text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def extract_file_name(content_dispo):
"""Extract file name from the input request body"""
# print type(content_dispo)
# print repr(content_dispo)
# convertion of escape string (str type) from server
# to unicode object
content_dispo = content_dispo.decode('unicode-escape').strip('"')
file_name = ""
for key_val in content_dispo.split(';'):
param = key_val.strip().split('=')
if param[0] == "filename":
file_name = param[1].strip('"')
break
return file_name | 0.001876 |
def _discard_config(self):
"""Set candidate_cfg to current running-config. Erase the merge_cfg file."""
discard_candidate = "copy running-config {}".format(
self._gen_full_path(self.candidate_cfg)
)
discard_merge = "copy null: {}".format(self._gen_full_path(self.merge_cfg))
self.device.send_command_expect(discard_candidate)
self.device.send_command_expect(discard_merge) | 0.009259 |
def get_owner_and_repo(repourl):
"""
Takes a git repository URL from Bitbucket and tries to determine the owner and repository name
:param repourl: Bitbucket git repo in the form of
[email protected]:OWNER/REPONAME.git
https://bitbucket.com/OWNER/REPONAME.git
ssh://[email protected]/OWNER/REPONAME.git
:return: owner, repo: The owner of the repository and the repository name
"""
parsed = urlparse(repourl)
if parsed.scheme:
path = parsed.path[1:]
else:
# we assume git@host:owner/repo.git here
path = parsed.path.split(':', 1)[-1]
if path.endswith('.git'):
path = path[:-4]
while path.endswith('/'):
path = path[:-1]
parts = path.split('/')
assert len(parts) == 2, 'OWNER/REPONAME is expected'
return parts | 0.004269 |
def split(self, decode=True):
"""
Für das Bit-Alignment (neu Ausrichten von Hex, ASCII-View)
:rtype: list of array.array
"""
start = 0
result = []
message = self.decoded_bits if decode else self.plain_bits
bit_alignments = set()
if self.align_labels:
for l in self.message_type:
bit_alignments.add(l.start)
bit_alignments.add(l.end)
self.__bit_alignments = sorted(bit_alignments)
for pos in self.__bit_alignments:
result.append(message[start:pos])
start = pos
result.append(message[start:])
return result | 0.004412 |
def _getspnam(name, root=None):
'''
Alternative implementation for getspnam, that use only /etc/shadow
'''
root = '/' if not root else root
passwd = os.path.join(root, 'etc/shadow')
with salt.utils.files.fopen(passwd) as fp_:
for line in fp_:
line = salt.utils.stringutils.to_unicode(line)
comps = line.strip().split(':')
if comps[0] == name:
# Generate a getspnam compatible output
for i in range(2, 9):
comps[i] = int(comps[i]) if comps[i] else -1
return spwd.struct_spwd(comps)
raise KeyError | 0.001575 |
def get_assessment_part_item_design_session_for_bank(self, bank_id, proxy):
"""Gets the ``OsidSession`` associated with the assessment part item design service for the given bank.
arg: bank_id (osid.id.Id): the ``Id`` of the ``Bank``
return: (osid.assessment.authoring.AssessmentPartItemDesignSession)
- an ``AssessmentPartItemDesignSession``
raise: NotFound - no ``Bank`` found by the given ``Id``
raise: NullArgument - ``bank_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_assessment_part_item_design()`` or
``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_assessment_part_item_design()`` and
``supports_visible_federation()`` are ``true``.*
"""
if not self.supports_assessment_part_lookup(): # This is kludgy, but only until Tom fixes spec
raise errors.Unimplemented()
# Also include check to see if the catalog Id is found otherwise raise errors.NotFound
# pylint: disable=no-member
return sessions.AssessmentPartItemDesignSession(bank_id, proxy=proxy, runtime=self._runtime) | 0.004691 |
def as_task(self, logger=None, **fields):
"""
Start a new L{eliot.Action} of this type as a task (i.e. top-level
action) with the given start fields.
See L{ActionType.__call__} for example of usage.
@param logger: A L{eliot.ILogger} provider to which the action's
messages will be written, or C{None} to use the default one.
@param fields: Extra fields to add to the message.
@rtype: L{eliot.Action}
"""
return self._startTask(
logger, self.action_type, self._serializers, **fields) | 0.003436 |
def sign(self, hash160_lookup, tx_in_idx_set=None, hash_type=None, **kwargs):
"""
Sign a standard transaction.
hash160_lookup:
A dictionary (or another object with .get) where keys are hash160 and
values are tuples (secret exponent, public_pair, is_compressed) or None
(in which case the script will obviously not be signed).
"""
checker = self.SolutionChecker(self.tx)
if tx_in_idx_set is None:
tx_in_idx_set = range(len(self.tx.txs_in))
self.tx.check_unspents()
for tx_in_idx in sorted(tx_in_idx_set):
tx_context = checker.tx_context_for_idx(tx_in_idx)
try:
checker.check_solution(tx_context, flags=None)
continue
except ScriptError:
pass
try:
r = self.solve(hash160_lookup, tx_in_idx, hash_type=hash_type, **kwargs)
if isinstance(r, bytes):
self.tx.txs_in[tx_in_idx].script = r
else:
self.tx.txs_in[tx_in_idx].script = r[0]
self.tx.set_witness(tx_in_idx, r[1])
except (SolvingError, ValueError):
pass
return self | 0.003946 |
def from_text_file(file_path):
"""Load MonsoonData objects from a text file generated by
MonsoonData.save_to_text_file.
Args:
file_path: The full path of the file load from, including the file
name.
Returns:
A list of MonsoonData objects.
"""
results = []
with io.open(file_path, 'r', encoding='utf-8') as f:
data_strs = f.read().split(MonsoonData.delimiter)
for data_str in data_strs:
results.append(MonsoonData.from_string(data_str))
return results | 0.003356 |
def create(self, name, regexes, tag_ids, logs=None):
"""
Create a hook
:param name: The hook's name (should be the same as the tag)
:type name: str
:param regexes: The list of regular expressions that Logentries expects.
Ex: `['user_agent = /curl\/[\d.]*/']` Would match where the
user-agent is curl.
:type regexes: list of str
:param tag_id: The ids of the tags to associate the hook with.
(The 'id' key of the create tag response)
:type tag_id: list of str
:param logs: The logs to add the hook to. Comes from the 'key'
key in the log dict.
:type logs: list of str
:returns: The response of your post
:rtype: dict
:raises: This will raise a
:class:`ServerException<logentries_api.exceptions.ServerException>`
if there is an error from Logentries
"""
data = {
'name': name,
'triggers': regexes,
'sources': logs or [],
'groups': [],
'actions': tag_ids
}
return self._post(
request=ApiActions.CREATE.value,
uri=ApiUri.HOOKS.value,
params=data
) | 0.003965 |
def check_accesspoints(sess):
"""
check the status of all connected access points
"""
ap_names = walk_data(sess, name_ap_oid, helper)[0]
ap_operationals = walk_data(sess, operational_ap_oid, helper)[0]
ap_availabilitys = walk_data(sess, availability_ap_oid, helper)[0]
ap_alarms = walk_data(sess, alarm_ap_oid, helper)[0]
#ap_ip = walk_data(sess, ip_ap_oid, helper) # no result
helper.add_summary("Access Points Status")
for x in range(len(ap_names)):
ap_name = ap_names[x]
ap_operational = ap_operationals[x]
ap_availability = ap_availabilitys[x]
ap_alarm = ap_alarms[x]
# Add all states to the long output
helper.add_long_output("%s - Operational: %s - Availabilty: %s - Alarm: %s" % (ap_name, operational_states[int(ap_operational)], availability_states[int(ap_availability)], alarm_states[int(ap_alarm)]))
# Operational State
if ap_operational != "1" and ap_operational != "4":
helper.status(critical)
helper.add_summary("%s Operational State: %s" % (ap_name, operational_states[int(ap_operational)]))
# Avaiability State
if ap_availability != "3":
helper.status(critical)
helper.add_summary("%s Availability State: %s" % (ap_name, availability_states[int(ap_availability)]))
# Alarm State
if ap_alarm == "2":
helper.status(warning)
helper.add_summary("%s Controller Alarm State: %s" % (ap_name, alarm_states[int(ap_alarm)]))
if ap_alarm == "3" or ap_alarm == "4":
helper.status(critical)
helper.add_summary("%s Controller Alarm State: %s" % (ap_name, alarm_states[int(ap_alarm)])) | 0.009751 |
def _catch_errors(self, json_response):
""" Changed: removed check on number of elements:
- totalResultsCount not sytematically returned (e.g in hierarchy)
- done in base.py
"""
status = json_response.get('status')
if status:
message = status.get('message')
value = status.get('value')
custom_messages = {
10: 'Invalid credentials',
18: 'Do not use the demo account for your application',
}
self.error = custom_messages.get(value, message)
LOGGER.error("Error %s from JSON %s", self.error, json_response)
return self.error | 0.002894 |
def _read(self, directory, filename, session, path, name, extension, spatial, spatialReferenceID, replaceParamFile):
"""
Orographic Gage File Read from File Method
"""
# Set file extension property
self.fileExtension = extension
# Open file and parse into HmetRecords
with open(path, 'r') as orthoFile:
for line in orthoFile:
sline = line.strip().split()
# Cases
if sline[0].lower() == 'num_sites:':
self.numSites = sline[1]
elif sline[0].lower() == 'elev_base':
self.elevBase = sline[1]
elif sline[0].lower() == 'elev_2':
self.elev2 = sline[1]
elif sline[0].lower() == 'year':
"""DO NOTHING"""
else:
# Create datetime object
dateTime = datetime(year=int(sline[0]),
month=int(sline[1]),
day=int(sline[2]),
hour=int(sline[3]))
# Create GSSHAPY OrthoMeasurement object
measurement = OrographicMeasurement(dateTime=dateTime,
temp2=sline[4])
# Associate OrthoMeasurement with OrthographicGageFile
self.orographicMeasurements.append(measurement) | 0.002 |
def _get_namespace2go2term(go2terms):
"""Group GO IDs by namespace."""
namespace2go2term = cx.defaultdict(dict)
for goid, goterm in go2terms.items():
namespace2go2term[goterm.namespace][goid] = goterm
return namespace2go2term | 0.007435 |
def do_upgrade(self):
"""Implement your upgrades here."""
sql = text('delete from upgrade where upgrade = :upgrade')
for upgrade in self.legacy_upgrades:
db.engine.execute(sql, upgrade=upgrade) | 0.008734 |
def get_angle(v1, v2, units="degrees"):
"""
Calculates the angle between two vectors.
Args:
v1: Vector 1
v2: Vector 2
units: "degrees" or "radians". Defaults to "degrees".
Returns:
Angle between them in degrees.
"""
d = np.dot(v1, v2) / np.linalg.norm(v1) / np.linalg.norm(v2)
d = min(d, 1)
d = max(d, -1)
angle = math.acos(d)
if units == "degrees":
return math.degrees(angle)
elif units == "radians":
return angle
else:
raise ValueError("Invalid units {}".format(units)) | 0.001733 |
def finite_diff(f, axis, dx=1.0, method='forward', out=None, **kwargs):
"""Calculate the partial derivative of ``f`` along a given ``axis``.
In the interior of the domain of f, the partial derivative is computed
using first-order accurate forward or backward difference or
second-order accurate central differences.
With padding the same method and thus accuracy is used on endpoints as
in the interior i.e. forward and backward differences use first-order
accuracy on edges while central differences use second-order accuracy at
edges.
Without padding one-sided forward or backward differences are used at
the boundaries. The accuracy at the endpoints can then also be
triggered by the edge order.
The returned array has the same shape as the input array ``f``.
Per default forward difference with dx=1 and no padding is used.
Parameters
----------
f : `array-like`
An N-dimensional array.
axis : int
The axis along which the partial derivative is evaluated.
dx : float, optional
Scalar specifying the distance between sampling points along ``axis``.
method : {'central', 'forward', 'backward'}, optional
Finite difference method which is used in the interior of the domain
of ``f``.
out : `numpy.ndarray`, optional
An N-dimensional array to which the output is written. Has to have
the same shape as the input array ``f``.
pad_mode : string, optional
The padding mode to use outside the domain.
``'constant'``: Fill with ``pad_const``.
``'symmetric'``: Reflect at the boundaries, not doubling the
outmost values.
