signature \
or (len(self.fragment.content.strip()) == 0):
self.fragment.hidden = True
else:
self.found_visible = True
self.fragments.append(self.fragment)
self.fragment = None | 0.00426 |
def listPrimaryDsTypes(self, primary_ds_type="", dataset=""):
"""
API to list primary dataset types
:param primary_ds_type: List that primary dataset type (Optional)
:type primary_ds_type: str
:param dataset: List the primary dataset type for that dataset (Optional)
:type dataset: str
:returns: List of dictionaries containing the following keys (primary_ds_type_id, data_type)
:rtype: list of dicts
"""
if primary_ds_type:
primary_ds_type = primary_ds_type.replace("*", "%")
if dataset:
dataset = dataset.replace("*", "%")
try:
return self.dbsPrimaryDataset.listPrimaryDSTypes(primary_ds_type, dataset)
except dbsException as de:
dbsExceptionHandler(de.eCode, de.message, self.logger.exception, de.message)
except Exception as ex:
sError = "DBSReaderModel/listPrimaryDsTypes. %s\n. Exception trace: \n %s" \
% (ex, traceback.format_exc())
dbsExceptionHandler('dbsException-server-error', dbsExceptionCode['dbsException-server-error'], self.logger.exception, sError) | 0.006838 |
def RandomGraph(nodes=range(10), min_links=2, width=400, height=300,
curvature=lambda: random.uniform(1.1, 1.5)):
"""Construct a random graph, with the specified nodes, and random links.
The nodes are laid out randomly on a (width x height) rectangle.
Then each node is connected to the min_links nearest neighbors.
Because inverse links are added, some nodes will have more connections.
The distance between nodes is the hypotenuse times curvature(),
where curvature() defaults to a random number between 1.1 and 1.5."""
g = UndirectedGraph()
g.locations = {}
## Build the cities
for node in nodes:
g.locations[node] = (random.randrange(width), random.randrange(height))
## Build roads from each city to at least min_links nearest neighbors.
for i in range(min_links):
for node in nodes:
if len(g.get(node)) < min_links:
here = g.locations[node]
def distance_to_node(n):
if n is node or g.get(node,n): return infinity
return distance(g.locations[n], here)
neighbor = argmin(nodes, distance_to_node)
d = distance(g.locations[neighbor], here) * curvature()
g.connect(node, neighbor, int(d))
return g | 0.005263 |
def server_update(s_name, s_ip, **connection_args):
'''
Update a server's attributes
CLI Example:
.. code-block:: bash
salt '*' netscaler.server_update 'serverName' 'serverIP'
'''
altered = False
cur_server = _server_get(s_name, **connection_args)
if cur_server is None:
return False
alt_server = NSServer()
alt_server.set_name(s_name)
if cur_server.get_ipaddress() != s_ip:
alt_server.set_ipaddress(s_ip)
altered = True
# Nothing to update, the server is already idem
if altered is False:
return False
# Perform the update
nitro = _connect(**connection_args)
if nitro is None:
return False
ret = True
try:
NSServer.update(nitro, alt_server)
except NSNitroError as error:
log.debug('netscaler module error - NSServer.update() failed: %s', error)
ret = False
_disconnect(nitro)
return ret | 0.002119 |
def add_to_buffer(self, content, read_position):
"""Add additional bytes content as read from the read_position.
Args:
content (bytes): data to be added to buffer working BufferWorkSpac.
read_position (int): where in the file pointer the data was read from.
"""
self.read_position = read_position
if self.read_buffer is None:
self.read_buffer = content
else:
self.read_buffer = content + self.read_buffer | 0.005988 |
def show_linkinfo_output_show_link_info_linkinfo_version(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
show_linkinfo = ET.Element("show_linkinfo")
config = show_linkinfo
output = ET.SubElement(show_linkinfo, "output")
show_link_info = ET.SubElement(output, "show-link-info")
linkinfo_rbridgeid_key = ET.SubElement(show_link_info, "linkinfo-rbridgeid")
linkinfo_rbridgeid_key.text = kwargs.pop('linkinfo_rbridgeid')
linkinfo_version = ET.SubElement(show_link_info, "linkinfo-version")
linkinfo_version.text = kwargs.pop('linkinfo_version')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.004027 |
def get_storer(self, key):
""" return the storer object for a key, raise if not in the file """
group = self.get_node(key)
if group is None:
raise KeyError('No object named {key} in the file'.format(key=key))
s = self._create_storer(group)
s.infer_axes()
return s | 0.006173 |
def redraw_now(self, whence=0):
"""Redraw the displayed image.
Parameters
----------
whence
See :meth:`get_rgb_object`.
"""
try:
time_start = time.time()
self.redraw_data(whence=whence)
# finally update the window drawable from the offscreen surface
self.update_image()
time_done = time.time()
time_delta = time_start - self.time_last_redraw
time_elapsed = time_done - time_start
self.time_last_redraw = time_done
self.logger.debug(
"widget '%s' redraw (whence=%d) delta=%.4f elapsed=%.4f sec" % (
self.name, whence, time_delta, time_elapsed))
except Exception as e:
self.logger.error("Error redrawing image: %s" % (str(e)))
try:
# log traceback, if possible
(type, value, tb) = sys.exc_info()
tb_str = "".join(traceback.format_tb(tb))
self.logger.error("Traceback:\n%s" % (tb_str))
except Exception:
tb_str = "Traceback information unavailable."
self.logger.error(tb_str) | 0.002457 |
def splitclass(classofdevice):
"""
Splits the given class of device to return a 3-item tuple with the
major service class, major device class and minor device class values.
These values indicate the device's major services and the type of the
device (e.g. mobile phone, laptop, etc.). If you google for
"assigned numbers bluetooth baseband" you might find some documents
that discuss how to extract this information from the class of device.
Example:
>>> splitclass(1057036)
(129, 1, 3)
>>>
"""
if not isinstance(classofdevice, int):
try:
classofdevice = int(classofdevice)
except (TypeError, ValueError):
raise TypeError("Given device class '%s' cannot be split" % \
str(classofdevice))
data = classofdevice >> 2 # skip over the 2 "format" bits
service = data >> 11
major = (data >> 6) & 0x1F
minor = data & 0x3F
return (service, major, minor) | 0.003033 |
def clear_routing_table_entries(self, x, y, app_id):
"""Clear the routing table entries associated with a given application.
"""
# Construct the arguments
arg1 = (app_id << 8) | consts.AllocOperations.free_rtr_by_app
self._send_scp(x, y, 0, SCPCommands.alloc_free, arg1, 0x1) | 0.006349 |
def insert_import_path_to_sys_modules(import_path):
"""
When importing a module, Python references the directories in sys.path.
The default value of sys.path varies depending on the system, But:
When you start Python with a script, the directory of the script is inserted into sys.path[0].
So we have to replace sys.path to import object in specified scripts.
"""
abspath = os.path.abspath(import_path)
if os.path.isdir(abspath):
sys.path.insert(0, abspath)
else:
sys.path.insert(0, os.path.dirname(abspath)) | 0.003565 |
def get_private(self):
""" Derive private key from the brain key and the current sequence
number
"""
encoded = "%s %d" % (self.brainkey, self.sequence)
a = _bytes(encoded)
s = hashlib.sha256(hashlib.sha512(a).digest()).digest()
return PrivateKey(hexlify(s).decode("ascii"), prefix=self.prefix) | 0.005666 |
def read_inquiry_mode(sock):
"""returns the current mode, or -1 on failure"""
# save current filter
old_filter = sock.getsockopt( bluez.SOL_HCI, bluez.HCI_FILTER, 14)
# Setup socket filter to receive only events related to the
# read_inquiry_mode command
flt = bluez.hci_filter_new()
opcode = bluez.cmd_opcode_pack(bluez.OGF_HOST_CTL,
bluez.OCF_READ_INQUIRY_MODE)
bluez.hci_filter_set_ptype(flt, bluez.HCI_EVENT_PKT)
bluez.hci_filter_set_event(flt, bluez.EVT_CMD_COMPLETE);
bluez.hci_filter_set_opcode(flt, opcode)
sock.setsockopt( bluez.SOL_HCI, bluez.HCI_FILTER, flt )
# first read the current inquiry mode.
bluez.hci_send_cmd(sock, bluez.OGF_HOST_CTL,
bluez.OCF_READ_INQUIRY_MODE )
pkt = sock.recv(255)
status,mode = struct.unpack("xxxxxxBB", pkt)
if status != 0: mode = -1
# restore old filter
sock.setsockopt( bluez.SOL_HCI, bluez.HCI_FILTER, old_filter )
return mode | 0.0143 |
def parseBranches(self, descendants):
"""
Parse top level of markdown
:param list elements: list of source objects
:return: list of filtered TreeOfContents objects
"""
parsed, parent, cond = [], False, lambda b: (b.string or '').strip()
for branch in filter(cond, descendants):
if self.getHeadingLevel(branch) == self.depth:
parsed.append({'root':branch.string, 'source':branch})
parent = True
elif not parent:
parsed.append({'root':branch.string, 'source':branch})
else:
parsed[-1].setdefault('descendants', []).append(branch)
return [TOC(depth=self.depth+1, **kwargs) for kwargs in parsed] | 0.007937 |
def showhtml():
"""Open your web browser and display the generated html documentation.
