text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def guarded(meth):
"""A decorator to add a sanity check to ConnectionResource methods."""
@functools.wraps(meth)
def _check(self, *args, **kwargs):
self._check_conn_validity(meth.__name__)
return meth(self, *args, **kwargs)
return _check | 0.00369 |
def run_cutadapt(job, r1_id, r2_id, fwd_3pr_adapter, rev_3pr_adapter):
"""
Adapter trimming for RNA-seq data
:param JobFunctionWrappingJob job: passed automatically by Toil
:param str r1_id: FileStoreID of fastq read 1
:param str r2_id: FileStoreID of fastq read 2 (if paired data)
:param str fwd_3pr_adapter: Adapter sequence for the forward 3' adapter
:param str rev_3pr_adapter: Adapter sequence for the reverse 3' adapter (second fastq pair)
:return: R1 and R2 FileStoreIDs
:rtype: tuple
"""
work_dir = job.fileStore.getLocalTempDir()
if r2_id:
require(rev_3pr_adapter, "Paired end data requires a reverse 3' adapter sequence.")
# Retrieve files
parameters = ['-a', fwd_3pr_adapter,
'-m', '35']
if r1_id and r2_id:
job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))
job.fileStore.readGlobalFile(r2_id, os.path.join(work_dir, 'R2.fastq'))
parameters.extend(['-A', rev_3pr_adapter,
'-o', '/data/R1_cutadapt.fastq',
'-p', '/data/R2_cutadapt.fastq',
'/data/R1.fastq', '/data/R2.fastq'])
else:
job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))
parameters.extend(['-o', '/data/R1_cutadapt.fastq', '/data/R1.fastq'])
# Call: CutAdapt
dockerCall(job=job, tool='quay.io/ucsc_cgl/cutadapt:1.9--6bd44edd2b8f8f17e25c5a268fedaab65fa851d2',
workDir=work_dir, parameters=parameters)
# Write to fileStore
if r1_id and r2_id:
r1_cut_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R1_cutadapt.fastq'))
r2_cut_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R2_cutadapt.fastq'))
else:
r1_cut_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R1_cutadapt.fastq'))
r2_cut_id = None
return r1_cut_id, r2_cut_id | 0.00359 |
def is_uid(str):
"""
Input: string to check
Output: True if UID, otherwise False
"""
import re
if len(str)!=16:
return False
pattern = r'[^\.a-f0-9]'
if re.search(pattern, str.lower()):
return False
return True | 0.011236 |
async def send_initial_metadata(self, *, metadata=None):
"""Coroutine to send headers with initial metadata to the client.
In gRPC you can send initial metadata as soon as possible, because
gRPC doesn't use `:status` pseudo header to indicate success or failure
of the current request. gRPC uses trailers for this purpose, and
trailers are sent during :py:meth:`send_trailing_metadata` call, which
should be called in the end.
.. note:: This coroutine will be called implicitly during first
:py:meth:`send_message` coroutine call, if not called before
explicitly.
:param metadata: custom initial metadata, dict or list of pairs
"""
if self._send_initial_metadata_done:
raise ProtocolError('Initial metadata was already sent')
headers = [
(':status', '200'),
('content-type', self._content_type),
]
metadata = MultiDict(metadata or ())
metadata, = await self._dispatch.send_initial_metadata(metadata)
headers.extend(encode_metadata(metadata))
await self._stream.send_headers(headers)
self._send_initial_metadata_done = True | 0.001635 |
def postcode_in_state(self, state_abbr=None):
"""
:example '4703'
"""
if state_abbr is None:
state_abbr = self.random_element(self.states_abbr)
if state_abbr in self.states_abbr:
postcode = "%d" % (self.generator.random.randint(
self.states_postcode[state_abbr][0],
self.states_postcode[state_abbr][1]))
if len(postcode) == 3:
postcode = "0%s" % postcode
return postcode
else:
raise Exception('State Abbreviation not found in list') | 0.003247 |
def plot_rebit_prior(prior, rebit_axes=REBIT_AXES,
n_samples=2000, true_state=None, true_size=250,
force_mean=None,
legend=True,
mean_color_index=2
):
"""
Plots rebit states drawn from a given prior.
:param qinfer.tomography.DensityOperatorDistribution prior: Distribution over
rebit states to plot.
:param list rebit_axes: List containing indices for the :math:`x`
and :math:`z` axes.
:param int n_samples: Number of samples to draw from the
prior.
:param np.ndarray true_state: State to be plotted as a "true" state for
comparison.
"""
pallette = plt.rcParams['axes.color_cycle']
plot_rebit_modelparams(prior.sample(n_samples),
c=pallette[0],
label='Prior',
rebit_axes=rebit_axes
)
if true_state is not None:
plot_rebit_modelparams(true_state,
c=pallette[1],
label='True', marker='*', s=true_size,
rebit_axes=rebit_axes
)
if hasattr(prior, '_mean') or force_mean is not None:
mean = force_mean if force_mean is not None else prior._mean
plot_rebit_modelparams(
prior._basis.state_to_modelparams(mean)[None, :],
edgecolors=pallette[mean_color_index], s=250, facecolors='none', linewidth=3,
label='Mean',
rebit_axes=rebit_axes
)
plot_decorate_rebits(prior.basis,
rebit_axes=rebit_axes
)
if legend:
plt.legend(loc='lower left', ncol=3, scatterpoints=1) | 0.008398 |
def get_inputs(
self,
start=0,
stop=None,
threshold=None,
security_level=None,
):
# type: (int, Optional[int], Optional[int], Optional[int]) -> dict
"""
Gets all possible inputs of a seed and returns them, along with
the total balance.
This is either done deterministically (by generating all
addresses until :py:meth:`find_transactions` returns an empty
result), or by providing a key range to search.
:param start:
Starting key index.
Defaults to 0.
:param stop:
Stop before this index.
Note that this parameter behaves like the ``stop`` attribute
in a :py:class:`slice` object; the stop index is *not*
included in the result.
If ``None`` (default), then this method will not stop until
it finds an unused address.
:param threshold:
If set, determines the minimum threshold for a successful
result:
- As soon as this threshold is reached, iteration will stop.
- If the command runs out of addresses before the threshold
is reached, an exception is raised.
.. note::
This method does not attempt to "optimize" the result
(e.g., smallest number of inputs, get as close to
``threshold`` as possible, etc.); it simply accumulates
inputs in order until the threshold is met.
If ``threshold`` is 0, the first address in the key range
with a non-zero balance will be returned (if it exists).
If ``threshold`` is ``None`` (default), this method will
return **all** inputs in the specified key range.
:param security_level:
Number of iterations to use when generating new addresses
(see :py:meth:`get_new_addresses`).
This value must be between 1 and 3, inclusive.
If not set, defaults to
:py:attr:`AddressGenerator.DEFAULT_SECURITY_LEVEL`.
:return:
Dict with the following structure::
{
'inputs': List[Address],
Addresses with nonzero balances that can be used
as inputs.
'totalBalance': int,
Aggregate balance from all matching addresses.
}
Note that each Address in the result has its ``balance``
attribute set.
Example:
.. code-block:: python
response = iota.get_inputs(...)
input0 = response['inputs'][0] # type: Address
input0.balance # 42
:raise:
- :py:class:`iota.adapter.BadApiResponse` if ``threshold``
is not met. Not applicable if ``threshold`` is ``None``.
References:
- https://github.com/iotaledger/wiki/blob/master/api-proposal.md#getinputs
"""
return extended.GetInputsCommand(self.adapter)(
seed=self.seed,
start=start,
stop=stop,
threshold=threshold,
securityLevel=security_level
) | 0.001512 |
def ndarray_to_instances(array, relation, att_template="Att-#", att_list=None):
"""
Converts the numpy matrix into an Instances object and returns it.
:param array: the numpy ndarray to convert
:type array: numpy.darray
:param relation: the name of the dataset
:type relation: str
:param att_template: the prefix to use for the attribute names, "#" is the 1-based index,
"!" is the 0-based index, "@" the relation name
:type att_template: str
:param att_list: the list of attribute names to use
:type att_list: list
:return: the generated instances object
:rtype: Instances
"""
if len(numpy.shape(array)) != 2:
raise Exception("Number of array dimensions must be 2!")
rows, cols = numpy.shape(array)
# header
atts = []
if att_list is not None:
if len(att_list) != cols:
raise Exception(
"Number columns and provided attribute names differ: " + str(cols) + " != " + len(att_list))
for name in att_list:
att = Attribute.create_numeric(name)
atts.append(att)
else:
for i in range(cols):
name = att_template.replace("#", str(i+1)).replace("!", str(i)).replace("@", relation)
att = Attribute.create_numeric(name)
atts.append(att)
result = Instances.create_instances(relation, atts, rows)
# data
for i in range(rows):
inst = Instance.create_instance(array[i])
result.add_instance(inst)
return result | 0.002581 |
def _load_metadata(self):
"""Load metadata from the archive file"""
logger.debug("Loading metadata infomation of archive %s", self.archive_path)
cursor = self._db.cursor()
select_stmt = "SELECT origin, backend_name, backend_version, " \
"category, backend_params, created_on " \
"FROM " + self.METADATA_TABLE + " " \
"LIMIT 1"
cursor.execute(select_stmt)
row = cursor.fetchone()
cursor.close()
if row:
self.origin = row[0]
self.backend_name = row[1]
self.backend_version = row[2]
self.category = row[3]
self.backend_params = pickle.loads(row[4])
self.created_on = str_to_datetime(row[5])
else:
logger.debug("Metadata of archive %s was empty", self.archive_path)
logger.debug("Metadata of archive %s loaded", self.archive_path) | 0.003125 |
def rehighlight(self):
"""
Rehighlight the entire document, may be slow.
