max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
iq_project/iq_app/urls.py
donkripton/IQ-test
0
12785851
<gh_stars>0 from django.conf.urls import patterns, url from iq_app import views urlpatterns = patterns('', url(r'^$', views.index, name='index'), url(r'^signup/$', views.signup, name='signup'), #user auth urls url(r'^login/$', views.user_login, name='login'), url(r'^home/$', views.home, name='home'), url(r'^iq_test/$', views.iq_test, name='iq_test'), url(r'^logout/$', views.user_logout, name='logout'), url(r'^result_check/$', views.result_check, name='result_check'), )
1.601563
2
tests/test_dbinspector.py
cgons/dbinspector
0
12785852
<gh_stars>0 from dbinspector import DBInspector class TestDBInspector: def test_get_count(self, connection): """Ensure DBInspector.get_count() returns accurate count of queries executed""" with DBInspector(connection) as inspector: connection.execute("SELECT 1") connection.execute("SELECT 1") assert inspector.get_count() == 2 def test_print_queries(self, capsys, connection): """Ensure DBInspector.print_queries() prints all queires executed""" with DBInspector(connection) as inspector: connection.execute("SELECT 1") connection.execute("SELECT 1") assert inspector.get_count() == 2 inspector.print_queries() printed_output = capsys.readouterr().out assert printed_output == "SELECT 1\nSELECT 1\n" def test_print_queries_with_print_pretty_true(self, capsys, connection): """Ensure DBInspector.print_queries() pretty prints all queires executed""" with DBInspector(connection) as inspector: connection.execute("SELECT 1") connection.execute("SELECT 1") assert inspector.get_count() == 2 inspector.print_queries(pretty=True) printed_output = capsys.readouterr().out assert ( printed_output == "\nQUERY #1\n----------\nSELECT 1\n\nQUERY #2\n----------\nSELECT 1\n" )
2.578125
3
bot/com/oth/mix.py
VoxelPrismatic/prizai
2
12785853
#!/usr/bin/env python3 # -*- coding: utf-8 -* #/// DEPENDENCIES import os, signal import typing, asyncio import discord #python3.7 -m pip install -U discord.py import logging, subprocess from util import embedify, pages from discord.ext import commands from discord.ext.commands import Bot, MissingPermissions, has_permissions from chk.enbl import enbl from PIL import Image try: from StringIO import StringIO except ImportError: from io import StringIO ##///---------------------///## ##/// BOT COMMANDS ///## ##///---------------------///## @commands.command( aliases = [], help = 'ai', brief = 'A noise generator with 2 inputs', usage = ';]mix {action} {?args}', description = '''\ ACTION [TEXT] - [slot1, slot2, imgs, view, slots, kill] > slot1 - Load an attached image into the "image" file > slot2 - Load an attached image into the "pattern" file > imgs - View currently loaded images > view - View the status of the current mix > slots - Start the mixing > kill - Kills the current process if you started it ARGS [TEXT] - [-iter=, -np] > -iter= - Set the number of iterations [max 120, min 5] > -np - Do not ping when finished ''' ) @commands.check(enbl) async def mix(ctx, *, action): if action.split()[0] in ['slot1','s1','1','img1']: if open('mix/status').read().strip() != 'DONE': return await ctx.send( '```diff\n-] I AM GENERATING SOMETHING, CHECK BACK LATER\n' '=] Or use \';]mix view\' to see the latest iter```' ) try: if ctx.message.attachments[0].size > 1024*1024*4: return await ctx.send('```diff\n-] TOO BIG\n=] Max file size is 4MB```') await ctx.message.attachments[0].save("mix/s1.jpg") await ctx.message.attachments[0].save("mix/now.png") await ctx.message.attachments[0].save("mix/s1.png") await ctx.message.add_reaction('<:wrk:608810652756344851>') except IndexError: return await ctx.send('```diff\n-] PLEASE SEND AN IMAGE```') elif action.split()[0] in ['slot2','s2','2','img2']: if open('mix/status').read().strip() != 'DONE': return await ctx.send( '```diff\n-] I AM GENERATING SOMETHING, CHECK BACK LATER\n' '=] Or use \';]mix view\' to see the latest iter```' ) try: if ctx.message.attachments[0].size > 1024*1024*4: return await ctx.send('```diff\n-] TOO BIG\n=] Max file size is 4MB```') await ctx.message.attachments[0].save("mix/s2.jpg") await ctx.message.attachments[0].save("mix/s2.png") await ctx.message.add_reaction('<:wrk:608810652756344851>') except IndexError: return await ctx.send('```diff\n-] PLEASE SEND AN IMAGE```') elif action.split()[0] in ['run','start','slots']: if open('mix/status').read().strip() != 'DONE': return await ctx.send( '```diff\n-] I AM GENERATING SOMETHING, CHECK BACK LATER\n' '=] Or use \';]mix view\' to see the latest iter```' ) mc = ctx.message.content settings = { 'iter': 60, 'ping': True } mc += ' ' if '-i=' in mc: settings['iter'] = int( mc[mc.find('-i=') + 3: mc.find(' ', mc.find('-i='))] ) elif '-iter=' in mc: settings['iter'] = int( mc[mc.find('-iter=')+6: mc.find(' ', mc.find('-iter='))] ) elif 'max' in mc or '-m' in mc: settings['iter'] = 60 if '-no' in mc or '-np' in mc: settings['ping'] = False it = settings['iter'] it = max([5,min([it,120])]) settings['iter'] = it open('mix/status','w+').write('WAIT') open('mix/loc','w+').write('INIT') open('mix/iter','w+').write(str(settings['iter'])) proc = subprocess.Popen(["python3.7", "mixGEN.py"]) ratio_h = 1 ratio_w = 1 image_w, image_h = Image.open('mix/s1.jpg').size if image_h > 600: ratio_h = image_h/600 image_h /= ratio_h image_w /= ratio_h if image_w > 800: ratio_w = image_w/800 image_h /= ratio_w image_w /= ratio_w image_h = int(image_h) image_w = int(image_w) time = int(open("mix/iter").read())+5 res = (image_h*image_w) / (800*600) time = int(time*res*3/4) await ctx.send(f'''```md #] I AM GENERATING THE IMAGE, I WILL SEND IT WHEN ITS DONE ;] > Or use \';]mix kill\' to stop it now =] THIS WILL TAKE UP TO {time} MIN, PLEASE STAND BY```''') while open('mix/status').read() != 'DONE': loc = open("mix/loc").read() def chek(m): return m.author == ctx.author and m.channel == ctx.channel while loc == open('mix/loc').read() and open('mix/status').read() != 'DONE': try: m = await ctx.bot.wait_for('message',check=chek,timeout=10.0) except asyncio.TimeoutError as ex: pass else: if m.content.lower() in [ ';]mix kill', ';]mix stop', ';]mix clear', ';]mix end', ';]mix break', ';]mix complete', ';]mix empty',';]smix send' ]: open('mix/status','w').write('DONE') os.kill(proc.pid,signal.SIGKILL) return await ctx.send( (f'<@{<EMAIL>}> ' if settings['ping'] else '') + f'```md\n#] GENERATED!```', file=discord.File('mix/now.png') ) elif action.split()[0] in ['see','view','where']: loc = open("mix/loc").read() ttl = open("mix/iter").read() stt = open('mix/status').read() try: content = f'`[{int(loc)/int(ttl)*100:.2f}% - {loc}/{ttl}] {stt}`' except: content=f'`[{loc}] {stt}`' await ctx.send(content,file=discord.File(fp=open('mix/now.png','rb'))) elif action.split()[0] == 'reset' and ctx.author.id == 481591703959240706: open('mix/status','w').write('DONE') await ctx.message.add_reaction('<:wrk:608810652756344851>') elif action.split()[0] in ['kill','stop','clear','end','break','complete','empty','send']: pass elif action.split()[0] in ['slots','imgs','images']: await ctx.send( files = [ discord.File(fp=open('mix/s1.png','rb')), discord.File(fp=open('mix/s2.png','rb')) ] ) else: return await ctx.send(f'```diff\n-] KEY {action} WAS NOT FOUND [s1, s2, kill, view]```') ##///---------------------///## ##/// OTHER STUFF ///## ##///---------------------///## def setup(bot): print('+COM') bot.add_command(mix) print('GOOD') def teardown(bot): print('-COM') bot.remove_command('mix') print('GOOD')
2.234375
2
03-algorithms/03-k-nearest-neighbors/codebase/kd_tree/tests/test_kd_tree_kclosest.py
jameszhan/notes-ml
0
12785854
<filename>03-algorithms/03-k-nearest-neighbors/codebase/kd_tree/tests/test_kd_tree_kclosest.py<gh_stars>0 # -*- coding: utf-8 -*- import os import sys import logging import unittest import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle parent_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) sys.path.append(parent_path) from kd_tree import KDTree logger = logging.getLogger("unittestLogger") colors = ['r', 'b', 'g', 'y', 'm', 'c', 'k'] figure = plt.figure(figsize=(12, 8)) ax = figure.add_subplot(111, aspect=True) ax.grid(True) figure.subplots_adjust(left=0.05, bottom=0.05, right=0.99, top=0.99, wspace=None, hspace=None) def draw_point(n): if n.is_leaf(): marker = 'o' else: marker = 's' color = colors[n.axis] ax.scatter(*n.point, c=color, marker=marker, s=30, alpha=0.8) ax.text(n.point[0] - 0.36, n.point[1] - 0.25, "({0}, {1})".format(*n.point), color='g', alpha=0.8) _x = np.linspace(0, 10, 10) _y = np.linspace(0, 10, 10) pn = n.parent if n.axis == 0: if pn: if n.point[1] < pn.point[1]: _y = np.linspace(0, pn.point[1], 10) else: _y = np.linspace(pn.point[1], 10, 10) ax.plot([n.point[0]] * 10, _y, c=color, label='Splitter', alpha=0.5) else: if pn: if n.point[0] < pn.point[0]: _x = np.linspace(0, pn.point[0], 10) else: _x = np.linspace(pn.point[0], 10, 10) ax.plot(_x, [n.point[1]] * 10, c=color, label='Splitter', alpha=0.5) def show_closest(tree, point, k, c): nodes, count, visited_nodes = tree.kclosest(point, k) ax.scatter(*point, c=c, marker='*', s=10, alpha=0.7) logger.info("expected {0}, touched {1}, candidates: {2}".format(len(nodes), count, len(visited_nodes))) i = 10 for d, _ in nodes: alpha = 0.1 * i if alpha <= 0: alpha = 0.1 logger.info("draw circle with radius {0} with point {1}".format(d, point)) ax.add_patch(Circle(point, d, color=c, fill=False, alpha=alpha)) i -= 2 class TestKDTree2d(unittest.TestCase): def test_random(self): count, sigma1, sigma2 = 10000, 0.6, 0.5 np.random.seed(0) x = np.random.normal(3, sigma1, count) y = np.random.normal(3, sigma2, count) point = [3.01, 3.01] for i in range(count): if 2.98 < x[i] < 3.03 and 2.98 < y[i] < 3.03: ax.scatter(x[i], y[i], c='b', marker='s', s=10, alpha=0.7) # ax.scatter(x, y, c='b', marker='s', s=10, alpha=0.7) points = np.c_[x, y] tree = KDTree(points) show_closest(tree, point, 50, 'm') plt.show() if __name__ == '__main__': logging.basicConfig(stream=sys.stderr, level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') unittest.main()
2.546875
3
apps/convert_apt_data.py
euctrl-pru/rt-python
0
12785855
#!/usr/bin/env python # # Copyright (c) 2017-2018 Via Technology Ltd. All Rights Reserved. # Consult your license regarding permissions and restrictions. """ Software to read Eurocontrol APDS files. """ import sys import os import bz2 import csv import errno import pandas as pd from enum import IntEnum, unique from pru.trajectory_fields import \ FLIGHT_FIELDS, FLIGHT_EVENT_FIELDS, POSITION_FIELDS, FlightEventType, \ is_valid_iso8601_date, iso8601_datetime_parser, has_bz2_extension, \ split_dual_date from pru.trajectory_files import create_convert_apds_filenames from pru.logger import logger log = logger(__name__) @unique class ApdsField(IntEnum): 'The fields of an APDS line.' APDS_ID = 0 AP_C_FLTID = 1 AP_C_REG = 2 ADEP_ICAO = 3 ADES_ICAO = 4 SRC_PHASE = 5 MVT_TIME_UTC = 6 BLOCK_TIME_UTC = 7 SCHED_TIME_UTC = 8 ARCTYP = 9 AP_C_RWY = 10 AP_C_STND = 11 C40_CROSS_TIME = 12 C40_CROSS_LAT = 13 C40_CROSS_LON = 14 C40_CROSS_FL = 15 C40_BEARING = 16 C100_CROSS_TIME = 17 C100_CROSS_LAT = 18 C100_CROSS_LON = 19 C100_CROSS_FL = 20 C100_BEARING = 21 class ApdsEvent: 'A class for storing and outputting a APDS event' def __init__(self, id, event, date_time): self.id = id self.event = event self.date_time = date_time def __lt__(self, other): return self.event < other.event def __repr__(self): return '{},{},{}Z'. \ format(self.id, self.event, self.date_time.isoformat()) class ApdsPosition: 'A class for storing and outputting a APDS poistion' def __init__(self, id, date_time, latitude, longitude, airport, stand): self.id = id self.date_time = date_time self.latitude = latitude self.longitude = longitude self.airport = airport self.stand = stand def __lt__(self, other): return self.date_time < other.date_time def __repr__(self): return '{},,{}Z,{:.5f},{:.5f},,,,,1,APDS {} {},,'. \ format(self.id, self.date_time.isoformat(), self.latitude, self.longitude, self.airport, self.stand) class ApdsFlight: 'A class for reading, storing and outputting data for an APDS flight' def __init__(self, apds_fields, airport_stands): self.id = apds_fields[ApdsField.APDS_ID] self.callsign = apds_fields[ApdsField.AP_C_FLTID] self.registration = apds_fields[ApdsField.AP_C_REG] self.aircraft_type = apds_fields[ApdsField.ARCTYP] self.departure = apds_fields[ApdsField.ADEP_ICAO] self.destination = apds_fields[ApdsField.ADES_ICAO] self.events = [] self.positions = [] is_arrival = (apds_fields[ApdsField.SRC_PHASE] == 'ARR') airport = self.destination if (is_arrival) else self.destination # Get the take-off or landing event if apds_fields[ApdsField.MVT_TIME_UTC]: movement_event = FlightEventType.WHEELS_ON if (is_arrival) \ else FlightEventType.WHEELS_OFF movement_time = iso8601_datetime_parser(apds_fields[ApdsField.MVT_TIME_UTC]) self.events.append(ApdsEvent(self.id, movement_event, movement_time)) # if the airport and runway is known, create a position # if airport and apds_fields[ApdsField.AP_C_RWY]: # Get the actual off-block or in-block event if apds_fields[ApdsField.BLOCK_TIME_UTC]: block_event = FlightEventType.GATE_IN if (is_arrival) \ else FlightEventType.GATE_OUT block_time = iso8601_datetime_parser(apds_fields[ApdsField.BLOCK_TIME_UTC]) self.events.append(ApdsEvent(self.id, block_event, block_time)) # if the airport and stand is known, create a position if len(airport_stands): stand = apds_fields[ApdsField.AP_C_STND] if airport and stand: if (airport, stand) in airport_stands.index: pos = airport_stands.loc[airport, stand] latitude = pos['LAT'] longitude = pos['LON'] self.positions.append(ApdsPosition(self.id, block_time, latitude, longitude, airport, stand)) # Get the scheduled off-block or in-block event if apds_fields[ApdsField.SCHED_TIME_UTC]: scheduled_event = FlightEventType.SCHEDULED_IN_BLOCK if (is_arrival) \ else FlightEventType.SCHEDULED_OFF_BLOCK scheduled_time = iso8601_datetime_parser(apds_fields[ApdsField.SCHED_TIME_UTC]) self.events.append(ApdsEvent(self.id, scheduled_event, scheduled_time)) def __repr__(self): return '{},{},{},{},,{},{}'. \ format(self.id, self.callsign, self.registration, self.aircraft_type, self.departure, self.destination) def convert_apds_data(filename, stands_filename): # Extract the start and finish date strings from the filename start_date, finish_date = split_dual_date(os.path.basename(filename)) if not is_valid_iso8601_date(start_date): log.error('apds data file: %s, invalid start date: %s', filename, start_date) return errno.EINVAL # validate the finish date string from the filename if not is_valid_iso8601_date(finish_date): log.error('apds data file: %s, invalid finish date: %s', filename, finish_date) return errno.EINVAL log.info('apds data file: %s', filename) airport_stands_df = pd.DataFrame() if stands_filename: try: airport_stands_df = pd.read_csv(stands_filename, index_col=['ICAO_ID', 'STAND_ID'], memory_map=True) airport_stands_df.sort_index() except EnvironmentError: log.error('could not read file: %s', stands_filename) return errno.ENOENT log.info('airport stands file: %s', stands_filename) else: log.info('airport stands not provided') # A dict to hold the APDS flights flights = {} # Read the APDS flights file into flights try: is_bz2 = has_bz2_extension(filename) with bz2.open(filename, 'rt', newline="") if (is_bz2) else \ open(filename, 'r') as file: reader = csv.reader(file, delimiter=',') next(reader, None) # skip the headers for row in reader: flights.setdefault(row[ApdsField.APDS_ID], ApdsFlight(row, airport_stands_df)) except EnvironmentError: log.error('could not read file: %s', filename) return errno.ENOENT log.info('apds flights read ok') valid_flights = 0 # Output the APDS flight data # finish_date output_files = create_convert_apds_filenames(start_date, finish_date) flight_file = output_files[0] try: with open(flight_file, 'w') as file: file.write(FLIGHT_FIELDS) for key, value in sorted(flights.items()): print(value, file=file) valid_flights += 1 log.info('written file: %s', flight_file) except EnvironmentError: log.error('could not write file: %s', flight_file) # if airport stand data was provided if len(airport_stands_df): # Output the APDS position data positions_file = output_files[1] try: with open(positions_file, 'w') as file: file.write(POSITION_FIELDS) for key, value in sorted(flights.items()): for event in sorted(value.positions): print(event, file=file) log.info('written file: %s', positions_file) except EnvironmentError: log.error('could not write file: %s', positions_file) # Output the APDS event data event_file = output_files[2] try: with open(event_file, 'w') as file: file.write(FLIGHT_EVENT_FIELDS) for key, value in sorted(flights.items()): for event in sorted(value.events): print(event, file=file) log.info('written file: %s', event_file) except EnvironmentError: log.error('could not write file: %s', event_file) return errno.EACCES log.info('apds conversion complete for %s flights on %s', valid_flights, start_date) return 0 if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: convert_apt_data.py <apds_filename> [stands_filename]') sys.exit(errno.EINVAL) # Get the stands_filename, if supplied stands_filename = '' if len(sys.argv) >= 3: stands_filename = sys.argv[2] error_code = convert_apds_data(sys.argv[1], stands_filename) if error_code: sys.exit(error_code)
2.75
3
legal_advice_builder/signals.py
prototypefund/django-legal-advice-builder
4
12785856
<reponame>prototypefund/django-legal-advice-builder import django.dispatch answer_created = django.dispatch.Signal()
1.296875
1
src/zope/app/applicationcontrol/browser/tests/test_servercontrolview.py
zopefoundation/zope.app.applicationcontrol
0
12785857
<filename>src/zope/app/applicationcontrol/browser/tests/test_servercontrolview.py<gh_stars>0 ############################################################################## # # Copyright (c) 2001, 2002, 2003 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Server Control View Tests """ import unittest import zope.component from zope.app.applicationcontrol.applicationcontrol import ( applicationController) from zope.app.applicationcontrol.browser.servercontrol import ServerControlView from zope.app.applicationcontrol.interfaces import IServerControl from zope.component.testing import PlacelessSetup as PlacefulSetup from zope.app.applicationcontrol.tests import MockServerControl class Test(PlacefulSetup, unittest.TestCase): def _TestView__newView(self, container, request): view = ServerControlView() view.context = container view.request = request return view def test_ServerControlView(self): control = MockServerControl() globalSiteManager = zope.component.getGlobalSiteManager() globalSiteManager.registerUtility(control, IServerControl) test_serverctrl = self._TestView__newView( applicationController, {'shutdown': 1, 'time': 100}, ) test_serverctrl.action() self.assertEqual(control.did_shutdown, 100) test_serverctrl = self._TestView__newView( applicationController, {'restart': 1, 'time': 100}, ) test_serverctrl.action() self.assertEqual(control.did_restart, 100) def test_suite(): return unittest.defaultTestLoader.loadTestsFromName(__name__)
1.9375
2
test/old_cintojson.py
sqohapoe/CQOSJ_LIU
66
12785858
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import unicode_literals import io import os import re import sys import json #import copy import codecs #reload(sys) #sys.setdefaultencoding('UTF-8') DEBUG_MODE = False CIN_HEAD = "%gen_inp" ENAME_HEAD = "%ename" CNAME_HEAD = "%cname" ENCODING_HEAD = "%encoding" SELKEY_HEAD = "%selkey" KEYNAME_HEAD = "%keyname" CHARDEF_HEAD = "%chardef" PARSING_HEAD_STATE = 0 PARSE_KEYNAME_STATE = 1 PARSE_CHARDEF_STATE = 2 HEADS = [ CIN_HEAD, ENAME_HEAD, CNAME_HEAD, ENCODING_HEAD, SELKEY_HEAD, KEYNAME_HEAD, CHARDEF_HEAD, ] class CinToJson(object): # TODO check the possiblility if the encoding is not utf-8 encoding = 'utf-8' def __init__(self): self.sortByCharset = False self.ename = "" self.cname = "" self.selkey = "" self.keynames = {} self.chardefs = {} self.dupchardefs = {} self.bopomofo = {} self.big5F = {} self.big5LF = {} self.big5S = {} self.big5Other = {} self.cjk = {} self.cjkExtA = {} self.cjkExtB = {} self.cjkExtC = {} self.cjkExtD = {} self.cjkExtE = {} self.cjkOther = {} self.phrases = {} self.privateuse = {} self.cincount = {} self.cincount['bopomofo'] = 0 self.cincount['big5F'] = 0 self.cincount['big5LF'] = 0 self.cincount['big5S'] = 0 self.cincount['big5Other'] = 0 self.cincount['cjk'] = 0 self.cincount['cjkExtA'] = 0 self.cincount['cjkExtB'] = 0 self.cincount['cjkExtC'] = 0 self.cincount['cjkExtD'] = 0 self.cincount['cjkExtE'] = 0 self.cincount['cjkOther'] = 0 self.cincount['phrases'] = 0 self.cincount['cjkCIS'] = 0 self.cincount['privateuse'] = 0 self.cincount['totalchardefs'] = 0 self.charsetRange = {} self.charsetRange['bopomofo'] = [int('0x3100', 16), int('0x3130', 16)] self.charsetRange['bopomofoTone'] = [int('0x02D9', 16), int('0x02CA', 16), int('0x02C7', 16), int('0x02CB', 16)] self.charsetRange['cjk'] = [int('0x4E00', 16), int('0x9FD6', 16)] self.charsetRange['big5F'] = [int('0xA440', 16), int('0xC67F', 16)] self.charsetRange['big5LF'] = [int('0xC940', 16), int('0xF9D6', 16)] self.charsetRange['big5S'] = [int('0xA140', 16), int('0xA3C0', 16)] self.charsetRange['cjkExtA'] = [int('0x3400', 16), int('0x4DB6', 16)] self.charsetRange['cjkExtB'] = [int('0x20000', 16), int('0x2A6DF', 16)] self.charsetRange['cjkExtC'] = [int('0x2A700', 16), int('0x2B73F', 16)] self.charsetRange['cjkExtD'] = [int('0x2B740', 16), int('0x2B81F', 16)] self.charsetRange['cjkExtE'] = [int('0x2B820', 16), int('0x2CEAF', 16)] self.charsetRange['pua'] = [int('0xE000', 16), int('0xF900', 16)] self.charsetRange['puaA'] = [int('0xF0000', 16), int('0xFFFFE', 16)] self.charsetRange['puaB'] = [int('0x100000', 16), int('0x10FFFE', 16)] self.charsetRange['cjkCIS'] = [int('0x2F800', 16), int('0x2FA20', 16)] self.haveHashtagInKeynames = ["ez.cin", "ezsmall.cin", "ezmid.cin", "ezbig.cin"] self.saveList = ["ename", "cname", "selkey", "keynames", "cincount", "chardefs", "dupchardefs", "privateuse"] self.curdir = os.path.abspath(os.path.dirname(__file__)) def __del__(self): del self.keynames del self.chardefs del self.dupchardefs del self.bopomofo del self.big5F del self.big5LF del self.big5S del self.big5Other del self.cjk del self.cjkExtA del self.cjkExtB del self.cjkExtC del self.cjkExtD del self.cjkExtE del self.cjkOther del self.privateuse del self.phrases del self.cincount self.keynames = {} self.chardefs = {} self.dupchardefs = {} self.bopomofo = {} self.big5F = {} self.big5LF = {} self.big5S = {} self.big5Other = {} self.cjk = {} self.cjkExtA = {} self.cjkExtB = {} self.cjkExtC = {} self.cjkExtD = {} self.cjkExtE = {} self.cjkOther = {} self.privateuse = {} self.phrases = {} self.cincount = {} def run(self, file, filePath, sortByCharset): print(file) print(filePath) self.jsonFile = re.sub('\.cin$', '', file) + '.json' self.sortByCharset = sortByCharset state = PARSING_HEAD_STATE if file in self.haveHashtagInKeynames: if DEBUG_MODE: print("字根含有 # 符號!") if not os.path.exists(filePath): open(filePath, 'w').close() with io.open(filePath, encoding='utf-8') as fs: for line in fs: line = re.sub('^ | $|\\n$', '', line) if file in self.haveHashtagInKeynames: if not line or (line[0] == '#' and state == PARSING_HEAD_STATE): continue else: if not line or line[0] == '#': continue if state is not PARSE_CHARDEF_STATE: if CIN_HEAD in line: continue if ENAME_HEAD in line: self.ename = head_rest(ENAME_HEAD, line) if CNAME_HEAD in line: self.cname = head_rest(CNAME_HEAD, line) if ENCODING_HEAD in line: continue if SELKEY_HEAD in line: self.selkey = head_rest(SELKEY_HEAD, line) if CHARDEF_HEAD in line: if 'begin' in line: state = PARSE_CHARDEF_STATE else: state = PARSING_HEAD_STATE continue if KEYNAME_HEAD in line: if 'begin' in line: state = PARSE_KEYNAME_STATE else: state = PARSING_HEAD_STATE continue if state is PARSE_KEYNAME_STATE: key, root = safeSplit(line) key = key.strip().lower() if ' ' in root: root = '\u3000' else: root = root.strip() self.keynames[key] = root continue else: if CHARDEF_HEAD in line: continue if self.cname == "中標倉頡": if '#' in line: line = re.sub('#.+', '', line) key, root = safeSplit(line) key = key.strip().lower() if root == "Error": if DEBUG_MODE: print("發生錯誤!") break if ' ' in root: root = '\u3000' else: root = root.strip() charset = self.getCharSet(key, root) if not self.sortByCharset: if key in self.chardefs: if root in self.chardefs[key]: if DEBUG_MODE: print("含有重複資料: " + key) try: self.dupchardefs[key].append(root) except KeyError: self.dupchardefs[key] = [root] else: try: self.chardefs[key].append(root) except KeyError: self.chardefs[key] = [root] self.cincount['totalchardefs'] += 1 else: try: self.chardefs[key].append(root) except KeyError: self.chardefs[key] = [root] self.cincount['totalchardefs'] += 1 if self.sortByCharset: if DEBUG_MODE: print("排序字元集!") self.mergeDicts(self.big5F, self.big5LF, self.big5S, self.big5Other, self.bopomofo, self.cjk, self.cjkExtA, self.cjkExtB, self.cjkExtC, self.cjkExtD, self.cjkExtE, self.cjkOther, self.phrases, self.privateuse) #print("WTF") #print(self.jsonFile); self.saveJsonFile(self.jsonFile) def mergeDicts(self, *chardefsdicts): for chardefsdict in chardefsdicts: for key in chardefsdict: for root in chardefsdict[key]: if key in self.chardefs: if root in self.chardefs[key]: if DEBUG_MODE: print("含有重複資料: " + key) try: self.dupchardefs[key].append(root) except KeyError: self.dupchardefs[key] = [root] else: try: self.chardefs[key].append(root) except KeyError: self.chardefs[key] = [root] self.cincount['totalchardefs'] += 1 else: try: self.chardefs[key].append(root) except KeyError: self.chardefs[key] = [root] self.cincount['totalchardefs'] += 1 def toJson(self): return {key: value for key, value in self.__dict__.items() if key in self.saveList} def saveJsonFile(self, file): #filename = self.getJsonFile(file) filename = file try: with codecs.open(filename, 'w', 'utf-8') as f: js = json.dump(self.toJson(), f, ensure_ascii=False, sort_keys=True, indent=4) except Exception: print("FIXME") pass # FIXME: handle I/O errors? def getJsonDir(self): json_dir = os.path.join(self.curdir, os.pardir, "json") os.makedirs(json_dir, mode=0o700, exist_ok=True) return json_dir def getJsonFile(self, name): return os.path.join(self.getJsonDir(), name) def getCharSet(self, key, root): matchstr = '' if len(root) > 1: try: self.phrases[key].append(root) except KeyError: self.phrases[key] = [root] self.cincount['phrases'] += 1 return "phrases" else: matchstr = root matchint = ord(matchstr) if matchint <= self.charsetRange['cjk'][1]: if (matchint in range(self.charsetRange['bopomofo'][0], self.charsetRange['bopomofo'][1]) or # Bopomofo 區域 matchint in self.charsetRange['bopomofoTone']): try: self.bopomofo[key].append(root) # 注音符號 except KeyError: self.bopomofo[key] = [root] self.cincount['bopomofo'] += 1 return "bopomofo" elif matchint in range(self.charsetRange['cjk'][0], self.charsetRange['cjk'][1]): # CJK Unified Ideographs 區域 try: big5code = matchstr.encode('big5') big5codeint = int(big5code.hex(), 16) if big5codeint in range(self.charsetRange['big5F'][0], self.charsetRange['big5F'][1]): # Big5 常用字 try: self.big5F[key].append(root) except KeyError: self.big5F[key] = [root] self.cincount['big5F'] += 1 return "big5F" elif big5codeint in range(self.charsetRange['big5LF'][0], self.charsetRange['big5LF'][1]): # Big5 次常用字 try: self.big5LF[key].append(root) except KeyError: self.big5LF[key] = [root] self.cincount['big5LF'] += 1 return "big5LF" elif big5codeint in range(self.charsetRange['big5S'][0], self.charsetRange['big5S'][1]): # Big5 符號 try: self.big5S[key].append(root) except KeyError: self.big5S[key] = [root] self.cincount['big5S'] += 1 return "big5LF" else: # Big5 其它漢字 try: self.big5Other[key].append(root) except KeyError: self.big5Other[key] = [root] self.cincount['big5Other'] += 1 return "big5Other" except: # CJK Unified Ideographs 漢字 try: self.cjk[key].append(root) except KeyError: self.cjk[key] = [root] self.cincount['cjk'] += 1 return "cjk" elif matchint in range(self.charsetRange['cjkExtA'][0], self.charsetRange['cjkExtA'][1]): # CJK Unified Ideographs Extension A 區域 try: self.cjkExtA[key].append(root) # CJK 擴展 A 區 except KeyError: self.cjkExtA[key] = [root] self.cincount['cjkExtA'] += 1 return "cjkExtA" else: if matchint in range(self.charsetRange['cjkExtB'][0], self.charsetRange['cjkExtB'][1]): # CJK Unified Ideographs Extension B 區域 try: self.cjkExtB[key].append(root) # CJK 擴展 B 區 except KeyError: self.cjkExtB[key] = [root] self.cincount['cjkExtB'] += 1 return "cjkExtB" elif matchint in range(self.charsetRange['cjkExtC'][0], self.charsetRange['cjkExtC'][1]): # CJK Unified Ideographs Extension C 區域 try: self.cjkExtC[key].append(root) # CJK 擴展 C 區 except KeyError: self.cjkExtC[key] = [root] self.cincount['cjkExtC'] += 1 return "cjkExtC" elif matchint in range(self.charsetRange['cjkExtD'][0], self.charsetRange['cjkExtD'][1]): # CJK Unified Ideographs Extension D 區域 try: self.cjkExtD[key].append(root) # CJK 擴展 D 區 except KeyError: self.cjkExtD[key] = [root] self.cincount['cjkExtD'] += 1 return "cjkExtD" elif matchint in range(self.charsetRange['cjkExtE'][0], self.charsetRange['cjkExtE'][1]): # CJK Unified Ideographs Extension E 區域 try: self.cjkExtE[key].append(root) # CJK 擴展 E 區 except KeyError: self.cjkExtE[key] = [root] self.cincount['cjkExtE'] += 1 return "cjkExtE" elif (matchint in range(self.charsetRange['pua'][0], self.charsetRange['pua'][1]) or # Unicode Private Use 區域 matchint in range(self.charsetRange['puaA'][0], self.charsetRange['puaA'][1]) or matchint in range(self.charsetRange['puaB'][0], self.charsetRange['puaB'][1])): try: self.privateuse[key].append(root) # Unicode 私用區 except KeyError: self.privateuse[key] = [root] self.cincount['privateuse'] += 1 return "pua" elif matchint in range(self.charsetRange['cjkCIS'][0], self.charsetRange['cjkCIS'][1]): # cjk compatibility ideographs supplement 區域 try: self.privateuse[key].append(root) # CJK 相容字集補充區 except KeyError: self.privateuse[key] = [root] self.cincount['cjkCIS'] += 1 return "pua" # 不在 CJK Unified Ideographs 區域 try: self.cjkOther[key].append(root) # CJK 其它漢字或其它字集字元 except KeyError: self.cjkOther[key] = [root] self.cincount['cjkOther'] += 1 return "cjkOther" def head_rest(head, line): return line[len(head):].strip() def safeSplit(line): if ' ' in line: return line.split(' ', 1) elif '\t' in line: return line.split('\t', 1) else: return line, "Error" # def main(): # # app = CinToJson() # if len(sys.argv) >= 2: # cinFile = os.path.join(os.path.abspath(os.path.dirname(__file__)), os.pardir, "cin", sys.argv[1]) # if os.path.exists(cinFile): # if len(sys.argv) >= 3 and sys.argv[2] == "sort": # app.run(sys.argv[1], cinFile, True) # else: # app.run(sys.argv[1], cinFile, False) # else: # if len(sys.argv) == 1: # sortList = ['cnscj.cin', 'CnsPhonetic.cin'] # for file in os.listdir(os.path.join(os.path.abspath(os.path.dirname(__file__)), os.pardir, "cin")): # if file.endswith(".cin"): # if DEBUG_MODE: # print('轉換 ' + file + ' 中...') # app.__init__() # cinFile = os.path.join(os.path.abspath(os.path.dirname(__file__)), os.pardir, "cin", file) # if file in sortList: # app.run(file, cinFile, True) # else: # app.run(file, cinFile, False) # app.__del__() # else: # if DEBUG_MODE: # print('檔案不存在!')