"""
import webbrowser
# copy from paver
opts = options
docroot = path(opts.get('docroot', 'docs'))
if not docroot.exists():
raise BuildFailure("Sphinx documentation root (%s) does not exist."
% docroot)
builddir = docroot / opts.get("builddir", ".build")
# end of copy
builddir=builddir / 'html'
if not builddir.exists():
raise BuildFailure("Sphinx build directory (%s) does not exist."
% builddir)
webbrowser.open(builddir / 'index.html') | 0.003091 |
def repack(self):
"""Removes any blank ranks in the order."""
items = self.grouped_filter().order_by('rank').select_for_update()
for count, item in enumerate(items):
item.rank = count + 1
item.save(rerank=False) | 0.007722 |
def grouper(self, n, iterable, fillvalue=None):
"""This generator yields a set of tuples, where the
iterable is broken into n sized chunks. If the
iterable is not evenly sized then fillvalue will
be appended to the last tuple to make up the difference.
This function is copied from the standard docs on
itertools.
"""
args = [iter(iterable)] * n
if hasattr(itertools, 'zip_longest'):
return itertools.zip_longest(*args, fillvalue=fillvalue)
return itertools.izip_longest(*args, fillvalue=fillvalue) | 0.003384 |
def defconfig_filename(self):
"""
See the class documentation.
"""
if self.defconfig_list:
for filename, cond in self.defconfig_list.defaults:
if expr_value(cond):
try:
with self._open_config(filename.str_value) as f:
return f.name
except IOError:
continue
return None | 0.004415 |
def _init_metadata(self):
"""stub"""
self._choices_metadata = {
'element_id': Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
'choices'),
'element_label': 'Choices',
'instructions': 'Enter as many choices as you wish',
'required': True,
'read_only': False,
'linked': False,
'array': True,
'default_object_values': [''],
'syntax': 'OBJECT',
'object_set': []
}
self._choice_name_metadata = {
'element_id': Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
'question_string'),
'element_label': 'choice name',
'instructions': 'enter a short label for this choice',
'required': False,
'read_only': False,
'linked': False,
'array': False,
'default_string_values': [''],
'syntax': 'STRING',
'minimum_string_length': 0,
'maximum_string_length': 1024,
'string_set': []
}
self._multi_answer_metadata = {
'element_id': Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
'multi_answer'),
'element_label': 'Is Multi-Answer',
'instructions': 'accepts a boolean (True/False) value',
'required': True,
'read_only': False,
'linked': True,
'array': False,
'default_boolean_values': ['False'],
'syntax': 'BOOLEAN',
'id_set': []
} | 0.001107 |
def gen(mimetype):
"""``gen`` is a decorator factory function, you just need to set
a mimetype before using::
@app.route('/')
@gen('')
def index():
pass
A full demo for creating a image stream is available on
`GitHub <https://github.com/kxxoling/flask-video-streaming>`__ .
"""
def streaming(func, *args, **kwargs):
@wraps(func)
def _():
return Response(func(*args, **kwargs),
mimetype=mimetype)
return _
return streaming | 0.001815 |
def URLField(default=NOTHING, required=True, repr=True, cmp=True, key=None):
"""
Create new UUID field on a model.
:param default: any value
:param bool required: whether or not the object is invalid if not provided.
:param bool repr: include this field should appear in object's repr.
:param bool cmp: include this field in generated comparison.
:param string key: override name of the value when converted to dict.
"""
cls = ParseResult
default = _init_fields.init_default(required, default, None)
validator = _init_fields.init_validator(required, cls)
return attrib(default=default, converter=converters.str_to_url,
validator=validator, repr=repr, cmp=cmp,
metadata=dict(key=key)) | 0.001302 |
def set_initial_status(self, configuration=None):
"""
Override behaviour of methods in class DiffusionModel.
Overwrites initial status using random real values.
Generates random node profiles.
"""
super(CognitiveOpDynModel, self).set_initial_status(configuration)
# set node status
for node in self.status:
self.status[node] = np.random.random_sample()
self.initial_status = self.status.copy()
# set new node parameters
self.params['nodes']['cognitive'] = {}
# first correct the input model parameters and retreive T_range, B_range and R_distribution
T_range = (self.params['model']['T_range_min'], self.params['model']['T_range_max'])
if self.params['model']['T_range_min'] > self.params['model']['T_range_max']:
T_range = (self.params['model']['T_range_max'], self.params['model']['T_range_min'])
B_range = (self.params['model']['B_range_min'], self.params['model']['B_range_max'])
if self.params['model']['B_range_min'] > self.params['model']['B_range_max']:
B_range = (self.params['model']['B_range_max'], self.params['model']['B_range_min'])
s = float(self.params['model']['R_fraction_negative'] + self.params['model']['R_fraction_neutral'] +
self.params['model']['R_fraction_positive'])
R_distribution = (self.params['model']['R_fraction_negative']/s, self.params['model']['R_fraction_neutral']/s,
self.params['model']['R_fraction_positive']/s)
# then sample parameters from the ranges and distribution
for node in self.graph.nodes():
R_prob = np.random.random_sample()
if R_prob < R_distribution[0]:
R = -1
elif R_prob < (R_distribution[0] + R_distribution[1]):
R = 0
else:
R = 1
# R, B and T parameters in a tuple
self.params['nodes']['cognitive'][node] = (R,
B_range[0] + (B_range[1] - B_range[0])*np.random.random_sample(),
T_range[0] + (T_range[1] - T_range[0])*np.random.random_sample()) | 0.005717 |
def from_index_amount(cls, idx, amount):
"""
Like Deformation.from_index_amount, except generates
a strain from the zero 3x3 tensor or voigt vector with
the amount specified in the index location. Ensures
symmetric strain.
Args:
idx (tuple or integer): index to be perturbed, can be voigt or
full-tensor notation
amount (float): amount to perturb selected index
"""
if np.array(idx).ndim == 0:
v = np.zeros(6)
v[idx] = amount
return cls.from_voigt(v)
elif np.array(idx).ndim == 1:
v = np.zeros((3, 3))
for i in itertools.permutations(idx):
v[i] = amount
return cls(v)
else:
raise ValueError("Index must either be 2-tuple or integer "
"corresponding to full-tensor or voigt index") | 0.002148 |
def get_exception_error():
''' Get the exception info
Sample usage:
try:
raise Exception("asdfsdfsdf")
except:
print common.get_exception_error()
Return:
return the exception infomation.
'''
error_message = ""
for i in range(len(inspect.trace())):
error_line = u"""
File: %s - [%s]
Function: %s
Statement: %s
-""" % (inspect.trace()[i][1], inspect.trace()[i][2], inspect.trace()[i][3], inspect.trace()[i][4])
error_message = "%s%s" % (error_message, error_line)
error_message = u"""Error!\n%s\n\t%s\n\t%s\n-------------------------------------------------------------------------------------------\n\n""" % (error_message,sys.exc_info()[0], sys.exc_info()[1])
return error_message | 0.009667 |
def raw_conf_process_pyramid(raw_conf):
"""
Loads the process pyramid of a raw configuration.
Parameters
----------
raw_conf : dict
Raw mapchete configuration as dictionary.
Returns
-------
BufferedTilePyramid
"""
return BufferedTilePyramid(
raw_conf["pyramid"]["grid"],
metatiling=raw_conf["pyramid"].get("metatiling", 1),
pixelbuffer=raw_conf["pyramid"].get("pixelbuffer", 0)
) | 0.002188 |
def value(self) -> Union[bool, None]:
"""Returns the concrete value of this bool if concrete, otherwise None.
:return: Concrete value or None
"""
self.simplify()
if self.is_true:
return True
elif self.is_false:
return False
else:
return None | 0.005988 |
def check_boto_reqs(boto_ver=None,
boto3_ver=None,
botocore_ver=None,
check_boto=True,
check_boto3=True):
'''
Checks for the version of various required boto libs in one central location. Most
boto states and modules rely on a single version of the boto, boto3, or botocore libs.