"""
start = time.time()
QtWidgets.QApplication.setOverrideCursor(
QtGui.QCursor(QtCore.Qt.WaitCursor))
try:
super(SyntaxHighlighter, self).rehighlight()
except RuntimeError:
# cloned widget, no need to rehighlight the same document twice ;)
pass
QtWidgets.QApplication.restoreOverrideCursor()
end = time.time()
_logger().debug('rehighlight duration: %fs' % (end - start)) | 0.003497 |
def get_project_logs(self, request):
""" Get logs from log service.
Unsuccessful opertaion will cause an LogException.
:type request: GetProjectLogsRequest
:param request: the GetProjectLogs request parameters class.
:return: GetLogsResponse
:raise: LogException
"""
headers = {}
params = {}
if request.get_query() is not None:
params['query'] = request.get_query()
project = request.get_project()
resource = "/logs"
(resp, header) = self._send("GET", project, None, resource, params, headers)
return GetLogsResponse(resp, header) | 0.008584 |
def fetchGroupInfo(self, *group_ids):
"""
Get groups' info from IDs, unordered
:param group_ids: One or more group ID(s) to query
:return: :class:`models.Group` objects, labeled by their ID
:rtype: dict
:raises: FBchatException if request failed
"""
threads = self.fetchThreadInfo(*group_ids)
groups = {}
for id_, thread in threads.items():
if thread.type == ThreadType.GROUP:
groups[id_] = thread
else:
raise FBchatUserError("Thread {} was not a group".format(thread))
return groups | 0.004769 |
def outliers_grubbs(x, hypo = False, alpha = 0.05):
"""
Grubbs' Test for Outliers [1]_. This is the two-sided version of the test.
The null hypothesis implies that there are no outliers in the data set.
Parameters
----------
x : array_like or ndarray, 1d
An array, any object exposing the array interface, containing
data to test for an outlier in.
hypo : bool, optional
Specifies whether to return a bool value of a hypothesis test result.
Returns True when we can reject the null hypothesis. Otherwise, False.
Available options are:
1) True - return a hypothesis test result
2) False - return a filtered array without an outlier (default)
alpha : float, optional
Significance level for a hypothesis test. Default is 0.05.
Returns
-------
Numpy array if hypo is False or a bool value of a hypothesis test result.
Notes
-----
.. [1] http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm
Examples
--------
>>> x = np.array([199.31,199.53,200.19,200.82,201.92,201.95,202.18,245.57])
>>> ph.outliers_grubbs(x)
array([ 199.31, 199.53, 200.19, 200.82, 201.92, 201.95, 202.18])
"""
val = np.max(np.abs(x - np.mean(x)))
ind = np.argmax(np.abs(x - np.mean(x)))
G = val / np.std(x, ddof=1)
N = len(x)
result = G > (N - 1)/np.sqrt(N) * np.sqrt((t.ppf(1-alpha/(2*N), N-2) ** 2) / (N - 2 + t.ppf(1-alpha/(2*N), N-2) ** 2 ))
if hypo:
return result
else:
if result:
return np.delete(x, ind)
else:
return x | 0.004271 |
def create(self, public_key, friendly_name=values.unset,
account_sid=values.unset):
"""
Create a new PublicKeyInstance
:param unicode public_key: A URL encoded representation of the public key
:param unicode friendly_name: A string to describe the resource
:param unicode account_sid: The Subaccount this Credential should be associated with.
:returns: Newly created PublicKeyInstance
:rtype: twilio.rest.accounts.v1.credential.public_key.PublicKeyInstance
"""
data = values.of({
'PublicKey': public_key,
'FriendlyName': friendly_name,
'AccountSid': account_sid,
})
payload = self._version.create(
'POST',
self._uri,
data=data,
)
return PublicKeyInstance(self._version, payload, ) | 0.005714 |
def find_srv_by_name_and_hostname(self, host_name, sdescr):
"""Get a specific service based on a host_name and service_description
:param host_name: host name linked to needed service
:type host_name: str
:param sdescr: service name we need
:type sdescr: str
:return: the service found or None
:rtype: alignak.objects.service.Service
"""
key = (host_name, sdescr)
return self.name_to_item.get(key, None) | 0.004124 |
def get_store_env_tmp():
'''Returns an unused random filepath.'''
tempdir = tempfile.gettempdir()
temp_name = 'envstore{0:0>3d}'
temp_path = unipath(tempdir, temp_name.format(random.getrandbits(9)))
if not os.path.exists(temp_path):
return temp_path
else:
return get_store_env_tmp() | 0.003096 |
def log_user_in(app_id, token, ticket, response, cookie_name='user',
url_detail='https://pswdless.appspot.com/rest/detail'):
'''
Log the user in setting the user data dictionary in cookie
Returns a command that execute the logic
'''
return LogUserIn(app_id, token, ticket, response, cookie_name, url_detail) | 0.002915 |
def get_aws_secrets_from_file(credentials_file): # type: (str) -> Set[str]
"""Extract AWS secrets from configuration files.
Read an ini-style configuration file and return a set with all found AWS
secret access keys.
"""
aws_credentials_file_path = os.path.expanduser(credentials_file)
if not os.path.exists(aws_credentials_file_path):
return set()
parser = configparser.ConfigParser()
try:
parser.read(aws_credentials_file_path)
except configparser.MissingSectionHeaderError:
return set()
keys = set()
for section in parser.sections():
for var in (
'aws_secret_access_key', 'aws_security_token',
'aws_session_token',
):
try:
key = parser.get(section, var).strip()
if key:
keys.add(key)
except configparser.NoOptionError:
pass
return keys | 0.001057 |
def _load_config_files(self):
# type: () -> None
"""Loads configuration from configuration files
"""
config_files = dict(self._iter_config_files())
if config_files[kinds.ENV][0:1] == [os.devnull]:
logger.debug(
"Skipping loading configuration files due to "
"environment's PIP_CONFIG_FILE being os.devnull"
)
return
for variant, files in config_files.items():
for fname in files:
# If there's specific variant set in `load_only`, load only
# that variant, not the others.
if self.load_only is not None and variant != self.load_only:
logger.debug(
"Skipping file '%s' (variant: %s)", fname, variant
)
continue
parser = self._load_file(variant, fname)
# Keeping track of the parsers used
self._parsers[variant].append((fname, parser)) | 0.002876 |
def export2hub(weight_file, hub_dir, options):
"""Exports a TF-Hub module
"""
spec = make_module_spec(options, str(weight_file))
try:
with tf.Graph().as_default():
module = hub.Module(spec)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if hub_dir.exists():
shutil.rmtree(hub_dir)
module.export(str(hub_dir), sess)
finally:
pass | 0.00207 |
def up_by_arrival(*filters, local_dir=".", remote_dir=DEFAULT_REMOTE_DIR):
"""Monitors a local directory and
generates sets of new files to be uploaded to FlashAir.
Sets to upload are generated in a tuple like (Direction.up, {...}).
The generator yields before each upload actually takes place."""
local_monitor = watch_local_files(*filters, local_dir=local_dir)
_, file_set = next(local_monitor)
_notify_sync_ready(len(file_set), local_dir, remote_dir)
for new_arrivals, file_set in local_monitor:
yield Direction.up, new_arrivals # where new_arrivals is possibly empty
if new_arrivals:
_notify_sync(Direction.up, new_arrivals)
up_by_files(new_arrivals, remote_dir)
_notify_sync_ready(len(file_set), local_dir, remote_dir) | 0.002475 |
def start(self, plugin_name=None, kwargs=None):
"""Start method: initial data structures and store some meta data."""
self.output = [] # Start basically resets the output data
super(WorkbenchRenderer, self).start(plugin_name=plugin_name)
return self | 0.010676 |
def handle_tabbed_response(self, tab_group, context):
"""Sends back an AJAX-appropriate response for the tab group if needed.
Otherwise renders the response as normal.
"""
if self.request.is_ajax():
if tab_group.selected:
return http.HttpResponse(tab_group.selected.render())
else:
return http.HttpResponse(tab_group.render())
return self.render_to_response(context) | 0.00432 |
def filter_status(self, sample=None, subset=None, stds=False):
"""
Prints the current status of filters for specified samples.
Parameters
----------
sample : str
Which sample to print.
subset : str
Specify a subset
stds : bool
Whether or not to include standards.