``'periodic'``: Fill in values from the other side, keeping
the order.
``'order0'``: Extend constantly with the outmost values
(ensures continuity).
``'order1'``: Extend with constant slope (ensures continuity of
the first derivative). This requires at least 2 values along
each axis where padding is applied.
``'order2'``: Extend with second order accuracy (ensures continuity
of the second derivative). This requires at least 3 values along
each axis where padding is applied.
pad_const : float, optional
For ``pad_mode == 'constant'``, ``f`` assumes ``pad_const`` for
indices outside the domain of ``f``
Returns
-------
out : `numpy.ndarray`
N-dimensional array of the same shape as ``f``. If ``out`` was
provided, the returned object is a reference to it.
Examples
--------
>>> f = np.array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> finite_diff(f, axis=0)
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., -9.])
Without arguments the above defaults to:
>>> finite_diff(f, axis=0, dx=1.0, method='forward', pad_mode='constant')
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., -9.])
Parameters can be changed one by one:
>>> finite_diff(f, axis=0, dx=0.5)
array([ 2., 2., 2., 2., 2., 2., 2., 2., 2., -18.])
>>> finite_diff(f, axis=0, pad_mode='order1')
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
Central differences and different edge orders:
>>> finite_diff(0.5 * f ** 2, axis=0, method='central', pad_mode='order1')
array([ 0.5, 1. , 2. , 3. , 4. , 5. , 6. , 7. , 8. , 8.5])
>>> finite_diff(0.5 * f ** 2, axis=0, method='central', pad_mode='order2')
array([-0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
In-place evaluation:
>>> out = f.copy()
>>> out is finite_diff(f, axis=0, out=out)
True
"""
f_arr = np.asarray(f)
ndim = f_arr.ndim
if f_arr.shape[axis] < 2:
raise ValueError('in axis {}: at least two elements required, got {}'
''.format(axis, f_arr.shape[axis]))
if axis < 0:
axis += ndim
if not (0 <= axis < ndim):
raise IndexError('`axis` {} outside the valid range 0 ... {}'
''.format(axis, ndim - 1))
dx, dx_in = float(dx), dx
if dx <= 0 or not np.isfinite(dx):
raise ValueError("`dx` must be positive, got {}".format(dx_in))
method, method_in = str(method).lower(), method
if method not in _SUPPORTED_DIFF_METHODS:
raise ValueError('`method` {} was not understood'.format(method_in))
pad_mode = kwargs.pop('pad_mode', 'constant')
if pad_mode not in _SUPPORTED_PAD_MODES:
raise ValueError('`pad_mode` {} not understood'
''.format(pad_mode))
pad_const = kwargs.pop('pad_const', 0)
pad_const = f.dtype.type(pad_const)
if out is None:
out = np.empty_like(f_arr)
else:
if out.shape != f.shape:
raise ValueError('expected output shape {}, got {}'
''.format(f.shape, out.shape))
if f_arr.shape[axis] < 2 and pad_mode == 'order1':
raise ValueError("size of array to small to use 'order1', needs at "
"least 2 elements along axis {}.".format(axis))
if f_arr.shape[axis] < 3 and pad_mode == 'order2':
raise ValueError("size of array to small to use 'order2', needs at "
"least 3 elements along axis {}.".format(axis))
if kwargs:
raise ValueError('unkown keyword argument(s): {}'.format(kwargs))
# create slice objects: initially all are [:, :, ..., :]
# Swap axes so that the axis of interest is first. This is a O(1)
# operation and is done to simplify the code below.
out, out_in = np.swapaxes(out, 0, axis), out
f_arr = np.swapaxes(f_arr, 0, axis)
# Interior of the domain of f
if method == 'central':
# 1D equivalent: out[1:-1] = (f[2:] - f[:-2])/2.0
np.subtract(f_arr[2:], f_arr[:-2], out=out[1:-1])
out[1:-1] /= 2.0
elif method == 'forward':
# 1D equivalent: out[1:-1] = (f[2:] - f[1:-1])
np.subtract(f_arr[2:], f_arr[1:-1], out=out[1:-1])
elif method == 'backward':
# 1D equivalent: out[1:-1] = (f[1:-1] - f[:-2])
np.subtract(f_arr[1:-1], f_arr[:-2], out=out[1:-1])
# Boundaries
if pad_mode == 'constant':
# Assume constant value c for indices outside the domain of ``f``
# With padding the method used on endpoints is the same as in the
# interior of the domain of f
if method == 'central':
out[0] = (f_arr[1] - pad_const) / 2.0
out[-1] = (pad_const - f_arr[-2]) / 2.0
elif method == 'forward':
out[0] = f_arr[1] - f_arr[0]
out[-1] = pad_const - f_arr[-1]
elif method == 'backward':
out[0] = f_arr[0] - pad_const
out[-1] = f_arr[-1] - f_arr[-2]
elif pad_mode == 'symmetric':
# Values of f for indices outside the domain of f are replicates of
# the edge values
# With padding the method used on endpoints is the same as in the
# interior of the domain of f
if method == 'central':
out[0] = (f_arr[1] - f_arr[0]) / 2.0
out[-1] = (f_arr[-1] - f_arr[-2]) / 2.0
elif method == 'forward':
out[0] = f_arr[1] - f_arr[0]
out[-1] = 0
elif method == 'backward':
out[0] = 0
out[-1] = f_arr[-1] - f_arr[-2]
elif pad_mode == 'symmetric_adjoint':
# The adjoint case of symmetric
if method == 'central':
out[0] = (f_arr[1] + f_arr[0]) / 2.0
out[-1] = (-f_arr[-1] - f_arr[-2]) / 2.0
elif method == 'forward':
out[0] = f_arr[1]
out[-1] = -f_arr[-1]
elif method == 'backward':
out[0] = f_arr[0]
out[-1] = -f_arr[-2]
elif pad_mode == 'periodic':
# Values of f for indices outside the domain of f are replicates of
# the edge values on the other side
if method == 'central':
out[0] = (f_arr[1] - f_arr[-1]) / 2.0
out[-1] = (f_arr[0] - f_arr[-2]) / 2.0
elif method == 'forward':
out[0] = f_arr[1] - f_arr[0]
out[-1] = f_arr[0] - f_arr[-1]
elif method == 'backward':
out[0] = f_arr[0] - f_arr[-1]
out[-1] = f_arr[-1] - f_arr[-2]
elif pad_mode == 'order0':
# Values of f for indices outside the domain of f are replicates of
# the edge value.
if method == 'central':
out[0] = (f_arr[1] - f_arr[0]) / 2.0
out[-1] = (f_arr[-1] - f_arr[-2]) / 2.0
elif method == 'forward':
out[0] = f_arr[1] - f_arr[0]
out[-1] = 0
elif method == 'backward':
out[0] = 0
out[-1] = f_arr[-1] - f_arr[-2]
elif pad_mode == 'order0_adjoint':
# Values of f for indices outside the domain of f are replicates of
# the edge value.
if method == 'central':
out[0] = (f_arr[0] + f_arr[1]) / 2.0
out[-1] = -(f_arr[-1] + f_arr[-2]) / 2.0
elif method == 'forward':
out[0] = f_arr[1]
out[-1] = -f_arr[-1]
elif method == 'backward':
out[0] = f_arr[0]
out[-1] = -f_arr[-2]
elif pad_mode == 'order1':
# Values of f for indices outside the domain of f are linearly
# extrapolated from the inside.
# independent of ``method``
out[0] = f_arr[1] - f_arr[0]
out[-1] = f_arr[-1] - f_arr[-2]
elif pad_mode == 'order1_adjoint':
# Values of f for indices outside the domain of f are linearly
# extrapolated from the inside.
if method == 'central':
out[0] = f_arr[0] + f_arr[1] / 2.0
out[-1] = -f_arr[-1] - f_arr[-2] / 2.0
# Increment in case array is very short and we get aliasing
out[1] -= f_arr[0] / 2.0
out[-2] += f_arr[-1] / 2.0
elif method == 'forward':
out[0] = f_arr[0] + f_arr[1]
out[-1] = -f_arr[-1]
# Increment in case array is very short and we get aliasing
out[1] -= f_arr[0]
elif method == 'backward':
out[0] = f_arr[0]
out[-1] = -f_arr[-1] - f_arr[-2]
# Increment in case array is very short and we get aliasing
out[-2] += f_arr[-1]
elif pad_mode == 'order2':
# 2nd order edges
out[0] = -(3.0 * f_arr[0] - 4.0 * f_arr[1] + f_arr[2]) / 2.0
out[-1] = (3.0 * f_arr[-1] - 4.0 * f_arr[-2] + f_arr[-3]) / 2.0
elif pad_mode == 'order2_adjoint':
# Values of f for indices outside the domain of f are quadratically
# extrapolated from the inside.
if method == 'central':
out[0] = 1.5 * f_arr[0] + 0.5 * f_arr[1]
out[-1] = -1.5 * f_arr[-1] - 0.5 * f_arr[-2]
# Increment in case array is very short and we get aliasing
out[1] -= 1.5 * f_arr[0]
out[2] += 0.5 * f_arr[0]
out[-3] -= 0.5 * f_arr[-1]
out[-2] += 1.5 * f_arr[-1]
elif method == 'forward':
out[0] = 1.5 * f_arr[0] + 1.0 * f_arr[1]
out[-1] = -1.5 * f_arr[-1]
# Increment in case array is very short and we get aliasing
out[1] -= 2.0 * f_arr[0]
out[2] += 0.5 * f_arr[0]
out[-3] -= 0.5 * f_arr[-1]
out[-2] += 1.0 * f_arr[-1]
elif method == 'backward':
out[0] = 1.5 * f_arr[0]
out[-1] = -1.0 * f_arr[-2] - 1.5 * f_arr[-1]
# Increment in case array is very short and we get aliasing
out[1] -= 1.0 * f_arr[0]
out[2] += 0.5 * f_arr[0]
out[-3] -= 0.5 * f_arr[-1]
out[-2] += 2.0 * f_arr[-1]
else:
raise NotImplementedError('unknown pad_mode')
# divide by step size
out /= dx
return out_in | 0.000084 |
def remove(self, msg, callback):
"""Remove a callback from the callback list.
msg: Message template
callback: Callback method to remove.
If callback is None, all callbacks for the message template are
removed.
"""
if callback is None:
self._dict.pop(msg, None)
else:
cb = self._dict.get(msg, [])
try:
cb.remove(callback)
except ValueError:
pass
if cb:
_LOGGER.debug('%d callbacks for message: %s', len(cb), msg)
self.add(msg, cb, True)
else:
self._dict.pop(msg, None)
_LOGGER.debug('Removed all callbacks for message: %s', msg) | 0.002628 |
def fuzzy_date_parser(self, text):
"""Thin wrapper around ``parsedatetime`` and ``dateutil`` modules.
Since there's no upstream suppport for multiple locales, this wrapper
exists.
:param str text: Text to parse.
:returns: A parsed date/time object. Raises exception on failure.
:rtype: datetime
"""
try:
parsed = dateparser.parse(text, dayfirst=True)
return parsed
except (ValueError, TypeError):
locales = parsedatetime._locales[:]
# Loop through all the locales and try to parse successfully our
# string
for locale in locales:
const = parsedatetime.Constants(locale)
const.re_option += re.UNICODE
parser = parsedatetime.Calendar(const)
parsed, ok = parser.parse(text)
if ok:
return datetime(*parsed[:6]) | 0.002105 |
def add(self, child):
"""
Adds a typed child object to the component.
@param child: Child object to be added.
"""
if isinstance(child, Component):
self.add_child(child)
else:
raise ModelError('Unsupported child element') | 0.006803 |
def derive_identity_rmf(name, rmf):
"""Create an "identity" RMF that does not mix energies.
*name*
The name of the RMF object to be created; passed to Sherpa.
*rmf*
An existing RMF object on which to base this one.
Returns:
A new RMF1D object that has a response matrix that is as close to
diagonal as we can get in energy space, and that has a constant
sensitivity as a function of detector channel.
In many X-ray observations, the relevant background signal does not behave
like an astrophysical source that is filtered through the telescope's
response functions. However, I have been unable to get current Sherpa
(version 4.9) to behave how I want when working with backround models that
are *not* filtered through these response functions. This function
constructs an "identity" RMF response matrix that provides the best
possible approximation of a passthrough "instrumental response": it mixes
energies as little as possible and has a uniform sensitivity as a function
of detector channel.