However, some require newer versions of any of these dependencies. This function allows
the module to pass in a version to override the default minimum required version.
This function is useful in centralizing checks for ``__virtual__()`` functions in the
various, and many, boto modules and states.
boto_ver
The minimum required version of the boto library. Defaults to ``2.0.0``.
boto3_ver
The minimum required version of the boto3 library. Defaults to ``1.2.6``.
botocore_ver
The minimum required version of the botocore library. Defaults to ``1.3.23``.
check_boto
Boolean defining whether or not to check for boto deps. This defaults to ``True`` as
most boto modules/states rely on boto, but some do not.
check_boto3
Boolean defining whether or not to check for boto3 (and therefore botocore) deps.
This defaults to ``True`` as most boto modules/states rely on boto3/botocore, but
some do not.
'''
if check_boto is True:
try:
# Late import so we can only load these for this function
import boto
has_boto = True
except ImportError:
has_boto = False
if boto_ver is None:
boto_ver = '2.0.0'
if not has_boto or version_cmp(boto.__version__, boto_ver) == -1:
return False, 'A minimum version of boto {0} is required.'.format(boto_ver)
if check_boto3 is True:
try:
# Late import so we can only load these for this function
import boto3
import botocore
has_boto3 = True
except ImportError:
has_boto3 = False
# boto_s3_bucket module requires boto3 1.2.6 and botocore 1.3.23 for
# idempotent ACL operations via the fix in https://github.com/boto/boto3/issues/390
if boto3_ver is None:
boto3_ver = '1.2.6'
if botocore_ver is None:
botocore_ver = '1.3.23'
if not has_boto3 or version_cmp(boto3.__version__, boto3_ver) == -1:
return False, 'A minimum version of boto3 {0} is required.'.format(boto3_ver)
elif version_cmp(botocore.__version__, botocore_ver) == -1:
return False, 'A minimum version of botocore {0} is required'.format(botocore_ver)
return True | 0.005867 |
def LogBinomialCoef(n, k):
"""Computes the log of the binomial coefficient.
http://math.stackexchange.com/questions/64716/
approximating-the-logarithm-of-the-binomial-coefficient
n: number of trials
k: number of successes
Returns: float
"""
return n * log(n) - k * log(k) - (n - k) * log(n - k) | 0.00304 |
def FillDeviceAttributes(device, descriptor):
"""Fill out the attributes of the device.
Fills the devices HidAttributes and product string
into the descriptor.
Args:
device: A handle to the open device
descriptor: The DeviceDescriptor to populate with the
attributes.
Returns:
None
Raises:
WindowsError when unable to obtain attributes or product
string.
"""
attributes = HidAttributes()
result = hid.HidD_GetAttributes(device, ctypes.byref(attributes))
if not result:
raise ctypes.WinError()
buf = ctypes.create_string_buffer(1024)
result = hid.HidD_GetProductString(device, buf, 1024)
if not result:
raise ctypes.WinError()
descriptor.vendor_id = attributes.VendorID
descriptor.product_id = attributes.ProductID
descriptor.product_string = ctypes.wstring_at(buf) | 0.013111 |
def from_payload(self, payload):
"""Init frame from binary data."""
self.major_version = payload[0] * 256 + payload[1]
self.minor_version = payload[2] * 256 + payload[3] | 0.010363 |
def get_comment_admin_session(self, proxy):
"""Gets the ``OsidSession`` associated with the comment administration service.
arg: proxy (osid.proxy.Proxy): a proxy
return: (osid.commenting.CommentAdminSession) - a
``CommentAdminSession``
raise: NullArgument - ``proxy`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_comment_admin()`` is
``false``
*compliance: optional -- This method must be implemented if
``supports_comment_admin()`` is ``true``.*
"""
if not self.supports_comment_admin():
raise errors.Unimplemented()
# pylint: disable=no-member
return sessions.CommentAdminSession(proxy=proxy, runtime=self._runtime) | 0.003663 |
def _notify_media_transport_available(self, path, transport):
"""
Called by the endpoint when a new media transport is
available
"""
self.source = BTAudioSource(dev_path=path)
self.state = self.source.State
self.source.add_signal_receiver(self._property_change_event_handler,
BTAudioSource.SIGNAL_PROPERTY_CHANGED, # noqa
transport) | 0.004264 |
def dump_privatekey(type, pkey, cipher=None, passphrase=None):
"""
Dump the private key *pkey* into a buffer string encoded with the type
*type*. Optionally (if *type* is :const:`FILETYPE_PEM`) encrypting it
using *cipher* and *passphrase*.
:param type: The file type (one of :const:`FILETYPE_PEM`,
:const:`FILETYPE_ASN1`, or :const:`FILETYPE_TEXT`)
:param PKey pkey: The PKey to dump
:param cipher: (optional) if encrypted PEM format, the cipher to use
:param passphrase: (optional) if encrypted PEM format, this can be either
the passphrase to use, or a callback for providing the passphrase.
:return: The buffer with the dumped key in
:rtype: bytes
"""
bio = _new_mem_buf()
if not isinstance(pkey, PKey):
raise TypeError("pkey must be a PKey")
if cipher is not None:
if passphrase is None:
raise TypeError(
"if a value is given for cipher "
"one must also be given for passphrase")
cipher_obj = _lib.EVP_get_cipherbyname(_byte_string(cipher))
if cipher_obj == _ffi.NULL:
raise ValueError("Invalid cipher name")
else:
cipher_obj = _ffi.NULL
helper = _PassphraseHelper(type, passphrase)
if type == FILETYPE_PEM:
result_code = _lib.PEM_write_bio_PrivateKey(
bio, pkey._pkey, cipher_obj, _ffi.NULL, 0,
helper.callback, helper.callback_args)
helper.raise_if_problem()
elif type == FILETYPE_ASN1:
result_code = _lib.i2d_PrivateKey_bio(bio, pkey._pkey)
elif type == FILETYPE_TEXT:
if _lib.EVP_PKEY_id(pkey._pkey) != _lib.EVP_PKEY_RSA:
raise TypeError("Only RSA keys are supported for FILETYPE_TEXT")
rsa = _ffi.gc(
_lib.EVP_PKEY_get1_RSA(pkey._pkey),
_lib.RSA_free
)
result_code = _lib.RSA_print(bio, rsa, 0)
else:
raise ValueError(
"type argument must be FILETYPE_PEM, FILETYPE_ASN1, or "
"FILETYPE_TEXT")
_openssl_assert(result_code != 0)
return _bio_to_string(bio) | 0.000472 |
def find_table_links(self):
"""
When given a url, this function will find all the available table names
for that EPA dataset.
"""
html = urlopen(self.model_url).read()
doc = lh.fromstring(html)
href_list = [area.attrib['href'] for area in doc.cssselect('map area')]
tables = self._inception_table_links(href_list)
return tables | 0.005013 |
def primes(n):
"""
Simple test function
Taken from http://www.huyng.com/posts/python-performance-analysis/
"""
if n==2:
return [2]
elif n<2:
return []
s=list(range(3,n+1,2))
mroot = n ** 0.5
half=(n+1)//2-1
i=0
m=3
while m <= mroot:
if s[i]:
j=(m*m-3)//2
s[j]=0
while j<half:
s[j]=0
j+=m
i=i+1
m=2*i+3
return [2]+[x for x in s if x] | 0.031068 |
def Entry(self, name, directory=None, create=1):
""" Create `SCons.Node.FS.Entry` """
return self._create_node(name, self.env.fs.Entry, directory, create) | 0.011765 |
def calculate_prorated_values():
"""
A utility function to prompt for a rate (a string in units per
unit time), and return that same rate for various time periods.
"""
rate = six.moves.input("Enter the rate (3/hour, 50/month)> ")
res = re.match(r'(?P<value>[\d.]+)/(?P<period>\w+)$', rate).groupdict()
value = float(res['value'])
value_per_second = value / get_period_seconds(res['period'])
for period in ('minute', 'hour', 'day', 'month', 'year'):
period_value = value_per_second * get_period_seconds(period)
print("per {period}: {period_value}".format(**locals())) | 0.020725 |
def perform_create(self, serializer):
""" determine user when node is added """
if serializer.instance is None:
serializer.save(user=self.request.user) | 0.011173 |
def leave_group(self, group_jid):
"""
Leaves a specific group
:param group_jid: The JID of the group to leave
"""
log.info("[+] Leaving group {}".format(group_jid))
return self._send_xmpp_element(group_adminship.LeaveGroupRequest(group_jid)) | 0.010345 |
def one_storage_per_feeder(edisgo, storage_timeseries,
storage_nominal_power=None, **kwargs):
"""
Allocates the given storage capacity to multiple smaller storages.