"""
s = ''
if sample is None and subset is None:
if not self._has_subsets:
s += 'Subset: All Samples\n\n'
s += self.data[self.subsets['All_Samples'][0]].filt.__repr__()
else:
for n in sorted(str(sn) for sn in self._subset_names):
if n in self.subsets:
pass
elif int(n) in self.subsets:
n = int(n)
pass
s += 'Subset: ' + str(n) + '\n'
s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n'
s += self.data[self.subsets[n][0]].filt.__repr__()
if len(self.subsets['not_in_set']) > 0:
s += '\nNot in Subset:\n'
s += 'Samples: ' + ', '.join(self.subsets['not_in_set']) + '\n\n'
s += self.data[self.subsets['not_in_set'][0]].filt.__repr__()
print(s)
return
elif sample is not None:
s += 'Sample: ' + sample + '\n'
s += self.data[sample].filt.__repr__()
print(s)
return
elif subset is not None:
if isinstance(subset, (str, int, float)):
subset = [subset]
for n in subset:
s += 'Subset: ' + str(n) + '\n'
s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n'
s += self.data[self.subsets[n][0]].filt.__repr__()
print(s)
return | 0.002083 |
def toggle_custom_value(self):
"""Enable or disable the custom value line edit."""
radio_button_checked_id = self.input_button_group.checkedId()
if (radio_button_checked_id
== len(self._parameter.options) - 1):
self.custom_value.setDisabled(False)
else:
self.custom_value.setDisabled(True) | 0.00554 |
def get_in_srvc_node_ip_addr(cls, tenant_id):
"""Retrieves the IN service node IP address. """
if tenant_id not in cls.serv_obj_dict:
LOG.error("Fabric not prepared for tenant %s", tenant_id)
return
tenant_obj = cls.serv_obj_dict.get(tenant_id)
in_subnet_dict = tenant_obj.get_in_ip_addr()
next_hop = str(netaddr.IPAddress(in_subnet_dict.get('subnet')) + 2)
return next_hop | 0.004494 |
def get_parentparser(parser, description=None, help=True):
"""
:param parser: :class:`argparse.ArgumentParser` instance or None
:param description: string used to build a new parser if parser is None
:param help: flag used to build a new parser if parser is None
:returns: if parser is None the new parser; otherwise the `.parentparser`
attribute (if set) or the parser itself (if not set)
"""
if parser is None:
return argparse.ArgumentParser(
description=description, add_help=help)
elif hasattr(parser, 'parentparser'):
return parser.parentparser
else:
return parser | 0.001527 |
def load_module(self, fullname):
"""
load_module is always called with the same argument as finder's
find_module, see "How Import Works"
"""
mod = super(JsonLoader, self).load_module(fullname)
try:
with codecs.open(self.cfg_file, 'r', 'utf-8') as f:
mod.__dict__.update(json.load(f))
except ValueError:
# if raise here, traceback will contain ValueError
self.e = "ValueError"
self.err_msg = sys.exc_info()[1]
if self.e == "ValueError":
err_msg = "\nJson file not valid: "
err_msg += self.cfg_file + '\n'
err_msg += str(self.err_msg)
raise InvalidJsonError(err_msg)
return mod | 0.002625 |
def wireHandlers(cfg):
"""
If the device is configured to run against a remote server, ping that device on a scheduled basis with our current
state.
:param cfg: the config object.
:return:
"""
logger = logging.getLogger('recorder')
httpPoster = cfg.handlers.get('remote')
csvLogger = cfg.handlers.get('local')
activeHandler = None
if httpPoster is None:
if csvLogger is None:
logger.warning("App is running with discard handler only, ALL DATA WILL BE DISCARDED!!!")
else:
logger.info("App is running in standalone mode, logging data to local filesystem")
activeHandler = csvLogger
else:
logger.info("App is running against remote server, logging data to " + httpPoster.target)
activeHandler = httpPoster
heartbeater.serverURL = httpPoster.target
heartbeater.ping()
if activeHandler is not None:
for device in cfg.recordingDevices.values():
if activeHandler is httpPoster:
httpPoster.deviceName = device.name
copied = copy.copy(activeHandler)
device.dataHandler = copied if not cfg.useAsyncHandlers else AsyncHandler('recorder', copied) | 0.00487 |
def product(self):
""" Return the USB device's product string descriptor.
This property will cause some USB traffic the first time it is accessed
and cache the resulting value for future use.
"""
if self._product is None:
self._product = util.get_string(self, self.iProduct)
return self._product | 0.005618 |
def parse_option(self, option, block_name, *values):
""" Parse duration option for timer.
"""
try:
if len(values) != 1:
raise TypeError
self.total_duration = int(values[0])
if self.total_duration <= 0:
raise ValueError
except ValueError:
pattern = u'"{0}" must be an integer > 0'
raise ValueError(pattern.format(option)) | 0.004435 |
def _selftoken_expired():
'''
Validate the current token exists and is still valid
'''
try:
verify = __opts__['vault'].get('verify', None)
url = '{0}/v1/auth/token/lookup-self'.format(__opts__['vault']['url'])
if 'token' not in __opts__['vault']['auth']:
return True
headers = {'X-Vault-Token': __opts__['vault']['auth']['token']}
response = requests.get(url, headers=headers, verify=verify)
if response.status_code != 200:
return True
return False
except Exception as e:
raise salt.exceptions.CommandExecutionError(
'Error while looking up self token : {0}'.format(six.text_type(e))
) | 0.001395 |
def createLabels2D(self):
""" 2D labeling at zmax """
logger.debug(" Creating 2D labels...")
self.zmax = np.argmax(self.values,axis=1)
self.vmax = self.values[np.arange(len(self.pixels),dtype=int),self.zmax]
kwargs=dict(pixels=self.pixels,values=self.vmax,nside=self.nside,
threshold=self.threshold,xsize=self.xsize)
labels,nlabels = CandidateSearch.labelHealpix(**kwargs)
self.nlabels = nlabels
self.labels = np.repeat(labels,len(self.distances)).reshape(len(labels),len(self.distances))
return self.labels, self.nlabels | 0.022764 |
def url(self, name):
"""
Since we assume all public storage with no authorization keys, we can
just simply dump out a URL rather than having to query S3 for new keys.
"""
name = urllib.quote_plus(self._clean_name(name), safe='/')
if self.bucket_cname:
return "http://%s/%s" % (self.bucket_cname, name)
elif self.host:
return "http://%s/%s/%s" % (self.host, self.bucket_name, name)
# No host ? Then it's the default region
return "http://s3.amazonaws.com/%s/%s" % (self.bucket_name, name) | 0.003425 |
def dumps(data, ac_parser=None, **options):
"""
Return string representation of 'data' in forced type format.
:param data: Config data object to dump
:param ac_parser: Forced parser type or ID or parser object
:param options: see :func:`dump`
:return: Backend-specific string representation for the given data
:raises: ValueError, UnknownProcessorTypeError
"""
psr = find(None, forced_type=ac_parser)
return psr.dumps(data, **options) | 0.002101 |
def _getter(self):
"""
Return a function object suitable for the "get" side of the attribute
property descriptor.
"""
def get_attr_value(obj):
attr_str_value = obj.get(self._clark_name)
if attr_str_value is None:
raise InvalidXmlError(
"required '%s' attribute not present on element %s" %
(self._attr_name, obj.tag)
)
return self._simple_type.from_xml(attr_str_value)
get_attr_value.__doc__ = self._docstring
return get_attr_value | 0.003361 |
def loggerLevel(self, logger):
"""
Returns the level for the inputed logger.
:param logger | <str>
:return <int>
"""
try:
return self._loggerLevels[logger]
except KeyError:
items = sorted(self._loggerLevels.items())
for key, lvl in items:
if logger.startswith(key):
return lvl
return logging.NOTSET | 0.008333 |
def open_in_browser(self, session, output_filename=None):
"""
Open the rendered HTML in a webbrowser.
If output_filename=None (the default), a tempfile is used.
The filename of the HTML file is returned.
"""
if output_filename is None:
output_file = tempfile.NamedTemporaryFile(suffix='.html', delete=False)
output_filename = output_file.name
with codecs.getwriter('utf-8')(output_file) as f:
f.write(self.render(session))
else:
with codecs.open(output_filename, 'w', 'utf-8') as f:
f.write(self.render(session))
from pyinstrument.vendor.six.moves import urllib
url = urllib.parse.urlunparse(('file', '', output_filename, '', '', ''))
webbrowser.open(url)
return output_filename | 0.004706 |
def delete_virtual_mfa_device(serial, region=None, key=None, keyid=None, profile=None):
'''
Deletes the specified virtual MFA device.
CLI Example:
.. code-block:: bash
salt myminion boto_iam.delete_virtual_mfa_device serial_num
'''
conn = __utils__['boto3.get_connection_func']('iam')()
try:
conn.delete_virtual_mfa_device(SerialNumber=serial)
log.info('Deleted virtual MFA device %s.', serial)
return True
except botocore.exceptions.ClientError as e:
log.debug(e)
if 'NoSuchEntity' in six.text_type(e):
log.info('Virtual MFA device %s not found.', serial)
return True
log.error('Failed to delete virtual MFA device %s.', serial)
return False | 0.002614 |
def get_album_songs(self, album_id):
"""Get a album's all songs.
warning: use old api.
:params album_id: album id.
:return: a list of Song object.