2.515625
3
lambdas_with_docker/lambda_to_lambda_caller.py
koki-nakamura22/lambda-local-dev-example
0
12785859
<reponame>koki-nakamura22/lambda-local-dev-example # This function is the caller. # # How to execute this file. # Must upload this file and lambda_to_lambda_callee.py to AWS Lambda then executing them # because it cannot execute another Lambda function locally. import json import boto3 def lambda_handler(event, context): response_body = {} execute_async_params = { 'testKey': 'test parameter for executing async' } response_body['executeAsync'] = __executeAnotherLambdaAsync(execute_async_params) execute_sync_params = { 'testKey': 'test parameter for executing sync' } response_body['executeSync'] = __executeAnotherLambdaSync(execute_sync_params) return { 'statusCode': 200, 'body': response_body } # Executing another Lambda function async. def __executeAnotherLambdaAsync(params): return __executeAnotherLambda(params, 'Event') # Executing another Lambda function sync. def __executeAnotherLambdaSync(params): return __executeAnotherLambda(params, 'RequestResponse') # Executing another Lambda function. def __executeAnotherLambda(params, invocation_type): lambda_client = boto3.client('lambda') response = lambda_client.invoke( FunctionName='lambda_to_lambda_callee', InvocationType=invocation_type, Payload=json.dumps(params) ) pay_load = response['Payload'].read() pay_load_str = pay_load.decode('utf-8') if pay_load_str != '' and not pay_load_str is None: return json.loads(pay_load_str) else: return {}
2.4375
2
vanadis/__init__.py
CyanideCN/vanadis
1
12785860
<gh_stars>1-10 from vanadis.colormap import Colormap from vanadis.palette import parse_palette __version__ = '0.0.3'
1.226563
1
hackru/locustfile.py
sakib/hackru
3
12785861
<reponame>sakib/hackru from locust import HttpLocust, TaskSet, task class UserBehavior(TaskSet): #def on_start(self): # """ on_start is called when a Locust starts, before tasks scheduled """ #self.login() #print "starting locust (%r)" % (self.locust) #def login(self): # self.client.post("/login", {"username": "test"}) @task(2) def index(self): self.client.get("/") #@task(1) #def profile(self): # self.client.get("/profile") class WebsiteUser(HttpLocust): task_set = UserBehavior min_wait = 5000 max_wait = 9000
2.8125
3
kernel/builder.py
dereklpeck/paradoxia
1
12785862
<gh_stars>1-10 """ Generate Agent """ import os import subprocess def create_agent(lhost, lport, mode): if(len(lhost) > 0 and len(lport) > 0 and len(mode) > 0): if(mode == "static"): static = True else: print("[WARNING]: It is recommended you create a static Bot.") static = False os.chdir("bot") with open("clientc.h", "r+") as source_code: source = source_code.read() replace = source.replace("lhost", lhost) final_replace = replace.replace("lport", lport) with open("client.h", "w") as final: final.write(final_replace) if(os.name == "nt"): if(static == True): print("[+] Building Static BOT which will connect on {lhost}:{lport}.".format(lhost=lhost, lport=lport)) subprocess.call(["make", "windows-static"], stdout=open(os.devnull,"w"), stderr=subprocess.STDOUT) else: print("[+] Building BOT which will connect on {lhost}:{lport}.".format(lhost=lhost, lport=lport)) subprocess.call(["make", "windows"], stdout=open(os.devnull,"w"), stderr=subprocess.STDOUT) else: if(static == True): print("[+] Building Static BOT which will connect on {lhost}:{lport}.".format(lhost=lhost, lport=lport)) subprocess.call(["make", "linux-static"], stdout=open(os.devnull,"w"), stderr=subprocess.STDOUT) else: print("[+] Building BOT which will connect on {lhost}:{lport}.".format(lhost=lhost, lport=lport)) subprocess.call(["make", "linux"], stdout=open(os.devnull,"w"), stderr=subprocess.STDOUT) os.chdir("..") try: file = "bot/Paradoxia.exe" #os.remove("bot/Paradoxia.h") with open(file, "rb") as backdoor: hello = os.stat(file) print("\n-> Paradoxia.exe | Size : {size} bytes | Path : {path}" .format(size=str(hello.st_size), path=os.path.dirname(os.path.abspath(file)))) except FileNotFoundError: print("-> Failed to create Backdoor.") except Exception as es: print("-> Error : " +str(es)) else: print(""" [X] USAGE : build lhost=<lhost> lport=<lport> <static>/<normal> LHOST - Ipv4 Address of Server to Connect to. LPORT - Port of Server to Connect to. static - Standalone Executable to run on almost any System. normal - Executable that requires libraries to run. EXAMPLES : [+] build lhost=192.168.0.101 lport=443 static |- Size : Around 2.1 MB. |- This will generate an Executable that you can easily spread without worrying that it will work or not. [+] build lhost=192.168.0.101 lport=443 normal |- Size : Around 600 kb. |- This will generate an Executable that you can use for tests on your own PC. Or infect a System which an environment where it can run. """)
2.84375
3
accounts/views.py
RomanOsadchuk/nospoil
0
12785863
from django.contrib.auth import authenticate, login from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from django.shortcuts import get_object_or_404 from django.views.generic import DetailView, TemplateView from django.views.generic.edit import FormView from playoffs.models import Playoff class RegistrationView(FormView): template_name = 'registration/register.html' form_class = UserCreationForm success_url = '/' def form_valid(self, form): name = form.cleaned_data['username'] password = form.cleaned_data['<PASSWORD>'] user = User.objects.create_user(name, password=password) new_user = authenticate(username=name, password=password) login(self.request, new_user) return super(RegistrationView, self).form_valid(form) class ProfileView(LoginRequiredMixin, TemplateView): template_name = 'registration/profile.html' def get_context_data(self, *args, **kwargs): context = super(ProfileView, self).get_context_data(*args, **kwargs) context['playoffs'] = Playoff.objects.filter(owner=self.request.user) return context class UserPageView(DetailView): model = User context_object_name = 'user' template_name = 'accounts/user_page.html' def get_object(self, queryset=None): username = self.kwargs.get('username') obj = get_object_or_404(User, username=username) return obj def get_context_data(self, *args, **kwargs): context = super(UserPageView, self).get_context_data(*args, **kwargs) context['playoffs'] = Playoff.objects.filter(owner=self.object) return context
2.03125
2
solutions/6002.py
pacokwon/leetcode
2
12785864
class Bitset: def __init__(self, size): self.bitmap = 0 self.size = size self.cnt = 0 def fix(self, idx): if self.bitmap & (1 << idx) == 0: self.bitmap = self.bitmap | (1 << idx) self.cnt += 1 def unfix(self, idx): if self.bitmap & (1 << idx): self.bitmap = self.bitmap ^ (1 << idx) self.cnt -= 1 def flip(self): self.bitmap = self.bitmap ^ ((1 << self.size) - 1) self.cnt = self.size - self.cnt def all(self): return self.cnt == self.size def one(self): return self.bitmap > 0 def count(self): return self.cnt def toString(self): a = bin(self.bitmap)[2:] return a[::-1] + '0' * (self.size - len(a))
3.125
3
uiCompile2.py
bambooshoot/renameFileList
0
12785865
<gh_stars>0 from pyside2uic import compileUi import py_compile,glob,os,re uiPath=os.curdir print uiPath preIndex=len(uiPath)+1 uiFiles=glob.glob("%s/*.ui"%uiPath) print uiFiles for uiFile in uiFiles: print uiFile fileBaseName=re.search("[^\\\\]+.ui$",uiFile).group(0) fileBaseName=re.search("^[^.]+",fileBaseName).group(0) pyFile="%s/%sUI.py"%(uiPath,fileBaseName) print uiFile,pyFile pyFileP = open(pyFile, 'w') compileUi(uiFile, pyFileP, False, 4, False) pyFileP.close()
2.40625
2
zorro/scripts/calcMeanFRCs.py
C-CINA/zorro
8
12785866
# -*- coding: utf-8 -*- """ Created on Tue Jun 7 16:12:33 2016 @author: rmcleod """ import numpy as np import matplotlib.pyplot as plt import os, os.path, glob mcFRCFiles = glob.glob( "FRC/*mcFRC.npy" ) zorroFRCFiles = glob.glob( "FRC/*zorroFRC.npy" ) zorroFRCs = [None] * len( zorroFRCFiles) for J in np.arange( len(zorroFRCFiles) ): zorroFRCs[J] = np.load( zorroFRCFiles[J] ) mcFRCs = [None] * len( mcFRCFiles) for J in np.arange( len(mcFRCFiles) ): mcFRCs[J] = np.load( mcFRCFiles[J] ) zorroMeanFRC = np.mean( np.array(zorroFRCs), axis=0 ) mcMeanFRC = np.mean( np.array(mcFRCs), axis=0 ) plt.figure() plt.plot( mcMeanFRC, '.-', color='firebrick', label='MotionCorr' ) plt.plot( zorroMeanFRC, '.-', color='black', label='Zorro' ) plt.title( "Mean FRC Re-aligned from MotionCorr" ) plt.legend() plt.xlim( [0,len(mcMeanFRC)] ) plt.savefig( "Dataset_mean_MC_vs_Zorro.png" )
2.375
2
csgo_gsi_arduino_lcd/data/arduino_mediator.py
Darkness4/csgo-gsi-arduino
5
12785867
# -*- coding: utf-8 -*- """ ArduinoMediator. @auteur: Darkness4 """ import logging from threading import Thread from time import sleep, time from typing import Optional from csgo_gsi_arduino_lcd.entities.state import State from csgo_gsi_arduino_lcd.entities.status import Status from serial import Serial class ArduinoMediator(Thread): """Give order to the arduino.""" state: Optional[State] = None __refresh = False # Order to refresh informations __start = True # Order to start/stop __status: Status = Status.NONE ser_arduino: Serial def __init__(self, ser_arduino: Serial): """Init save.""" super(ArduinoMediator, self).__init__() self.ser_arduino = ser_arduino @property def status(self) -> Status: return self.__status @status.setter def status(self, status: Status): """Change Messenger behavior.""" self.__status = status self.__refresh = True # Informations need to be refreshed def run(self): """Thread start.""" while self.__start: self.refresh() if self.__refresh else sleep(0.1) logging.info("Messenger is dead.") def refresh(self): self.__refresh = False # Has refreshed if self.__status in ( Status.BOMB, Status.DEFUSED, Status.EXPLODED, ): # Bomb self.draw_bomb_timer() elif self.__status == Status.NONE: self.draw_idling() else: # Default status self.write_player_stats() def draw_bomb_timer(self): """40 sec bomb timer on arduino.""" offset = time() actualtime: int = int(40 - time() + offset) while actualtime > 0 and self.__status == Status.BOMB: oldtime = actualtime sleep(0.1) actualtime = int(40 - time() + offset) if oldtime != actualtime: # Actualization only integer change self.ser_arduino.write(b"BOMB PLANTED") # Wait for second line sleep(0.1) for i in range(0, 40, 5): self.ser_arduino.write( ArduinoMediator.progress(actualtime - i) ) self.ser_arduino.write(str(actualtime).encode()) sleep(0.1) if self.__status == Status.DEFUSED: self.ser_arduino.write(b"BOMB DEFUSED") # Wait for second line sleep(0.1) self.ser_arduino.write(b" ") sleep(0.1) elif self.__status == Status.EXPLODED: self.ser_arduino.write(b"BOMB EXPLODED") # Wait for second line sleep(0.1) self.ser_arduino.write(b" ") sleep(0.1) def write_player_stats(self): """Player stats writer.""" # Not too fast sleep(0.1) # Writing health and armor in Serial self.draw_health_and_armor() # Wait for second line sleep(0.1) # Kill or Money if self.__status == Status.NOT_FREEZETIME: self.draw_kills() elif self.__status == Status.FREEZETIME: self.draw_money() sleep(0.1) def draw_kills(self): """Show kills in one line.""" # HS and Kill counter self.ser_arduino.write(b"K: ") if self.state is not None: for i in range(self.state.round_kills): if i < self.state.round_killhs: self.ser_arduino.write(b"\x01") # Byte 1 char : HS else: self.ser_arduino.write(b"\x00") # Byte 0 char : kill no HS def draw_money(self): """Show money in one line.""" if self.state is not None: self.ser_arduino.write(f"M: {self.state.money}".encode()) def draw_health_and_armor(self): """Show health and armor in one line.""" if self.state is not None: self.ser_arduino.write(b"H: ") self.ser_arduino.write( ArduinoMediator.progress(self.state.health // 5) ) self.ser_arduino.write( ArduinoMediator.progress((self.state.health - 25) // 5) ) self.ser_arduino.write( ArduinoMediator.progress((self.state.health - 50) // 5) ) self.ser_arduino.write( ArduinoMediator.progress((self.state.health - 75) // 5) ) self.ser_arduino.write(b" A: ") self.ser_arduino.write( ArduinoMediator.progress(self.state.armor // 5) ) self.ser_arduino.write( ArduinoMediator.progress((self.state.armor - 25) // 5) ) self.ser_arduino.write( ArduinoMediator.progress((self.state.armor - 50) // 5) ) self.ser_arduino.write( ArduinoMediator.progress((self.state.armor - 75) // 5) ) def draw_idling(self): """Print text while idling.""" self.ser_arduino.write(b"Waiting for") sleep(0.1) self.ser_arduino.write(b"matches") def shutdown(self): """Stop the mediator.""" self.__start = False @staticmethod def progress(i: int) -> bytes: """ Progress bar, for arduino 5px large. Parameters ---------- i : int Select which character to send to Arduino. Returns ------- bytes : Character send to Arduino. """ if i <= 0: return b"\x07" elif 1 <= i <= 5: return bytes([i + 1]) else: return b"\x06"
2.59375
3
scripts/data_collect.py
ehu-ai/domrand
20
12785868
<filename>scripts/data_collect.py #!/usr/bin/env python2 from __future__ import print_function import os import argparse import rospy import cv2 from std_msgs.msg import String from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError """ Hacky script for collecting real world samples (uses ros) 0. Plug in camera and launch it (for Asus: `roslaunch openni_launch openni.launch`) 1. Use rviz to look at camera image. 2. When ready to take, enter x, y to save the current image to a file """ rospy.init_node('test') bridge = CvBridge() def save_image(filename): raw_img = rospy.wait_for_message(img_topic, Image) cv_image = bridge.imgmsg_to_cv2(raw_img, 'bgr8') # Save the file # make dir if it doesn't exist dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) success = cv2.imwrite(filename, cv_image) assert success, "File write failed somehow" parser = argparse.ArgumentParser(description='MAML') parser.add_argument('--filepath', type=str, default='./data/real_world', help='') parser.add_argument('--prefix', type=str, default=None, help='') parser.add_argument('--camera', type=str, default='asus', help='') FLAGS = parser.parse_args() if FLAGS.camera == 'asus': img_topic = '/camera/rgb/image_raw' else: img_topic = '/kinect2/hd/image_color' print('Enter <x y> when ready to grab snapshot') print() while not rospy.is_shutdown(): inp = raw_input('x y: ') x,y = inp[0], inp[1] if FLAGS.prefix is None: filename = '{}-{}.jpg'.format(x,y) else: filename = '{}-{}-{}.jpg'.format(FLAGS.prefix, x,y) full_path = os.path.join(FLAGS.filepath, filename) save_image(full_path) print("Saved {}".format(full_path))
2.6875
3
nlzss/verify.py
meunierd/nlzss
48
12785869
<reponame>meunierd/nlzss<filename>nlzss/verify.py #!/usr/bin/env python3 import sys from sys import stdin, stdout, stderr, exit from os import SEEK_SET, SEEK_CUR, SEEK_END from errno import EPIPE from struct import pack, unpack class DecompressionError(ValueError): pass class VerificationError(ValueError): pass def bits(byte): return ((byte >> 7) & 1, (byte >> 6) & 1, (byte >> 5) & 1, (byte >> 4) & 1, (byte >> 3) & 1, (byte >> 2) & 1, (byte >> 1) & 1, (byte) & 1) def decompress_raw_lzss10(indata, decompressed_size, _overlay=False): """Decompress LZSS-compressed bytes. Returns a bytearray.""" data = bytearray() it = iter(indata) if _overlay: disp_extra = 3 else: disp_extra = 1 def writebyte(b): data.append(b) def readbyte(): return next(it) def readshort(): # big-endian a = next(it) b = next(it) return (a << 8) | b def copybyte(): data.append(next(it)) while len(data) < decompressed_size: b = readbyte() if b == 0: # dumb optimization for _ in range(8): copybyte() continue flags = bits(b) for flag in flags: if flag == 0: copybyte() elif flag == 1: sh = readshort() count = (sh >> 0xc) + 3 disp = (sh & 0xfff) + disp_extra for _ in range(count): writebyte(data[-disp]) else: raise ValueError(flag) if decompressed_size <= len(data): break if len(data) != decompressed_size: raise DecompressionError("decompressed size does not match the expected size") return data def lz11_tokens(indata): it = iter(indata) i = 4 def readbyte(): nonlocal i i += 1 return next(it) while True: flagpos = i flags = bits(readbyte()) for flag in flags: pos = i if flag == 0: yield readbyte(), pos, flagpos elif flag == 1: b = readbyte() indicator = b >> 4 if indicator == 0: # 8 bit count, 12 bit disp # indicator is 0, don't need to mask b count = (b << 4) b = readbyte() count += b >> 4 count += 0x11 elif indicator == 1: # 16 bit count, 12 bit disp count = ((b & 0xf) << 12) + (readbyte() << 4) b = readbyte() count += b >> 4 count += 0x111 else: # indicator is count (4 bits), 12 bit disp count = indicator count += 1 disp = ((b & 0xf) << 8) + readbyte() disp += 1 yield (count, -disp), pos, flagpos else: raise ValueError(flag) def verify(obj): """Verify LZSS-compressed bytes or a file-like object. Shells out to verify_file() or verify_bytes() depending on whether or not the passed-in object has a 'read' attribute or not. Returns None on success. Raises an exception on error.""" if hasattr(obj, 'read'): return verify_file(obj) else: return verify_bytes(obj) def verify_bytes(data): """Verify LZSS-compressed bytes. Returns None on success. Raises an exception on error. """ header = data[:4] if header[0] == 0x10: tokenize = lz10_tokens elif header[0] == 0x11: tokenize = lz11_tokens else: raise VerificationError("not as lzss-compressed file") decompressed_size, = unpack("<L", header[1:] + b'\x00') data = data[4:] tokens = tokenize(data, decompressed_size) return verify_tokens(tokens) def verify_file(f): """Verify an LZSS-compressed file. Returns None on success. Raises an exception on error. """ header = f.read(4) if header[0] == 0x10: tokenize = lz10_tokens elif header[0] == 0x11: tokenize = lz11_tokens else: raise VerificationError("not as lzss-compressed file") decompressed_size, = unpack("<L", header[1:] + b'\x00') data = f.read() tokens = tokenize(data) return verify_tokens(tokens, decompressed_size) def verify_tokens(tokens, decompressed_length): length = 0 for t in tokens: t, pos, flagpos = t if type(t) == tuple: count, disp = t assert disp < 0 assert 0 < count if disp + length < 0: raise VerificationError( "disp too large. length: {:#x}, disp: {:#x}, pos: {:#x}, flagpos: {:#x}" .format(length, disp, pos, flagpos)) length += count else: length += 1 if length >= decompressed_length: break if length != decompressed_length: raise VerificationError( "decompressed size does not match. got: {:#x}, expected: {:#x}".format( length, decompressed_length)) def dump_file(f): header = f.read(4) if header[0] == 0x10: tokenize = lz10_tokens elif header[0] == 0x11: tokenize = lz11_tokens else: raise VerificationError("not as lzss-compressed file") decompressed_size, = unpack("<L", header[1:] + b'\x00') data = f.read() tokens = tokenize(data) def dump(): for t, pos, flagpos in tokens: if type(t) == tuple: yield t from pprint import pprint pprint(list(dump())) def main(args=None): if args is None: args = sys.argv[1:] if '--overlay' in args: args.remove('--overlay') overlay = True else: overlay = False if len(args) < 1 or args[0] == '-': if overlay: print("Can't verify overlays from stdin", file=stderr) return 2 if hasattr(stdin, 'detach'): f = stdin.detach() else: f = stdin else: try: f = open(args[0], "rb") except IOError as e: print(e, file=stderr) return 2 try: if overlay: print("Can't verify overlays", file=stderr) else: #verify_file(f) dump_file(f) except (VerificationError,) as e: print(e, file=stderr) return 1 return 0 if __name__ == '__main__': exit(main())
2.578125
3
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/python/temperature_application_interface_def.py
ArrowElectronics/Vital-Signs-Monitoring
5
12785870
<reponame>ArrowElectronics/Vital-Signs-Monitoring from ctypes import * from common_application_interface_def import * from m2m2_core_def import * class M2M2_TEMPERATURE_APP_CMD_ENUM_t(c_ubyte): _M2M2_TEMPERATURE_APP_CMD_LOWEST = 0x60 M2M2_TEMPERATURE_APP_CMD_SET_FS_REQ = 0x62 M2M2_TEMPERATURE_APP_CMD_SET_FS_RESP = 0x63 class temperature_app_stream_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("sequence_num", c_ushort), ("nTS", c_ulong), ("nTemperature1", c_ushort), ("nTemperature2", c_ushort), ] class temperature_app_dcb_lcfg_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ] class temperature_app_lcfg_t(Structure): _pack_ = 1 _fields_ = [ ("command", c_ubyte), ("status", c_ubyte), ("field", c_ubyte), ("value", c_ulong * 21), ]
2.390625
2
experiments/utils.py
pedrobn23/pyutai
3
12785871
import numpy as np from pyutai import trees from potentials import cluster def cpd_size(cpd): return np.prod(cpd.cardinality) def unique_values(cpd): unique, _ = np.unique(cpd.values, return_counts=True) return len(unique) def stats(net): if not net.endswith('.bif'): raise ValueError('Net format not supported. Expected .bif, got {net}') file_ = read.read(f'networks/{net}') model = file_.get_model() cpds = model.get_cpds() unique_values = statistics.mean(_unique_values(cpd) for cpd in cpds) max_values = max( ((i, _unique_values(cpd)) for i, cpd in enumerate(cpds)), key=lambda x: x[1]) print( f'Net: {net}. Mean unique value: {unique_values:.2f}. Biggest cpd: {max_values}' ) def tree_from_cpd(cpd, selector): if selector is None: pass else: selector = selector(cpd.values, cpd.variables) cardinality_ = dict(zip(cpd.variables, cpd.cardinality)) return trees.Tree.from_array(cpd.values, cpd.variables, cardinality_, selector=selector) def cluster_from_cpd(cpd): return cluster.Cluster.from_array(cpd.values, cpd.variables)
2.46875
2
geopayment/providers/__init__.py
Lh4cKg/tbcpay
0
12785872
<filename>geopayment/providers/__init__.py from geopayment.providers.credo import CredoProvider from geopayment.providers.tbc import TBCProvider from geopayment.providers.bog import IPayProvider, IPayInstallmentProvider
1.234375
1
PCscrapy/spiders/PCscrap.py
arju88nair/PCScrapy
0
12785873
<reponame>arju88nair/PCScrapy<filename>PCscrapy/spiders/PCscrap.py<gh_stars>0 import scrapy import re import datetime import logging import time import RAKE from datetime import datetime import hashlib from scrapy.spiders import XMLFeedSpider from pymongo import MongoClient from PCscrapy.scrapLinks import Links from scrapy.xlib.pydispatch import dispatcher from scrapy import signals from random import shuffle from PCscrapy.geography import tags from bson.json_util import dumps import pprint import json now = datetime.now() start = time.time() connection = MongoClient('mongodb://localhost:27017/Culminate') db = connection.Culminate logging.debug('Blah') class Spider(XMLFeedSpider): """ Active main spider which crawls through the links provided """ name = "scrap" allowed_domains = ["feeds.feedburner.com"] itertag = 'item' logging.getLogger("requests").setLevel(logging.WARNING) logging.basicConfig( level=logging.DEBUG, format= '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='weird.log', filemode='w') def start_requests(self): shuffle(Links) for url in Links: request = scrapy.Request(url=url[0], callback=self.parse) request.meta['source'] = url[1] request.meta['category'] = url[2] request.meta['type'] = url[3] request.meta['url'] = url[0] # logging.error('For ' + url[0] + ' in ' + url[2]) yield request """ Parsing block for the default rss """ def parse_node(self, response, node): item = {} source = response.meta.get('source') category = response.meta.get('category') # self.logger.info('Hi, this is a <%s> node!: %s', self.itertag, ''.join(node.extract())) title = node.xpath('title/text()').extract_first() item['title'] = cleanhtml(title) if title: item['link'] = node.xpath('link/text()').extract_first() item['published'] = node.xpath('pubDate/text()').extract_first() description = node.xpath('description/text()').extract_first() description = cleanhtml(description) item['summary'] = description item['source'] = response.meta.get('source') tagText=str(title)+str(description) countryClass=tags.getCountry(tagText) if len(countryClass) > 0: item['category'] = "India" else: item['category'] = response.meta.get('category') if source == "The Guardian": item['image'] = node.xpath("*[local-name()='content'][@width='460']/@url").extract_first() else: media = node.xpath("*[local-name()='content']/@url").extract_first() thumb = node.xpath("*[local-name()='thumbnail']/@url").extract_first() full = node.xpath("fullimage/text()").extract_first() image = node.xpath("image/text()").extract_first() enclosure = node.xpath("enclosure/@url").extract_first() if media: item['image'] = media elif thumb: item['image'] = thumb elif enclosure: item['image'] = enclosure elif image: item['image'] = image elif full: item['image'] = full item['type'] = response.meta.get('type') item['uTag'] = hashlib.sha256( title.encode('utf-8')).hexdigest()[:16] item['created_at'] = str(datetime.now()) Rake = RAKE.Rake('stopwords_en.txt') words = Rake.run(title) tagWordArray = [] for word in words: tagWordArray.append(word[0].title()) item['tags'] = tagWordArray db.Temp.insert_one(item) insertingBlock(item, source, category) def handle_spider_closed(spider, reason): popularInsert() print("Closed handle") dispatcher.connect(handle_spider_closed, signals.spider_closed) def cleanhtml(raw_html): """ To remove html tags in the summary """ if raw_html is not None: cleanr = re.compile(r'<w:(.*)>(.*)</w:(.*)>') cleantext = re.sub(cleanr, ' ', raw_html) cleanr = re.compile(r'<[^>]+>') cleantext = re.sub(cleanr, ' ', cleantext) cleanr = re.compile('&apos;') cleantext = re.sub(cleanr, "'", cleantext) cleanr = re.compile('&.*?;') cleantext = re.sub(cleanr, '', cleantext) cleanr = re.compile('\n') cleantext = re.sub(cleanr, '', cleantext) cleanr = re.compile('{.*?}') cleantext = re.sub(cleanr, '', cleantext) cleanr = re.compile('/.*?/') cleantext = re.sub(cleanr, '', cleantext) cleanr = re.compile('table.MsoNormalTable') cleantext = re.sub(cleanr, '', cleantext) cleantext = cleantext.strip() return cleantext else: return "" def insertingBlock(item, source, category): """ Inserting function with respect to the collection name parsed """ if db[category].count() == 0: db[category].insert_one(item) else: tags = str(item['uTag']) if db.Main.find_one( {'uTag': tags}, {'_id': 1}): pass else: insertDoc = db.Main.insert_one(item) db[category].insert_one(item) if insertDoc: logging.debug('Inserted new for ' + category + " for " + source ) logging.debug('\n') else: logging.debug('Error in insertion for ' + category + " for " + source) logging.debug('\n') # def randomiseInsert(): # temp = list(db.Temp.find({}, {'_id': False})) # shuffle(temp) # if temp: # for item in temp: # insertingBlock(item, item['source'], item['category']) # db.Temp.drop() # logging.info('Work time:' + str(time.time() - start)) # logging.info('Ended at ' + now.strftime("%Y-%m-%d %H:%M")) def popularInsert(): popular = list(db.PopularPosts.aggregate([ { '$lookup': { 'from': "Main", 'localField': "idPost", 'foreignField': "uTag", 'as': "Main" } }, { '$project': { '_id': 1, "idPost": 1, "Main": 1, "count": {'$size': "$users"} } }, {'$sort': {'count': -1, 'created_at': -1}}, { '$limit': 8 } ])) db.Popular.remove() for item in popular: db.Popular.insert(item)
2.46875
2
compile_trump.py
DarkGuenther/TrumpBot
0
12785874
"""Loads all of Trumps tweets and saves them to a pickle for easier access""" import pickle import json RAW_FILE = "trump_tweets_raw.txt" PICKLE_FILE = "trump_tweets.pickle" raw = json.load(open(RAW_FILE)) tweets = [e["text"] for e in raw] clean_tweets = [] # Filter out urls for t in tweets: parts = [] for p in t.split(sep=" "): if "://" in p: p = "" parts.append(p) t = " ".join(parts) clean_tweets.append(t) tweets = clean_tweets pickle.dump(tweets, open(PICKLE_FILE, "wb")) print("Dumped", len(tweets), "tweets to", PICKLE_FILE)
3.640625
4
src/component/ScanPaths.py
renchangjiu/kon-windows
2
12785875
import os import threading from PyQt5 import QtCore from PyQt5.QtCore import QObject from src.Apps import Apps from src.model.Music import Music from src.model.MusicList import MusicList from src.service.MP3Parser import MP3 class ScanPaths(QObject, threading.Thread): """ 异步扫描指定目录(指配置文件)下的所有音乐文件, 并写入数据库 """ # 1/2, 1: 扫描开始, 2: 扫描结束 scan_state_change = QtCore.pyqtSignal(int) def __init__(self): super().__init__() @staticmethod def scan(slot_func): scan = ScanPaths() scan.scan_state_change.connect(slot_func) scan.start() def run(self) -> None: self.scan_state_change.emit(1) search_paths = list(map(lambda v: v.path, filter(lambda v: v.checked, Apps.config.scanned_paths))) music_files = ScanPaths.__find_music_files(search_paths) musics = ScanPaths.__get_mp3_info(music_files) Apps.musicService.batch_insert(musics) self.scan_state_change.emit(2) @staticmethod def __find_music_files(search_paths: list) -> list: files = list() while len(search_paths) > 0: size = len(search_paths) for i in range(size): pop = search_paths.pop() if not os.path.exists(pop): continue listdir = list(map(lambda v: os.path.join(pop, v), ScanPaths.__listdir(pop))) for ld in listdir: if os.path.isdir(ld): search_paths.append(ld) else: if ScanPaths.__is_music_file(ld): files.append(ld) return files @staticmethod def __is_music_file(path): if (path.endswith("mp3") or path.endswith("MP3")) and os.path.getsize(path) > 100 * 1024: return True return False @staticmethod def __get_mp3_info(paths: list): musics = [] for path in paths: try: mp3 = MP3(path) if mp3.ret["has-ID3V2"] and mp3.duration >= 30: size = os.path.getsize(path) if size < 1024 * 1024: size = str(int(size / 1024)) + "KB" else: size = str(round(size / 1024 / 1024, 1)) + "MB" title = mp3.title if title == "": title = os.path.basename(path) artist = mp3.artist if artist == "": artist = "未知歌手" album = mp3.album if album == "": album = "未知专辑" duration = mp3.duration music = Music() music.mid = MusicList.DEFAULT_ID music.path = path music.title = title music.artist = artist music.album = album music.duration = duration music.size = size musics.append(music) except IndexError as e: pass except UnicodeDecodeError as e1: pass return musics @staticmethod def __listdir(path): try: return os.listdir(path) except PermissionError as e: print(e.strerror) return []
2.640625
3
exercises/ja/exc_03_16_02.py
Jette16/spacy-course
2,085
12785876
<filename>exercises/ja/exc_03_16_02.py import spacy nlp = spacy.load("ja_core_news_sm") text = ( "チックフィレイはジョージア州カレッジパークに本社を置く、" "チキンサンドを専門とするアメリカのファストフードレストランチェーンです。" ) # parserを無効化 with ____.____(____): # テキストを処理する doc = ____ # docの固有表現を表示 print(____)
2.6875
3
pvfit/measurement/spectral_correction.py
markcampanelli/pvfit
4
12785877
<gh_stars>1-10 import warnings import numpy import scipy.constants import scipy.interpolate from pvfit.common.constants import c_m_per_s, h_J_s, q_C class DataFunction: r""" Store data representing one/more functions in :math:`\mathbb{R}^2` with common, monotonic increasing domain values. TODO Describe interface. """ def __init__(self, *, x: numpy.ndarray, y: numpy.ndarray): # Copies inputs and sorts on increasing x values. x = numpy.asarray_chkfinite(x, dtype=float) if x.size == 0: raise ValueError("x must have at least one element.") if 1 < x.ndim: raise ValueError("x cannot have dimension greater than one.") x_size = x.size x, x_argsort = numpy.unique(x, return_index=True) if x.size != x_size: raise ValueError("x values must be unique.") if y.shape[-1] != x_size: raise ValueError("last dimension of y must equal size of x.") self.x = x y = numpy.asarray_chkfinite(y, dtype=float) self.y = y[..., x_argsort] def __eq__(self, obj): return isinstance(obj, DataFunction) and numpy.array_equal(self.x, obj.x) and numpy.array_equal(self.y, obj.y) class DataFunctionPositiveXNonnegativeY(DataFunction): r""" Store data representing a function in :math:`\mathbb{R}^2` with :math:`0 < x` and :math:`0 \leq y`. TODO Describe interface. """ def __init__(self, *, x: numpy.ndarray, y: numpy.ndarray): super().__init__(x=x, y=y) if numpy.any(self.x <= 0): raise ValueError("x values must all be positive.") if numpy.any(self.y < 0): raise ValueError("y values must all be non-negative.") class QuantumEfficiency(DataFunctionPositiveXNonnegativeY): """ Store data representing a quantum efficiency (QE) curve. TODO Describe interface and units [nm] and [1] or [%]. """ def __init__(self, *, lambda_nm: numpy.ndarray, QE: numpy.ndarray, is_percent: bool = False): super().__init__(x=lambda_nm, y=QE) # Do not convert raw data. Instead track if it is given as a percent. self.is_percent = is_percent @property def lambda_nm(self) -> numpy.ndarray: """Return wavelengths.""" return self.x @property def QE(self) -> numpy.ndarray: """Return QE as fraction.""" if self.is_percent: return self.y/100 else: return self.y @property def QE_percent(self) -> numpy.ndarray: """Return QE as percent.""" if self.is_percent: return self.y else: return 100*self.y @property def S_A_per_W(self) -> "SpectralResponsivity": """ Convert quantum efficiency (QE) curve to spectral responsivity (SR) curve. TODO Describe interface. """ return SpectralResponsivity( lambda_nm=self.lambda_nm, S_A_per_W=self.QE * self.lambda_nm * 1.e-9 * q_C / (h_J_s * c_m_per_s)) class SpectralIrradiance(DataFunctionPositiveXNonnegativeY): """ Store data representing a spectral irradiance curve. TODO Describe interface and units [nm] and [A/W/m^2]. """ def __init__(self, *, lambda_nm: numpy.ndarray, E_W_per_m2_nm: numpy.ndarray): super().__init__(x=lambda_nm, y=E_W_per_m2_nm) @property def lambda_nm(self) -> numpy.ndarray: return self.x @property def E_W_per_m2_nm(self) -> numpy.ndarray: return self.y class SpectralResponsivity(DataFunctionPositiveXNonnegativeY): """ Store data representing a spectral responsivity (SR) curve. TODO Describe interface and units [nm] and [A/W]. """ def __init__(self, *, lambda_nm: numpy.ndarray, S_A_per_W: numpy.ndarray): super().__init__(x=lambda_nm, y=S_A_per_W) @property def lambda_nm(self) -> numpy.ndarray: return self.x @property def S_A_per_W(self) -> numpy.ndarray: return self.y @property def QE(self) -> "QuantumEfficiency": """ Convert spectral responsivity (SR) curve to quantum efficiency (QE) curve. TODO Describe interface. """ return QuantumEfficiency( lambda_nm=self.lambda_nm, QE=self.S_A_per_W * h_J_s * c_m_per_s / (self.lambda_nm * 1.e-9 * q_C)) def inner_product(*, f1: DataFunction, f2: DataFunction) -> numpy.ndarray: r""" Compute inner product of two data functions. The inner product of two data functions is the integral of the product of the two functions over their common domain of defintion. Because the data function model is piecewise linear, an algebraic solution exists and is used for the computation. See the :class:`DataFunction` class for details on the model that informs the computation. Parameters ---------- f1 First data function. f2 Second data function. Returns ------- inner_product : numpy.ndarray Integral of the product of the two data functions over their common domain. Warns ------ UserWarning If `inner_product` is non-finite or is zero due to no domain overlap. Notes ----- The inner product is computed as-- .. math:: \int_{x=x_1}^{x_2} f_1(x) \, f_{2}(x) \, \mathrm{d}x, where the interval of integration :math:`[x_1, x_2]` is the common domain of the two data functions. If the domains do not overlap, then zero is returned. """ x_min = numpy.maximum(f1.x[0], f2.x[0]) x_max = numpy.minimum(f1.x[-1], f2.x[-1]) if x_max <= x_min: warnings.warn("DataFunction domains do not overlap.") return numpy.zeros(numpy.broadcast(f1.y, f2.y).shape[:-1]) x_union = numpy.union1d(f1.x, f2.x) x_union = x_union[numpy.logical_and(x_min <= x_union, x_union <= x_max)] y1 = scipy.interpolate.interp1d(f1.x, f1.y, copy=False, assume_sorted=True)(x_union) y2 = scipy.interpolate.interp1d(f2.x, f2.y, copy=False, assume_sorted=True)(x_union) slopes1 = (y1[..., 1:] - y1[..., :-1]) / (x_union[1:] - x_union[:-1]) intercepts1 = y1[..., :-1] - slopes1 * x_union[:-1] slopes2 = (y2[..., 1:] - y2[..., :-1]) / (x_union[1:] - x_union[:-1]) intercepts2 = y2[..., :-1] - slopes2 * x_union[:-1] A = intercepts1 * intercepts2 B = (slopes1 * intercepts2 + slopes2 * intercepts1) / 2 C = slopes1 * slopes2 / 3 x_union_squared = x_union * x_union x_union_cubed = x_union_squared * x_union inner_product = numpy.array(numpy.sum(C * (x_union_cubed[1:] - x_union_cubed[:-1]) + B * (x_union_squared[1:] - x_union_squared[:-1]) + A * (x_union[1:] - x_union[:-1]), axis=-1)) if not numpy.all(numpy.isfinite(inner_product)): warnings.warn("Non-finite inner product detected.") return inner_product def M(*, S_TD_OC: SpectralResponsivity, E_TD_OC: SpectralIrradiance, S_TD_RC: SpectralResponsivity, E_TD_RC: SpectralIrradiance, S_RD_OC: SpectralResponsivity, E_RD_OC: SpectralIrradiance, S_RD_RC: SpectralResponsivity, E_RD_RC: SpectralIrradiance) -> numpy.ndarray: r""" Compute spectral mismatch correction factor (:math:`M`). The spectral mismatch is between a photovoltaic (PV) test device (TD) and a PV reference device (RD), each at a particular (non-explicit) temperature and illuminated by a (possibly different) spectral irradiance at operating condition (OC). The corresponding reference condition (RC) of each device need not be the same, but often are. :math:`M` should be strictly positive, but could evalute to be zero, infinite, or NaN depending on possible zero values of the component integrals. See the :class:`SpectralIrradiance` and :class:`SpectralResponsivity` classes for details on the data function models that inform the computation, which includes vectorized computations. Parameters ---------- S_TD_OC Spectral responsivity of TD at OC [A/W]. E_TD_OC Spectral irradiance illuminating TD at OC [W/m2/nm]. S_TD_RC Spectral responsivity of TD at RC [A/W]. E_TD_RC Spectral irradiance illuminating TD at RC [W/m2/nm]. S_RD_OC Spectral responsivity of RD at OC [A/W]. E_RD_OC Spectral irradiance illuminating RD at OC [W/m2/nm]. S_RD_RC Spectral responsivity of RD at RC [A/W]. E_RD_RC Spectral irradiance illuminating RD at RC [W/m2/nm]. Returns ------- M : numpy.ndarray Spectral mismatch correction factor (:math:`M`). Warns ------ UserWarning If :math:`M` is computed as non-positive, infinite, or NaN. See Also -------- inner_product : The function used to compute the integrals of the products of two data functions. Notes ----- :math:`M` is defined by this relationship between the short-circuit currents (:math:`I_\mathrm{sc}`) of a TD and a RD at their respective OC and RC-- .. math:: \frac{I_\mathrm{sc,TD,OC}}{I_\mathrm{sc,TD,RC}} = M \frac{I_\mathrm{sc,RD,OC}}{I_\mathrm{sc,RD,RC}}, so that, under linearity and homogeneity assumption, :math:`M` is computed as-- .. math:: M &= \frac{I_\mathrm{sc,TD,OC} I_\mathrm{sc,RD,RC}} {I_\mathrm{sc,TD,RC} I_\mathrm{sc,RD,OC}} \\ &= \frac{ \int_{\lambda=0}^\infty S_\mathrm{TD}(T_\mathrm{TD,OC}, \lambda) E_\mathrm{TD,OC}(\lambda) \, \mathrm{d}\lambda \, \int_{\lambda=0}^\infty S_\mathrm{RD}(T_\mathrm{RD,RC}, \lambda) E_\mathrm{RD,RC}(\lambda) \, \mathrm{d}\lambda}{ \int_{\lambda=0}^\infty S_\mathrm{TD}(T_\mathrm{TD,RC}, \lambda) E_\mathrm{TD,RC}(\lambda) \, \mathrm{d}\lambda \, \int_{\lambda=0}^\infty S_\mathrm{RD}(T_\mathrm{RD,OC}, \lambda) E_\mathrm{RD,OC}(\lambda) \, \mathrm{d}\lambda}, where any pertinent constant scaling factors cancel out between numerator and denominator, such as device areas, curve measurement scaling errors, and unit conversions [1]_. References ---------- .. [1] <NAME> and <NAME>, "Calibration of a single‐diode performance model without a short‐circuit temperature coefficient," Energy Science & Engineering, vol. 6, no. 4, pp. 222-238, 2018. https://doi.org/10.1002/ese3.190. """ # TODO Warn if computation appears innacurate due to missing non-zero data at end(s) of common domain intervals. M = numpy.array((inner_product(f1=S_TD_OC, f2=E_TD_OC) * inner_product(f1=S_RD_RC, f2=E_RD_RC)) / (inner_product(f1=S_TD_RC, f2=E_TD_RC) * inner_product(f1=S_RD_OC, f2=E_RD_OC))) if not numpy.all(numpy.isfinite(M)): warnings.warn("Non-finite M detected.") if not numpy.all(0 < M): warnings.warn("Non-positive M detected.") return M
2.484375
2
lexos/managers/file_manager.py
WheatonCS/Lexos
107
12785878
<gh_stars>100-1000 import io import os import shutil import zipfile from os import makedirs from os.path import join as pathjoin from typing import List, Tuple, Dict import numpy as np import pandas as pd from flask import request, send_file import lexos.helpers.constants as constants import lexos.helpers.general_functions as general_functions import lexos.managers.session_manager as session_manager from lexos.managers.lexos_file import LexosFile class FileManager: def __init__(self): """Class for object to hold info about user's files & choices in Lexos. Each user will have their own unique instance of the FileManager. A major data attribute of this class is a dictionary holding the LexosFile objects, each representing an uploaded file to be used in Lexos. The key for the dictionary is the unique ID of the file, with the value being the corresponding LexosFile object. """ self._files = {} self.next_id = 0 makedirs(pathjoin(session_manager.session_folder(), constants.FILE_CONTENTS_FOLDER)) @property def files(self) -> Dict[int, LexosFile]: """A property for private attribute: _files. :return: a dict map file id to lexos_files. """ return self._files def add_file(self, original_filename: str, file_name: str, file_string: str) -> int: """Adds a file to the FileManager. The new file identifies with the next ID to be used. :param original_filename: the original file name of the uploaded file. :param file_name: the file name we store. :param file_string: the string contents of the text. :return: the id of the newly added file. """ # solve the problem that there is file with the same name exist_clone_file = True while exist_clone_file: exist_clone_file = False for file in list(self.files.values()): if file.name == file_name: file_name = 'copy of ' + file_name original_filename = 'copy of ' + original_filename exist_clone_file = True break new_file = LexosFile( original_filename, file_name, file_string, self.next_id) self.files[new_file.id] = new_file self.next_id += 1 self.files[new_file.id].set_name(file_name) # Set the document label return new_file.id def delete_files(self, file_ids: List[int]): """Deletes all the files that have id in IDs. :param file_ids: an array containing all the id of the files that need to be deleted. """ for file_id in file_ids: file_id = int(file_id) # in case that the id is not int self.files[file_id].clean_and_delete() del self.files[file_id] # Delete the entry def get_active_files(self) -> List[LexosFile]: """Creates a list of all the active files in FileManager. :return: a list of LexosFile objects. """ active_files = [] for l_file in list(self.files.values()): if l_file.active: active_files.append(l_file) return active_files def delete_active_files(self) -> List[int]: """Deletes every active file. These active files are deleted by calling the delete method on the LexosFile object before removing it from the dictionary. :return: list of deleted file_ids. """ file_ids = [] for file_id, l_file in list(self.files.items()): if l_file.active: file_ids.append(file_id) l_file.clean_and_delete() del self.files[file_id] # Delete the entry return file_ids def disable_all(self): """Disables every file in the file manager.""" for l_file in list(self.files.values()): l_file.disable() def enable_all(self): """Enables every file in the file manager.""" for l_file in list(self.files.values()): l_file.enable() def get_previews_of_active(self) -> List[Tuple[int, str, str, str]]: """Creates a formatted list of previews from every active file. Each preview on this formatted list of previews is made from every individual active file located in the file manager. :return: a formatted list with an entry (tuple) for every active file, containing the preview information (the file id, name, label and preview). """ previews = [] for l_file in self.files.values(): if l_file.active: previews.append( (l_file.id, l_file.name, l_file.label, l_file.get_preview()) ) # TODO: figure out this should be l_file.label or l_file.class_label return previews def get_previews_of_inactive(self) -> List[Tuple[int, str, str, str]]: """Creates a formatted list of previews from every inactive file. Each preview on this formatted list of previews is made from every individual inactive file located in the file manager. :return: a formatted list with an entry (tuple) for every inactive file, containing the preview information (the file id, name, label and preview). """ previews = [] for l_file in list(self.files.values()): if not l_file.active: previews.append( (l_file.id, l_file.name, l_file.class_label, l_file.get_preview()) ) return previews def get_content_of_active_with_id(self) -> Dict[int, str]: """Helper method to get_matrix. :return: get all the file content from the file_manager """ return {file.id: file.load_contents() for file in self.get_active_files()} def toggle_file(self, file_id: int): """Toggles the active status of the given file. :param file_id: the id of the file to be toggled. """ l_file = self.files[file_id] if l_file.active: l_file.disable() else: l_file.enable() def enable_files(self, file_ids: List[int]): """Enables a list of Lexos files. :param file_ids: list of fileIDs selected in the UI. """ for file_id in file_ids: file_id = int(file_id) l_file = self.files[file_id] l_file.enable() def disable_files(self, file_ids: List[int]): """Disables a list of Lexos files. :param file_ids: list of fileIDs selected in the UI. """ for file_id in file_ids: file_id = int(file_id) l_file = self.files[file_id] l_file.disable() def classify_active_files(self): """Applies a class label (from request.data) to every active file.""" # TODO: probably should not get request form here class_label = request.data for l_file in list(self.files.values()): if l_file.active: l_file.set_class_label(class_label) def add_upload_file(self, raw_file_string: bytes, file_name: str): """Detects (and applies) the encoding type of the file's contents. Since chardet runs slow, initially detects (only) MIN_ENCODING_DETECT chars; if that fails, chardet entire file for a fuller test :param raw_file_string: the file you want to detect the encoding :param file_name: name of the file """ decoded_file_string = general_functions.decode_bytes( raw_bytes=raw_file_string) # Line encodings: # \n Unix, OS X # \r Mac OS 9 # \r\n Win. CR+LF # The following block converts everything to '\n' # "\r\n" -> '\n' if "\r\n" in decoded_file_string[:constants.MIN_NEWLINE_DETECT]: decoded_file_string = decoded_file_string.replace('\r', '') # '\r' -> '\n' if '\r' in decoded_file_string[:constants.MIN_NEWLINE_DETECT]: decoded_file_string = decoded_file_string.replace('\r', '\n') # Add the file to the FileManager self.add_file(file_name, file_name, decoded_file_string) def handle_upload_workspace(self): """Handles the session when you upload a workspace (.lexos) file.""" # save .lexos file save_path = os.path.join(constants.UPLOAD_FOLDER, constants.WORKSPACE_DIR) save_file = os.path.join(save_path, str(self.next_id) + '.zip') try: os.makedirs(save_path) except FileExistsError: pass f = open(save_file, 'wb') f.write(request.data) f.close() # clean the session folder shutil.rmtree(session_manager.session_folder()) # extract the zip upload_session_path = os.path.join( constants.UPLOAD_FOLDER, str( self.next_id) + '_upload_work_space_folder') with zipfile.ZipFile(save_file) as zf: zf.extractall(upload_session_path) general_functions.copy_dir(upload_session_path, session_manager.session_folder()) # remove temp shutil.rmtree(save_path) shutil.rmtree(upload_session_path) try: # if there is no file content folder make one. # this dir will be lost during download(zip) if your original file # content folder does not contain anything. os.makedirs(os.path.join(session_manager.session_folder(), constants.FILE_CONTENTS_FOLDER)) except FileExistsError: pass def update_workspace(self): """Updates the whole work space.""" # update the savepath of each file for l_file in list(self.files.values()): l_file.save_path = pathjoin( session_manager.session_folder(), constants.FILE_CONTENTS_FOLDER, str(l_file.id) + '.txt') # update the session session_manager.load() def scrub_files(self, saving_changes: bool) -> \ List[Tuple[int, str, str, str]]: """Scrubs active files & creates a formatted preview list w/ results. :param saving_changes: a boolean saying whether or not to save the changes made. :return: a formatted list with an entry (tuple) for every active file, containing the preview information (the file id, label, class label, and scrubbed contents preview). """ previews = [] for l_file in list(self.files.values()): if l_file.active: previews.append( (l_file.id, l_file.label, l_file.class_label, l_file.scrub_contents(saving_changes))) return previews def cut_files(self, saving_changes: bool) -> \ List[Tuple[int, str, str, str]]: """Cuts active files & creates a formatted preview list w/ the results. :param saving_changes: a boolean saying whether or not to save the changes made. :return: a formatted list with an entry (tuple) for every active file, containing the preview information (the file id, label, class label, and cut contents preview). """ active_files = [] for l_file in list(self.files.values()): if l_file.active: active_files.append(l_file) previews = [] for l_file in active_files: l_file.active = False children_file_contents = l_file.cut_contents() num_cut_files = len(children_file_contents) l_file.save_cut_options(parent_id=None) if saving_changes: for i, file_string in enumerate(children_file_contents): original_filename = l_file.name zeros = len(str(num_cut_files)) - len(str(i + 1)) doc_label = l_file.label + '_' + ('0' * zeros) + str(i + 1) file_id = self.add_file( original_filename, doc_label + '.txt', file_string) self.files[file_id].set_scrub_options_from(parent=l_file) self.files[file_id].save_cut_options(parent_id=l_file.id) self.files[file_id].set_name(doc_label) self.files[file_id].set_class_label( class_label=l_file.class_label) else: for i, file_string in enumerate(children_file_contents): previews.append( (l_file.id, l_file.name, l_file.label + '_' + str(i + 1), general_functions.make_preview_from(file_string))) if saving_changes: previews = self.get_previews_of_active() return previews def zip_active_files(self, zip_file_name: str): """Sends a zip file of files containing contents of the active files. :param zip_file_name: Name to assign to the zipped file. :return: zipped archive to send to the user, created with Flask's send_file. """ # TODO: make send file happen in interface zip_stream = io.BytesIO() zip_file = zipfile.ZipFile(file=zip_stream, mode='w') for l_file in list(self.files.values()): if l_file.active: # Make sure the filename has an extension l_file_name = l_file.name if not l_file_name.endswith('.txt'): l_file_name = l_file_name + '.txt' zip_file.write( l_file.save_path, arcname=l_file_name, compress_type=zipfile.ZIP_STORED) zip_file.close() zip_stream.seek(0) return send_file( zip_stream, attachment_filename=zip_file_name, as_attachment=True) def zip_workspace(self) -> str: """Sends a zip file containing a pickle file of session & its folder. :return: the path of the zipped workspace """ # TODO: move this to matrix model # initialize the save path save_path = os.path.join( constants.UPLOAD_FOLDER, constants.WORKSPACE_DIR) rounded_next_id = str(self.next_id % 10000) # take the last 4 digit workspace_file_path = os.path.join( constants.UPLOAD_FOLDER, rounded_next_id + '_' + constants.WORKSPACE_FILENAME) # remove unnecessary content in the workspace try: shutil.rmtree( os.path.join( session_manager.session_folder(), constants.RESULTS_FOLDER)) # attempt to remove result folder(CSV matrix that kind of crap) except FileNotFoundError: pass # move session folder to work space folder try: # try to remove previous workspace in order to resolve conflict os.remove(workspace_file_path) except FileNotFoundError: pass try: # empty the save path in order to resolve conflict shutil.rmtree(save_path) except FileNotFoundError: pass general_functions.copy_dir(session_manager.session_folder(), save_path) # save session in the work space folder session_manager.save(save_path) # zip the dir zip_file = zipfile.ZipFile(workspace_file_path, 'w') general_functions.zip_dir(save_path, zip_file) zip_file.close() # remove the original dir shutil.rmtree(save_path) return workspace_file_path def check_actives_tags(self) -> Tuple[bool, bool, bool]: """Checks the tags of the active files for DOE/XML/HTML/SGML tags. :return: three booleans, the first signifying the presence of any type of tags, the secondKeyWord the presence of DOE tags, the third signifying the presence of gutenberg tags/boilerplate. """ found_tags = False found_doe = False found_gutenberg = False for l_file in list(self.files.values()): if not l_file.active: continue # with the looping, do not do the rest of current loop if l_file.doc_type == 'doe': found_doe = True found_tags = True if l_file.has_tags: found_tags = True if l_file.is_gutenberg: found_gutenberg = True if found_doe and found_tags: break return found_tags, found_doe, found_gutenberg def update_label(self, file_id: int, file_label: str): """Sets the file label of the file denoted to the supplied file label. Files are denoted by the given id. :param file_id: the id of the file for which to change the label. :param file_label: the label to set the file to. """ self.files[file_id] = file_label def get_active_labels_with_id(self) -> Dict[int, str]: """Gets labels of all active files in dictionary{file_id: file_label}. :return: a dictionary of the currently active files' labels. """ return {l_file.id: l_file.label for l_file in self.files.values() if l_file.active} def get_class_division_map(self) -> pd.DataFrame: """Gets the class division map to help with topword analysis. :return: a pandas data frame where: - the data is the division map with boolean values that indicate which class each file belongs to. - the index is the class labels. - the column is the file id. """ # active files labels and classes. active_files = self.get_active_files() file_ids = [file.id for file in active_files] class_labels = {file.class_label for file in active_files} # initialize values and get class division map. label_length = len(file_ids) class_length = len(class_labels) class_division_map = pd.DataFrame( data=np.zeros((class_length, label_length), dtype=bool), index=class_labels, columns=file_ids) # set correct boolean value for each file. for file in active_files: class_division_map[file.id][file.class_label] = True # Set file with no class to Untitled. class_division_map.index = \ ["Untitled" if class_label == "" else class_label for class_label in class_division_map.index] return class_division_map def get_previews_of_all(self) -> List[dict]: """Creates a formatted list of previews from every file. Each preview on this formatted list of previews is made from every individual file located in the file manager. For use in the Select screen. :return: a list of dictionaries with preview information for every file. """ previews = [] for l_file in list(self.files.values()): values = { "id": l_file.id, "filename": l_file.name, "label": l_file.label, "class": l_file.class_label, "source": l_file.original_source_filename, "preview": l_file.get_preview(), "state": l_file.active} previews.append(values) return previews def delete_all_file(self): """Deletes every active file. This is done by calling the delete method on the LexosFile object before removing it from the dictionary. """ for file_id, l_file in list(self.files.items()): l_file.clean_and_delete() del self.files[file_id] # Delete the entry