For each feeder with load or voltage issues it is checked if integrating a
storage will reduce peaks in the feeder, starting with the feeder with
the highest theoretical grid expansion costs. A heuristic approach is used
to estimate storage sizing and siting while storage operation is carried
over from the given storage operation.
Parameters
-----------
edisgo : :class:`~.grid.network.EDisGo`
storage_timeseries : :pandas:`pandas.DataFrame<dataframe>`
Total active and reactive power time series that will be allocated to
the smaller storages in feeders with load or voltage issues. Columns of
the dataframe are 'p' containing active power time series in kW and 'q'
containing the reactive power time series in kvar. Index is a
:pandas:`pandas.DatetimeIndex<datetimeindex>`.
storage_nominal_power : :obj:`float` or None
Nominal power in kW that will be allocated to the smaller storages in
feeders with load or voltage issues. If no nominal power is provided
the maximum active power given in `storage_timeseries` is used.
Default: None.
debug : :obj:`Boolean`, optional
If dedug is True a dataframe with storage size and path to storage of
all installed and possibly discarded storages is saved to a csv file
and a plot with all storage positions is created and saved, both to the
current working directory with filename `storage_results_{MVgrid_id}`.
Default: False.
check_costs_reduction : :obj:`Boolean` or :obj:`str`, optional
This parameter specifies when and whether it should be checked if a
storage reduced grid expansion costs or not. It can be used as a safety
check but can be quite time consuming. Possible options are:
* 'each_feeder'
Costs reduction is checked for each feeder. If the storage did not
reduce grid expansion costs it is discarded.
* 'once'
Costs reduction is checked after the total storage capacity is
allocated to the feeders. If the storages did not reduce grid
expansion costs they are all discarded.
* False
Costs reduction is never checked.
Default: False.
"""
def _feeder_ranking(grid_expansion_costs):
"""
Get feeder ranking from grid expansion costs DataFrame.
MV feeders are ranked descending by grid expansion costs that are
attributed to that feeder.
Parameters
----------
grid_expansion_costs : :pandas:`pandas.DataFrame<dataframe>`
grid_expansion_costs DataFrame from :class:`~.grid.network.Results`
of the copied edisgo object.
Returns
-------
:pandas:`pandas.Series<series>`
Series with ranked MV feeders (in the copied graph) of type
:class:`~.grid.components.Line`. Feeders are ranked by total grid
expansion costs of all measures conducted in the feeder. The
feeder with the highest costs is in the first row and the feeder
with the lowest costs in the last row.
"""
return grid_expansion_costs.groupby(
['mv_feeder'], sort=False).sum().reset_index().sort_values(
by=['total_costs'], ascending=False)['mv_feeder']
def _shortest_path(node):
if isinstance(node, LVStation):
return len(nx.shortest_path(
node.mv_grid.graph, node.mv_grid.station, node))
else:
return len(nx.shortest_path(
node.grid.graph, node.grid.station, node))
def _find_battery_node(edisgo, critical_lines_feeder,
critical_nodes_feeder):
"""
Evaluates where to install the storage.
Parameters
-----------
edisgo : :class:`~.grid.network.EDisGo`
The original edisgo object.
critical_lines_feeder : :pandas:`pandas.DataFrame<dataframe>`
Dataframe containing over-loaded lines in MV feeder, their maximum
relative over-loading and the corresponding time step. See
:func:`edisgo.flex_opt.check_tech_constraints.mv_line_load` for
more information.
critical_nodes_feeder : :obj:`list`
List with all nodes in MV feeder with voltage issues.
Returns
-------
:obj:`float`
Node where storage is installed.
"""
# if there are overloaded lines in the MV feeder the battery storage
# will be installed at the node farthest away from the MV station
if not critical_lines_feeder.empty:
logger.debug("Storage positioning due to overload.")
# dictionary with nodes and their corresponding path length to
# MV station
path_length_dict = {}
for l in critical_lines_feeder.index:
nodes = l.grid.graph.nodes_from_line(l)
for node in nodes:
path_length_dict[node] = _shortest_path(node)
# return node farthest away
return [_ for _ in path_length_dict.keys()
if path_length_dict[_] == max(
path_length_dict.values())][0]
# if there are voltage issues in the MV grid the battery storage will
# be installed at the first node in path that exceeds 2/3 of the line
# length from station to critical node with highest voltage deviation
if critical_nodes_feeder:
logger.debug("Storage positioning due to voltage issues.")
node = critical_nodes_feeder[0]
# get path length from station to critical node
get_weight = lambda u, v, data: data['line'].length
path_length = dijkstra_shortest_path_length(
edisgo.network.mv_grid.graph,
edisgo.network.mv_grid.station,
get_weight, target=node)
# find first node in path that exceeds 2/3 of the line length
# from station to critical node farthest away from the station
path = nx.shortest_path(edisgo.network.mv_grid.graph,
edisgo.network.mv_grid.station,
node)
return next(j for j in path
if path_length[j] >= path_length[node] * 2 / 3)
return None
def _calc_storage_size(edisgo, feeder, max_storage_size):
"""
Calculates storage size that reduces residual load.
Parameters
-----------
edisgo : :class:`~.grid.network.EDisGo`
The original edisgo object.
feeder : :class:`~.grid.components.Line`
MV feeder the storage will be connected to. The line object is an
object from the copied graph.
Returns
-------
:obj:`float`
Storage size that reduced the residual load in the feeder.
"""
step_size = 200
sizes = [0] + list(np.arange(
p_storage_min, max_storage_size + 0.5 * step_size, step_size))
p_feeder = edisgo.network.results.pfa_p.loc[:, repr(feeder)]
q_feeder = edisgo.network.results.pfa_q.loc[:, repr(feeder)]
p_slack = edisgo.network.pypsa.generators_t.p.loc[
:, 'Generator_slack'] * 1e3
# get sign of p and q
l = edisgo.network.pypsa.lines.loc[repr(feeder), :]
mv_station_bus = 'bus0' if l.loc['bus0'] == 'Bus_'.format(
repr(edisgo.network.mv_grid.station)) else 'bus1'
if mv_station_bus == 'bus0':
diff = edisgo.network.pypsa.lines_t.p1.loc[:, repr(feeder)] - \
edisgo.network.pypsa.lines_t.p0.loc[:, repr(feeder)]
diff_q = edisgo.network.pypsa.lines_t.q1.loc[:, repr(feeder)] - \
edisgo.network.pypsa.lines_t.q0.loc[:, repr(feeder)]
else:
diff = edisgo.network.pypsa.lines_t.p0.loc[:, repr(feeder)] - \
edisgo.network.pypsa.lines_t.p1.loc[:, repr(feeder)]
diff_q = edisgo.network.pypsa.lines_t.q0.loc[:, repr(feeder)] - \
edisgo.network.pypsa.lines_t.q1.loc[:, repr(feeder)]
p_sign = pd.Series([-1 if _ < 0 else 1 for _ in diff],
index=p_feeder.index)
q_sign = pd.Series([-1 if _ < 0 else 1 for _ in diff_q],
index=p_feeder.index)
# get allowed load factors per case
lf = {'feedin_case': edisgo.network.config[
'grid_expansion_load_factors']['mv_feedin_case_line'],
'load_case': network.config[
'grid_expansion_load_factors']['mv_load_case_line']}
# calculate maximum apparent power for each storage size to find
# storage size that minimizes apparent power in the feeder
p_feeder = p_feeder.multiply(p_sign)
q_feeder = q_feeder.multiply(q_sign)
s_max = []
for size in sizes:
share = size / storage_nominal_power
p_storage = storage_timeseries.p * share
q_storage = storage_timeseries.q * share
p_total = p_feeder + p_storage
q_total = q_feeder + q_storage
p_hv_mv_station = p_slack - p_storage
lf_ts = p_hv_mv_station.apply(
lambda _: lf['feedin_case'] if _ < 0 else lf['load_case'])
s_max_ts = (p_total ** 2 + q_total ** 2).apply(
sqrt).divide(lf_ts)
s_max.append(max(s_max_ts))
return sizes[pd.Series(s_max).idxmin()]
def _critical_nodes_feeder(edisgo, feeder):
"""
Returns all nodes in MV feeder with voltage issues.
Parameters
-----------
edisgo : :class:`~.grid.network.EDisGo`
The original edisgo object.
feeder : :class:`~.grid.components.Line`
MV feeder the storage will be connected to. The line object is an
object from the copied graph.