"""
from sherpa.astro.data import DataRMF
from sherpa.astro.instrument import RMF1D
# The "x" axis of the desired matrix -- the columnar direction; axis 1 --
# is "channels". There are n_chan of them and each maps to a notional
# energy range specified by "e_min" and "e_max".
#
# The "y" axis of the desired matrix -- the row direction; axis 1 -- is
# honest-to-goodness energy. There are tot_n_energy energy bins, each
# occupying a range specified by "energ_lo" and "energ_hi".
#
# We want every channel that maps to a valid output energy to have a
# nonzero entry in the matrix. The relative sizes of n_energy and n_cell
# can vary, as can the bounds of which regions of each axis can be validly
# mapped to each other. So this problem is basically equivalent to that of
# drawing an arbitrary pixelated line on bitmap, without anti-aliasing.
#
# The output matrix is represented in a row-based sparse format.
#
# - There is a integer vector "n_grp" of size "n_energy". It gives the
# number of "groups" needed to fill in each row of the matrix. Let
# "tot_groups = sum(n_grp)". For a given row, "n_grp[row_index]" may
# be zero, indicating that the row is all zeros.
# - There are integer vectors "f_chan" and "n_chan", each of size
# "tot_groups", that define each group. "f_chan" gives the index of
# the first channel column populated by the group; "n_chan" gives the
# number of columns populated by the group. Note that there can
# be multiple groups for a single row, so successive group records
# may fill in different pieces of the same row.
# - Let "tot_cells = sum(n_chan)".
# - There is a vector "matrix" of size "tot_cells" that stores the actual
# matrix data. This is just a concatenation of all the data corresponding
# to each group.
# - Unpopulated matrix entries are zero.
#
# See expand_rmf_matrix() for a sloppy implementation of how to unpack
# this sparse format.
n_chan = rmf.e_min.size
n_energy = rmf.energ_lo.size
c_lo_offset = rmf.e_min[0]
c_lo_slope = (rmf.e_min[-1] - c_lo_offset) / (n_chan - 1)
c_hi_offset = rmf.e_max[0]
c_hi_slope = (rmf.e_max[-1] - c_hi_offset) / (n_chan - 1)
e_lo_offset = rmf.energ_lo[0]
e_lo_slope = (rmf.energ_lo[-1] - e_lo_offset) / (n_energy - 1)
e_hi_offset = rmf.energ_hi[0]
e_hi_slope = (rmf.energ_hi[-1] - e_hi_offset) / (n_energy - 1)
all_e_indices = np.arange(n_energy)
all_e_los = e_lo_slope * all_e_indices + e_lo_offset
start_chans = np.floor((all_e_los - c_lo_offset) / c_lo_slope).astype(np.int)
all_e_his = e_hi_slope * all_e_indices + e_hi_offset
stop_chans = np.ceil((all_e_his - c_hi_offset) / c_hi_slope).astype(np.int)
first_e_index_on_channel_grid = 0
while stop_chans[first_e_index_on_channel_grid] < 0:
first_e_index_on_channel_grid += 1
last_e_index_on_channel_grid = n_energy - 1
while start_chans[last_e_index_on_channel_grid] >= n_chan:
last_e_index_on_channel_grid -= 1
n_nonzero_rows = last_e_index_on_channel_grid + 1 - first_e_index_on_channel_grid
e_slice = slice(first_e_index_on_channel_grid, last_e_index_on_channel_grid + 1)
n_grp = np.zeros(n_energy, dtype=np.int)
n_grp[e_slice] = 1
start_chans = np.maximum(start_chans[e_slice], 0)
stop_chans = np.minimum(stop_chans[e_slice], n_chan - 1)
# We now have a first cut at a row-oriented expression of our "identity"
# RMF. However, it's conservative. Trim down to eliminate overlaps between
# sequences.
for i in range(n_nonzero_rows - 1):
my_end = stop_chans[i]
next_start = start_chans[i+1]
if next_start <= my_end:
stop_chans[i] = max(start_chans[i], next_start - 1)
# Results are funky unless the sums along the vertical axis are constant.
# Ideally the sum along the *horizontal* axis would add up to 1 (since,
# ideally, each row is a probability distribution), but it is not
# generally possible to fulfill both of these constraints simultaneously.
# The latter constraint does not seem to matter in practice so we ignore it.
# Due to the funky encoding of the matrix, we need to build a helper table
# to meet the vertical-sum constraint.
counts = np.zeros(n_chan, dtype=np.int)
for i in range(n_nonzero_rows):
counts[start_chans[i]:stop_chans[i]+1] += 1
counts[:start_chans.min()] = 1
counts[stop_chans.max()+1:] = 1
assert (counts > 0).all()
# We can now build the matrix.
f_chan = start_chans
rmfnchan = stop_chans + 1 - f_chan
assert (rmfnchan > 0).all()
matrix = np.zeros(rmfnchan.sum())
amounts = 1. / counts
ofs = 0
for i in range(n_nonzero_rows):
f = f_chan[i]
n = rmfnchan[i]
matrix[ofs:ofs+n] = amounts[f:f+n]
ofs += n
# All that's left to do is create the Python objects.
drmf = DataRMF(
name,
rmf.detchans,
rmf.energ_lo,
rmf.energ_hi,
n_grp,
f_chan,
rmfnchan,
matrix,
offset = 0,
e_min = rmf.e_min,
e_max = rmf.e_max,
header = None
)
return RMF1D(drmf, pha=rmf._pha) | 0.002031 |
def best_unique_genomes(self, n):
"""Returns the most n fit genomes, with no duplication."""
best_unique = {}
for g in self.most_fit_genomes:
best_unique[g.key] = g
best_unique_list = list(best_unique.values())
def key(genome):
return genome.fitness
return sorted(best_unique_list, key=key, reverse=True)[:n] | 0.005236 |
def tomof(self, maxline=MAX_MOF_LINE):
"""
Return a MOF string with the declaration of this CIM qualifier type.
The returned MOF string conforms to the ``qualifierDeclaration``
ABNF rule defined in :term:`DSP0004`.
Qualifier flavors are included in the returned MOF string only when
the information is available (i.e. the value of the corresponding
attribute is not `None`).
Because :term:`DSP0004` does not support instance qualifiers, and thus
does not define a flavor keyword for the
:attr:`~pywbem.CIMQualifierDeclaration.toinstance` attribute, that
flavor is not included in the returned MOF string.
Returns:
:term:`unicode string`: MOF string.
"""
mof = []
mof.append(u'Qualifier ')
mof.append(self.name)
mof.append(u' : ')
mof.append(self.type)
if self.is_array:
mof.append(u'[')
if self.array_size is not None:
mof.append(six.text_type(self.array_size))
mof.append(u']')
if self.value is not None:
mof.append(u' = ')
if isinstance(self.value, list):
mof.append(u'{ ')
mof_str = u''.join(mof)
line_pos = len(mof_str) - mof_str.rfind('\n') - 1
val_str, line_pos = _value_tomof(
self.value, self.type, MOF_INDENT, maxline, line_pos, 3, False)
mof.append(val_str)
if isinstance(self.value, list):
mof.append(u' }')
mof.append(u',\n')
mof.append(_indent_str(MOF_INDENT + 1))
mof.append(u'Scope(')
mof_scopes = []
for scope in self._ordered_scopes:
if self.scopes.get(scope, False):
mof_scopes.append(scope.lower())
mof.append(u', '.join(mof_scopes))
mof.append(u')')
# toinstance flavor not included here because not part of DSP0004
mof_flavors = []
if self.overridable is True:
mof_flavors.append('EnableOverride')
elif self.overridable is False:
mof_flavors.append('DisableOverride')
if self.tosubclass is True:
mof_flavors.append('ToSubclass')
elif self.tosubclass is False:
mof_flavors.append('Restricted')
if self.translatable:
mof_flavors.append('Translatable')
if mof_flavors:
mof.append(u',\n')
mof.append(_indent_str(MOF_INDENT + 1))
mof.append(u'Flavor(')
mof.append(u', '.join(mof_flavors))
mof.append(u')')
mof.append(u';\n')
return u''.join(mof) | 0.000735 |
def put(self, key, value, cache=None, options={}):
"""Query the server to set the key specified to the value specified in
the specified cache.
Keyword arguments:
key -- the name of the key to be set. Required.
value -- the value to set key to. Must be a string or JSON
serialisable. Required.
cache -- the cache to store the item in. Defaults to None, which uses
self.name. If no name is set, raises a ValueError.
options -- a dict of arguments to send with the request. See
http://dev.iron.io/cache/reference/api/#put_item for more
information on defaults and possible values.
"""
if cache is None:
cache = self.name
if cache is None:
raise ValueError("Cache name must be set")
if not isinstance(value, str_type) and not isinstance(value, int_types):
value = json.dumps(value)
options["value"] = value
body = json.dumps(options)
cache = quote_plus(cache)
key = quote_plus(key)
result = self.client.put("caches/%s/items/%s" % (cache, key), body,
{"Content-Type": "application/json"})
return Item(cache=cache, key=key, value=value) | 0.003858 |
def remove_diskgroup(cache_disk_id, data_accessibility=True,
service_instance=None):
'''
Remove the diskgroup with the specified cache disk.
cache_disk_id
The canonical name of the cache disk.
data_accessibility
Specifies whether to ensure data accessibility. Default value is True.
service_instance
Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.
.. code-block:: bash
salt '*' vsphere.remove_diskgroup cache_disk_id='naa.000000000000001'
'''
log.trace('Validating diskgroup input')
host_ref = _get_proxy_target(service_instance)
hostname = __proxy__['esxi.get_details']()['esxi_host']
diskgroups = \
salt.utils.vmware.get_diskgroups(host_ref,
cache_disk_ids=[cache_disk_id])
if not diskgroups:
raise VMwareObjectRetrievalError(
'No diskgroup with cache disk id \'{0}\' was found in ESXi '
'host \'{1}\''.format(cache_disk_id, hostname))
log.trace('data accessibility = %s', data_accessibility)
salt.utils.vsan.remove_diskgroup(
service_instance, host_ref, diskgroups[0],
data_accessibility=data_accessibility)
return True | 0.001554 |
def receive(sources, timeout=None):
"""Get all outstanding signals from sources.
A source can be either (1) an object ID returned by the task (we want
to receive signals from), or (2) an actor handle.
When invoked by the same entity E (where E can be an actor, task or
driver), for each source S in sources, this function returns all signals
generated by S since the last receive() was invoked by E on S. If this is
the first call on S, this function returns all past signals generated by S
so far. Note that different actors, tasks or drivers that call receive()
on the same source S will get independent copies of the signals generated
by S.
Args:
sources: List of sources from which the caller waits for signals.
A source is either an object ID returned by a task (in this case
the object ID is used to identify that task), or an actor handle.
If the user passes the IDs of multiple objects returned by the
same task, this function returns a copy of the signals generated
by that task for each object ID.
timeout: Maximum time (in seconds) this function waits to get a signal
from a source in sources. If None, the timeout is infinite.
Returns:
A list of pairs (S, sig), where S is a source in the sources argument,
and sig is a signal generated by S since the last time receive()
was called on S. Thus, for each S in sources, the return list can
contain zero or multiple entries.
"""
# If None, initialize the timeout to a huge value (i.e., over 30,000 years
# in this case) to "approximate" infinity.
if timeout is None:
timeout = 10**12
if timeout < 0:
raise ValueError("The 'timeout' argument cannot be less than 0.")
if not hasattr(ray.worker.global_worker, "signal_counters"):
ray.worker.global_worker.signal_counters = defaultdict(lambda: b"0")
signal_counters = ray.worker.global_worker.signal_counters
# Map the ID of each source task to the source itself.
task_id_to_sources = defaultdict(lambda: [])
for s in sources:
task_id_to_sources[_get_task_id(s).hex()].append(s)
# Construct the redis query.
query = "XREAD BLOCK "
# Multiply by 1000x since timeout is in sec and redis expects ms.
query += str(1000 * timeout)
query += " STREAMS "
query += " ".join([task_id for task_id in task_id_to_sources])
query += " "
query += " ".join([
ray.utils.decode(signal_counters[ray.utils.hex_to_binary(task_id)])
for task_id in task_id_to_sources
])
answers = ray.worker.global_worker.redis_client.execute_command(query)
if not answers:
return []
results = []
# Decoding is a little bit involved. Iterate through all the answers:
for i, answer in enumerate(answers):
# Make sure the answer corresponds to a source, s, in sources.
task_id = ray.utils.decode(answer[0])
task_source_list = task_id_to_sources[task_id]
# The list of results for source s is stored in answer[1]
for r in answer[1]:
for s in task_source_list:
if r[1][1].decode("ascii") == ACTOR_DIED_STR:
results.append((s, ActorDiedSignal()))
else:
# Now it gets tricky: r[0] is the redis internal sequence
# id
signal_counters[ray.utils.hex_to_binary(task_id)] = r[0]
# r[1] contains a list with elements (key, value), in our
# case we only have one key "signal" and the value is the
# signal.
signal = cloudpickle.loads(
ray.utils.hex_to_binary(r[1][1]))
results.append((s, signal))
return results | 0.000256 |
def GetValueByPath(self, path_segments):
"""Retrieves a plist value by path.