2.65625
3
render.py
MikeSpreitzer/queueset-test-viz
0
12785879
#!/usr/bin/env python3 import argparse import cairo import parse_test import subprocess import typing def hue_to_rgb(hue: float, lo: float) -> typing.Tuple[float, float, float]: hue = max(0, min(1, hue)) if hue <= 1/3: return (1 - (1-lo)*(hue-0)*3, lo + (1-lo)*(hue-0)*3, lo) if hue <= 2/3: return (lo, 1-(1-lo)*(hue-1/3)*3, lo + (1-lo)*(hue-1/3)*3) return (lo + (1-lo)*(hue-2/3)*3, lo, 1-(1-lo)*(hue-2/3)*3) def text_in_rectangle(context: cairo.Context, text: str, left: float, top: float, width: float, height: float) -> None: extents = context.text_extents(text) origin = (left + (width - extents.width)/2 - extents.x_bearing, top + (height-extents.height)/2 - extents.y_bearing) context.move_to(*origin) context.show_text(text) return def render_parse(surface: cairo.Surface, parse: parse_test.TestParser, vert_per_second: float, top_text: str, bottom_text: str) -> None: context = cairo.Context(surface) context.select_font_face( "Sans", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) num_seats = len(parse.seats) num_queues = len(parse.queue_to_lanes) hor_per_track = float(36) tick_left = float(108) seats_left = tick_left + 9 seats_right = seats_left + hor_per_track * num_seats vert_per_header = float(18) htop = 0 if top_text: top_text_extents = context.text_extents(top_text) htop += vert_per_header seats_orig = (seats_left, htop + 2*vert_per_header) queues_left = seats_right + hor_per_track queues_right = queues_left + hor_per_track * \ (parse.queue_lane_sum + (num_queues-1) * 0.1) page_width = queues_right + hor_per_track*0.5 if top_text: page_width = max(page_width, top_text_extents.width + 24) queues_orig = (queues_left, seats_orig[1]) page_height = seats_orig[1] + \ (parse.max_t - parse.min_t) * vert_per_second + 1 if bottom_text: bottom_text_extents = context.text_extents(bottom_text) bottom_text_orig = (12 - bottom_text_extents.x_bearing, page_height + 6 - bottom_text_extents.y_bearing) page_height += bottom_text_extents.height + 12 page_width = max( page_width, bottom_text_orig[0] + bottom_text_extents.x_advance) surface.set_size(page_width, page_height) print( f'num_seats={num_seats}, num_queues={num_queues}, queue_lane_sum={parse.queue_lane_sum}, page_width={page_width}, page_height={page_height}') if top_text: text_in_rectangle(context, top_text, 0, 0, page_width, vert_per_header) if bottom_text: context.move_to(*bottom_text_orig) context.show_text(bottom_text) context.set_line_width(0.5) # Render the secion headings text_in_rectangle(context, "Seats", seats_left, htop, seats_right-seats_left, vert_per_header) text_in_rectangle(context, "Queues", queues_left, htop, queues_right-queues_left, vert_per_header) # get ordered list of queues qids = sorted([qid for qid in parse.queue_to_lanes]) # Render the queue headings qright = queues_left qlefts: typing.Mapping[int, float] = dict() htop += vert_per_header for qid in qids: hleft = qright qlefts[qid] = qright hwidth = hor_per_track * len(parse.queue_to_lanes[qid].seats) qright += hwidth + hor_per_track*0.1 id_str = str(qid) text_in_rectangle(context, id_str, hleft, htop, hwidth, vert_per_header) # Render the seat run fills num_flows = 1 + parse.max_flow for (reqid, req) in parse.requests.items(): reqid_str = f'{reqid[0]},{reqid[1]},{reqid[2]}' stop = seats_orig[1] + vert_per_second * \ (req.real_dispatch_t-parse.min_t) smid = seats_orig[1] + vert_per_second * (req.real_mid_t-parse.min_t) sheight1 = vert_per_second*(req.real_mid_t-req.real_dispatch_t) sheight2 = vert_per_second*(req.real_finish_t-req.real_mid_t) rgb1 = hue_to_rgb(reqid[0]/num_flows, 0.80) rgb2 = hue_to_rgb(reqid[0]/num_flows, 0.92) context.new_path() for (_, run) in enumerate(req.seat_runs1): left = seats_orig[0] + run[0]*hor_per_track width = run[1]*hor_per_track context.rectangle(left, stop, width, sheight1) context.set_source_rgb(*rgb1) context.fill() context.new_path() for (_, run) in enumerate(req.seat_runs): left = seats_orig[0] + run[0]*hor_per_track width = run[1]*hor_per_track context.rectangle(left, smid, width, sheight2) context.set_source_rgb(*rgb2) context.fill() context.set_source_rgb(0, 0, 0) # Render the rest lastick = None for (reqid, req) in parse.requests.items(): reqid_str = f'{reqid[0]},{reqid[1]},{reqid[2]}' context.new_path() stop = seats_orig[1] + vert_per_second * \ (req.real_dispatch_t-parse.min_t) sheight = vert_per_second*(req.real_finish_t-req.real_dispatch_t) if lastick is None or stop > lastick + 18: et_str = str(req.real_dispatch_t-parse.min_t) text_in_rectangle(context, et_str, 0, stop, seats_left, 0) lastick = stop context.move_to(tick_left, stop) context.line_to(seats_left, stop) # Render the seat run outlines for (idx, run) in enumerate(req.seat_runs): left = seats_orig[0] + run[0]*hor_per_track width = run[1]*hor_per_track context.rectangle(left, stop, width, sheight) if idx == 0: label = reqid_str else: label = reqid_str + chr(97+idx) text_in_rectangle(context, label, left, stop, width, sheight) # Render the queue entry qleft = qlefts[req.queue] + hor_per_track * req.qlane qtop = queues_orig[1] + vert_per_second * \ (req.virt_dispatch_t-parse.min_t) qwidth = hor_per_track qheight = vert_per_second*(req.virt_finish_t - req.virt_dispatch_t) context.rectangle(qleft, qtop, qwidth, qheight) text_in_rectangle(context, reqid_str, qleft, qtop, qwidth, qheight) context.stroke() eval_y = seats_orig[1] + vert_per_second*(parse.eval_t - parse.min_t) context.move_to(hor_per_track*0.1, eval_y) context.line_to(page_width - hor_per_track*0.1, eval_y) context.set_source_rgb(1, 0, 0) context.stroke() context.show_page() return def git_credit() -> str: cp1 = subprocess.run(['git', 'rev-parse', 'HEAD'], capture_output=True, check=True, text=True) cp2 = subprocess.run(['git', 'status', '--porcelain'], capture_output=True, check=True, text=True) ans = 'Rendered by github.com/MikeSpreitzer/queueset-test-viz commit ' + cp1.stdout.rstrip() if cp2.stdout.rstrip(): ans += ' dirty' return ans if __name__ == '__main__': arg_parser = argparse.ArgumentParser( description='render queueset test log') arg_parser.add_argument('--vert-per-sec', type=float, default=36, help='points per second, default is 36') arg_parser.add_argument('--top-text') arg_parser.add_argument( '--bottom-text', help='defaults to github reference to renderer') arg_parser.add_argument('infile', type=argparse.FileType('rt')) arg_parser.add_argument('outfile', type=argparse.FileType('wb')) args = arg_parser.parse_args() if args.bottom_text is None: bottom_text = git_credit() else: bottom_text = args.bottom_text test_parser = parse_test.TestParser() test_parser.parse(args.infile) surface = cairo.PDFSurface(args.outfile, 100, 100) render_parse(surface, test_parser, args.vert_per_sec, args.top_text, bottom_text) surface.finish() args.outfile.close()
2.390625
2
sito_io/manifest.py
xkortex/sito-io
0
12785880
from collections.abc import MutableMapping from .fileio import ManifestMap class MutableManifestTree(MutableMapping): """An abstract (but possibly concrete) representation of a collection of resources MMT acts much like a dict, but manages side-effects and invariants todo: we may want to lazily eval Resource returns in order to populate the absolute path on demand. Or do other side-effecty things. For now, Resource just contains redundant info for abspath, for simplicity idea: in-place file interfaces to be able to write to virtual "files" in the tree and then save the whole manifest. This could be useful for manipulating archives or interacting with a remote endpoint. """ def __init__(self, base): self._manifest = ManifestMap(base=base, elements={}) def __getitem__(self, key): """Given a relative path, return its Resource""" return self._manifest.elements.__getitem__(key) def __setitem__(self, key, resource): """Insert a resource""" self._manifest.elements.__setitem__(key, resource) def __delitem__(self, key): """Remove a resource""" self._manifest.elements.__delitem__(key) def __len__(self): """Count of files (not dirs) in manifest""" def __iter__(self): """Iterate over keys""" # def add(self, resource): # """Add a resource to the tree""" # # def discard(self, element): # """Remove a resource""" def items(self): yield from self._manifest.elements.items() def keys(self): """Iterates over relative paths""" yield from self._manifest.elements.keys() def values(self): """Iterates over Resource objects""" yield from self._manifest.elements.values()
2.984375
3
Fall 2016/Homeworks/HW2/Solutions/problem9.py
asmitde/TA-PSU-CMPSC101
0
12785881
# Name: <NAME> # ID: aud311 # Date: 09/20/2016 # Assignment: Homework 2, Problem 9 # Description: Program to convert a 6-bit binary number to decimal # Prompt the user to enter a 6-bit binary number binary = int(input('Enter a 6-bit binary number: ')) # Extract the bits and form the decimal number decimal = 0 decimal += (binary % 10) * (2 ** 0) binary //= 10 decimal += (binary % 10) * (2 ** 1) binary //= 10 decimal += (binary % 10) * (2 ** 2) binary //= 10 decimal += (binary % 10) * (2 ** 3) binary //= 10 decimal += (binary % 10) * (2 ** 4) binary //= 10 decimal += (binary % 10) * (2 ** 5) # Display the decimal number print('The decimal equivalent is', decimal)
4.28125
4
tests/extentions/test_manager.py
artsalliancemedia/awsome
1
12785882
<reponame>artsalliancemedia/awsome from AWSome.executor import Executor from AWSome.extentions import Extention from AWSome.extentions import SkipException from AWSome.extentions.manager import ExtentionsManager import pytest from tests.fixtures import options class MockCommand(object): def __init__(self): self.extentions = { "update-profile": {} } class MockExtention(Extention): def __init__(self, options, exc_class=None): super(MockExtention, self).__init__(options) self._exc_class = exc_class def post_run(self, command, executor): if self._exc_class: raise self._exc_class("test") class TestExtentionsManager(object): def test_extentions_are_loaded(self, options): ExtentionsManager.EXTENTIONS = { "update-profile": MockExtention } command = MockCommand() executor = Executor("echo") extentions = ExtentionsManager(options) extentions.post_run(command, executor) assert extentions._loaded_extentions != {} def test_exceptions_are_propagated(self): ExtentionsManager.EXTENTIONS = { "update-profile": lambda o: MockExtention(o, Exception) } command = MockCommand() executor = Executor("echo") extentions = ExtentionsManager(options) pytest.raises(Exception, extentions.post_run, command, executor) def test_skip_exceptions_are_not_propagated(self): ExtentionsManager.EXTENTIONS = { "update-profile": lambda o: MockExtention(o, SkipException) } command = MockCommand() executor = Executor("echo") extentions = ExtentionsManager(options) reload_conf = extentions.post_run(command, executor) assert reload_conf == False
2.125
2
hashdd/algorithms/algorithm.py
hashdd/pyhashdd
20
12785883
""" algorithm.py @brad_anton License: Copyright 2015 hashdd.com Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import re class algorithm(object): name = None validation_regex = None sample = None # The result of hashing sample.exe implements_readfile = False def __init__(self, arg): self.setup(arg) self.update(arg) @staticmethod def prefilter(arg): """ Override, use to inspect the input buffer to determine if it meets algorithm requirements (e.g. length). Return True to continue processing otherwise return False to abort """ return True def setup(self, arg): # Override pass def hexdigest(self): # Override pass def update(self, arg): # Override pass def digest(self): # Override pass def copy(self): copy = super(self.__class__, self).__new__(self.__class__) return copy def readfile(self, filename, filesize): raise NotImplemented @classmethod def validate(self, string): """Checks an input string to determine if it matches the characteristics of the hash """ if self.validation_regex is None: raise Exception("Cannot validate string for \ algorithm {}, no alphabet and/or digest_size \ defined".format(self.name)) return bool(self.validation_regex.match(string))
2.59375
3
main.py
divishrengasamy/EFI-Toolbox
0
12785884
<filename>main.py # -*- coding: utf-8 -*- """ Created on Fri Aug 13 06:05:37 2021 @author: <NAME> """ import data_preprocessing as dp import pandas as pd import os import interpretability_methods as im import classification_methods as clf_m import fuzzy_logic as fl import results_gen_methods as rgm import user_xi as usxi from sklearn.model_selection import train_test_split import classification_models as cm import multi_fusion as mf """ set experiment configuration before running the tool """ ###################################################################################################################### # STAGE 1 : Experiments configuration ###################################################################################################################### param, model_selected = usxi.exp_config_portal() # # Loading and Preprocessing Dataset x, y = dp.data_preprocessing(param[0], param[1]) print('Features:', x) print('Class:', y.value_counts()) # Train/Test Data Size, for evaluation of classification models data_size_for_testing = param[2] / 100 print(f"Your data_size_for_testing:{data_size_for_testing}") # Data size to be used evaluation of interpretability data_size_for_interpretability = param[3] / 100 print(f"Your data_size_for_interpretability:{data_size_for_interpretability}") # K-Fold Cross validation for model cv = param[4] print(f"Your cross - validation folds: {cv}") # K-Fold Cross validation for Fuzzy model fcv = param[5] print(f"Your cross - validation folds: {fcv}") ###################################################################################################################### # STAGE 2 : Model configuration for the classification pipeline / Initialize dataframe for storing evaluation results ###################################################################################################################### model_selected = model_selected SHAP_RESULTS = pd.DataFrame(index=x.columns.values, columns=usxi.models_to_eval) LIME_RESULTS = pd.DataFrame(index=x.columns.values, columns=usxi.models_to_eval) PI_RESULTS = pd.DataFrame(index=x.columns.values, columns=usxi.models_to_eval) ENSEMBLE_ML_MODEL = pd.DataFrame(index=x.columns.values, columns=['SHAP', 'LIME', 'PI']) FUZZY_DATA = pd.DataFrame() ###################################################################################################################### # STAGE 3 : Classification model Evaluation based on the Model configuration and models selected ##################################################################################################################### def generate_fi(model_selected, x, y, data_size_for_testing,data_size_for_interpretability): # split into train test sets as per the configuration x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=data_size_for_testing, random_state=42, shuffle=True, stratify=y) x_train = x_train.reset_index(drop=True) y_train = y_train.reset_index(drop=True) x_test = x_test.reset_index(drop=True) y_test = y_test.reset_index(drop=True) for model_name in model_selected: if model_name == "LightGBM Classifier": SHAP_RESULTS[model_name], LIME_RESULTS[model_name], PI_RESULTS[ model_name] = im.intpr_technqs_impl(x, y, cm.lgbm_clf(x, y, x_train, x_test, y_train, y_test, cv), data_size_for_interpretability, model_name) elif model_name == "Logistic Regressor classifier": SHAP_RESULTS[model_name], LIME_RESULTS[model_name], PI_RESULTS[ model_name] = im.intpr_technqs_impl(x, y, cm.logistic_regression_clf(x, y, x_train, x_test, y_train, y_test, cv), data_size_for_interpretability, model_name) elif model_name == "Artificial Neural Network": SHAP_RESULTS[model_name], LIME_RESULTS[model_name], PI_RESULTS[ model_name] = im.intpr_technqs_impl(x, y, cm.ann_clf(x, y, x_train, x_test, y_train, y_test, cv), data_size_for_interpretability, model_name) elif model_name == "Random Forest classifier": SHAP_RESULTS[model_name], LIME_RESULTS[model_name], PI_RESULTS[ model_name] = im.intpr_technqs_impl(x, y, cm.random_forest_clf(x, y, x_train, x_test, y_train,y_test, cv), data_size_for_interpretability, model_name) elif model_name == 'Support vector machines': SHAP_RESULTS[model_name], LIME_RESULTS[model_name], PI_RESULTS[ model_name] = im.intpr_technqs_impl(x, y, cm.svm_clf(x, y, x_train, x_test, y_train, y_test, cv), data_size_for_interpretability, model_name) SHAP_RESULTS, LIME_RESULTS, PI_RESULTS = generate_fi(model_selected, x, y, data_size_for_testing,data_size_for_interpretability) ###################################################################################################################### # STAGE 4 : MODEL SPECIFIC Feature Importance - Single Fusion ###################################################################################################################### SHAP_RESULTS.dropna(how='all', axis=1) LIME_RESULTS.dropna(how='all', axis=1) PI_RESULTS.dropna(how='all', axis=1) SHAP_RESULTS.to_excel(os.path.join(rgm.generating_results('Results_XLS'), "SHAP_RESULTS.xlsx")) LIME_RESULTS.to_excel(os.path.join(rgm.generating_results('Results_XLS'), "LIME_RESULTS.xlsx")) PI_RESULTS.to_excel(os.path.join(rgm.generating_results('Results_XLS'), "PI_RESULTS.xlsx")) for model_name in model_selected: if model_name == "LightGBM Classifier": ENSEMBLE_ML_MODEL['PI'] = PI_RESULTS[model_name] ENSEMBLE_ML_MODEL['LIME'] = LIME_RESULTS[model_name] ENSEMBLE_ML_MODEL['SHAP'] = SHAP_RESULTS[model_name] im.ensemble_feature_importance(ENSEMBLE_ML_MODEL[['SHAP']], ENSEMBLE_ML_MODEL[['LIME']], ENSEMBLE_ML_MODEL[['PI']], model_name, top_feature_majority_voting=int((len(x.columns.values) * 0.50))) FUZZY_DATA["LightGBM Classifier"] = im.fuzzy_intpr_impl(x, y, clf_m.load_models("LightGBM Classifier"), data_size_for_interpretability, model_name, fcv) ENSEMBLE_ML_MODEL.to_excel(os.path.join(rgm.generating_results('Results_XLS'), f"{model_name}.xlsx")) elif model_name == "Logistic Regressor classifier": ENSEMBLE_ML_MODEL['PI'] = PI_RESULTS[model_name] ENSEMBLE_ML_MODEL['LIME'] = LIME_RESULTS[model_name] ENSEMBLE_ML_MODEL['SHAP'] = SHAP_RESULTS[model_name] im.ensemble_feature_importance(ENSEMBLE_ML_MODEL[['SHAP']], ENSEMBLE_ML_MODEL[['LIME']], ENSEMBLE_ML_MODEL[['PI']], model_name, top_feature_majority_voting=int((len(x.columns.values) * 0.50))) FUZZY_DATA["Logistic Regressor classifier"] = im.fuzzy_intpr_impl(x, y, clf_m.load_models( "Logistic Regressor classifier"), data_size_for_interpretability, model_name, fcv) ENSEMBLE_ML_MODEL.to_excel(os.path.join(rgm.generating_results('Results_XLS'), f"{model_name}.xlsx")) elif model_name == "Artificial Neural Network": ENSEMBLE_ML_MODEL['PI'] = PI_RESULTS[model_name] ENSEMBLE_ML_MODEL['LIME'] = LIME_RESULTS[model_name] ENSEMBLE_ML_MODEL['SHAP'] = SHAP_RESULTS[model_name] im.ensemble_feature_importance(ENSEMBLE_ML_MODEL[['SHAP']], ENSEMBLE_ML_MODEL[['LIME']], ENSEMBLE_ML_MODEL[['PI']], model_name, top_feature_majority_voting=int((len(x.columns.values) * 0.50))) FUZZY_DATA["Artificial Neural Network"] = im.fuzzy_intpr_impl(x, y, cm.ann_clf(x, y, x_train, x_test, y_train, y_test, cv), data_size_for_interpretability, model_name, fcv) ENSEMBLE_ML_MODEL.to_excel(os.path.join(rgm.generating_results('Results_XLS'), f"{model_name}.xlsx")) elif model_name == "Random Forest classifier": ENSEMBLE_ML_MODEL['PI'] = PI_RESULTS[model_name] ENSEMBLE_ML_MODEL['LIME'] = LIME_RESULTS[model_name] ENSEMBLE_ML_MODEL['SHAP'] = SHAP_RESULTS[model_name] im.ensemble_feature_importance(ENSEMBLE_ML_MODEL[['SHAP']], ENSEMBLE_ML_MODEL[['LIME']], ENSEMBLE_ML_MODEL[['PI']], model_name, top_feature_majority_voting=int((len(x.columns.values) * 0.50))) FUZZY_DATA["Random Forest classifier"] = im.fuzzy_intpr_impl(x, y, clf_m.load_models("Random Forest classifier"), data_size_for_interpretability, model_name, fcv) ENSEMBLE_ML_MODEL.to_excel(os.path.join(rgm.generating_results('Results_XLS'), f"{model_name}.xlsx")) elif model_name == "Support vector machines": ENSEMBLE_ML_MODEL['PI'] = PI_RESULTS[model_name] ENSEMBLE_ML_MODEL['LIME'] = LIME_RESULTS[model_name] ENSEMBLE_ML_MODEL['SHAP'] = SHAP_RESULTS[model_name] im.ensemble_feature_importance(ENSEMBLE_ML_MODEL[['SHAP']], ENSEMBLE_ML_MODEL[['LIME']], ENSEMBLE_ML_MODEL[['PI']], model_name, top_feature_majority_voting=int((len(x.columns.values) * 0.50))) FUZZY_DATA["Support vector machines"] = im.fuzzy_intpr_impl(x, y, clf_m.load_models("Support vector machines"), data_size_for_interpretability, model_name, fcv) ENSEMBLE_ML_MODEL.to_excel(os.path.join(rgm.generating_results('Results_XLS'), f"{model_name}.xlsx")) FUZZY_DATA.dropna(how='all', axis=1) FUZZY_DATA.to_excel(os.path.join(rgm.generating_results('Results_XLS'), "FUZZY-DATA_Before_AC.xlsx")) ###################################################################################################################### # STAGE 5: Feature Importance - Multi Fusion ###################################################################################################################### mf.multi_fusion_feature_imp(SHAP_RESULTS, LIME_RESULTS, PI_RESULTS, x, model_selected) ###################################################################################################################### # STAGE 6: Feature Importance - FUZZY Fusion ###################################################################################################################### fl.fuzzy_implementation(FUZZY_DATA, model_selected) ###################################################################################################################### # STAGE 7 : Generate Report ###################################################################################################################### # <-------------------------------------------- Evaluation Specific Reports ------------------------------------------> # Machine learning model evaluation rgm.generate_eval_report('perm') rgm.generate_eval_report('ROC') rgm.generate_eval_report('Confusion_Matrix') # Interpretability Techniques rgm.generate_eval_report("Permutation Importances") rgm.generate_eval_report("Lime") rgm.generate_eval_report("SHAP") # Fusion Approach rgm.generate_eval_report('single_fusion') rgm.generate_eval_report('Multi-Fusion') rgm.generate_eval_report('Majority Voting') rgm.generate_eval_report('Rank') # Fuzzy Approach rgm.generate_eval_report('FUZZY') # <------------------------------------------------ Model Specific Reports -------------------------------------------> for model_name in model_selected: if model_name == "LightGBM Classifier": rgm.generate_model_report("LightGBM Classifier") elif model_name == "Logistic Regressor classifier": rgm.generate_model_report("Logistic Regressor classifier") elif model_name == "Artificial Neural Network": rgm.generate_model_report("Artificial Neural Network") elif model_name == "Random Forest classifier": rgm.generate_model_report("Random Forest classifier") elif model_name == 'Support vector machines': rgm.generate_model_report('Support vector machines') # <------------------------------------------------ Multi Fusion Report ----------------------------------------------> rgm.generate_multi_fusion(model_selected)
2.359375
2
SMS_handler.py
alexfromsocal/PhoneVote
0
12785885
<reponame>alexfromsocal/PhoneVote #from flask import Flask, request, redirect #from twilio.twiml.messaging_response import MessagingResponse as MR from twilio.rest import Client from flask import url_for, session, Flask, request from configparser import ConfigParser from twilio.twiml.messaging_response import MessagingResponse from AdminPrivilegeCheck import checkNum import os, sys import random import numpy from twilio.rest import Client from configparser import ConfigParser #import importlib app = Flask(__name__) @app.route('/sms_inbound') #Receives the incoming SMS to process further for our client. def incoming_sms(): configTwilio = ConfigParser() configTwilio.read('config.cfg') account = configTwilio.get('auth', 'account') token = configTwilio.get('auth', 'token') servicesid = configTwilio.get('auth', 'servicesid') logoncode = configTwilio.get('key', 'passcode') client = Client(account, token) phone_numbers = client.messaging \ .services(sid=servicesid) \ .phone_numbers \ .list() body = request.values.get('Body', None) response =MessagingResponse() if str(body).lower() == "logon": isAdmin = checkAdmin(request.values.get('From'), client, phone_numbers) print("logged") else: response.message("Your features aren't valid yet") #Gets the message from sender and grabs the body of it. #Taken from Twilio helper library return str(response) def redirect_to_first_question(response, survey): first_question = survey.questions.order_by('id').first() first_question_url = url_for('question', question_id=first_question.id) response.redirect(url=first_question_url, method='GET') def welcome_user(survey, send_function): welcome_text = 'Welcome to the %s' % survey.title send_function(welcome_text) def survey_error(survey, send_function): if not survey: send_function('Sorry, but there are no surveys to be answered.') return True elif not survey.has_questions: send_function('Sorry, there are no questions for this survey.') return True return False def checkAdmin(PhNum, client, phone_numbers): list = readToList() #serverPhone = phone_numbers[0].phone_number strOfNumbers = ''.join(str(n) for n in list) print(strOfNumbers) if PhNum in list: message = client.messages.create( to=PhNum, from_=phone_numbers[0].phone_number, body="What is your passkey?") print(message.sid) return True else: message = client.messages.create( to=PhNum, from_=phone_numbers[0].phone_number, body="You cannot access this.") print(message.sid) return False def readToList(): file = open("AdminList.txt", "r") list = file.read().splitlines() file.close() return list @app.route("/sms_outbound", methods=['GET', 'POST']) def outgoing_sms(): body = request.values.get('Body', None) resp = MessagingResponse() #Taken from Twilio helper library resp.message("This is the ship that made the Kessel Run in fourteen parsecs?") return str(resp) if __name__ == "__main__": app.run(debug=True)
2.6875
3
Python3/547.py
rakhi2001/ecom7
854
12785886
__________________________________________________________________________________________________ sample 192 ms submission class Solution: def findCircleNum(self, M: List[List[int]]) -> int: seen = set() def visit_all_friends(i: int): for friend_idx,is_friend in enumerate(M[i]): if is_friend and friend_idx not in seen: seen.add(friend_idx) visit_all_friends(friend_idx) count = 0 for ridx in range(len(M)): if ridx not in seen: visit_all_friends(ridx) count += 1 return count __________________________________________________________________________________________________ sample 13172 kb submission class Solution: def findCircleNum(self, M: List[List[int]]) -> int: def dfs1(r, c, circle): frds = [r, c] f_s = {r, c} i = 0 while i < len(frds): j = frds[i] for k in range(len(M)): if M[j][k] == 1 and k not in f_s: f_s.add(k) frds.append(k) i = i + 1 for i in f_s: for j in f_s: M[i][j] = circle circle = 1 for i in range(len(M)): for j in range(len(M[0])): if M[i][j] == 1: circle = circle + 1 dfs1(i, j, circle) break return circle - 1 __________________________________________________________________________________________________
3.359375
3
src/calculate_features/helpers/features/size.py
flysoso/NetAna-Complex-Network-Analysis
3
12785887
''' Total number of edges n the graph (graph size): m = |E| ''' import networkx as nx def calculate(network): try: n = network.size() except: n = 0 return n
3.28125
3
blockchat/app/blockchain.py
Samyak2/blockchain
0
12785888
import os import logging import json import asyncio from collections import defaultdict import nacl from quart import Quart, jsonify, request, websocket from quart_cors import cors from blockchat.utils import encryption from blockchat.types.blockchain import Blockchain, BlockchatJSONEncoder, BlockchatJSONDecoder from blockchat.types.blockchain import parse_node_addr import blockchat.utils.storage as storage numeric_level = getattr(logging, os.getenv("LOG_LEVEL", "WARNING"), "WARNING") if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % os.getenv("LOG_LEVEL")) logging.basicConfig(level=numeric_level) # Instantiate the Node app = Quart(__name__) app = cors(app, allow_origin="*") app.json_encoder = BlockchatJSONEncoder app.json_decoder = BlockchatJSONDecoder # load node secret and node address from env vars node_secret = nacl.signing.SigningKey(bytes.fromhex(os.getenv("NODE_KEY"))) node_url = os.getenv("NODE_ADDR", None) assert node_url is not None node_url = parse_node_addr(node_url) node_identifier = encryption.encode_verify_key(node_secret.verify_key) storage_backend = os.getenv("STORAGE_TYPE", "memory").lower() if storage_backend == "firebase": db = storage.FirebaseBlockchatStorage() logging.warning("Using Firebase storage backend") else: db = storage.InMemoryBlockchatStorage() logging.warning("Using in-memory storage backend") # Instantiate the Blockchain blockchain = Blockchain(db, node_url, node_secret) monitor_tags = defaultdict(set) monitor_chats = defaultdict(set) @app.websocket('/transactions/ws') async def transaction_socket(): global monitor_tags if 'tag' not in websocket.args: return 'Tag not specified' tag = websocket.args.get('tag') queue = asyncio.Queue() monitor_tags[tag].add(queue) await websocket.accept() if blockchain.db.is_transaction_unconfirmed(tag): await websocket.send('unc') elif blockchain.db.is_transaction_confirmed(tag): await websocket.send('mined') try: while True: data = await queue.get() await websocket.send(data) if data == "mined": break finally: monitor_tags[tag].remove(queue) if not monitor_tags[tag]: monitor_tags.pop(tag) @app.websocket('/chat/ws') async def chat_socket(): global monitor_chats if 'sender' not in websocket.args: return 'Sender address not specified' sender = websocket.args.get('sender') queue = asyncio.Queue() monitor_chats[sender].add(queue) logging.info("Monitoring sender %s", sender) await websocket.accept() try: while True: data = await queue.get() await websocket.send(data) finally: monitor_chats[sender].remove(queue) if not monitor_tags[sender]: monitor_chats.pop(sender) async def mine_wrapper(): if blockchain.db.num_transactions() == 0: return False logging.info("Mining now") # get the transactions to be added transactions = blockchain.db.pop_transactions() # let client know that their transaction is being mined for transaction in transactions: if transaction.tag in monitor_tags: asyncio.gather(*(mtag.put('mining') for mtag in monitor_tags[transaction.tag])) # ensure chain is the best before mining blockchain.resolve_conflicts() last_block = blockchain.last_block # add a "mine" transaction blockchain.new_transaction(node_identifier, node_identifier, "<<MINE>>", self_sign=True, add_to=transactions) # We run the proof of work algorithm to get the next proof... proof = blockchain.proof_of_work(last_block, transactions) # Forge the new Block by adding it to the chain previous_hash = blockchain.hash(last_block) block = blockchain.new_block(proof, previous_hash, transactions, last_block) for transaction in transactions: if transaction.tag in monitor_tags: asyncio.gather(*(mtag.put('mined') for mtag in monitor_tags[transaction.tag])) logging.info("Mined") return block @app.route('/block/mine', methods=['GET']) async def mine(): block = await mine_wrapper() if not block: return "Nothing to mine", 200 response = { 'message': "New Block Forged", 'index': block['index'], 'transactions': block['transactions'], 'proof': block['proof'], 'previous_hash': block['previous_hash'], } return jsonify(response), 200 @app.route('/chat/messages', methods=['GET']) async def get_messages(): if not 'user_key' in request.args: return 'User public key missing', 400 user_key = request.args.get('user_key').strip() if not user_key: return 'Invalid user public key', 400 txs = blockchain.db.get_user_messages(user_key) num_txs = len(txs) response = { 'transactions': txs, 'length': num_txs } return jsonify(response), 200 @app.route('/transactions/new', methods=['POST']) async def new_transaction(): values = await request.get_json() # Check that the required fields are in the POST'ed data required_values = ['sender', 'recipient', 'message', 'signature'] if not all(k in values for k in required_values): return 'Missing values', 400 # Create a new Transaction transaction, tag = blockchain.new_transaction(values['sender'], values['recipient'], values['message'], values['signature']) if not tag: return "Cannot verify transaction", 400 if transaction.receiver in monitor_chats: json_dump = json.dumps(transaction.to_dict()) await asyncio.gather(*(mchat.put(json_dump) for mchat in monitor_chats[transaction.receiver])) response = {'message': 'Transaction will be added to the next block.', 'tag': tag} return jsonify(response), 201 @app.route('/transactions/is_unconfirmed', methods=['GET']) async def check_transaction_unconfirmed(): if 'tag' not in request.args: return 'Missing tag in parameters', 400 tag = request.args.get('tag') unconfirmed = blockchain.db.is_transaction_unconfirmed(tag) return jsonify({"unconfirmed": unconfirmed}), 201 @app.route('/transactions/is_confirmed', methods=['GET']) async def check_transaction_confirmed(): if 'tag' not in request.args: return 'Missing tag in parameters', 400 tag = request.args.get('tag') confirmed = blockchain.db.is_transaction_confirmed(tag) return jsonify({"confirmed": confirmed}), 201 @app.route('/chain/get', methods=['GET']) async def full_chain(): chain = blockchain.db.chain response = { 'chain': chain, 'length': chain[-1]["index"] } return jsonify(response), 200 @app.route('/chain/length', methods=['GET']) async def chain_length(): response = { 'length': len(blockchain), } return jsonify(response), 200 @app.route('/block/add', methods=['POST']) async def add_block(): values = await request.get_json() block_to_add = values.get('block') # try to add block success = blockchain.add_block(block_to_add) if success: return jsonify({ "message": "Block added successfully"}), 200 return "Error: Invalid block", 400 @app.route('/nodes/register', methods=['POST']) async def register_nodes(): values = await request.get_json() nodes = values.get('nodes') if nodes is None: return "Error: Please supply a valid list of nodes", 400 for node in nodes: blockchain.register_node(node) replaced = blockchain.resolve_conflicts() response = { 'message': 'New nodes have been added', 'total_nodes': list(blockchain.get_nodes()), 'chain_replaced': replaced } return jsonify(response), 201 @app.route('/nodes/resolve', methods=['GET']) async def consensus(): replaced = blockchain.resolve_conflicts() if replaced: response = { 'message': 'Our chain was replaced' } else: response = { 'message': 'Our chain is authoritative' } return jsonify(response), 200 # schedule mine job every x minutes @app.before_first_request async def mine_job_req(): asyncio.create_task(mine_job()) async def mine_job(): while True: await asyncio.sleep(10) await mine_wrapper() if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('-p', '--port', default=5000, type=int, help='port to listen on') args = parser.parse_args() port = args.port app.run(host='0.0.0.0', port=port, threaded=False, processes=1)
2.015625
2
backend/doppelkopf/db.py
lkoehl/doppelkopf
0
12785889
<reponame>lkoehl/doppelkopf import click from flask.cli import with_appcontext from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate import doppelkopf db = SQLAlchemy() migrate = Migrate() @click.command("seed-data") @with_appcontext def seed_data_command(): doppelkopf.events.EventType.insert_all() doppelkopf.toggles.Toggle.insert_all() click.echo("Initialized seed data.") def init_app(app): db.init_app(app) migrate.init_app(app, db) app.cli.add_command(seed_data_command)
2.1875
2
Lesson05/pepsearch.py
xperthunter/pybioinformatics
0
12785890
#!/usr/bin/env python3 import gzip import sys # Write a program that finds peptidies within protein sequences # Command line: # python3 pepsearch.py IAN """ python3 pepsearch.py proteins.fasta.gz IAN | wc -w 43 """
2.9375
3
pygame/animation.py
Tom-Li1/py_modules
0
12785891
<filename>pygame/animation.py<gh_stars>0 import pygame, sys, time from pygame.locals import * pygame.init() WINDOWWIDTH = 800 WINDOWHEIGHT = 1000 windowSurface = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT), 0, 32) pygame.display.set_caption('Animation') DOWNLEFT = 'downleft' DOWNRIGHT = 'downright' UPLEFT = 'upleft' UPRIGHT = 'upright' MOVESPEED = 4 WHITE = (255, 255, 255) RED = (225, 0, 0) GREEN = (0, 225, 0) BLUE = (0, 0, 225) b1 = {'rect':pygame.Rect(300, 80, 50, 100), 'color':RED, 'dir':UPRIGHT} b2 = {'rect':pygame.Rect(200, 200, 20, 20), 'color':GREEN, 'dir':UPLEFT} b3 = {'rect':pygame.Rect(100, 150, 60, 60), 'color':BLUE, 'dir':DOWNLEFT} b4 = {'rect':pygame.Rect(150, 300, 60, 60), 'color':RED, 'dir':DOWNLEFT} b5 = {'rect':pygame.Rect(500, 150, 60, 60), 'color':GREEN, 'dir':DOWNLEFT} b6 = {'rect':pygame.Rect(700, 470, 60, 60), 'color':BLUE, 'dir':DOWNLEFT} b7 = {'rect':pygame.Rect(450, 290, 60, 60), 'color':RED, 'dir':DOWNLEFT} b8 = {'rect':pygame.Rect(550, 400, 60, 60), 'color':GREEN, 'dir':DOWNLEFT} b9 = {'rect':pygame.Rect(340, 700, 60, 60), 'color':BLUE, 'dir':DOWNLEFT} b10 = {'rect':pygame.Rect(280, 620, 60, 60), 'color':RED, 'dir':DOWNLEFT} boxes = [b1, b2, b3, b4, b5, b6, b7, b8, b9, b10] mainClock = pygame.time.Clock() while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() windowSurface.fill(WHITE) for b in boxes: if b['dir'] == DOWNLEFT: b['rect'].left -= MOVESPEED b['rect'].top += MOVESPEED if b['dir'] == DOWNRIGHT: b['rect'].left += MOVESPEED b['rect'].top += MOVESPEED if b['dir'] == UPLEFT: b['rect'].left -= MOVESPEED b['rect'].top -= MOVESPEED if b['dir'] == UPRIGHT: b['rect'].left += MOVESPEED b['rect'].top -= MOVESPEED if b['rect'].top < 0: if b['dir'] == UPLEFT: b['dir'] = DOWNLEFT if b['dir'] == UPRIGHT: b['dir'] = DOWNRIGHT if b['rect'].bottom > WINDOWHEIGHT: if b['dir'] == DOWNLEFT: b['dir'] = UPLEFT if b['dir'] == DOWNRIGHT: b['dir'] = UPRIGHT if b['rect'].left < 0: if b['dir'] == DOWNLEFT: b['dir'] = DOWNRIGHT if b['dir'] == UPLEFT: b['dir'] = UPRIGHT if b['rect'].right > WINDOWWIDTH: if b['dir'] == DOWNRIGHT: b['dir'] = DOWNLEFT if b['dir'] == UPRIGHT: b['dir'] = UPLEFT pygame.draw.rect(windowSurface, b['color'], b['rect']) pygame.display.update() mainClock.tick(60)
2.375
2
timeshifter-agents/timeshifter-agents/roller_ball.py
SwamyDev/ML-TimeShifters
0
12785892
from reinforcement.agents.td_agent import TDAgent from reinforcement.models.q_regression_model import QRegressionModel from reinforcement.policies.e_greedy_policies import NormalEpsilonGreedyPolicy from reinforcement.reward_functions.q_neuronal import QNeuronal from unityagents import UnityEnvironment import tensorflow as tf from unity_session import UnitySession UNITY_BINARY = "../environment-builds/RollerBall/RollerBall.exe" TRAIN_MODE = True MEMORY_SIZE = 10 LEARNING_RATE = 0.01 ALPHA = 0.2 GAMMA = 0.9 N = 10 START_EPS = 1 TOTAL_EPISODES = 1000 if __name__ == '__main__': with UnityEnvironment(file_name=UNITY_BINARY) as env, tf.Session(): default_brain = env.brain_names[0] model = QRegressionModel(4, [100], LEARNING_RATE) Q = QNeuronal(model, MEMORY_SIZE) episode = 0 policy = NormalEpsilonGreedyPolicy(lambda: START_EPS / (episode + 1)) agent = TDAgent(policy, Q, N, GAMMA, ALPHA) sess = UnitySession(env, agent, brain=default_brain, train_mode=TRAIN_MODE) for e in range(TOTAL_EPISODES): episode = e sess.run() print("Episode {} finished.".format(episode))
2.09375
2
src/arbiter/eicar.py
polyswarm/polyswarm-client
21
12785893
<reponame>polyswarm/polyswarm-client<gh_stars>10-100 import base64 import logging from polyswarmartifact import ArtifactType from polyswarmclient.abstractarbiter import AbstractArbiter from polyswarmclient.abstractscanner import ScanResult logger = logging.getLogger(__name__) # Initialize logger EICAR = base64.b64decode( b'WDVPIVAlQEFQWzRcUFpYNTQoUF4pN0NDKTd9JEVJQ0FSLVNUQU5EQVJELUFOVElWSVJVUy1URVNULUZJTEUhJEgrSCo=') class Arbiter(AbstractArbiter): """Arbiter which matches hashes to a database of known samples""" def __init__(self, client, testing=0, scanner=None, chains=None, artifact_types=None): """Initialize a verbatim arbiter Args: client (polyswwarmclient.Client): Client to use testing (int): How many test bounties to respond to chains (set[str]): Chain(s) to operate on artifact_types (list(ArtifactType)): List of artifact types you support """ if artifact_types is None: artifact_types = [ArtifactType.FILE] super().__init__(client, testing, scanner, chains, artifact_types) async def scan(self, guid, artifact_type, content, metadata, chain): """Scan an artifact Args: guid (str): GUID of the bounty under analysis, use to track artifacts in the same bounty artifact_type (ArtifactType): Artifact type for the bounty being scanned content (bytes): Content of the artifact to be scan metadata (dict) Dict of metadata for the artifact chain (str): Chain we are operating on Returns: ScanResult: Result of this scan """ return ScanResult(bit=True, verdict=(content == EICAR))
2.375
2
models/model.py
AnnLIU15/SegCovid
0
12785894
import torch import torch.nn as nn from .layer import * ##### U^2-Net #### class U2NET(nn.Module): ''' 详细见U2Net论文(md中有链接) ''' def __init__(self, in_channels=1, out_channels=3): super(U2NET, self).__init__() self.stage1 = RSU7(in_channels, 32, 64) self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage2 = RSU6(64, 32, 128) self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage3 = RSU5(128, 64, 256) self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage4 = RSU4(256, 128, 512) self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage5 = RSU4F(512, 256, 512) self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage6 = RSU4F(512, 256, 512) # decoder self.stage5d = RSU4F(1024, 256, 512) self.stage4d = RSU4(1024, 128, 256) self.stage3d = RSU5(512, 64, 128) self.stage2d = RSU6(256, 32, 64) self.stage1d = RSU7(128, 16, 64) self.side1 = nn.Conv2d(64, out_channels, 3, padding=1) self.side2 = nn.Conv2d(64, out_channels, 3, padding=1) self.side3 = nn.Conv2d(128, out_channels, 3, padding=1) self.side4 = nn.Conv2d(256, out_channels, 3, padding=1) self.side5 = nn.Conv2d(512, out_channels, 3, padding=1) self.side6 = nn.Conv2d(512, out_channels, 3, padding=1) self.outconv = nn.Conv2d(6*out_channels, out_channels, 1) def forward(self, x): hx = x # stage 1 hx1 = self.stage1(hx) hx = self.pool12(hx1) # stage 2 hx2 = self.stage2(hx) hx = self.pool23(hx2) # stage 3 hx3 = self.stage3(hx) hx = self.pool34(hx3) # stage 4 hx4 = self.stage4(hx) hx = self.pool45(hx4) # stage 5 hx5 = self.stage5(hx) hx = self.pool56(hx5) # stage 6 hx6 = self.stage6(hx) hx6up = upsample_like(hx6, hx5) # -------------------- decoder -------------------- hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) hx5dup = upsample_like(hx5d, hx4) hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) hx4dup = upsample_like(hx4d, hx3) hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) hx3dup = upsample_like(hx3d, hx2) hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) hx2dup = upsample_like(hx2d, hx1) hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) # side output d1 = self.side1(hx1d) d2 = self.side2(hx2d) d2 = upsample_like(d2, d1) d3 = self.side3(hx3d) d3 = upsample_like(d3, d1) d4 = self.side4(hx4d) d4 = upsample_like(d4, d1) d5 = self.side5(hx5d) d5 = upsample_like(d5, d1) d6 = self.side6(hx6) d6 = upsample_like(d6, d1) d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) return d0, d1, d2, d3, d4, d5, d6 ### U^2-Net small ### class U2NETP(nn.Module): def __init__(self, in_channels=1, out_channels=3): super(U2NETP, self).__init__() self.stage1 = RSU7(in_channels, 16, 64) self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage2 = RSU6(64, 16, 64) self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage3 = RSU5(64, 16, 64) self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage4 = RSU4(64, 16, 64) self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage5 = RSU4F(64, 16, 64) self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.stage6 = RSU4F(64, 16, 64) # decoder self.stage5d = RSU4F(128, 16, 64) self.stage4d = RSU4(128, 16, 64) self.stage3d = RSU5(128, 16, 64) self.stage2d = RSU6(128, 16, 64) self.stage1d = RSU7(128, 16, 64) self.side1 = nn.Conv2d(64, out_channels, 3, padding=1) self.side2 = nn.Conv2d(64, out_channels, 3, padding=1) self.side3 = nn.Conv2d(64, out_channels, 3, padding=1) self.side4 = nn.Conv2d(64, out_channels, 3, padding=1) self.side5 = nn.Conv2d(64, out_channels, 3, padding=1) self.side6 = nn.Conv2d(64, out_channels, 3, padding=1) self.outconv = nn.Conv2d(6*out_channels, out_channels, 1) def forward(self, x): hx = x # stage 1 hx1 = self.stage1(hx) hx = self.pool12(hx1) # stage 2 hx2 = self.stage2(hx) hx = self.pool23(hx2) # stage 3 hx3 = self.stage3(hx) hx = self.pool34(hx3) # stage 4 hx4 = self.stage4(hx) hx = self.pool45(hx4) # stage 5 hx5 = self.stage5(hx) hx = self.pool56(hx5) # stage 6 hx6 = self.stage6(hx) hx6up = upsample_like(hx6, hx5) # decoder hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) hx5dup = upsample_like(hx5d, hx4) hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) hx4dup = upsample_like(hx4d, hx3) hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) hx3dup = upsample_like(hx3d, hx2) hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) hx2dup = upsample_like(hx2d, hx1) hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) # side output d1 = self.side1(hx1d) d2 = self.side2(hx2d) d2 = upsample_like(d2, d1) d3 = self.side3(hx3d) d3 = upsample_like(d3, d1) d4 = self.side4(hx4d) d4 = upsample_like(d4, d1) d5 = self.side5(hx5d) d5 = upsample_like(d5, d1) d6 = self.side6(hx6) d6 = upsample_like(d6, d1) d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) return d0, d1, d2, d3, d4, d5, d6