Returns
-------
:obj:`list`
List with all nodes in MV feeder with voltage issues.
"""
# get all nodes with voltage issues in MV grid
critical_nodes = check_tech_constraints.mv_voltage_deviation(
edisgo.network, voltage_levels='mv')
if critical_nodes:
critical_nodes = critical_nodes[edisgo.network.mv_grid]
else:
return []
# filter nodes with voltage issues in feeder
critical_nodes_feeder = []
for n in critical_nodes.index:
if repr(n.mv_feeder) == repr(feeder):
critical_nodes_feeder.append(n)
return critical_nodes_feeder
def _critical_lines_feeder(edisgo, feeder):
"""
Returns all lines in MV feeder with overload issues.
Parameters
-----------
edisgo : :class:`~.grid.network.EDisGo`
The original edisgo object.
feeder : :class:`~.grid.components.Line`
MV feeder the storage will be connected to. The line object is an
object from the copied graph.
Returns
-------
:pandas:`pandas.DataFrame<dataframe>`
Dataframe containing over-loaded lines in MV feeder, their maximum
relative over-loading and the corresponding time step. See
:func:`edisgo.flex_opt.check_tech_constraints.mv_line_load` for
more information.
"""
# get all overloaded MV lines
critical_lines = check_tech_constraints.mv_line_load(edisgo.network)
# filter overloaded lines in feeder
critical_lines_feeder = []
for l in critical_lines.index:
if repr(tools.get_mv_feeder_from_line(l)) == repr(feeder):
critical_lines_feeder.append(l)
return critical_lines.loc[critical_lines_feeder, :]
def _estimate_new_number_of_lines(critical_lines_feeder):
number_parallel_lines = 0
for crit_line in critical_lines_feeder.index:
number_parallel_lines += ceil(critical_lines_feeder.loc[
crit_line, 'max_rel_overload'] * crit_line.quantity) - \
crit_line.quantity
return number_parallel_lines
debug = kwargs.get('debug', False)
check_costs_reduction = kwargs.get('check_costs_reduction', False)
# global variables
# minimum and maximum storage power to be connected to the MV grid
p_storage_min = 300
p_storage_max = 4500
# remaining storage nominal power
if storage_nominal_power is None:
storage_nominal_power = max(abs(storage_timeseries.p))
p_storage_remaining = storage_nominal_power
if debug:
feeder_repr = []
storage_path = []
storage_repr = []
storage_size = []
# rank MV feeders by grid expansion costs
# conduct grid reinforcement on copied edisgo object on worst-case time
# steps
grid_expansion_results_init = edisgo.reinforce(
copy_graph=True, timesteps_pfa='snapshot_analysis')
# only analyse storage integration if there were any grid expansion needs
if grid_expansion_results_init.equipment_changes.empty:
logger.debug('No storage integration necessary since there are no '
'grid expansion needs.')
return
else:
equipment_changes_reinforcement_init = \
grid_expansion_results_init.equipment_changes.loc[
grid_expansion_results_init.equipment_changes.iteration_step >
0]
total_grid_expansion_costs = \
grid_expansion_results_init.grid_expansion_costs.total_costs.sum()
if equipment_changes_reinforcement_init.empty:
logger.debug('No storage integration necessary since there are no '
'grid expansion needs.')
return
else:
network = equipment_changes_reinforcement_init.index[
0].grid.network
# calculate grid expansion costs without costs for new generators
# to be used in feeder ranking
grid_expansion_costs_feeder_ranking = costs.grid_expansion_costs(
network, without_generator_import=True)
ranked_feeders = _feeder_ranking(grid_expansion_costs_feeder_ranking)
count = 1
storage_obj_list = []
total_grid_expansion_costs_new = 'not calculated'
for feeder in ranked_feeders.values:
logger.debug('Feeder: {}'.format(count))
count += 1
# first step: find node where storage will be installed
critical_nodes_feeder = _critical_nodes_feeder(edisgo, feeder)
critical_lines_feeder = _critical_lines_feeder(edisgo, feeder)
# get node the storage will be connected to (in original graph)
battery_node = _find_battery_node(edisgo, critical_lines_feeder,
critical_nodes_feeder)
if battery_node:
# add to output lists
if debug:
feeder_repr.append(repr(feeder))
storage_path.append(nx.shortest_path(
edisgo.network.mv_grid.graph,
edisgo.network.mv_grid.station,
battery_node))
# second step: calculate storage size
max_storage_size = min(p_storage_remaining, p_storage_max)
p_storage = _calc_storage_size(edisgo, feeder, max_storage_size)
# if p_storage is greater than or equal to the minimum storage
# power required, do storage integration
if p_storage >= p_storage_min:
# third step: integrate storage
share = p_storage / storage_nominal_power
edisgo.integrate_storage(
timeseries=storage_timeseries.p * share,
position=battery_node,
voltage_level='mv',
timeseries_reactive_power=storage_timeseries.q * share)
tools.assign_mv_feeder_to_nodes(edisgo.network.mv_grid)
# get new storage object
storage_obj = [_
for _ in
edisgo.network.mv_grid.graph.nodes_by_attribute(
'storage') if _ in
edisgo.network.mv_grid.graph.neighbors(
battery_node)][0]
storage_obj_list.append(storage_obj)
logger.debug(
'Storage with nominal power of {} kW connected to '
'node {} (path to HV/MV station {}).'.format(
p_storage, battery_node, nx.shortest_path(
battery_node.grid.graph, battery_node.grid.station,
battery_node)))
# fourth step: check if storage integration reduced grid
# reinforcement costs or number of issues
if check_costs_reduction == 'each_feeder':
# calculate new grid expansion costs
grid_expansion_results_new = edisgo.reinforce(
copy_graph=True, timesteps_pfa='snapshot_analysis')
total_grid_expansion_costs_new = \
grid_expansion_results_new.grid_expansion_costs.\
total_costs.sum()
costs_diff = total_grid_expansion_costs - \
total_grid_expansion_costs_new
if costs_diff > 0:
logger.debug(
'Storage integration in feeder {} reduced grid '
'expansion costs by {} kEuro.'.format(
feeder, costs_diff))
if debug:
storage_repr.append(repr(storage_obj))
storage_size.append(storage_obj.nominal_power)
total_grid_expansion_costs = \
total_grid_expansion_costs_new
else:
logger.debug(
'Storage integration in feeder {} did not reduce '
'grid expansion costs (costs increased by {} '
'kEuro).'.format(feeder, -costs_diff))
tools.disconnect_storage(edisgo.network, storage_obj)
p_storage = 0
if debug:
storage_repr.append(None)
storage_size.append(0)
edisgo.integrate_storage(
timeseries=storage_timeseries.p * 0,
position=battery_node,
voltage_level='mv',
timeseries_reactive_power=
storage_timeseries.q * 0)
tools.assign_mv_feeder_to_nodes(
edisgo.network.mv_grid)
else:
number_parallel_lines_before = \
_estimate_new_number_of_lines(critical_lines_feeder)
edisgo.analyze()
critical_lines_feeder_new = _critical_lines_feeder(
edisgo, feeder)
critical_nodes_feeder_new = _critical_nodes_feeder(
edisgo, feeder)
number_parallel_lines = _estimate_new_number_of_lines(
critical_lines_feeder_new)
# if there are critical lines check if number of parallel
# lines was reduced
if not critical_lines_feeder.empty:
diff_lines = number_parallel_lines_before - \
number_parallel_lines
# if it was not reduced check if there are critical
# nodes and if the number was reduced
if diff_lines <= 0:
# if there are no critical nodes remove storage
if not critical_nodes_feeder:
logger.debug(
'Storage integration in feeder {} did not '
'reduce number of critical lines (number '
'increased by {}), storage '
'is therefore removed.'.format(
feeder, -diff_lines))
tools.disconnect_storage(edisgo.network,
storage_obj)
p_storage = 0
if debug:
storage_repr.append(None)
storage_size.append(0)
edisgo.integrate_storage(
timeseries=storage_timeseries.p * 0,
position=battery_node,
voltage_level='mv',
timeseries_reactive_power=
storage_timeseries.q * 0)
tools.assign_mv_feeder_to_nodes(
edisgo.network.mv_grid)
else:
logger.debug(
'Critical nodes in feeder {} '
'before and after storage integration: '
'{} vs. {}'.format(
feeder, critical_nodes_feeder,
critical_nodes_feeder_new))
if debug:
storage_repr.append(repr(storage_obj))
storage_size.append(
