text
stringlengths
78
104k
score
float64
0
0.18
def _load_meta(path): """ Load meta data about this package from file pypi.json. :param path: The path to pypi.json :return: Dictionary of key value pairs. """ with open(path) as f: meta = load(f, encoding='utf-8') meta = {k: v.decode('utf-8') if isinstance(v, bytes) else v for k, v in meta.items()} src_dir = abspath(dirname(path)) if 'requirements' in meta and \ str(meta['requirements']).startswith('file://'): req_path = str(meta['requirements'])[7:] req_path = join(src_dir, req_path) if exists(req_path): reqs = open(req_path, 'r').read().strip().split('\n') reqs = [req.strip() for req in reqs if 'git+' not in req] meta['requirements'] = reqs else: meta['requirements'] = '' if 'long_description' in meta and \ str(meta['long_description']).startswith('file://'): readme_path = str(meta['long_description'])[7:] readme_path = join(src_dir, readme_path) if exists(readme_path): readme = open(readme_path, 'r').read().strip() meta['long_description'] = readme else: meta['long_description'] = '' return meta
0.000745
def save(self, model, path=''): """Save the file model and return the model with no content.""" if model['type'] != 'notebook': return super(TextFileContentsManager, self).save(model, path) nbk = model['content'] try: metadata = nbk.get('metadata') rearrange_jupytext_metadata(metadata) jupytext_metadata = metadata.setdefault('jupytext', {}) jupytext_formats = jupytext_metadata.get('formats') or self.default_formats(path) if not jupytext_formats: text_representation = jupytext_metadata.get('text_representation', {}) ext = os.path.splitext(path)[1] fmt = {'extension': ext} if ext == text_representation.get('extension') and text_representation.get('format_name'): fmt['format_name'] = text_representation.get('format_name') jupytext_formats = [fmt] jupytext_formats = long_form_multiple_formats(jupytext_formats, metadata) # Set preferred formats if not format name is given yet jupytext_formats = [preferred_format(fmt, self.preferred_jupytext_formats_save) for fmt in jupytext_formats] base, fmt = find_base_path_and_format(path, jupytext_formats) self.update_paired_notebooks(path, fmt, jupytext_formats) self.set_default_format_options(jupytext_metadata) if not jupytext_metadata: metadata.pop('jupytext') # Save as ipynb first return_value = None value = None for fmt in jupytext_formats[::-1]: if fmt['extension'] != '.ipynb': continue alt_path = full_path(base, fmt) self.create_prefix_dir(alt_path, fmt) self.log.info("Saving %s", os.path.basename(alt_path)) value = super(TextFileContentsManager, self).save(model, alt_path) if alt_path == path: return_value = value # And then to the other formats, in reverse order so that # the first format is the most recent for fmt in jupytext_formats[::-1]: if fmt['extension'] == '.ipynb': continue alt_path = full_path(base, fmt) self.create_prefix_dir(alt_path, fmt) if 'format_name' in fmt and fmt['extension'] not in ['.Rmd', '.md']: self.log.info("Saving %s in format %s:%s", os.path.basename(alt_path), fmt['extension'][1:], fmt['format_name']) else: self.log.info("Saving %s", os.path.basename(alt_path)) with mock.patch('nbformat.writes', _jupytext_writes(fmt)): value = super(TextFileContentsManager, self).save(model, alt_path) if alt_path == path: return_value = value # Update modified timestamp to match that of the pair #207 return_value['last_modified'] = value['last_modified'] return return_value except Exception as err: raise HTTPError(400, str(err))
0.003362
def GetFormatSpecification(self): """Retrieves the format specification. Returns: FormatSpecification: format specification or None if the format cannot be defined by a specification object. """ format_specification = specification.FormatSpecification( self.type_indicator) # TODO: add support for signature chains so that we add the 'BZ' at # offset 0. # BZIP2 compressed steam signature. format_specification.AddNewSignature(b'\x31\x41\x59\x26\x53\x59', offset=4) return format_specification
0.001795
def finish_displayhook(self): """Finish up all displayhook activities.""" io.stdout.write(self.shell.separate_out2) io.stdout.flush()
0.012739
def to_mask(self, method='exact', subpixels=5): """ Return a list of `~photutils.ApertureMask` objects, one for each aperture position. Parameters ---------- method : {'exact', 'center', 'subpixel'}, optional The method used to determine the overlap of the aperture on the pixel grid. Not all options are available for all aperture types. Note that the more precise methods are generally slower. The following methods are available: * ``'exact'`` (default): The the exact fractional overlap of the aperture and each pixel is calculated. The returned mask will contain values between 0 and 1. * ``'center'``: A pixel is considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. The returned mask will contain values only of 0 (out) and 1 (in). * ``'subpixel'``: A pixel is divided into subpixels (see the ``subpixels`` keyword), each of which are considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. If ``subpixels=1``, this method is equivalent to ``'center'``. The returned mask will contain values between 0 and 1. subpixels : int, optional For the ``'subpixel'`` method, resample pixels by this factor in each dimension. That is, each pixel is divided into ``subpixels ** 2`` subpixels. Returns ------- mask : list of `~photutils.ApertureMask` A list of aperture mask objects. """ use_exact, subpixels = self._translate_mask_mode(method, subpixels) if hasattr(self, 'a'): a = self.a b = self.b elif hasattr(self, 'a_in'): # annulus a = self.a_out b = self.b_out b_in = self.a_in * self.b_out / self.a_out else: raise ValueError('Cannot determine the aperture shape.') masks = [] for bbox, edges in zip(self.bounding_boxes, self._centered_edges): ny, nx = bbox.shape mask = elliptical_overlap_grid(edges[0], edges[1], edges[2], edges[3], nx, ny, a, b, self.theta, use_exact, subpixels) # subtract the inner ellipse for an annulus if hasattr(self, 'a_in'): mask -= elliptical_overlap_grid(edges[0], edges[1], edges[2], edges[3], nx, ny, self.a_in, b_in, self.theta, use_exact, subpixels) masks.append(ApertureMask(mask, bbox)) return masks
0.000646
def revoke_sudo_privileges(request): """ Revoke sudo privileges from a request explicitly """ request._sudo = False if COOKIE_NAME in request.session: del request.session[COOKIE_NAME]
0.004739
def byte_adaptor(fbuffer): """ provides py3 compatibility by converting byte based file stream to string based file stream Arguments: fbuffer: file like objects containing bytes Returns: string buffer """ if six.PY3: strings = fbuffer.read().decode('latin-1') fbuffer = six.StringIO(strings) return fbuffer else: return fbuffer
0.002469
def unique_justseen(iterable, key=None): """Yields elements in order, ignoring serial duplicates >>> list(unique_justseen('AAAABBBCCDAABBB')) ['A', 'B', 'C', 'D', 'A', 'B'] >>> list(unique_justseen('ABBCcAD', str.lower)) ['A', 'B', 'C', 'A', 'D'] """ return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
0.002732
def remove_task(cls, task): """ :param Task|callable task: Remove 'task' from the list of tasks to run periodically """ with cls._lock: if not isinstance(task, Task): task = cls.resolved_task(task) if task: cls.tasks.remove(task) cls.tasks.sort()
0.008621
def computePerturbedFreeEnergies(self, u_ln, compute_uncertainty=True, uncertainty_method=None, warning_cutoff=1.0e-10): """Compute the free energies for a new set of states. Here, we desire the free energy differences among a set of new states, as well as the uncertainty estimates in these differences. Parameters ---------- u_ln : np.ndarray, float, shape=(L, Nmax) u_ln[l,n] is the reduced potential energy of uncorrelated configuration n evaluated at new state k. Can be completely indepednent of the original number of states. compute_uncertainty : bool, optional, default=True If False, the uncertainties will not be computed (default: True) uncertainty_method : string, optional Choice of method used to compute asymptotic covariance method, or None to use default See help for computeAsymptoticCovarianceMatrix() for more information on various methods. (default: None) warning_cutoff : float, optional Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10) Returns ------- result_vals : dictionary Possible keys in the result_vals dictionary: 'Delta_f' : np.ndarray, float, shape=(L, L) result_vals['Delta_f'] = f_j - f_i, the dimensionless free energy difference between new states i and j 'dDelta_f' : np.ndarray, float, shape=(L, L) result_vals['dDelta_f'] is the estimated statistical uncertainty in result_vals['Delta_f'] or not included if `compute_uncertainty` is False Examples -------- >>> from pymbar import testsystems >>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn') >>> mbar = MBAR(u_kn, N_k) >>> results = mbar.computePerturbedFreeEnergies(u_kn) """ # Convert to np matrix. u_ln = np.array(u_ln, dtype=np.float64) # Get the dimensions of the matrix of reduced potential energies, and convert if necessary if len(np.shape(u_ln)) == 3: u_ln = kln_to_kn(u_ln, N_k=self.N_k) [L, N] = u_ln.shape # Check dimensions. if (N < self.N): raise DataError("There seems to be too few samples in u_kn. You must evaluate at the new potential with all of the samples used originally.") state_list = np.arange(L) # need to get it into the correct shape A_in = np.array([0]) inner_results = self.computeExpectationsInner(A_in, u_ln, state_list, return_theta=compute_uncertainty, uncertainty_method=uncertainty_method, warning_cutoff=warning_cutoff) Deltaf_ij, dDeltaf_ij = None, None f_k = np.matrix(inner_results['f']) result_vals = dict() result_vals['Delta_f'] = np.array(f_k - f_k.transpose()) if (compute_uncertainty): result_vals['dDelta_f'] = self._ErrorOfDifferences(inner_results['Theta'],warning_cutoff=warning_cutoff) # Return matrix of free energy differences and uncertainties. return result_vals