2.53125
3
get_dark_files.py
jprchlik/find_contaminated_darks
0
12785895
import os,sys import datetime as dt import numpy as np try: #for python 3.0 or later from urllib.request import urlopen except ImportError: #Fall back to python 2 urllib2 from urllib2 import urlopen import requests from multiprocessing import Pool import drms from shutil import move import glob ###Remove proxy server variables from Lockheed after using the proxy server to connect to the google calendar 2019/02/20 <NAME> ##os.environ.pop("http_proxy" ) ##os.environ.pop("https_proxy") class dark_times: def __init__(self,time, irisweb='http://iris.lmsal.com/health-safety/timeline/iris_tim_archive/{2}/IRIS_science_timeline_{0}.V{1:2d}.txt', simpleb=False,complexa=False,tol=50): """ A python class used for finding and downloading IRIS dark observations. This module requires that parameters be specified in a parameter file in this directory. The parameter file's name must be "parameter_file" and contain the three following lines: Line1: email address registered with JSOC (e.g. <EMAIL>) Line2: A base directory containing the level 1 IRIS dark files. The program will concatenate YYYY/MM/simpleb/ or YYYY/MM/complexa/ onto the base directory Line3: A base directory containing the level 0 IRIS dark files. The program will concatenate simpleb/YYYY/MM/ or complexa/YYYY/MM/ onto the base directory Example three lines below: <EMAIL> /data/alisdair/IRIS_LEVEL1_DARKS/ /data/alisdair/opabina/scratch/joan/iris/newdat/orbit/level0/ The program will create the level0 and level1 directories as needed. Parameters ---------- time: str A string containing the date the dark observations started based on the IRIS calibration-as-run calendar in YYYY/MM/DD format (e.g. test = gdf.dark_times(time,simpleb=True)) irisweb: string, optional A formatted text string which corresponds to the location of the IRIS timeline files (Default = 'http://iris.lmsal.com/health-safety/timeline/iris_tim_archive/{2}/IRIS_science_timeline_{0}.V{1:2d}.txt'). The {0} character string corresponds the date of the timeline uploaded in YYYYMMDD format, while {1:2d} corresponds to the highest number version of the timeline, which I assume is the timeline uploaded to the spacecraft. simpleb: boolean, optional Whether to download simpleb darks can only perform simpleb or complexa darks per call (Default = False). complexa: boolean, optional Whether to download complexa darks can only perform simpleb or complexa darks per call (Default = False). tol: int, optional The number of darks in a directory before the program decides to download. If greater than tolerance than it will not download any new darks if less than tolerance then it will download the new darks (Default = 50). Returns ------- None Just downloads files and creates required directories. """ #web page location of IRIS timeline self.irisweb = irisweb #.replace('IRIS',time+'/IRIS') self.otime = dt.datetime.strptime(time,'%Y/%m/%d') self.stime = self.otime.strftime('%Y%m%d') #Type of dark to download simple B or complex A self.complexa = complexa self.simpleb = simpleb #Minimum number of dark files reqiured to run self.tol = tol #read lines in parameter file parU = open('parameter_file','r') pars = parU.readlines() parU.close() #update parameters based on new parameter file #get email address self.email = pars[0].strip() #get level 1/download base directory (without simpleb or complexa subdirectory bdir = pars[1].strip() #get level 0 directory ldir = pars[2].strip() if complexa: self.obsid = 'OBSID=4203400000' if simpleb: self.obsid = 'OBSID=4202000003' #make the download directory if self.simpleb: self.bdir = bdir+'/{0}/simpleB/'.format(self.otime.strftime('%Y/%m')) self.ldir = ldir+'/simpleB/{0}/'.format(self.otime.strftime('%Y/%m')) else: self.bdir = bdir+'/{0}/complexA/'.format(self.otime.strftime('%Y/%m')) self.ldir = ldir+'/complexA/{0}/'.format(self.otime.strftime('%Y/%m')) def request_files(self): #First check that any time line exists for given day searching = True sb = 0 #searching backwards days to correct for weekend or multiday timelines while searching: #look in iris's timeline structure self.stime = (self.otime-dt.timedelta(days=sb)).strftime('%Y%m%d') irispath = (self.otime-dt.timedelta(days=sb)).strftime('%Y/%m/%d') inurl = self.irisweb.format(self.stime,0,irispath).replace(' ','0') #searching for V00 file verision resp = requests.head(inurl) #leave loop if V00 is found if resp.status_code == 200: searching =False else: sb += 1 #look one day back if timeline is missing if sb >= 9: searching = False #dont look back more than 9 days sys.stdout.write('FAILED, IRIS timeline does not exist')#printing this will cause the c-shell script to fail too sys.exit(1) # exit the python script check = True v = 0 #timeline version #get lastest timeline version while check == True: inurl = self.irisweb.format(self.stime, v,irispath).replace(' ','0') resp = requests.head(inurl) if resp.status_code != 200: check = False v+=-1 inurl = self.irisweb.format(self.stime, v,irispath).replace(' ','0') else: v+=1 #get the timeline file information for request timeline res = urlopen(inurl) self.res = res #Need to add decode because python 3 is wonderful 2019/01/16 <NAME> self.timeline = res.read().decode('utf-8') def get_start_end(self): #lines with OBSID=obsid self.lines = [] for line in self.timeline.split('\n'): if self.obsid in line: self.lines.append(line) #get the last set of OBSIDs (useful for eclipse season) #Query from start to end time 2019/01/02 <NAME> self.sta_dark = self.lines[0][3:20] self.end_dark = self.lines[-1][3:20] self.sta_dark_dt = self.create_dt_object(self.sta_dark) self.end_dark_dt = self.create_dt_object(self.end_dark) self.sta_dark_dt = self.sta_dark_dt-dt.timedelta(minutes=1) self.end_dark_dt = self.end_dark_dt+dt.timedelta(minutes=1) #create datetime objects using doy in timeline def create_dt_object(self,dtobj): splt = dtobj.split(':') obj = dt.datetime(int(splt[0]),1,1,int(splt[2]),int(splt[3]))+dt.timedelta(days=int(splt[1])-1) #convert doy to datetime obj return obj #set up JSOC query for darks def dark_query(self): #use drms module to download from JSOC (https://pypi.python.org/pypi/drms) client = drms.Client(email=self.email,verbose=False) fmt = '%Y.%m.%d_%H:%M' self.qstr = 'iris.lev1[{0}_TAI-{1}_TAI][][? IMG_TYPE ~ "DARK" ?]'.format(self.sta_dark_dt.strftime(fmt),self.end_dark_dt.strftime(fmt)) self.expt = client.export(self.qstr) #setup string to pass write to sswidl for download ### fmt = '%Y-%m-%dT%H:%M:%S' ### self.response = client.query(jsoc.Time(self.sta_dark_dt.strftime(fmt),self.end_dark_dt.strftime(fmt)),jsoc.Series('iris.lev1'), ### jsoc.Notify('<EMAIL>'),jsoc.Segment('image')) ### self.get_darks(client) def get_darks(self,client): #### import time #### wait = True #### #### request = client.request_data(self.response) #### waittime = 60.*5. #five minute wait to check on data completion #### time.sleep(waittime) # #### #### while wait: #### stat = client.check_request(request) #### if stat == 1: #### temp.sleep(waittime) #### elif stat == 0: #### wait = False #### elif stat > 1: #### break #jump out of loop if you get an error # check to make sure directory does not exist if not os.path.exists(self.bdir): os.makedirs(self.bdir) #also make level0 directory if not os.path.exists(self.ldir): os.makedirs(self.ldir) #get number of records try: index = np.arange(np.size(self.expt.urls.url)) if index[-1] < self.tol: #make sure to have at least 50 darks in archive before downloading sys.stdout.write("FAILED, LESS THAN {0:2d} DARKS IN ARCHIVE".format(self.tol)) sys.exit(1) except: #exit nicely if no records exist sys.stdout.write("FAILED, No JSOC record exists") sys.exit(1) #check to see if darks are already downloaded Added 2017/03/20 #make sure the downloaded files are on the same day added 2017/12/05 (<NAME>) if len(glob.glob(self.bdir+'/iris.lev1.{0}*.fits'.format(self.otime.strftime('%Y-%m-%d')))) < self.tol: #Dowloand the data using drms in par. (will fuss about mounted drive ocassionaly) for ii in index: self.download_par(ii) #DRMS DOES NOT WORK IN PARALELL #### pool = Pool(processes=4) #### outf = pool.map(self.download_par,index) #### pool.close() ### self.expt.download(bdir,1,fname_from_rec=True) #download the data #### res = client.get_request(request,path=bdir,progress=True) #### res.wait() # def download_par(self,index): # get file from JSOC outf = self.expt.download(self.bdir,index,fname_from_rec=True) #format output file fils = str(outf['download'].values[0]) fils = fils.split('/')[-1] nout = fils[:14]+'-'+fils[14:16]+'-'+fils[16:24]+fils[26:] #create new file name in same as previous format if os.path.isfile(str(outf['download'].values[0])): move(str(outf['download'].values[0]),self.bdir+nout) #run to completion def run_all(self): self.request_files() self.get_start_end() self.dark_query()
2.546875
3
src/parser.py
Bolinooo/hint-parser
0
12785896
from .regex_patterns import * from bs4 import BeautifulSoup import datetime import re def parse(response, option): """ Function to extract data from html schedule :return: Parsed html in dictionary """ soup = BeautifulSoup(response.content, 'html.parser') title_blue_original = soup.find("font", {"color": "#0000FF"}).text.strip() if option != "classes" and option != "schedule": size = "4" else: size = "5" title_black_original = soup.find("font", {"size": size}).text.strip() title_blue_stripped = "".join(title_blue_original.split())[:-1] date = soup.find_all('font')[-1].get_text(strip=True) schedule = [] rows = soup.find_all('table')[0].find_all('tr', recursive=False)[1:30:2] if option != "schedule": schedule.append( {'title_blue': title_blue_stripped, 'title_black': title_black_original}) else: rowspans = {} for block, row in enumerate(rows, 1): daycells = row.select('> td')[1:] daynum, rowspan_offset = 0, 0 for daynum, daycell in enumerate(daycells, 1): daynum += rowspan_offset while rowspans.get(daynum, 0): rowspan_offset += 1 rowspans[daynum] -= 1 daynum += 1 rowspan = (int(daycell.get('rowspan', default=2)) // 2) - 1 if rowspan: rowspans[daynum] = rowspan texts = daycell.find_all('font') if texts: info = (item.get_text(strip=True) for item in texts) seperated_info = get_separated_cell_info(info) time = convert_date(date, daynum) timetable = convert_timetable(block, block + rowspan) schedule.append({ 'abbrevation': title_blue_stripped, 'title': title_black_original, 'start_begin': timetable[0], 'start_end': timetable[1], 'start_block': block, 'end_begin': timetable[2], 'end_end': timetable[3], 'end_block': block + rowspan, 'daynum': daynum, 'day': time[0], 'date_full': time[1], 'date_year': time[1][0:4], 'date_month': time[1][5:7], 'date_day': time[1][8:10], 'info': seperated_info }) # print(schedule) while daynum < 5: daynum += 1 if rowspans.get(daynum, 0): rowspans[daynum] -= 1 if not schedule: schedule = {} print("Page succesfully parsed") return schedule def convert_date(soup_date, daynum): """ Function to calculate day and date based on string and daynum :param soup_date: string containing the date of schedule page :param daynum: int of current day :return: tuple with current day and current date """ days = { 1: "Maandag", 2: "Dinsdag", 3: "Woensdag", 4: "Donderdag", 5: "Vrijdag" } one_day, one_month, one_year = soup_date[0:2], soup_date[3:5], soup_date[6:10] partials = [one_day, one_month, one_year] items = [int(i) for i in partials] d0 = datetime.date(year=items[2], month=items[1], day=items[0]) current_day = days[daynum] current_date = d0 + datetime.timedelta(days=daynum - 1) return current_day, str(current_date) def convert_timetable(start, end): """ Function to convert rows to time :param start: Starting row number :param end: Ending row number :return: Tuple with all correct starting and ending times """ timetable = { 1: ("8:30", "9:20"), 2: ("9:20", "10:10"), 3: ("10:30", "11:20"), 4: ("11:20", "12:10"), 5: ("12:10", "13:00"), 6: ("13:00", "13:50"), 7: ("13:50", "14:40"), 8: ("15:00", "15:50"), 9: ("15:50", "16:40"), 10: ("17:00", "17:50"), 11: ("17:50", "18:40"), 12: ("18:40", "19:30"), 13: ("19:30", "20:20"), 14: ("20:20", "21:10"), 15: ("21:10", "22:00"), } start_begin = timetable[start][0] start_end = timetable[start][1] end_begin = timetable[end][0] end_end = timetable[end][1] return start_begin, start_end, end_begin, end_end def combine_dicts(parsed_items, parsed_counters): """ Function to combine parsed schedule data and quarter/week-info to a single dictionary :param parsed_items: defaultdict with nested lists containing separated dicts with crawled data per schedule :param parsed_counters: defaultdict with nested lists containing week and quarter per schedule :return: clean dictionary """ print("Starting to build final dictionary") result = {} empty_schedules = 0 for l1 in parsed_items: for option, (length, l2) in parsed_counters.items(): if len(l1) == length: for item in zip(l1, l2): schedule = bool(item[0]) if schedule: quarter = item[1][0] week = item[1][1] result.setdefault(option, {}) result[option].setdefault(quarter, {}) result[option][quarter].setdefault(week, []) result[option][quarter][week].append(item[0]) else: empty_schedules += 1 print("Succesfully builded final dictionary") print("{amount} schedules were empty.".format(amount=empty_schedules)) return result def get_separated_cell_info(cell_info): """ Function to give each value in :param cell_info: generator that behaves like an iterator. Cell_info can contain e.g. lecture, teacher code etc. :return: category(key) of the reg_ex_dict and the matched value """ seperated_info = {} for info in cell_info: # data contains # 1. a key from reg_ex_dict # 2. the value of the result after executing regular expressions on info data = get_category_and_result(info) # Some cells only has one value for example Hemelvaartsdag. get_category_and_result won't return this value. # Therefore, data is None then save the info. if data is None: seperated_info["event"] = info # location needs to be splitted in building, floor and room elif data[0] == "location": dotSeperatedParts = data[1].split(".") seperated_info["building"] = dotSeperatedParts[0] seperated_info["floor"] = dotSeperatedParts[1] seperated_info["room"] = dotSeperatedParts[2] else: seperated_info[data[0]] = data[1] return seperated_info def get_category_and_result(info): """ Function to get the category(key) and the matched value after executing a regular expression :param info: info is a string :return: category(key) of the reg_ex_dict and the matched value """ # catergory e.g. lecture for category in reg_ex_dict: # pattern e.g. pattern1 for pattern in reg_ex_dict[category]: match = re.match(pattern, info) if match: return category, match.group()
3.046875
3
research/mobilenet/mobilenet_v1.py
luotigerlsx/models_archive
0
12785897
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """MobileNet v1. Adapted from tf.keras.applications.mobilenet.MobileNet(). MobileNet is a general architecture and can be used for multiple use cases. Depending on the use case, it can use different input layer size and different head (for example: embeddings, localization and classification). As described in https://arxiv.org/abs/1704.04861. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ import logging import tensorflow as tf from research.mobilenet import common_modules from research.mobilenet.configs import archs layers = tf.keras.layers MobileNetV1Config = archs.MobileNetV1Config def mobilenet_v1(config: MobileNetV1Config = MobileNetV1Config() ) -> tf.keras.models.Model: """Instantiates the MobileNet Model.""" model_name = config.name input_shape = config.input_shape img_input = layers.Input(shape=input_shape, name='Input') # build network base x = common_modules.mobilenet_base(img_input, config) # build classification head x = common_modules.mobilenet_head(x, config) return tf.keras.models.Model(inputs=img_input, outputs=x, name=model_name) if __name__ == '__main__': logging.basicConfig( format='%(asctime)-15s:%(levelname)s:%(module)s:%(message)s', level=logging.INFO) model = mobilenet_v1() model.compile( optimizer='adam', loss=tf.keras.losses.categorical_crossentropy, metrics=[tf.keras.metrics.categorical_crossentropy]) logging.info(model.summary())
2.578125
3
tests/test_stopper.py
tech-sketch/SeqAL
0
12785898
from unittest.mock import MagicMock import pytest from seqal.stoppers import BudgetStopper, F1Stopper class TestF1Stopper: """Test F1Stopper class""" @pytest.mark.parametrize( "micro,micro_score,macro,macro_score,expected", [ (True, 16, False, 0, True), (True, 14, False, 0, False), (False, 0, True, 16, True), (False, 0, True, 14, False), ], ) def test_stop( self, micro: bool, micro_score: int, macro: bool, macro_score: int, expected: bool, ) -> None: """Test stop function""" # Arrange stopper = F1Stopper(goal=15) classification_report = { "micro avg": {"f1-score": micro_score}, "macro avg": {"f1-score": macro_score}, } result = MagicMock(classification_report=classification_report) # Act decision = stopper.stop(result, micro=micro, macro=macro) # Assert assert decision == expected class TestBudgetStopper: """Test BudgetStopper class""" @pytest.mark.parametrize("unit_count,expected", [(10, False), (20, True)]) def test_stop(self, unit_count: int, expected: bool) -> None: """Test stop function""" # Arrange stopper = BudgetStopper(goal=15, unit_price=1) # Act decision = stopper.stop(unit_count) # Assert assert decision == expected
2.578125
3
Code/CCIPCA.py
arturjordao/IncrementalDimensionalityReduction
3
12785899
"""Candid Covariance-Free Incremental PCA (CCIPCA).""" import numpy as np from scipy import linalg from sklearn.utils import check_array from sklearn.utils.validation import FLOAT_DTYPES from sklearn.base import BaseEstimator from sklearn.preprocessing import normalize import copy class CCIPCA(BaseEstimator): """Candid Covariance-Free Incremental PCA (CCIPCA). Parameters ---------- n_components : int or None, (default=None) Number of components to keep. If ``n_components `` is ``None``, then ``n_components`` is set to ``min(n_samples, n_features)``. copy : bool, (default=True) If False, X will be overwritten. ``copy=False`` can be used to save memory but is unsafe for general use. References Candid Covariance-free Incremental Principal Component Analysis """ def __init__(self, n_components=10, amnesic=2, copy=True): self.__name__ = 'Incremental Projection on Latent Space (IPLS)' self.n_components = n_components self.amnesic = amnesic self.n = 0 self.copy = copy self.x_rotations = None self.sum_x = None self.n_features = None self.eign_values = None self.x_mean = None def normalize(self, x): return normalize(x[:, np.newaxis], axis=0).ravel() def fit(self, X, Y=None): X = check_array(X, dtype=FLOAT_DTYPES, copy=self.copy) n_samples, n_features = X.shape if self.n == 0: self.n_features = n_features self.x_rotations = np.zeros((n_features, self.n_components)) self.eign_values = np.zeros((self.n_components)) self.incremental_mean = 1 for j in range(0, n_samples): self.n = self.n + 1 u = X[j] old_mean = (self.n-1)/self.n*self.incremental_mean new_mean = 1/self.n*u self.incremental_mean = old_mean+new_mean if self.n == 1: self.x_rotations[:, 0] = u self.sum_x = u else: u = u - self.incremental_mean self.sum_x = self.sum_x + u k = min(self.n, self.n_components) for i in range(1, k+1): if i == self.n: self.x_rotations[:, i - 1] = u else: w1, w2 = (self.n-1-self.amnesic)/self.n, (self.n+self.amnesic)/self.n v_norm = self.normalize(self.x_rotations[:, i-1]) v_norm = np.expand_dims(v_norm, axis=1) self.x_rotations[:, i - 1] = w1 * self.x_rotations[:, i - 1] + w2*u*np.dot(u.T, v_norm)[0] v_norm = self.normalize(self.x_rotations[:, i-1]) v_norm = np.expand_dims(v_norm, axis=1) u = u - (np.dot(u.T, v_norm)*v_norm)[:, 0] return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data.""" X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) X -= self.incremental_mean w_rotation = np.zeros(self.x_rotations.shape) for c in range(0, self.n_components): w_rotation[:, c] = self.normalize(self.x_rotations[:, c]) return np.dot(X, w_rotation)
2.375
2
kr_fashion_mnist.py
mjbhobe/dl-keras
0
12785900
<reponame>mjbhobe/dl-keras<filename>kr_fashion_mnist.py <<<<<<< HEAD #!/usr/bin/env python """ Fashion MNIST multiclass classification using Tensorflow 2.0 & Keras """ import sys import os import random # import pathlib # import json # import glob # import tarfile import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import (BatchNormalization, Conv2D, Dense, Dropout, Flatten, Input, MaxPooling2D, ELU, ReLU, Softmax) from tensorflow.keras.models import load_model from tensorflow.keras.models import model_from_json from tensorflow.keras.utils import plot_model from tensorflow.python.keras.metrics import TrueNegatives import kr_helper_funcs as kru ======= import random import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.datasets import fashion_mnist import matplotlib.pyplot as plt import seaborn as sns import kr_helper_funcs as kru plt.style.use('seaborn') >>>>>>> bbc974c7328d49125b62578f259511f7286a8dfc SEED = 42 random.seed(SEED) np.random.seed(SEED) tf.random.set_seed(SEED) <<<<<<< HEAD print(f"Using Tensorflow {tf.__version__}") EPOCHS, BATCH_SIZE, BUFFER_SIZE = 25, 64, 512 def load_fashion_data(): """ load Fashion MNIST data & return datasets """ from tensorflow.keras.datasets import fashion_mnist (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.20, random_state=SEED, stratify=y_train) # Normalize data. X_train = X_train.astype('float32') / 255.0 X_val = X_val.astype('float32') / 255.0 X_test = X_test.astype('float32') / 255.0 # Reshape grayscale to include channel dimension. X_train = np.expand_dims(X_train, axis=3) X_val = np.expand_dims(X_val, axis=3) X_test = np.expand_dims(X_test, axis=3) # Process labels. label_binarizer = LabelBinarizer() y_train = label_binarizer.fit_transform(y_train) y_val = label_binarizer.fit_transform(y_val) y_test = label_binarizer.fit_transform(y_test) X_train, y_train, X_val, y_val, X_test, y_test = load_fashion_data() print(f"X_train.shape = {X_train.shape} - y_train.shape = {y_train.shape}\n" f"X_val.shape = {X_val.shape} - y_val.shape = {y_val.shape}\n" f"X_test.shape = {X_test.shape} - y_test.shape = {y_test.shape} ") train_ds = tf.data.Dataset.from_tensor_slices(X_train, y_train) val_ds = tf.data.Dataset.from_tensor_slices(X_val, y_val) test_ds = tf.data.Dataset.from_tensor_slices(X_test, y_test) return train_ds, val_ds, test_ds def build_model(): input_layer = Input(shape=(28, 28, 1)) x = Conv2D(filters=20, kernel_size=(5, 5), padding='same', strides=(1, 1))(input_layer) x = ELU()(x) x = BatchNormalization()(x) x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x) x = Dropout(rate=0.5)(x) x = Conv2D(filters=50, kernel_size=(5, 5), padding='same', strides=(1, 1))(x) x = ELU()(x) x = BatchNormalization()(x) x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x) x = Dropout(rate=0.5)(x) x = Flatten()(x) x = Dense(units=500)(x) x = ELU()(x) x = Dropout(rate=0.5)(x) x = Dense(units=10)(x) output = Softmax()(x) model = Model(inputs=input_layer, outputs=output) # compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model MODEL_SAVE_PATH = os.path.join('./model_states', 'kr_fashion_mnist.hdf5') DO_TRAINING = False DO_PREDICTIONS = False def main(): # load & prepere the datasets for training print('Loading & preparing data...') train_dataset, val_dataset, test_dataset = load_fashion_data() train_dataset = train_dataset.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_SIZE).prefetch(buffer_size=BUFFER_SIZE) val_dataset = val_dataset.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_SIZE).prefetch(buffer_size=BUFFER_SIZE) test_dataset = test_dataset.shuffle(buffer_size=BUFFER_SIZE).batch(BATCH_SIZE).prefetch(buffer_size=BUFFER_SIZE) if DO_TRAINING: print('Training model...') # create the model model = build_model() print(model.summary()) # train the model hist = model.fit(train_dataset, validation_data=val_dataset, epochs=EPOCHS) kru.show_plots(hist.history, metric='accuracy', plot_title='Fashion MNIST model performance') # evaluate model print('Evaluating model performance...') loss, acc = model.evaluate(train_dataset) print(f' - Training data -> loss = {loss:.3f} - acc = {acc:.3f}') loss, acc = model.evaluate(val_dataset) print(f' - Cross-val data -> loss = {loss:.3f} - acc = {acc:.3f}') loss, acc = model.evaluate(test_dataset) print(f' - Testing data -> loss = {loss:.3f} - acc = {acc:.3f}') # save model state print(f"Saving model state to {MODEL_SAVE_PATH}") model.save(MODEL_SAVE_PATH) del model if DO_PREDICTIONS: # load model from saved state & evaluate performance model = load_model(MODEL_SAVE_PATH) print('Evaluating model performance...') loss, acc = model.evaluate(train_dataset) print(f' - Training data -> loss = {loss:.3f} - acc = {acc:.3f}') loss, acc = model.evaluate(val_dataset) print(f' - Cross-val data -> loss = {loss:.3f} - acc = {acc:.3f}') loss, acc = model.evaluate(test_dataset) print(f' - Testing data -> loss = {loss:.3f} - acc = {acc:.3f}') if __name__ == '__main__': main() ======= (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() print(f"X_train.shape: {X_train.shape} - y_train.shape: {y_train.shape} - " f"X_test.shape: {X_test.shape} - y_test.shape: {y_test.shape}") X_train = X_train / 255.0 X_test = X_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28,28)), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(64, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) hist = model.fit(X_train, y_train, validation_split=0.2, epochs=25, batch_size=32) kru.show_plots(hist.history, metric='accuracy') # evaluate performance loss, acc = model.evaluate(X_train, y_train) print(f"Training data -> loss: {loss:.3f} - acc: {acc:.3f}") loss, acc = model.evaluate(X_test, y_test) print(f"Testing data -> loss: {loss:.3f} - acc: {acc:.3f}") # save model kru.save_model(model, 'kr_fashion2') del model >>>>>>> bbc974c7328d49125b62578f259511f7286a8dfc
2.984375
3
02 - Estruturas de controle/ex044.py
epedropaulo/MyPython
0
12785901
<reponame>epedropaulo/MyPython cores = ['\033[m', '\033[31m', '\033[34m'] print(f'{cores[1]}-=-' * 7) print(f'{cores[2]}FORMAS DE PAGAMENTO.') print(f'{cores[1]}-=-{cores[0]}' * 7) print('') preco = float(input('Quanto é o produto? R$')) print('') print(f'Digite [{cores[2]} 1 {cores[0]}] para {cores[2]}sim{cores[0]}. \n' f'Digite [{cores[1]} 2 {cores[0]}] para {cores[1]}não{cores[0]}.') parcela = int(input('Você vai parcelar? ')) print('') if parcela == 2: print(f'Digite [{cores[2]} 1 {cores[0]}] para {cores[2]}DINHEIRO / CHEQUE{cores[0]}.\n' f'Digite [{cores[1]} 2 {cores[0]}] para {cores[1]}cartão{cores[0]}.') modo = int(input('Dinheiro/Cheque ou cartão: ')) if modo == 1: preco1 = preco * 0.9 else: preco1 = preco * 0.95 print('') print(f'O preço em parcela única será de: R${preco1 :.2f}.') elif parcela == 1: vezes = int(input('Quantas vezes vai parcelar? ')) if vezes == 2: preco1 = preco / vezes else: preco1 = (preco * 1.2) / vezes print('') print(f'O preço em {vezes} parcelas, será de R${preco1 :.2f} por parcela, pagando R${preco * 1.2 :.2f}.') else: print('OPÇÃO INVÁLIDA!')
3.25
3
cmz/cms_core/urls_helpers.py
inmagik/cmz
1
12785902
<filename>cmz/cms_core/urls_helpers.py from django.conf.urls import url, include from .views import CmsView def create_urls(pages): out = [] empty_urls = [] for page_name in pages: page = pages[page_name] extra_modules = page.get('extra_modules', []) if 'url' in page and page['url']: comp_url = r'^%s/$' % page['url'] else: comp_url = r'^$' if 'view' not in page: #standard cms view u = url(comp_url, CmsView.as_view( page_name=page_name, extra_modules=extra_modules, template=page.get('template', None) ), name=page_name ) else: view = page['view'] view_params = page.get("view_parms", {}) u = url(comp_url, view, view_parms, name=page_name) if page['url']: out.append(u) else: empty_urls.append(u) if len(empty_urls) > 2: raise ValueError("CMZ ERROR: your pages.py has more than one empty url") #trick for allowing '' out.extend(empty_urls) return out
2.53125
3
Application/errors_module/errors.py
GraphicalDot/datapod-backend-layer
0
12785903
<gh_stars>0 from loguru import logger from sanic.response import json from sanic import Blueprint from sanic.exceptions import SanicException ERRORS_BP = Blueprint('errors') DEFAULT_MSGS = { 400: 'Bad Request', 401: 'Unauthorized', 403: 'Forbidden', 404: 'Not Found', 501: 'Not Implemented', 503: 'Internal Error' } def add_status_code(code): def class_decorator(cls): cls.status_code = code return cls return class_decorator class ApiException(SanicException): def __init__(self, message=None, status_code=None): super().__init__(message) logger.error(message) if status_code is not None: self.status_code = status_code if message is None: self.message = DEFAULT_MSGS[self.status_code] else: self.message = message class DuplicateEntryError(Exception): def __init__(self, unique_key, table_name): self.msg = f"Duplicate key present --{unique_key}-- in table --{table_name}--" def __str__(self): return repr(self.msg) ##Errors related to Account creation ##---------------------ACCOUNT ERRORS --------------------------------## @add_status_code(400) class APIBadRequest(ApiException): def __init__(self, message="Error happened in the api", status_code=None): super().__init__(message, status_code) @add_status_code(400) class IdentityAlreadyExists(ApiException): def __init__(self, message="Code repos identity already exists", status_code=None): super().__init__(message) @add_status_code(400) class IdentityExistsNoPath(ApiException): def __init__(self, message="Code repos identity exists but no path for private key exists", status_code=None): super().__init__(message) @add_status_code(400) class IdentityDoesntExists(ApiException): def __init__(self, message="Code repos identity doesnt exists", status_code=None): super().__init__(message) @add_status_code(400) class PathDoesntExists(ApiException): def __init__(self, path=None, status_code=None): self.message = f"{path} doesnt exists" super().__init__(self.message) @add_status_code(400) class MnemonicRequiredError(ApiException): def __init__(self, path=None, status_code=None): self.message = f"Mnemonic required from user, Encryption key is missing" super().__init__(self.message) @add_status_code(400) class AccountError(ApiException): def __init__(self, message="This Account already exists with us", status_code=None): super().__init__(message) @add_status_code(400) class ClaimAccountError(ApiException): def __init__(self, message="The user already has claimed this account", status_code=None): super().__init__(message) @add_status_code(400) class AccountCreationError(ApiException): def __init__(self, message="This user is not allowed to create accounts", status_code=None): super().__init__(message) ##---------------------ACCOUNT ERRORS END --------------------------------## @ERRORS_BP.exception(ApiException) def api_json_error(request, exception): return json({ 'message': exception.message, 'error': True, 'success': False, 'Data': None }, status=exception.status_code) @ERRORS_BP.exception(Exception) def json_error(request, exception): try: code = exception.status_code except AttributeError: code = 500 logger.exception(exception) return json({ 'error': exception.args[0] }, status=code)
2.328125
2
Modules/LeetCode/Task5.py
Itsuke/Learning-Python
0
12785904
''' https://leetcode.com/discuss/interview-question/1683420/Facebook-or-Online-or-USA-or-E5 Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).” Constraints: The number of nodes in the tree is in the range [2, 105]. -109 <= Node.val <= 109 All Node.val are unique. - Good to ask in feature p != q - Good to ask in feature p and q will exist in the tree. - Good to ask in feature ''' #16:36 ''' Solution proposal _function(node, value, path) path.append(value) if (node.value == value): return path else: function(node.left, p, q, node.value) function(node.right, p, q, node.value) function(root, p, q) path_p = _function(root, p, []) path_q = _function(root, q, []) ancestor = [value for value in path_p if value in path_q] ''' def _find_ancestor(node, value, path): #O(2*N) path.append(node.value) if node.value == value: return True elif node.left == None: path.pop() return else: if (_find_ancestor(node.left, value, path)): return path if (_find_ancestor(node.right, value, path)): return path path.pop() def find_ancestor(root, p, q): path_p = _find_ancestor(root, p, []) path_q = _find_ancestor(root, q, []) print(path_p, path_q) ancestor = [value for value in path_p if value in path_q] print(ancestor[-1]) '''Test cases Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 S1: 3, path_p = [3] S2: 5, path_p = [3, 5] S3: 3, path_q = [3] S4: 3, path_q = [3, 5] S5: 3, path_q = [3, 5, 6] S6: 3, path_q = [3, 5, 2] S7: 3, path_q = [3, 5, 2, 7] S8: 3, path_q = [3, 5, 2, 4] S9: 3, path_q = [3, 1] s10: path_q U path_p = 3 ''' #16:59 class Tree: def __init__(self, value): self.value = value self.left = None self.right = None def add_leafs(self, left_value, right_value): self.left = Tree(left_value) self.right = Tree(right_value) my_tree = Tree(3) my_tree.add_leafs(5, 1) my_tree.left.add_leafs(6, 2) my_tree.right.add_leafs(0, 8) my_tree.left.right.add_leafs(7, 4) find_ancestor(my_tree, 5, 1) find_ancestor(my_tree, 5, 4)
3.546875
4
second_step/s7.py
relax-space/python-xxm
0
12785905
import pymongo """ mongo数据库的增删改查 1.首先本地启动mongodb: docker-compose -f second_step/example/mongo.yml up 2.运行以下命令 python.exe .\second_step\s7.py 参考:https://www.runoob.com/python3/python-mongodb.html """ class Model: def __init__(self): client = pymongo.MongoClient("mongodb://localhost:27017") self.db = client["fruit"] self.table =self.db["fruit"] def add(self,fruitDict): self.table.insert_one(fruitDict) def update(self,d1,d2): self.table.update_one(d1,d2) def delete(self,fruitDict): self.table.delete_one(fruitDict) def find(self,fruitDict): fruit = self.table.find(fruitDict) return list(fruit) if __name__ == "__main__": m = Model() fruitDict= {"name":"apple","price":100} m.add(fruitDict) b=m.find({"name":"apple"}) print(b) m.update({"name":"apple"},{"$set":{"price":80}}) m.delete({"name":"apple"})
3.625
4
tests/test_individuals/test_mixed_individual.py
alessandrolenzi/yaga
0
12785906
from yaga_ga.evolutionary_algorithm.genes import IntGene, CharGene from yaga_ga.evolutionary_algorithm.individuals import ( MixedIndividualStructure, ) def test_initialization_with_tuple(): gene_1 = CharGene() gene_2 = IntGene(lower_bound=1, upper_bound=1) individual = MixedIndividualStructure((gene_1, gene_2)) assert len(individual) == 2 built = individual.build() assert type(built[0]) == str assert type(built[1]) == int assert individual[0] == gene_1 assert individual[1] == gene_2 def test_progressive_initialization(): gene_1 = CharGene() gene_2 = IntGene(lower_bound=1, upper_bound=1) individual = MixedIndividualStructure(gene_1) assert len(individual) == 1 built = individual.build() assert len(built) == 1 assert type(built[0]) == str individual_2 = individual.add_gene(gene_2) assert len(individual_2) == 2 assert individual_2[0] == gene_1 assert individual_2[1] == gene_2 built2 = individual_2.build() assert len(built2) == 2 assert type(built2[0]) == str assert type(built2[1]) == int
2.640625
3
test/test_numeric.py
radovanhorvat/gonzales
0
12785907
<reponame>radovanhorvat/gonzales import numpy as np import gonzales.lib.physics as phy def test_com(): # test center of mass calculation # 1. case r = np.array([[0., 0., 0.], [1., 0., 0.], [1., 1., 1.]]) m = np.array([1., 2., 3.]) com = phy.calc_com(r, m) np.testing.assert_almost_equal(com, np.array([5/6., 0.5, 0.5])) # 2. case - one of the masses dominates r = np.array([[0., 0., 0.], [1., 0., 0.], [1., 1., 1.]]) m = np.array([1., 2., 1.0e15]) com = phy.calc_com(r, m) np.testing.assert_almost_equal(com, np.array([1., 1., 1.])) def test_ke(): # test kinetic energy calculation # 1. trivial case v = np.array([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) m = np.array([1., 2., 3.]) ke = phy.calc_ke(v, m) np.testing.assert_equal(ke, 0.) # 2. other cases v = np.array([[0., 0., 0.], [1., 0., 0.], [1., 1., 1.]]) m = np.array([1., 2., 3.]) ke = phy.calc_ke(v, m) np.testing.assert_equal(ke, 11 / 2.) def test_pe(): # test potential energy calculation # 1. case r = np.array([[0., 0., 0.], [1., 0., 0.], [1., 1., 1.]]) m = np.array([1., 2., 3.]) pe = phy.calc_pe(r, m, 1.0, 0.) np.testing.assert_equal(pe, - (2. + 3 / np.sqrt(3) + 6 / np.sqrt(2))) # 2. case - particles at huge distances r = np.array([[0., 0., 0.], [1.0e15, 0., 0.], [1., 1.0e15, 1.]]) m = np.array([1., 2., 3.]) pe = phy.calc_pe(r, m, 1.0, 0.) np.testing.assert_almost_equal(pe, 0.) def test_te(): # test total energy calculation r = np.array([[0., 0., 0.], [1., 0., 0.], [1., 1., 1.]]) v = np.array([[-1., 1., 0.], [1., -1., 0.], [1., 1., 1.]]) m = np.array([1., 2., 3.]) pe = phy.calc_pe(r, m, 1.0, 0.) ke = phy.calc_ke(v, m) te = phy.calc_te(r, v, m, 1.0, 0.) np.testing.assert_equal(pe + ke, te) def test_ang_mom(): # test angular momentum r = np.array([[0., 0., 0.], [1., 0., 0.], [1., 1., 1.]]) v = np.array([[-1., 1., 0.], [1., -1., 0.], [1., -2., 1.]]) m = np.array([1., 2., 3.]) am = phy.calc_ang_mom(r, v, m) np.testing.assert_equal(am, np.array([9., 0., -11.]))
2.390625
2
window/viewport.py
jeffa/window-viewport
0
12785908
<gh_stars>0 __version__='0.0.1' class viewport: def __init__( self, Wb=0, Wt=1, Wl=0, Wr=1, Vb=-1, Vt=1, Vl=-1, Vr=1 ): self.Sx = ( Vr - Vl ) / ( Wr - Wl ) self.Sy = ( Vt - Vb ) / ( Wt - Wb ); self.Tx = ( Vl * Wr - Wl * Vr ) / ( Wr - Wl ); self.Ty = ( Vb * Wt - Wb * Vt ) / ( Wt - Wb ); def Dx( self, x ): return self.Sx * x + self.Tx def Dy( self, y ): return self.Sy * y + self.Ty
2.390625
2
ava/preprocessing/__init__.py
mdmarti/autoencoded-vocal-analysis
0
12785909
<gh_stars>0 """ AVA preprocessing module Contains -------- `ava.preprocessing.preprocess` Preprocess syllable spectrograms. `ava.preprocessing.utils` Useful functions for preprocessing. """
0.90625
1
ascii_video.py
FabulousCodingFox/AsciiVideo
0
12785910
from PIL import Image from PIL import ImageFont from PIL import ImageDraw import cv2,time,os from moviepy.editor import * from tkinter import filedialog as fd def im_to_ascii(im:Image,width:int=640,keepAlpha:bool=True,highContrastMode:bool=False,fontResolution:int=5): ratio:float = width/im.size[0] im:Image = im.resize((int(im.size[0]*ratio),int(im.size[1]*ratio)),Image.NEAREST).convert("LA") if highContrastMode: ramp:str = "@. .:-=+*#%@" else : ramp:str = " .:-=+*#%@" c:list[str] = [] for h in range(im.size[1]): row:list[str] = [] for w in range(im.size[0]): col:tuple = im.getpixel((w,h)) if keepAlpha and col[1]<=127: row.append(" ") else: row.append(ramp[int((col[0]/255)*len(ramp))-1]) c.append(" ".join(row)) w:int = im.size[0] * fontResolution * 5 h:int = im.size[1] * fontResolution * 6 font:ImageFont = ImageFont.truetype("monogram.ttf", 7 * fontResolution) img = Image.new("RGB",(w,h),(0,0,0)) ImageDraw.Draw(img).text( (0, 0), "\n".join(c), (255,255,255), font=font ) return img def videoFileToAscii(path:str,skip:bool=False): if not skip: def extractFrames(path:str)->tuple[int,int,int]: print("Extracting Frames...") starttime = time.time() vidcap = cv2.VideoCapture(path) success,image = vidcap.read() count = 0 length = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) while success: cv2.imwrite("frame/frame%d.png" % count, image) success,image = vidcap.read() count += 1 if time.time()-starttime>=2: print(int((count/length)*100),"%",sep="",end="\r");starttime=time.time() return count,length,vidcap.get(cv2.CAP_PROP_FPS) videoFrames, videoLength, videoFramerate = extractFrames(path) videoTargetWidth = 120 videoTargetFramerate = 10 print("Converting Frames...") for frame in range(0,videoFrames,int(videoFramerate/videoTargetFramerate)): starttime = time.time() with Image.open("frame/frame%d.png" % frame) as im: im_to_ascii(im,videoTargetWidth,fontResolution=4).save("frame/frame%d.png" % frame) if time.time()-starttime>=2: print(int((frame/videoFrames)*100),"%",sep="",end="\r");starttime=time.time() else: videoFrames = 359 videoFramerate = 30 videoTargetFramerate = 10 clip = ImageSequenceClip([f"frame/frame{frame}.png" for frame in range(0,videoFrames,int(videoFramerate/videoTargetFramerate))], fps = videoTargetFramerate) clip.write_videofile(os.path.join(os.path.dirname(__file__),"output.mp4")) if __name__ == "__main__": path = fd.askopenfile(initialdir=os.path.dirname(__file__)) if True in [path.name.endswith(ext) for ext in [".mp4",".mkv",".avi",".mov"]]: videoFileToAscii(path.name) elif True in [path.name.endswith(ext) for ext in [".jpg",".jpeg",".png",".gif"]]: with Image.open(path.name) as im: i = im_to_ascii(im,width=516) i.save("output.png") i.show()
2.75
3
wrappers/python_2-7/runProducerCallbacksOWP.py
UpperLEFTY/worldpay-within-sdk
0
12785911
<filename>wrappers/python_2-7/runProducerCallbacksOWP.py import WPWithinWrapperImpl import WWTypes import time class TheEventListener(): def __init__(self): print "Inialised custom event listener" def beginServiceDelivery(self, serviceId, serviceDeliveryToken, unitsToSupply): try: print "OVERRIDE: event from core - onBeginServiceDelivery()" print "ServiceID: {0}\n".format(serviceId) print "UnitsToSupply: {0}\n".format(unitsToSupply) print "SDT.Key: {0}\n".format(serviceDeliveryToken.key) print "SDT.Expiry: {0}\n".format(serviceDeliveryToken.expiry) print "SDT.Issued: {0}\n".format(serviceDeliveryToken.issued) print "SDT.Signature: {0}\n".format(serviceDeliveryToken.signature) print "SDT.RefundOnExpiry: {0}\n".format(serviceDeliveryToken.refundOnExpiry) except Exception as e: print "doBeginServiceDelivery failed: " + str(e) def endServiceDelivery(self, serviceId, serviceDeliveryToken, unitsReceived): try: print "OVERRIDE: event from core - onEndServiceDelivery()" print "ServiceID: {0}\n".format(serviceId) print "UnitsReceived: {0}\n".format(unitsReceived) print "SDT.Key: {0}\n".format(serviceDeliveryToken.key) print "SDT.Expiry: {0}\n".format(serviceDeliveryToken.expiry) print "SDT.Issued: {0}\n".format(serviceDeliveryToken.issued) print "SDT.Signature: {0}\n".format(serviceDeliveryToken.signature) print "SDT.RefundOnExpiry: {0}\n".format(serviceDeliveryToken.refundOnExpiry) except Exception as e: print "doEndServiceDelivery failed: " + str(e) def run(): try: print "WorldpayWithin Sample Producer (with callbacks)..." global wpw wpWithinEventListener = TheEventListener() # add listeners to the events # wpWithinEventListener.onBeginServiceDelivery += doBeginServiceDelivery # wpWithinEventListener.onEndServiceDelivery += doEndServiceDelivery wpw = WPWithinWrapperImpl.WPWithinWrapperImpl('127.0.0.1', 9055, True, wpWithinEventListener, 9095) wpw.setup("Producer Example", "Example WorldpayWithin producer") svc = WWTypes.WWService(); svc.setName("Car charger") svc.setDescription("Can charge your hybrid / electric car") svc.setId(1) ccPrice = WWTypes.WWPrice() ccPrice.setId(1) ccPrice.setDescription("Kilowatt-hour") ccPrice.setUnitDescription("One kilowatt-hour") ccPrice.setUnitId(1) ppu = WWTypes.WWPricePerUnit() ppu.setAmount(25) ppu.setCurrencyCode("GBP") ccPrice.setPricePerUnit(ppu) prices = {} prices[ccPrice.getId()] = ccPrice svc.setPrices(prices) # [ CLIENT KEY, SERVICE KEY] : From online.worldpay.com wpw.initProducer({"psp_name":"worldpayonlinepayments","hte_public_key":"<KEY>", "hte_private_key": "T_S_3bdadc9c-54e0-4587-8d91-29813060fecd", "api_endpoint":"https://api.worldpay.com/v1", "merchant_client_key": "<KEY>", "merchant_service_key": "T_S_3bdadc9c-54e0-4587-8d91-29813060fecd"}) wpw.addService(svc) broadcastDuration = 20000 durationSeconds = broadcastDuration / 1000 wpw.startServiceBroadcast(broadcastDuration) #20000 repeat = 0 while repeat < durationSeconds: print "Producer Waiting " + str(durationSeconds - repeat) + " seconds to go..." time.sleep(1) repeat = repeat + 1 print "Stopped broadcasting, RPC still running" repeat2 = 0 while repeat2 < 99999999999: print "Producer keeping alive (to receive callbacks...)" time.sleep(1) repeat2 = repeat2 + 1 except WWTypes.WPWithinGeneralException as e: print e run()
2.3125
2
UI_flask_javascript_soundcloud_app/app.py
AdiletGaparov/sentiment-based-song-recommender
0
12785912
<reponame>AdiletGaparov/sentiment-based-song-recommender from flask import Flask, request, render_template import pandas as pd import numpy as np app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def index(): subject = None level = None selected_choice = "" songs = [] lyrics = pd.read_csv('lyrics_sentiment.csv') subjectivity_dict = {'subjective-20': 'Python, R, SQL', 'subjective-40': 'Hadoop, Spark, Streaming', 'subjective-60': 'Machine Learning', 'subjective-80': 'Data Visualization', 'subjective-100': 'Ethics, Agile, Design Thinking'} polarity_dict = {'very-low': 'I am ready!', 'low': 'Need to recap few concepts', 'average': 'I still have few more days', 'high': 'Proficiency is a good grade', 'very-high': 'God bless Gaussian curve at IE'} if request.method == "POST": subject = request.form.get('subject-choice') level = request.form.get('despair-level') genre = request.form.get('genre') selected_choice = f'{subjectivity_dict.get(subject)} / {polarity_dict.get(level)} / {genre}' subj_genre_filter = get_filter(lyrics, subject, genre) polarity_scores = lyrics.loc[subj_genre_filter, 'polarity_avg'].unique() t_min, t_max = get_polarity_threshold(polarity_scores, level) lyrics_filtered = lyrics.loc[subj_genre_filter & (lyrics['polarity_avg'] <= t_max) & (lyrics['polarity_avg'] >= t_min)].sort_values('polarity_avg') song_names = lyrics_filtered.song artist_names = lyrics_filtered.artist songs = [song + " by " + artist for song, artist in zip(song_names, artist_names)] return render_template('index.html', songs=songs[:20], selected_choice=selected_choice) def get_polarity_threshold(polarity_scores, level): """Get threshold for polarities based on percentile""" if level == 'very-low': t_max = np.percentile(polarity_scores, 20) t_min = np.percentile(polarity_scores, 0) elif level == 'low': t_max = np.percentile(polarity_scores, 40) t_min = np.percentile(polarity_scores, 20) elif level == 'average': t_max = np.percentile(polarity_scores, 60) t_min = np.percentile(polarity_scores, 40) elif level == 'high': t_max = np.percentile(polarity_scores, 80) t_min = np.percentile(polarity_scores, 60) elif level == 'very-high': t_max = np.percentile(polarity_scores, 100) t_min = np.percentile(polarity_scores, 80) else: t_max = np.percentile(polarity_scores, 100) t_min = np.percentile(polarity_scores, 0) return t_min, t_max def get_filter(df, subject, genre): """Get boolean array that filters based on subjectivity and genre level""" if genre == '': genre_list = df.genre.unique() else: genre_list = [genre] if subject == 'subjective-20': filter_array = (df['subjectivity_avg'] <= 0.2) & (df['genre'].isin(genre_list)) elif subject == 'subjective-40': filter_array = (df['subjectivity_avg'] > 0.2) & (df['subjectivity_avg'] <= 0.4) & (df['genre'].isin(genre_list)) elif subject == 'subjective-60': filter_array = (df['subjectivity_avg'] > 0.4) & (df['subjectivity_avg'] <= 0.6) & (df['genre'].isin(genre_list)) elif subject == 'subjective-80': filter_array = (df['subjectivity_avg'] > 0.6) & (df['subjectivity_avg'] <= 0.8) & (df['genre'].isin(genre_list)) elif subject == 'subjective-100': filter_array = (df['subjectivity_avg'] > 0.6) & (df['subjectivity_avg'] <= 0.8) & (df['genre'].isin(genre_list)) else: filter_array = df['genre'].isin(genre_list) return filter_array if __name__ == '__main__': app.run()
2.984375
3
plugins/modules/oci_database_external_database_connector_facts.py
LaudateCorpus1/oci-ansible-collection
0
12785913