Args:
path_segments (list[str]): path segment strings relative to the root
of the plist.
Returns:
object: The value of the key specified by the path or None.
"""
key = self.root_key
for path_segment in path_segments:
if isinstance(key, dict):
try:
key = key[path_segment]
except KeyError:
return None
elif isinstance(key, list):
try:
list_index = int(path_segment, 10)
except ValueError:
return None
key = key[list_index]
else:
return None
if not key:
return None
return key | 0.012363 |
def round(self, x):
"""Round the given value.
@param x: to round
@type x: numeric
"""
fraction, scaled_x, scale = self._get_fraction(x)
if fraction < self.minimum_stochastic_distance or 1-fraction <self.minimum_stochastic_distance:
result = round(x,self.precision)
else:
rounddown = fraction < self.random_generator.random()
if rounddown:
result = math.floor(scaled_x) / scale
else:
result = math.ceil(scaled_x) / scale
self._record_roundoff_error(x, result)
return result | 0.010972 |
def delegate(attribute_name, method_names):
"""Pass the call to the attribute called attribute_name for every method listed in method_names."""
# hack for python 2.7 as nonlocal is not available
info = {
'attribute': attribute_name,
'methods': method_names
}
def decorator(cls):
"""Decorate class."""
attribute = info['attribute']
if attribute.startswith("__"):
attribute = "_" + cls.__name__ + attribute
for name in info['methods']:
setattr(cls, name, eval("lambda self, *a, **kw: "
"self.{0}.{1}(*a, **kw)".format(attribute, name)))
return cls
return decorator | 0.004267 |
def design(n, spacing, shift, fI, fC=False, r=None, r_def=(1, 1, 2), reim=None,
cvar='amp', error=0.01, name=None, full_output=False, finish=False,
save=True, path='filters', verb=2, plot=1):
r"""Digital linear filter (DLF) design
This routine can be used to design digital linear filters for the Hankel or
Fourier transform, or for any linear transform ([Ghos70]_). For this
included or provided theoretical transform pairs can be used.
Alternatively, one can use the EM modeller empymod to use the responses to
an arbitrary 1D model as numerical transform pair.
This filter designing tool uses the direct matrix inversion method as
described in [Kong07]_ and is based on scripts by [Key12]_. The tool is an
add-on to the electromagnetic modeller empymod [Wert17]_. Fruitful
discussions with Evert Slob and Kerry Key improved the add-on
substantially.
Example notebooks of its usage can be found in the repo
`github.com/empymod/empymod-examples
<https://github.com/empymod/empymod-examples>`_.
Parameters
----------
n : int
Filter length.
spacing: float or tuple (start, stop, num)
Spacing between filter points. If tuple, it corresponds to the input
for np.linspace with endpoint=True.
shift: float or tuple (start, stop, num)
Shift of base from zero. If tuple, it corresponds to the input for
np.linspace with endpoint=True.
fI, fC : transform pairs
Theoretical or numerical transform pair(s) for the inversion (I) and
for the check of goodness (fC). fC is optional. If not provided, fI is
used for both fI and fC.
r : array, optional
Right-hand side evaluation points for the check of goodness (fC).
Defaults to r = np.logspace(0, 5, 1000), which are a lot of evaluation
points, and depending on the transform pair way too long r's.
r_def : tuple (add_left, add_right, factor), optional
Definition of the right-hand side evaluation points r of the inversion.
r is derived from the base values, default is (1, 1, 2).
- rmin = log10(1/max(base)) - add_left
- rmax = log10(1/min(base)) + add_right
- r = logspace(rmin, rmax, factor*n)
reim : np.real or np.imag, optional
Which part of complex transform pairs is used for the inversion.
Defaults to np.real.
cvar : string {'amp', 'r'}, optional
If 'amp', the inversion minimizes the amplitude. If 'r', the inversion
maximizes the right-hand side evaluation point r. Defaults is 'amp'.
error : float, optional
Up to which relative error the transformation is considered good in the
evaluation of the goodness. Default is 0.01 (1 %).
name : str, optional
Name of the filter. Defaults to dlf_+str(n).
full_output : bool, optional
If True, returns best filter and output from scipy.optimize.brute; else
only filter. Default is False.
finish : None, True, or callable, optional
If callable, it is passed through to scipy.optimize.brute: minimization
function to find minimize best result from brute-force approach.
Default is None. You can simply provide True in order to use
scipy.optimize.fmin_powell(). Set this to None if you are only
interested in the actually provided spacing/shift-values.
save : bool, optional
If True, best filter is saved to plain text files in ./filters/. Can be
loaded with fdesign.load_filter(name). If full, the inversion output is
stored too. You can add '.gz' to `name`, which will then save the full
inversion output in a compressed file instead of plain text.
path : string, optional
Absolute or relative path where output will be saved if `save=True`.
Default is 'filters'.
verb : {0, 1, 2}, optional
Level of verbosity, default is 2:
- 0: Print nothing.
- 1: Print warnings.
- 2: Print additional time, progress, and result
plot : {0, 1, 2, 3}, optional
Level of plot-verbosity, default is 1:
- 0: Plot nothing.
- 1: Plot brute-force result
- 2: Plot additional theoretical transform pairs, and best inv.
- 3: Plot additional inversion result
(can result in lots of plots depending on spacing and shift)
If you are using a notebook, use %matplotlib notebook to have
all inversion results appear in the same plot.
Returns
-------
filter : empymod.filter.DigitalFilter instance
Best filter for the input parameters.
full : tuple
Output from scipy.optimize.brute with full_output=True. (Returned when
``full_output`` is True.)
"""
# === 1. LET'S START ============
t0 = printstartfinish(verb)
# Check plot with matplotlib (soft dependency)
if plot > 0 and not plt:
plot = 0
if verb > 0:
print(plt_msg)
# Ensure fI, fC are lists
def check_f(f):
if hasattr(f, 'name'): # put into list if single tp
f = [f, ]
else: # ensure list (works for lists, tuples, arrays)
f = list(f)
return f
if not fC: # copy fI if fC not provided
fC = dc(fI)
fI = check_f(fI)
if fI[0].name == 'j2':
print("* ERROR :: j2 (jointly j0 and j1) is only implemented for " +
"fC, not for fI!")
raise ValueError('j2')
fC = check_f(fC)
# Check default input values
if finish and not callable(finish):
finish = fmin_powell
if name is None:
name = 'dlf_'+str(n)
if r is None:
r = np.logspace(0, 5, 1000)
if reim not in [np.real, np.imag]:
reim = np.real
# Get spacing and shift slices, cast r
ispacing = _ls2ar(spacing, 'spacing')
ishift = _ls2ar(shift, 'shift')
r = np.atleast_1d(r)
# Initialize log-dict to keep track in brute-force minimization-function.
log = {'cnt1': -1, # Counter
'cnt2': -1, # %-counter; v Total number of iterations v
'totnr': np.arange(*ispacing).size*np.arange(*ishift).size,
'time': t0, # Timer
'warn-r': 0} # Warning for short r
# === 2. THEORETICAL MODEL rhs ============
# Calculate rhs
for i, f in enumerate(fC):
fC[i].rhs = f.rhs(r)
# Plot
if plot > 1:
_call_qc_transform_pairs(n, ispacing, ishift, fI, fC, r, r_def, reim)
# === 3. RUN BRUTE FORCE OVER THE GRID ============
full = brute(_get_min_val, (ispacing, ishift), full_output=True,
args=(n, fI, fC, r, r_def, error, reim, cvar, verb, plot,
log), finish=finish)
# Add cvar-information to full: 0 for 'amp', 1 for 'r'
if cvar == 'r':
full += (1, )
else:
full += (0, )
# Finish output from brute/fmin; depending if finish or not
if verb > 1:
print('')
if callable(finish):
print('')
# Get best filter (full[0] contains spacing/shift of the best result).
dlf = _calculate_filter(n, full[0][0], full[0][1], fI, r_def, reim, name)
# If verbose, print result
if verb > 1:
print_result(dlf, full)
# === 4. FINISHED ============
printstartfinish(verb, t0)
# If plot, show result
if plot > 0:
print('* QC: Overview of brute-force inversion:')
plot_result(dlf, full, False)
if plot > 1:
print('* QC: Inversion result of best filter (minimum amplitude):')
_get_min_val(full[0], n, fI, fC, r, r_def, error, reim, cvar, 0,
plot+1, log)
# Save if desired
if save:
if full_output:
save_filter(name, dlf, full, path=path)
else:
save_filter(name, dlf, path=path)
# Output, depending on full_output
if full_output:
return dlf, full
else:
return dlf | 0.000124 |
def get_imports(self, volume=None, state=None, offset=None, limit=None):
"""
Fetches imports for this project.
:param volume: Optional volume identifier.
:param state: Optional state.
:param offset: Pagination offset.
:param limit: Pagination limit.
:return: Collection object.
"""
return self._api.imports.query(project=self.id, volume=volume,
state=state, offset=offset, limit=limit) | 0.004032 |
def _handle_commit_error(self, failure, retry_delay, attempt):
""" Retry the commit request, depending on failure type
Depending on the type of the failure, we retry the commit request
with the latest processed offset, or callback/errback self._commit_ds
"""
# Check if we are stopping and the request was cancelled
if self._stopping and failure.check(CancelledError):
# Not really an error
return self._deliver_commit_result(self._last_committed_offset)
# Check that the failure type is a Kafka error...this could maybe be
# a tighter check to determine whether a retry will succeed...
if not failure.check(KafkaError):
log.error("Unhandleable failure during commit attempt: %r\n\t%r",
failure, failure.getBriefTraceback())
return self._deliver_commit_result(failure)
# Do we need to abort?
if (self.request_retry_max_attempts != 0 and
attempt >= self.request_retry_max_attempts):
log.debug("%r: Exhausted attempts: %d to commit offset: %r",
self, self.request_retry_max_attempts, failure)
return self._deliver_commit_result(failure)
# Check the retry_delay to see if we should log at the higher level
# Using attempts % 2 gets us 1-warn/minute with defaults timings
if retry_delay < self.retry_max_delay or 0 == (attempt % 2):
log.debug("%r: Failure committing offset to kafka: %r", self,
failure)
else:
# We've retried until we hit the max delay, log alternately at warn
log.warning("%r: Still failing committing offset to kafka: %r",
self, failure)
# Schedule a delayed call to retry the commit
retry_delay = min(retry_delay * REQUEST_RETRY_FACTOR,
self.retry_max_delay)
self._commit_call = self.client.reactor.callLater(
retry_delay, self._send_commit_request, retry_delay, attempt + 1) | 0.000956 |
def pendulum():
"""Configuration for the pendulum classic control task."""
locals().update(default())
# Environment
env = 'Pendulum-v0'
max_length = 200
steps = 1e6 # 1M
# Optimization
batch_size = 20
chunk_length = 50
return locals() | 0.043137 |
def relaxng(cls, includechildren=True,extraattribs = None, extraelements=None, origclass = None):
"""Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)"""
E = ElementMaker(namespace="http://relaxng.org/ns/structure/1.0",nsmap={None:'http://relaxng.org/ns/structure/1.0' , 'folia': "http://ilk.uvt.nl/folia", 'xml' : "http://www.w3.org/XML/1998/namespace",'a':"http://relaxng.org/ns/annotation/0.9" })
if not extraattribs:
extraattribs = []
extraattribs.append(E.optional(E.attribute(E.text(), name='set')) )
return AbstractElement.relaxng(includechildren, extraattribs, extraelements, cls) | 0.027536 |
def load_external_data_for_model(model, base_dir): # type: (ModelProto, Text) -> None
"""
Loads external tensors into model
@params
model: ModelProto to load external data to
base_dir: directory that contains external data
"""
for tensor in _get_all_tensors(model):
if uses_external_data(tensor):
load_external_data_for_tensor(tensor, base_dir) | 0.005076 |
def make(cls, vol):
""" Convert uuid to Volume, if necessary. """
if isinstance(vol, cls):
return vol
elif vol is None:
return None
else:
return cls(vol, None) | 0.008811 |
def clean(self, value):
"""Cleans and returns the given value, or raises a ParameterNotValidError exception"""
if isinstance(value, numpy.ndarray):
return value
elif isinstance(value, (list, tuple)):
return numpy.array(value)
raise ParameterNotValidError | 0.009615 |
def change_logger_levels(logger=None, level=logging.DEBUG):
"""
Go through the logger and handlers and update their levels to the
one specified.