0.005405
def fit(self, ini_betas=None, tol=1.0e-6, max_iter=200, solve='iwls'): """ Method that fits a model with a particular estimation routine. Parameters ---------- ini_betas : array k*1, initial coefficient values, including constant. Default is None, which calculates initial values during estimation. tol: float Tolerence for estimation convergence. max_iter : integer Maximum number of iterations if convergence not achieved. solve :string Technique to solve MLE equations. 'iwls' = iteratively (re)weighted least squares (default) """ self.fit_params['ini_betas'] = ini_betas self.fit_params['tol'] = tol self.fit_params['max_iter'] = max_iter self.fit_params['solve'] = solve if solve.lower() == 'iwls': params, predy, w, n_iter = iwls( self.y, self.X, self.family, self.offset, self.y_fix, ini_betas, tol, max_iter) self.fit_params['n_iter'] = n_iter return GLMResults(self, params.flatten(), predy, w)
0.003113
def list_of_all_href(self,html): ''' It will return all hyper links found in the mr-jatt page for download ''' soup=BeautifulSoup(html) links=[] a_list=soup.findAll('a','touch') for x in xrange(len(a_list)-1): link = a_list[x].get('href') name = a_list[x] name = str(name) name=re.sub(r'<a.*/>|<span.*">|</span>|</a>|<a.*html">|<font.*">|</font>','',name) name=re.sub(r'^[0-9]+\.','',name) links.append([link,name]) #quit() return links
0.067511
def _set_all_tables(self, schema, **kwargs): """ You can run into a problem when you are trying to set a table and it has a foreign key to a table that doesn't exist, so this method will go through all fk refs and make sure the tables exist """ with self.transaction(**kwargs) as connection: kwargs['connection'] = connection # go through and make sure all foreign key referenced tables exist for field_name, field_val in schema.fields.items(): s = field_val.schema if s: self._set_all_tables(s, **kwargs) # now that we know all fk tables exist, create this table self.set_table(schema, **kwargs) return True
0.007692
def getparser(use_datetime=0): """getparser() -> parser, unmarshaller Create an instance of the fastest available parser, and attach it to an unmarshalling object. Return both objects. """ if use_datetime and not datetime: raise ValueError("the datetime module is not available") if FastParser and FastUnmarshaller: if use_datetime: mkdatetime = _datetime_type else: mkdatetime = _datetime target = FastUnmarshaller(True, False, _binary, mkdatetime, Fault) parser = FastParser(target) else: target = Unmarshaller(use_datetime=use_datetime) if FastParser: parser = FastParser(target) elif SgmlopParser: parser = SgmlopParser(target) elif ExpatParser: parser = ExpatParser(target) else: parser = SlowParser(target) return parser, target
0.001087
def get_gradebooks(self): """Pass through to provider GradebookLookupSession.get_gradebooks""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_template catalogs = self._get_provider_session('gradebook_lookup_session').get_gradebooks() cat_list = [] for cat in catalogs: cat_list.append(Gradebook(self._provider_manager, cat, self._runtime, self._proxy)) return GradebookList(cat_list)
0.008197
def index(): """ Display productpage with normal user and test user buttons""" global productpage table = json2html.convert(json = json.dumps(productpage), table_attributes="class=\"table table-condensed table-bordered table-hover\"") return render_template('index.html', serviceTable=table)
0.011799
def _get_values(self, rdn): """ Returns a dict of prepped values contained in an RDN :param rdn: A RelativeDistinguishedName object :return: A dict object with unicode strings of NameTypeAndValue value field values that have been prepped for comparison """ output = {} [output.update([(ntv['type'].native, ntv.prepped_value)]) for ntv in rdn] return output
0.006536
def get_trending_daily_not_starred(self): """Gets trending repositories NOT starred by user :return: List of daily-trending repositories which are not starred """ trending_daily = self.get_trending_daily() # repos trending daily starred_repos = self.get_starred_repos() # repos starred by user repos_list = [] for repo in trending_daily: if repo not in starred_repos: repos_list.append(repo) return repos_list
0.00396
def _get_bounds(mapper, values): """ Extract first and second value from tuples of mapped bins. """ array = np.array([mapper.get(x) for x in values]) return array[:, 0], array[:, 1]
0.009009
def _microtime(): ''' Return a Unix timestamp as a string of digits :return: ''' val1, val2 = math.modf(time.time()) val2 = int(val2) return '{0:f}{1}'.format(val1, val2)
0.005051
def uri(ctx, uri, touch, force): """ Add a new credential from URI. Use a URI to add a new credential to your YubiKey. """ if not uri: while True: uri = click.prompt('Enter an OATH URI', err=True) try: uri = CredentialData.from_uri(uri) break except Exception as e: click.echo(e) ensure_validated(ctx) data = uri # Steam is a special case where we allow the otpauth # URI to contain a 'digits' value of '5'. if data.digits == 5 and data.issuer == 'Steam': data.digits = 6 data.touch = touch _add_cred(ctx, data, force=force)
0.001475
def find_item_by_id(self, object_id): """Get item based on its id or uuid :param object_id: :type object_id: int | str :return: :rtype: alignak.objects.item.Item | None """ # Item id may be an item if isinstance(object_id, Item): return object_id # Item id should be a uuid string if not isinstance(object_id, string_types): logger.debug("Find an item by id, object_id is not int nor string: %s", object_id) return object_id for items in [self.hosts, self.services, self.actions, self.checks, self.hostgroups, self.servicegroups, self.contacts, self.contactgroups]: if object_id in items: return items[object_id] # raise AttributeError("Item with id %s not found" % object_id) # pragma: no cover, logger.error("Item with id %s not found", str(object_id)) # pragma: no cover, return None
0.006061
def selected_indexes(self, ): """Return the current index :returns: the current index in a list :rtype: list of QtCore.QModelIndex :raises: None """ i = self.model().index(self.currentIndex(), 0, self.rootModelIndex()) return [i]
0.006993
def get_section_by_offset(self, offset): """Get the section containing the given file offset.""" sections = [s for s in self.sections if s.contains_offset(offset)] if sections: return sections[0] return None
0.007874
def start_slaves(slave_dir,exe_rel_path,pst_rel_path,num_slaves=None,slave_root="..", port=4004,rel_path=None,local=True,cleanup=True,master_dir=None, verbose=False,silent_master=False): """ start a group of pest(++) slaves on the local machine Parameters ---------- slave_dir : str the path to a complete set of input files exe_rel_path : str the relative path to the pest(++) executable from within the slave_dir pst_rel_path : str the relative path to the pst file from within the slave_dir num_slaves : int number of slaves to start. defaults to number of cores slave_root : str the root to make the new slave directories in rel_path: str the relative path to where pest(++) should be run from within the slave_dir, defaults to the uppermost level of the slave dir local: bool flag for using "localhost" instead of hostname on slave command line cleanup: bool flag to remove slave directories once processes exit master_dir: str name of directory for master instance. If master_dir exists, then it will be removed. If master_dir is None, no master instance will be started verbose : bool flag to echo useful information to stdout Note ---- if all slaves (and optionally master) exit gracefully, then the slave dirs will be removed unless cleanup is false Example ------- ``>>>import pyemu`` start 10 slaves using the directory "template" as the base case and also start a master instance in a directory "master". ``>>>pyemu.helpers.start_slaves("template","pestpp","pest.pst",10,master_dir="master")`` """ warnings.warn("start_slaves has moved to pyemu.os_utils",PyemuWarning) pyemu.os_utils.start_slaves(slave_dir=slave_dir,exe_rel_path=exe_rel_path,pst_rel_path=pst_rel_path ,num_slaves=num_slaves,slave_root=slave_root,port=port,rel_path=rel_path, local=local,cleanup=cleanup,master_dir=master_dir,verbose=verbose, silent_master=silent_master)
0.013376