"""
url = 'http://music.163.com/api/album/{}/'.format(album_id)
result = self.get_request(url)
songs = result['album']['songs']
songs = [Song(song['id'], song['name']) for song in songs]
return songs | 0.004662 |
def get(self, request, username, course_key, subsection_id):
"""
Returns completion for a (user, subsection, course).
"""
def get_completion(course_completions, all_blocks, block_id):
"""
Recursively get the aggregate completion for a subsection,
given the subsection block and a list of all blocks.
Parameters:
course_completions: a dictionary of completion values by block IDs
all_blocks: a dictionary of the block structure for a subsection
block_id: an ID of a block for which to get completion
"""
block = all_blocks.get(block_id)
child_ids = block.get('children', [])
if not child_ids:
return course_completions.get(block.serializer.instance, 0)
completion = 0
total_children = 0
for child_id in child_ids:
completion += get_completion(course_completions, all_blocks, child_id)
total_children += 1
return int(completion == total_children)
user_id = User.objects.get(username=username).id
block_types_filter = [
'course',
'chapter',
'sequential',
'vertical',
'html',
'problem',
'video',
'discussion',
'drag-and-drop-v2'
]
blocks = get_blocks(
request,
UsageKey.from_string(subsection_id),
nav_depth=2,
requested_fields=[
'children'
],
block_types_filter=block_types_filter
)
course_completions = BlockCompletion.get_course_completions(user_id, CourseKey.from_string(course_key))
aggregated_completion = get_completion(course_completions, blocks['blocks'], blocks['root'])
return Response({"completion": aggregated_completion}, status=status.HTTP_200_OK) | 0.004006 |
def perform_smooth(x_values, y_values, span=None, smoother_cls=None):
"""
Convenience function to run the basic smoother.
Parameters
----------
x_values : iterable
List of x value observations
y_ values : iterable
list of y value observations
span : float, optional
Fraction of data to use as the window
smoother_cls : Class
The class of smoother to use to smooth the data
Returns
-------
smoother : object
The smoother object with results stored on it.
"""
if smoother_cls is None:
smoother_cls = DEFAULT_BASIC_SMOOTHER
smoother = smoother_cls()
smoother.specify_data_set(x_values, y_values)
smoother.set_span(span)
smoother.compute()
return smoother | 0.001294 |
def cancel_task(self, task_id):
"""Cancel or 'un-schedule' a task.
:param task_id: identifier of the task to cancel
:raises NotFoundError: raised when the requested task is not
found in the registry
"""
self.registry.remove(task_id)
self._scheduler.cancel_job_task(task_id)
logger.info("Task %s canceled", task_id) | 0.005195 |
def _inc_path(self):
""":returns: The path of the next sibling of a given node path."""
newpos = self._str2int(self.path[-self.steplen:]) + 1
key = self._int2str(newpos)
if len(key) > self.steplen:
raise PathOverflow(_("Path Overflow from: '%s'" % (self.path, )))
return '{0}{1}{2}'.format(
self.path[:-self.steplen],
self.alphabet[0] * (self.steplen - len(key)),
key
) | 0.004301 |
def get_prep_value(self, value):
"""Override the base class so it doesn't cast all values
to strings.
psqlextra supports expressions in hstore fields, so casting
all values to strings is a bad idea."""
value = Field.get_prep_value(self, value)
if isinstance(value, dict):
prep_value = {}
for key, val in value.items():
if isinstance(val, Expression):
prep_value[key] = val
elif val is not None:
prep_value[key] = str(val)
else:
prep_value[key] = val
value = prep_value
if isinstance(value, list):
value = [str(item) for item in value]
return value | 0.002587 |
def stop_cfms(self, stop_cfms):
'''Set the CFM values for this object's DOF limits.
Parameters
----------
stop_cfms : float or sequence of float
A CFM value to set on all degrees of freedom limits, or a list
containing one such value for each degree of freedom limit.
'''
_set_params(self.ode_obj, 'StopCFM', stop_cfms, self.ADOF + self.LDOF) | 0.004819 |
def listChecksumAlgorithms(self, vendorSpecific=None):
"""See Also: listChecksumAlgorithmsResponse()
Args:
vendorSpecific:
Returns:
"""
response = self.listChecksumAlgorithmsResponse(vendorSpecific)
return self._read_dataone_type_response(response, 'ChecksumAlgorithmList') | 0.008982 |
def _marker(self, lat, long, text, xmap, color=None, icon=None,
text_mark=False, style=None):
"""
Adds a marker to the default map
"""
kwargs = {}
if icon is not None:
kwargs["icon"] = icon
if color is not None:
kwargs["color"] = color
if style is None:
style = "font-size:18pt;font-weight:bold;" + \
"color:black;border-radius:0.5"
try:
xicon1 = folium.Icon(**kwargs)
if text_mark is True:
xicon = DivIcon(
icon_size=(150, 36),
icon_anchor=(0, 0),
html='<div style="' + style + '">' + text + '</div>',
)
folium.Marker([lat, long], popup=text,
icon=xicon).add_to(xmap)
folium.Marker([lat, long], popup=text,
icon=xicon1).add_to(xmap)
return xmap
except Exception as e:
self.err(e, self._marker, "Can not get marker") | 0.002778 |
def _openResources(self):
""" Uses numpy.loadtxt to open the underlying file.
"""
try:
rate, data = scipy.io.wavfile.read(self._fileName, mmap=True)
except Exception as ex:
logger.warning(ex)
logger.warning("Unable to read wav with memmory mapping. Trying without now.")
rate, data = scipy.io.wavfile.read(self._fileName, mmap=False)
self._array = data
self.attributes['rate'] = rate | 0.00625 |
def fromrdd(rdd, dims=None, nrecords=None, dtype=None, labels=None, ordered=False):
"""
Load images from a Spark RDD.
Input RDD must be a collection of key-value pairs
where keys are singleton tuples indexing images,
and values are 2d or 3d ndarrays.
Parameters
----------
rdd : SparkRDD
An RDD containing the images.
dims : tuple or array, optional, default = None
Image dimensions (if provided will avoid check).
nrecords : int, optional, default = None
Number of images (if provided will avoid check).
dtype : string, default = None
Data numerical type (if provided will avoid check)
labels : array, optional, default = None
Labels for records. If provided, should be one-dimensional.
ordered : boolean, optional, default = False
Whether or not the rdd is ordered by key
"""
from .images import Images
from bolt.spark.array import BoltArraySpark
if dims is None or dtype is None:
item = rdd.values().first()
dtype = item.dtype
dims = item.shape
if nrecords is None:
nrecords = rdd.count()
def process_keys(record):
k, v = record
if isinstance(k, int):
k = (k,)
return k, v
values = BoltArraySpark(rdd.map(process_keys), shape=(nrecords,) + tuple(dims), dtype=dtype, split=1, ordered=ordered)
return Images(values, labels=labels) | 0.00208 |
def get_nlcd_fn():
"""Calls external shell script `get_nlcd.sh` to fetch:
2011 Land Use Land Cover (nlcd) grids, 30 m
http://www.mrlc.gov/nlcd11_leg.php
"""
#This is original filename, which requires ~17 GB
#nlcd_fn = os.path.join(datadir, 'nlcd_2011_landcover_2011_edition_2014_10_10/nlcd_2011_landcover_2011_edition_2014_10_10.img')
#get_nlcd.sh now creates a compressed GTiff, which is 1.1 GB
nlcd_fn = os.path.join(datadir, 'nlcd_2011_landcover_2011_edition_2014_10_10/nlcd_2011_landcover_2011_edition_2014_10_10.tif')
if not os.path.exists(nlcd_fn):
cmd = ['get_nlcd.sh',]
#subprocess.call(cmd)
sys.exit("Missing nlcd data source. If already downloaded, specify correct datadir. If not, run `%s` to download" % cmd[0])
return nlcd_fn | 0.012376 |
def inject_documentation(**options):
"""
Generate configuration documentation in reStructuredText_ syntax.
:param options: Any keyword arguments are passed on to the
:class:`ConfigLoader` initializer.
This methods injects the generated documentation into the output generated
by cog_.
.. _cog: https://pypi.python.org/pypi/cogapp
"""
import cog
loader = ConfigLoader(**options)
cog.out("\n" + loader.documentation + "\n\n") | 0.002058 |
def start(self):
"""
Start the daemon
"""
# Check for a pidfile to see if the daemon already runs
try:
pf = file(self.pidfile, 'r')
pid = int(pf.read().strip())
pf.close()
os.kill(pid, 0)
except IOError:
pid = None
except OSError:
pid = None
if pid:
message = "pidfile %s already exist. Daemon already running?\n"
sys.stderr.write(message % self.pidfile)
sys.exit(1)
# Start the daemon
self._daemonize() | 0.003373 |
def validate(self):
""" Validates that all required fields are present """
if not self.start:
raise ValueError("Event has no start date")
if not self.end:
raise ValueError("Event has no end date")
if self.end < self.start:
raise ValueError("Start date is after end date")
if self.reminder_minutes_before_start and not isinstance(self.reminder_minutes_before_start, int):
raise TypeError("reminder_minutes_before_start must be of type int")
if self.is_all_day and not isinstance(self.is_all_day, bool):
raise TypeError("is_all_day must be of type bool") | 0.011475 |
def setMethod(self, method, override_analyses=False):
""" Sets the specified method to the Analyses from the
Worksheet. Only sets the method if the Analysis
allows to keep the integrity.