:param logger: logging name or object to modify, defaults to root logger
:param level: logging level to set at (10=Debug, 20=Info, 30=Warn, 40=Error)
"""
if not isinstance(logger, logging.Logger):
logger = logging.getLogger(logger)
logger.setLevel(level)
for handler in logger.handlers:
handler.level = level | 0.003945 |
def _convert_oauth2_credentials(credentials):
"""Converts to :class:`google.oauth2.credentials.Credentials`.
Args:
credentials (Union[oauth2client.client.OAuth2Credentials,
oauth2client.client.GoogleCredentials]): The credentials to
convert.
Returns:
google.oauth2.credentials.Credentials: The converted credentials.
"""
new_credentials = google.oauth2.credentials.Credentials(
token=credentials.access_token,
refresh_token=credentials.refresh_token,
token_uri=credentials.token_uri,
client_id=credentials.client_id,
client_secret=credentials.client_secret,
scopes=credentials.scopes)
new_credentials._expires = credentials.token_expiry
return new_credentials | 0.001284 |
def standardize_polygons_str(data_str):
"""Given a POLYGON string, standardize the coordinates to a 1x1 grid.
Input : data_str (taken from above)
Output: tuple of polygon objects
"""
# find all of the polygons in the letter (for instance an A
# needs to be constructed from 2 polygons)
path_strs = re.findall("\(\(([^\)]+?)\)\)", data_str.strip())
# convert the data into a numpy array
polygons_data = []
for path_str in path_strs:
data = np.array([
tuple(map(float, x.split())) for x in path_str.strip().split(",")])
polygons_data.append(data)
# standardize the coordinates
min_coords = np.vstack(data.min(0) for data in polygons_data).min(0)
max_coords = np.vstack(data.max(0) for data in polygons_data).max(0)
for data in polygons_data:
data[:, ] -= min_coords
data[:, ] /= (max_coords - min_coords)
polygons = []
for data in polygons_data:
polygons.append(load_wkt(
"POLYGON((%s))" % ",".join(" ".join(map(str, x)) for x in data)))
return tuple(polygons) | 0.005484 |
def run(self):
"""print .new configuration files
"""
self.find_new()
for n in self.news:
print("{0}".format(n))
print("")
self.msg.template(78)
print("| Installed {0} new configuration files:".format(
len(self.news)))
self.msg.template(78)
self.choices() | 0.005714 |
def list_images(self):
"""
Return the list of available images for this node type
:returns: Array of hash
"""
try:
return list_images(self._NODE_TYPE)
except OSError as e:
raise aiohttp.web.HTTPConflict(text="Can not list images {}".format(e)) | 0.009464 |
def tile_x_size(self, zoom):
"""
Width of a tile in SRID units at zoom level.
- zoom: zoom level
"""
warnings.warn(DeprecationWarning("tile_x_size is deprecated"))
validate_zoom(zoom)
return round(self.x_size / self.matrix_width(zoom), ROUND) | 0.006689 |
def share(self, group_id, group_access, expires_at=None, **kwargs):
"""Share the project with a group.
Args:
group_id (int): ID of the group.
group_access (int): Access level for the group.
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabCreateError: If the server failed to perform the request
"""
path = '/projects/%s/share' % self.get_id()
data = {'group_id': group_id,
'group_access': group_access,
'expires_at': expires_at}
self.manager.gitlab.http_post(path, post_data=data, **kwargs) | 0.002762 |
def check_ranges(cls, ranges, length):
"""Removes errored ranges"""
result = []
for start, end in ranges:
if isinstance(start, int) or isinstance(end, int):
if isinstance(start, int) and not (0 <= start < length):
continue
elif isinstance(start, int) and isinstance(end, int) and not (start <= end):
continue
elif start is None and end == 0:
continue
result.append( (start,end) )
return result | 0.010695 |
def plot_obsseries(self, **kwargs: Any) -> None:
"""Plot the |IOSequence.series| of the |Obs| sequence object.
See method |Node.plot_allseries| for further information.
"""
self.__plot_series([self.sequences.obs], kwargs) | 0.007874 |
def set_trace(host=None, port=None, patch_stdstreams=False):
"""
Opens a remote PDB on first available port.
"""
if host is None:
host = os.environ.get('REMOTE_PDB_HOST', '127.0.0.1')
if port is None:
port = int(os.environ.get('REMOTE_PDB_PORT', '0'))
rdb = RemotePdb(host=host, port=port, patch_stdstreams=patch_stdstreams)
rdb.set_trace(frame=sys._getframe().f_back) | 0.002427 |
def _populate_trie(self, values: List[str]) -> CharTrie:
"""Takes a list and inserts its elements into a new trie and returns it"""
if self._default_tokenizer:
return reduce(self._populate_trie_reducer, iter(values), CharTrie())
return reduce(self._populate_trie_reducer_regex, iter(values), CharTrie()) | 0.014749 |
def pan_delta(self, dx_px, dy_px):
"""
This causes the scene to appear to translate right and up
(i.e., what really happens is the camera is translated left and down).
This is also called "panning" in some software packages.
Passing in negative delta values causes the opposite motion.
"""
direction = self.target - self.position
distance_from_target = direction.length()
direction = direction.normalized()
speed_per_radius = self.get_translation_speed(distance_from_target)
px_per_unit = self.vport_radius_px / speed_per_radius
right = direction ^ self.up
translation = (right * (-dx_px / px_per_unit) +
self.up * (-dy_px / px_per_unit))
self.position = self.position + translation
self.target = self.target + translation | 0.002301 |
def irange(self, minimum=None, maximum=None, inclusive=(True, True),
reverse=False):
"""
Create an iterator of values between `minimum` and `maximum`.
`inclusive` is a pair of booleans that indicates whether the minimum
and maximum ought to be included in the range, respectively. The
default is (True, True) such that the range is inclusive of both
minimum and maximum.
Both `minimum` and `maximum` default to `None` which is automatically
inclusive of the start and end of the list, respectively.
When `reverse` is `True` the values are yielded from the iterator in
reverse order; `reverse` defaults to `False`.
"""
minimum = self._key(minimum) if minimum is not None else None
maximum = self._key(maximum) if maximum is not None else None
return self.irange_key(
min_key=minimum, max_key=maximum,
inclusive=inclusive, reverse=reverse,
) | 0.002997 |
def _draw(self, txt, final=False):
"""Print the rendered string to the stdout."""
if not self._file_mode:
# If the user presses Ctrl+C this ensures we still start writing from the beginning of the line
sys.stdout.write("\r")
sys.stdout.write(txt)
if final and not isinstance(self._widget, _HiddenWidget):
sys.stdout.write("\n")
else:
if not self._file_mode:
sys.stdout.write("\r")
sys.stdout.flush() | 0.005825 |
def get_zone_info(cls, area_str, match_type='EXACT', result_type='LIST'):
"""
输入包含省份、城市、地区信息的内容,返回地区编号;
:param:
* area_str: (string) 要查询的区域,省份、城市、地区信息,比如 北京市
* match_type: (string) 查询匹配模式,默认值 'EXACT',表示精确匹配,可选 'FUZZY',表示模糊查询
* result_type: (string) 返回结果数量类型,默认值 'LIST',表示返回列表,可选 'SINGLE_STR',返回结果的第一个地区编号字符串
:returns:
* 返回类型 根据 resule_type 决定返回类型是列表或者单一字符串,列表中包含元组 比如:[('110000', '北京市')],元组中的第一个元素是地区码,
第二个元素是对应的区域内容 结果最多返回 20 个。
举例如下::
from fishbase.fish_data import *
print('--- fish_data get_zone_info demo ---')
result = IdCard.get_zone_info(area_str='北京市')
print(result)
# 模糊查询
result = IdCard.get_zone_info(area_str='西安市', match_type='FUZZY')
print(result)
result0 = []
for i in result:
result0.append(i[0])
print('---西安市---')
print(len(result0))
print(result0)
# 模糊查询, 结果返回设定 single_str
result = IdCard.get_zone_info(area_str='西安市', match_type='FUZZY', result_type='SINGLE_STR')
print(result)
# 模糊查询, 结果返回设定 single_str,西安市 和 西安 的差别
result = IdCard.get_zone_info(area_str='西安', match_type='FUZZY', result_type='SINGLE_STR')
print(result)
print('---')
输出结果::
--- fish_data get_zone_info demo ---
[('110000', '北京市')]
130522198407316471 True
---西安市---
11
['610100', '610101', '610102', '610103', '610104', '610111', '610112', '610113', '610114', '610115',
'610116']
610100
220403
---
"""
values = []
if match_type == 'EXACT':
values = sqlite_query('fish_data.sqlite',
'select zone, areanote from cn_idcard where areanote = :area', {"area": area_str})
if match_type == 'FUZZY':
values = sqlite_query('fish_data.sqlite',
'select zone, areanote from cn_idcard where areanote like :area',
{"area": '%' + area_str + '%'})
# result_type 结果数量判断处理
if result_type == 'LIST':
# 如果返回记录多,大于 20 项,只返回前面 20 个结果
if len(values) > 20:
values = values[0:20]
return values
if result_type == 'SINGLE_STR':
if len(values) == 0:
return ''
if len(values) > 0:
value_str = values[0][0]
return value_str | 0.003357 |
def check_for_partition(self, schema, table, partition):
"""
Checks whether a partition exists
:param schema: Name of hive schema (database) @table belongs to
:type schema: str
:param table: Name of hive table @partition belongs to
:type schema: str
:partition: Expression that matches the partitions to check for
(eg `a = 'b' AND c = 'd'`)
:type schema: str
:rtype: bool
>>> hh = HiveMetastoreHook()
>>> t = 'static_babynames_partitioned'
>>> hh.check_for_partition('airflow', t, "ds='2015-01-01'")
True
"""
with self.metastore as client:
partitions = client.get_partitions_by_filter(
schema, table, partition, 1)
if partitions:
return True
else:
return False | 0.002317 |
def str_2_obj(obj_str, tg_type=None):
"""Converts a string into an object according to the given tango type
:param obj_str: the string to be converted
:type obj_str: :py:obj:`str`
:param tg_type: tango type
:type tg_type: :class:`tango.CmdArgType`
:return: an object calculated from the given string
:rtype: :py:obj:`object`
"""
if tg_type is None:
return obj_str
f = str
if is_scalar_type(tg_type):
if is_numerical_type(tg_type):
if obj_str in __NO_STR_VALUE:
return None
if is_int_type(tg_type):
f = int
elif is_float_type(tg_type):
f = float
elif is_bool_type(tg_type):
f = bool_
return f(obj_str) | 0.001258 |
def get_package_counts(package_descriptors, targets, repos_data):
"""
Get the number of packages per target and repository.
:return: a dict indexed by targets containing
a list of integer values (one for each repo)
"""
counts = {}
for target in targets:
counts[target] = [0] * len(repos_data)
for package_descriptor in package_descriptors.values():
debian_pkg_name = package_descriptor.debian_pkg_name
for target in targets:
for i, repo_data in enumerate(repos_data):
version = repo_data.get(target, {}).get(debian_pkg_name, None)
if version:
counts[target][i] += 1
return counts | 0.001414 |
def _get_project(msg, key='project'):
''' Return the project as `foo` or `user/foo` if the project is a
fork.
'''
project = msg[key]['name']
ns = msg[key].get('namespace')
if ns:
project = '/'.join([ns, project])
if msg[key]['parent']:
user = msg[key]['user']['name']
project = '/'.join(['fork', user, project])
return project | 0.002618 |
def _extract_packages(self):
"""
Extract a package in a new directory.