<reponame>LaudateCorpus1/oci-ansible-collection<filename>plugins/modules/oci_database_external_database_connector_facts.py #!/usr/bin/python # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_database_external_database_connector_facts short_description: Fetches details about one or multiple ExternalDatabaseConnector resources in Oracle Cloud Infrastructure description: - Fetches details about one or multiple ExternalDatabaseConnector resources in Oracle Cloud Infrastructure - Gets a list of the external database connectors in the specified compartment. - If I(external_database_connector_id) is specified, the details of a single ExternalDatabaseConnector will be returned. version_added: "2.9.0" author: Oracle (@oracle) options: external_database_connector_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the external database connector resource (`ExternalDatabaseConnectorId`). - Required to get a specific external_database_connector. type: str aliases: ["id"] compartment_id: description: - The compartment L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm). - Required to list multiple external_database_connectors. type: str external_database_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the external database whose connectors will be listed. - Required to list multiple external_database_connectors. type: str sort_by: description: - The field to sort by. You can provide one sort order (`sortOrder`). Default order for TIMECREATED is descending. Default order for DISPLAYNAME is ascending. The DISPLAYNAME sort order is case sensitive. type: str choices: - "DISPLAYNAME" - "TIMECREATED" sort_order: description: - The sort order to use, either ascending (`ASC`) or descending (`DESC`). type: str choices: - "ASC" - "DESC" lifecycle_state: description: - A filter to return only resources that match the specified lifecycle state. type: str choices: - "PROVISIONING" - "AVAILABLE" - "UPDATING" - "TERMINATING" - "TERMINATED" - "FAILED" display_name: description: - A filter to return only resources that match the entire display name given. The match is not case sensitive. type: str aliases: ["name"] extends_documentation_fragment: [ oracle.oci.oracle ] """ EXAMPLES = """ - name: Get a specific external_database_connector oci_database_external_database_connector_facts: # required external_database_connector_id: "ocid1.externaldatabaseconnector.oc1..xxxxxxEXAMPLExxxxxx" - name: List external_database_connectors oci_database_external_database_connector_facts: # required compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" external_database_id: "ocid1.externaldatabase.oc1..xxxxxxEXAMPLExxxxxx" # optional sort_by: DISPLAYNAME sort_order: ASC lifecycle_state: PROVISIONING display_name: display_name_example """ RETURN = """ external_database_connectors: description: - List of ExternalDatabaseConnector resources returned: on success type: complex contains: compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" freeform_tags: description: - Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Department\\": \\"Finance\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} display_name: description: - The user-friendly name for the L(external database connector,https://docs.cloud.oracle.com/en- us/iaas/api/#/en/database/latest/datatypes/CreateExternalDatabaseConnectorDetails). The name does not have to be unique. returned: on success type: str sample: display_name_example id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the L(external database connector,https://docs.cloud.oracle.com/en- us/iaas/api/#/en/database/latest/datatypes/CreateExternalDatabaseConnectorDetails). returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" lifecycle_state: description: - The current lifecycle state of the external database connector resource. returned: on success type: str sample: PROVISIONING lifecycle_details: description: - Additional information about the current lifecycle state. returned: on success type: str sample: lifecycle_details_example time_created: description: - The date and time the external connector was created. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" connector_type: description: - The type of connector used by the external database resource. returned: on success type: str sample: MACS external_database_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the external database resource. returned: on success type: str sample: "ocid1.externaldatabase.oc1..xxxxxxEXAMPLExxxxxx" connection_status: description: - The status of connectivity to the external database. returned: on success type: str sample: connection_status_example time_connection_status_last_updated: description: - The date and time the connectionStatus of this external connector was last updated. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" connection_string: description: - "" returned: on success type: complex contains: hostname: description: - The host name of the database. returned: on success type: str sample: hostname_example port: description: - The port used to connect to the database. returned: on success type: int sample: 56 service: description: - The name of the service alias used to connect to the database. returned: on success type: str sample: service_example protocol: description: - The protocol used to connect to the database. returned: on success type: str sample: TCP connection_credentials: description: - "" returned: on success type: complex contains: credential_type: description: - The type of credential used to connect to the database. returned: on success type: str sample: NAME_REFERENCE credential_name: description: - "The name of the credential information that used to connect to the database. The name should be in \\"x.y\\" format, where the length of \\"x\\" has a maximum of 64 characters, and length of \\"y\\" has a maximum of 199 characters. The name strings can contain letters, numbers and the underscore character only. Other characters are not valid, except for the \\".\\" character that separates the \\"x\\" and \\"y\\" portions of the name. *IMPORTANT* - The name must be unique within the OCI region the credential is being created in. If you specify a name that duplicates the name of another credential within the same OCI region, you may overwrite or corrupt the credential that is already using the name." - "For example: inventorydb.abc112233445566778899" returned: on success type: str sample: credential_name_example username: description: - The username that will be used to connect to the database. returned: on success type: str sample: username_example password: description: - The password that will be used to connect to the database. returned: on success type: str sample: example-password role: description: - The role of the user that will be connecting to the database. returned: on success type: str sample: SYSDBA connector_agent_id: description: - The ID of the agent used for the L(external database connector,https://docs.cloud.oracle.com/en- us/iaas/api/#/en/database/latest/datatypes/CreateExternalDatabaseConnectorDetails). returned: on success type: str sample: "ocid1.connectoragent.oc1..xxxxxxEXAMPLExxxxxx" sample: [{ "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}}, "display_name": "display_name_example", "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "lifecycle_state": "PROVISIONING", "lifecycle_details": "lifecycle_details_example", "time_created": "2013-10-20T19:20:30+01:00", "connector_type": "MACS", "external_database_id": "ocid1.externaldatabase.oc1..xxxxxxEXAMPLExxxxxx", "connection_status": "connection_status_example", "time_connection_status_last_updated": "2013-10-20T19:20:30+01:00", "connection_string": { "hostname": "hostname_example", "port": 56, "service": "service_example", "protocol": "TCP" }, "connection_credentials": { "credential_type": "NAME_REFERENCE", "credential_name": "credential_name_example", "username": "username_example", "password": "<PASSWORD>", "role": "SYSDBA" }, "connector_agent_id": "ocid1.connectoragent.oc1..xxxxxxEXAMPLExxxxxx" }] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.database import DatabaseClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class ExternalDatabaseConnectorFactsHelperGen(OCIResourceFactsHelperBase): """Supported operations: get, list""" def get_required_params_for_get(self): return [ "external_database_connector_id", ] def get_required_params_for_list(self): return [ "compartment_id", "external_database_id", ] def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_external_database_connector, external_database_connector_id=self.module.params.get( "external_database_connector_id" ), ) def list_resources(self): optional_list_method_params = [ "sort_by", "sort_order", "lifecycle_state", "display_name", ] optional_kwargs = dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None ) return oci_common_utils.list_all_resources( self.client.list_external_database_connectors, compartment_id=self.module.params.get("compartment_id"), external_database_id=self.module.params.get("external_database_id"), **optional_kwargs ) ExternalDatabaseConnectorFactsHelperCustom = get_custom_class( "ExternalDatabaseConnectorFactsHelperCustom" ) class ResourceFactsHelper( ExternalDatabaseConnectorFactsHelperCustom, ExternalDatabaseConnectorFactsHelperGen ): pass def main(): module_args = oci_common_utils.get_common_arg_spec() module_args.update( dict( external_database_connector_id=dict(aliases=["id"], type="str"), compartment_id=dict(type="str"), external_database_id=dict(type="str"), sort_by=dict(type="str", choices=["DISPLAYNAME", "TIMECREATED"]), sort_order=dict(type="str", choices=["ASC", "DESC"]), lifecycle_state=dict( type="str", choices=[ "PROVISIONING", "AVAILABLE", "UPDATING", "TERMINATING", "TERMINATED", "FAILED", ], ), display_name=dict(aliases=["name"], type="str"), ) ) module = AnsibleModule(argument_spec=module_args) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_facts_helper = ResourceFactsHelper( module=module, resource_type="external_database_connector", service_client_class=DatabaseClient, namespace="database", ) result = [] if resource_facts_helper.is_get(): result = [resource_facts_helper.get()] elif resource_facts_helper.is_list(): result = resource_facts_helper.list() else: resource_facts_helper.fail() module.exit_json(external_database_connectors=result) if __name__ == "__main__": main()
1.476563
1
source/lib/conditional_resource.py
Snehitha12345/mlops-workload-orchestrator
20
12785914
<gh_stars>10-100 # ##################################################################################################################### # Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # or in the 'license' file accompanying this file. This file is distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # # ##################################################################################################################### import jsii from aws_cdk.core import CfnCondition, CfnResource, IAspect, IConstruct # This code enables `apply_aspect()` to apply conditions to a resource. # This way we can provision some resources if a condition is true. # For example, if PROVISIONTYPE parameter is 'Git' then we provision CodePipeline # with it's source stage being CodeCommit or GitHub # https://docs.aws.amazon.com/cdk/latest/guide/aspects.html @jsii.implements(IAspect) class ConditionalResources: def __init__(self, condition: CfnCondition): self.condition = condition def visit(self, node: IConstruct): child = node.node.default_child # type: CfnResource if child: child.cfn_options.condition = self.condition
1.539063
2
JDI/web/selenium/elements/api_interact/find_element_by.py
jdi-testing/jdi-python
5
12785915
<filename>JDI/web/selenium/elements/api_interact/find_element_by.py from selenium.webdriver.common.by import By as Selenium_By class By: @staticmethod def id(by_id): return Selenium_By.ID, by_id @staticmethod def css(by_css): return Selenium_By.CSS_SELECTOR, by_css @staticmethod def xpath(by_xpath): return Selenium_By.XPATH, by_xpath @staticmethod def link_text(link_text): return Selenium_By.LINK_TEXT, link_text
2.328125
2
srae.py
MHHukiewitz/SRAE_pytorch
0
12785916
<gh_stars>0 import torch import torch.nn as nn import torch.nn.functional as F from typing import Callable # TODO: Merging and resetting features # TODO: Plots of layer activities # TODO: Stack RAEs for deep network device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using {device} to train networks.") class RAEClassifier(nn.Module): __constants__ = ['input_size', 'hidden_size', 'output_size'] def __init__(self, input_size, hidden_size, output_size, reconstruction_activation: Callable[[torch.Tensor], torch.Tensor] = nn.ReLU(), hidden_activation: Callable[[torch.Tensor], torch.Tensor] = nn.ReLU(), output_activation: Callable[[torch.Tensor], torch.Tensor] = nn.Softmax(), reconstruction_loss: nn.Module = nn.MSELoss()): super(RAEClassifier, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.input = torch.zeros(input_size) self.output_activation = output_activation # also possible: CosineEmbeddingLoss self.reconstruction_loss = reconstruction_loss self.autoencoder = ReactiveAutoencoder(input_size, hidden_size, self.reconstruction_loss, hidden_activation, reconstruction_activation) self.classifier = nn.Linear(hidden_size, output_size) self.classifier.weight.register_hook(self.backward_classifier_hook) def forward(self, input): """The forward pass calculates only the h if no error_signal is provided.""" self.input = input encoding, reconstruction = self.autoencoder(input) # Forward the Autoencoder and detach from the graph output = self.classifier(encoding) # Forward the detached h through the Classifier return self.output_activation(output) def backward_classifier_hook(self, grad): """Triggers autoencoder sparsification with classifier, after backward on this classifier.""" with torch.enable_grad(): encoding, reconstruction = self.autoencoder(self.input, torch.sum(grad, 0)) rec_loss = self.reconstruction_loss(reconstruction, self.input) rec_loss.backward() class ReactiveAutoencoder(nn.Module): """The RAE a.k.a. SRAE a.k.a. the autoencoder with the strict supervised sparsity matrix. This module provides a framework for training an encoder to maximize information throughput, while converging on an error_signal. Works currently only for single samples/online learning. Planned are batch mode as well as multiple layers.""" __constants__ = ['input_size', 'output_size'] def __init__(self, input_size, output_size, reconstruction_loss: nn.Module, hidden_activation: Callable[[torch.Tensor], torch.Tensor] = None, reconstruction_activation: Callable[[torch.Tensor], torch.Tensor] = None, bias=True, reconstruction_bias: str = 'zeros', activation_scaling=True): super(ReactiveAutoencoder, self).__init__() self.input_size = input_size self.output_size = output_size self.hidden_activation = hidden_activation # TODO: what happens if both activations differ? self.activation_scaling = activation_scaling if activation_scaling: self.scaling = None # TODO: Really necessary? self.encoder = nn.Linear(input_size, output_size, bias=bias) self.h = torch.zeros(output_size, requires_grad=True) self.predict = torch.zeros(output_size) self.reconstruction_activation = reconstruction_activation self.reconstruction_loss = reconstruction_loss self.reconstructed_input = torch.zeros(input_size, requires_grad=True) self.reconstruction_bias_type = reconstruction_bias self.reconstruction_bias = self.fresh_reconstruction_bias(self.reconstruction_bias_type) def fresh_reconstruction_bias(self, type: str): if type == 'none': return None elif type == 'zeros': return torch.zeros(self.input_size, requires_grad=True).to(self.h.device) elif type == 'ones': return torch.ones(self.input_size, requires_grad=True).to(self.h.device), elif type == 'rand': return torch.rand(self.input_size, requires_grad=True).to(self.h.device), elif type == 'randn': return torch.randn(self.input_size, requires_grad=True).to(self.h.device), def forward(self, x: torch.Tensor, error_signal: torch.Tensor = None): """The forward pass calculates only the h if no error_signal is provided. If an error_signal is provided, then assume same x and use the last h for sparsity and reconstruction calculation. """ # first pass forward if error_signal is None: with torch.no_grad(): self.h = self.encoder(x) if self.hidden_activation is not None: # save for later self.h = self.hidden_activation(self.h) return self.h, None # reconstruction self.h.requires_grad_() self.reconstructed_input = F.linear(self.h, self.encoder.weight.t(), self.reconstruction_bias) if self.reconstruction_activation is not None: self.reconstructed_input = self.reconstruction_activation(self.reconstructed_input) # calculate preliminary loss rec_loss = self.reconstruction_loss(self.reconstructed_input, x) rec_loss.backward() # compute gradients for self.encoder.weight & self.bias # compute strict supervised sparsity mask # predict output after update self.predict = F.linear(x, self.encoder.weight + self.encoder.weight.grad, self.encoder.bias) delta = self.h - self.predict if self.activation_scaling: # adjust own gradient scaling to error_signal magnitude -> compare maxima self.scaling = (torch.max(torch.abs(error_signal)).item() / torch.max(delta).item()) adjusted_delta = delta * self.scaling # noinspection PyTypeChecker mask = torch.where((error_signal - adjusted_delta).abs() < error_signal.abs(), 1, 0) else: # noinspection PyTypeChecker mask = torch.where((error_signal - delta).abs() < error_signal.abs(), 1, 0) # reset gradients from preliminary backward calculation self.encoder.zero_grad() masked_encoding = self.h * mask # reconstruct using sparsified h self.reconstructed_input = F.linear(masked_encoding, self.encoder.weight.t(), self.reconstruction_bias) return self.h, self.reconstructed_input def backward(self): super(ReactiveAutoencoder, self).backward() if self.activation_scaling: self.encoder.weight.grad *= self.scaling self.encoder.bias.grad *= self.scaling self.reconstruction_bias.grad += self.scaling def reset_parameters(self) -> None: super(ReactiveAutoencoder, self).reset_parameters() self.reconstruction_bias = self.fresh_reconstruction_bias(self.reconstruction_bias_type)
2.609375
3
spectrometer_functions.py
jhoyland/spectrum-workshop
0
12785917
# Find the slit. This function finds the location of the slit in the photograph of the spectrum # The function takes a single line of the data and scans it to find the maximum value. # If it finds a block of saturated pixels it finds the middle pixel to be the slit. # The function returns the column number of the slit. import math def find_slit(data): mx = 0 mxc = 0 startslit = 0 endslit = 0 for c,d in enumerate(data): if d > mx: mx = d mxc = c if startslit == 0 and d >= 255: startslit = c if endslit == 0 and startslit > 0 and d < 254: endslit = c break # We found a slit of saturated values if startslit > 0 and endslit > startslit: return math.ceil(0.5 * (endslit - startslit) + startslit) # Or just return the location of the biggest value found else: return mxc # Reads in the data along with the grating pitch (g in lines/mm) and resolution in radians per pixel def get_spectrum(data,g,res): s = find_slit(data) d2 = data[s::-1] d = 0.001 / g # convert lines/mm into grating spacing in m wvl = [ 1e9* d * math.sin(i * res) for i in range(len(d2))] return (wvl,d2)
3.46875
3
ramscube/ramscube.py
freemansw1/ramscube
0
12785918
import warnings warnings.filterwarnings('ignore', category=UserWarning, append=True) RAMS_Units=dict() # winds RAMS_Units['UC']='m s-1' RAMS_Units['VC']='m s-1' RAMS_Units['WC']='m s-1' # potential temperature RAMS_Units['THETA']='K' RAMS_Units['PI']='J kg-1 K-1' RAMS_Units['DN0']='kg m-3' # water vapour mixing ratio: RAMS_Units['RV']='kg kg-1' # hydrometeor mass mixing ratios: mass_mixing_ratios=['RCP','RDP','RRP','RPP','RSP','RAP','RGP','RHP'] for variable in mass_mixing_ratios: RAMS_Units[variable]='kg kg-1' # hydrometeor number mixing ratios: mass_mixing_ratios=['CCP','CDP','CRP','CPP','CSP','CAP','CGP','CHP'] for variable in mass_mixing_ratios: RAMS_Units[variable]='kg-1' #hydrometeor precipitation rates: precipitation_rates=['PCPRR','PCPRD','PCPRS','PCPRH','PCPRP','PCPRA','PCPRG'] for variable in precipitation_rates: RAMS_Units[variable]='kg m-2' # hydrometeor precipitation accumulated: precipitation_accumulated=['ACCPR','ACCPD','ACCPS','ACCPH','ACCPP','ACCPA','ACCPG'] for variable in precipitation_accumulated: RAMS_Units[variable]='kg m-2 s-1' # radiation: RAMS_Units['LWUP']='W m-2' RAMS_Units['LWDN']='W m-2' RAMS_Units['SWUP']='W m-2' RAMS_Units['SWDN']='W m-2' # individual microphysics processes accumulated RAMS_processes_mass=[ 'NUCCLDRT', 'NUCICERT', 'INUCHOMRT', 'INUCCONTR', 'INUCIFNRT', 'INUCHAZRT', 'VAPCLDT', 'VAPRAINT', 'VAPPRIST', 'VAPSNOWT', 'VAPAGGRT', 'VAPGRAUT', 'VAPHAILT', 'VAPDRIZT', 'MELTSNOWT', 'MELTAGGRT', 'MELTGRAUT', 'MELTHAILT', 'RIMECLDSNOWT', 'RIMECLDAGGRT', 'RIMECLDGRAUT', 'RIMECLDHAILT', 'RAIN2PRT', 'RAIN2SNT', 'RAIN2AGT', 'RAIN2GRT', 'RAIN2HAT', 'AGGRSELFPRIST', 'AGGRSELFSNOWT', 'AGGRPRISSNOWT' ] for variable in RAMS_processes_mass: RAMS_Units[variable]='kg kg-1' # grouped microphysics processes accumulated: RAMS_processes_mass_grouped=[ 'VAPLIQT', 'VAPICET', 'MELTICET', 'CLD2RAINT', 'RIMECLDT', 'RAIN2ICET', 'ICE2RAINT', 'AGGREGATET' ] for variable in RAMS_processes_mass_grouped: RAMS_Units[variable]='kg kg-1' # grouped microphysics processes instantaneous: RAMS_processes_mass_grouped_instantaneous=[ 'VAPLIQ', 'VAPICE', 'MELTICE', 'CLD2RAIN', 'RIMECLD', 'RAIN2ICE', 'ICE2RAIN', 'NUCCLDR', 'NUCICER' ] for variable in RAMS_processes_mass_grouped_instantaneous: RAMS_Units[variable]='kg kg-1 s-1' RAMS_standard_name=dict() variable_list_derive=[ 'air_temperature', 'air_pressure', 'temperature', 'air_density', 'OLR', 'LWC', 'IWC', 'LWP', 'IWP', 'IWV', 'airmass', 'airmass_path', 'surface_precipitation', 'surface_precipitation_average', 'surface_precipitation_accumulated', 'surface_precipitation_instantaneous', 'LWup_TOA', 'LWup_sfc', 'LWdn_TOA', 'LWdn_sfc', 'SWup_TOA', 'SWup_sfc', 'SWdn_TOA', 'SWdn_sfc' ] def variable_list(filenames): from iris import load cubelist=load(filenames[0]) variable_list = [cube.name() for cube in cubelist] return variable_list def load(filenames,variable,mode='auto',**kwargs): if variable in variable_list_derive: variable_cube=deriveramscube(filenames,variable,**kwargs) else: variable_cube=loadramscube(filenames,variable,**kwargs) # if mode=='auto': # variable_list_file=variable_list(filenames) # if variable in variable_list_file: # variable_cube=loadramscube(filenames,variable,**kwargs) # elif variable in variable_list_derive: # variable_cube=deriveramscube(filenames,variable,**kwargs) # elif variable in variable_dict_pseudonym.keys(): # variable_load=variable_dict_pseudonym[variable] # variable_cube=loadramscube(filenames,variable_load,**kwargs) # else: # raise SystemExit('variable not found') # elif mode=='file': # variable_list_file=variable_list(filenames) # if variable in variable_list_file: # variable_cube=loadramscube(filenames,variable,**kwargs) # elif mode=='derive': # variable_cube=deriveramscube(filenames,variable,**kwargs) # elif mode=='pseudonym': # variable_load=variable_dict_pseudonym[variable] # variable_cube=loadramscube(filenames,variable_load,**kwargs) # else: # print("mode=",mode) # raise SystemExit('unknown mode') return variable_cube def loadramscube(filenames,variable,**kwargs): if type(filenames) is list: variable_cube=loadramscube_mult(filenames,variable,**kwargs) elif type(filenames) is str: variable_cube=loadramscube_single(filenames,variable,**kwargs) else: print("filenames=",filenames) raise SystemExit('Type of input unknown: Must be str of list') return variable_cube def loadramscube_single(filenames,variable,constraint=None,add_coordinates=None): from iris import load_cube variable_cube=load_cube(filenames,variable) variable_cube.units=RAMS_Units[variable] variable_cube=addcoordinates(filenames, variable,variable_cube,add_coordinates=add_coordinates) return variable_cube def loadramscube_mult(filenames,variable,constraint=None,add_coordinates=None): from iris.cube import CubeList cube_list=[] for i in range(len(filenames)): cube_list.append(loadramscube_single(filenames[i],variable,add_coordinates=add_coordinates) ) for member in cube_list: member.attributes={} variable_cubes=CubeList(cube_list) variable_cube=variable_cubes.merge_cube() variable_cube=variable_cube.extract(constraint) return variable_cube def readramsheader(filename): from numpy import array searchfile = open(filename, "r") coord_dict=dict() variable_dict=dict() coord_part=False i_variable=0 n_variable=0 for i,line in enumerate(searchfile): if (i==0): num_variables=int(line[:-1]) if (i>0 and i<=num_variables): line_split=line[:-1].split() variable_dict[line_split[0]]=int(line_split[2]) if ('__') in line: coord_part=True i_variable=i variable_name=line[2:-1] variable_list=[] if coord_part: if (i==i_variable+1): n_variable=int(line[:-1]) if n_variable>0: if (i>=i_variable+2 and i<=i_variable+1+n_variable): try: value_out=array(float(line[:-1])) except: value_out=line[:-1] variable_list.append(value_out) if (i==i_variable+1+n_variable): coord_dict[variable_name]=array(variable_list) coord_part=False # else: # coord_part=False return variable_dict, coord_dict def addcoordinates(filename, variable,variable_cube,**kwargs): filename_header=filename[:-5]+'head.txt' domain=filename[-4] variable_dict, coord_dict=readramsheader(filename_header) variable_cube=add_dim_coordinates(filename, variable,variable_cube,variable_dict, coord_dict,domain,**kwargs) variable_cube=add_aux_coordinates(filename, variable,variable_cube,variable_dict, coord_dict,domain,**kwargs) return variable_cube def make_time_coord(coord_dict): from datetime import datetime,timedelta from iris import coords timestr=str(int(coord_dict['iyear1'][0]))+str(int(coord_dict['imonth1'][0])).zfill(2)+str(int(coord_dict['idate1'][0])).zfill(2)+str(int(coord_dict['itime1'][0])).zfill(4) timeobj = datetime.strptime(timestr,"%Y%m%d%H%M")+timedelta(seconds=1)*coord_dict['time'][0] if timeobj<datetime(100,1,1): base_date=datetime(1,1,1) else: base_date=datetime(1970,1,1) time_units='days since '+ base_date.strftime('%Y-%m-%d') time_days=(timeobj - base_date).total_seconds() / timedelta(days=1).total_seconds() time_coord=coords.DimCoord(time_days, standard_name='time', long_name='time', var_name='time', units=time_units, bounds=None, attributes=None, coord_system=None, circular=False) return time_coord def make_model_level_number_coordinate(n_level): from iris import coords from numpy import arange MODEL_LEVEL_NUMBER=arange(0,n_level) model_level_number=coords.AuxCoord(MODEL_LEVEL_NUMBER, standard_name='model_level_number', units='1') return model_level_number def add_dim_coordinates(filename, variable,variable_cube,variable_dict, coord_dict,domain,add_coordinates=None): from iris import coords import numpy as np # from iris import coord_systems # coord_system=coord_systems.LambertConformal(central_lat=MOAD_CEN_LAT, central_lon=CEN_LON, false_easting=0.0, false_northing=0.0, secant_latitudes=(TRUELAT1, TRUELAT2)) coord_system=None if (variable_dict[variable]==3): time_coord=make_time_coord(coord_dict) variable_cube.add_aux_coord(time_coord) z_coord=coords.DimCoord(coord_dict['ztn01'], standard_name='geopotential_height', long_name='z', var_name='z', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(z_coord,0) model_level_number_coord=make_model_level_number_coordinate(len(z_coord.points)) variable_cube.add_aux_coord(model_level_number_coord,0) x_coord=coords.DimCoord(np.arange(len(coord_dict['xtn0'+domain])), long_name='x', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(x_coord,2) y_coord=coords.DimCoord(np.arange(len(coord_dict['ytn0'+domain])), long_name='y', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(y_coord,1) projection_x_coord=coords.DimCoord(coord_dict['xtn0'+domain], standard_name='projection_x_coordinate', long_name='x', var_name='x', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_x_coord,(2)) projection_y_coord=coords.DimCoord(coord_dict['ytn0'+domain], standard_name='projection_y_coordinate', long_name='y', var_name='y', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_y_coord,(1)) elif (variable_dict[variable]==2): x_coord=coords.DimCoord(np.arange(len(coord_dict['xtn0'+domain])), long_name='x', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(x_coord,1) y_coord=coords.DimCoord(np.arange(len(coord_dict['ytn0'+domain])), long_name='y', units='1', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_dim_coord(y_coord,0) projection_x_coord=coords.DimCoord(coord_dict['xtn0'+domain], standard_name='projection_x_coordinate', long_name='x', var_name='x', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_x_coord,(1)) projection_y_coord=coords.DimCoord(coord_dict['ytn0'+domain], standard_name='projection_y_coordinate', long_name='y', var_name='y', units='m', bounds=None, attributes=None, coord_system=coord_system) variable_cube.add_aux_coord(projection_y_coord,(0)) time_coord=make_time_coord(coord_dict) variable_cube.add_aux_coord(time_coord) return variable_cube def add_aux_coordinates(filename,variable,variable_cube,variable_dict, coord_dict,domain,**kwargs): from iris import load_cube,coords coord_system=None latitude=load_cube(filename,'GLAT').core_data() longitude=load_cube(filename,'GLON').core_data() lat_coord=coords.AuxCoord(latitude, standard_name='latitude', long_name='latitude', var_name='latitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) lon_coord=coords.AuxCoord(longitude, standard_name='longitude', long_name='longitude', var_name='longitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) if (variable_dict[variable]==3): variable_cube.add_aux_coord(lon_coord,(1,2)) variable_cube.add_aux_coord(lat_coord,(1,2)) elif (variable_dict[variable]==2): variable_cube.add_aux_coord(lon_coord,(0,1)) variable_cube.add_aux_coord(lat_coord,(0,1)) # add_coordinates=kwargs.pop('add_coordinates') # if type(add_coordinates)!=list: # add_coordinates1=add_coordinates # add_coordinates=[] # add_coordinates.append(add_coordinates1) # for coordinate in add_coordinates: # if coordinate=='latlon': # latitude=load_cube(filename,'GLAT').data # longitude=load_cube(filename,'GLON').data # lat_coord=coords.AuxCoord(latitude, standard_name='latitude', long_name='latitude', var_name='latitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) # lon_coord=coords.AuxCoord(longitude, standard_name='longitude', long_name='longitude', var_name='longitude', units='degrees', bounds=None, attributes=None, coord_system=coord_system) # if (variable_dict[variable]==3): # variable_cube.add_aux_coord(lon_coord,(1,2)) # variable_cube.add_aux_coord(lat_coord,(1,2)) # elif (variable_dict[variable]==2): # variable_cube.add_aux_coord(lon_coord,(0,1)) # variable_cube.add_aux_coord(lat_coord,(0,1)) return variable_cube def calculate_rams_LWC(filenames,**kwargs): RCP=loadramscube(filenames, 'RCP',**kwargs) RDP=loadramscube(filenames, 'RDP',**kwargs) RRP=loadramscube(filenames, 'RRP',**kwargs) LWC=RCP+RDP+RRP LWC.rename('liquid water content') #LWC.rename('mass_concentration_of_liquid_water_in_air') return LWC # def calculate_rams_IWC(filenames,**kwargs): RPP=loadramscube(filenames, 'RPP',**kwargs) RSP=loadramscube(filenames, 'RSP',**kwargs) RAP=loadramscube(filenames, 'RAP',**kwargs) RGP=loadramscube(filenames, 'RGP',**kwargs) RHP=loadramscube(filenames, 'RHP',**kwargs) IWC=RPP+RSP+RAP+RGP+RHP IWC.rename('ice water content') #IWC.rename('mass_concentration_of_ice_water_in_air') return IWC def calculate_rams_airmass(filenames,**kwargs): from iris.coords import AuxCoord from numpy import diff rho=loadramscube(filenames,'DN0',**kwargs) z=rho.coord('geopotential_height') z_dim=rho.coord_dims('geopotential_height') z_diff=AuxCoord(mydiff(z.points),var_name='z_diff') rho.add_aux_coord(z_diff,data_dims=z_dim) dx=diff(rho.coord('projection_x_coordinate').points[0:2]) dy=diff(rho.coord('projection_y_coordinate').points[0:2]) Airmass=rho*rho.coord('z_diff')*dx*dy Airmass.remove_coord('z_diff') Airmass.rename('mass_of_air') Airmass.units='kg' return Airmass def calculate_rams_airmass_path(filenames,**kwargs): from iris.coords import AuxCoord rho=loadramscube(filenames,'DN0',**kwargs) z=rho.coord('geopotential_height') z_dim=rho.coord_dims('geopotential_height') z_diff=AuxCoord(mydiff(z.points),var_name='z_diff') rho.add_aux_coord(z_diff,data_dims=z_dim) Airmass=rho*rho.coord('z_diff') Airmass.remove_coord('z_diff') Airmass.rename('airmass_path') Airmass.units='kg m-2' return Airmass def calculate_rams_air_temperature(filenames,**kwargs): from iris.coords import AuxCoord theta=loadramscube(filenames,'THETA',**kwargs) pi=loadramscube(filenames,'PI',**kwargs) cp=AuxCoord(1004,long_name='cp',units='J kg-1 K-1') t=theta*pi/cp t.rename('air_temperature') return t def calculate_rams_air_pressure(filenames,**kwargs): from iris.coords import AuxCoord pi=loadramscube(filenames,'PI',**kwargs) cp=AuxCoord(1004,long_name='cp',units='J kg-1 K-1') rd=AuxCoord(287,long_name='rd',units='J kg-1 K-1') p = 100000 * (pi/cp)**(cp.points/rd.points) # Pressure in Pa p.rename('air_pressure') p.units='Pa' return p def calculate_rams_density(filenames,**kwargs): rho=loadramscube(filenames,'DN0',**kwargs) rho.rename('air_density') rho.units='kg m-3' return rho def calculate_rams_LWP(filenames,**kwargs): from iris.analysis import SUM LWC=deriveramscube(filenames,'LWC',**kwargs) Airmass=deriveramscube(filenames,'airmass_path',**kwargs) LWP=(LWC*Airmass).collapsed(('geopotential_height'),SUM) LWP.rename('liquid water path') #LWP.rename('atmosphere_mass_content_of_cloud_liquid_water') return LWP # def calculate_rams_IWP(filenames,**kwargs): from iris.analysis import SUM IWC=deriveramscube(filenames,'IWC',**kwargs) Airmass=deriveramscube(filenames,'airmass_path',**kwargs) IWP=(IWC*Airmass).collapsed(('geopotential_height'),SUM) IWP.rename('ice water path') #IWP.rename('atmosphere_mass_content_of_cloud_ice_water') return IWP def calculate_rams_IWV(filenames,**kwargs): from iris.analysis import SUM RV=loadramscube(filenames,'RV',**kwargs) Airmass=deriveramscube(filenames,'airmass_path',**kwargs) IWV=(RV*Airmass).collapsed(('geopotential_height'),SUM) IWV.rename('integrated water vapor') #IWP.rename('atmosphere_mass_content_of_cloud_ice_water') return IWV # Radiation fluxed at the top of the atmospere and at the surface def calculate_rams_LWup_TOA(filenames,**kwargs): from iris import Constraint LWUP=loadramscube(filenames,'LWUP',**kwargs) LWup_TOA=LWUP.extract(Constraint(model_level_number=LWUP.coord('model_level_number').points[-1])) LWup_TOA.rename('LWup_TOA') return LWup_TOA def calculate_rams_LWup_sfc(filenames,**kwargs): from iris import Constraint LWUP=loadramscube(filenames,'LWUP',**kwargs) LWup_sfc=LWUP.extract(Constraint(model_level_number=0)) LWup_sfc.rename('LWup_sfc') return LWup_sfc def calculate_rams_LWdn_TOA(filenames,**kwargs): from iris import Constraint LWDN=loadramscube(filenames,'LWDN',**kwargs) LWdn_TOA=LWDN.extract(Constraint(model_level_number=LWDN.coord('model_level_number').points[-1])) LWdn_TOA.rename('LWdn_TOA') return LWdn_TOA def calculate_rams_LWdn_sfc(filenames,**kwargs): from iris import Constraint LWDN=loadramscube(filenames,'LWDN',**kwargs) LWdn_sfc=LWDN.extract(Constraint(model_level_number=0)) LWdn_sfc.rename('LWdn_sfc') return LWdn_sfc def calculate_rams_SWup_TOA(filenames,**kwargs): from iris import Constraint SWUP=loadramscube(filenames,'SWUP',**kwargs) SWup_TOA=SWUP.extract(Constraint(model_level_number=SWUP.coord('model_level_number').points[-1])) SWup_TOA.rename('SWup_TOA') return SWup_TOA def calculate_rams_SWup_sfc(filenames,**kwargs): from iris import Constraint SWUP=loadramscube(filenames,'SWUP',**kwargs) SWup_sfc=SWUP.extract(Constraint(model_level_number=0)) SWup_sfc.rename('SWup_sfc') return SWup_sfc def calculate_rams_SWdn_TOA(filenames,**kwargs): from iris import Constraint SWDN=loadramscube(filenames,'SWDN',**kwargs) SWdn_TOA=SWDN.extract(Constraint(model_level_number=SWDN.coord('model_level_number').points[-1])) SWdn_TOA.rename('SWdn_TOA') return SWdn_TOA def calculate_rams_SWdn_sfc(filenames,**kwargs): from iris import Constraint SWDN=loadramscube(filenames,'SWDN',**kwargs) SWdn_sfc=SWDN.extract(Constraint(model_level_number=0)) SWdn_sfc.rename('SWdn_sfc') return SWdn_sfc def calculate_rams_surface_precipitation_instantaneous(filenames,**kwargs): PCPRR=loadramscube(filenames,'PCPRR',**kwargs) PCPRD=loadramscube(filenames,'PCPRD',**kwargs) PCPRS=loadramscube(filenames,'PCPRS',**kwargs) PCPRP=loadramscube(filenames,'PCPRP',**kwargs) PCPRA=loadramscube(filenames,'PCPRA',**kwargs) PCPRH=loadramscube(filenames,'PCPRH',**kwargs) PCPRG=loadramscube(filenames,'PCPRG',**kwargs) surface_precip=PCPRR+PCPRD+PCPRS+PCPRP+PCPRA+PCPRG+PCPRH surface_precip.rename('surface_precipitation_instantaneous') return surface_precip def calculate_rams_surface_precipitation_accumulated(filenames,**kwargs): ACCPR=loadramscube(filenames,'ACCPR',**kwargs) ACCPD=loadramscube(filenames,'ACCPD',**kwargs) ACCPS=loadramscube(filenames,'ACCPS',**kwargs) ACCPP=loadramscube(filenames,'ACCPP',**kwargs) ACCPA=loadramscube(filenames,'ACCPA',**kwargs) ACCPH=loadramscube(filenames,'ACCPH',**kwargs) ACCPG=loadramscube(filenames,'ACCPG',**kwargs) surface_precip_acc=ACCPR+ACCPD+ACCPS+ACCPP+ACCPA+ACCPG+ACCPH surface_precip_acc.rename('surface_precipitation_accumulated') #IWP.rename('atmosphere_mass_content_of_cloud_ice_water') return surface_precip_acc def calculate_rams_surface_precipitation_average(filenames,**kwargs): from dask.array import concatenate surface_precip_accum=calculate_rams_surface_precipitation_accumulated(filenames,**kwargs) #caclulate timestep in hours time_coord=surface_precip_accum.coord('time') dt=(time_coord.units.num2date(time_coord.points[1])-time_coord.units.num2date(time_coord.points[0])).total_seconds()/3600. #divide difference in precip between timesteps (in mm/h) by timestep (in h): surface_precip=surface_precip_accum surface_precip.data=concatenate((0*surface_precip.core_data()[[1],:,:],surface_precip.core_data()[1:,:,:]-surface_precip.core_data()[:-1:,:,:]),axis=0)/dt surface_precip.rename('surface_precipitation_average') surface_precip.units= 'mm/h' return surface_precip def mydiff(A): import numpy as np d1=np.diff(A) d=np.zeros(A.shape) d[0]=d1[0] d[1:-1]=0.5*(d1[0:-1]+d1[1:]) d[-1]=d1[-1] return d def deriveramscube(filenames,variable,**kwargs): # if variable in ['temperature','air_temperature']: # variable_cube=calculate_rams_temperature(filenames,**kwargs) # #variable_cube_out=addcoordinates(filenames, 'T',variable_cube,add_coordinates) # elif variable == 'density': # variable_cube=calculate_rams_density(filenames,**kwargs) if variable == 'LWC': variable_cube=calculate_rams_LWC(filenames,**kwargs) elif variable == 'IWC': variable_cube=calculate_rams_IWC(filenames,**kwargs) elif variable == 'LWP': variable_cube=calculate_rams_LWP(filenames,**kwargs) elif variable == 'IWP': variable_cube=calculate_rams_IWP(filenames,**kwargs) elif variable == 'IWV': variable_cube=calculate_rams_IWV(filenames,**kwargs) elif variable == 'airmass': variable_cube=calculate_rams_airmass(filenames,**kwargs) elif variable == 'air_temperature': variable_cube=calculate_rams_air_temperature(filenames,**kwargs) elif variable=='air_pressure': variable_cube=calculate_rams_air_pressure(filenames,**kwargs) elif variable == 'air_density': variable_cube=calculate_rams_density(filenames,**kwargs) elif variable == 'airmass_path': variable_cube=calculate_rams_airmass_path(filenames,**kwargs) elif variable == 'surface_precipitation_average': variable_cube=calculate_rams_surface_precipitation_average(filenames,**kwargs) elif variable == 'surface_precipitation_accumulated': variable_cube=calculate_rams_surface_precipitation_accumulated(filenames,**kwargs) elif (variable == 'surface_precipitation_instantaneous') or (variable == 'surface_precipitation'): variable_cube=calculate_rams_surface_precipitation_instantaneous(filenames,**kwargs) elif (variable == 'LWup_TOA'): variable_cube=calculate_rams_LWup_TOA(filenames,**kwargs) elif (variable == 'LWup_sfc'): variable_cube=calculate_rams_LWup_sfc(filenames,**kwargs) elif (variable == 'LWdn_TOA'): variable_cube=calculate_rams_LWdn_TOA(filenames,**kwargs) elif (variable == 'LWdn_sfc'): variable_cube=calculate_rams_LWdn_sfc(filenames,**kwargs) elif (variable == 'SWup_TOA'): variable_cube=calculate_rams_SWup_TOA(filenames,**kwargs) elif (variable == 'SWup_sfc'): variable_cube=calculate_rams_SWup_sfc(filenames,**kwargs) elif (variable == 'SWdn_TOA'): variable_cube=calculate_rams_SWdn_TOA(filenames,**kwargs) elif (variable == 'SWdn_sfc'): variable_cube=calculate_rams_SWdn_sfc(filenames,**kwargs) else: raise NameError(variable, 'is not a known variable') return variable_cube
1.945313
2
recipe/run_test.py
regro-cf-autotick-bot/fractopo-feedstock
0
12785919
<reponame>regro-cf-autotick-bot/fractopo-feedstock """ Simple test case for fractopo conda build. """ import geopandas as gpd from fractopo import Network kb11_network = Network( name="KB11", trace_gdf=gpd.read_file( "https://raw.githubusercontent.com/nialov/" "fractopo/master/tests/sample_data/KB11/KB11_traces.geojson" ), area_gdf=gpd.read_file( "https://raw.githubusercontent.com/nialov/" "fractopo/master/tests/sample_data/KB11/KB11_area.geojson" ), truncate_traces=True, circular_target_area=False, determine_branches_nodes=True, snap_threshold=0.001, ) kb11_network.parameters
1.703125
2
unittest/t_region_reference.py
bendichter/api-python
32
12785920
<gh_stars>10-100 #!/usr/bin/python import sys from nwb import nwb_file from nwb import nwb_utils as utils from nwb import value_summary as vs import numpy as np import h5py from sys import version_info import re # Test creation of region references # Region references are references to regions in a dataset. They can be # stored in datasets or attributes. If storing in a dataset, apparently # region references must be stored in an array (an array of region references). # i.e. it id not allowed to store a region reference in a dataset without # it being in an array. # The NWB format does not currently include region references as part # of the standard. The reason for this, is that reading region references # requires a different procedure than reading data stored directly in # datasets and attributes and this requires additional complexity # in the software to read NWB files. # Nevertheless, there maybe instances in which region references could be # useful when organizing data in an NWB file. # This script demonstrates how to create region references # using the h5py interface along with the NWB API and also reading region # references. def create_nwb_file(): if __file__.startswith("./"): fname = "s" + __file__[3:-3] + ".nwb" else: fname = "s" + __file__[1:-3] + ".nwb" settings = {} settings["file_name"] = fname settings["identifier"] = utils.create_identifier("Region reference test") settings["mode"] = "w" settings["start_time"] = "Sat Jul 04 2015 3:14:16" settings["description"] = "Test file with region reference" settings["verbosity"] = "none" f = nwb_file.open(**settings) return (f, fname) # return value referenced by region reference ref # f is an h5py File object def get_ref_value(ref, f): assert isinstance(f, h5py.File) assert isinstance(ref, h5py.h5r.RegionReference) fid = f.id reftype = h5py.h5r.get_obj_type(ref, fid) assert reftype == h5py.h5g.DATASET refname = h5py.h5r.get_name(ref, fid) # path to target of reference refds = f[refname] # referenced dataset val = refds[ref] # get referenced region return val # display information about region reference. Used for development. # ref is the region reference, f is the h5py File object def show_ref_info(ref, f): fid = f.id reftype = h5py.h5r.get_obj_type(ref, fid) refregion = h5py.h5r.get_region(ref, fid) refname = h5py.h5r.get_name(ref, fid) refderef = h5py.h5r.dereference(ref, fid) assert reftype == h5py.h5g.DATASET print("reftype=%i, refregion=%s, refname=%s, refderef=%s" % (reftype, refregion, refname, refderef)) refds = f[refname] refreg = refds[ref] refreg_shape = refreg.shape refreg_dype = refreg.dtype print("Referenced region, shape=%s, type=%s, val=" % (refreg_shape, refreg_dype)) print("%s" % refreg) # make value summary hash = vs.hashval(refregion.encode()) value_summary = "<Region Reference: target='%s', hash='%s'>" % (refname, hash) print("value_summary=%s" % value_summary) expected_value = np.arange(2., 14., 2.); # [ 2. 4. 6. 8. 10. 12.] if not values_match(expected_value, refreg): print("expected values NOT found") # raise SystemError("** Error: Unable to find object base type in %s or %s" % # (base_type, type(val))) import pdb; pdb.set_trace() def test_region_reference(): f, fname = create_nwb_file() # make some fake raw data raw = f.make_group("<TimeSeries>", name="raw_data", path="/acquisition/timeseries/") raw_data = np.arange(0.0, 100.0, 0.5) rd = raw.set_dataset("data", raw_data, attrs={"unit": "watt", "conversion":1.0, "resolution": 0.1, "source": "microelectrodes"}) raw.set_dataset("starting_time", 0.1, attrs={"rate":0.1}) raw.set_dataset("num_samples", 1000) # create a TimeSeries which has data referencing the raw data using a region reference ag = f.make_group("analysis") ag2 = ag.make_custom_group("<TimeSeries>", name="regref_data", attrs={"unit": "watt", "conversion":1.0, "resolution": 0.1, "source": "raw_data"}) # below used to set as link # ag2.set_dataset("data", rd, attrs={"unit": "watt", "conversion":1.0, "resolution": 0.1}) # set as region reference rawds = f.file_pointer[rd.full_path] # h5py dataset # create region reference raw_regref = rawds.regionref[4:26:4] # create 1-element array containing region_reference ref_dtype = h5py.special_dtype(ref=h5py.h5r.RegionReference) rrds = np.array([raw_regref,], dtype=ref_dtype) # get h5py parent group for the dataset that will have the region reference ag2_h5py = f.file_pointer[ag2.full_path] ag2ds = ag2_h5py.create_dataset("raw_rref", data=rrds) # set an attribute to the region reference ag2ds.attrs["raw_rref"] = raw_regref # add TimeSeries datasets. Note, dataset 'data' is normally required, not currently # checked for since TimeSeries group (ag2) is a custom group ag2.set_dataset("starting_time", 0.1, attrs={"rate":0.1}) ag2.set_dataset("num_samples", 10) f.close() # now try to read region references f = h5py.File(fname, "r") path = "/analysis/regref_data/raw_rref" rrds_in = f[path] val = rrds_in.value if not (isinstance(val, np.ndarray) and val.shape == (1,) and val.size == 1 and isinstance(val[0], h5py.h5r.RegionReference)): raise SystemError("Failed to read RegionReference, found val=%s, type=%s" % (val, type(val))) ref = val[0] # show_ref_info(ref, f) found = get_ref_value(ref, f) expected = np.arange(2., 14., 2.); # [ 2. 4. 6. 8. 10. 12.] errors = [] if not values_match(expected, found): errors.append("Region Reference from dataset does not match. Expected=%s, found=%s" % ( expected, found)) # attribute region reference aref = rrds_in.attrs["raw_rref"] found = get_ref_value(aref, f) if not values_match(expected, found): errors.append("Region Reference from attribute does not match. Expected=%s, found=%s" % ( expected, found)) f.close() if len(errors) > 0: raise SystemError("Errors found:\n%s" % "\n".join(errors)) print("%s PASSED" % __file__) # print ("Dataset ref info:") # show_ref_info(ref, f) # aref = rrds_in.attrs["raw_rref"] # print ("Attribute ref info:") # show_ref_info(aref, f) # # import pdb; pdb.set_trace() # f.close() def vals_match(a, b): match = a == b if not isinstance(match, bool): match = match.all() return match def make_str(val): # convert val from bytes to unicode string if isinstance(val, (list, tuple, np.ndarray)) and len(val) > 0: return [make_str(v) for v in val] elif isinstance(val, (bytes, np.bytes_)): return val.decode('utf-8') def values_match(expected, found): match = vals_match(expected, found) if not match and version_info[0] > 2: # try matching after converting bytes to unicode (python 3 strings) # in python 3, default string type is unicode, but these are stored as # ascii bytes if possible in the hdf5 file, and read back as bytes # for match to work, they must be converted back to unicode strings match = vals_match(expected, make_str(found)) return match # display_examples() test_region_reference()
2.390625
2
src/pretix/control/forms/renderers.py
pajowu/pretix
1
12785921
from bootstrap3.renderers import FieldRenderer from bootstrap3.text import text_value from django.forms import CheckboxInput from django.forms.utils import flatatt from django.utils.html import format_html from django.utils.safestring import mark_safe from django.utils.translation import pgettext from i18nfield.forms import I18nFormField def render_label(content, label_for=None, label_class=None, label_title='', optional=False): """ Render a label with content """ attrs = {} if label_for: attrs['for'] = label_for if label_class: attrs['class'] = label_class if label_title: attrs['title'] = label_title builder = '<{tag}{attrs}>{content}{opt}</{tag}>' return format_html( builder, tag='label', attrs=mark_safe(flatatt(attrs)) if attrs else '', opt=mark_safe('<br><span class="optional">{}</span>'.format(pgettext('form', 'Optional'))) if optional else '', content=text_value(content), ) class ControlFieldRenderer(FieldRenderer): def __init__(self, *args, **kwargs): kwargs['layout'] = 'horizontal' super().__init__(*args, **kwargs) def add_label(self, html): label = self.get_label() if hasattr(self.field.field, '_required'): # e.g. payment settings forms where a field is only required if the payment provider is active required = self.field.field._required elif isinstance(self.field.field, I18nFormField): required = self.field.field.one_required else: required = self.field.field.required html = render_label( label, label_for=self.field.id_for_label, label_class=self.get_label_class(), optional=not required and not isinstance(self.widget, CheckboxInput) ) + html return html
1.960938
2
tests/integration/dao/test_dao_aluno.py
douglasdcm/easy_db
0
12785922