If an analysis has already been assigned to a method, it won't
be overriden.
Returns the number of analyses affected.
"""
analyses = [an for an in self.getAnalyses()
if (not an.getMethod() or
not an.getInstrument() or
override_analyses) and an.isMethodAllowed(method)]
total = 0
for an in analyses:
success = False
if an.isMethodAllowed(method):
success = an.setMethod(method)
if success is True:
total += 1
self.getField('Method').set(self, method)
return total | 0.002217 |
def _getitem(item, i):
"""Extract value or values from dicts.
Covers the case of a single key or multiple keys. If not found,
return placeholders instead.
"""
if not isinstance(i, (tuple, list)):
return item.get(i, _none)
type_ = list if isinstance(item, list) else tuple
return type_(item.get(j, _none) for j in i) | 0.002833 |
def remove_nondescendants_of(self, node):
"""Remove all of the non-descendants operation nodes of node."""
if isinstance(node, int):
warnings.warn('Calling remove_nondescendants_of() with a node id is deprecated,'
' use a DAGNode instead',
DeprecationWarning, 2)
node = self._id_to_node[node]
dec = nx.descendants(self._multi_graph, node)
comp = list(set(self._multi_graph.nodes()) - set(dec))
for n in comp:
if n.type == "op":
self.remove_op_node(n) | 0.005042 |
def nanvar(values, axis=None, skipna=True, ddof=1, mask=None):
"""
Compute the variance along given axis while ignoring NaNs
Parameters
----------
values : ndarray
axis: int, optional
skipna : bool, default True
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
mask : ndarray[bool], optional
nan-mask if known
Returns
-------
result : float
Unless input is a float array, in which case use the same
precision as the input array.
Examples
--------
>>> import pandas.core.nanops as nanops
>>> s = pd.Series([1, np.nan, 2, 3])
>>> nanops.nanvar(s)
1.0
"""
values = com.values_from_object(values)
dtype = values.dtype
if mask is None:
mask = isna(values)
if is_any_int_dtype(values):
values = values.astype('f8')
values[mask] = np.nan
if is_float_dtype(values):
count, d = _get_counts_nanvar(mask, axis, ddof, values.dtype)
else:
count, d = _get_counts_nanvar(mask, axis, ddof)
if skipna:
values = values.copy()
np.putmask(values, mask, 0)
# xref GH10242
# Compute variance via two-pass algorithm, which is stable against
# cancellation errors and relatively accurate for small numbers of
# observations.
#
# See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
avg = _ensure_numeric(values.sum(axis=axis, dtype=np.float64)) / count
if axis is not None:
avg = np.expand_dims(avg, axis)
sqr = _ensure_numeric((avg - values) ** 2)
np.putmask(sqr, mask, 0)
result = sqr.sum(axis=axis, dtype=np.float64) / d
# Return variance as np.float64 (the datatype used in the accumulator),
# unless we were dealing with a float array, in which case use the same
# precision as the original values array.
if is_float_dtype(dtype):
result = result.astype(dtype)
return _wrap_results(result, values.dtype) | 0.000482 |
def get_query_kwargs(es_defs):
"""
Reads the es_defs and returns a dict of special kwargs to use when
query for data of an instance of a class
reference: rdfframework.sparl.queries.sparqlAllItemDataTemplate.rq
"""
rtn_dict = {}
if es_defs:
if es_defs.get("kds_esSpecialUnion"):
rtn_dict['special_union'] = \
es_defs["kds_esSpecialUnion"][0]
if es_defs.get("kds_esQueryFilter"):
rtn_dict['filters'] = \
es_defs["kds_esQueryFilter"][0]
return rtn_dict | 0.001779 |
def load_cifar10_dataset(cifar_dir, mode='supervised'):
"""Load the cifar10 dataset.
:param cifar_dir: path to the dataset directory
(cPicle format from: https://www.cs.toronto.edu/~kriz/cifar.html)
:param mode: 'supervised' or 'unsupervised' mode
:return: train, test data:
for (X, y) if 'supervised',
for (X) if 'unsupervised'
"""
# Training set
trX = None
trY = np.array([])
# Test set
teX = np.array([])
teY = np.array([])
for fn in os.listdir(cifar_dir):
if not fn.startswith('batches') and not fn.startswith('readme'):
fo = open(os.path.join(cifar_dir, fn), 'rb')
data_batch = pickle.load(fo)
fo.close()
if fn.startswith('data'):
if trX is None:
trX = data_batch['data']
trY = data_batch['labels']
else:
trX = np.concatenate((trX, data_batch['data']), axis=0)
trY = np.concatenate((trY, data_batch['labels']), axis=0)
if fn.startswith('test'):
teX = data_batch['data']
teY = data_batch['labels']
trX = trX.astype(np.float32) / 255.
teX = teX.astype(np.float32) / 255.
if mode == 'supervised':
return trX, trY, teX, teY
elif mode == 'unsupervised':
return trX, teX | 0.000712 |
def provides(arg_name=None, annotated_with=None, in_scope=None):
"""Modifies the binding of a provider method.
If arg_name is specified, then the created binding is for that arg name
instead of the one gotten from the provider method name (e.g., 'foo' from
'provide_foo').
If annotated_with is specified, then the created binding includes that
annotation object.
If in_scope is specified, then the created binding is in the scope with
that scope ID.
At least one of the args must be specified. A provider method may not be
decorated with @provides() twice.
Args:
arg_name: the name of the arg to annotate on the decorated function
annotated_with: an annotation object
in_scope: a scope ID
Returns:
a function that will decorate functions passed to it
"""
if arg_name is None and annotated_with is None and in_scope is None:
raise errors.EmptyProvidesDecoratorError(locations.get_back_frame_loc())
return _get_pinject_wrapper(locations.get_back_frame_loc(),
provider_arg_name=arg_name,
provider_annotated_with=annotated_with,
provider_in_scope_id=in_scope) | 0.001601 |
def load_json(self):
"""Load JSON from the request body and store them in
self.request.arguments, like Tornado does by default for POSTed form
parameters.
If JSON cannot be decoded
:raises ValueError: JSON Could not be decoded
"""
try:
self.request.arguments = json.loads(self.request.body)
except ValueError:
msg = "Could not decode JSON: %s" % self.request.body
self.logger.debug(msg)
self.raise_error(400, msg) | 0.003795 |
def from_env(parser_modules: t.Optional[t.Union[t.List[str], t.Tuple[str]]] = DEFAULT_PARSER_MODULES,
env: t.Optional[t.Dict[str, str]] = None,
silent: bool = False,
suppress_logs: bool = False,
extra: t.Optional[dict] = None) -> 'ConfigLoader':
"""
Creates an instance of :class:`~django_docker_helpers.config.ConfigLoader`
with parsers initialized from environment variables.
By default it tries to initialize all bundled parsers.
Parsers may be customized with ``parser_modules`` argument or ``CONFIG__PARSERS`` environment variable.
Environment variable has a priority over the method argument.
:param parser_modules: a list of dot-separated module paths
:param env: a dict with environment variables, default is ``os.environ``
:param silent: passed to :class:`~django_docker_helpers.config.ConfigLoader`
:param suppress_logs: passed to :class:`~django_docker_helpers.config.ConfigLoader`
:param extra: pass extra arguments to *every* parser
:return: an instance of :class:`~django_docker_helpers.config.ConfigLoader`
Example:
::
env = {
'CONFIG__PARSERS': 'EnvironmentParser,RedisParser,YamlParser',
'ENVIRONMENTPARSER__SCOPE': 'nested',
'YAMLPARSER__CONFIG': './tests/data/config.yml',
'REDISPARSER__HOST': 'wtf.test',
'NESTED__VARIABLE': 'i_am_here',
}
loader = ConfigLoader.from_env(env=env)
assert [type(p) for p in loader.parsers] == [EnvironmentParser, RedisParser, YamlParser]
assert loader.get('variable') == 'i_am_here', 'Ensure env copied from ConfigLoader'
loader = ConfigLoader.from_env(parser_modules=['EnvironmentParser'], env={})
"""
env = env or os.environ
extra = extra or {}
environment_parser = EnvironmentParser(scope='config', env=env)
silent = environment_parser.get('silent', silent, coerce_type=bool)
suppress_logs = environment_parser.get('suppress_logs', suppress_logs, coerce_type=bool)
env_parsers = environment_parser.get('parsers', None, coercer=comma_str_to_list)
if not env_parsers and not parser_modules:
raise ValueError('Must specify `CONFIG__PARSERS` env var or `parser_modules`')
if env_parsers:
parser_classes = ConfigLoader.import_parsers(env_parsers)
else:
parser_classes = ConfigLoader.import_parsers(parser_modules)
parsers = []
for parser_class in parser_classes:
parser_options = ConfigLoader.load_parser_options_from_env(parser_class, env=env)
_init_args = inspect.getfullargspec(parser_class.__init__).args
# add extra args if parser's __init__ can take it it
if 'env' in _init_args:
parser_options['env'] = env
for k, v in extra.items():
if k in _init_args:
parser_options[k] = v
parser_instance = parser_class(**parser_options)
parsers.append(parser_instance)
return ConfigLoader(parsers=parsers, silent=silent, suppress_logs=suppress_logs) | 0.006333 |
def untrain_token(self, word, count):
"""
Untrains a particular token (decreases the weight/count of it)
:param word: the token we're going to train
:type word: str
:param count: the number of occurances in the sample
:type count: int
"""
if word not in self.tokens:
return
# If we're trying to untrain more tokens than we have, we end at 0
count = min(count, self.tokens[word])
self.tokens[word] -= count
self.tally -= count | 0.003731 |
def quaternion_about_axis(angle, axis):
"""Return quaternion for rotation about axis.