def run(self): ''' Execute the salt command line ''' import salt.client self.parse_args() if self.config['log_level'] not in ('quiet', ): # Setup file logging! self.setup_logfile_logger() verify_log(self.config) try: # We don't need to bail on config file permission errors # if the CLI process is run with the -a flag skip_perm_errors = self.options.eauth != '' self.local_client = salt.client.get_local_client( self.get_config_file_path(), skip_perm_errors=skip_perm_errors, auto_reconnect=True) except SaltClientError as exc: self.exit(2, '{0}\n'.format(exc)) return if self.options.batch or self.options.static: # _run_batch() will handle all output and # exit with the appropriate error condition # Execution will not continue past this point # in batch mode. self._run_batch() return if self.options.preview_target: minion_list = self._preview_target() self._output_ret(minion_list, self.config.get('output', 'nested')) return if self.options.timeout <= 0: self.options.timeout = self.local_client.opts['timeout'] kwargs = { 'tgt': self.config['tgt'], 'fun': self.config['fun'], 'arg': self.config['arg'], 'timeout': self.options.timeout, 'show_timeout': self.options.show_timeout, 'show_jid': self.options.show_jid} if 'token' in self.config: import salt.utils.files try: with salt.utils.files.fopen(os.path.join(self.config['cachedir'], '.root_key'), 'r') as fp_: kwargs['key'] = fp_.readline() except IOError: kwargs['token'] = self.config['token'] kwargs['delimiter'] = self.options.delimiter if self.selected_target_option: kwargs['tgt_type'] = self.selected_target_option else: kwargs['tgt_type'] = 'glob' # If batch_safe_limit is set, check minions matching target and # potentially switch to batch execution if self.options.batch_safe_limit > 1: if len(self._preview_target()) >= self.options.batch_safe_limit: salt.utils.stringutils.print_cli('\nNOTICE: Too many minions targeted, switching to batch execution.') self.options.batch = self.options.batch_safe_size self._run_batch() return if getattr(self.options, 'return'): kwargs['ret'] = getattr(self.options, 'return') if getattr(self.options, 'return_config'): kwargs['ret_config'] = getattr(self.options, 'return_config') if getattr(self.options, 'return_kwargs'): kwargs['ret_kwargs'] = yamlify_arg( getattr(self.options, 'return_kwargs')) if getattr(self.options, 'module_executors'): kwargs['module_executors'] = yamlify_arg(getattr(self.options, 'module_executors')) if getattr(self.options, 'executor_opts'): kwargs['executor_opts'] = yamlify_arg(getattr(self.options, 'executor_opts')) if getattr(self.options, 'metadata'): kwargs['metadata'] = yamlify_arg( getattr(self.options, 'metadata')) # If using eauth and a token hasn't already been loaded into # kwargs, prompt the user to enter auth credentials if 'token' not in kwargs and 'key' not in kwargs and self.options.eauth: # This is expensive. Don't do it unless we need to. import salt.auth resolver = salt.auth.Resolver(self.config) res = resolver.cli(self.options.eauth) if self.options.mktoken and res: tok = resolver.token_cli( self.options.eauth, res ) if tok: kwargs['token'] = tok.get('token', '') if not res: sys.stderr.write('ERROR: Authentication failed\n') sys.exit(2) kwargs.update(res) kwargs['eauth'] = self.options.eauth if self.config['async']: jid = self.local_client.cmd_async(**kwargs) salt.utils.stringutils.print_cli('Executed command with job ID: {0}'.format(jid)) return # local will be None when there was an error if not self.local_client: return retcodes = [] errors = [] try: if self.options.subset: cmd_func = self.local_client.cmd_subset kwargs['sub'] = self.options.subset kwargs['cli'] = True else: cmd_func = self.local_client.cmd_cli if self.options.progress: kwargs['progress'] = True self.config['progress'] = True ret = {} for progress in cmd_func(**kwargs): out = 'progress' try: self._progress_ret(progress, out) except LoaderError as exc: raise SaltSystemExit(exc) if 'return_count' not in progress: ret.update(progress) self._progress_end(out) self._print_returns_summary(ret) elif self.config['fun'] == 'sys.doc': ret = {} out = '' for full_ret in self.local_client.cmd_cli(**kwargs): ret_, out, retcode = self._format_ret(full_ret) ret.update(ret_) self._output_ret(ret, out, retcode=retcode) else: if self.options.verbose: kwargs['verbose'] = True ret = {} for full_ret in cmd_func(**kwargs): try: ret_, out, retcode = self._format_ret(full_ret) retcodes.append(retcode) self._output_ret(ret_, out, retcode=retcode) ret.update(full_ret) except KeyError: errors.append(full_ret) # Returns summary if self.config['cli_summary'] is True: if self.config['fun'] != 'sys.doc': if self.options.output is None: self._print_returns_summary(ret) self._print_errors_summary(errors) # NOTE: Return code is set here based on if all minions # returned 'ok' with a retcode of 0. # This is the final point before the 'salt' cmd returns, # which is why we set the retcode here. if not all(exit_code == salt.defaults.exitcodes.EX_OK for exit_code in retcodes): sys.stderr.write('ERROR: Minions returned with non-zero exit code\n') sys.exit(salt.defaults.exitcodes.EX_GENERIC) except (AuthenticationError, AuthorizationError, SaltInvocationError, EauthAuthenticationError, SaltClientError) as exc: ret = six.text_type(exc) self._output_ret(ret, '', retcode=1)
0.001322
def _execute_with_retries(conn, function, **kwargs): ''' Retry if we're rate limited by AWS or blocked by another call. Give up and return error message if resource not found or argument is invalid. conn The connection established by the calling method via _get_conn() function The function to call on conn. i.e. create_stream **kwargs Any kwargs required by the above function, with their keywords i.e. StreamName=stream_name Returns: The result dict with the HTTP response and JSON data if applicable as 'result', or an error as 'error' CLI example:: salt myminion boto_kinesis._execute_with_retries existing_conn function_name function_kwargs ''' r = {} max_attempts = 18 max_retry_delay = 10 for attempt in range(max_attempts): log.info("attempt: %s function: %s", attempt, function) try: fn = getattr(conn, function) r['result'] = fn(**kwargs) return r except botocore.exceptions.ClientError as e: error_code = e.response['Error']['Code'] if "LimitExceededException" in error_code or "ResourceInUseException" in error_code: # could be rate limited by AWS or another command is blocking, # retry with exponential backoff log.debug("Retrying due to AWS exception", exc_info=True) time.sleep(_jittered_backoff(attempt, max_retry_delay)) else: # ResourceNotFoundException or InvalidArgumentException r['error'] = e.response['Error'] log.error(r['error']) r['result'] = None return r r['error'] = "Tried to execute function {0} {1} times, but was unable".format(function, max_attempts) log.error(r['error']) return r
0.002654
def exit(self, code=0, message=None): """ Exit the console program sanely. """ ## If we have a parser, use it to exit if self._parser: if code > 0: self.parser.error(message) else: self.parser.exit(code, message) ## Else we are exiting before parser creation else: if message is not None: if code > 0: sys.stderr.write(message) else: sys.stdout.write(message) sys.exit(code) ## If we're here we didn't exit for some reason? raise Exception("Unable to exit the %s" % self.__class__.__name__)
0.006974
def spline_base1d(length, nr_knots = 20, spline_order = 5, marginal = None): """Computes a 1D spline basis Input: length: int length of each basis nr_knots: int Number of knots, i.e. number of basis functions. spline_order: int Order of the splines. marginal: array, optional Estimate of the marginal distribution of the input to be fitted. If given, it is used to determine the positioning of knots, each knot will cover the same amount of probability mass. If not given, knots are equally spaced. """ if marginal is None: knots = augknt(np.linspace(0,length+1, nr_knots), spline_order) else: knots = knots_from_marginal(marginal, nr_knots, spline_order) x_eval = np.arange(1,length+1).astype(float) Bsplines = spcol(x_eval,knots,spline_order) return Bsplines, knots
0.016824
def quickRPCServer(provider, prefix, target, maxsize=20, workers=1, useenv=True, conf=None, isolate=False): """Run an RPC server in the current thread Calls are handled sequentially, and always in the current thread, if workers=1 (the default). If workers>1 then calls are handled concurrently by a pool of worker threads. Requires NTURI style argument encoding. :param str provider: A provider name. Must be unique in this process. :param str prefix: PV name prefix. Along with method names, must be globally unique. :param target: The object which is exporting methods. (use the :func:`rpc` decorator) :param int maxsize: Number of pending RPC calls to be queued. :param int workers: Number of worker threads (default 1) :param useenv: Passed to :class:`~p4p.server.Server` :param conf: Passed to :class:`~p4p.server.Server` :param isolate: Passed to :class:`~p4p.server.Server` """ from p4p.server import Server import time queue = ThreadedWorkQueue(maxsize=maxsize, workers=workers) provider = NTURIDispatcher(queue, target=target, prefix=prefix, name=provider) threads = [] server = Server(providers=[provider], useenv=useenv, conf=conf, isolate=isolate) with server, queue: while True: time.sleep(10.0)