from src.dao.dao_aluno import DaoAluno from tests.massa_dados import aluno_nome_1 from src.enums.enums import Situacao from src.model.aluno import Aluno from tests.massa_dados import materia_nome_2, materia_nome_3 class TestDaoAluno: def _setup_aluno(self, cria_banco, id=1, nome=aluno_nome_1, cr=0, situacao=Situacao.em_curso.value): aluno, dao = self._salva_aluno_banco(cria_banco, id, nome, cr, situacao) actual = dao.pega_tudo() return actual, aluno def _salva_aluno_banco(self, cria_banco, id, nome, cr, situacao): aluno = Aluno(nome) aluno.define_cr(cr) aluno.define_id(id) aluno.define_situacao(situacao) dao = DaoAluno(aluno, cria_banco) dao.salva() return aluno, dao def _setup_lista_alunos(self, cria_banco, id_=3, situacao=Situacao.em_curso.value, cr=0, nome=None): self._setup_aluno(cria_banco) self._setup_aluno(cria_banco) expected, actual = self._setup_aluno(cria_banco, id=id_, situacao=situacao, cr=cr, nome=nome) return expected, actual def test_aluno_pode_ser_atualizado_banco(self, cria_banco, cria_massa_dados, cria_curso_com_materias): cria_massa_dados id_ = "1" aluno = DaoAluno(None, cria_banco).pega_por_id(id_) curso = cria_curso_com_materias materias = {materia_nome_2: 7, materia_nome_3: 9} expected = 8 aluno.inscreve_curso(curso).atualiza_materias_cursadas(materias) aluno.pega_coeficiente_rendimento(auto_calculo=True) DaoAluno(aluno, cria_banco).atualiza(id_) aluno = DaoAluno(None, cria_banco).pega_por_id(id_) actual = aluno.pega_coeficiente_rendimento() assert actual == expected def test_dao_pega_por_id_retorna_objeto_aluno_com_id_correto(self, cria_banco): id_ = 3 _, expected = self._setup_lista_alunos(cria_banco, id_) actual = DaoAluno(None, cria_banco).pega_por_id(id_) assert actual.pega_id() == expected.pega_id() def test_lista_alunos_recuperada_banco_com_nome_correto(self, cria_banco): indice = 2 nome = aluno_nome_1 expected, actual = self._setup_lista_alunos(cria_banco, nome=nome) assert actual.pega_nome() == expected[indice].pega_nome() def test_lista_alunos_recuperada_banco_com_cr_correto(self, cria_banco): indice = 2 cr = 9 expected, actual = self._setup_lista_alunos(cria_banco, cr=cr) assert actual.pega_coeficiente_rendimento() == \ expected[indice].pega_coeficiente_rendimento() def test_lista_alunos_recuperada_banco_com_situacao_correta(self, cria_banco): indice = 2 situacao = Situacao.reprovado.value expected, actual = self._setup_lista_alunos(cria_banco, situacao=situacao) assert actual.pega_situacao() == expected[indice].pega_situacao() def test_lista_alunos_recuperada_banco_com_id_correto(self, cria_banco): indice = 2 expected, actual = self._setup_lista_alunos(cria_banco) assert actual.pega_id() == expected[indice].pega_id() def test_situacao_aluno_recuperado_banco(self, cria_banco): situacao = "trancado" expected, actual = self._setup_aluno(cria_banco, situacao=situacao) assert actual.pega_situacao() == expected[0].pega_situacao() def test_id_aluno_recuperado_banco(self, cria_banco): id_ = 1 expected, actual = self._setup_aluno(cria_banco, id=id_) assert actual.pega_id() == expected[0].pega_id() def test_cr_diferente_zero_retornado_banco(self, cria_banco): cr = 7 expected, actual = self._setup_aluno(cria_banco, cr) assert actual.pega_coeficiente_rendimento() == \ expected[0].pega_coeficiente_rendimento() def test_coeficiente_rendimento_objeto_aluno_recuperado_banco(self, cria_banco): actual, expected = self._setup_aluno(cria_banco) assert actual[0].pega_coeficiente_rendimento() == \ expected.pega_coeficiente_rendimento() def test_situacao_objeto_aluno_recuperado_banco(self, cria_banco): actual, expected = self._setup_aluno(cria_banco) assert actual[0].pega_situacao() == expected.pega_situacao() def test_nome_objeto_aluno_recuperado_banco(self, cria_banco): actual, expected = self._setup_aluno(cria_banco) assert actual[0].pega_nome() == expected.pega_nome()
2.4375
2
calaccess_processed/models/tracking.py
dwillis/django-calaccess-processed-data
1
12785923
<reponame>dwillis/django-calaccess-processed-data #!/usr/bin/env python # -*- coding: utf-8 -*- """ Models for tracking processing of CAL-ACCESS snapshots over time. """ from __future__ import unicode_literals from django.db import models from hurry.filesize import size as sizeformat from django.utils.encoding import python_2_unicode_compatible from calaccess_processed import archive_directory_path @python_2_unicode_compatible class ProcessedDataVersion(models.Model): """ A version of CAL-ACCESS processed data. """ raw_version = models.OneToOneField( 'calaccess_raw.RawDataVersion', related_name='processed_version', verbose_name='raw data version', help_text='Foreign key referencing the raw data version processed' ) process_start_datetime = models.DateTimeField( null=True, verbose_name='date and time processing started', help_text='Date and time when the processing of the CAL-ACCESS version' ' started', ) process_finish_datetime = models.DateTimeField( null=True, verbose_name='date and time update finished', help_text='Date and time when the processing of the CAL-ACCESS version' ' finished', ) zip_archive = models.FileField( blank=True, max_length=255, upload_to=archive_directory_path, verbose_name='cleaned files zip archive', help_text='An archive zip of processed files' ) zip_size = models.BigIntegerField( null=True, verbose_name='zip of size (in bytes)', help_text='The expected size (in bytes) of the zip of processed files' ) class Meta: """ Meta model options. """ app_label = 'calaccess_processed' verbose_name = 'TRACKING: CAL-ACCESS processed data version' ordering = ('-process_start_datetime',) get_latest_by = 'process_start_datetime' def __str__(self): return str(self.raw_version.release_datetime) @property def update_completed(self): """ Check if the database update to the version completed. Return True or False. """ if self.process_finish_datetime: is_completed = True else: is_completed = False return is_completed @property def update_stalled(self): """ Check if the database update to the version started but did not complete. Return True or False. """ if self.process_start_datetime and not self.update_finish_datetime: is_stalled = True else: is_stalled = False return is_stalled def pretty_zip_size(self): """ Returns a prettified version (e.g., "725M") of the zip's size. """ if not self.zip_size: return None return sizeformat(self.clean_zip_size) pretty_zip_size.short_description = 'processed zip size' pretty_zip_size.admin_order_field = 'processed zip size' @python_2_unicode_compatible class ProcessedDataFile(models.Model): """ A data file included in a processed version of CAL-ACCESS. """ version = models.ForeignKey( 'ProcessedDataVersion', on_delete=models.CASCADE, related_name='files', verbose_name='processed data version', help_text='Foreign key referencing the processed version of CAL-ACCESS' ) file_name = models.CharField( max_length=100, verbose_name='processed data file name', help_text='Name of the processed data file without extension', ) process_start_datetime = models.DateTimeField( null=True, verbose_name='date and time processing started', help_text='Date and time when the processing of the file started', ) process_finish_datetime = models.DateTimeField( null=True, verbose_name='date and time processing finished', help_text='Date and time when the processing of the file finished', ) records_count = models.IntegerField( null=False, default=0, verbose_name='clean records count', help_text='Count of records in the processed file' ) file_archive = models.FileField( blank=True, max_length=255, upload_to=archive_directory_path, verbose_name='archive of processed file', help_text='An archive of the processed file' ) file_size = models.BigIntegerField( null=False, default=0, verbose_name='size of processed data file (in bytes)', help_text='Size of the processed file (in bytes)' ) class Meta: """ Meta model options. """ app_label = 'calaccess_processed' unique_together = (('version', 'file_name'),) verbose_name = 'TRACKING: processed CAL-ACCESS data file' ordering = ('-version_id', 'file_name',) def __str__(self): return self.file_name def pretty_file_size(self): """ Returns a prettified version (e.g., "725M") of the processed file's size. """ return sizeformat(self.file_size) pretty_file_size.short_description = 'processed file size' pretty_file_size.admin_order_field = 'processed file size'
1.90625
2
examples/mt_model.py
Jincheng-Sun/Kylearn
0
12785924
<filename>examples/mt_model.py from framework.model import Model import tensorflow as tf class Mt_model(Model): def __init__(self, Network, ckpt_path, tsboard_path, x_shape, num_classes): super().__init__(Network, ckpt_path, tsboard_path) with tf.name_scope('inputs'): self.features = tf.placeholder(dtype=tf.float32, shape=x_shape, name= 'features') self.labels = tf.placeholder(dtype=tf.int32, shape=(None,), name='labels') self.is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training') self.global_step = tf.Variable(0, trainable=False, name='global_step') self.graph = tf.Graph() self.session = None with self.graph.as_default(): self.step = tf.train.get_or_create_global_step() tf.add_to_collection('global_variables', self.step) self.num_classes = num_classes def initialize_variables(self): # with tf.get_collection("global_variables"): pass def loss(self): logits_labeled = self.network(input=self.features, num_classes= self.num_classes, reuse = True, scope='res_43', is_training=True) def load_model(self): pass def train(self): pass def evaluate(self): pass def test(self): pass
2.859375
3
orders/tasks.py
SergePogorelov/myshop
0
12785925
<reponame>SergePogorelov/myshop from celery import task from django.core.mail import send_mail from .models import Order @task def order_created(order_id): """"Задача отправки email-уведомлений при успешном оформлении заказа.""" order = Order.objects.get(id=order_id) subject = f"order.nr. {order.id}" message = "Dear {}, \n\nYou have successfully placed an order.\nYour order id is {}".format( order.first_name, order.id ) mail_sent = send_mail(subject, message, "<EMAIL>", [order.email]) return mail_sent
2.328125
2
nblog/core/views.py
NestorMonroy/BlogTemplate
0
12785926
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from django.views.generic import TemplateView from django.conf import settings from django.contrib.auth import get_user_model from django.core.mail import send_mail from django.shortcuts import redirect, render from django.utils.html import mark_safe User = get_user_model() def message_view(request, message=None, title=None): """ provides a generic way to render any old message in a template (used for when a user is disabled, or unapproved, or unverified, etc.) """ context = {"message": mark_safe(message), "title": title or settings.PROJECT_NAME} return render(request, "core/message.html", context) def home_page(request): # print(request.session.get("first_name", "Unknown")) # request.session['first_name'] context = { "title": "Hello World!", "content": " Welcome to the homepage.", } if request.user.is_authenticated: context["premium_content"] = "YEAHHHHHH" return render(request, "core/index.html", context) class IndexView(TemplateView): template_name = "core/index.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["users"] = User.objects.filter(is_active=True) # context["customers"] = Customer.objects.filter(is_active=True) return context
2.046875
2
oi/Contest/self/IOI-Test-Round/puzzle/data/checker.py
Riteme/test
3
12785927
#!/usr/bin/env python # # Copyright 2017 riteme # from sys import argv, version from os.path import * if version[0] == '3': xrange = range if len(argv) == 1 or "--help" in argv or "-h" in argv: print("Participate answer checker & grader.") print("Usage: %s [ID] [--no-limit] [--help/-h]" % argv[0]) print("\t--no-limit: Ignore the attempt limit (Set the limit to 1,000,000,000).") print("\t--help / -h: Show this message.") exit(0) def ASSERT(expr, message): if not expr: print(message) exit(-1) idx = int(argv[1]) INPUT_FILE = "puzzle{}.in".format(idx) OUTPUT_FILE = "puzzle{}.out".format(idx) ASSERT(exists(INPUT_FILE), "'{}' not found.".format(INPUT_FILE)) ASSERT(exists(OUTPUT_FILE), "'{}' not found.".format(OUTPUT_FILE)) inp = open(INPUT_FILE) out = open(OUTPUT_FILE) T, n, m, LIMIT = map(int, inp.readline().split()) if "--no-limit" in argv: LIMIT = 10**9 DOWN = 1 RIGHT = 2 def read_graph(): G = [[0] * (m + 1) for i in xrange(n + 1)] x = 0 while x < n: line = inp.readline().strip() if len(line) == 0: continue x += 1 for y in xrange(1, m + 1): if line[y - 1] == '$' and G[x - 1][y] != DOWN: G[x][y] = DOWN elif line[y - 1] == '#' and G[x][y - 1] != RIGHT: G[x][y] = RIGHT return G last = read_graph() def rotate(x, y, line): if x < n and last[x][y] == RIGHT and last[x + 1][y] == RIGHT: last[x][y] = last[x][y + 1] = DOWN last[x + 1][y] = 0 elif y < m and last[x][y] == DOWN and last[x][y + 1] == DOWN: last[x][y] = last[x + 1][y] = RIGHT last[x][y + 1] = 0 else: ASSERT(False, "Can't rotate at ({}, {}) (at line {}).".format(x, y, line)) score = line = 0 cnt = LIMIT for i in xrange(1, T + 1): cur = read_graph() try: k = int(out.readline()) line += 1 except: ASSERT(False, "Can't read integer 'k' at gate {}.".format(i)) reported = False for j in xrange(k): if cnt <= 0: print("No opportunities left.") reported = True break cnt -= 1 try: x, y = map(int, out.readline().split()) line += 1 except: ASSERT(False, "Can't read integer 'x' and 'y' at gate {}.".format(i)) rotate(x, y, line) if last != cur: print("Can't open the gate {}.".format(i)) break score = i last = cur if cnt <= 0: if not reported: print("No opportunities left after gate {}.".format(i)) break print("Score: {}\nTried {} times.".format(score, LIMIT - cnt))
3.515625
4
src/drugstone/scripts/add_edges_to_genes.py
realugur/drugst.one-py
0
12785928
<gh_stars>0 def add_edges_to_genes( genes: list, edges: list, ) -> dict: for gene in genes: if "netexId" in gene: netex_edges = [n["proteinB"] for n in edges if gene["netexId"] == n["proteinA"]] symbol_edges = [] for e in netex_edges: for g in genes: if "symbol" in g and "netexId" in g and e == g["netexId"]: symbol_edges.append(g["symbol"]) gene["has_edges_to"] = symbol_edges else: gene["has_edges_to"] = [] result = {"drugs": {}, "genes": {}} for gene in genes: gene.pop("netexId", None) result["genes"][gene["id"]] = gene return result
2.875
3
star_realms_cards/all_cards.py
samervin/star-realms-database
5
12785929
<filename>star_realms_cards/all_cards.py<gh_stars>1-10 # Fields NAME = 'name' FLAVOR = 'flavor' FACTION = 'faction' TYPE = 'type' SHIELD = 'shield' COST = 'cost' SET = 'set' QUANTITY = 'quantity' ABILITIES = 'abilities' ALLY_ABILITIES = 'ally-abilities' SCRAP_ABILITIES = 'scrap-abilities' TRADE = 'trade' COMBAT = 'combat' AUTHORITY = 'authority' DRAW = 'draw' OPPONENT_DISCARD = 'opponent-discard' TRADE_ROW_SCRAP = 'trade-row-scrap' # TODO: Should scrap be a number? Categorized under Other abilities? SCRAP = 'scrap' OTHER_ABILITY = 'other-ability' # Other ability fields DESTROY_BASE = 'destroy-base' ALLY_PLACE_INTO_HAND = 'ally-place-into-hand' # For cards that have 'or' text OR = 'or' # Faction values MACHINE_CULT = 'Machine Cult' STAR_EMPIRE = 'Star Empire' BLOB = 'Blob' TRADE_FEDERATION = 'Trade Federation' UNALIGNED = 'Unaligned' # Type values SHIP = 'ship' OUTPOST = 'outpost' BASE = 'base' # Scrap values SCRAP_HAND = 'scrap-hand' SCRAP_DISCARD = 'scrap-discard' # TODO: Should this just be contained in an OR? Seems poor SCRAP_HAND_DISCARD = 'scrap-hand-discard' # Set values STAR_REALMS = 'Star Realms' CRISIS_BASES_BATTLESHIPS = 'Crisis: Bases and Battleships' CRISIS_EVENTS = 'Crisis: Events' CRISIS_HEROES = 'Crisis: Heroes' CRISIS_FLEETS_FORTRESSES = 'Crisis: Fleets and Fortresses' GAMBIT_EXP = 'Gambit Expansion' PROMOTIONAL = 'Promotional Set' COLONY_WARS = 'Colony Wars' class StarRealmsCards: ALL_STAR_REALMS_CARDS = [ { NAME: 'Scout', FACTION: UNALIGNED, TYPE: SHIP, SET: STAR_REALMS, QUANTITY: 16, TRADE: 1 }, { NAME: 'Viper', FACTION: UNALIGNED, TYPE: SHIP, SET: STAR_REALMS, QUANTITY: 4, COMBAT: 1 }, { NAME: 'Explorer', FACTION: UNALIGNED, TYPE: SHIP, COST: 2, SET: STAR_REALMS, QUANTITY: 10, ABILITIES: [{ TRADE: 2 }], SCRAP_ABILITIES: [{ COMBAT: 2 }] }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 1, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { TRADE: 1, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 2, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { COMBAT: 2, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 3, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { TRADE: 2, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FLAVOR: 'With the Blobs an ever present danger, ' 'even the Cult\'s cargo carrying mechs bristle with firepower.', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 4, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { OR: { TRADE: 3, COMBAT: 5 } }, ALLY_ABILITIES: { SCRAP: SCRAP_HAND_DISCARD } }, { NAME: 'Stealth Needle', FLAVOR: 'The Needle\'s ability to mimic other ships represents the pinnacle of Cult technology.', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 4, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { OTHER_ABILITY: 'Copy another ship you\'ve played this turn. ' 'Stealth Needle has that ship\'s faction in addition to Machine Cult.' } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 5, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 4, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 6, OTHER_ABILITY: DESTROY_BASE }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: 'Battle Station', FLAVOR: 'A Battle Station fusion core can double as a devastating weapon... once.', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 5, COST: 3, SET: STAR_REALMS, QUANTITY: 2, SCRAP_ABILITIES: { COMBAT: 5 } }, { NAME: '<NAME>', FLAVOR: 'This man-made planet is a galactic center for open source tech.', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 6, COST: 5, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { OTHER_ABILITY: 'Mech World counts as an ally for all factions.' } }, { NAME: 'Junkyard', FLAVOR: 'The Machine Cult\'s first commandment: "Thou shalt not waste tech."', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 5, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { SCRAP: SCRAP_HAND_DISCARD } }, { NAME: '<NAME>', FLAVOR: 'This high-tech city is like a beehive: ' 'it looks chaotic but vital work is being done efficiently at a frenetic pace.', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 6, COST: 7, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { OTHER_ABILITY: 'Draw a card, then scrap a card from your hand.' } }, { NAME: '<NAME>', FLAVOR: 'The Machine Cult built these supercomputing space stations to run every aspect of their society. ' 'Now they worship them as gods.', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 6, COST: 8, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { SCRAP: 'Scrap up to two cards from your hand and/or discard pile. Draw a card for each card scrapped this way.' } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 1, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { COMBAT: 2, OPPONENT_DISCARD: 1 }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: 'Corvette', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 2, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { COMBAT: 1, DRAW: 1 }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 3, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { TRADE: 1, DRAW: 1 }, SCRAP_ABILITIES: { OPPONENT_DISCARD: 1 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 3, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { COMBAT: 4, OPPONENT_DISCARD: 1 }, ALLY_ABILITIES: { COMBAT: 2 }, SCRAP_ABILITIES: { DRAW: 1 } }, { NAME: 'Battlecruiser', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 5, DRAW: 1 }, ALLY_ABILITIES: { OPPONENT_DISCARD: 1 }, SCRAP_ABILITIES: { DRAW: 1, DESTROY_BASE: 1 } }, { NAME: 'Dreadnaught', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 7, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 7, DRAW: 1 }, SCRAP_ABILITIES: { COMBAT: 5 } }, { NAME: 'Space Station', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 4, COST: 4, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { COMBAT: 2 }, ALLY_ABILITIES: { COMBAT: 2 }, SCRAP_ABILITIES: { TRADE: 4 } }, { NAME: 'Recycling Station', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 4, COST: 4, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { OR: { TRADE: 1, OTHER_ABILITY: 'Discard up to two cards, then draw that many cards.' } } }, { NAME: 'War World', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 4, COST: 5, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 3 }, ALLY_ABILITIES: { COMBAT: 4 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 6, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 3 }, ALLY_ABILITIES: { OPPONENT_DISCARD: 1 } }, { NAME: 'Fleet HQ', FLAVOR: 'When an Imperial Fleet goes into battle, ' 'it\'s usually coordinated from afar by one of these mobile command centers.', FACTION: STAR_EMPIRE, TYPE: BASE, SHIELD: 8, COST: 8, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { OTHER_ABILITY: 'All of your ships get 1 Combat.' } }, { NAME: '<NAME>', FLAVOR: 'Either kill it before it signals the hive or run. ' 'There are other choices, but none you\'ll live through.', FACTION: BLOB, TYPE: SHIP, COST: 1, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { COMBAT: 3 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: 'Trade Pod', FLAVOR: 'The loading and offloading process is efficient, but disgusting.', FACTION: BLOB, TYPE: SHIP, COST: 2, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { TRADE: 3 }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: 'Battle Pod', FACTION: BLOB, TYPE: SHIP, COST: 2, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { COMBAT: 4, TRADE_ROW_SCRAP: 1 }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: 'Ram', FACTION: BLOB, TYPE: SHIP, COST: 3, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { COMBAT: 5 }, ALLY_ABILITIES: { COMBAT: 2 }, SCRAP_ABILITIES: { TRADE: 3 } }, { NAME: '<NAME>', FLAVOR: 'When this monstrous ship shows up on a colony\'s sensors, they know the end is near...', FACTION: BLOB, TYPE: SHIP, COST: 4, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { COMBAT: 6 }, ALLY_ABILITIES: { DESTROY_BASE: 1, TRADE_ROW_SCRAP: 1 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: SHIP, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 8 }, ALLY_ABILITIES: { DRAW: 1 }, SCRAP_ABILITIES: { COMBAT: 4 } }, { NAME: '<NAME>', FLAVOR: '"Is that... a whale?" - HMS Defender, final transmission.', FACTION: BLOB, TYPE: SHIP, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 7 }, ALLY_ABILITIES: { OTHER_ABILITY: 'Acquire any ship without paying its cost and put it on top of your deck.' } }, { NAME: 'Mothership', FACTION: BLOB, TYPE: SHIP, COST: 7, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 6, DRAW: 1 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 5, COST: 3, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { COMBAT: 1 }, SCRAP_ABILITIES: { TRADE: 3 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 5, COST: 5, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 3 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 7, COST: 8, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { OR: { COMBAT: 5, OTHER_ABILITY: 'Draw a card for each Blob card that you\'ve played this turn.' } } }, { NAME: '<NAME>', FLAVOR: '"Fast? This baby doesn\'t just haul cargo. She hauls..."', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 1, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { TRADE: 2 }, ALLY_ABILITIES: { AUTHORITY: 4 } }, { NAME: 'Cutter', FLAVOR: '"Built for cargo, armed for conflict. Versatility for an unpredictable universe."' ' - Premier Aerospace Cargo Enterprises', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 2, SET: STAR_REALMS, QUANTITY: 3, ABILITIES: { AUTHORITY: 4, TRADE: 2 }, ALLY_ABILITIES: { COMBAT: 4 } }, { NAME: '<NAME>', FLAVOR: 'War should always be a last resort, it\'s bad for the bottom line.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 3, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { AUTHORITY: 3, TRADE: 2, OTHER_ABILITY: 'If you have two or more bases in play, draw two cards.' } }, { NAME: 'Freighter', FLAVOR: 'This class of mammoth cargo ships is one of the keys ' 'to the Federation\'s vast trade-based wealth.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 4, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { TRADE: 4 }, ALLY_ABILITIES: { # TODO: Should putting things on top of your deck be standardized? OTHER_ABILITY: 'You may put the next ship you acquire this turn on top of your deck.' } }, { NAME: '<NAME>', FLAVOR: 'The heavily-armored Escort class was the Federation\'s first response to the Blob threat.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 5, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { AUTHORITY: 4, COMBAT: 4 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: 'Flagship', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { COMBAT: 5, DRAW: 1 }, ALLY_ABILITIES: { AUTHORITY: 5 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 8, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { AUTHORITY: 4, COMBAT: 5, DRAW: 2 }, ALLY_ABILITIES: { OTHER_ABILITY: DESTROY_BASE } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: OUTPOST, SHIELD: 4, COST: 3, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { OR: { AUTHORITY: 1, TRADE: 1 } }, SCRAP_ABILITIES: { COMBAT: 3 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: BASE, SHIELD: 4, COST: 4, SET: STAR_REALMS, QUANTITY: 2, ABILITIES: { OR: { AUTHORITY: 2, TRADE: 2 } }, SCRAP_ABILITIES: { COMBAT: 5 } }, { NAME: 'Defense Center', FACTION: TRADE_FEDERATION, TYPE: OUTPOST, SHIELD: 5, COST: 5, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { OR: { AUTHORITY: 3, COMBAT: 2 } }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME> Call', FACTION: TRADE_FEDERATION, TYPE: OUTPOST, SHIELD: 6, COST: 6, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { TRADE: 3 }, SCRAP_ABILITIES: { DRAW: 1, OTHER_ABILITY: DESTROY_BASE } }, { NAME: 'Central Office', FACTION: TRADE_FEDERATION, TYPE: BASE, SHIELD: 6, COST: 7, SET: STAR_REALMS, QUANTITY: 1, ABILITIES: { TRADE: 2, OTHER_ABILITY: 'You may put the next ship you acquire this turn on top of your deck.' }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: 'Battle Bot', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 1, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { COMBAT: 2, SCRAP: SCRAP_HAND }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: 'Repair Bot', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 2, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 2, SCRAP: SCRAP_DISCARD }, SCRAP_ABILITIES: { COMBAT: 2 } }, { NAME: 'Convoy Bot', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 3, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { COMBAT: 4, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 4, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { TRADE: 3, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { COMBAT: 3 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 5, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 6, SCRAP: SCRAP_HAND_DISCARD }, ALLY_ABILITIES: { OTHER_ABILITY: DESTROY_BASE } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 7, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 6, SCRAP: 'You may scrap up to two cards in your hand and/or discard pile.' }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 2, COST: 2, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { COMBAT: 2, OTHER_ABILITY: ALLY_PLACE_INTO_HAND } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 5, COST: 4, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { SCRAP: SCRAP_HAND }, ALLY_ABILITIES: { COMBAT: 3 } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 5, COST: 5, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { OTHER_ABILITY: 'Until your turn ends, Stealth Tower becomes a copy of any base in play. ' 'Stealth Tower has that base\'s faction in addition to Machine Cult.' } }, { NAME: 'Frontier Station', FLAVOR: '"Supply and Protect" - Station Invocation', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 6, COST: 6, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { OR: { TRADE: 2, COMBAT: 3 } } }, { NAME: 'The Incinerator', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 6, COST: 8, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { SCRAP: 'Scrap up to two cards in your hand and/or discard pile.' }, ALLY_ABILITIES: { OTHER_ABILITY: 'Gain 2 Combat for each card scrapped from your hand and/or discard pile this turn.' } }, { NAME: '<NAME>', FLAVOR: 'Trade on the fringe: high risk, high reward.', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 1, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 2 }, ALLY_ABILITIES: { COMBAT: 2, OPPONENT_DISCARD: 1 } }, { NAME: 'Lancer', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 2, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { COMBAT: 4, OTHER_ABILITY: 'If an opponent controls a base, gain an additional 2 Combat.' }, ALLY_ABILITIES: { OPPONENT_DISCARD: 1 } }, { NAME: 'Falcon', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 3, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { COMBAT: 2, DRAW: 1 }, SCRAP_ABILITIES: { OPPONENT_DISCARD: 1 } }, { NAME: 'Gunship', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 4, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { COMBAT: 5, OPPONENT_DISCARD: 1 }, SCRAP_ABILITIES: { TRADE: 4 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 5, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 4, DRAW: 1 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: 'Aging Battleship', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 5, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 5 }, ALLY_ABILITIES: { DRAW: 1 }, SCRAP_ABILITIES: { COMBAT: 2, DRAW: 2 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 8, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 8, DRAW: 1, OPPONENT_DISCARD: 1, OTHER_ABILITY: ALLY_PLACE_INTO_HAND } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: BASE, SHIELD: 4, COST: 3, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { OTHER_ABILITY: 'Discard a card. If you do, draw a card.' }, ALLY_ABILITIES: { COMBAT: 3 } }, { NAME: 'Command Center', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 4, COST: 4, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { TRADE: 2, OTHER_ABILITY: 'Whenever you play a Star Empire ship, gain 2 Combat.' } }, { NAME: 'Supply Depot', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 5, COST: 6, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { OTHER_ABILITY: 'Discard up to two cards. Gain 2 Trade or 2 Combat for each card discarded this way.' }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 6, COST: 7, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { DRAW: 1, OPPONENT_DISCARD: 1 }, ALLY_ABILITIES: { COMBAT: 4 } }, { NAME: 'Swarmer', FACTION: BLOB, TYPE: SHIP, COST: 1, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { COMBAT: 3, TRADE_ROW_SCRAP: 1 }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: 'Predator', FLAVOR: 'You\'re the prey.', FACTION: BLOB, TYPE: SHIP, COST: 2, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { COMBAT: 4 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: SHIP, COST: 3, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 3, }, ALLY_ABILITIES: { COMBAT: 3 }, SCRAP_ABILITIES: { COMBAT: 3 } }, { NAME: 'Ravager', FLAVOR: 'Even heavily armed convoys fear the Ravagers.', FACTION: BLOB, TYPE: SHIP, COST: 3, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { COMBAT: 6, TRADE_ROW_SCRAP: 2 } }, { NAME: 'Parasite', FACTION: BLOB, TYPE: SHIP, COST: 5, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { OR: { COMBAT: 6, OTHER_ABILITY: 'Acquire a card of cost six or less for free.' } }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: 'Moonwurm', FACTION: BLOB, TYPE: SHIP, COST: 7, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 8, DRAW: 1 }, ALLY_ABILITIES: { # TODO: This is similar to Parasite and Leviathan, should this be a keyword? OTHER_ABILITY: 'Acquire a card of cost two or less for free and put it into your hand.' } }, { NAME: 'Leviathan', FACTION: BLOB, TYPE: SHIP, COST: 8, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 9, DRAW: 1, OTHER_ABILITY: DESTROY_BASE }, ALLY_ABILITIES: { OTHER_ABILITY: 'Acquire a card of cost three or less for free and put it into your hand.' } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 3, COST: 2, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 1 }, SCRAP_ABILITIES: { COMBAT: 3 } }, { NAME: 'Bioformer', FACTION: BLOB, TYPE: BASE, SHIELD: 4, COST: 4, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { COMBAT: 3 }, SCRAP_ABILITIES: { TRADE: 3 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 5, COST: 6, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 4, OTHER_ABILITY: ALLY_PLACE_INTO_HAND }, SCRAP_ABILITIES: { OTHER_ABILITY: DESTROY_BASE } }, { NAME: '<NAME>', FLAVOR: 'Trade is a colony\'s life blood.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 1, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 2 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FLAVOR: '"A well supplied colony is a loyal colony." - <NAME>', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 2, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 3 }, ALLY_ABILITIES: { AUTHORITY: 3 } }, { NAME: '<NAME>', FLAVOR: 'Cutters are the life line of Federation colonies.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 3, SET: COLONY_WARS, QUANTITY: 3, ABILITIES: { TRADE: 2, COMBAT: 3 }, ALLY_ABILITIES: { AUTHORITY: 4 } }, { NAME: '<NAME>', FLAVOR: 'Suited for ferrying colonists or supplies.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 4, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { TRADE: 3, AUTHORITY: 4 }, SCRAP_ABILITIES: { OTHER_ABILITY: DESTROY_BASE } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 5, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { TRADE: 3, COMBAT: 3, AUTHORITY: 3, OTHER_ABILITY: ALLY_PLACE_INTO_HAND } }, { NAME: 'Peacekeeper', FLAVOR: 'Might makes peace.', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 6, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { COMBAT: 6, AUTHORITY: 6 }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: BASE, SHIELD: 3, COST: 2, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { AUTHORITY: 2 }, ALLY_ABILITIES: { TRADE: 2 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: BASE, SHIELD: 5, COST: 4, SET: COLONY_WARS, QUANTITY: 2, ABILITIES: { TRADE: 2, OTHER_ABILITY: 'If you have three or more bases in play (including this one), gain 4 Authority and draw a card.' } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: OUTPOST, SHIELD: 6, COST: 6, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { TRADE: 2 }, ALLY_ABILITIES: { OTHER_ABILITY: 'Put the next ship or base you acquire this turn on top of your deck.' } }, { NAME: '<NAME>', FLAVOR: 'Colonies still loyal to the Federation are precious.', FACTION: TRADE_FEDERATION, TYPE: BASE, SHIELD: 6, COST: 7, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { TRADE: 3, COMBAT: 3, AUTHORITY: 3 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: OUTPOST, SHIELD: 6, COST: 8, SET: COLONY_WARS, QUANTITY: 1, ABILITIES: { TRADE: 3, OTHER_ABILITY: 'Put the next ship or base you acquire this turn into your hand.' } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 2, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 2, ABILITIES: { COMBAT: 1, SCRAP: SCRAP_HAND_DISCARD, OTHER_ABILITY: 'If you control two or more bases, gain 8 Combat.' } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 5, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 1, ABILITIES: { COMBAT: 6, OTHER_ABILITY: 'You may return target base from play to its owner\'s hand.' }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 5, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 1, ABILITIES: { TRADE: 3, DRAW: 1 }, ALLY_ABILITIES: { COMBAT: 4 } }, { NAME: '<NAME>', FLAVOR: 'These bases play a key role in expanding the empire\'s influence.', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 5, COST: 3, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 2, ALLY_ABILITIES: { OPPONENT_DISCARD: 1 } }, { NAME: 'Obliterator', FACTION: BLOB, TYPE: SHIP, COST: 6, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 1, ABILITIES: { COMBAT: 7, OTHER_ABILITY: 'If your opponent has two or more bases in play, gain 6 Combat.' }, ALLY_ABILITIES: { DRAW: 1 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 5, COST: 3, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 2, ABILITIES: { TRADE: 1 }, ALLY_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 1, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 2, ABILITIES: { TRADE: 1 }, ALLY_ABILITIES: { DRAW: 1 }, SCRAP_ABILITIES: { TRADE: 1 } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 6, SET: CRISIS_BASES_BATTLESHIPS, QUANTITY: 1, ABILITIES: { AUTHORITY: 3, TRADE: 2, DRAW: 1 }, ALLY_ABILITIES: { OTHER_ABILITY: 'You may put the next base you acquire this turn directly into play.' } }, { NAME: '<NAME>', FLAVOR: 'When it comes to Patrol Bot tactics, <NAME> wrote the scripture.', FACTION: MACHINE_CULT, TYPE: SHIP, COST: 2, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 2, ABILITIES: { OR: { TRADE: 2, COMBAT: 4 } }, ALLY_ABILITIES: { SCRAP: SCRAP_HAND_DISCARD } }, { NAME: '<NAME>', FACTION: MACHINE_CULT, TYPE: OUTPOST, SHIELD: 5, COST: 4, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 1, ABILITIES: { OR: { TRADE: 1, COMBAT: 2 } }, ALLY_ABILITIES: { SCRAP: SCRAP_HAND_DISCARD } }, { NAME: '<NAME>', FLAVOR: 'These cargo ships were originally designed as combat drones by Federation CEO <NAME>.', FACTION: STAR_EMPIRE, TYPE: SHIP, COST: 1, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 2, ABILITIES: { DRAW: 1 }, SCRAP_ABILITIES: { TRADE: 1 } }, { NAME: '<NAME>', FACTION: STAR_EMPIRE, TYPE: OUTPOST, SHIELD: 6, COST: 7, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 1, ABILITIES: { COMBAT: 3, OTHER_ABILITY: 'Draw a card, then discard a card.' }, ALLY_ABILITIES: { OTHER_ABILITY: 'Draw a card, then discard a card.' } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: SHIP, COST: 1, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 2, ABILITIES: { COMBAT: 3, TRADE_ROW_SCRAP: 2 }, SCRAP_ABILITIES: { COMBAT: 2 } }, { NAME: '<NAME>', FACTION: BLOB, TYPE: BASE, SHIELD: 6, COST: 7, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 1, ABILITIES: { COMBAT: 4, OTHER_ABILITY: 'You may scrap a Trade Federation, Machine Cult, or Star Empire card ' 'from your hand or discard pile. If you do, draw a card.' } }, { NAME: '<NAME>', FACTION: TRADE_FEDERATION, TYPE: SHIP, COST: 4, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 2, ABILITIES: { OTHER_ABILITY: 'You may acquire a ship of cost four or less and put it on top of your deck.' }, ALLY_ABILITIES: { COMBAT: 4 }, SCRAP_ABILITIES: { DRAW: 1 } }, { NAME: 'Capitol World', FLAVOR: '"Wealth is power" - CEO <NAME>', FACTION: TRADE_FEDERATION, TYPE: OUTPOST, SHIELD: 6, COST: 8, SET: CRISIS_FLEETS_FORTRESSES, QUANTITY: 1, ABILITIES: { AUTHORITY: 6, DRAW: 1 } }, { NAME: '<NAME>', FLAVOR: 'They have as much courage as you have coin.', FACTION: UNALIGNED, TYPE: SHIP, COST: 3, SET: PROMOTIONAL, QUANTITY: 3, ABILITIES: { COMBAT: 5, OTHER_ABILITY: 'Choose a faction as you play Merc Cruiser. Merc Cruiser has that faction.' } }, { NAME: '<NAME>', FACTION: UNALIGNED, TYPE: OUTPOST, SHIELD: 5, COST: 4, SET: PROMOTIONAL, QUANTITY: 3, ALLY_ABILITIES: { OTHER_ABILITY: 'Star Empire ally: 2 Combat', OTHER_ABILITY: 'Machine Cult ally: Scrap a card from your hand or discard pile.', OTHER_ABILITY: 'Trade Federation ally: 3 Authority', OTHER_ABILITY: 'Blob ally: Scrap up to two cards currently in the trade row.' } } ]
1.945313
2
authlib/client/errors.py
moriyoshi/authlib
0
12785930
<filename>authlib/client/errors.py from authlib.integrations.base_client import *
1.148438
1
ovpr_atp/awards/models.py
ravikumargo/awdportal
0
12785931
# Defines the data models used within the application # # See the Django documentation at https://docs.djangoproject.com/en/1.6/topics/db/models/ from django.conf import settings from django.core.exceptions import ValidationError from django.core.mail import send_mail from django.db import models from django.db.models import Q from django.db.models.signals import post_save, post_delete from django.dispatch import receiver from django.contrib.auth.models import User, Group from django.contrib.admin.models import LogEntry from django.core.urlresolvers import reverse from django.utils.html import format_html from django.utils import timezone from itertools import chain from decimal import Decimal from datetime import datetime, date, timedelta, tzinfo from dateutil.tz import tzutc, tzlocal from multiselectfield import MultiSelectField import reversion def get_value_from_choices(choices, code_to_find): """Returns the value that corresponds to the given code in the list of choices. This is used to translate a code value, as stored in the database, to its corresponding text value from the choices tuple. """ return next((value for code, value in choices if code == code_to_find), '') class FieldIteratorMixin(models.Model): """Returns the verbose_name and value for each non-HIDDEN_FIELD on an object""" def _get_field(self, field): """Gets the specified field from the model""" model_field = self._meta.get_field(field) name = model_field.verbose_name if model_field.choices: display_method = getattr(self, 'get_' + field + '_display') data = display_method() else: data = getattr(self, field) boolean_field = isinstance(model_field, models.NullBooleanField) return (name, data, boolean_field) def _get_field_full(self, field): """Gets the specified field from the model, along with the field name""" model_field = self._meta.get_field(field) name = model_field.verbose_name if model_field.choices: display_method = getattr(self, 'get_' + field + '_display') data = display_method() else: data = getattr(self, field) boolean_field = isinstance(model_field, models.NullBooleanField) return (name, data, boolean_field, model_field.name) def get_model_fields(self): """Gets all fields from the model that aren't defined in HIDDEN_FIELDS""" fields = [field.name for field in self._meta.fields] fields.remove('id') for field in self.HIDDEN_FIELDS: fields.remove(field) return fields def get_table_fields(self): """Gets all fields from the model to display in table format Fields defined in HIDDEN_TABLE_FIELDS are excluded. """ fields = self.get_model_fields() for field in self.HIDDEN_TABLE_FIELDS: fields.remove(field) field_data = [self._get_field(field) for field in fields] return field_data def get_all_fields(self): """Gets all non-HIDDEN_FIELDs from the model and their data""" fields = self.get_model_fields() field_data = [self._get_field(field) for field in fields] return field_data def get_search_fields(self): """Gets fields necessary for searching Fields defined in HIDDEN_SEARCH_FIELDS are excluded """ fields = self.get_model_fields() for field in self.HIDDEN_SEARCH_FIELDS: fields.remove(field) field_data = [self._get_field_full(field) for field in fields] if isinstance(self, Subaward) and hasattr(self, 'comments'): field_data.append(self._get_field_full('comments')) return field_data def get_fieldsets(self): """Gets the model's fields and separates them out into the defined FIELDSETS""" fields = self.get_model_fields() fieldset_data = [] for fieldset in self.FIELDSETS: fieldset_fields = [] for field in fieldset['fields']: fieldset_fields.append(self._get_field(field)) fields.remove(field) fieldset_data.append((fieldset['title'], fieldset_fields)) if hasattr(self, 'DISPLAY_TABLES'): for display_table in self.DISPLAY_TABLES: for row in display_table['rows']: for field in row['fields']: fields.remove(field) fieldset_data.append( (None, [self._get_field(field) for field in fields])) return fieldset_data def get_display_tables(self): """Gets the fields and data defined in DISPLAY_TABLES for tabular display""" display_tables = [] for item in self.DISPLAY_TABLES: rows = [] for row in item['rows']: data = {'label': row['label']} data['fields'] = [ self._get_field(field) for field in row['fields']] rows.append(data) display_table = { 'title': item['title'], 'columns': item['columns'], 'rows': rows} display_tables.append(display_table) return display_tables def get_award_setup_report_fields(self): """Gets the fields needed for EAS report""" return [self._get_field(field) for field in self.EAS_REPORT_FIELDS] class Meta: abstract = True class EASUpdateMixin(object): """If it's expired or inactive, unset this object from any foriegn key fields""" def save(self, *args, **kwargs): super(EASUpdateMixin, self).save(*args, **kwargs) expired = False if hasattr(self, 'end_date'): if self.end_date: if isinstance(self.end_date, date): expired = self.end_date < date.today() else: expired = self.end_date < datetime.now() else: expired = False if not self.active or expired: for related_object in self._meta.get_all_related_objects(): accessor_name = related_object.get_accessor_name() if not hasattr(self, accessor_name): break related_queryset = eval('self.%s' % accessor_name) field_name = related_object.field.name for item in related_queryset.all(): setattr(item, field_name, None) item.save() class AllowedCostSchedule(EASUpdateMixin, models.Model): """Model for the AllowedCostSchedule data""" EAS_FIELD_ORDER = [ 'id', 'name', 'end_date', 'active' ] id = models.BigIntegerField(primary_key=True, unique=True) name = models.CharField(max_length=30) end_date = models.DateField(null=True, blank=True) active = models.BooleanField() def __unicode__(self): return self.name class Meta: ordering = ['name'] class AwardManager(FieldIteratorMixin, EASUpdateMixin, models.Model): """Model for the AwardManager data""" EAS_FIELD_ORDER = [ 'id', 'full_name', 'gwid', 'system_user', 'end_date', 'active' ] CAYUSE_FIELDS = [ 'title', 'first_name', 'middle_name', 'last_name', 'phone', 'email' ] FIELDSETS = [] HIDDEN_FIELDS = [ 'system_user', 'end_date', 'active', 'first_name', 'middle_name', 'last_name' ] id = models.BigIntegerField(primary_key=True, unique=True) full_name = models.CharField(max_length=240) gwid = models.CharField( max_length=150, blank=True, null=True, verbose_name='GWID') system_user = models.BooleanField() end_date = models.DateField(null=True, blank=True) active = models.BooleanField() # Cayuse fields title = models.CharField(max_length=64, blank=True, null=True) first_name = models.CharField(max_length=64, blank=True) middle_name = models.CharField(max_length=32, blank=True) last_name = models.CharField(max_length=64, blank=True) phone = models.CharField(max_length=32, blank=True, null=True) email = models.CharField(max_length=64, blank=True, null=True) def __unicode__(self): return self.full_name class AwardOrganization(EASUpdateMixin, models.Model): """Model for the AwardOrganization data""" EAS_FIELD_ORDER = [ 'id', 'name', 'organization_type', 'org_info1_meaning', 'org_info2_meaning', 'end_date', 'active' ] id = models.BigIntegerField(primary_key=True, unique=True) name = models.CharField(max_length=240) organization_type = models.CharField(max_length=30, blank=True, null=True) org_info1_meaning = models.CharField(max_length=80) org_info2_meaning = models.CharField(max_length=80) end_date = models.DateField(null=True, blank=True) active = models.BooleanField() def __unicode__(self): return self.name class Meta: ordering = ['name'] class AwardTemplate(EASUpdateMixin, models.Model): """Model for the AwardTemplate data""" EAS_FIELD_ORDER = [ 'id', 'number', 'short_name', 'active' ] id = models.BigIntegerField(primary_key=True, unique=True) number = models.CharField(max_length=15) short_name = models.CharField(max_length=30) active = models.BooleanField() def __unicode__(self): return u'%s - %s' % (self.number, self.short_name) class Meta: ordering = ['number'] class CFDANumber(EASUpdateMixin, models.Model): """Model for the CFDANumber data""" EAS_FIELD_ORDER = [ 'flex_value', 'description', 'end_date', 'active' ] flex_value = models.CharField( max_length=150, primary_key=True, unique=True) description = models.CharField(max_length=240) end_date = models.DateField(null=True, blank=True) active = models.BooleanField() def __unicode__(self): return u'%s - %s' % (self.flex_value, self.description) class Meta: ordering = ['flex_value'] class FedNegRate(EASUpdateMixin, models.Model): """Model for the FedNegRate data""" EAS_FIELD_ORDER = [ 'flex_value', 'description', 'end_date', 'active' ] flex_value = models.CharField( max_length=150, primary_key=True, unique=True) description = models.CharField(max_length=240) end_date = models.DateField(null=True, blank=True) active = models.BooleanField() def __unicode__(self): return self.description class Meta: ordering = ['description'] class FundingSource(EASUpdateMixin, models.Model): """Model for the FundingSource data""" EAS_FIELD_ORDER = [ 'name', 'number', 'id', 'active', 'end_date' ] id = models.BigIntegerField(primary_key=True, unique=True) name = models.CharField(max_length=50) number = models.CharField(max_length=10) end_date = models.DateField(null=True, blank=True) active = models.BooleanField() def __unicode__(self): return u'%s - %s' % (self.number, self.name) class Meta: ordering = ['number'] class IndirectCost(EASUpdateMixin, models.Model): """Model for the IndirectCost data""" EAS_FIELD_ORDER = [ 'id', 'rate_schedule', 'end_date', 'active' ] id = models.BigIntegerField(primary_key=True, unique=True) rate_schedule = models.CharField(max_length=30) end_date = models.DateField(null=True, blank=True) active = models.BooleanField() def __unicode__(self): return self.rate_schedule class Meta: ordering = ['rate_schedule'] class PrimeSponsor(EASUpdateMixin, models.Model): """Model for the PrimeSponsor data""" EAS_FIELD_ORDER = [ 'name', 'number', 'id', 'active', ] id = models.BigIntegerField(primary_key=True, unique=True) name = models.CharField(max_length=50) number = models.IntegerField() active = models.BooleanField() def __unicode__(self): return self.name class Meta: ordering = ['name'] class EASMapping(models.Model): """Model used to define a mapping between EAS data and the corresponding value in ATP""" INTERFACE_CHOICES = ( ('C', 'Cayuse'), ('L', 'Lotus'), ) interface = models.CharField( choices=INTERFACE_CHOICES, max_length=1, default='C') field = models.CharField(max_length=50) incoming_value = models.CharField(max_length=250) atp_model = models.CharField(max_length=50) atp_pk = models.IntegerField() def __unicode__(self): return u'(%s) %s=%s -> %s=%s' % (self.interface, self.field, self.incoming_value, self.atp_model, self.atp_pk) class Meta: unique_together = ( 'interface', 'field', 'incoming_value', 'atp_model', 'atp_pk') class EASMappingException(Exception): """Custom exception import processes throw when a new mapping is required""" def __init__(self, message, interface, field, incoming_value, atp_model): super(EASMappingException, self).