>>> q = quaternion_about_axis(0.123, [1, 0, 0])
>>> np.allclose(q, [0.99810947, 0.06146124, 0, 0])
True
"""
q = np.array([0.0, axis[0], axis[1], axis[2]])
qlen = vector_norm(q)
if qlen > _EPS:
q *= math.sin(angle / 2.0) / qlen
q[0] = math.cos(angle / 2.0)
return q | 0.0025 |
def decrypt_get_item(decrypt_method, crypto_config_method, read_method, **kwargs):
# type: (Callable, Callable, Callable, **Any) -> Dict
# TODO: narrow this down
"""Transparently decrypt an item after getting it from the table.
:param callable decrypt_method: Method to use to decrypt item
:param callable crypto_config_method: Method that accepts ``kwargs`` and provides a :class:`CryptoConfig`
:param callable read_method: Method that reads from the table
:param **kwargs: Keyword arguments to pass to ``read_method``
:return: DynamoDB response
:rtype: dict
"""
validate_get_arguments(kwargs)
crypto_config, ddb_kwargs = crypto_config_method(**kwargs)
response = read_method(**ddb_kwargs)
if "Item" in response:
response["Item"] = decrypt_method(
item=response["Item"],
crypto_config=crypto_config.with_item(_item_transformer(decrypt_method)(response["Item"])),
)
return response | 0.004073 |
def check_rdd_dtype(rdd, expected_dtype):
"""Checks if the blocks in the RDD matches the expected types.
Parameters:
-----------
rdd: splearn.BlockRDD
The RDD to check
expected_dtype: {type, list of types, tuple of types, dict of types}
Expected type(s). If the RDD is a DictRDD the parameter type is
restricted to dict.
Returns:
--------
accept: bool
Returns if the types are matched.
"""
if not isinstance(rdd, BlockRDD):
raise TypeError("Expected {0} for parameter rdd, got {1}."
.format(BlockRDD, type(rdd)))
if isinstance(rdd, DictRDD):
if not isinstance(expected_dtype, dict):
raise TypeError('Expected {0} for parameter '
'expected_dtype, got {1}.'
.format(dict, type(expected_dtype)))
accept = True
types = dict(list(zip(rdd.columns, rdd.dtype)))
for key, values in expected_dtype.items():
if not isinstance(values, (tuple, list)):
values = [values]
accept = accept and types[key] in values
return accept
if not isinstance(expected_dtype, (tuple, list)):
expected_dtype = [expected_dtype]
return rdd.dtype in expected_dtype | 0.000765 |
def parse(self, buf):
'''parse a FD FDM buffer'''
try:
t = struct.unpack(self.pack_string, buf)
except struct.error as msg:
raise fgFDMError('unable to parse - %s' % msg)
self.values = list(t) | 0.008065 |
def _hour_angle_to_hours(times, hourangle, longitude, equation_of_time):
"""converts hour angles in degrees to hours as a numpy array"""
naive_times = times.tz_localize(None) # naive but still localized
tzs = 1 / NS_PER_HR * (
naive_times.astype(np.int64) - times.astype(np.int64))
hours = (hourangle - longitude - equation_of_time / 4.) / 15. + 12. + tzs
return np.asarray(hours) | 0.002445 |
def is_merc_projection(srs):
""" Return true if the map projection matches that used by VEarth, Google, OSM, etc.
Is currently necessary for zoom-level shorthand for scale-denominator.
"""
if srs.lower() == '+init=epsg:900913':
return True
# observed
srs = dict([p.split('=') for p in srs.split() if '=' in p])
# expected
# note, common optional modifiers like +no_defs, +over, and +wkt
# are not pairs and should not prevent matching
gym = '+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null'
gym = dict([p.split('=') for p in gym.split() if '=' in p])
for p in gym:
if srs.get(p, None) != gym.get(p, None):
return False
return True | 0.007585 |
def remove(self, **kwargs):
'''
:raises: :exc:`~dxpy.exceptions.DXError` if no project is associated with the object
Permanently removes the associated remote object from the
associated project.
'''
if self._proj is None:
raise DXError("Remove called when a project ID was not associated with this object handler")
dxpy.api.project_remove_objects(self._proj, {"objects": [self._dxid]},
**kwargs)
# Reset internal state
self._dxid = None
self._proj = None
self._desc = {} | 0.006515 |
def notes_master_part(self):
"""
Return the |NotesMasterPart| object for this presentation. If the
presentation does not have a notes master, one is created from
a default template. The same single instance is returned on each
call.
"""
try:
return self.part_related_by(RT.NOTES_MASTER)
except KeyError:
notes_master_part = NotesMasterPart.create_default(self.package)
self.relate_to(notes_master_part, RT.NOTES_MASTER)
return notes_master_part | 0.003597 |
def start(self):
"""Begin listening for events from the Client and acting upon them.
Note: If configuration has not already been loaded, it will be loaded
immediately before starting to listen for events. Calling this method
without having specified and/or loaded a configuration will result in
completely default values being used.
After all modules for this controller are loaded, the STARTUP event
will be dispatched.
"""
if not self.config and self.config_path is not None:
self.load_config()
self.running = True
self.process_event("STARTUP", self.client, ()) | 0.003008 |
def delete_pool(hostname, username, password, name):
'''
Delete an existing pool.
hostname
The host/address of the bigip device
username
The iControl REST username
password
The iControl REST password
name
The name of the pool which will be deleted
'''
ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''}
if __opts__['test']:
return _test_output(ret, 'delete', params={
'hostname': hostname,
'username': username,
'password': password,
'name': name,
}
)
#is this pool currently configured?
existing = __salt__['bigip.list_pool'](hostname, username, password, name)
# if it exists by name
if existing['code'] == 200:
deleted = __salt__['bigip.delete_pool'](hostname, username, password, name)
# did we get rid of it?
if deleted['code'] == 200:
ret['result'] = True
ret['comment'] = 'Pool was successfully deleted.'
ret['changes']['old'] = existing['content']
ret['changes']['new'] = {}
# something bad happened
else:
ret = _load_result(deleted, ret)
# not found
elif existing['code'] == 404:
ret['result'] = True
ret['comment'] = 'This pool already does not exist. No changes made.'
ret['changes']['old'] = {}
ret['changes']['new'] = {}
else:
ret = _load_result(existing, ret)
return ret | 0.001971 |
def parse_data(self, selected_region_data, selected_values, full_load=False, extension="gdm"):
"""
Parses all of the region data
:param selected_region_data: the columns of region data that are needed
:param selected_values: the selected values to be put in the matrix cells
:param full_load: Specifies the method of parsing the data. If False then parser omits the parsing of zero(0)
values in order to speed up and save memory. However, while creating the matrix, those zero values are going to be put into the matrix.
(unless a row contains "all zero columns". This parsing is strongly recommended for sparse datasets.
If the full_load parameter is True then all the zero(0) data are going to be read.
:param extension: the extension of the region data files that are going to be parsed.
:return: the resulting region dataframe
"""
regions = list(selected_region_data)
if type(selected_values) is list:
regions.extend(selected_values)
else:
regions.append(selected_values)
files = self._get_files(extension, self.path)
df = pd.DataFrame(dtype=float)
cols = self.parse_schema(self.schema)
print("Parsing the data files...")
list_of_data = []
for f in tqdm(files):
data = self.parse_single_data(f, cols, regions, selected_values, full_load)
list_of_data.append(data)
print("pre-concat")
df = pd.concat(list_of_data)
return df | 0.006361 |
def trace_region(self, region_index):
"""Retrieves the properties of a trace region.
Args:
self (JLink): the ``JLink`` instance.
region_index (int): the trace region index.
Returns:
An instance of ``JLinkTraceRegion`` describing the specified region.
"""
cmd = enums.JLinkTraceCommand.GET_REGION_PROPS_EX
region = structs.JLinkTraceRegion()
region.RegionIndex = int(region_index)
res = self._dll.JLINKARM_TRACE_Control(cmd, ctypes.byref(region))
if (res == 1):
raise errors.JLinkException('Failed to get trace region.')
return region | 0.003044 |
def create(self, vips):
"""
Method to create vip's
:param vips: List containing vip's desired to be created on database
:return: None
"""
data = {'vips': vips}
return super(ApiVipRequest, self).post('api/v3/vip-request/', data) | 0.007018 |
def register_regex_entity(self, regex_str, domain=0):
"""
A regular expression making use of python named group expressions.