"""
if not hasattr(self, "retrieved_packages_unpacked"):
self.retrieved_packages_unpacked = [self.package_name]
for path in self.retrieved_packages_unpacked:
package_name = basename(path)
self.path_unpacked = join(CFG_UNPACKED_FILES,
package_name.split('.')[0])
self.logger.debug("Extracting package: %s"
% (path.split("/")[-1],))
try:
if "_archival_pdf" in self.path_unpacked:
self.path_unpacked = (self.path_unpacked
.rstrip("_archival_pdf"))
ZipFile(path).extractall(join(self.path_unpacked,
"archival_pdfs"))
else:
ZipFile(path).extractall(self.path_unpacked)
#TarFile.open(path).extractall(self.path_unpacked)
except Exception:
register_exception(alert_admin=True,
prefix="OUP error extracting package.")
self.logger.error("Error extraction package file: %s"
% (path,))
if hasattr(self, "path_unpacked"):
return self.path_unpacked | 0.002131 |
def v_magnitude(v):
"""
Simple vector helper function returning the length of a vector.
``v`` may be any vector, with any number of dimensions
"""
return math.sqrt(sum(v[i]*v[i] for i in range(len(v)))) | 0.008811 |
def get_breadcrumbs(url, request=None):
"""
Given a url returns a list of breadcrumbs, which are each a
tuple of (name, url).
"""
from wave.reverse import preserve_builtin_query_params
from wave.settings import api_settings
from wave.views import APIView
view_name_func = api_settings.VIEW_NAME_FUNCTION
def breadcrumbs_recursive(url, breadcrumbs_list, prefix, seen):
"""
Add tuples of (name, url) to the breadcrumbs list,
progressively chomping off parts of the url.
"""
try:
(view, unused_args, unused_kwargs) = resolve(url)
except Exception:
pass
else:
# Check if this is a REST framework view,
# and if so add it to the breadcrumbs
cls = getattr(view, 'cls', None)
if cls is not None and issubclass(cls, APIView):
# Don't list the same view twice in a row.
# Probably an optional trailing slash.
if not seen or seen[-1] != view:
suffix = getattr(view, 'suffix', None)
name = view_name_func(cls, suffix)
insert_url = preserve_builtin_query_params(prefix + url, request)
breadcrumbs_list.insert(0, (name, insert_url))
seen.append(view)
if url == '':
# All done
return breadcrumbs_list
elif url.endswith('/'):
# Drop trailing slash off the end and continue to try to
# resolve more breadcrumbs
url = url.rstrip('/')
return breadcrumbs_recursive(url, breadcrumbs_list, prefix, seen)
# Drop trailing non-slash off the end and continue to try to
# resolve more breadcrumbs
url = url[:url.rfind('/') + 1]
return breadcrumbs_recursive(url, breadcrumbs_list, prefix, seen)
prefix = get_script_prefix().rstrip('/')
url = url[len(prefix):]
return breadcrumbs_recursive(url, [], prefix, []) | 0.000984 |
def fetch_ticker(self) -> Ticker:
"""Fetch the market ticker."""
return self._fetch('ticker', self.market.code)(self._ticker)() | 0.013986 |
def get_hosting_device_driver(self, context, id):
"""Returns device driver for hosting device template with <id>."""
if id is None:
return
try:
return self._hosting_device_drivers[id]
except KeyError:
try:
template = self._get_hosting_device_template(context, id)
self._hosting_device_drivers[id] = importutils.import_object(
template['device_driver'])
except (ImportError, TypeError, n_exc.NeutronException):
LOG.exception("Error loading hosting device driver for "
"hosting device template %s", id)
return self._hosting_device_drivers.get(id) | 0.002725 |
def list_records(self, file_const=None):
"""Iterate through the file records"""
for r in self._dataset.files:
if file_const and r.minor_type != file_const:
continue
yield self.instance_from_name(r.path) | 0.007752 |
async def release(data):
"""
Release a session
:param data: Information obtained from a POST request.
The content type is application/json.
The correct packet form should be as follows:
{
'token': UUID token from current session start
'command': 'release'
}
"""
global session
if not feature_flags.use_protocol_api_v2():
session.adapter.remove_instrument('left')
session.adapter.remove_instrument('right')
else:
session.adapter.cache_instruments()
session = None
return web.json_response({"message": "calibration session released"}) | 0.00161 |
def bottleneck_layer(inputs,
hparams,
name="discrete_bottleneck"):
"""Computes latents given inputs (typically, compressed targets)."""
[
latents_dense,
latents_discrete,
extra_loss,
embed_fn,
_,
] = hparams.bottleneck(inputs=inputs,
filter_size=hparams.compress_filter_size,
name=name,
mode=hparams.mode)
if DO_SUMMARIES:
tf.summary.histogram("discrete_latents",
tf.reshape(latents_discrete, [-1]))
return latents_dense, latents_discrete, extra_loss, embed_fn | 0.00774 |
def from_hertz(self, hertz, standard_pitch=440):
"""Set the Note name and pitch, calculated from the hertz value.
The standard_pitch argument can be used to set the pitch of A-4,
from which the rest is calculated.
"""
value = ((log((float(hertz) * 1024) / standard_pitch, 2) +
1.0 / 24) * 12 + 9) # notes.note_to_int("A")
self.name = notes.int_to_note(int(value) % 12)
self.octave = int(value / 12) - 6
return self | 0.006098 |
def ShowWindow(handle: int, cmdShow: int) -> bool:
"""
ShowWindow from Win32.
handle: int, the handle of a native window.
cmdShow: int, a value in clas `SW`.
Return bool, True if succeed otherwise False.
"""
return ctypes.windll.user32.ShowWindow(ctypes.c_void_p(handle), cmdShow) | 0.003247 |
def PushAttributeContainer(self, serialized_data):
"""Pushes a serialized attribute container onto the list.
Args:
serialized_data (bytes): serialized attribute container data.
"""
self._list.append(serialized_data)
self.data_size += len(serialized_data)
self.next_sequence_number += 1 | 0.003165 |
def get_dataset(self, dataset):
"""
Checks to see if the dataset is present. If not, it downloads and unzips it.
"""
# If the dataset is present, no need to download anything.
success = True
dataset_path = self.base_dataset_path + dataset
if not isdir(dataset_path):
# Try 5 times to download. The download page is unreliable, so we need a few tries.
was_error = False
for iteration in range(5):
# Guard against trying again if successful
if iteration == 0 or was_error is True:
zip_path = dataset_path + ".zip"
# Download zip files if they're not there
if not isfile(zip_path):
try:
with DLProgress(unit='B', unit_scale=True, miniters=1, desc=dataset) as pbar:
urlretrieve(self.datasets[dataset]["url"], zip_path, pbar.hook)
except Exception as ex:
print("Error downloading %s: %s" % (dataset, ex))
was_error = True
# Unzip the data files
if not isdir(dataset_path):
try:
with zipfile.ZipFile(zip_path) as zip_archive:
zip_archive.extractall(path=dataset_path)
zip_archive.close()
except Exception as ex:
print("Error unzipping %s: %s" % (zip_path, ex))
# Usually the error is caused by a bad zip file.
# Delete it so the program will try to download it again.
try:
remove(zip_path)
except FileNotFoundError:
pass
was_error = True
if was_error:
print("\nThis recognizer is trained by the CASIA handwriting database.")
print("If the download doesn't work, you can get the files at %s" % self.datasets[dataset]["url"])
print("If you have download problems, "
"wget may be effective at downloading because of download resuming.")
success = False
return success | 0.004115 |
def unicode_is_ascii(u_string):
"""Determine if unicode string only contains ASCII characters.
:param str u_string: unicode string to check. Must be unicode
and not Python 2 `str`.
:rtype: bool
"""
assert isinstance(u_string, str)
try:
u_string.encode('ascii')
return True
except UnicodeEncodeError:
return False | 0.002681 |
def get_extra_path(name):
"""
:param name: name in format helper.path_name
sip.default_sip_dir
"""
# Paths are cached in path_cache
helper_name, _, key = name.partition(".")
helper = path_helpers.get(helper_name)
if not helper:
raise ValueError("Helper '{0}' not found.".format(helper))
if name not in path_cache:
extra_paths = helper.extra_paths()
path_cache.update(extra_paths)
extra_path = path_cache.get(name)
if not extra_path:
raise ValueError("Helper '{0}' has no path called {1}".format(helper_name, name))
return extra_path | 0.003263 |
def run_once(self):
'''comsume queues and feed tasks to fetcher, once'''
self._update_projects()
self._check_task_done()
self._check_request()
while self._check_cronjob():
pass
self._check_select()
self._check_delete()
self._try_dump_cnt() | 0.006329 |
def create_volume(DryRun=None, Size=None, SnapshotId=None, AvailabilityZone=None, VolumeType=None, Iops=None, Encrypted=None, KmsKeyId=None, TagSpecifications=None):
"""
Creates an EBS volume that can be attached to an instance in the same Availability Zone. The volume is created in the regional endpoint that you send the HTTP request to. For more information see Regions and Endpoints .
You can create a new empty volume or restore a volume from an EBS snapshot. Any AWS Marketplace product codes from the snapshot are propagated to the volume.
You can create encrypted volumes with the Encrypted parameter. Encrypted volumes may only be attached to instances that support Amazon EBS encryption. Volumes that are created from encrypted snapshots are also automatically encrypted. For more information, see Amazon EBS Encryption in the Amazon Elastic Compute Cloud User Guide .
You can tag your volumes during creation. For more information, see Tagging Your Amazon EC2 Resources .
For more information, see Creating an Amazon EBS Volume in the Amazon Elastic Compute Cloud User Guide .
See also: AWS API Documentation
Examples
This example creates an 80 GiB General Purpose (SSD) volume in the Availability Zone us-east-1a.
Expected Output:
This example creates a new Provisioned IOPS (SSD) volume with 1000 provisioned IOPS from a snapshot in the Availability Zone us-east-1a.
Expected Output:
:example: response = client.create_volume(
DryRun=True|False,
Size=123,
SnapshotId='string',
AvailabilityZone='string',
VolumeType='standard'|'io1'|'gp2'|'sc1'|'st1',
Iops=123,
Encrypted=True|False,
KmsKeyId='string',
TagSpecifications=[
{
'ResourceType': 'customer-gateway'|'dhcp-options'|'image'|'instance'|'internet-gateway'|'network-acl'|'network-interface'|'reserved-instances'|'route-table'|'snapshot'|'spot-instances-request'|'subnet'|'security-group'|'volume'|'vpc'|'vpn-connection'|'vpn-gateway',
'Tags': [
{
'Key': 'string',
'Value': 'string'
},
]
},
]
)
:type DryRun: boolean
:param DryRun: Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is DryRunOperation . Otherwise, it is UnauthorizedOperation .
:type Size: integer
:param Size: The size of the volume, in GiBs.
Constraints: 1-16384 for gp2 , 4-16384 for io1 , 500-16384 for st1 , 500-16384 for sc1 , and 1-1024 for standard . If you specify a snapshot, the volume size must be equal to or larger than the snapshot size.
Default: If you're creating the volume from a snapshot and don't specify a volume size, the default is the snapshot size.
:type SnapshotId: string
:param SnapshotId: The snapshot from which to create the volume.
:type AvailabilityZone: string
:param AvailabilityZone: [REQUIRED]
The Availability Zone in which to create the volume. Use DescribeAvailabilityZones to list the Availability Zones that are currently available to you.
:type VolumeType: string
:param VolumeType: The volume type. This can be gp2 for General Purpose SSD, io1 for Provisioned IOPS SSD, st1 for Throughput Optimized HDD, sc1 for Cold HDD, or standard for Magnetic volumes.
Default: standard
:type Iops: integer
:param Iops: Only valid for Provisioned IOPS SSD volumes. The number of I/O operations per second (IOPS) to provision for the volume, with a maximum ratio of 50 IOPS/GiB.
Constraint: Range is 100 to 20000 for Provisioned IOPS SSD volumes
:type Encrypted: boolean
:param Encrypted: Specifies whether the volume should be encrypted. Encrypted Amazon EBS volumes may only be attached to instances that support Amazon EBS encryption. Volumes that are created from encrypted snapshots are automatically encrypted. There is no way to create an encrypted volume from an unencrypted snapshot or vice versa. If your AMI uses encrypted volumes, you can only launch it on supported instance types. For more information, see Amazon EBS Encryption in the Amazon Elastic Compute Cloud User Guide .