storage_obj.nominal_power)
else:
logger.debug(
'Storage integration in feeder {} reduced '
'number of critical lines.'.format(feeder))
if debug:
storage_repr.append(repr(storage_obj))
storage_size.append(storage_obj.nominal_power)
# if there are no critical lines
else:
logger.debug(
'Critical nodes in feeder {} '
'before and after storage integration: '
'{} vs. {}'.format(
feeder, critical_nodes_feeder,
critical_nodes_feeder_new))
if debug:
storage_repr.append(repr(storage_obj))
storage_size.append(storage_obj.nominal_power)
# fifth step: if there is storage capacity left, rerun
# the past steps for the next feeder in the ranking
# list
p_storage_remaining = p_storage_remaining - p_storage
if not p_storage_remaining > p_storage_min:
break
else:
logger.debug('No storage integration in feeder {}.'.format(
feeder))
if debug:
storage_repr.append(None)
storage_size.append(0)
edisgo.integrate_storage(
timeseries=storage_timeseries.p * 0,
position=battery_node,
voltage_level='mv',
timeseries_reactive_power=storage_timeseries.q * 0)
tools.assign_mv_feeder_to_nodes(edisgo.network.mv_grid)
else:
logger.debug('No storage integration in feeder {} because there '
'are neither overloading nor voltage issues.'.format(
feeder))
if debug:
storage_repr.append(None)
storage_size.append(0)
feeder_repr.append(repr(feeder))
storage_path.append([])
if check_costs_reduction == 'once':
# check costs reduction and discard all storages if costs were not
# reduced
grid_expansion_results_new = edisgo.reinforce(
copy_graph=True, timesteps_pfa='snapshot_analysis')
total_grid_expansion_costs_new = \
grid_expansion_results_new.grid_expansion_costs. \
total_costs.sum()
costs_diff = total_grid_expansion_costs - \
total_grid_expansion_costs_new
if costs_diff > 0:
logger.info(
'Storage integration in grid {} reduced grid '
'expansion costs by {} kEuro.'.format(
edisgo.network.id, costs_diff))
else:
logger.info(
'Storage integration in grid {} did not reduce '
'grid expansion costs (costs increased by {} '
'kEuro).'.format(edisgo.network.id, -costs_diff))
for storage in storage_obj_list:
tools.disconnect_storage(edisgo.network, storage)
elif check_costs_reduction == 'each_feeder':
# if costs redcution was checked after each storage only give out
# total costs reduction
if total_grid_expansion_costs_new == 'not calculated':
costs_diff = 0
else:
total_grid_expansion_costs = grid_expansion_results_init.\
grid_expansion_costs.total_costs.sum()
costs_diff = total_grid_expansion_costs - \
total_grid_expansion_costs_new
logger.info(
'Storage integration in grid {} reduced grid '
'expansion costs by {} kEuro.'.format(
edisgo.network.id, costs_diff))
if debug:
plots.storage_size(edisgo.network.mv_grid, edisgo.network.pypsa,
filename='storage_results_{}.pdf'.format(
edisgo.network.id), lopf=False)
storages_df = pd.DataFrame({'path': storage_path,
'repr': storage_repr,
'p_nom': storage_size},
index=feeder_repr)
storages_df.to_csv('storage_results_{}.csv'.format(edisgo.network.id))
edisgo.network.results.storages_costs_reduction = pd.DataFrame(
{'grid_expansion_costs_initial': total_grid_expansion_costs,
'grid_expansion_costs_with_storages': total_grid_expansion_costs_new},
index=[edisgo.network.id]) | 0.000549 |
def set_model_domain(model, domain):
"""
Sets the domain on the ONNX model.
:param model: instance of an ONNX model
:param domain: string containing the domain name of the model
Example:
::
from onnxmltools.utils import set_model_domain
onnx_model = load_model("SqueezeNet.onnx")
set_model_domain(onnx_model, "com.acme")
"""
if model is None or not isinstance(model, onnx_proto.ModelProto):
raise ValueError("Model is not a valid ONNX model.")
if not convert_utils.is_string_type(domain):
raise ValueError("Domain must be a string type.")
model.domain = domain | 0.001555 |
def format_for_baseline_output(self):
"""
:rtype: dict
"""
results = self.json()
for key in results:
results[key] = sorted(results[key], key=lambda x: x['line_number'])
plugins_used = list(map(
lambda x: x.__dict__,
self.plugins,
))
plugins_used = sorted(plugins_used, key=lambda x: x['name'])
return {
'generated_at': strftime("%Y-%m-%dT%H:%M:%SZ", gmtime()),
'exclude': {
'files': self.exclude_files,
'lines': self.exclude_lines,
},
'plugins_used': plugins_used,
'results': results,
'version': self.version,
} | 0.002729 |
def is_suspended(order_book_id, count=1):
"""
判断某只股票是否全天停牌。
:param str order_book_id: 某只股票的代码或股票代码,可传入单只股票的order_book_id, symbol
:param int count: 回溯获取的数据个数。默认为当前能够获取到的最近的数据
:return: count为1时 `bool`; count>1时 `pandas.DataFrame`
"""
dt = Environment.get_instance().calendar_dt.date()
order_book_id = assure_stock_order_book_id(order_book_id)
return Environment.get_instance().data_proxy.is_suspended(order_book_id, dt, count) | 0.00432 |
def ids(cls, values, itype=None):
'''
http://www.elasticsearch.org/guide/reference/query-dsl/ids-filter.html
Filters documents that only have the provided ids. Note, this filter does not require the _id field to be indexed since it works using the _uid field.
'''
instance = cls(ids={'values': values})
if itype is not None:
instance['ids']['type'] = itype
return instance | 0.006912 |
def start(self):
""" Start the sensor """
# open device
openni2.initialize(PrimesenseSensor.OPENNI2_PATH)
self._device = openni2.Device.open_any()
# open depth stream
self._depth_stream = self._device.create_depth_stream()
self._depth_stream.configure_mode(PrimesenseSensor.DEPTH_IM_WIDTH,
PrimesenseSensor.DEPTH_IM_HEIGHT,
PrimesenseSensor.FPS,
openni2.PIXEL_FORMAT_DEPTH_1_MM)
self._depth_stream.start()
# open color stream
self._color_stream = self._device.create_color_stream()
self._color_stream.configure_mode(PrimesenseSensor.COLOR_IM_WIDTH,
PrimesenseSensor.COLOR_IM_HEIGHT,
PrimesenseSensor.FPS,
openni2.PIXEL_FORMAT_RGB888)
self._color_stream.camera.set_auto_white_balance(self._auto_white_balance)
self._color_stream.camera.set_auto_exposure(self._auto_exposure)
self._color_stream.start()
# configure device
if self._registration_mode == PrimesenseRegistrationMode.DEPTH_TO_COLOR:
self._device.set_image_registration_mode(openni2.IMAGE_REGISTRATION_DEPTH_TO_COLOR)
else:
self._device.set_image_registration_mode(openni2.IMAGE_REGISTRATION_OFF)
self._device.set_depth_color_sync_enabled(self._enable_depth_color_sync)
self._running = True | 0.005682 |
def fixMissingPythonLib(self, binaries):
"""Add the Python library if missing from the binaries.
Some linux distributions (e.g. debian-based) statically build the
Python executable to the libpython, so bindepend doesn't include
it in its output.
Darwin custom builds could possibly also have non-framework style libraries,
so this method also checks for that variant as well.
"""
if is_aix:
# Shared libs on AIX are archives with shared object members, thus the ".a" suffix.
names = ('libpython%d.%d.a' % sys.version_info[:2],)
elif is_unix:
# Other *nix platforms.
names = ('libpython%d.%d.so' % sys.version_info[:2],)
elif is_darwin:
names = ('Python', 'libpython%d.%d.dylib' % sys.version_info[:2])
else:
return
for (nm, fnm, typ) in binaries:
for name in names:
if typ == 'BINARY' and name in fnm:
# lib found
return
# resume search using the first item in names
name = names[0]
if is_unix:
lib = bindepend.findLibrary(name)
if lib is None:
raise IOError("Python library not found!")
elif is_darwin:
# On MacPython, Analysis.assemble is able to find the libpython with
# no additional help, asking for config['python'] dependencies.
# However, this fails on system python, because the shared library
# is not listed as a dependency of the binary (most probably it's
# opened at runtime using some dlopen trickery).
lib = os.path.join(sys.exec_prefix, 'Python')
if not os.path.exists(lib):
raise IOError("Python library not found!")
binaries.append((os.path.split(lib)[1], lib, 'BINARY')) | 0.003132 |
def get_node_list(self) -> list:
"""Get a list of nodes.