0.005109
def recomb_probability(cM, method="kosambi"): """ <http://statgen.ncsu.edu/qtlcart/manual/node46.html> >>> recomb_probability(1) 0.009998666879965463 >>> recomb_probability(100) 0.48201379003790845 >>> recomb_probability(10000) 0.5 """ assert method in ("kosambi", "haldane") d = cM / 100. if method == "kosambi": e4d = exp(4 * d) return (e4d - 1) / (e4d + 1) / 2 elif method == "haldane": return (1 - exp(-2 * d)) / 2
0.00202
def _get_data(self, p_p_resource_id, start_date=None, end_date=None): """Get data.""" data = { '_' + REQ_PART + '_dateDebut': start_date, '_' + REQ_PART + '_dateFin': end_date } params = { 'p_p_id': REQ_PART, 'p_p_lifecycle': 2, 'p_p_state': 'normal', 'p_p_mode': 'view', 'p_p_resource_id': p_p_resource_id, 'p_p_cacheability': 'cacheLevelPage', 'p_p_col_id': 'column-1', 'p_p_col_pos': 1, 'p_p_col_count': 3 } try: raw_res = self._session.post(DATA_URL, data=data, params=params, allow_redirects=False, timeout=self._timeout) if 300 <= raw_res.status_code < 400: raw_res = self._session.post(DATA_URL, data=data, params=params, allow_redirects=False, timeout=self._timeout) except OSError as e: raise PyLinkyError("Could not access enedis.fr: " + str(e)) if raw_res.text is "": raise PyLinkyError("No data") if 302 == raw_res.status_code and "/messages/maintenance.html" in raw_res.text: raise PyLinkyError("Site in maintenance") try: json_output = raw_res.json() except (OSError, json.decoder.JSONDecodeError, simplejson.errors.JSONDecodeError) as e: raise PyLinkyError("Impossible to decode response: " + str(e) + "\nResponse was: " + str(raw_res.text)) if json_output.get('etat').get('valeur') == 'erreur': raise PyLinkyError("Enedis.fr answered with an error: " + str(json_output)) return json_output.get('graphe')
0.00297
def autoscan(): """autoscan will check all of the serial ports to see if they have a matching VID:PID for a MicroPython board. """ for port in serial.tools.list_ports.comports(): if is_micropython_usb_device(port): connect_serial(port[0])
0.00361
def get_pos_name(code, name='parent', english=True, pos_tags=POS_MAP): """Gets the part of speech name for *code*. :param str code: The part of speech code to lookup, e.g. ``'nsf'``. :param str name: Which part of speech name to include in the output. Must be one of ``'parent'``, ``'child'``, or ``'all'``. Defaults to ``'parent'``. ``'parent'`` indicates that only the most generic name should be used, e.g. ``'noun'`` for ``'nsf'``. ``'child'`` indicates that the most specific name should be used, e.g. ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all names should be used, e.g. ``('noun', 'toponym', 'transcribed toponym')`` for ``'nsf'``. :param bool english: Whether to return an English or Chinese name. :param dict pos_tags: Custom part of speech tags to use. :returns: ``str`` (``unicode`` for Python 2) if *name* is ``'parent'`` or ``'child'``. ``tuple`` if *name* is ``'all'``. """ return _get_pos_name(code, name, english, pos_tags)
0.00094
def add_func(self, func, *arg, **kwargs): """QADATASTRUCT的指标/函数apply入口 Arguments: func {[type]} -- [description] Returns: [type] -- [description] """ return self.groupby(level=1, sort=False).apply(func, *arg, **kwargs)
0.007018
def url_quote(string, charset='utf-8', errors='strict', safe='/:'): """URL encode a single string with a given encoding. :param s: the string to quote. :param charset: the charset to be used. :param safe: an optional sequence of safe characters. """ if not isinstance(string, (text_type, bytes, bytearray)): string = text_type(string) if isinstance(string, text_type): string = string.encode(charset, errors) if isinstance(safe, text_type): safe = safe.encode(charset, errors) safe = frozenset(bytearray(safe) + _always_safe) rv = bytearray() for char in bytearray(string): if char in safe: rv.append(char) else: rv.extend(('%%%02X' % char).encode('ascii')) return to_native(bytes(rv))
0.001253
def _narrow_unichr(code_point): """Retrieves the unicode character representing any given code point, in a way that won't break on narrow builds. This is necessary because the built-in unichr function will fail for ordinals above 0xFFFF on narrow builds (UCS2); ordinals above 0xFFFF would require recalculating and combining surrogate pairs. This avoids that by retrieving the unicode character that was initially read. Args: code_point (int|CodePoint): An int or a subclass of int that contains the unicode character representing its code point in an attribute named 'char'. """ try: if len(code_point.char) > 1: return code_point.char except AttributeError: pass return six.unichr(code_point)
0.006402
def items(self): """Return a list of the (name, value) pairs of the enum. These are returned in the order they were defined in the .proto file. """ return [(value_descriptor.name, value_descriptor.number) for value_descriptor in self._enum_type.values]
0.003559
def Text(name, encoding=None): """ Match a route parameter. `Any` is a synonym for `Text`. :type name: `bytes` :param name: Route parameter name. :type encoding: `bytes` :param encoding: Default encoding to assume if the ``Content-Type`` header is lacking one. :return: ``callable`` suitable for use with `route` or `subroute`. """ def _match(request, value): return name, query.Text( value, encoding=contentEncoding(request.requestHeaders, encoding)) return _match
0.001802
def remove_hook(self, repo_id, name): """Remove repository hook.""" ghrepo = self.api.repository_with_id(repo_id) if ghrepo: hooks = (h for h in ghrepo.hooks() if h.config.get('url', '') == self.webhook_url) hook = next(hooks, None) if not hook or hook.delete(): Repository.disable(user_id=self.user_id, github_id=repo_id, name=name) return True return False
0.003643
def plot_data(self, proj, ax): """ Creates and plots a scatter plot of the original data. """ x, y = proj ax.scatter(self.ig.independent_data[x], self.ig.dependent_data[y], c='b')
0.008403
def derive_child_context(self, whence): """Derives a scalar context as a child of the current context.""" return _HandlerContext( container=self.container, queue=self.queue, field_name=None, annotations=None, depth=self.depth, whence=whence, value=bytearray(), # children start without a value ion_type=None, pending_symbol=None )
0.00432
def describe_version(self): """ Query the Cassandra server for the version. :returns: string -- the version tag """ def _vers(client): return client.describe_version() d = self._connection() d.addCallback(_vers) return d
0.006711
def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) cff = SInterCan15Mid.SITE_COEFFS[imt] mean += np.log(cff['mf']) return mean, stddevs
0.003968
def _read_page(file_obj, page_header, column_metadata): """Read the data page from the given file-object and convert it to raw, uncompressed bytes (if necessary).""" bytes_from_file = file_obj.read(page_header.compressed_page_size) codec = column_metadata.codec if codec is not None and codec != parquet_thrift.CompressionCodec.UNCOMPRESSED: if column_metadata.codec == parquet_thrift.CompressionCodec.SNAPPY: raw_bytes = snappy.decompress(bytes_from_file) elif column_metadata.codec == parquet_thrift.CompressionCodec.GZIP: io_obj = io.BytesIO(bytes_from_file) with gzip.GzipFile(fileobj=io_obj, mode='rb') as file_data: raw_bytes = file_data.read() else: raise ParquetFormatException( "Unsupported Codec: {0}".format(codec)) else: raw_bytes = bytes_from_file if logger.isEnabledFor(logging.DEBUG): logger.debug( "Read page with compression type %s. Bytes %d -> %d", _get_name(parquet_thrift.CompressionCodec, codec), page_header.compressed_page_size, page_header.uncompressed_page_size) assert len(raw_bytes) == page_header.uncompressed_page_size, \ "found {0} raw bytes (expected {1})".format( len(raw_bytes), page_header.uncompressed_page_size) return raw_bytes
0.002146
def serviceResponse(self, response): ''' Checks the response received from the I{ViewServer}. @return: C{True} if the response received matches L{PARCEL_TRUE}, C{False} otherwise ''' PARCEL_TRUE = "Result: Parcel(00000000 00000001 '........')\r\n" ''' The TRUE response parcel ''' if DEBUG: print >>sys.stderr, "serviceResponse: comparing '%s' vs Parcel(%s)" % (response, PARCEL_TRUE) return response == PARCEL_TRUE
0.008081
def dict_to_hdf5(dic, endpoint): """Dump a dict to an HDF5 file. """ filename = gen_filename(endpoint) with h5py.File(filename, 'w') as handler: walk_dict_to_hdf5(dic, handler) print('dumped to', filename)
0.004292