:type KmsKeyId: string
:param KmsKeyId: The full ARN of the AWS Key Management Service (AWS KMS) customer master key (CMK) to use when creating the encrypted volume. This parameter is only required if you want to use a non-default CMK; if this parameter is not specified, the default CMK for EBS is used. The ARN contains the arn:aws:kms namespace, followed by the region of the CMK, the AWS account ID of the CMK owner, the key namespace, and then the CMK ID. For example, arn:aws:kms:us-east-1 :012345678910 :key/abcd1234-a123-456a-a12b-a123b4cd56ef . If a KmsKeyId is specified, the Encrypted flag must also be set.
:type TagSpecifications: list
:param TagSpecifications: The tags to apply to the volume during creation.
(dict) --The tags to apply to a resource when the resource is being created.
ResourceType (string) --The type of resource to tag. Currently, the resource types that support tagging on creation are instance and volume .
Tags (list) --The tags to apply to the resource.
(dict) --Describes a tag.
Key (string) --The key of the tag.
Constraints: Tag keys are case-sensitive and accept a maximum of 127 Unicode characters. May not begin with aws:
Value (string) --The value of the tag.
Constraints: Tag values are case-sensitive and accept a maximum of 255 Unicode characters.
:rtype: dict
:return: {
'VolumeId': 'string',
'Size': 123,
'SnapshotId': 'string',
'AvailabilityZone': 'string',
'State': 'creating'|'available'|'in-use'|'deleting'|'deleted'|'error',
'CreateTime': datetime(2015, 1, 1),
'Attachments': [
{
'VolumeId': 'string',
'InstanceId': 'string',
'Device': 'string',
'State': 'attaching'|'attached'|'detaching'|'detached',
'AttachTime': datetime(2015, 1, 1),
'DeleteOnTermination': True|False
},
],
'Tags': [
{
'Key': 'string',
'Value': 'string'
},
],
'VolumeType': 'standard'|'io1'|'gp2'|'sc1'|'st1',
'Iops': 123,
'Encrypted': True|False,
'KmsKeyId': 'string'
}
"""
pass | 0.005098 |
def check_args(args):
"""Checks the arguments and options."""
# Checking that only VCF can have a - (stdout) as output
if args.output_format not in _streamable_format and args.output == "-":
logger.error("{} format cannot be streamed to standard output"
"".format(args.output_format))
sys.exit(1)
# Checking the file extensions
if args.output_format == "vcf" and args.output != "-":
if not args.output.endswith(".vcf"):
args.output += ".vcf"
elif args.output_format == "plink":
if args.output.endswith(".bed"):
args.output = args.output[:-4] | 0.001553 |
def get_release_definitions(self, project, search_text=None, expand=None, artifact_type=None, artifact_source_id=None, top=None, continuation_token=None, query_order=None, path=None, is_exact_name_match=None, tag_filter=None, property_filters=None, definition_id_filter=None, is_deleted=None, search_text_contains_folder_name=None):
"""GetReleaseDefinitions.
[Preview API] Get a list of release definitions.
:param str project: Project ID or project name
:param str search_text: Get release definitions with names containing searchText.
:param str expand: The properties that should be expanded in the list of Release definitions.
:param str artifact_type: Release definitions with given artifactType will be returned. Values can be Build, Jenkins, GitHub, Nuget, Team Build (external), ExternalTFSBuild, Git, TFVC, ExternalTfsXamlBuild.
:param str artifact_source_id: Release definitions with given artifactSourceId will be returned. e.g. For build it would be {projectGuid}:{BuildDefinitionId}, for Jenkins it would be {JenkinsConnectionId}:{JenkinsDefinitionId}, for TfsOnPrem it would be {TfsOnPremConnectionId}:{ProjectName}:{TfsOnPremDefinitionId}. For third-party artifacts e.g. TeamCity, BitBucket you may refer 'uniqueSourceIdentifier' inside vss-extension.json at https://github.com/Microsoft/vsts-rm-extensions/blob/master/Extensions.
:param int top: Number of release definitions to get.
:param str continuation_token: Gets the release definitions after the continuation token provided.
:param str query_order: Gets the results in the defined order. Default is 'IdAscending'.
:param str path: Gets the release definitions under the specified path.
:param bool is_exact_name_match: 'true'to gets the release definitions with exact match as specified in searchText. Default is 'false'.
:param [str] tag_filter: A comma-delimited list of tags. Only release definitions with these tags will be returned.
:param [str] property_filters: A comma-delimited list of extended properties to be retrieved. If set, the returned Release Definitions will contain values for the specified property Ids (if they exist). If not set, properties will not be included. Note that this will not filter out any Release Definition from results irrespective of whether it has property set or not.
:param [str] definition_id_filter: A comma-delimited list of release definitions to retrieve.
:param bool is_deleted: 'true' to get release definitions that has been deleted. Default is 'false'
:param bool search_text_contains_folder_name: 'true' to get the release definitions under the folder with name as specified in searchText. Default is 'false'.
:rtype: [ReleaseDefinition]
"""
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if search_text is not None:
query_parameters['searchText'] = self._serialize.query('search_text', search_text, 'str')
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
if artifact_type is not None:
query_parameters['artifactType'] = self._serialize.query('artifact_type', artifact_type, 'str')
if artifact_source_id is not None:
query_parameters['artifactSourceId'] = self._serialize.query('artifact_source_id', artifact_source_id, 'str')
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if continuation_token is not None:
query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str')
if query_order is not None:
query_parameters['queryOrder'] = self._serialize.query('query_order', query_order, 'str')
if path is not None:
query_parameters['path'] = self._serialize.query('path', path, 'str')
if is_exact_name_match is not None:
query_parameters['isExactNameMatch'] = self._serialize.query('is_exact_name_match', is_exact_name_match, 'bool')
if tag_filter is not None:
tag_filter = ",".join(tag_filter)
query_parameters['tagFilter'] = self._serialize.query('tag_filter', tag_filter, 'str')
if property_filters is not None:
property_filters = ",".join(property_filters)
query_parameters['propertyFilters'] = self._serialize.query('property_filters', property_filters, 'str')
if definition_id_filter is not None:
definition_id_filter = ",".join(definition_id_filter)
query_parameters['definitionIdFilter'] = self._serialize.query('definition_id_filter', definition_id_filter, 'str')
if is_deleted is not None:
query_parameters['isDeleted'] = self._serialize.query('is_deleted', is_deleted, 'bool')
if search_text_contains_folder_name is not None:
query_parameters['searchTextContainsFolderName'] = self._serialize.query('search_text_contains_folder_name', search_text_contains_folder_name, 'bool')
response = self._send(http_method='GET',
location_id='d8f96f24-8ea7-4cb6-baab-2df8fc515665',
version='5.1-preview.3',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[ReleaseDefinition]', self._unwrap_collection(response)) | 0.005495 |
def get_parent_dir(name):
"""Get the parent directory of a filename."""
parent_dir = os.path.dirname(os.path.dirname(name))
if parent_dir:
return parent_dir
return os.path.abspath('.') | 0.004808 |
def finditem(self, item, threshold=None):
"""Return most similar item to the provided one, or None if
nothing exceeds the threshold.
>>> from ngram import NGram
>>> n = NGram([(0, "Spam"), (1, "Ham"), (2, "Eggsy"), (3, "Egggsy")],
... key=lambda x:x[1].lower())
>>> n.finditem((3, 'Hom'))
(1, 'Ham')
>>> n.finditem((4, "Oggsy"))
(2, 'Eggsy')
>>> n.finditem((4, "Oggsy"), 0.8)
"""
results = self.searchitem(item, threshold)
if results:
return results[0][0]
else:
return None | 0.003257 |
def failed(self, reason=None):
"""失败订单(未成功创建入broker)
Arguments:
reason {str} -- 失败原因
"""
# 订单创建失败(如废单/场外废单/价格高于涨停价/价格低于跌停价/通讯失败)
self._status = ORDER_STATUS.FAILED
self.reason = str(reason) | 0.008 |
def handle_delete_user(self, req):
"""Handles the DELETE v2/<account>/<user> call for deleting a user from an
account.
Can only be called by an account .admin.
:param req: The swob.Request to process.
:returns: swob.Response, 2xx on success.
"""
# Validate path info
account = req.path_info_pop()
user = req.path_info_pop()
if req.path_info or not account or account[0] == '.' or not user or \
user[0] == '.':
return HTTPBadRequest(request=req)
# if user to be deleted is reseller_admin, then requesting
# user must be the super_admin
is_reseller_admin = self.is_user_reseller_admin(req, account, user)
if not is_reseller_admin and not req.credentials_valid:
# if user to be deleted can't be found, return 404
return HTTPNotFound(request=req)
elif is_reseller_admin and not self.is_super_admin(req):
return HTTPForbidden(request=req)
if not self.is_account_admin(req, account):
return self.denied_response(req)
# Delete the user's existing token, if any.
path = quote('/v1/%s/%s/%s' % (self.auth_account, account, user))
resp = self.make_pre_authed_request(
req.environ, 'HEAD', path).get_response(self.app)
if resp.status_int == 404:
return HTTPNotFound(request=req)
elif resp.status_int // 100 != 2:
raise Exception('Could not obtain user details: %s %s' %
(path, resp.status))
candidate_token = resp.headers.get('x-object-meta-auth-token')
if candidate_token:
object_name = self._get_concealed_token(candidate_token)
path = quote('/v1/%s/.token_%s/%s' %
(self.auth_account, object_name[-1], object_name))
resp = self.make_pre_authed_request(
req.environ, 'DELETE', path).get_response(self.app)
if resp.status_int // 100 != 2 and resp.status_int != 404:
raise Exception('Could not delete possibly existing token: '
'%s %s' % (path, resp.status))
# Delete the user entry itself.
path = quote('/v1/%s/%s/%s' % (self.auth_account, account, user))
resp = self.make_pre_authed_request(
req.environ, 'DELETE', path).get_response(self.app)
if resp.status_int // 100 != 2 and resp.status_int != 404:
raise Exception('Could not delete the user object: %s %s' %
(path, resp.status))
return HTTPNoContent(request=req) | 0.001505 |
def class_get_trait_help(cls, trait, inst=None):
"""Get the help string for a single trait.
If `inst` is given, it's current trait values will be used in place of
the class default.
"""
assert inst is None or isinstance(inst, cls)
lines = []
header = "--%s.%s=<%s>" % (cls.__name__, trait.name, trait.__class__.__name__)
lines.append(header)
if inst is not None:
lines.append(indent('Current: %r' % getattr(inst, trait.name), 4))
else:
try:
dvr = repr(trait.get_default_value())
except Exception:
dvr = None # ignore defaults we can't construct
if dvr is not None:
if len(dvr) > 64:
dvr = dvr[:61]+'...'
lines.append(indent('Default: %s' % dvr, 4))
if 'Enum' in trait.__class__.__name__:
# include Enum choices
lines.append(indent('Choices: %r' % (trait.values,)))
help = trait.get_metadata('help')
if help is not None:
help = '\n'.join(wrap_paragraphs(help, 76))
lines.append(indent(help, 4))
return '\n'.join(lines) | 0.004102 |
def _minutes_to_exclude(self):
"""
Calculate the minutes which should be excluded when a window
occurs on days which had an early close, i.e. days where the close
based on the regular period of minutes per day and the market close
do not match.
Returns
-------
List of DatetimeIndex representing the minutes to exclude because
of early closes.
"""
market_opens = self._market_opens.values.astype('datetime64[m]')
market_closes = self._market_closes.values.astype('datetime64[m]')
minutes_per_day = (market_closes - market_opens).astype(np.int64)
early_indices = np.where(
minutes_per_day != self._minutes_per_day - 1)[0]
early_opens = self._market_opens[early_indices]
early_closes = self._market_closes[early_indices]
minutes = [(market_open, early_close)
for market_open, early_close
in zip(early_opens, early_closes)]
return minutes | 0.001942 |
def error(self):
"""Returns the error for this barrier and all work items, if any."""
# Copy the error from any failed item to be the error for the whole
# barrier. The first error seen "wins". Also handles the case where
# the WorkItems passed into the barrier have already completed and
# been marked with errors.
for item in self:
if isinstance(item, WorkItem) and item.error:
return item.error
return None | 0.004057 |
def set_subservice(self, obj):
"""Add a sub-service object.