Example: (?P<Artist>.*)
Args:
regex_str(str): a string representing a regular expression as defined above
domain(str): a string representing the domain you wish to add the entity to
"""
if domain not in self.domains:
self.register_domain(domain=domain)
self.domains[domain].register_regex_entity(regex_str=regex_str) | 0.007477 |
def container_fabric(container_maps=None, docker_client=None, clients=None, client_implementation=None):
"""
:param container_maps: Container map or a tuple / list thereof.
:type container_maps: list[dockermap.map.config.main.ContainerMap] | dockermap.map.config.main.ContainerMap
:param docker_client: Default Docker client instance.
:type docker_client: dockerfabric.base.FabricClientConfiguration or docker.docker.Client
:param clients: Optional dictionary of Docker client configuration objects.
:type clients: dict[unicode | str, dockerfabric.base.FabricClientConfiguration]
:param client_implementation: Client implementation to use (API or CLI).
:type client_implementation: unicode | str
:return: Container mapping client.
:rtype: dockerfabric.base.FabricContainerClient
"""
ci = client_implementation or env.get('docker_fabric_implementation') or CLIENT_API
if ci == CLIENT_API:
return ContainerApiFabricClient(container_maps, docker_client, clients)
elif ci == CLIENT_CLI:
return ContainerCliFabricClient(container_maps, docker_client, clients)
raise ValueError("Invalid client implementation.", ci) | 0.005046 |
def set_sequestered(self, sequestered):
"""Sets the sequestered flag.
arg: sequestered (boolean): the new sequestered flag
raise: InvalidArgument - ``sequestered`` is invalid
raise: NoAccess - ``Metadata.isReadOnly()`` is ``true``
*compliance: mandatory -- This method must be implemented.*
"""
if sequestered is None:
raise errors.NullArgument()
if self.get_sequestered_metadata().is_read_only():
raise errors.NoAccess()
if not isinstance(sequestered, bool):
raise errors.InvalidArgument()
self._my_map['sequestered'] = sequestered | 0.003053 |
def ensure_str(data: Union[str, bytes]) -> str:
"""
Convert data in str if data are bytes
:param data: Data
:rtype str:
"""
if isinstance(data, bytes):
return str(data, 'utf-8')
return data | 0.004405 |
def height(cls, path):
"""
Get the locally-stored block height
"""
if os.path.exists( path ):
sb = os.stat( path )
h = (sb.st_size / BLOCK_HEADER_SIZE) - 1
return h
else:
return None | 0.022222 |
def findNext(self, name=None, attrs={}, text=None, **kwargs):
"""Returns the first item that matches the given criteria and
appears after this Tag in the document."""
return self._findOne(self.findAllNext, name, attrs, text, **kwargs) | 0.007752 |
def slicenet_internal(inputs, targets, target_space, hparams, run_decoder=True):
"""The slicenet model, main step used for training."""
with tf.variable_scope("slicenet"):
# Project to hidden size if necessary
if inputs.get_shape().as_list()[-1] != hparams.hidden_size:
inputs = common_layers.conv_block(
inputs,
hparams.hidden_size, [((1, 1), (3, 3))],
first_relu=False,
padding="SAME",
force2d=True)
# Flatten inputs and encode.
inputs = tf.expand_dims(common_layers.flatten4d3d(inputs), axis=2)
inputs_mask = 1.0 - embedding_to_padding(inputs)
inputs = common_layers.add_timing_signal(inputs) # Add position info.
target_space_emb = embed_target_space(target_space, hparams.hidden_size)
extra_layers = int(hparams.num_hidden_layers * 1.5)
inputs_encoded = multi_conv_res(
inputs, "SAME", "encoder", extra_layers, hparams, mask=inputs_mask)
if not run_decoder:
return inputs_encoded
# Do the middle part.
decoder_start, similarity_loss = slicenet_middle(
inputs_encoded, targets, target_space_emb, inputs_mask, hparams)
# Decode.
decoder_final = multi_conv_res(
decoder_start,
"LEFT",
"decoder",
hparams.num_hidden_layers,
hparams,
mask=inputs_mask,
source=inputs_encoded)
return decoder_final, tf.reduce_mean(similarity_loss) | 0.004202 |
def beacon(config):
'''
Poll imgadm and compare available images
'''
ret = []
# NOTE: lookup current images
current_images = __salt__['imgadm.list'](verbose=True)
# NOTE: apply configuration
if IMGADM_STATE['first_run']:
log.info('Applying configuration for imgadm beacon')
_config = {}
list(map(_config.update, config))
if 'startup_import_event' not in _config or not _config['startup_import_event']:
IMGADM_STATE['images'] = current_images
# NOTE: import events
for uuid in current_images:
event = {}
if uuid not in IMGADM_STATE['images']:
event['tag'] = "imported/{}".format(uuid)
for label in current_images[uuid]:
event[label] = current_images[uuid][label]
if event:
ret.append(event)
# NOTE: delete events
for uuid in IMGADM_STATE['images']:
event = {}
if uuid not in current_images:
event['tag'] = "deleted/{}".format(uuid)
for label in IMGADM_STATE['images'][uuid]:
event[label] = IMGADM_STATE['images'][uuid][label]
if event:
ret.append(event)
# NOTE: update stored state
IMGADM_STATE['images'] = current_images
# NOTE: disable first_run
if IMGADM_STATE['first_run']:
IMGADM_STATE['first_run'] = False
return ret | 0.001425 |
def find_next_word_ending(self, include_current_position=False, count=1, WORD=False):
"""
Return an index relative to the cursor position pointing to the end
of the next word. Return `None` if nothing was found.
"""
if count < 0:
return self.find_previous_word_ending(count=-count, WORD=WORD)
if include_current_position:
text = self.text_after_cursor
else:
text = self.text_after_cursor[1:]
regex = _FIND_BIG_WORD_RE if WORD else _FIND_WORD_RE
iterable = regex.finditer(text)
try:
for i, match in enumerate(iterable):
if i + 1 == count:
value = match.end(1)
if include_current_position:
return value
else:
return value + 1
except StopIteration:
pass | 0.003236 |
def base(self, du):
"""Return the base CLB for a given DU"""
parameter = 'base'
if parameter not in self._by:
self._by[parameter] = {}
for clb in self.upi.values():
if clb.floor == 0:
self._by[parameter][clb.du] = clb
return self._by[parameter][du] | 0.005882 |
def download_url_with_progress(url, stream, disable_progress):
"""
Downloads a given url in chunks and writes to the provided stream (can be any io stream).
Displays the progress bar for the download.
"""
resp = requests.get(url, timeout=float(os.environ.get('PIP_TIMEOUT', 2)), stream=True)
resp.raw.decode_content = True
progress = tqdm(unit="B", unit_scale=True, total=int(resp.headers.get('Content-Length', 0)), disable=disable_progress)
for chunk in resp.iter_content(chunk_size=1024):
if chunk:
progress.update(len(chunk))
stream.write(chunk)
progress.close() | 0.007321 |
def split_value(val):
"""
Splits a value *val* into its significand and decimal exponent (magnitude) and returns them in a
2-tuple. *val* might also be a numpy array. Example:
.. code-block:: python
split_value(1) # -> (1.0, 0)
split_value(0.123) # -> (1.23, -1)
split_value(-42.5) # -> (-4.25, 1)
a = np.array([1, 0.123, -42.5])
split_value(a) # -> ([1., 1.23, -4.25], [0, -1, 1])
The significand will be a float while magnitude will be an integer. *val* can be reconstructed
via ``significand * 10**magnitude``.
"""
val = ensure_nominal(val)
if not is_numpy(val):
# handle 0 separately
if val == 0:
return (0., 0)
mag = int(math.floor(math.log10(abs(val))))
sig = float(val) / (10.**mag)
else:
log = np.zeros(val.shape)
np.log10(np.abs(val), out=log, where=(val != 0))
mag = np.floor(log).astype(np.int)
sig = val.astype(np.float) / (10.**mag)
return (sig, mag) | 0.002899 |
def save(self, identifier=None, is_best=False, save_all=False):
"""
Stores checkpoint to a file.