def create_background(bg_type, fafile, outfile, genome="hg18", width=200, nr_times=10, custom_background=None): """Create background of a specific type. Parameters ---------- bg_type : str Name of background type. fafile : str Name of input FASTA file. outfile : str Name of output FASTA file. genome : str, optional Genome name. width : int, optional Size of regions. nr_times : int, optional Generate this times as many background sequences as compared to input file. Returns ------- nr_seqs : int Number of sequences created. """ width = int(width) config = MotifConfig() fg = Fasta(fafile) if bg_type in ["genomic", "gc"]: if not genome: logger.error("Need a genome to create background") sys.exit(1) if bg_type == "random": f = MarkovFasta(fg, k=1, n=nr_times * len(fg)) logger.debug("Random background: %s", outfile) elif bg_type == "genomic": logger.debug("Creating genomic background") f = RandomGenomicFasta(genome, width, nr_times * len(fg)) elif bg_type == "gc": logger.debug("Creating GC matched background") f = MatchedGcFasta(fafile, genome, nr_times * len(fg)) logger.debug("GC matched background: %s", outfile) elif bg_type == "promoter": fname = Genome(genome).filename gene_file = fname.replace(".fa", ".annotation.bed.gz") if not gene_file: gene_file = os.path.join(config.get_gene_dir(), "%s.bed" % genome) if not os.path.exists(gene_file): print("Could not find a gene file for genome {}") print("Did you use the --annotation flag for genomepy?") print("Alternatively make sure there is a file called {}.bed in {}".format(genome, config.get_gene_dir())) raise ValueError() logger.info( "Creating random promoter background (%s, using genes in %s)", genome, gene_file) f = PromoterFasta(gene_file, genome, width, nr_times * len(fg)) logger.debug("Random promoter background: %s", outfile) elif bg_type == "custom": bg_file = custom_background if not bg_file: raise IOError( "Background file not specified!") if not os.path.exists(bg_file): raise IOError( "Custom background file %s does not exist!", bg_file) else: logger.info("Copying custom background file %s to %s.", bg_file, outfile) f = Fasta(bg_file) l = np.median([len(seq) for seq in f.seqs]) if l < (width * 0.95) or l > (width * 1.05): logger.warn( "The custom background file %s contains sequences with a " "median length of %s, while GimmeMotifs predicts motifs in sequences " "of length %s. This will influence the statistics! It is recommended " "to use background sequences of the same length.", bg_file, l, width) f.writefasta(outfile) return len(f)
0.004292
def _callback(self, wType, uFmt, hConv, hsz1, hsz2, hDdeData, dwData1, dwData2): """DdeCallback callback function for processing Dynamic Data Exchange (DDE) transactions sent by DDEML in response to DDE events Parameters ---------- wType : transaction type (UINT) uFmt : clipboard data format (UINT) hConv : handle to conversation (HCONV) hsz1 : handle to string (HSZ) hsz2 : handle to string (HSZ) hDDedata : handle to global memory object (HDDEDATA) dwData1 : transaction-specific data (DWORD) dwData2 : transaction-specific data (DWORD) Returns ------- ret : specific to the type of transaction (HDDEDATA) """ if wType == XTYP_ADVDATA: # value of the data item has changed [hsz1 = topic; hsz2 = item; hDdeData = data] dwSize = DWORD(0) pData = DDE.AccessData(hDdeData, byref(dwSize)) if pData: item = create_string_buffer('\000' * 128) DDE.QueryString(self._idInst, hsz2, item, 128, CP_WINANSI) self.callback(pData, item.value) DDE.UnaccessData(hDdeData) return DDE_FACK else: print("Error: AccessData returned NULL! (err = %s)"% (hex(DDE.GetLastError(self._idInst)))) if wType == XTYP_DISCONNECT: print("Disconnect notification received from server") return 0
0.004667
def _ensure_tf_install(): # pylint: disable=g-statement-before-imports """Attempt to import tensorflow, and ensure its version is sufficient. Raises: ImportError: if either tensorflow is not importable or its version is inadequate. """ try: import tensorflow as tf except ImportError: # Print more informative error message, then reraise. print("\n\nFailed to import TensorFlow. Please note that TensorFlow is not " "installed by default when you install TensorFlow Probability. This " "is so that users can decide whether to install the GPU-enabled " "TensorFlow package. To use TensorFlow Probability, please install " "the most recent version of TensorFlow, by following instructions at " "https://tensorflow.org/install.\n\n") raise import distutils.version # # Update this whenever we need to depend on a newer TensorFlow release. # required_tensorflow_version = "1.13" if (distutils.version.LooseVersion(tf.__version__) < distutils.version.LooseVersion(required_tensorflow_version)): raise ImportError( "This version of TensorFlow Probability requires TensorFlow " "version >= {required}; Detected an installation of version {present}. " "Please upgrade TensorFlow to proceed.".format( required=required_tensorflow_version, present=tf.__version__))
0.009908
def on_receive(self, broker): """ Drain the pipe and fire callbacks. Since :attr:`_deferred` is synchronized, :meth:`defer` and :meth:`on_receive` can conspire to ensure only one byte needs to be pending regardless of queue length. """ _vv and IOLOG.debug('%r.on_receive()', self) self._lock.acquire() try: self.receive_side.read(1) deferred = self._deferred self._deferred = [] finally: self._lock.release() for func, args, kwargs in deferred: try: func(*args, **kwargs) except Exception: LOG.exception('defer() crashed: %r(*%r, **%r)', func, args, kwargs) self._broker.shutdown()
0.002463
def colorize(self, colormap, band_name=None, vmin=None, vmax=None): """Apply a colormap on a selected band. colormap list: https://matplotlib.org/examples/color/colormaps_reference.html Parameters ---------- colormap : str Colormap name from this list https://matplotlib.org/examples/color/colormaps_reference.html band_name : str, optional Name of band to colorize, if none the first band will be used vmin, vmax : int, optional minimum and maximum range for normalizing array values, if None actual raster values will be used Returns ------- GeoRaster2 """ vmin = vmin if vmin is not None else min(self.min()) vmax = vmax if vmax is not None else max(self.max()) cmap = matplotlib.cm.get_cmap(colormap) # type: matplotlib.colors.Colormap band_index = 0 if band_name is None: if self.num_bands > 1: warnings.warn("Using the first band to colorize the raster", GeoRaster2Warning) else: band_index = self.band_names.index(band_name) normalized = (self.image[band_index, :, :] - vmin) / (vmax - vmin) # Colormap instances are used to convert data values (floats) # to RGBA color that the respective Colormap # # https://matplotlib.org/_modules/matplotlib/colors.html#Colormap image_data = cmap(normalized) image_data = image_data[:, :, 0:3] # convert floats [0,1] to uint8 [0,255] image_data = image_data * 255 image_data = image_data.astype(np.uint8) image_data = np.rollaxis(image_data, 2) # force nodata where it was in original raster: mask = _join_masks_from_masked_array(self.image) mask = np.stack([mask[0, :, :]] * 3) array = np.ma.array(image_data.data, mask=mask).filled(0) # type: np.ndarray array = np.ma.array(array, mask=mask) return self.copy_with(image=array, band_names=['red', 'green', 'blue'])
0.003882
async def from_client(cls, client, *, shard_id=None, session=None, sequence=None, resume=False): """Creates a main websocket for Discord from a :class:`Client`. This is for internal use only. """ gateway = await client.http.get_gateway() ws = await websockets.connect(gateway, loop=client.loop, klass=cls, compression=None) # dynamically add attributes needed ws.token = client.http.token ws._connection = client._connection ws._dispatch = client.dispatch ws.gateway = gateway ws.shard_id = shard_id ws.shard_count = client._connection.shard_count ws.session_id = session ws.sequence = sequence ws._max_heartbeat_timeout = client._connection.heartbeat_timeout client._connection._update_references(ws) log.info('Created websocket connected to %s', gateway) # poll event for OP Hello await ws.poll_event() if not resume: await ws.identify() return ws await ws.resume() try: await ws.ensure_open() except websockets.exceptions.ConnectionClosed: # ws got closed so let's just do a regular IDENTIFY connect. log.info('RESUME failed (the websocket decided to close) for Shard ID %s. Retrying.', shard_id) return await cls.from_client(client, shard_id=shard_id) else: return ws
0.003439
def add_vrf(self, auth, attr): """ Add a new VRF. * `auth` [BaseAuth] AAA options. * `attr` [vrf_attr] The news VRF's attributes. Add a VRF based on the values stored in the `attr` dict. Returns a dict describing the VRF which was added. This is the documentation of the internal backend function. It's exposed over XML-RPC, please also see the XML-RPC documentation for :py:func:`nipap.xmlrpc.NipapXMLRPC.add_vrf` for full understanding. """ self._logger.debug("add_vrf called; attr: %s" % unicode(attr)) # sanity check - do we have all attributes? req_attr = [ 'rt', 'name' ] self._check_attr(attr, req_attr, _vrf_attrs) insert, params = self._sql_expand_insert(attr) sql = "INSERT INTO ip_net_vrf " + insert self._execute(sql, params) vrf_id = self._lastrowid() vrf = self.list_vrf(auth, { 'id': vrf_id })[0] # write to audit table audit_params = { 'vrf_id': vrf['id'], 'vrf_rt': vrf['rt'], 'vrf_name': vrf['name'], 'username': auth.username, 'authenticated_as': auth.authenticated_as, 'full_name': auth.full_name, 'authoritative_source': auth.authoritative_source, 'description': 'Added VRF %s with attr: %s' % (vrf['rt'], unicode(vrf)) } sql, params = self._sql_expand_insert(audit_params) self._execute('INSERT INTO ip_net_log %s' % sql, params) return vrf
0.004318