:param obj: stackinabox.services.StackInABoxService instance
:raises: RouteAlreadyRegisteredError if the route is already registered
:returns: n/a
"""
# ensure there is not already a sub-service
if self.obj is not None:
raise RouteAlreadyRegisteredError(
'Service Router ({0} - {1}): Route {2} already has a '
'sub-service handler'
.format(id(self), self.service_name, self.uri))
# warn if any methods are already registered
if len(self.methods):
logger.debug(
'WARNING: Service Router ({0} - {1}): Methods detected '
'on Route {2}. Sub-Service {3} may be hidden.'
.format(id(self), self.service_name, self.uri, obj.name))
# Ensure we do not have any circular references
assert(obj != self.parent_obj)
# if no errors, save the object and update the URI
self.obj = obj
self.obj.base_url = '{0}/{1}'.format(self.uri, self.service_name) | 0.001771 |
def angle(array_of_xyzs):
"""
Calculates angle between three coordinate points (I could not find a package
that does this but if one exists that would probably be better). Used for Angle constraints.
"""
ab = array_of_xyzs[0] - array_of_xyzs[1]
cb = array_of_xyzs[2] - array_of_xyzs[1]
return np.arccos((np.dot(ab,cb)) / (np.sqrt(ab[0]**2 + ab[1]**2 \
+ ab[2]**2) * np.sqrt(cb[0]**2 + cb[1]**2 + cb[2]**2))) | 0.01573 |
def key(self, att=None):
"""Returns the Redis key where the values are stored."""
if att is not None:
return self._key[self.id][att]
else:
return self._key[self.id] | 0.009434 |
def flip_strand(self):
"""Flips the strand of the alleles."""
self.reference = complement_alleles(self.reference)
self.coded = complement_alleles(self.coded)
self.variant.complement_alleles() | 0.008969 |
def _atexit__register(self, func, *targs, **kwargs):
"""
Intercept :func:`atexit.register` calls, diverting any to
:func:`shutil.rmtree` into a private list.
"""
if func == shutil.rmtree:
self.deferred.append((func, targs, kwargs))
return
self.original['register'](func, *targs, **kwargs) | 0.00554 |
def do_escape_nl(self, arg):
"""
Escape newlines in any responses
"""
if arg.lower() == 'off':
self.escape_nl = False
else:
self.escape_nl = True | 0.009569 |
def load(cls, query_name):
"""Load a pre-made query.
These queries are distributed with lsstprojectmeta. See
:file:`lsstrojectmeta/data/githubv4/README.rst` inside the
package repository for details on available queries.
Parameters
----------
query_name : `str`
Name of the query, such as ``'technote_repo'``.
Returns
-------
github_query : `GitHubQuery
A GitHub query or mutation object that you can pass to
`github_request` to execute the request itself.
"""
template_path = os.path.join(
os.path.dirname(__file__),
'../data/githubv4',
query_name + '.graphql')
with open(template_path) as f:
query_data = f.read()
return cls(query_data, name=query_name) | 0.002336 |
def call_hook(message,
attachment=None,
color='good',
short=False,
identifier=None,
channel=None,
username=None,
icon_emoji=None):
'''
Send message to Slack incoming webhook.
:param message: The topic of message.
:param attachment: The message to send to the Slacke WebHook.
:param color: The color of border of left side
:param short: An optional flag indicating whether the value is short
enough to be displayed side-by-side with other values.
:param identifier: The identifier of WebHook.
:param channel: The channel to use instead of the WebHook default.
:param username: Username to use instead of WebHook default.
:param icon_emoji: Icon to use instead of WebHook default.
:return: Boolean if message was sent successfully.
CLI Example:
.. code-block:: bash
salt '*' slack.call_hook message='Hello, from SaltStack'
'''
base_url = 'https://hooks.slack.com/services/'
if not identifier:
identifier = _get_hook_id()
url = _urljoin(base_url, identifier)
if not message:
log.error('message is required option')
if attachment:
payload = {
'attachments': [
{
'fallback': message,
'color': color,
'pretext': message,
'fields': [
{
"value": attachment,
"short": short,
}
]
}
]
}
else:
payload = {
'text': message,
}
if channel:
payload['channel'] = channel
if username:
payload['username'] = username
if icon_emoji:
payload['icon_emoji'] = icon_emoji
data = _urlencode(
{
'payload': salt.utils.json.dumps(payload)
}
)
result = salt.utils.http.query(url, method='POST', data=data, status=True)
if result['status'] <= 201:
return True
else:
return {
'res': False,
'message': result.get('body', result['status'])
} | 0.000431 |
def _do_scale(image, size):
"""Rescale the image by scaling the smaller spatial dimension to `size`."""
shape = tf.cast(tf.shape(image), tf.float32)
w_greater = tf.greater(shape[0], shape[1])
shape = tf.cond(w_greater,
lambda: tf.cast([shape[0] / shape[1] * size, size], tf.int32),
lambda: tf.cast([size, shape[1] / shape[0] * size], tf.int32))
return tf.image.resize_bicubic([image], shape)[0] | 0.018141 |
def as_field_error(node, secid):
""" convert a fieldExceptions element to a FieldError or FieldError array """
assert node.Name == 'fieldExceptions'
if node.IsArray:
return [XmlHelper.as_field_error(node.GetValue(_), secid) for _ in range(node.NumValues)]
else:
fld = XmlHelper.get_child_value(node, 'fieldId')
info = node.GetElement('errorInfo')
src = XmlHelper.get_child_value(info, 'source')
code = XmlHelper.get_child_value(info, 'code')
cat = XmlHelper.get_child_value(info, 'category')
msg = XmlHelper.get_child_value(info, 'message')
subcat = XmlHelper.get_child_value(info, 'subcategory')
return FieldError(security=secid, field=fld, source=src, code=code, category=cat, message=msg,
subcategory=subcat) | 0.005675 |
def plot_predict(self, h=5, past_values=20, intervals=True, **kwargs):
""" Makes forecast with the estimated model
Parameters
----------
h : int (default : 5)
How many steps ahead would you like to forecast?
past_values : int (default : 20)
How many past observations to show on the forecast graph?
intervals : Boolean
Would you like to show prediction intervals for the forecast?
Returns
----------
- Plot of the forecast
"""
import matplotlib.pyplot as plt
import seaborn as sns
figsize = kwargs.get('figsize',(10,7))
if self.latent_variables.estimated is False:
raise Exception("No latent variables estimated!")
else:
# Retrieve data, dates and (transformed) latent variables
sigma2, Y, scores = self._model(self.latent_variables.get_z_values())
date_index = self.shift_dates(h)
if self.latent_variables.estimation_method in ['M-H']:
sim_vector = self._sim_prediction_bayes(h, 15000)
error_bars = []
for pre in range(5,100,5):
error_bars.append(np.insert([np.percentile(i,pre) for i in sim_vector], 0, sigma2[-1]))
forecasted_values = np.insert([np.mean(i) for i in sim_vector], 0, sigma2[-1])
plot_values = np.append(sigma2[-1-past_values:-2], forecasted_values)
plot_index = date_index[-h-past_values:]
else:
t_z = self.transform_z()
sim_values = self._sim_prediction(sigma2, Y, scores, h, t_z, 15000)
error_bars, forecasted_values, plot_values, plot_index = self._summarize_simulations(sigma2, sim_values, date_index, h, past_values)
plt.figure(figsize=figsize)
if intervals == True:
alpha =[0.15*i/float(100) for i in range(50,12,-2)]
for count, pre in enumerate(error_bars):
plt.fill_between(date_index[-h-1:], error_bars[count], error_bars[-count-1], alpha=alpha[count])
plt.plot(plot_index, plot_values)
plt.title("Forecast for " + self.data_name + " Conditional Volatility")
plt.xlabel("Time")
plt.ylabel(self.data_name + " Conditional Volatility")
plt.show() | 0.009057 |
def convert(self, blob, size=500):
"""Size is the maximum horizontal size."""
file_list = []
with make_temp_file(blob) as in_fn, make_temp_file() as out_fn:
try:
subprocess.check_call(["pdftoppm", "-jpeg", in_fn, out_fn])
file_list = sorted(glob.glob(f"{out_fn}-*.jpg"))
converted_images = []
for fn in file_list:
converted = resize(open(fn, "rb").read(), size, size)
converted_images.append(converted)
return converted_images
except Exception as e:
raise ConversionError("pdftoppm failed") from e
finally:
for fn in file_list:
try:
os.remove(fn)
except OSError:
pass | 0.002301 |
def walk_nodes(self, node, original):
"""
Iterate over the nodes recursively yielding the templatetag 'sass_src'
"""
try:
# try with django-compressor<2.1
nodelist = self.parser.get_nodelist(node, original=original)
except TypeError:
nodelist = self.parser.get_nodelist(node, original=original, context=None)
for node in nodelist:
if isinstance(node, SassSrcNode):
if node.is_sass:
yield node
else:
for node in self.walk_nodes(node, original=original):
yield node | 0.004666 |
def _kafka_success(self, item, spider, response):
'''
Callback for successful send
'''
item['success'] = True
item = self._clean_item(item)
item['spiderid'] = spider.name
self.logger.info("Sent page to Kafka", item) | 0.00738 |
def as_coeff_unit(self):
"""Factor the coefficient multiplying a unit
For units that are multiplied by a constant dimensionless
coefficient, returns a tuple containing the coefficient and
a new unit object for the unmultiplied unit.
Example
-------
>>> import unyt as u
>>> unit = (u.m**2/u.cm).simplify()
>>> unit
100*m
>>> unit.as_coeff_unit()
(100.0, m)
"""
coeff, mul = self.expr.as_coeff_Mul()
coeff = float(coeff)
ret = Unit(
mul,
self.base_value / coeff,
self.base_offset,
self.dimensions,
self.registry,
)
return coeff, ret | 0.00271 |
def subsystem(s):
"""Validate a |Subsystem|.
Checks its state and cut.
"""
node_states(s.state)
cut(s.cut, s.cut_indices)
if config.VALIDATE_SUBSYSTEM_STATES:
state_reachable(s)
return True | 0.004425 |
def getBitmap(self):
""" Captures screen area of this region, at least the part that is on the screen
Returns image as numpy array
"""
return PlatformManager.getBitmapFromRect(self.x, self.y, self.w, self.h) | 0.016667 |
def get_missing_required_annotations(self) -> List[str]:
"""Return missing required annotations."""
return [
required_annotation
for required_annotation in self.required_annotations
if required_annotation not in self.annotations
] | 0.006897 |
def new_result(self, job):
"""
function to register finished runs
Every time a run has finished, this function should be called
to register it with the result logger. If overwritten, make
sure to call this method from the base class to ensure proper
logging.
Parameters:
-----------
job_id: dict
a dictionary containing all the info about the run
job_result: dict
contains all the results of the job, i.e. it's a dict with
the keys 'loss' and 'info'
"""
super(KernelDensityEstimator, self).new_result(job)
budget = job.kwargs["budget"]
if budget not in self.configs.keys():
self.configs[budget] = []
self.losses[budget] = []
# We want to get a numerical representation of the configuration in the original space
conf = ConfigSpace.Configuration(self.configspace, job.kwargs['config'])
self.configs[budget].append(conf.get_array())
self.losses[budget].append(job.result['result']["loss"])
# Check if we have enough data points to fit a KDE
if len(self.configs[budget]) % self.update_after_n_points == 0:
train_configs, train_losses = [], []
train_configs.extend(self.configs[budget])
train_losses.extend(self.losses[budget])
n = int(self.top_n_percent * len(train_configs) / 100.)
remaining_budgets = list(self.configs.keys())
remaining_budgets.remove(budget)
remaining_budgets.sort(reverse=True)
for b in remaining_budgets:
if n >= self.min_points_in_model: break
train_configs.extend(self.configs[b])
train_losses.extend(self.losses[b])
n = int(self.top_n_percent * len(train_configs) / 100.)
if len(train_losses) < self.min_points_in_model:
return
n = max(self.min_points_in_model, n)
# Refit KDE for the current budget
idx = np.argsort(train_losses)
train_data = (np.array(train_configs)[idx])[:n]
self.kde_models[budget] = sm.nonparametric.KDEMultivariate(data=train_data,
var_type=self.var_type,
bw='cv_ls') | 0.032918 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.