:param identifier: identifier for periodic checkpoint
:param is_best: if True stores checkpoint to 'model_best.pth'
:param save_all: if True stores checkpoint after completed training
epoch
"""
def write_checkpoint(state, filename):
filename = os.path.join(self.save_path, filename)
logging.info(f'Saving model to {filename}')
torch.save(state, filename)
if self.distributed:
model_state = self.model.module.state_dict()
else:
model_state = self.model.state_dict()
state = {
'epoch': self.epoch,
'state_dict': model_state,
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'loss': getattr(self, 'loss', None),
}
state = dict(list(state.items()) + list(self.save_info.items()))
if identifier is not None:
filename = self.checkpoint_filename % identifier
write_checkpoint(state, filename)
if is_best:
filename = 'model_best.pth'
write_checkpoint(state, filename)
if save_all:
filename = f'checkpoint_epoch_{self.epoch:03d}.pth'
write_checkpoint(state, filename) | 0.001407 |
def unduplicate_field_names(field_names):
"""Append a number to duplicate field names to make them unique. """
res = []
for k in field_names:
if k in res:
i = 1
while k + '_' + str(i) in res:
i += 1
k += '_' + str(i)
res.append(k)
return res | 0.003077 |
def QA_indicator_SKDJ(DataFrame, N=9, M=3):
"""
1.指标>80 时,回档机率大;指标<20 时,反弹机率大;
2.K在20左右向上交叉D时,视为买进信号参考;
3.K在80左右向下交叉D时,视为卖出信号参考;
4.SKDJ波动于50左右的任何讯号,其作用不大。
"""
CLOSE = DataFrame['close']
LOWV = LLV(DataFrame['low'], N)
HIGHV = HHV(DataFrame['high'], N)
RSV = EMA((CLOSE - LOWV) / (HIGHV - LOWV) * 100, M)
K = EMA(RSV, M)
D = MA(K, M)
DICT = {'RSV': RSV, 'SKDJ_K': K, 'SKDJ_D': D}
return pd.DataFrame(DICT) | 0.00432 |
def connect_get_namespaced_pod_portforward(self, name, namespace, **kwargs): # noqa: E501
"""connect_get_namespaced_pod_portforward # noqa: E501
connect GET requests to portforward of Pod # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.connect_get_namespaced_pod_portforward(name, namespace, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str name: name of the PodPortForwardOptions (required)
:param str namespace: object name and auth scope, such as for teams and projects (required)
:param int ports: List of ports to forward Required when using WebSockets
:return: str
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.connect_get_namespaced_pod_portforward_with_http_info(name, namespace, **kwargs) # noqa: E501
else:
(data) = self.connect_get_namespaced_pod_portforward_with_http_info(name, namespace, **kwargs) # noqa: E501
return data | 0.001576 |
def _parse_conf(conf_file=_DEFAULT_CONF):
'''
Parse a logrotate configuration file.
Includes will also be parsed, and their configuration will be stored in the
return dict, as if they were part of the main config file. A dict of which
configs came from which includes will be stored in the 'include files' dict
inside the return dict, for later reference by the user or module.
'''
ret = {}
mode = 'single'
multi_names = []
multi = {}
prev_comps = None
with salt.utils.files.fopen(conf_file, 'r') as ifile:
for line in ifile:
line = salt.utils.stringutils.to_unicode(line).strip()
if not line:
continue
if line.startswith('#'):
continue
comps = line.split()
if '{' in line and '}' not in line:
mode = 'multi'
if len(comps) == 1 and prev_comps:
multi_names = prev_comps
else:
multi_names = comps
multi_names.pop()
continue
if '}' in line:
mode = 'single'
for multi_name in multi_names:
ret[multi_name] = multi
multi_names = []
multi = {}
continue
if mode == 'single':
key = ret
else:
key = multi
if comps[0] == 'include':
if 'include files' not in ret:
ret['include files'] = {}
for include in os.listdir(comps[1]):
if include not in ret['include files']:
ret['include files'][include] = []
include_path = os.path.join(comps[1], include)
include_conf = _parse_conf(include_path)
for file_key in include_conf:
ret[file_key] = include_conf[file_key]
ret['include files'][include].append(file_key)
prev_comps = comps
if len(comps) > 2:
key[comps[0]] = ' '.join(comps[1:])
elif len(comps) > 1:
key[comps[0]] = _convert_if_int(comps[1])
else:
key[comps[0]] = True
return ret | 0.000428 |
def camelize(word):
"""Convert a word from lower_with_underscores to CamelCase.
Args:
word: The string to convert.
Returns:
The modified string.
"""
return ''.join(w[0].upper() + w[1:]
for w in re.sub('[^A-Z^a-z^0-9^:]+', ' ', word).split(' ')) | 0.003333 |
def browse(self, endpoint="hot", category_path="", seed="", q="", timerange="24hr", tag="", offset=0, limit=10):
"""Fetch deviations from public endpoints
:param endpoint: The endpoint from which the deviations will be fetched (hot/morelikethis/newest/undiscovered/popular/tags)
:param category_path: category path to fetch from
:param q: Search query term
:param timerange: The timerange
:param tag: The tag to browse
:param offset: the pagination offset
:param limit: the pagination limit
"""
if endpoint == "hot":
response = self._req('/browse/hot', {
"category_path":category_path,
"offset":offset,
"limit":limit
})
elif endpoint == "morelikethis":
if seed:
response = self._req('/browse/morelikethis', {
"seed":seed,
"category_path":category_path,
"offset":offset,
"limit":limit
})
else:
raise DeviantartError("No seed defined.")
elif endpoint == "newest":
response = self._req('/browse/newest', {
"category_path":category_path,
"q":q,
"offset":offset,
"limit":limit
})
elif endpoint == "undiscovered":
response = self._req('/browse/undiscovered', {
"category_path":category_path,
"offset":offset,
"limit":limit
})
elif endpoint == "popular":
response = self._req('/browse/popular', {
"category_path":category_path,
"q":q,
"timerange":timerange,
"offset":offset,
"limit":limit
})
elif endpoint == "tags":
if tag:
response = self._req('/browse/tags', {
"tag":tag,
"offset":offset,
"limit":limit
})
else:
raise DeviantartError("No tag defined.")
else:
raise DeviantartError("Unknown endpoint.")
deviations = []
for item in response['results']:
d = Deviation()
d.from_dict(item)
deviations.append(d)
return {
"results" : deviations,
"has_more" : response['has_more'],
"next_offset" : response['next_offset']
} | 0.011236 |
def dist(self, src, tar):
"""Return the NCD between two strings using bzip2 compression.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
Compression distance
Examples
--------
>>> cmp = NCDbz2()
>>> cmp.dist('cat', 'hat')
0.06666666666666667
>>> cmp.dist('Niall', 'Neil')
0.03125
>>> cmp.dist('aluminum', 'Catalan')
0.17647058823529413
>>> cmp.dist('ATCG', 'TAGC')
0.03125
"""
if src == tar:
return 0.0
src = src.encode('utf-8')
tar = tar.encode('utf-8')
src_comp = bz2.compress(src, self._level)[10:]
tar_comp = bz2.compress(tar, self._level)[10:]
concat_comp = bz2.compress(src + tar, self._level)[10:]
concat_comp2 = bz2.compress(tar + src, self._level)[10:]
return (
min(len(concat_comp), len(concat_comp2))
- min(len(src_comp), len(tar_comp))
) / max(len(src_comp), len(tar_comp)) | 0.001709 |
def begin_update(self, x_data, h_0=None, drop=0.0):
"""Return the output of the wrapped PyTorch model for the given input,
along with a callback to handle the backward pass.
"""
x_var = torch.autograd.Variable(xp2torch(x_data), requires_grad=True)
# Make prediction
out, h_n = self._model(x_var, h_0)
# Shapes will be:
# out = seq_len, batch, hidden_size * num_directions
# h_n = num_layers * num_directions, batch, hidden_size
def backward_pytorch_rnn(d_data, sgd=None):
dy_data, _ = d_data
dout = xp2torch(dy_data)
torch.autograd.backward((out,), grad_tensors=(dout,))
if sgd is not None:
if self._optimizer is None:
self._optimizer = self._create_optimizer(sgd)
self._optimizer.step()
self._optimizer.zero_grad()
return torch2xp(x_var.grad)
return (torch2xp(out), h_n), backward_pytorch_rnn | 0.001976 |
def blobs(shape: List[int], porosity: float = 0.5, blobiness: int = 1):
"""
Generates an image containing amorphous blobs
Parameters
----------
shape : list
The size of the image to generate in [Nx, Ny, Nz] where N is the
number of voxels
porosity : float
If specified, this will threshold the image to the specified value
prior to returning. If ``None`` is specified, then the scalar noise
field is converted to a uniform distribution and returned without
thresholding.
blobiness : int or list of ints(default = 1)
Controls the morphology of the blobs. A higher number results in
a larger number of small blobs. If a list is supplied then the blobs
are anisotropic.
Returns
-------
image : ND-array
A boolean array with ``True`` values denoting the pore space
See Also
--------
norm_to_uniform
"""
blobiness = sp.array(blobiness)
shape = sp.array(shape)
if sp.size(shape) == 1:
shape = sp.full((3, ), int(shape))
sigma = sp.mean(shape)/(40*blobiness)
im = sp.random.random(shape)
im = spim.gaussian_filter(im, sigma=sigma)
im = norm_to_uniform(im, scale=[0, 1])
if porosity:
im = im < porosity
return im | 0.000769 |
def play_list_detail(id, limit=20):
"""获取歌单中的所有音乐。由于获取精品中,只能看到歌单名字和 ID 并没有歌单的音乐,因此增加该接口传入歌单 ID
获取歌单中的所有音乐.
:param id: 歌单的ID
:param limit: (optional) 数据上限多少行,默认 20
"""
if id is None:
raise ParamsError()
r = NCloudBot()
r.method = 'PLAY_LIST_DETAIL'
r.data = {'id': id, 'limit': limit, "csrf_token": ""}
r.send()
return r.response | 0.002618 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.