Only the manager nodes can retrieve all the nodes
Returns:
list, all the ids of the nodes in swarm
"""
# Initialising empty list
nodes = []
# Raise an exception if we are not a manager
if not self._manager:
raise RuntimeError('Only the Swarm manager node '
'can retrieve all the nodes.')
node_list = self._client.nodes.list()
for n_list in node_list:
nodes.append(n_list.id)
return nodes | 0.003311 |
def process_field(elt, ascii=False):
"""Process a 'field' tag.
"""
# NOTE: if there is a variable defined in this field and it is different
# from the default, we could change the value and restart.
scale = np.uint8(1)
if elt.get("type") == "bitfield" and not ascii:
current_type = ">u" + str(int(elt.get("length")) // 8)
scale = np.dtype(current_type).type(1)
elif (elt.get("length") is not None):
if ascii:
add = 33
else:
add = 0
current_type = "S" + str(int(elt.get("length")) + add)
else:
current_type = TYPEC[elt.get("type")]
try:
scale = (10 /
float(elt.get("scaling-factor", "10").replace("^", "e")))
except ValueError:
scale = (10 / np.array(
elt.get("scaling-factor").replace("^", "e").split(","),
dtype=np.float))
return ((elt.get("name"), current_type, scale)) | 0.001026 |
def check_misc(text):
"""Avoid mixing metaphors.
source: Garner's Modern American Usage
source_url: http://bit.ly/1T4alrY
"""
err = "mixed_metaphors.misc.misc"
msg = u"Mixed metaphor. Try '{}'."
preferences = [
["cream rises to the top", ["cream rises to the crop"]],
["fasten your seatbelts", ["button your seatbelts"]],
["a minute to decompress", ["a minute to decompose"]],
["sharpest tool in the shed", ["sharpest marble in the (shed|box)"]],
["not rocket science", ["not rocket surgery"]],
]
return preferred_forms_check(text, preferences, err, msg) | 0.001527 |
def get_transition(self, # suppress(too-many-arguments)
line,
line_index,
column,
is_escaped,
comment_system_transitions,
eof=False):
"""Return a parser state, a move-ahead amount, and an append range.
If this parser state should terminate and return back to
the TEXT state, then return that state and also any corresponding
chunk that would have been yielded as a result.
"""
raise NotImplementedError("""Cannot instantiate base ParserState""") | 0.012638 |
def wait(self, timeout=None):
"""
Block until the container stops, then return its exit code. Similar to
the ``podman wait`` command.
:param timeout: int, microseconds to wait before polling for completion
:return: int, exit code
"""
timeout = ["--interval=%s" % timeout] if timeout else []
cmdline = ["podman", "wait"] + timeout + [self._id or self.get_id()]
return run_cmd(cmdline, return_output=True) | 0.004202 |
def ratio_beyond_r_sigma(x, r):
"""
Ratio of values that are more than r*std(x) (so r sigma) away from the mean of x.
:param x: the time series to calculate the feature of
:type x: iterable
:return: the value of this feature
:return type: float
"""
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
return np.sum(np.abs(x - np.mean(x)) > r * np.std(x))/x.size | 0.004773 |
def from_indra_statements(stmts,
name: Optional[str] = None,
version: Optional[str] = None,
description: Optional[str] = None,
authors: Optional[str] = None,
contact: Optional[str] = None,
license: Optional[str] = None,
copyright: Optional[str] = None,
disclaimer: Optional[str] = None,
):
"""Import a model from :mod:`indra`.
:param List[indra.statements.Statement] stmts: A list of statements
:param name: The graph's name
:param version: The graph's version. Recommended to use `semantic versioning <http://semver.org/>`_ or
``YYYYMMDD`` format.
:param description: The description of the graph
:param authors: The authors of this graph
:param contact: The contact email for this graph
:param license: The license for this graph
:param copyright: The copyright for this graph
:param disclaimer: The disclaimer for this graph
:rtype: pybel.BELGraph
"""
from indra.assemblers.pybel import PybelAssembler
pba = PybelAssembler(
stmts=stmts,
name=name,
version=version,
description=description,
authors=authors,
contact=contact,
license=license,
copyright=copyright,
disclaimer=disclaimer,
)
graph = pba.make_model()
return graph | 0.001309 |
def _handle(self, nick, target, message, **kwargs):
""" client callback entrance """
for regex, (func, pattern) in self.routes.items():
match = regex.match(message)
if match:
self.client.loop.create_task(
func(nick, target, message, match, **kwargs)) | 0.006135 |
def _maybe_classify(self, y, k, cutoffs):
'''Helper method for classifying continuous data.
'''
rows, cols = y.shape
if cutoffs is None:
if self.fixed:
mcyb = mc.Quantiles(y.flatten(), k=k)
yb = mcyb.yb.reshape(y.shape)
cutoffs = mcyb.bins
k = len(cutoffs)
return yb, cutoffs[:-1], k
else:
yb = np.array([mc.Quantiles(y[:, i], k=k).yb for i in
np.arange(cols)]).transpose()
return yb, None, k
else:
cutoffs = list(cutoffs) + [np.inf]
cutoffs = np.array(cutoffs)
yb = mc.User_Defined(y.flatten(), np.array(cutoffs)).yb.reshape(
y.shape)
k = len(cutoffs)
return yb, cutoffs[:-1], k | 0.002315 |
def add_role(self, role, term, start_date=None, end_date=None,
**kwargs):
"""
Examples:
leg.add_role('member', term='2009', chamber='upper',
party='Republican', district='10th')
"""
self['roles'].append(dict(role=role, term=term,
start_date=start_date,
end_date=end_date, **kwargs)) | 0.006993 |
def list_rooms(self, message):
"""what are the rooms?: List all the rooms I know about."""
context = {"rooms": self.available_rooms.values(), }
self.say(rendered_template("rooms.html", context), message=message, html=True) | 0.012195 |
def GetMemBalloonedMB(self):
'''Retrieves the amount of memory that has been reclaimed from this virtual
machine by the vSphere memory balloon driver (also referred to as the
"vmmemctl" driver).'''
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
return counter.value | 0.013423 |
def _send(self, messages):
"""A helper method that does the actual sending."""
if len(messages) == 1:
to_send = self._build_message(messages[0])
if to_send is False:
# The message was missing recipients.
# Bail.
return False
else:
pm_messages = list(map(self._build_message, messages))
pm_messages = [m for m in pm_messages if m]
if len(pm_messages) == 0:
# If after filtering, there aren't any messages
# to send, bail.
return False
to_send = PMBatchMail(messages=pm_messages)
try:
to_send.send(test=self.test_mode)
except:
if self.fail_silently:
return False
raise
return True | 0.003546 |
def get_requirements(filename=None):
"""
Read requirements from 'requirements txt'
:return: requirements
:rtype: list
"""
if filename is None:
filename = 'requirements.txt'
file = WORK_DIR / filename
install_reqs = parse_requirements(str(file), session='hack')
return [str(ir.req) for ir in install_reqs] | 0.002849 |
def setObjectName( self, objectName ):
"""
Updates the style sheet for this line edit when the name changes.
:param objectName | <str>
"""
super(XLineEdit, self).setObjectName(objectName)
self.adjustStyleSheet() | 0.017857 |
def crop(self, doy, depth, lat, lon, var):
""" Crop a subset of the dataset for each var
Given doy, depth, lat and lon, it returns the smallest subset
that still contains the requested coordinates inside it.
It handels special cases like a region around greenwich and
the international date line.
Accepts 0 to 360 and -180 to 180 longitude reference.
It extends time and longitude coordinates, so simplify the use
of series. For example, a ship track can be requested with
a longitude sequence like [352, 358, 364, 369, 380], and
the equivalent for day of year above 365.
"""
dims, idx = cropIndices(self.dims, lat, lon, depth)
dims['time'] = np.atleast_1d(doy)
idx['tn'] = np.arange(dims['time'].size)
# Temporary solution. Create an object for CARS dataset
xn = idx['xn']
yn = idx['yn']
zn = idx['zn']
tn = idx['tn']
subset = {}
for v in var:
if v == 'mn':
mn = []
for d in doy:
t = 2 * np.pi * d/366
# Naive solution
# FIXME: This is not an efficient solution.
value = self.ncs[0]['mean'][:, yn, xn]
value[:64] += self.ncs[0]['an_cos'][:, yn, xn] * np.cos(t) + \
self.ncs[0]['an_sin'][:, yn, xn] * np.sin(t)
value[:55] += self.ncs[0]['sa_cos'][:, yn, xn] * np.cos(2*t) + \
self.ncs[0]['sa_sin'][:, yn, xn] * np.sin(2*t)
mn.append(value[zn])
subset['mn'] = ma.asanyarray(mn)
else:
subset[v] = ma.asanyarray(
doy.size * [self[v][zn, yn, xn]])
return subset, dims | 0.002112 |
def read(self, file_or_filename):
""" Loads a pickled case.