def _facet_counts(items): """Returns facet counts as dict. Given the `items()` on the raw dictionary from Elasticsearch this processes it and returns the counts keyed on the facet name provided in the original query. """ facets = {} for name, data in items: facets[name] = FacetResult(name, data) return facets
0.002841
def check_docstring(cls): """ Asserts that the class has a docstring, returning it if successful. """ docstring = inspect.getdoc(cls) if not docstring: breadcrumbs = " -> ".join(t.__name__ for t in inspect.getmro(cls)[:-1][::-1]) msg = "docstring required for plugin '%s' (%s, defined in %s)" args = (cls.__name__, breadcrumbs, cls.__module__) raise InternalCashewException(msg % args) max_line_length = cls._class_settings.get('max-docstring-length') if max_line_length: for i, line in enumerate(docstring.splitlines()): if len(line) > max_line_length: msg = "docstring line %s of %s is %s chars too long" args = (i, cls.__name__, len(line) - max_line_length) raise Exception(msg % args) return docstring
0.004405
def parse_file_entities(filename, entities=None, config=None, include_unmatched=False): """ Parse the passed filename for entity/value pairs. Args: filename (str): The filename to parse for entity values entities (list): An optional list of Entity instances to use in extraction. If passed, the config argument is ignored. config (str, Config, list): One or more Config objects or names of configurations to use in matching. Each element must be a Config object, or a valid Config name (e.g., 'bids' or 'derivatives'). If None, all available configs are used. include_unmatched (bool): If True, unmatched entities are included in the returned dict, with values set to None. If False (default), unmatched entities are ignored. Returns: A dict, where keys are Entity names and values are the values extracted from the filename. """ # Load Configs if needed if entities is None: if config is None: config = ['bids', 'derivatives'] config = [Config.load(c) if not isinstance(c, Config) else c for c in listify(config)] # Consolidate entities from all Configs into a single dict entities = {} for c in config: entities.update(c.entities) entities = entities.values() # Extract matches bf = BIDSFile(filename) ent_vals = {} for ent in entities: match = ent.match_file(bf) if match is not None or include_unmatched: ent_vals[ent.name] = match return ent_vals
0.000604
def _sort_labels(label_data): """Returns the labels in `label_data` sorted in descending order according to the 'size' (total token count) of their referent corpora. :param label_data: labels (with their token counts) to sort :type: `dict` :rtype: `list` """ labels = list(label_data) labels.sort(key=label_data.get, reverse=True) return labels
0.004695
def format_rpc(data): """Format an RPC call and response. Args: data (tuple): A tuple containing the address, rpc_id, argument and response payloads and any error code. Returns: str: The formated RPC string. """ address, rpc_id, args, resp, _status = data name = rpc_name(rpc_id) if isinstance(args, (bytes, bytearray)): arg_str = hexlify(args) else: arg_str = repr(args) if isinstance(resp, (bytes, bytearray)): resp_str = hexlify(resp) else: resp_str = repr(resp) #FIXME: Check and print status as well return "%s called on address %d, payload=%s, response=%s" % (name, address, arg_str, resp_str)
0.004202
def _get_hanging_wall_coeffs_rx(self, C, rup, r_x): """ Returns the hanging wall r-x caling term defined in equation 7 to 12 """ # Define coefficients R1 and R2 r_1 = rup.width * cos(radians(rup.dip)) r_2 = 62.0 * rup.mag - 350.0 fhngrx = np.zeros(len(r_x)) # Case when 0 <= Rx <= R1 idx = np.logical_and(r_x >= 0., r_x < r_1) fhngrx[idx] = self._get_f1rx(C, r_x[idx], r_1) # Case when Rx > R1 idx = r_x >= r_1 f2rx = self._get_f2rx(C, r_x[idx], r_1, r_2) f2rx[f2rx < 0.0] = 0.0 fhngrx[idx] = f2rx return fhngrx
0.00313
def get(self, key, default_val=None, require_value=False): """ Returns a dictionary value """ val = dict.get(self, key, default_val) if val is None and require_value: raise KeyError('key "%s" not found' % key) if isinstance(val, dict): return AttributeDict(val) return val
0.005814
def set_element_attributes(elem_to_parse, **attrib_kwargs): """ Adds the specified key/value pairs to the element's attributes, and returns the updated set of attributes. If the element already contains any of the attributes specified in attrib_kwargs, they are updated accordingly. """ element = get_element(elem_to_parse) if element is None: return element if len(attrib_kwargs): element.attrib.update(attrib_kwargs) return element.attrib
0.001996
def _get_coarse_dataset(self, key, info): """Get the coarse dataset refered to by `key` from the XML data.""" angles = self.root.find('.//Tile_Angles') if key in ['solar_zenith_angle', 'solar_azimuth_angle']: elts = angles.findall(info['xml_tag'] + '/Values_List/VALUES') return np.array([[val for val in elt.text.split()] for elt in elts], dtype=np.float) elif key in ['satellite_zenith_angle', 'satellite_azimuth_angle']: arrays = [] elts = angles.findall(info['xml_tag'] + '[@bandId="1"]') for elt in elts: items = elt.findall(info['xml_item'] + '/Values_List/VALUES') arrays.append(np.array([[val for val in item.text.split()] for item in items], dtype=np.float)) return np.nanmean(np.dstack(arrays), -1) else: return
0.004233
def delete(self): """ Deletes record, and removes it from database. """ # workflow # -------- # (methods belonging to create/update/delete framework: # epm._dev_populate_from_json_data, table.batch_add, record.update, queryset.delete, record.delete) # 1. unregister: links, hooks and external files # 3. remove from table without unregistering # unregister links self._unregister_links() # unregister hooks self._unregister_hooks() # unregister external files self._unregister_external_files() # tell table to remove without unregistering self.get_table()._dev_remove_record_without_unregistering(self) # make stale self._table = None self._data = None
0.003654
def _render_list(data): """ Helper to render a list of objects as an HTML list object. """ return IPython.core.display.HTML(google.datalab.utils.commands.HtmlBuilder.render_list(data))
0.021277
def query_ball_point(self, x, r, p=2., eps=0): """ Find all points within distance r of point(s) x. Parameters ---------- x : array_like, shape tuple + (self.m,) The point or points to search for neighbors of. r : positive float The radius of points to return. p : float, optional Which Minkowski p-norm to use. Should be in the range [1, inf]. eps : nonnegative float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r / (1 + eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1 + eps)``. Returns ------- results : list or array of lists If `x` is a single point, returns a list of the indices of the neighbors of `x`. If `x` is an array of points, returns an object array of shape tuple containing lists of neighbors. Notes ----- If you have many points whose neighbors you want to find, you may save substantial amounts of time by putting them in a PeriodicCKDTree and using query_ball_tree. """ x = np.asarray(x).astype(np.float) if x.shape[-1] != self.m: raise ValueError("Searching for a %d-dimensional point in a " \ "%d-dimensional KDTree" % (x.shape[-1], self.m)) if len(x.shape) == 1: return self.__query_ball_point(x, r, p, eps) else: retshape = x.shape[:-1] result = np.empty(retshape, dtype=np.object) for c in np.ndindex(retshape): result[c] = self.__query_ball_point(x[c], r, p, eps) return result
0.001649
def trun_setup(conf): """ Setup the testrunner data-structure, embedding the parsed environment variables and command-line arguments and continues with setup for testplans, testsuites, and testcases """ declr = None try: with open(conf["TESTPLAN_FPATH"]) as declr_fd: declr = yaml.safe_load(declr_fd) except AttributeError as exc: cij.err("rnr: %r" % exc) if not declr: return None trun = copy.deepcopy(TRUN) trun["ver"] = cij.VERSION trun["conf"] = copy.deepcopy(conf) trun["res_root"] = conf["OUTPUT"] trun["aux_root"] = os.sep.join([trun["res_root"], "_aux"]) trun["evars"].update(copy.deepcopy(declr.get("evars", {}))) os.makedirs(trun["aux_root"]) hook_names = declr.get("hooks", []) if "lock" not in hook_names: hook_names = ["lock"] + hook_names if hook_names[0] != "lock": return None # Setup top-level hooks trun["hooks"] = hooks_setup(trun, trun, hook_names) for enum, declr in enumerate(declr["testsuites"]): # Setup testsuites tsuite = tsuite_setup(trun, declr, enum) if tsuite is None: cij.err("main::FAILED: setting up tsuite: %r" % tsuite) return 1 trun["testsuites"].append(tsuite) trun["progress"]["UNKN"] += len(tsuite["testcases"]) return trun
0.001456
def _surfdens(self,R,z,phi=0.,t=0.): """ NAME: _surfdens PURPOSE: evaluate the surface density for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the surface density HISTORY: 2018-08-19 - Written - Bovy (UofT) """ r= numpy.sqrt(R**2.+z**2.) x= r/self.a Rpa= numpy.sqrt(R**2.+self.a**2.) Rma= numpy.sqrt(R**2.-self.a**2.+0j) if Rma == 0: za= z/self.a return self.a**2./2.*((2.-2.*numpy.sqrt(za**2.+1) +numpy.sqrt(2.)*za\ *numpy.arctan(za/numpy.sqrt(2.)))/z +numpy.sqrt(2*za**2.+2.)\ *numpy.arctanh(za/numpy.sqrt(2.*(za**2.+1))) /numpy.sqrt(self.a**2.+z**2.)) else: return self.a**2.*(numpy.arctan(z/x/Rma)/Rma +numpy.arctanh(z/x/Rpa)/Rpa -numpy.arctan(z/Rma)/Rma +numpy.arctan(z/Rpa)/Rpa).real
0.018341
def step_I_create_logrecord_with_table(context): """ Create an log record by using a table to provide the parts. .. seealso: :func:`step_I_create_logrecords_with_table()` """ assert context.table, "REQUIRE: context.table" assert len(context.table.rows) == 1, "REQUIRE: table.row.size == 1" step_I_create_logrecords_with_table(context)
0.002755
def view_portfolio_loss(token, dstore): """ The mean and stddev loss for the full portfolio for each loss type, extracted from the event loss table, averaged over the realizations """ data = portfolio_loss(dstore) # shape (R, L) loss_types = list(dstore['oqparam'].loss_dt().names) header = ['portfolio_loss'] + loss_types mean = ['mean'] + [row.mean() for row in data.T] stddev = ['stddev'] + [row.std(ddof=1) for row in data.T] return rst_table([mean, stddev], header)
0.001957
def getlist(self, section, option): """Read a list of strings. The value of `section` and `option` is treated as a comma- and newline- separated list of strings. Each value is stripped of whitespace. Returns the list of strings. """ value_list = self.get(section, option) values = [] for value_line in value_list.split('\n'): for value in value_line.split(','): value = value.strip() if value: values.append(value) return values
0.003521
def build(site, tagdata): """ Returns the tag cloud for a list of tags. """ tagdata.sort() # we get the most popular tag to calculate the tags' weigth tagmax = 0 for tagname, tagcount in tagdata: if tagcount > tagmax: tagmax = tagcount steps = getsteps(site.tagcloud_levels, tagmax) tags = [] for tagname, tagcount in tagdata: weight = [twt[0] \ for twt in steps if twt[1] >= tagcount and twt[1] > 0][0]+1 tags.append({'tagname':tagname, 'count':tagcount, 'weight':weight}) return tags
0.041176
def to_api_repr(self): """Generate a resource for :meth:`_begin`.""" configuration = self._configuration.to_api_repr() resource = { "jobReference": self._properties["jobReference"], "configuration": configuration, } configuration["query"]["query"] = self.query return resource
0.005714
def uniqify(func): """Make sure that a method returns a unique name.""" @six.wraps(func) def unique(self, *args, **kwargs): return self.unique(func(self, *args, **kwargs)) return unique
0.025381
def instantiate(config): """ instantiate all registered vodka applications Args: config (dict or MungeConfig): configuration object """ for handle, cfg in list(config["apps"].items()): if not cfg.get("enabled", True): continue app = get_application(handle) instances[app.handle] = app(cfg)
0.002809
def queries2alignments(cfg): """ All the processes in alignannoted detection are here. :param cfg: Configuration settings provided in .yml file """ from rohan.dandage.align import get_genomes get_genomes(cfg) cfg['datad']=cfg['prjd'] cfg['plotd']=cfg['datad'] dalignannotedp=f"{cfg['datad']}/dalignannoted.tsv" # stepn='04_alignannoteds' # logging.info(stepn) cfg['datatmpd']=f"{cfg['datad']}/tmp" for dp in [cfg['datatmpd']]: if not exists(dp): makedirs(dp) step2doutp={ 1:'01_queries_queryl*.fa', 2:'02_dalignbed.tsv', 3:'03_annotations.bed', 4:'04_dalignbedqueries.tsv', 5:'05_dalignedfasta.tsv', 6:'06_dalignbedqueriesseq.tsv', 7:'07_dalignbedstats.tsv', 8:'08_dannotsagg.tsv', 9:'09_dalignbedannot.tsv', 10:'10_daggbyquery.tsv', } cfg['dqueriesp']=cfg['dinp'] cfg['alignmentbedp']=f"{cfg['datatmpd']}/02_alignment.bed" cfg['dalignbedp']=f"{cfg['datatmpd']}/02_dalignbed.tsv" cfg['dalignbedqueriesp']=f"{cfg['datatmpd']}/04_dalignbedqueries.tsv" cfg['dalignedfastap']=f"{cfg['datatmpd']}/05_dalignedfasta.tsv" cfg['dalignbedqueriesseqp']=f"{cfg['datatmpd']}/06_dalignbedqueriesseq.tsv" cfg['dalignbedstatsp']=f"{cfg['datatmpd']}/07_dalignbedstats.tsv" cfg['dannotsaggp']=f"{cfg['datatmpd']}/08_dannotsagg.tsv" cfg['dalignbedannotp']=f"{cfg['datatmpd']}/09_dalignbedannot.tsv" cfg['daggbyqueryp']=f"{cfg['datatmpd']}/10_daggbyquery.tsv" annotationsbedp=f"{cfg['datatmpd']}/03_annotations.bed" cfg['annotationsbedp']=annotationsbedp dqueries=read_table(cfg['dqueriesp']) print(dqueries.head()) #check which step to process for step in range(2,10+1,1): if not exists(f"{cfg['datatmpd']}/{step2doutp[step]}"): if step==2: step=-1 break logging.info(f'process from step:{step}') cfg['dalignannotedp']='{}/dalignannoted.tsv'.format(cfg['datad']) if not exists(cfg['dalignannotedp']) or cfg['force']: if step<=1: cfg=dqueries2queriessam(cfg,dqueries) if step<=2: cfg=queriessam2dalignbed(cfg) if step<=3: cfg=dalignbed2annotationsbed(cfg) if step<=4: cfg=dalignbed2dalignbedqueries(cfg) if step<=5: cfg=alignmentbed2dalignedfasta(cfg) if step<=6: cfg=dalignbed2dalignbedqueriesseq(cfg) if step<=7: cfg=dalignbedqueriesseq2dalignbedstats(cfg) if step<=8: cfg=dannots2dalignbed2dannotsagg(cfg) if step<=9: cfg=dannotsagg2dannots2dalignbedannot(cfg) if step<=10: cfg=dalignbedannot2daggbyquery(cfg) if cfg is None: logging.warning(f"no alignment found") cfg['step']=4 return saveemptytable(cfg,cfg['dalignannotedp']) import gc gc.collect()
0.025444
def filter_tag(arg): """ Parses a --filter-tag argument """ try: strip_len = len('Key=') key, value = arg[strip_len:].split(',Value=', 1) return key, value except: msg = 'Invalid --filter-tag argument: {}' raise argparse.ArgumentTypeError(msg.format(arg))
0.006515
def _get_options_for_model(self, model, opts_class=None, **options): """ Returns an instance of translation options with translated fields defined for the ``model`` and inherited from superclasses. """ if model not in self._registry: # Create a new type for backwards compatibility. opts = type("%sTranslationOptions" % model.__name__, (opts_class or TranslationOptions,), options)(model) # Fields for translation may be inherited from abstract # superclasses, so we need to look at all parents. for base in model.__bases__: if not hasattr(base, '_meta'): # Things without _meta aren't functional models, so they're # uninteresting parents. continue opts.update(self._get_options_for_model(base)) # Cache options for all models -- we may want to compute options # of registered subclasses of unregistered models. self._registry[model] = opts return self._registry[model]
0.001765
def drop_duplicates(self, subset=None, keep='first', inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- DataFrame """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, 'inplace') duplicated = self.duplicated(subset, keep=keep) if inplace: inds, = (-duplicated)._ndarray_values.nonzero() new_data = self._data.take(inds) self._update_inplace(new_data) else: return self[-duplicated]
0.00158
def _http_headers(self): """Return dictionary of http headers necessary for making an http connection to the endpoint of this Connection. :return: Dictionary of headers """ if not self.usertag: return {} creds = u'{}:{}'.format( self.usertag, self.password or '' ) token = base64.b64encode(creds.encode()) return { 'Authorization': 'Basic {}'.format(token.decode()) }
0.004016
def append_to_arg_count(self, data): """ Add digit to the input argument. :param data: the typed digit as string """ assert data in '-0123456789' current = self._arg if data == '-': assert current is None or current == '-' result = data elif current is None: result = data else: result = "%s%s" % (current, data) self.input_processor.arg = result
0.004193
def p_expression(self, p): """expression : jsonpath | jsonpath FILTER_OP ID | jsonpath FILTER_OP FLOAT | jsonpath FILTER_OP NUMBER | jsonpath FILTER_OP BOOL """ if len(p) == 2: left, op, right = p[1], None, None else: __, left, op, right = p p[0] = _filter.Expression(left, op, right)
0.004587
def _quilc_compile(self, quil_program, isa, specs): """ Sends a quilc job to Forest. Users should use :py:func:`LocalCompiler.quil_to_native_quil` instead of calling this directly. """ payload = quilc_compile_payload(quil_program, isa, specs) response = post_json(self.session, self.sync_endpoint + "/", payload) unpacked_response = response.json() return unpacked_response
0.006726
def import_or_die(module_name, entrypoint_names): ''' Import user code; return reference to usercode function. (str) -> function reference ''' log_debug("Importing {}".format(module_name)) module_name = os.path.abspath(module_name) if module_name.endswith('.py'): module_name,ext = os.path.splitext(module_name) modname = os.path.basename(module_name) dirname = os.path.dirname(module_name) if dirname and dirname not in sys.path: sys.path.append(dirname) # first, try to reload code if modname in sys.modules: user_module = sys.modules.get(modname) user_module = importlib.reload(user_module) # if it isn't in sys.modules, load it for the first time, or # try to. else: try: mypaths = [ x for x in sys.path if ("Cellar" not in x and "packages" not in x)] # print("Loading {} from {} ({})".format(modname, dirname, mypaths)) # user_module = importlib.import_module(modname) user_module = importlib.__import__(modname) except ImportError as e: log_failure("Fatal error: couldn't import module (error: {}) while executing {}".format(str(e), modname)) raise ImportError(e) # if there aren't any functions to call into, then the caller # just wanted the module/code to be imported, and that's it. if not entrypoint_names: return existing_names = dir(user_module) for method in entrypoint_names: if method in existing_names: return getattr(user_module, method) if len(entrypoint_names) > 1: entrypoints = "one of {}".format(', '.join(entrypoint_names)) else: entrypoints = entrypoint_names[0] raise ImportError("Required entrypoint function or symbol ({}) not found in your code".format(entrypoints))