"""
if isinstance(file_or_filename, basestring):
fname = os.path.basename(file_or_filename)
logger.info("Unpickling case file [%s]." % fname)
file = None
try:
file = open(file_or_filename, "rb")
except:
logger.error("Error opening %s." % fname)
return None
finally:
if file is not None:
case = pickle.load(file)
file.close()
else:
file = file_or_filename
case = pickle.load(file)
return case | 0.004329 |
def random_peak_magnitudes(
log,
peakMagnitudeDistributions,
snTypesArray,
plot=True):
"""
*Generate a numpy array of random (distribution weighted) peak magnitudes for the given sn types.*
**Key Arguments:**
- ``log`` -- logger
- ``peakMagnitudeDistributions`` -- yaml style dictionary of peak magnitude distributions
- ``snTypesArray`` -- the pre-generated array of random sn types
- ``plot`` -- generate plot?
**Return:**
- None
"""
################ > IMPORTS ################
## STANDARD LIB ##
## THIRD PARTY ##
import matplotlib.pyplot as plt
import numpy as np
## LOCAL APPLICATION ##
################ >ACTION(S) ################
magDistributions = {}
for snType, peakMag in peakMagnitudeDistributions['magnitude'].iteritems():
sigma = peakMagnitudeDistributions['sigma'][snType]
magDistributions[snType] = [peakMag, sigma]
peakMagList = []
for item in snTypesArray:
thisPeak = magDistributions[item][
1] * np.random.randn() + magDistributions[item][0]
peakMagList.append(thisPeak)
peakMagArray = np.array(peakMagList)
# log.debug('peakMagArray %s' % (peakMagArray,))
return peakMagArray | 0.006192 |
def save(self, config=None):
"""Saves config to config files.
Args:
config (configobj.ConfigObj): optional config object to save.
Raises:
dvc.config.ConfigError: thrown if failed to write config file.
"""
if config is not None:
clist = [config]
else:
clist = [
self._system_config,
self._global_config,
self._repo_config,
self._local_config,
]
for conf in clist:
if conf.filename is None:
continue
try:
logger.debug("Writing '{}'.".format(conf.filename))
dname = os.path.dirname(os.path.abspath(conf.filename))
try:
os.makedirs(dname)
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
conf.write()
except Exception as exc:
msg = "failed to write config '{}'".format(conf.filename)
raise ConfigError(msg, exc) | 0.001771 |
def save(self, request, connect=False):
"""
Saves a new account. Note that while the account is new,
the user may be an existing one (when connecting accounts)
"""
assert not self.is_existing
user = self.user
user.save()
self.account.user = user
self.account.save()
if app_settings.STORE_TOKENS and self.token:
self.token.account = self.account
self.token.save()
if connect:
# TODO: Add any new email addresses automatically?
pass
else:
setup_user_email(request, user, self.email_addresses) | 0.003096 |
def build_uri(orig_uriparts, kwargs):
"""
Build the URI from the original uriparts and kwargs. Modifies kwargs.
"""
uriparts = []
for uripart in orig_uriparts:
# If this part matches a keyword argument (starting with _), use
# the supplied value. Otherwise, just use the part.
if uripart.startswith("_"):
part = (str(kwargs.pop(uripart, uripart)))
else:
part = uripart
uriparts.append(part)
uri = '/'.join(uriparts)
# If an id kwarg is present and there is no id to fill in in
# the list of uriparts, assume the id goes at the end.
id = kwargs.pop('id', None)
if id:
uri += "/%s" % (id)
return uri | 0.001399 |
def render(self, name, value, attrs=None, renderer=None):
"""Include a hidden input to store the serialized upload value."""
location = getattr(value, '_seralized_location', '')
if location and not hasattr(value, 'url'):
value.url = '#'
if hasattr(self, 'get_template_substitution_values'):
# Django 1.8-1.10
self.template_with_initial = (
'%(initial_text)s: %(initial)s %(clear_template)s'
'<br />%(input_text)s: %(input)s')
attrs = attrs or {}
attrs.update({'data-upload-url': self.url})
hidden_name = self.get_hidden_name(name)
kwargs = {}
if django_version >= (1, 11):
kwargs['renderer'] = renderer
parent = super(StickyUploadWidget, self).render(name, value, attrs=attrs, **kwargs)
hidden = forms.HiddenInput().render(hidden_name, location, **kwargs)
return mark_safe(parent + '\n' + hidden) | 0.003018 |
def _get_reference_classnames(self, classname, namespace,
resultclass_name, role):
"""
Get list of classnames that are references for which this classname
is a target filtered by the result_class and role parameters if they
are none.
This is a common method used by all of the other reference and
associator methods to create a list of reference classnames
Returns:
list of classnames that satisfy the criteria.
"""
self._validate_namespace(namespace)
result_classes = self._classnamedict(resultclass_name, namespace)
rtn_classnames_set = set()
role = role.lower() if role else role
for cl in self._get_association_classes(namespace):
for prop in six.itervalues(cl.properties):
if prop.type == 'reference' and \
self._ref_prop_matches(prop, classname,
cl.classname,
result_classes,
role):
rtn_classnames_set.add(cl.classname)
return list(rtn_classnames_set) | 0.002433 |
def long_path_formatter(line, max_width=pd.get_option('max_colwidth')):
"""
If a path is longer than max_width, it substitute it with the first and last element,
joined by "...". For example 'this.is.a.long.path.which.we.want.to.shorten' becomes
'this...shorten'
:param line:
:param max_width:
:return:
"""
if len(line) > max_width:
tokens = line.split(".")
trial1 = "%s...%s" % (tokens[0], tokens[-1])
if len(trial1) > max_width:
return "...%s" %(tokens[-1][-1:-(max_width-3)])
else:
return trial1
else:
return line | 0.006359 |
def ap_state(value, failure_string=None):
"""
Converts a state's name, postal abbreviation or FIPS to A.P. style.
Example usage:
>> ap_state("California")
'Calif.'
"""
try:
return statestyle.get(value).ap
except:
if failure_string:
return failure_string
else:
return value | 0.013333 |
def logged_in():
"""
Method called by Strava (redirect) that includes parameters.
- state
- code
- error
"""
error = request.args.get('error')
state = request.args.get('state')
if error:
return render_template('login_error.html', error=error)
else:
code = request.args.get('code')
client = Client()
access_token = client.exchange_code_for_token(client_id=app.config['STRAVA_CLIENT_ID'],
client_secret=app.config['STRAVA_CLIENT_SECRET'],
code=code)
# Probably here you'd want to store this somewhere -- e.g. in a database.
strava_athlete = client.get_athlete()
return render_template('login_results.html', athlete=strava_athlete, access_token=access_token) | 0.005814 |
def _insert(self, dom_group, idx=None, prepend=False, name=None):
"""Inserts a DOMGroup inside this element.
If provided at the given index, if prepend at the start of the childs list, by default at the end.
If the child is a DOMElement, correctly links the child.
If the DOMGroup have a name, an attribute containing the child is created in this instance.
"""
if idx and idx < 0:
idx = 0
if prepend:
idx = 0
else:
idx = idx if idx is not None else len(self.childs)
if dom_group is not None:
if not isinstance(dom_group, Iterable) or isinstance(
dom_group, (DOMElement, str)
):
dom_group = [dom_group]
for i_group, elem in enumerate(dom_group):
if elem is not None:
# Element insertion in this DOMElement childs
self.childs.insert(idx + i_group, elem)
# Managing child attributes if needed
if issubclass(elem.__class__, DOMElement):
elem.parent = self
if name:
setattr(self, name, elem) | 0.003263 |
def primitive_datatype_nostring(self, t: URIRef, v: Optional[str] = None) -> Optional[URIRef]:
"""
Return the data type for primitive type t, if any, defaulting string to no type
:param t: type
:param v: value - for munging dates if we're doing FHIR official output
:return: corresponding data type
"""
vt = self.primitive_datatype(t)
if self.fhir_dates and vt == XSD.dateTime and v:
return XSD.gYear if len(v) == 4 else XSD.gYearMonth if len(v) == 7 \
else XSD.date if (len(v) == 10 or (len(v) > 10 and v[10] in '+-')) else XSD.dateTime
# For some reason the oid datatype is represented as a string as well
if self.fhir_oids and vt == XSD.anyURI:
vt = None
return None if vt == XSD.string else vt | 0.007273 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.