0.003772
def set_updated(self): """ Mark the module as updated. We check if the actual content has changed and if so we trigger an update in py3status. """ # get latest output output = [] for method in self.methods.values(): data = method["last_output"] if isinstance(data, list): if self.testing and data: data[0]["cached_until"] = method.get("cached_until") output.extend(data) else: # if the output is not 'valid' then don't add it. if data.get("full_text") or "separator" in data: if self.testing: data["cached_until"] = method.get("cached_until") output.append(data) # if changed store and force display update. if output != self.last_output: # has the modules output become urgent? # we only care the update that this happens # not any after then. urgent = True in [x.get("urgent") for x in output] if urgent != self.urgent: self.urgent = urgent else: urgent = False self.last_output = output self._py3_wrapper.notify_update(self.module_full_name, urgent)
0.001488
def isFits(input): """ Returns -------- isFits: tuple An ``(isfits, fitstype)`` tuple. The values of ``isfits`` and ``fitstype`` are specified as: - ``isfits``: True|False - ``fitstype``: if True, one of 'waiver', 'mef', 'simple'; if False, None Notes ----- Input images which do not have a valid FITS filename will automatically result in a return of (False, None). In the case that the input has a valid FITS filename but runs into some error upon opening, this routine will raise that exception for the calling routine/user to handle. """ isfits = False fitstype = None names = ['fits', 'fit', 'FITS', 'FIT'] #determine if input is a fits file based on extension # Only check type of FITS file if filename ends in valid FITS string f = None fileclose = False if isinstance(input, fits.HDUList): isfits = True f = input else: isfits = True in [input.endswith(l) for l in names] # if input is a fits file determine what kind of fits it is #waiver fits len(shape) == 3 if isfits: if f is None: try: f = fits.open(input, mode='readonly') fileclose = True except Exception: if f is not None: f.close() raise data0 = f[0].data if data0 is not None: try: if isinstance(f[1], fits.TableHDU): fitstype = 'waiver' except IndexError: fitstype = 'simple' else: fitstype = 'mef' if fileclose: f.close() return isfits, fitstype
0.002892
def handle_error(self, message: str, e: mastodon.MastodonError) -> OutputRecord: """Handle error while trying to do something.""" self.lerror(f"Got an error! {e}") # Handle errors if we know how. try: code = e[0]["code"] if code in self.handled_errors: self.handled_errors[code] else: pass except Exception: pass return TootRecord(error=e)
0.006383
def split_every(n, iterable): """Returns a generator that spits an iteratable into n-sized chunks. The last chunk may have less than n elements. See http://stackoverflow.com/a/22919323/503377.""" items = iter(iterable) return itertools.takewhile(bool, (list(itertools.islice(items, n)) for _ in itertools.count()))
0.008955
def parse(self, text, fn=None): """ Parse the Mapfile """ if PY2 and not isinstance(text, unicode): # specify Unicode for Python 2.7 text = unicode(text, 'utf-8') if self.expand_includes: text = self.load_includes(text, fn=fn) try: self._comments[:] = [] # clear any comments from a previous parse tree = self.lalr.parse(text) if self.include_comments: self.assign_comments(tree, self._comments) return tree except (ParseError, UnexpectedInput) as ex: if fn: log.error("Parsing of {} unsuccessful".format(fn)) else: log.error("Parsing of Mapfile unsuccessful") log.info(ex) raise
0.002442
def set_common_attributes(span): """Set the common attributes.""" common = { attributes_helper.COMMON_ATTRIBUTES.get('AGENT'): AGENT, } common_attrs = Attributes(common)\ .format_attributes_json()\ .get('attributeMap') _update_attr_map(span, common_attrs)
0.003333
def chdir(method): """Decorator executing method in directory 'dir'. """ def wrapper(self, dir, *args, **kw): dirstack = ChdirStack() dirstack.push(dir) try: return method(self, dir, *args, **kw) finally: dirstack.pop() return functools.wraps(method)(wrapper)
0.003012
def add_parameters(self, **params): """ Add URL parameters Also ensure that only valid format/content combinations are requested """ self.url_params = None # we want JSON by default if not params.get("format"): params["format"] = "json" # non-standard content must be retrieved as Atom if params.get("content"): params["format"] = "atom" # TODO: rewrite format=atom, content=json request if "limit" not in params or params.get("limit") == 0: params["limit"] = 100 # Need ability to request arbitrary number of results for version # response # -1 value is hack that works with current version elif params["limit"] == -1 or params["limit"] is None: del params["limit"] # bib format can't have a limit if params.get("format") == "bib": del params["limit"] self.url_params = urlencode(params, doseq=True)
0.001992
def make_count_grid(data): """ Takes a 2 or 3d grid of strings representing binary numbers. Returns a grid of the same dimensions in which each binary number has been replaced by an integer indicating the number of ones that were in that number. """ data = deepcopy(data) for i in range(len(data)): for j in range(len(data[i])): for k in range(len(data[i][j])): if type(data[i][j][k]) is list: for l in range(len(data[i][j][k])): try: data[i][j][k] = data[i][j][k][l].count("1") except: data[i][j][k] = len(data[i][j][k][l]) else: try: data[i][j][k] = data[i][j][k].count("1") except: data[i][j][k] = len(data[i][j][k]) return data
0.004283
def diff_with_models(self): """ Return a dict stating the differences between current state of models and the configuration itself. TODO: Detect fields that are in conf, but not in models """ missing_from_conf = defaultdict(set) for model in get_models(): db_tables_and_columns = get_db_tables_and_columns_of_model(model) for (table_name, columns) in db_tables_and_columns.items(): model_strategy = self.strategy.get(table_name) for column in columns: if not model_strategy or column not in model_strategy: missing_from_conf[table_name].add(column) return missing_from_conf
0.00271
def delete(self): """ Deletes this instance """ self.__dmlquery__(self.__class__, self, batch=self._batch, timestamp=self._timestamp, consistency=self.__consistency__, timeout=self._timeout).delete()
0.00627
def prt_data(self, name, vals, prt=sys.stdout): """Print stats data in markdown style.""" fld2val = self.get_fld2val(name, vals) prt.write(self.fmt.format(**fld2val)) return fld2val
0.00939
def chown(self, path, uid, gid): """ Change the owner (``uid``) and group (``gid``) of a file. As with Python's `os.chown` function, you must pass both arguments, so if you only want to change one, use `stat` first to retrieve the current owner and group. :param str path: path of the file to change the owner and group of :param int uid: new owner's uid :param int gid: new group id """ path = self._adjust_cwd(path) self._log(DEBUG, "chown({!r}, {!r}, {!r})".format(path, uid, gid)) attr = SFTPAttributes() attr.st_uid, attr.st_gid = uid, gid self._request(CMD_SETSTAT, path, attr)
0.002869
async def _get_full_user(self) -> Dict: """ Sometimes Telegram does not provide all the user info with the message. In order to get the full profile (aka the language code) you need to call this method which will make sure that the full User object is loaded. The result is cached for the lifetime of the object, so if the function is called multiple times it will only fetch the user once. There is a locking mechanism around the cache to allow concurrent calls. """ if 'language_code' in self._user: return self._user async with self._lock: if self._full_user is None: cm = await self._telegram.call( 'getChatMember', user_id=self._user['id'], chat_id=self._chat['id'], ) self._full_user = cm['result']['user'] return self._full_user
0.00206
def _metadata_unit(unit): """Given the name of a unit (e.g. apache2/0), get the unit charm's metadata.yaml. Very similar to metadata() but allows us to inspect other units. Unit needs to be co-located, such as a subordinate or principal/primary. :returns: metadata.yaml as a python object. """ basedir = os.sep.join(charm_dir().split(os.sep)[:-2]) unitdir = 'unit-{}'.format(unit.replace(os.sep, '-')) joineddir = os.path.join(basedir, unitdir, 'charm', 'metadata.yaml') if not os.path.exists(joineddir): return None with open(joineddir) as md: return yaml.safe_load(md)
0.001582
def save(self, commit=True): """ Save model to database """ db.session.add(self) if commit: db.session.commit() return self
0.011905