__init__(self, message) self.interface = interface self.field = field self.incoming_value = incoming_value self.atp_model = atp_model class ATPAuditTrail(models.Model): """It is used internally to track each point of time when an award assinged and completed from a particular stage""" award = models.IntegerField() modification = models.CharField(max_length=100) workflow_step = models.CharField(max_length=100) date_created = models.DateTimeField(blank=True, null=True) date_completed = models.DateTimeField(blank=True, null=True) assigned_user = models.CharField(max_length=100) class Award(models.Model): """The primary model""" WAIT_FOR = {'RB': 'Revised Budget', 'PA': 'PI Access', 'CA': 'Cost Share Approval', 'FC': 'FCOI', 'PS': 'Proposal Submission', 'SC': 'Sponsor Clarity', 'NO': 'New Org needed', 'IC': 'Internal Clarification', 'DC': 'Documents not in GW Docs' } # These fields aren't displayed by the FieldIteratorMixin HIDDEN_FIELDS = [ 'subaward_done', 'award_management_done', 'extracted_to_eas', ] # Workflow statuses STATUS_CHOICES = ( (0, 'New'), (1, 'Award Intake'), (2, 'Award Negotiation'), (3, 'Award Setup'), (4, 'Subaward & Award Management'), (5, 'Award Closeout'), (6, 'Complete'), ) # A mapping for which sections are active in which statuses STATUS_SECTION_MAPPING = [ [], ['AwardAcceptance'], ['AwardNegotiation'], ['AwardSetup', 'AwardModification'], ['Subaward', 'AwardManagement'], ['AwardCloseout'], [] ] # A mapping for relevant user fields, groups, URLs, and statuses for each section SECTION_FIELD_MAPPING = { 'ProposalIntake': { 'user_field': None, 'group': 'Proposal Intake', 'edit_url': 'edit_proposal_intake', 'edit_status': 0}, 'AwardAcceptance': { 'user_field': 'award_acceptance_user', 'group': 'Award Acceptance', 'edit_url': 'edit_award_acceptance', 'edit_status': 1}, 'AwardNegotiation': { 'user_field': 'award_negotiation_user', 'group': 'Award Negotiation', 'edit_url': 'edit_award_negotiation', 'edit_status': 2}, 'AwardSetup': { 'user_field': 'award_setup_user', 'group': 'Award Setup', 'edit_url': 'edit_award_setup', 'edit_status': 3}, 'AwardModification': { 'user_field': 'award_modification_user', 'group': 'Award Modification', 'edit_url': 'edit_award_setup', 'edit_status': 3}, 'Subaward': { 'user_field': 'subaward_user', 'group': 'Subaward Management', 'edit_url': 'edit_subawards', 'edit_status': 4}, 'AwardManagement': { 'user_field': 'award_management_user', 'group': 'Award Management', 'edit_url': 'edit_award_management', 'edit_status': 4}, 'AwardCloseout': { 'user_field': 'award_closeout_user', 'group': 'Award Closeout', 'edit_url': 'edit_award_closeout', 'edit_status': 5}, } # Associates subsections with their parent sections (used in edit permission checks) SECTION_PARENT_MAPPING = { 'PTANumber': 'AwardSetup', 'PriorApproval': 'AwardManagement', 'ReportSubmission': 'AwardManagement', 'FinalReport': 'AwardCloseout', } START_STATUS = 0 END_STATUS = 6 AWARD_SETUP_STATUS = 3 AWARD_ACCEPTANCE_STATUS = 1 status = models.IntegerField(choices=STATUS_CHOICES, default=0) creation_date = models.DateField(auto_now_add=True) extracted_to_eas = models.BooleanField(default=False) # Limit assignment users to members of the appropriate group award_acceptance_user = models.ForeignKey( User, related_name='+', verbose_name='Award Intake User', limit_choices_to=Q( groups__name='Award Acceptance')) award_negotiation_user = models.ForeignKey( User, null=True, blank=True, related_name='+', verbose_name='Award Negotiation User', limit_choices_to=Q( groups__name='Award Negotiation')) award_setup_user = models.ForeignKey( User, related_name='+', verbose_name='Award Setup User', limit_choices_to=Q( groups__name='Award Setup')) award_modification_user = models.ForeignKey( User, null=True, blank=True, related_name='+', verbose_name='Award Modification User', limit_choices_to=Q( groups__name='Award Modification')) subaward_user = models.ForeignKey( User, null=True, blank=True, related_name='+', verbose_name='Subaward User', limit_choices_to=Q( groups__name='Subaward Management')) award_management_user = models.ForeignKey( User, related_name='+', verbose_name='Award Management User', limit_choices_to=Q( groups__name='Award Management')) award_closeout_user = models.ForeignKey( User, related_name='+', verbose_name='Award Closeout User', limit_choices_to=Q( groups__name='Award Closeout')) # Because these two sections are active in the same status, we need to # track their completion independently subaward_done = models.BooleanField(default=False) award_management_done = models.BooleanField(default=False) send_to_modification = models.BooleanField(default=False) send_to_setup = models.BooleanField(default=False) common_modification = models.BooleanField(default=False) award_dual_negotiation = models.BooleanField(default=False) award_dual_setup = models.BooleanField(default=False) award_dual_modification = models.BooleanField(default=False) award_text = models.CharField(max_length=50, blank=True, null=True) # If an award has a proposal, use that to determine its name. Otherwise, # use its internal ID def __unicode__(self): proposal = self.get_first_real_proposal() if proposal and proposal.get_unique_identifier() != '': return u'Award for proposal #%s' % proposal.get_unique_identifier() else: return u'Award #%s' % self.id @classmethod def get_priority_assignments_for_award_setup_user(cls, user): assignment_list = [] assign_filter = cls.objects.filter( (Q(Q(award_setup_user=user) & Q(status=2) & Q(award_dual_setup=True)) | Q(Q(award_setup_user=user) & Q(status=3) & Q(award_dual_setup=True))) | (Q(award_setup_user=user) & Q(status=3) & Q(send_to_modification=False)) | (Q(award_modification_user=user) & Q(status=3) & Q(send_to_modification=True)) | (Q(award_modification_user=user) & Q(status=2) & Q(award_dual_modification=True)) ) award_ids = [] temp_ids = [] award_assignments = [] for award_ in assign_filter: award_ids.append(award_.id) assignments_on = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='on', current_modification=True).order_by('creation_date') assignments_tw = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='tw', current_modification=True).order_by('creation_date') assignments_th = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='th', current_modification=True).order_by('creation_date') assignments_fo = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='fo', current_modification=True).order_by('creation_date') assignments_fi = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='fi', current_modification=True).order_by('creation_date') assignments_ni = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='ni', current_modification=True).order_by('creation_date') assignments_none = AwardAcceptance.objects.filter(award_id__in=award_ids, award_setup_priority='', current_modification=True).order_by('creation_date') assignments = list(chain(assignments_on, assignments_tw, assignments_th, assignments_fo, assignments_fi, assignments_ni, assignments_none)) for award in assignments: if award.award_id in award_ids: temp_ids.append(award.award_id) assignments = cls.objects.filter(id__in=temp_ids) for id in temp_ids: for award in assignments: if award.id == id: award_assignments.append(award) for award in award_assignments: active_sections = award.STATUS_SECTION_MAPPING[award.status] for section in active_sections: for user_group in user.groups.all(): if section == 'AwardNegotiation' and user_group.name == 'Award Setup': section = 'AwardSetup' if section == 'AwardNegotiation' and user_group.name == 'Award Modification': section = 'AwardModification' if award.get_user_for_section(section) == user: edit_url = reverse( award.SECTION_FIELD_MAPPING[section]['edit_url'], kwargs={ 'award_pk': award.pk}) assignment_list.append((award, edit_url)) return assignment_list @classmethod def get_assignments_for_user(cls, user): """Given a user, find all currently assigned awards""" assignments = cls.objects.filter( (Q(award_acceptance_user=user) & Q(status=1)) | (Q(Q(award_negotiation_user=user) & Q(status=2)) | Q(Q(award_negotiation_user=user) & Q(status=2) & Q(award_dual_negotiation=True))) | (Q(Q(award_setup_user=user) & Q(status=2) & Q(award_dual_setup=True)) | Q(Q(award_setup_user=user) & Q(status=3) & Q(award_dual_setup=True))) | (Q(award_setup_user=user) & Q(status=3) & Q(send_to_modification=False)) | (Q(award_modification_user=user) & Q(status=3) & Q(Q(send_to_modification=True))) | (Q(award_modification_user=user) & Q(status=2) & Q(Q(award_dual_modification=True))) | (Q(subaward_user=user) & Q(status=4)) | (Q(award_management_user=user) & Q(status=4)) | (Q(award_closeout_user=user) & Q(status=5)) ) assignment_list = [] for award in assignments: active_sections = award.STATUS_SECTION_MAPPING[award.status] for section in active_sections: for user_group in user.groups.all(): if section == 'AwardNegotiation' and user_group.name == 'Award Setup': section = 'AwardSetup' if section == 'AwardNegotiation' and user_group.name == 'Award Modification': section = 'AwardModification' if award.get_user_for_section(section) == user: edit_url = reverse( award.SECTION_FIELD_MAPPING[section]['edit_url'], kwargs={ 'award_pk': award.pk}) assignment_list.append((award, edit_url)) return assignment_list def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse('award_detail', kwargs={'award_pk': self.pk}) def save(self, *args, **kwargs): # On initial save, create a dummy proposal and blank sections if not self.pk: super(Award, self).save(*args, **kwargs) Proposal.objects.create(award=self, dummy=True) AwardAcceptance.objects.create(award=self) AwardNegotiation.objects.create(award=self) AwardSetup.objects.create(award=self) AwardManagement.objects.create(award=self) AwardCloseout.objects.create(award=self) else: check_status = kwargs.pop('check_status', True) try: old_object = Award.objects.get(pk=self.pk) except Award.DoesNotExist: super(Award, self).save(*args, **kwargs) return if any([self.award_acceptance_user != old_object.award_acceptance_user, self.award_closeout_user != old_object.award_closeout_user, self.award_management_user != old_object.award_management_user, self.award_modification_user != old_object.award_modification_user, self.award_negotiation_user != old_object.award_negotiation_user, self.award_setup_user != old_object.award_setup_user]): self.send_to_setup = old_object.send_to_setup self.send_to_modification = old_object.send_to_modification self.common_modification = old_object.common_modification self.award_dual_modification = old_object.award_dual_modification self.award_dual_setup = old_object.award_dual_setup self.award_dual_negotiation = old_object.award_dual_negotiation super(Award, self).save(*args, **kwargs) if check_status and old_object.status > 1 and self.status == 1 and self.get_current_award_acceptance().phs_funded: self.send_phs_funded_notification() def get_proposals(self): """Gets all Proposals associated with this Award""" proposals = [] first_proposal = self.get_first_real_proposal() if first_proposal: proposals.append(first_proposal) proposals.extend(self.get_supplemental_proposals()) return proposals def get_first_real_proposal(self): """Gets the first non-dummy Proposal associated with this Award""" try: first_proposal = self.proposal_set.get( is_first_proposal=True, dummy=False) except Proposal.DoesNotExist: first_proposal = None return first_proposal def get_supplemental_proposals(self): """Gets all non-dummy Proposals after the first one""" first_proposal = self.get_first_real_proposal() supplemental_proposals = None if first_proposal: supplemental_proposals = self.proposal_set.filter(dummy=False).exclude(id=first_proposal.id).order_by('id') return supplemental_proposals def get_most_recent_proposal(self): """Gets the most recent Proposal""" return self.proposal_set.filter(dummy=False).order_by('id').last() def get_current_award_acceptance(self, acceptance_flag=False): if acceptance_flag: acceptance_object = self.awardacceptance_set.filter(current_modification=True) if acceptance_object: return acceptance_object[0] else: acceptance_object = AwardAcceptance() return acceptance_object award_acceptance = self.awardacceptance_set.filter(current_modification=True).order_by('-creation_date') if len(award_acceptance) > 1: for award in award_acceptance[1:]: award.current_modification = False award.save() return award_acceptance[0] else: return self.awardacceptance_set.get(current_modification=True) def get_previous_award_acceptances(self): return self.awardacceptance_set.filter(current_modification=False) def get_current_award_negotiation(self): try: negotiation_obj = self.awardnegotiation_set.get(current_modification=True) except: negotiation_obj = None award_negotiation = self.awardnegotiation_set.filter(current_modification=True).order_by('-date_assigned') if len(award_negotiation) > 1: for award in award_negotiation[1:]: award.current_modification = False award.save() return award_negotiation[0] elif negotiation_obj: return self.awardnegotiation_set.get(current_modification=True) else: return AwardNegotiation() def get_previous_award_negotiations(self): return self.awardnegotiation_set.filter(current_modification=False) def get_first_pta_number(self): pta_number = self.ptanumber_set.all().order_by('id')[:1] if pta_number: return pta_number[0] else: return None def get_award_numbers(self): """Returns a comma-delimited string of award numbers from all PTANumbers in this Award""" award_numbers = self.ptanumber_set.exclude(award_number='').values_list('award_number', flat=True) return ', '.join(award_numbers) def get_date_assigned_to_current_stage(self): """Returns the date this Award was moved on to its current stage""" dates_assigned = [] for section in self.get_active_sections(): try: if section == 'AwardAcceptance': correct_instance = AwardAcceptance.objects.get(award=self, current_modification=True) local_date = correct_instance.creation_date.astimezone(tzlocal()) dates_assigned.append(local_date.strftime('%m/%d/%Y')) elif section == 'Subaward' or section == 'AwardManagement': if Subaward.objects.filter(award=self).count() > 0: correct_instance = Subaward.objects.filter(award=self).latest('creation_date') local_date = correct_instance.creation_date.astimezone(tzlocal()) dates_assigned.append(local_date.strftime('%m/%d/%Y')) else: correct_instance = AwardManagement.objects.get(award=self) local_date = correct_instance.date_assigned.astimezone(tzlocal()) dates_assigned.append(local_date.strftime('%m/%d/%Y')) else: if section == 'AwardNegotiation': correct_instance = AwardNegotiation.objects.get(award=self, current_modification=True) elif section == 'AwardSetup': correct_instance = AwardSetup.objects.get(award=self) elif section == 'AwardCloseout': correct_instance = AwardCloseout.objects.get(award=self) if correct_instance.date_assigned: local_date = correct_instance.date_assigned.astimezone(tzlocal()) dates_assigned.append(local_date.strftime('%m/%d/%Y')) except: pass dates_assigned = list(set(dates_assigned)) if len(dates_assigned) > 0: return ', '.join(dates_assigned) else: return '' def get_user_for_section(self, section, modification_flag=False): """Uses the SECTION_PARENT_MAPPING to determine the user assigned to the given section""" if section == 'AwardSetup' and self.award_dual_modification: section = 'AwardModification' if modification_flag: section = 'AwardModification' if section in self.SECTION_PARENT_MAPPING: section = self.SECTION_PARENT_MAPPING[section] try: return getattr( self, self.SECTION_FIELD_MAPPING[section]['user_field']) except TypeError: return None def get_current_award_status_for_display(self): return 'Award Negotiation and Setup' def get_award_setup_modification_status(self): if self.status == 2: return True else: return False def get_active_sections(self, dual_mode=False): """Gets the names of the currently active sections""" if self.status == self.AWARD_SETUP_STATUS: active_sections = ['AwardSetup'] elif dual_mode: active_sections = ['AwardNegotiation', 'AwardSetup'] else: active_sections = self.STATUS_SECTION_MAPPING[self.status] return active_sections def get_users_for_dual_active_sections(self): active_users = [] for section in ['AwardNegotiation', 'AwardSetup']: user = self.get_user_for_section(section) if user: active_users.append(user) return active_users def get_users_for_negotiation_and_moidification_sections(self): active_users = [] for section in ['AwardNegotiation', 'AwardModification']: user = self.get_user_for_section(section) if user: active_users.append(user) return active_users def get_users_for_active_sections(self, section_flag=False): """Gets the users assigned to the currently active sections""" active_users = [] if self.status == 3 and self.send_to_modification: user_section = "AwardModification" user = self.get_user_for_section(user_section) if user: active_users.append(user) return active_users for section in self.get_active_sections(): user = self.get_user_for_section(section) if user: active_users.append(user) return active_users def get_current_active_users(self): """Returns a comma-delimited list of users assigned to the currently active sections""" if self.award_dual_setup and self.award_dual_negotiation and self.status == 2: users = self.get_users_for_dual_active_sections() elif self.award_dual_modification and self.status == 2: users = self.get_users_for_negotiation_and_moidification_sections() else: users = self.get_users_for_active_sections() names = [] for user in users: names.append(user.get_full_name()) return ', '.join(names) def get_award_priority_number(self): award_accept = self.awardacceptance_set.get(award_id=self.id, current_modification=True) if award_accept.award_setup_priority: return AwardAcceptance.PRIORITY_STATUS_DICT[award_accept.award_setup_priority] else: return '' def get_edit_status_for_section(self, section, setup_flow_flag=False): """Gets the edit_status for the given section""" if setup_flow_flag: return self.SECTION_FIELD_MAPPING['AwardNegotiation']['edit_status'] if section in self.SECTION_PARENT_MAPPING: section = self.SECTION_PARENT_MAPPING[section] return self.SECTION_FIELD_MAPPING[section]['edit_status'] def get_editable_sections(self): """Returns a list of editable sections. A section is editable if the Award's status is at or beyond that section """ if self.award_dual_negotiation and self.award_dual_setup: editable_sections = [section for section in self.SECTION_FIELD_MAPPING.keys( ) if self.SECTION_FIELD_MAPPING[section]['edit_status'] <= self.status + 1] else: editable_sections = [section for section in self.SECTION_FIELD_MAPPING.keys( ) if self.SECTION_FIELD_MAPPING[section]['edit_status'] <= self.status] return editable_sections def send_email_update_if_subaward_user(self): """Sends an email update to subaward user if the award send to award setup""" recipients = [self.get_user_for_section('Subaward').email] pi_name = '' most_recent_proposal = self.get_most_recent_proposal() if most_recent_proposal: pi_name = ' (PI: {0})'.format(most_recent_proposal.principal_investigator) send_mail( 'OVPR ATP Update', 'Award for proposal #%s%s has been assigned to Award Setup in ATP. Go to %s%s to review it.' % (self.id, pi_name, settings.EMAIL_URL_HOSTNAME, self.get_absolute_url()), 'reply<EMAIL>', recipients, fail_silently=False) def send_email_update(self, modification_flag=False): """Sends an email update to a user when they've been assigned an active section""" if self.status == 1: origional_text = 'Original Award' workflow = 'AwardAcceptance' acceptance_count = AwardAcceptance.objects.filter(award=self).count() if acceptance_count < 2: self.record_current_state_to_atptrail(origional_text, workflow) else: modification = "Modification #%s" % (acceptance_count - 1) self.record_current_state_to_atptrail(modification, workflow) if modification_flag: recipients = [self.get_user_for_section('AwardSetup', modification_flag).email] else: if self.award_dual_negotiation and self.award_dual_setup: recipients = [user.email for user in self.get_users_for_dual_active_sections()] elif self.award_dual_modification: recipients = [user.email for user in self.get_users_for_negotiation_and_moidification_sections()] else: recipients = [user.email for user in self.get_users_for_active_sections()] pi_name = '' most_recent_proposal = self.get_most_recent_proposal() if most_recent_proposal: pi_name = ' (PI: {0})'.format(most_recent_proposal.principal_investigator) send_mail( 'OVPR ATP Update', '%s%s has been assigned to you in ATP. Go to %s%s to review it.' % (self, pi_name, settings.EMAIL_URL_HOSTNAME, self.get_absolute_url()), '<EMAIL>', recipients, fail_silently=False) def send_award_setup_notification(self): """Sends an email to the AwardAcceptance user to let them know the award is in Award Setup""" recipients = [self.get_user_for_section('AwardAcceptance').email] send_mail( 'OVPR ATP Update', '%s has been sent to the Award Setup step. This email is simply a notification \ - you are not assigned to perform Award Setup for this award. \ You can view it here: %s%s' % (self, settings.EMAIL_URL_HOSTNAME, self.get_absolute_url()), '<EMAIL>', recipients, fail_silently=False) def send_fcoi_cleared_notification(self, fcoi_cleared_date): """Sends an email to the AwardSetup user when the Award's fcoi_cleared_date is set""" recipients = [self.get_user_for_section('AwardSetup').email] send_mail('OVPR ATP Update', 'The FCOI cleared date has been entered on %s - it is %s. \ You can view it here: %s%s' % (self, fcoi_cleared_date, settings.EMAIL_URL_HOSTNAME, self.get_absolute_url()), '<EMAIL>', recipients, fail_silently=False) def send_phs_funded_notification(self): """Sends an email to the PHS_FUNDED_RECIPIENTS when the Award has been marked as PHS funded""" recipients = settings.PHS_FUNDED_RECIPIENTS send_mail('OVPR ATP Update', 'PHS funded for %s has been received and requires FCOI verification. \ Please go to %s%s to review it.' % (self, settings.EMAIL_URL_HOSTNAME, self.get_absolute_url()), '<EMAIL>', recipients, fail_silently=False) def send_phs_funded_notification_with_modification(self): """Sends an email to the PHS_FUNDED_RECIPIENTS when and Award Modification is created and it's marked as PHS funded """ recipients = settings.PHS_FUNDED_RECIPIENTS send_mail('OVPR ATP Update', 'PHS funded for %s (Modification) has been received and may require FCOI verification. \ Please go to %s%s to review it.' % (self, settings.EMAIL_URL_HOSTNAME, self.get_absolute_url()), '<EMAIL>', recipients, fail_silently=False) def set_date_assigned_for_active_sections(self): """Sets the date_assigned, if appliccable, for the currently active section(s)""" for section in self.get_active_sections(): if section in self.SECTION_FIELD_MAPPING: current_mod = Q() if section in ['AwardNegotiation', 'AwardAcceptance']: current_mod = Q(current_modification=True) for instance in eval(section).objects.filter(current_mod, award=self): try: instance.set_date_assigned() except AttributeError: pass def record_wait_for_reason(self, workflow_old, workflow_new, model_name): WAIT_FOR = {'RB': 'Revised Budget', 'PA': 'PI Access', 'CA': 'Cost Share Approval', 'FC': 'FCOI', 'PS': 'Proposal Submission', 'SC': 'Sponsor Clarity', 'NO': 'New Org needed', 'IC': 'Internal Clarification', 'DC': 'Documents not in GW Docs' } count_value = AwardAcceptance.objects.filter(award=self).count() if count_value < 2: origional_text = 'Original Award' else: origional_text = "Modification #%s" % (count_value - 1) user_name = self.get_user_full_name(model_name) if workflow_new: try: trail_object = ATPAuditTrail.objects.get(award=self.id, modification=origional_text, workflow_step=WAIT_FOR[workflow_new], assigned_user=user_name) except: trail_object = None if trail_object: trail_object.date_completed = datetime.now() else: trail_object = ATPAuditTrail(award=self.id, modification=origional_text, workflow_step=WAIT_FOR[workflow_new], date_created=datetime.now(), assigned_user=user_name) trail_object.save() if workflow_old: try: trail_object = ATPAuditTrail.objects.get(award=self.id, modification=origional_text, workflow_step=WAIT_FOR[workflow_old], assigned_user=user_name) except: trail_object = None if trail_object: trail_object.date_completed = datetime.now() trail_object.save() elif 'Modification' in origional_text: pass else: trail_object = ATPAuditTrail(award=self.id, modification=origional_text, workflow_step=WAIT_FOR[workflow_old], date_created=datetime.now(), assigned_user=user_name) trail_object.save() def record_current_state_to_atptrail(self, modification, workflow): user_name = self.get_user_full_name(workflow) try: trail_object = ATPAuditTrail.objects.get(award=self.id, modification=modification, workflow_step=workflow, assigned_user=user_name) except: trail_object = None if trail_object: trail_object.date_completed = datetime.now() else: trail_object = ATPAuditTrail(award=self.id, modification=modification, workflow_step=workflow, date_created=datetime.now(), assigned_user=user_name) trail_object.save() def get_user_full_name(self, section): user = self.get_user_for_section(section) if user: return user.first_name + ' ' + user.last_name else: return None def update_completion_date_in_atp_award(self): origional_text = 'Original Award' acceptance_workflow = 'AwardAcceptance' negotiation_workflow = 'AwardNegotiation' setup_workflow = 'AwardSetup' modification_workflow = 'AwardModification' subaward_workflow = 'Subaward' management_workflow = 'AwardManagement' closeout_workflow = 'AwardCloseout' count_value = AwardAcceptance.objects.filter(award=self).count() modification = "Modification #%s" % (count_value - 1) if all([self.status == 2, self.award_dual_modification]): acceptance_object = self.get_current_award_acceptance() acceptance_object.acceptance_completion_date = timezone.localtime(timezone.now()) acceptance_object.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, acceptance_workflow) self.record_current_state_to_atptrail(origional_text, negotiation_workflow) else: self.record_current_state_to_atptrail(modification, acceptance_workflow) self.record_current_state_to_atptrail(modification, negotiation_workflow) self.record_current_state_to_atptrail(modification, modification_workflow) elif all([self.status == 2, self.award_dual_setup, self.award_dual_negotiation]): acceptance_object = self.get_current_award_acceptance() acceptance_object.acceptance_completion_date = timezone.localtime(timezone.now()) acceptance_object.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, acceptance_workflow) self.record_current_state_to_atptrail(origional_text, negotiation_workflow) self.record_current_state_to_atptrail(origional_text, setup_workflow) else: self.record_current_state_to_atptrail(modification, acceptance_workflow) self.record_current_state_to_atptrail(modification, negotiation_workflow) self.record_current_state_to_atptrail(modification, setup_workflow) elif self.status == 2: acceptance_object = self.get_current_award_acceptance() acceptance_object.acceptance_completion_date = timezone.localtime(timezone.now()) acceptance_object.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, acceptance_workflow) self.record_current_state_to_atptrail(origional_text, negotiation_workflow) else: self.record_current_state_to_atptrail(modification, acceptance_workflow) self.record_current_state_to_atptrail(modification, negotiation_workflow) elif self.status == 3: negotiation_user = self.get_user_for_section(negotiation_workflow) if negotiation_user: negotiation_object = self.get_current_award_negotiation() negotiation_object.negotiation_completion_date = timezone.localtime(timezone.now()) negotiation_object.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, negotiation_workflow) else: self.record_current_state_to_atptrail(modification, negotiation_workflow) else: acceptance_object = self.get_current_award_acceptance() acceptance_object.acceptance_completion_date = timezone.localtime(timezone.now()) acceptance_object.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, acceptance_workflow) else: self.record_current_state_to_atptrail(modification, acceptance_workflow) if all([not self.award_dual_modification, not self.send_to_modification, not self.award_dual_setup]): if count_value < 2: self.record_current_state_to_atptrail(origional_text, setup_workflow) else: self.record_current_state_to_atptrail(modification, setup_workflow) elif self.send_to_modification and not self.send_to_setup: self.record_current_state_to_atptrail(modification, modification_workflow) elif self.status == 4: if all([not self.award_dual_modification, not self.send_to_modification, not self.award_dual_setup]): setup_object = AwardSetup.objects.get(award=self) if setup_object.setup_completion_date and count_value == 1: pass else: setup_object.setup_completion_date = timezone.localtime(timezone.now()) setup_object.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, setup_workflow) else: self.record_current_state_to_atptrail(modification, setup_workflow) elif all([not self.send_to_modification, self.award_dual_setup, self.award_dual_negotiation]): pass elif all([self.award_dual_modification, self.common_modification]): pass elif self.award_dual_modification or self.send_to_modification: modification_object = AwardModification.objects.all().filter(award=self, is_edited=True).order_by('-id') if modification_object: modification_obj = modification_object[0] modification_obj.modification_completion_date = timezone.localtime(timezone.now()) modification_obj.save() self.record_current_state_to_atptrail(modification, modification_workflow) if self.subaward_user: if count_value < 2: self.record_current_state_to_atptrail(origional_text, subaward_workflow) else: self.record_current_state_to_atptrail(modification, subaward_workflow) if count_value < 2: self.record_current_state_to_atptrail(origional_text, management_workflow) else: self.record_current_state_to_atptrail(modification, management_workflow) elif self.status == 5: if count_value < 2: self.record_current_state_to_atptrail(origional_text, closeout_workflow) else: self.record_current_state_to_atptrail(modification, closeout_workflow) elif self.status == 6: closeout = AwardCloseout.objects.get(award=self) closeout.closeout_completion_date = timezone.localtime(timezone.now()) closeout.save() if count_value < 2: self.record_current_state_to_atptrail(origional_text, closeout_workflow) else: self.record_current_state_to_atptrail(modification, closeout_workflow) def move_to_next_step(self, section=None): """Moves this Award to the next step in the process""" # A while loop because we want to advance the status until we find the next # section with an assigned user while True: # We have to do extra work to make sure both Subawards and Award Management # are complete before we move to the next status if section in ['Subaward', 'AwardManagement']: origional_text = 'Original Award' subaward_workflow = 'Subaward' management_workflow = 'AwardManagement' count_value = AwardAcceptance.objects.filter(award=self).count() modification = "Modification #%s" % (count_value - 1) if section == 'Subaward' or self.get_user_for_section( 'Subaward') is None: self.subaward_done = True if self.subaward_user: if count_value < 2: self.record_current_state_to_atptrail(origional_text, subaward_workflow) else: self.record_current_state_to_atptrail(modification, subaward_workflow) try: correct_instance = Subaward.objects.filter(award=self).latest('creation_date') if correct_instance: correct_instance.subaward_completion_date = timezone.localtime(timezone.now()) correct_instance.save() except: pass if section == 'AwardManagement' or self.get_user_for_section( 'AwardManagement') is None: self.award_management_done = True if count_value < 2: self.record_current_state_to_atptrail(origional_text, management_workflow) else: self.record_current_state_to_atptrail(modification, management_workflow) management_object = AwardManagement.objects.get(award=self) management_object.management_completion_date = timezone.localtime(timezone.now()) management_object.save() if not (self.subaward_done and self.award_management_done): self.save() return False if self.status == 2 and self.award_dual_negotiation: self.award_dual_negotiation = False self.save() if self.status == 3 and self.award_dual_setup: self.award_dual_setup = False self.save() if self.status == 4 and self.award_dual_modification: self.award_dual_modification = False self.save() if self.status == 2 and self.send_to_modification: modification_object = AwardModification.objects.all().filter(award=self, is_edited=False).order_by('-id') if modification_object: section_object = modification_object[0] section_object.date_assigned = timezone.localtime(timezone.now()) section_object.save() self.status += 1 if self.status == self.END_STATUS: self.save() break elif not all(user is None for user in self.get_users_for_active_sections()): self.set_date_assigned_for_active_sections() self.save() break if self.status not in (self.START_STATUS, self.END_STATUS) and not self.award_dual_setup: self.send_email_update() # Send an additional notification when we reach Award Setup if self.status == 3: self.awardsetup.copy_from_proposal(self.get_most_recent_proposal()) self.send_award_setup_notification() if all([self.status == 3, self.subaward_user, not self.send_to_modification, not self.award_dual_setup]): self.send_email_update_if_subaward_user() self.update_completion_date_in_atp_award() return True def move_award_to_multiple_steps(self, dual_mode): """ Move award to multiple steps so that multiple teams can work parallel """ if self.award_negotiation_user: self.status += 1 else: if self.status == 1: self.status += 2 try: setup_obj = AwardSetup.objects.get(award=self) except AwardSetup.DoesNotExist: setup_obj = None if setup_obj: setup_obj.date_assigned = timezone.localtime(timezone.now()) setup_obj.save() if dual_mode: try: setup_object = AwardSetup.objects.get(award=self) except AwardSetup.DoesNotExist: setup_object = None try: negotiation_object = AwardNegotiation.objects.get(award=self, current_modification=True) except AwardNegotiation.DoesNotExist: negotiation_object = None if negotiation_object: negotiation_object.date_assigned = timezone.localtime(timezone.now()) negotiation_object.save() if setup_object: setup_object.date_assigned = timezone.localtime(timezone.now()) setup_object.save() self.award_dual_negotiation = True self.award_dual_setup = True self.save() if self.status not in (self.START_STATUS, self.END_STATUS): self.send_email_update() if all([self.status == 2, self.subaward_user, self.award_dual_setup]): self.send_email_update_if_subaward_user() self.update_completion_date_in_atp_award() return True def move_award_to_negotiation_and_modification(self, dual_modification): """ Move award to award negotiation and modification steps so that these two teams can work parallel """ if self.award_negotiation_user: self.status += 1 try: negotiation_object = AwardNegotiation.objects.get(award=self, current_modification=True) except AwardNegotiation.DoesNotExists: negotiation_object = None if negotiation_object: if not negotiation_object.date_assigned: negotiation_object.date_assigned = timezone.localtime(timezone.now()) negotiation_object.save() else: if self.status == 1: self.status += 2 try: setup_obj = AwardSetup.objects.get(award=self) except AwardSetup.DoesNotExist: setup_obj = None if setup_obj: setup_obj.date_assigned = timezone.localtime(timezone.now()) setup_obj.save() modification_object = AwardModification.objects.all().filter(award=self).order_by('-id') if modification_object: section_object = modification_object[0] section_object.date_assigned = timezone.localtime(timezone.now()) section_object.save() if dual_modification: self.common_modification = True self.award_dual_modification = True self.save() if self.status not in (self.START_STATUS, self.END_STATUS): self.send_email_update() self.update_completion_date_in_atp_award() return True def move_setup_or_modification_step(self, modification_flag=False, setup_flag=False): if self.award_negotiation_user: self.status += 1 try: negotiation_object = AwardNegotiation.objects.get(award=self, current_modification=True) except AwardNegotiation.DoesNotExists: negotiation_object = None if negotiation_object: if not negotiation_object.date_assigned: negotiation_object.date_assigned = timezone.localtime(timezone.now()) negotiation_object.save() else: if self.status == 1: self.status += 2 try: setup_obj = AwardSetup.objects.get(award=self) except AwardSetup.DoesNotExist: setup_obj = None if setup_obj: setup_obj.date_assigned = timezone.localtime(timezone.now()) setup_obj.save() if modification_flag: self.send_to_modification = True self.save() if setup_flag: self.send_email_update() if self.status == self.AWARD_SETUP_STATUS and modification_flag: self.send_email_update() # Send an additional notification when we reach Award Setup if self.status == 3: self.awardsetup.copy_from_proposal(self.get_most_recent_proposal()) if modification_flag: try: modification = AwardModification.objects.get(award_id=self.id, is_edited=False) except AwardModification.DoesNotExist: modification = None if modification: modification.is_edited = True, modification.save() award_setup_object = AwardSetup.objects.filter(award=self).values() for setup in award_setup_object: del(setup['id'], setup['is_edited'], setup['setup_completion_date'], setup['wait_for_reson']) award_modification_object = AwardModification.objects.create(**setup) self.send_to_modification = True award_modification_object.save() self.save() self.update_completion_date_in_atp_award() return True # Django admin helper methods def get_section_admin_link(self, section): """Gets the link to the Django Admin site for the given section""" return format_html( '<a href="{0}">{1}</a>', reverse( 'admin:awards_%s_change' % section.__class__.__name__.lower(), args=( section.id, )), section) def get_foreignkey_admin_link(self, section_class): """Gets the link to the Django Admin site for the given section that has a foreign key to this Award """ section_objects = section_class.objects.filter(award=self) if len(section_objects) == 0: return '(None)' elif len(section_objects) == 1: return self.get_section_admin_link(section_objects[0]) else: return format_html( '<a href="{0}?award__id__exact={1}">{2}s</a>', reverse( 'admin:awards_%s_changelist' % section_class.__name__.lower()), self.id, section_class._meta.verbose_name.capitalize()) # The following methods are referenced in the list_display section of the AwardAdmin class. # They return the Django Admin links to their respective sections def proposalintake_admin(self): return self.get_section_admin_link(self.proposalintake) def proposal_admin(self): return format_html('<a href="{0}?award__id__exact={1}">{2}</a>', reverse('admin:awards_proposal_changelist'), self.id, 'Proposals') def awardacceptance_admin(self): return self.get_foreignkey_admin_link(AwardAcceptance) def awardnegotiation_admin(self): return self.get_foreignkey_admin_link(AwardNegotiation) def awardsetup_admin(self): return self.get_section_admin_link(self.awardsetup) def subaward_admin(self): return self.get_foreignkey_admin_link(Subaward) def awardmanagement_admin(self): return self.get_section_admin_link(self.awardmanagement) def awardcloseout_admin(self): return self.get_section_admin_link(self.awardcloseout) class AwardSection(FieldIteratorMixin, models.Model): """Abstract base class for all award sections""" HIDDEN_FIELDS = ['award', 'comments', 'is_edited'] HIDDEN_SEARCH_FIELDS = [] FIELDSETS = [] comments = models.TextField(blank=True, verbose_name='Comments') is_edited = models.BooleanField(default=False) class Meta: abstract = True def get_class_name(self): """Gets the Python class name""" return self.__class__.__name__ def get_verbose_class_name(self): return self._meta.verbose_name def get_most_recent_revision(self): latest_revision = reversion.get_for_object(self) if latest_revision: latest_revision = latest_revision[0].revision user = latest_revision.user.get_full_name() else: user = 'ATP' if latest_revision: return (user, latest_revision.date_created) else: return (user, None) class AssignableAwardSection(AwardSection): """Base model class for an Award section that can be assigned to a user""" date_assigned = models.DateTimeField(blank=True, null=True, verbose_name='Date Assigned') class Meta: abstract = True def set_date_assigned(self): self.date_assigned = datetime.now() self.save() class ProposalIntake(AwardSection): """Model for the ProposalIntake data""" user_list = User.objects.filter(is_active=True).order_by('first_name') users = [(user.first_name + ' ' + user.last_name, user.first_name + ' ' + user.last_name) for user in user_list] PROPOSAL_STATUS_CHOICES = ( ('NS', 'Cancelled - not submitted'), ('PE', 'Planned'), ('RO', 'Routing'), ('SB', 'Submitted'), ) PROPOSAL_OUTCOME_CHOICES = ( ('AW', 'Awarded'), ('UN', 'Unfunded'), ) SPA1_CHOICES = ( ('', ''), ) SPA1_CHOICES = tuple(users) if users else SPA1_CHOICES HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'principal_investigator', 'agency', 'prime_sponsor', 'program_announcement', 'announcement_link', 'proposal_due_to_sponsor', 'proposal_due_to_ovpr', 'proposal_due_to_aor', 'school', 'phs_funded', 'fcoi_submitted', 'date_received', 'proposal_status', 'proposal_outcome', 'proposal_number', 'five_days_requested', 'five_days_granted', 'jit_request', 'jit_response_submitted', 'creation_date'] minimum_fields = ( ) award = models.OneToOneField(Award, null=True, blank=True) creation_date = models.DateTimeField(auto_now_add=True, blank=True, null=True, verbose_name='Date Created') principal_investigator = models.ForeignKey( AwardManager, blank=True, null=True, limit_choices_to={ 'active': True}, verbose_name='Principal Investigator') agency = models.CharField(max_length=255, blank=True) prime_sponsor = models.CharField( max_length=255, blank=True, verbose_name='Prime (if GW is subawardee)') program_announcement = models.CharField( max_length=50, blank=True, verbose_name='Program announcement number') announcement_link = models.CharField(max_length=250, blank=True) proposal_due_to_sponsor = models.DateField(null=True, blank=True) proposal_due_to_ovpr = models.DateField( null=True, blank=True, verbose_name='Proposal due to OVPR') proposal_due_to_aor = models.DateField( null=True, blank=True, verbose_name='Proposal due to AOR') spa1 = models.CharField(blank=False, verbose_name='SPA I*', max_length=150, choices=SPA1_CHOICES, null=True) school = models.CharField(max_length=150, blank=True) department = models.ForeignKey( AwardOrganization, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Department') phs_funded = models.NullBooleanField(verbose_name='PHS funded?') fcoi_submitted = models.NullBooleanField( verbose_name='FCOI disclosure submitted for each investigator?') date_received = models.DateField( null=True, blank=True, verbose_name='Date received by SPA I') proposal_status = models.CharField( choices=PROPOSAL_STATUS_CHOICES, max_length=2, blank=True) proposal_outcome = models.CharField( choices=PROPOSAL_OUTCOME_CHOICES, max_length=2, blank=True) proposal_number = models.CharField(max_length=15, blank=True, verbose_name="Cayuse Proposal Number") five_days_requested = models.DateField( null=True, blank=True, verbose_name='Date 5 days waiver requested') five_days_granted = models.DateField( null=True, blank=True, verbose_name='Date 5 days waiver granted') jit_request = models.NullBooleanField(verbose_name='JIT request?') jit_response_submitted = models.DateField( null=True, blank=True, verbose_name='JIT response submitted?') five_days_waiver_request = models.NullBooleanField( null=True, blank=True, verbose_name="5 day waiver granted?") def __unicode__(self): return u'Proposal Intake %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" if self.award: return reverse( 'edit_proposal_intake', kwargs={ 'award_pk': self.award.pk}) else: return reverse( 'edit_standalone_proposal_intake', kwargs={ 'proposalintake_pk': self.id}) def get_proposal_status(self): """Gets the human-readable value of the Proposal's status""" return get_value_from_choices(self.PROPOSAL_STATUS_CHOICES, self.proposal_status) def get_proposal_outcome(self): return get_value_from_choices(self.PROPOSAL_OUTCOME_CHOICES, self.proposal_outcome) class Proposal(AwardSection): """Model for the Proposal data""" # HIDDEN_FIELDS aren't rendered by FieldIteratorMixin HIDDEN_FIELDS = AwardSection.HIDDEN_FIELDS + [ 'dummy', 'is_first_proposal', 'lotus_id', 'lotus_agency_name', 'lotus_department_code', 'employee_id', 'proposal_id'] HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'creation_date', 'sponsor_deadline', 'is_subcontract', 'federal_identifier', 'is_change_in_grantee_inst', 'responsible_entity', 'departmental_id_primary', 'departmental_id_secondary', 'departmental_name_primary', 'departmental_name_secondary', 'are_vertebrate_animals_used', 'is_iacuc_review_pending', 'iacuc_protocol_number', 'iacuc_approval_date', 'are_human_subjects_used', 'is_irb_review_pending', 'irb_protocol_number', 'irb_review_date', 'budget_first_per_start_date', 'budget_first_per_end_date', 'cost_shr_mand_is_committed', 'cost_shr_mand_source', 'cost_shr_vol_is_committed', 'cost_shr_vol_source', 'tracking_number', 'total_costs_y1', 'total_costs_y2', 'total_costs_y3', 'total_costs_y4', 'total_costs_y5', 'total_costs_y6', 'total_costs_y7', 'total_costs_y8', 'total_costs_y9', 'total_costs_y10', 'total_direct_costs_y1', 'total_direct_costs_y2', 'total_direct_costs_y3', 'total_direct_costs_y4', 'total_direct_costs_y5', 'total_direct_costs_y6', 'total_direct_costs_y7', 'total_direct_costs_y8', 'total_direct_costs_y9', 'total_direct_costs_y10', 'total_indirect_costs_y1', 'total_indirect_costs_y2', 'total_indirect_costs_y3', 'total_indirect_costs_y4', 'total_indirect_costs_y5', 'total_indirect_costs_y6', 'total_indirect_costs_y7', 'total_indirect_costs_y8', 'total_indirect_costs_y9', 'total_indirect_costs_y10'] # Fieldsets are grouped together at the top of the section under the title FIELDSETS = [{'title': 'Proposal Summary', 'fields': ('creation_date', 'proposal_number', 'proposal_title', 'proposal_type', 'principal_investigator', 'project_title', 'department_name', 'division_name', 'agency_name', 'is_subcontract', 'who_is_prime', 'tracking_number', 'project_start_date', 'project_end_date', 'submission_date', 'sponsor_deadline' )}, {'title': 'Project Data', 'fields': ('agency_type', 'application_type_code', 'federal_identifier', 'is_change_in_grantee_inst', 'project_type' )}, {'title': 'Project Administration', 'fields': ('responsible_entity', 'departmental_id_primary', 'departmental_id_secondary', 'departmental_name_primary', 'departmental_name_secondary' )}, {'title': 'Compliance: Animal Subjects', 'fields': ('are_vertebrate_animals_used', 'is_iacuc_review_pending', 'iacuc_protocol_number', 'iacuc_approval_date' )}, {'title': 'Compliance: Human Subjects', 'fields': ('are_human_subjects_used', 'is_irb_review_pending', 'irb_protocol_number', 'irb_review_date' )}, {'title': 'Compliance: Lab Safety', 'fields': ('is_haz_mat', )}, {'title': 'Compliance: Export Controls', 'fields': ('will_involve_foreign_nationals', 'will_involve_shipment', 'will_involve_foreign_contract' )}, {'title': 'Budget Data', 'fields': ('budget_first_per_start_date', 'budget_first_per_end_date', 'cost_shr_mand_is_committed', 'cost_shr_mand_amount', 'cost_shr_mand_source', 'cost_shr_vol_is_committed', 'cost_shr_vol_amount', 'cost_shr_vol_source' )} ] # Display tables are displayed at the end of a section in an HTML table DISPLAY_TABLES = [ { 'title': 'Budgeted Costs', 'columns': ( 'Direct Costs', 'Indirect Costs', 'Total Costs'), 'rows': [ { 'label': 'Total', 'fields': ( 'total_direct_costs', 'total_indirect_costs', 'total_costs')}, { 'label': 'Y1', 'fields': ( 'total_direct_costs_y1', 'total_indirect_costs_y1', 'total_costs_y1')}, { 'label': 'Y2', 'fields': ( 'total_direct_costs_y2', 'total_indirect_costs_y2', 'total_costs_y2')}, { 'label': 'Y3', 'fields': ( 'total_direct_costs_y3', 'total_indirect_costs_y3', 'total_costs_y3')}, { 'label': 'Y4', 'fields': ( 'total_direct_costs_y4', 'total_indirect_costs_y4', 'total_costs_y4')}, { 'label': 'Y5', 'fields': ( 'total_direct_costs_y5', 'total_indirect_costs_y5', 'total_costs_y5')}, { 'label': 'Y6', 'fields': ( 'total_direct_costs_y6', 'total_indirect_costs_y6', 'total_costs_y6')}, { 'label': 'Y7', 'fields': ( 'total_direct_costs_y7', 'total_indirect_costs_y7', 'total_costs_y7')}, { 'label': 'Y8', 'fields': ( 'total_direct_costs_y8', 'total_indirect_costs_y8', 'total_costs_y8')}, { 'label': 'Y9', 'fields': ( 'total_direct_costs_y9', 'total_indirect_costs_y9', 'total_costs_y9')}, { 'label': 'Y10', 'fields': ( 'total_direct_costs_y10', 'total_indirect_costs_y10', 'total_costs_y10')}, ] } ] # Entries here appear on the EAS Award Setup report screen EAS_REPORT_FIELDS = [ 'proposal_id', 'project_title', 'department_name', 'is_subcontract', 'who_is_prime', 'agency_name', ] # A small mapping to help figure out which field data to use when conforming # Lotus Notes legacy data to EAS data when importing a proposal from Lotus LOTUS_FK_LOOKUPS = { 'lotus_agency_name': 'agency_name', 'lotus_department_code': 'department_name', 'employee_id': 'principal_investigator' } award = models.ForeignKey( Award, null=True, blank=True, on_delete=models.SET_NULL) dummy = models.BooleanField(default=False) is_first_proposal = models.BooleanField(default=False) creation_date = models.DateTimeField(auto_now_add=True, blank=True, null=True, verbose_name='Date Created') lotus_id = models.CharField(max_length=20, blank=True) employee_id = models.CharField( max_length=40, blank=True, verbose_name='Employee ID') proposal_id = models.BigIntegerField( unique=True, null=True, blank=True, verbose_name='Proposal ID') proposal_number = models.CharField( max_length=50, null=True, blank=True, verbose_name='Proposal Number') proposal_title = models.CharField( max_length=256, blank=True, verbose_name='Internal Proposal Title') proposal_type = models.CharField(max_length=256, blank=True) principal_investigator = models.ForeignKey( AwardManager, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Principal Investigator') project_title = models.CharField(max_length=255, blank=True) lotus_department_code = models.CharField(max_length=128, blank=True) department_name = models.ForeignKey( AwardOrganization, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Department Code & Name') division_name = models.CharField(max_length=150, blank=True) agency_name = models.ForeignKey( FundingSource, null=True, blank=True, limit_choices_to={ 'active': True}) is_subcontract = models.CharField( max_length=10, blank=True, verbose_name='Is this a subcontract?') who_is_prime = models.ForeignKey( PrimeSponsor, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Prime Sponsor') tracking_number = models.CharField( max_length=15, blank=True, verbose_name='Grants.gov tracking number') project_start_date = models.DateField(null=True, blank=True) project_end_date = models.DateField(null=True, blank=True) submission_date = models.DateField(null=True, blank=True) sponsor_deadline = models.DateField(null=True, blank=True) lotus_agency_name = models.CharField(max_length=250, blank=True) project_title = models.CharField(max_length=256, blank=True) agency_type = models.CharField(max_length=256, blank=True) application_type_code = models.CharField( max_length=25, blank=True, verbose_name='Kind of application') federal_identifier = models.CharField(max_length=256, blank=True, verbose_name='Previous Grant #') is_change_in_grantee_inst = models.CharField( max_length=10, blank=True, verbose_name='Change in grantee institution?') project_type = models.CharField(max_length=256, blank=True) responsible_entity = models.CharField(max_length=256, blank=True) departmental_id_primary = models.CharField( max_length=256, blank=True, verbose_name='Departmental ID primary') departmental_id_secondary = models.CharField( max_length=256, blank=True, verbose_name='Departmental ID secondary') departmental_name_primary = models.CharField(max_length=256, blank=True) departmental_name_secondary = models.CharField(max_length=256, blank=True) are_vertebrate_animals_used = models.CharField( max_length=10, blank=True, verbose_name='Are vertebrate animals used?') is_iacuc_review_pending = models.CharField( max_length=10, blank=True, verbose_name='Is IACUC review pending?') iacuc_protocol_number = models.CharField( max_length=256, blank=True, verbose_name='IACUC protocol number') iacuc_approval_date = models.DateField( null=True, blank=True, verbose_name='IACUC approval date') are_human_subjects_used = models.CharField( max_length=10, blank=True, verbose_name='Are human subjects used?') is_irb_review_pending = models.CharField( max_length=10, blank=True, verbose_name='Is IRB review pending?') irb_protocol_number = models.CharField( max_length=256, blank=True, verbose_name='IRB protocol number') irb_review_date = models.DateField( null=True, blank=True, verbose_name='IRB review date') is_haz_mat = models.CharField(max_length=10, blank=True, verbose_name='Uses hazardous materials') budget_first_per_start_date = models.DateField( null=True, blank=True, verbose_name='Budget first period start date') budget_first_per_end_date = models.DateField( null=True, blank=True, verbose_name='Budget first period end date') cost_shr_mand_is_committed = models.CharField(max_length=10, blank=True) cost_shr_mand_amount = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) cost_shr_mand_source = models.CharField(max_length=256, blank=True) cost_shr_vol_is_committed = models.CharField(max_length=10, blank=True) cost_shr_vol_amount = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) cost_shr_vol_source = models.CharField(max_length=256, blank=True) will_involve_foreign_nationals = models.CharField( max_length=10, blank=True) will_involve_shipment = models.CharField(max_length=10, blank=True) will_involve_foreign_contract = models.CharField(max_length=10, blank=True) total_costs = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y1 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y2 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y3 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y4 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y5 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y6 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y7 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y8 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y9 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_costs_y10 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y1 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y2 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y3 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y4 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y5 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y6 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y7 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y8 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y9 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_direct_costs_y10 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y1 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y2 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y3 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y4 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y5 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y6 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y7 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y8 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y9 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) total_indirect_costs_y10 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) def __unicode__(self): return u'Proposal #%s' % (self.get_unique_identifier()) class Meta: index_together = [ ["award", "is_first_proposal"], ] def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_proposal', kwargs={ 'award_pk': self.award.pk, 'proposal_pk': self.id}) def get_unique_identifier(self): """Gets a value that uniquely identifies this Proposal""" return self.proposal_number def save(self, *args, **kwargs): """Overrides the parent save method. If this is a new Proposal, copy certain fields over to the AwardAcceptance object """ if not self.dummy and not self.pk: try: award_intake = self.award.get_current_award_acceptance() award_intake.copy_from_proposal(self) except: pass super(Proposal, self).save(*args, **kwargs) def delete(self, *args, **kwargs): """Overrides the parent delete method. If this Proposal came from Lotus, just remove the reference to the Award instead of deleting from the database. """ if self.lotus_id: self.award = None self.save() else: super(Proposal, self).delete(*args, **kwargs) def set_first_proposal(award, proposals): """Set the is_first_proposal flag on the appropriate proposal""" proposals.update(is_first_proposal=False) first_proposal = proposals.order_by('id').first() first_proposal.is_first_proposal = True first_proposal.save() @receiver(post_delete, sender=Proposal) @receiver(post_save, sender=Proposal) def check_first_proposal(sender, instance, **kwargs): """Use Django signals to keep the is_first_proposal flag up to date""" try: award = instance.award except Award.DoesNotExist: award = None if not award: return proposals = Proposal.objects.filter(award=award) try: dummy_proposal = Proposal.objects.get(award=award, dummy=True) except Proposal.DoesNotExist: dummy_proposal = None if len(proposals) == 0: Proposal.objects.create(award=award, dummy=True) return elif len(proposals) > 1 and dummy_proposal: dummy_proposal.delete() first_proposals = Proposal.objects.filter( award=award, is_first_proposal=True) if len(first_proposals) != 1: set_first_proposal(award, proposals) class KeyPersonnel(FieldIteratorMixin, models.Model): """Model for the KeyPersonnel data""" HIDDEN_FIELDS = ['proposal'] HIDDEN_TABLE_FIELDS = [] proposal = models.ForeignKey(Proposal) employee_id = models.CharField( max_length=40, blank=True, verbose_name='Emp ID') last_name = models.CharField(max_length=64, blank=True) first_name = models.CharField(max_length=64, blank=True) middle_name = models.CharField(max_length=32, blank=True) project_role = models.CharField(max_length=128, blank=True) calendar_months = models.DecimalField( decimal_places=3, max_digits=5, null=True, blank=True, verbose_name='Calendar mos.') academic_months = models.DecimalField( decimal_places=3, max_digits=5, null=True, blank=True, verbose_name='Academic mos.') summer_months = models.DecimalField( decimal_places=3, max_digits=5, null=True, blank=True, verbose_name='Summer mos.') effort = models.CharField(max_length=10, blank=True) def __unicode__(self): return u'%s, %s %s on %s' % ( self.last_name, self.first_name, self.middle_name, self.proposal) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_key_personnel', kwargs={ 'award_pk': self.proposal.award.pk, 'proposal_pk': self.proposal.pk, 'key_personnel_pk': self.id}) def get_delete_url(self): """Gets the URL used to delete this object""" return reverse( 'delete_key_personnel', kwargs={ 'award_pk': self.proposal.award.pk, 'proposal_pk': self.proposal.pk, 'key_personnel_pk': self.id}) class PerformanceSite(FieldIteratorMixin, models.Model): """Model for the PerformanceSite data""" HIDDEN_FIELDS = ['proposal'] HIDDEN_TABLE_FIELDS = [] proposal = models.ForeignKey(Proposal) ps_organization = models.CharField( max_length=255, blank=True, verbose_name='Organization') ps_duns = models.BigIntegerField( null=True, blank=True, verbose_name='DUNS') ps_street1 = models.CharField( max_length=255, blank=True, verbose_name='Street 1') ps_street2 = models.CharField( max_length=255, blank=True, verbose_name='Street 2') ps_city = models.CharField(max_length=255, blank=True, verbose_name='City') ps_state = models.CharField( max_length=100, blank=True, verbose_name='State') ps_zipcode = models.CharField( max_length=128, blank=True, verbose_name='Zip') ps_country = models.CharField( max_length=128, blank=True, verbose_name='Country') def __unicode__(self): return u'%s %s, %s' % (self.ps_street1, self.ps_city, self.ps_state) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_performance_site', kwargs={ 'award_pk': self.proposal.award.pk, 'proposal_pk': self.proposal.pk, 'performance_site_pk': self.id}) def get_delete_url(self): """Gets the URL used to delete this object""" return reverse( 'delete_performance_site', kwargs={ 'award_pk': self.proposal.award.pk, 'proposal_pk': self.proposal.pk, 'performance_site_pk': self.id}) class AwardModificationMixin(object): """Mixin used for Award sections that can have modifications""" def clean(self, *args, **kwargs): """Overrides the base clean method. Verifies there are no other current modifications.""" section = self.__class__ active_modifications = section.objects.filter( award=self.award, current_modification=True).exclude( pk=self.id) if self.current_modification and len(active_modifications) > 0: raise ValidationError( 'Another %s is already the current modification for %s. \ Set "current modification" on all other %s objects and try again.' % (section.__name__, self.award, section.__name__)) super(AwardModificationMixin, self).clean(*args, **kwargs) class AwardAcceptance(AwardModificationMixin, AwardSection): """Model for the AwardAcceptance data""" EAS_STATUS_CHOICES = ( ('A', 'Active'), ('OH', 'On hold'), ('AR', 'At risk'), ('C', 'Closed') ) PRIORITY_STATUS_CHOICES = ( ('on', 1), ('tw', 2), ('th', 3), ('fo', 4), ('fi', 5), ('ni', 9) ) PRIORITY_STATUS_DICT = {'on': 1, 'tw': 2, 'th': 3, 'fo': 4, 'fi': 5, 'ni': 9 } HIDDEN_FIELDS = AwardSection.HIDDEN_FIELDS + ['current_modification', 'award_text'] HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'fcoi_cleared_date', 'project_title', 'full_f_a_recovery', 'explanation', 'mfa_investigators', 'award_total_costs_y1', 'award_total_costs_y2', 'award_total_costs_y3', 'award_total_costs_y4', 'award_total_costs_y5', 'award_total_costs_y6', 'award_total_costs_y7', 'award_total_costs_y8', 'award_total_costs_y9', 'award_total_costs_y10', 'award_direct_costs_y1', 'award_direct_costs_y2', 'award_direct_costs_y3', 'award_direct_costs_y4', 'award_direct_costs_y5', 'award_direct_costs_y6', 'award_direct_costs_y7', 'award_direct_costs_y8', 'award_direct_costs_y9', 'award_direct_costs_y10', 'award_indirect_costs_y1', 'award_indirect_costs_y2', 'award_indirect_costs_y3', 'award_indirect_costs_y4', 'award_indirect_costs_y5', 'award_indirect_costs_y6', 'award_indirect_costs_y7', 'award_indirect_costs_y8', 'award_indirect_costs_y9', 'award_indirect_costs_y10', 'contracting_official', 'gmo_co_email', 'gmo_co_phone_number', 'creation_date'] DISPLAY_TABLES = [ { 'title': 'Costs', 'columns': ( 'Total Direct Costs', 'Total Indirect Costs', 'Total Costs'), 'rows': [ { 'label': 'Total', 'fields': ( 'award_direct_costs', 'award_indirect_costs', 'award_total_costs')}, { 'label': 'Y1', 'fields': ( 'award_direct_costs_y1', 'award_indirect_costs_y1', 'award_total_costs_y1')}, { 'label': 'Y2', 'fields': ( 'award_direct_costs_y2', 'award_indirect_costs_y2', 'award_total_costs_y2')}, { 'label': 'Y3', 'fields': ( 'award_direct_costs_y3', 'award_indirect_costs_y3', 'award_total_costs_y3')}, { 'label': 'Y4', 'fields': ( 'award_direct_costs_y4', 'award_indirect_costs_y4', 'award_total_costs_y4')}, { 'label': 'Y5', 'fields': ( 'award_direct_costs_y5', 'award_indirect_costs_y5', 'award_total_costs_y5')}, { 'label': 'Y6', 'fields': ( 'award_direct_costs_y6', 'award_indirect_costs_y6', 'award_total_costs_y6')}, { 'label': 'Y7', 'fields': ( 'award_direct_costs_y7', 'award_indirect_costs_y7', 'award_total_costs_y7')}, { 'label': 'Y8', 'fields': ( 'award_direct_costs_y8', 'award_indirect_costs_y8', 'award_total_costs_y8')}, { 'label': 'Y9', 'fields': ( 'award_direct_costs_y9', 'award_indirect_costs_y9', 'award_total_costs_y9')}, { 'label': 'Y10', 'fields': ( 'award_direct_costs_y10', 'award_indirect_costs_y10', 'award_total_costs_y10')}, ] } ] EAS_REPORT_FIELDS = [ 'eas_status', 'award_issue_date', 'award_acceptance_date', 'sponsor_award_number', 'agency_award_number', ] # These fields must have values before this section can be completed minimum_fields = ( 'award_issue_date', ) award = models.ForeignKey(Award) creation_date = models.DateTimeField(auto_now_add=True, blank=True, null=True, verbose_name='Date Created') current_modification = models.BooleanField(default=True) eas_status = models.CharField( choices=EAS_STATUS_CHOICES, max_length=2, blank=True, verbose_name='EAS status') new_funding = models.NullBooleanField(verbose_name='New Funding?') fcoi_cleared_date = models.DateField( null=True, blank=True, verbose_name='FCOI cleared date') phs_funded = models.NullBooleanField(verbose_name='PHS funded?') award_setup_priority = models.CharField( choices=PRIORITY_STATUS_CHOICES, max_length=2, blank=True, verbose_name='Award Setup Priority' ) priority_by_director = models.NullBooleanField(blank=True, null=True, verbose_name='Prioritized by Director?') project_title = models.CharField( max_length=250, blank=True, verbose_name='Project Title (if different from Proposal)') foreign_travel = models.NullBooleanField(verbose_name='Foreign Travel?') f_a_rate = models.CharField( max_length=250, blank=True, verbose_name='F&A rate') full_f_a_recovery = models.NullBooleanField( verbose_name='Full F&A Recovery?') explanation = models.CharField( max_length=250, blank=True, verbose_name='If no full F&A, provide explanation') mfa_investigators = models.NullBooleanField( verbose_name='MFA investigators?') admin_establishment = models.NullBooleanField( verbose_name='Administrative establishment?') award_issue_date = models.DateField(null=True, blank=True) award_acceptance_date = models.DateField(null=True, blank=True) agency_award_number = models.CharField(max_length=50, blank=True) sponsor_award_number = models.CharField( max_length=50, blank=True, verbose_name='Prime Award # (if GW is subawardee)') award_total_costs = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True, verbose_name='Total award costs') award_direct_costs = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True, verbose_name='Total award direct costs') award_indirect_costs = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True, verbose_name='Total award indirect costs') award_total_costs_y1 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y1 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y1 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y2 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y2 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y2 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y3 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y3 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y3 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y4 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y4 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y4 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y5 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y5 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y5 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y6 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y6 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y6 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y7 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y7 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y7 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y8 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y8 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y8 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y9 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y9 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y9 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_total_costs_y10 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_direct_costs_y10 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) award_indirect_costs_y10 = models.DecimalField( decimal_places=2, max_digits=15, null=True, blank=True) contracting_official = models.CharField( max_length=500, blank=True, verbose_name='GMO or CO') gmo_co_phone_number = models.CharField( max_length=15, blank=True, verbose_name='GMO/CO phone number') gmo_co_email = models.CharField( max_length=50, blank=True, verbose_name='GMO/CO email') pta_modification = models.NullBooleanField(verbose_name='Do you want to send this to the post-award team for modification?') acceptance_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') award_text = models.CharField(max_length=50, blank=True, null=True) def __unicode__(self): return u'Award Intake %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object.""" return reverse( 'edit_award_acceptance', kwargs={ 'award_pk': self.award.pk}) def copy_from_proposal(self, proposal): """Copies common fields to this object from the given Proposal.""" self.project_title = proposal.project_title self.award_total_costs = proposal.total_costs self.award_total_costs_y1 = proposal.total_costs_y1 self.award_total_costs_y2 = proposal.total_costs_y2 self.award_total_costs_y3 = proposal.total_costs_y3 self.award_total_costs_y4 = proposal.total_costs_y4 self.award_total_costs_y5 = proposal.total_costs_y5 self.award_total_costs_y6 = proposal.total_costs_y6 self.award_total_costs_y7 = proposal.total_costs_y7 self.award_total_costs_y8 = proposal.total_costs_y8 self.award_total_costs_y9 = proposal.total_costs_y9 self.award_total_costs_y10 = proposal.total_costs_y10 self.award_direct_costs = proposal.total_direct_costs self.award_direct_costs_y1 = proposal.total_direct_costs_y1 self.award_direct_costs_y2 = proposal.total_direct_costs_y2 self.award_direct_costs_y3 = proposal.total_direct_costs_y3 self.award_direct_costs_y4 = proposal.total_direct_costs_y4 self.award_direct_costs_y5 = proposal.total_direct_costs_y5 self.award_direct_costs_y6 = proposal.total_direct_costs_y6 self.award_direct_costs_y7 = proposal.total_direct_costs_y7 self.award_direct_costs_y8 = proposal.total_direct_costs_y8 self.award_direct_costs_y9 = proposal.total_direct_costs_y9 self.award_direct_costs_y10 = proposal.total_direct_costs_y10 self.award_indirect_costs = proposal.total_indirect_costs self.award_indirect_costs_y1 = proposal.total_indirect_costs_y1 self.award_indirect_costs_y2 = proposal.total_indirect_costs_y2 self.award_indirect_costs_y3 = proposal.total_indirect_costs_y3 self.award_indirect_costs_y4 = proposal.total_indirect_costs_y4 self.award_indirect_costs_y5 = proposal.total_indirect_costs_y5 self.award_indirect_costs_y6 = proposal.total_indirect_costs_y6 self.award_indirect_costs_y7 = proposal.total_indirect_costs_y7 self.award_indirect_costs_y8 = proposal.total_indirect_costs_y8 self.award_indirect_costs_y9 = proposal.total_indirect_costs_y9 self.award_indirect_costs_y10 = proposal.total_indirect_costs_y10 self.save() class Meta: verbose_name = 'Award intake' verbose_name_plural = 'Award intakes' def save(self, *args, **kwargs): """Overrides the base save method. If it was an existing AwardAcceptance, check to see if FCOI and/or PHS funded emails need to be sent. """ try: old_object = AwardAcceptance.objects.get(pk=self.pk) except AwardAcceptance.DoesNotExist: super(AwardAcceptance, self).save(*args, **kwargs) return super(AwardAcceptance, self).save(*args, **kwargs) # Send email to Award Setup user when FCOI cleared date is populated if not old_object.fcoi_cleared_date and self.fcoi_cleared_date: self.award.send_fcoi_cleared_notification(self.fcoi_cleared_date) if not old_object.phs_funded and self.phs_funded: self.award.send_phs_funded_notification() class NegotiationStatus(models.Model): NEGOTIATION_CHOICES = ( ('IQ', 'In queue'), ('IP', 'In progress'), ('WFS', 'Waiting for sponsor'), ('WFP', 'Waiting for PI'), ('WFO', 'Waiting for other department'), ('CD', 'Completed'), ('UD', 'Unrealized') ) NEGOTIATION_STATUS_CHOICES = ( 'In queue', 'In progress', 'Waiting for sponsor', 'Waiting for PI', 'Waiting for other department', 'Completed', 'Unrealized' ) NEGOTIATION_CHOICES_DICT = {'IQ': 'In queue', 'IP': 'In progress', 'WFS': 'Waiting for sponsor', 'WFP': 'Waiting for PI', 'WFO': 'Waiting for other department', 'CD': 'Completed', 'UD': 'Unrealized' } negotiation_status = models.CharField( choices=NEGOTIATION_CHOICES, max_length=50, blank=True) negotiation_status_changed_user = models.CharField( max_length=100, blank=True) negotiation_notes = models.TextField( blank=True) award = models.ForeignKey(Award) negotiation_status_date = models.DateTimeField(blank=True, null=True) def __unicode__(self): return u'%s Status %s' % (self.award, self.negotiation_status) class AwardNegotiation(AwardModificationMixin, AssignableAwardSection): """Model for the AwardNegotiation data""" AWARD_TYPE_CHOICES = ( ('CR', 'Contract: Cost-reimbursable'), ('FP', 'Contract: Fixed price'), ('TM', 'Contract: Time & materials'), ('GC', 'Grant: Cost-reimbursable'), ('GF', 'Grant: Fixed amount award'), ('CA', 'Cooperative agreement'), ('CD', 'CRADA'), ('ND', 'NDA'), ('TA', 'Teaming agreement'), ('DU', 'DUA'), ('RF', 'RFP'), ('MT', 'MTA'), ('MA', 'Master agreement'), ('OT', 'Other') ) NEGOTIATION_CHOICES = ( ('IQ', 'In queue'), ('IP', 'In progress'), ('WFS', 'Waiting for sponsor'), ('WFP', 'Waiting for PI'), ('WFO', 'Waiting for other department'), ('CD', 'Completed'), ('UD', 'Unrealized') ) HIDDEN_FIELDS = AwardSection.HIDDEN_FIELDS + ['current_modification', 'date_received', 'award_text'] HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'subcontracting_plan', 'under_master_agreement', 'retention_period', 'gw_doesnt_own_ip', 'gw_background_ip', 'foreign_restrictions', 'certificates_insurance', 'insurance_renewal', 'government_property', 'everify', 'date_assigned'] EAS_REPORT_FIELDS = [ 'award_type', ] minimum_fields = ( 'award_type', ) award = models.ForeignKey(Award) current_modification = models.BooleanField(default=True) subcontracting_plan = models.NullBooleanField( verbose_name='Is Small Business Subcontracting Plan required?') under_master_agreement = models.NullBooleanField( verbose_name='Under Master Agreement?') award_type = models.CharField( choices=AWARD_TYPE_CHOICES, max_length=3, blank=True, verbose_name='Award Type') other_award_type = models.CharField(max_length=255, blank=True) related_other_agreements = models.NullBooleanField( verbose_name='Related Other Agreements?') related_other_comments = models.TextField( blank=True, verbose_name='Related other agreements comments') negotiator = models.CharField( max_length=500, blank=True, verbose_name='Negotiator Assist') date_received = models.DateField( null=True, blank=True, verbose_name='Date Received') retention_period = models.CharField( max_length=500, blank=True, verbose_name='Sponsor Retention Period') gw_doesnt_own_ip = models.NullBooleanField( verbose_name="GW Doesn't Own IP?") gw_background_ip = models.NullBooleanField( verbose_name='GW Background IP?') negotiation_status = models.CharField( choices=NEGOTIATION_CHOICES, max_length=3, blank=True, verbose_name='Negotiation Status', default='IQ') negotiation_notes = models.TextField( blank=True, verbose_name='Negotiation Notes') foreign_restrictions = models.NullBooleanField( verbose_name='Foreign Participation Restrictions?') certificates_insurance = models.NullBooleanField( verbose_name='Certificate of Insurance Needed?') insurance_renewal = models.DateField( null=True, blank=True, verbose_name='Certificate of Insurance Renewal Date') government_property = models.NullBooleanField( verbose_name='Government Furnished Property?') data_security_restrictions = models.NullBooleanField( verbose_name='Data/Security Restrictions?') everify = models.NullBooleanField(verbose_name='E-verify?') publication_restriction = models.NullBooleanField( verbose_name='Publication Restriction?') negotiation_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') award_text = models.CharField(max_length=50, blank=True, null=True) def __unicode__(self): return u'Award Negotiation %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_award_negotiation', kwargs={ 'award_pk': self.award.pk}) class AwardSetup(AssignableAwardSection): """Model for the AwardSetup data""" WAIT_FOR = {'RB': 'Revised Budget', 'PA': 'PI Access', 'CA': 'Cost Share Approval', 'FC': 'FCOI', 'PS': 'Proposal Submission', 'SC': 'Sponsor Clarity', 'NO': 'New Org needed', 'IC': 'Internal Clarification', 'DC': 'Documents not in GW Docs' } WAIT_FOR_CHOICES = ( ('RB', 'Revised Budget'), ('PA', 'PI Access'), ('CA', 'Cost Share Approval'), ('FC', 'FCOI'), ('PS', 'Proposal Submission'), ('SC', 'Sponsor Clarity'), ('NO', 'New Org needed'), ('IC', 'Internal Clarification'), ('DC', 'Documents not in GW Docs') ) SP_TYPE_CHOICES = ( ('SP1', 'SP1 - Research and Development'), ('SP2', 'SP2 - Training'), ('SP3', 'SP3 - Other'), ('SP4', 'SP4 - Clearing and Suspense'), ('SP5', 'SP5 - Program Income'), ) REPORTING_CHOICES = ( ('MN', 'Monthly'), ('QR', 'Quarterly'), ('SA', 'Semi-annually'), ('AN', 'Annually'), ('OT', 'Other (specify)') ) EAS_AWARD_CHOICES = ( ('C', 'Contract'), ('G', 'Grant'), ('I', 'Internal Funding'), ('PP', 'Per Patient'), ('PA', 'Pharmaceutical') ) PROPERTY_CHOICES = ( ('TG', 'Title to GW'), ('TS', 'Title to Sponsor'), ('TD', 'Title to be determined at purchase'), ('SE', 'Special EAS Value') ) ONR_CHOICES = ( ('Y', 'Yes, Administered'), ('N', 'No, Administered') ) COST_SHARING_CHOICES = ( ('M', 'Mandatory'), ('V', 'Voluntary'), ('B', 'Both') ) PERFORMANCE_SITE_CHOICES = ( ('ON', 'On-campus'), ('OF', 'Off-campus'), ('OT', 'Other') ) TASK_LOCATION_CHOICES = ( ('AL', 'AL - ALEXANDRIA'), ('BE', 'BE - BETHESDA'), ('CC', 'CC - CRYSTAL CITY'), ('CL', 'CL - CLARENDON'), ('CM', 'CM - ST MARY\'S COUNTY, CALIFORNIA, MD'), ('CW', 'CW - K STREET CENTER OFF-CAMPUS DC'), ('DE', 'DE - DISTANCE EDUCATION'), ('FB', 'FB - FOGGY BOTTOM'), ('FC', 'FC - CITY OF FALLS CHURCH'), ('FX', 'FX - FAIRFAX COUNTY'), ('GS', 'GS - GODDARD SPACE FLIGHT CENTER'), ('HR', 'HR - HAMPTON ROADS'), ('IN', 'IN - INTERNATIONAL'), ('LA', 'LA - LANGLEY AIR FORCE BASE'), ('LO', 'LO - LOUDOUN COUNTY OTHER'), ('MV', 'MV - MOUNT VERNON CAMPUS'), ('OA', 'OA - OTHER ARLINGTON COUNTY'), ('OD', 'OD - OTHER DISTRICT OF COLUMBIA'), ('OG', 'OG - OTHER MONTGOMERY COUNTY'), ('OM', 'OM - OTHER MARYLAND'), ('OV', 'OV - OTHER VIRGINIA'), ('PA', 'PA - PACE - Classes at Sea'), ('RI', 'RI - RICHMOND, CITY OF'), ('RO', 'RO - ROSSLYN ARLINGTON COUNTY'), ('RV', 'RV - ROCKVILLE'), ('SM', 'SM - SUBURBAN MARYLAND'), ('T', 'T - TOTAL LOCATION'), ('US', 'US - OTHER US'), ('VC', 'VC - VIRGINIA CAMPUS'), ('VR', 'VR - VIRGINIA RESEARCH AND TECHNOLOGY CENTER'), ('VS', 'VS - VIRGINIA SQUARE'), ) EAS_SETUP_CHOICES = ( ('Y', 'Yes'), ('N', 'No'), ('M', 'Manual'), ) HIDDEN_FIELDS = AwardSection.HIDDEN_FIELDS + [ 'award_template', 'short_name', 'task_location', 'start_date', 'end_date', 'final_reports_due_date', 'eas_award_type', 'sp_type', 'indirect_cost_schedule', 'allowed_cost_schedule', 'cfda_number', 'federal_negotiated_rate', 'bill_to_address', 'billing_events', 'contact_name', 'phone', 'financial_reporting_req', 'financial_reporting_oth', 'property_equip_code', 'onr_administered_code', 'cost_sharing_code', 'document_number', 'performance_site', 'award_setup_complete', 'qa_screening_complete', 'ready_for_eas_setup', ] HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'nine_ninety_form_needed', 'patent_reporting_req', 'invention_reporting_req', 'property_reporting_req', 'equipment_reporting_req', 'budget_restrictions', 'record_destroy_date', 'date_assigned'] EAS_REPORT_FIELDS = [ # PTA info first 'award_template', 'short_name', 'task_location', 'start_date', 'end_date', 'final_reports_due_date', 'eas_award_type', 'sp_type', 'indirect_cost_schedule', 'allowed_cost_schedule', 'cfda_number', 'federal_negotiated_rate', 'bill_to_address', 'contact_name', 'phone', 'financial_reporting_req', 'financial_reporting_oth', 'property_equip_code', 'onr_administered_code', 'cost_sharing_code', 'billing_events', 'document_number', 'nine_ninety_form_needed', ] minimum_fields = ( ) MULTIPLE_SELECT_FIELDS = ( 'financial_reporting_req', 'technical_reporting_req', ) award = models.OneToOneField(Award) short_name = models.CharField( max_length=30, blank=True, verbose_name='Award short name') start_date = models.DateField(null=True, blank=True) end_date = models.DateField(null=True, blank=True) final_reports_due_date = models.DateField( null=True, blank=True, verbose_name='Final Reports/Final Invoice Due Date (Close Date)') eas_award_type = models.CharField( choices=EAS_AWARD_CHOICES, max_length=2, blank=True, verbose_name='EAS award type') sp_type = models.CharField( choices=SP_TYPE_CHOICES, max_length=3, blank=True, verbose_name='SP Type') indirect_cost_schedule = models.ForeignKey( IndirectCost, null=True, blank=True, limit_choices_to={ 'active': True}) allowed_cost_schedule = models.ForeignKey( AllowedCostSchedule, null=True, blank=True, limit_choices_to={ 'active': True}) cfda_number = models.ForeignKey( CFDANumber, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='CFDA number') federal_negotiated_rate = models.ForeignKey( FedNegRate, null=True, blank=True, limit_choices_to={ 'active': True}) property_equip_code = models.CharField( choices=PROPERTY_CHOICES, max_length=2, blank=True, verbose_name='T&C: Property and Equipment Code') onr_administered_code = models.CharField( choices=ONR_CHOICES, max_length=2, blank=True, verbose_name='T&C: ONR Administered Code') cost_sharing_code = models.CharField( choices=COST_SHARING_CHOICES, max_length=2, blank=True, verbose_name='T&C: Cost Sharing Code') bill_to_address = models.TextField(blank=True) contact_name = models.CharField( max_length=150, blank=True, verbose_name='Contact Name (Last, First)') phone = models.CharField(max_length=50, blank=True) billing_events = models.TextField(blank=True) document_number = models.CharField(max_length=100, blank=True) date_wait_for_updated = models.DateTimeField(blank=True, null=True, verbose_name='Date Wait for Updated') wait_for_reson = models.CharField( choices=WAIT_FOR_CHOICES, max_length=2, blank=True, null=True, verbose_name='Wait for' ) nine_ninety_form_needed = models.NullBooleanField( verbose_name='990 Form Needed?') task_location = models.CharField( choices=TASK_LOCATION_CHOICES, max_length=2, blank=True) performance_site = models.CharField( choices=PERFORMANCE_SITE_CHOICES, max_length=2, blank=True) expanded_authority = models.NullBooleanField( verbose_name='Expanded Authority?') financial_reporting_req = MultiSelectField( choices=REPORTING_CHOICES, blank=True, verbose_name='Financial Reporting Requirements') financial_reporting_oth = models.CharField( max_length=250, blank=True, verbose_name='Other financial reporting requirements') technical_reporting_req = MultiSelectField( choices=REPORTING_CHOICES, blank=True, verbose_name='Technical Reporting Requirements') technical_reporting_oth = models.CharField( max_length=250, blank=True, verbose_name='Other technical reporting requirements') patent_reporting_req = models.DateField( null=True, blank=True, verbose_name='Patent Report Requirement') invention_reporting_req = models.DateField( null=True, blank=True, verbose_name='Invention Report Requirement') property_reporting_req = models.DateField( null=True, blank=True, verbose_name='Property Report Requirement') equipment_reporting_req = models.DateField( null=True, blank=True, verbose_name='Equipment Report Requirement') budget_restrictions = models.NullBooleanField( verbose_name='Budget Restrictions?') award_template = models.ForeignKey( AwardTemplate, null=True, blank=True, limit_choices_to={ 'active': True}) award_setup_complete = models.DateField( null=True, blank=True, verbose_name='Award Setup Complete') qa_screening_complete = models.DateField( null=True, blank=True, verbose_name='QA Screening Complete') pre_award_spending_auth = models.NullBooleanField( verbose_name='Pre-award spending authorized?') record_destroy_date = models.DateField( null=True, blank=True, verbose_name='Record Retention Destroy Date') ready_for_eas_setup = models.CharField( choices=EAS_SETUP_CHOICES, max_length=3, blank=True, verbose_name='Ready for EAS Setup?') wait_for = models.TextField(blank=True) setup_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') def __unicode__(self): return u'Award Setup %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse('edit_award_setup', kwargs={'award_pk': self.award.pk}) def copy_from_proposal(self, proposal): """Copy common fields from the given proposal to this AwardSetup""" if proposal: self.start_date = proposal.project_start_date self.end_date = proposal.project_end_date self.save() def get_waiting_reason(self): return self.WAIT_FOR.get(self.wait_for_reson) if self.wait_for_reson else '' class AwardModification(AssignableAwardSection): """Model for the AwardModification data""" WAIT_FOR_CHOICES = ( ('RB', 'Revised Budget'), ('PA', 'PI Access'), ('CA', 'Cost Share Approval'), ('FC', 'FCOI'), ('PS', 'Proposal Submission'), ('SC', 'Sponsor Clarity'), ('NO', 'New Org needed'), ('IC', 'Internal Clarification'), ('DC', 'Documents not in GW Docs')) SP_TYPE_CHOICES = ( ('SP1', 'SP1 - Research and Development'), ('SP2', 'SP2 - Training'), ('SP3', 'SP3 - Other'), ('SP4', 'SP4 - Clearing and Suspense'), ('SP5', 'SP5 - Program Income'), ) REPORTING_CHOICES = ( ('MN', 'Monthly'), ('QR', 'Quarterly'), ('SA', 'Semi-annually'), ('AN', 'Annually'), ('OT', 'Other (specify)') ) EAS_AWARD_CHOICES = ( ('C', 'Contract'), ('G', 'Grant'), ('I', 'Internal Funding'), ('PP', 'Per Patient'), ('PA', 'Pharmaceutical') ) PROPERTY_CHOICES = ( ('TG', 'Title to GW'), ('TS', 'Title to Sponsor'), ('TD', 'Title to be determined at purchase'), ('SE', 'Special EAS Value') ) ONR_CHOICES = ( ('Y', 'Yes, Administered'), ('N', 'No, Administered') ) COST_SHARING_CHOICES = ( ('M', 'Mandatory'), ('V', 'Voluntary'), ('B', 'Both') ) PERFORMANCE_SITE_CHOICES = ( ('ON', 'On-campus'), ('OF', 'Off-campus'), ('OT', 'Other') ) TASK_LOCATION_CHOICES = ( ('AL', 'AL - ALEXANDRIA'), ('BE', 'BE - BETHESDA'), ('CC', 'CC - CRYSTAL CITY'), ('CL', 'CL - CLARENDON'), ('CM', 'CM - ST MARY\'S COUNTY, CALIFORNIA, MD'), ('CW', 'CW - K STREET CENTER OFF-CAMPUS DC'), ('DE', 'DE - DISTANCE EDUCATION'), ('FB', 'FB - FOGGY BOTTOM'), ('FC', 'FC - CITY OF FALLS CHURCH'), ('FX', 'FX - FAIRFAX COUNTY'), ('GS', 'GS - GODDARD SPACE FLIGHT CENTER'), ('HR', 'HR - HAMPTON ROADS'), ('IN', 'IN - INTERNATIONAL'), ('LA', 'LA - LANGLEY AIR FORCE BASE'), ('LO', 'LO - LOUDOUN COUNTY OTHER'), ('MV', 'MV - MOUNT VERNON CAMPUS'), ('OA', 'OA - OTHER ARLINGTON COUNTY'), ('OD', 'OD - OTHER DISTRICT OF COLUMBIA'), ('OG', 'OG - OTHER MONTGOMERY COUNTY'), ('OM', 'OM - OTHER MARYLAND'), ('OV', 'OV - OTHER VIRGINIA'), ('PA', 'PA - PACE - Classes at Sea'), ('RI', 'RI - RICHMOND, CITY OF'), ('RO', 'RO - ROSSLYN ARLINGTON COUNTY'), ('RV', 'RV - ROCKVILLE'), ('SM', 'SM - SUBURBAN MARYLAND'), ('T', 'T - TOTAL LOCATION'), ('US', 'US - OTHER US'), ('VC', 'VC - VIRGINIA CAMPUS'), ('VR', 'VR - VIRGINIA RESEARCH AND TECHNOLOGY CENTER'), ('VS', 'VS - VIRGINIA SQUARE'), ) EAS_SETUP_CHOICES = ( ('Y', 'Yes'), ('N', 'No'), ('M', 'Manual'), ) HIDDEN_FIELDS = AwardSection.HIDDEN_FIELDS + [ 'award_template', 'short_name', 'task_location', 'start_date', 'end_date', 'final_reports_due_date', 'eas_award_type', 'sp_type', 'indirect_cost_schedule', 'allowed_cost_schedule', 'cfda_number', 'federal_negotiated_rate', 'bill_to_address', 'billing_events', 'contact_name', 'phone', 'financial_reporting_req', 'financial_reporting_oth', 'property_equip_code', 'onr_administered_code', 'cost_sharing_code', 'document_number', 'performance_site', 'award_setup_complete', 'qa_screening_complete', 'ready_for_eas_setup', ] HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'nine_ninety_form_needed', 'patent_reporting_req', 'invention_reporting_req', 'property_reporting_req', 'equipment_reporting_req', 'budget_restrictions', 'record_destroy_date', 'date_assigned'] EAS_REPORT_FIELDS = [ # PTA info first 'award_template', 'short_name', 'task_location', 'start_date', 'end_date', 'final_reports_due_date', 'eas_award_type', 'sp_type', 'indirect_cost_schedule', 'allowed_cost_schedule', 'cfda_number', 'federal_negotiated_rate', 'bill_to_address', 'contact_name', 'phone', 'financial_reporting_req', 'financial_reporting_oth', 'property_equip_code', 'onr_administered_code', 'cost_sharing_code', 'billing_events', 'document_number', 'nine_ninety_form_needed', ] minimum_fields = ( ) MULTIPLE_SELECT_FIELDS = ( 'financial_reporting_req', 'technical_reporting_req', ) award = models.ForeignKey(Award) short_name = models.CharField( max_length=30, blank=True, verbose_name='Award short name') start_date = models.DateField(null=True, blank=True) end_date = models.DateField(null=True, blank=True) final_reports_due_date = models.DateField( null=True, blank=True, verbose_name='Final Reports/Final Invoice Due Date (Close Date)') eas_award_type = models.CharField( choices=EAS_AWARD_CHOICES, max_length=2, blank=True, verbose_name='EAS award type') sp_type = models.CharField( choices=SP_TYPE_CHOICES, max_length=3, blank=True, verbose_name='SP Type') indirect_cost_schedule = models.ForeignKey( IndirectCost, null=True, blank=True, limit_choices_to={ 'active': True}) allowed_cost_schedule = models.ForeignKey( AllowedCostSchedule, null=True, blank=True, limit_choices_to={ 'active': True}) cfda_number = models.ForeignKey( CFDANumber, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='CFDA number') federal_negotiated_rate = models.ForeignKey( FedNegRate, null=True, blank=True, limit_choices_to={ 'active': True}) property_equip_code = models.CharField( choices=PROPERTY_CHOICES, max_length=2, blank=True, verbose_name='T&C: Property and Equipment Code') onr_administered_code = models.CharField( choices=ONR_CHOICES, max_length=2, blank=True, verbose_name='T&C: ONR Administered Code') cost_sharing_code = models.CharField( choices=COST_SHARING_CHOICES, max_length=2, blank=True, verbose_name='T&C: Cost Sharing Code') bill_to_address = models.TextField(blank=True) contact_name = models.CharField( max_length=150, blank=True, verbose_name='Contact Name (Last, First)') phone = models.CharField(max_length=50, blank=True) billing_events = models.TextField(blank=True) document_number = models.CharField(max_length=100, blank=True) date_wait_for_updated = models.DateTimeField(blank=True, null=True, verbose_name='Date Wait for Updated') wait_for_reson = models.CharField( choices=WAIT_FOR_CHOICES, max_length=2, blank=True, null=True, verbose_name='Wait for' ) nine_ninety_form_needed = models.NullBooleanField( verbose_name='990 Form Needed?') task_location = models.CharField( choices=TASK_LOCATION_CHOICES, max_length=2, blank=True) performance_site = models.CharField( choices=PERFORMANCE_SITE_CHOICES, max_length=2, blank=True) expanded_authority = models.NullBooleanField( verbose_name='Expanded Authority?') financial_reporting_req = MultiSelectField( choices=REPORTING_CHOICES, blank=True, verbose_name='Financial Reporting Requirements') financial_reporting_oth = models.CharField( max_length=250, blank=True, verbose_name='Other financial reporting requirements') technical_reporting_req = MultiSelectField( choices=REPORTING_CHOICES, blank=True, verbose_name='Technical Reporting Requirements') technical_reporting_oth = models.CharField( max_length=250, blank=True, verbose_name='Other technical reporting requirements') patent_reporting_req = models.DateField( null=True, blank=True, verbose_name='Patent Report Requirement') invention_reporting_req = models.DateField( null=True, blank=True, verbose_name='Invention Report Requirement') property_reporting_req = models.DateField( null=True, blank=True, verbose_name='Property Report Requirement') equipment_reporting_req = models.DateField( null=True, blank=True, verbose_name='Equipment Report Requirement') budget_restrictions = models.NullBooleanField( verbose_name='Budget Restrictions?') award_template = models.ForeignKey( AwardTemplate, null=True, blank=True, limit_choices_to={ 'active': True}) award_setup_complete = models.DateField( null=True, blank=True, verbose_name='Award Setup Complete') qa_screening_complete = models.DateField( null=True, blank=True, verbose_name='QA Screening Complete') pre_award_spending_auth = models.NullBooleanField( verbose_name='Pre-award spending authorized?') record_destroy_date = models.DateField( null=True, blank=True, verbose_name='Record Retention Destroy Date') ready_for_eas_setup = models.CharField( choices=EAS_SETUP_CHOICES, max_length=3, blank=True, verbose_name='Ready for EAS Setup?') modification_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') wait_for = models.TextField(blank=True) def __unicode__(self): return u'Award Modification %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse('edit_award_setup', kwargs={'award_pk': self.award.pk}) class PTANumber(FieldIteratorMixin, models.Model): """Model for the PTANumber data""" EAS_AWARD_CHOICES = ( ('C', 'Contract'), ('G', 'Grant'), ('I', 'Internal Funding'), ('PP', 'Per Patient'), ('PA', 'Pharmaceutical') ) SP_TYPE_CHOICES = ( ('SP1', 'SP1 - Research and Development'), ('SP2', 'SP2 - Training'), ('SP3', 'SP3 - Other'), ('SP4', 'SP4 - Clearing and Suspense'), ('SP5', 'SP5 - Program Income'), ('SP7', 'SP7 - Symposium/Conference/Seminar'), ) EAS_SETUP_CHOICES = ( ('Y', 'Yes'), ('N', 'No'), ('M', 'Manual'), ) EAS_STATUS_CHOICES = ( ('A', 'Active'), ('OH', 'On hold'), ('AR', 'At risk'), ('C', 'Closed') ) HIDDEN_FIELDS = ['award'] HIDDEN_TABLE_FIELDS = [] HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'parent_banner_number', 'banner_number', 'cs_banner_number', 'allowed_cost_schedule', 'award_template', 'preaward_date', 'federal_negotiated_rate', 'indirect_cost_schedule', 'sponsor_banner_number', 'ready_for_eas_setup'] award = models.ForeignKey(Award) project_number = models.CharField( max_length=100, blank=True, verbose_name='Project #') task_number = models.CharField( max_length=100, blank=True, verbose_name='Task #') award_number = models.CharField( max_length=100, blank=True, verbose_name='Award #') award_setup_complete = models.DateField( null=True, blank=True, verbose_name='Award Setup Complete') total_pta_amount = models.DecimalField( decimal_places=2, max_digits=10, null=True, blank=True, verbose_name='Total PTA Amt') parent_banner_number = models.CharField( max_length=100, blank=True, verbose_name='Prnt Banner #') banner_number = models.CharField( max_length=100, blank=True, verbose_name='Banner #') cs_banner_number = models.CharField( max_length=100, blank=True, verbose_name='CS Banner #') principal_investigator = models.ForeignKey( AwardManager, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='PI*') agency_name = models.ForeignKey( FundingSource, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Agency Name*') department_name = models.ForeignKey( AwardOrganization, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Department Code & Name*') project_title = models.CharField(max_length=256, blank=True, verbose_name='Project Title*') who_is_prime = models.ForeignKey( PrimeSponsor, null=True, blank=True, limit_choices_to={ 'active': True}) allowed_cost_schedule = models.ForeignKey( AllowedCostSchedule, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Allowed Cost Schedule*') award_template = models.ForeignKey( AwardTemplate, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Award Template*') cfda_number = models.ForeignKey( CFDANumber, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='CFDA number*') eas_award_type = models.CharField( choices=EAS_AWARD_CHOICES, max_length=2, blank=True, verbose_name='EAS Award Type*') preaward_date = models.DateField(null=True, blank=True) start_date = models.DateField(null=True, blank=True, verbose_name='Start Date*') end_date = models.DateField(null=True, blank=True, verbose_name='End Date*') final_reports_due_date = models.DateField( null=True, blank=True, verbose_name='Final Reports/Final Invoice Due Date (Close Date)*') federal_negotiated_rate = models.ForeignKey( FedNegRate, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Federal Negotiated Rate*') indirect_cost_schedule = models.ForeignKey( IndirectCost, null=True, blank=True, limit_choices_to={ 'active': True}, verbose_name='Indirect Cost Schedule*') sp_type = models.CharField( choices=SP_TYPE_CHOICES, max_length=3, blank=True, verbose_name='SP Type*') short_name = models.CharField( max_length=30, blank=True, verbose_name='Award Short Name*') agency_award_number = models.CharField( max_length=50, blank=True, verbose_name='Agency Award Number*') sponsor_award_number = models.CharField( max_length=50, blank=True, verbose_name='Prime Award # (if GW is subawardee)*') sponsor_banner_number = models.CharField(max_length=50, blank=True) eas_status = models.CharField( choices=EAS_STATUS_CHOICES, max_length=2, blank=True, verbose_name='EAS Status*') ready_for_eas_setup = models.CharField( choices=EAS_SETUP_CHOICES, max_length=3, blank=True, verbose_name='Ready for EAS Setup?') is_edited = models.BooleanField(default=False) pta_number_updated = models.DateField( null=True, blank=True) def __unicode__(self): return u'PTA #%s' % (self.project_number) def save(self, *args, **kwargs): """Overrides the parent save method. If this is the first PTANumber entered (either on creation or save later), update some fields back to the most recent Proposal. """ super(PTANumber, self).save(*args, **kwargs) if self == self.award.get_first_pta_number(): proposal = self.award.get_most_recent_proposal() if proposal and self.agency_name != proposal.agency_name: proposal.agency_name = self.agency_name proposal.save() if proposal and self.who_is_prime != proposal.who_is_prime: proposal.who_is_prime = self.who_is_prime proposal.save() if proposal and self.project_title != proposal.project_title: proposal.project_title = self.project_title proposal.save() if proposal and self.start_date != proposal.project_start_date: proposal.project_start_date = self.start_date proposal.save() if proposal and self.end_date != proposal.project_end_date: proposal.project_end_date = self.end_date proposal.save() award_acceptance = self.award.get_current_award_acceptance() if self.agency_award_number != award_acceptance.agency_award_number: award_acceptance.agency_award_number = self.agency_award_number award_acceptance.save() if self.sponsor_award_number != award_acceptance.sponsor_award_number: award_acceptance.sponsor_award_number = self.sponsor_award_number award_acceptance.save() if self.eas_status != award_acceptance.eas_status: award_acceptance.eas_status = self.eas_status award_acceptance.save() if self.project_title != award_acceptance.project_title: award_acceptance.project_title = self.project_title award_acceptance.save() def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_pta_number', kwargs={ 'award_pk': self.award.pk, 'pta_pk': self.id}) def get_delete_url(self): """Gets the URL used to delete this object""" return reverse( 'delete_pta_number', kwargs={ 'award_pk': self.award.pk, 'pta_pk': self.id}) def get_recent_ptanumber_revision(self): """Gets the most recent revision of the model, using django-reversion""" latest_revision = reversion.get_for_object(self)[0].revision if latest_revision.user: user = latest_revision.user.get_full_name() else: user = 'ATP' return (user, latest_revision.date_created) class Subaward(AwardSection): """Model for the Subaward data""" RISK_CHOICES = ( ('L', 'Low'), ('M', 'Medium'), ('H', 'High') ) SUBRECIPIENT_TYPE_CHOICES = ( ('F', 'Foundation'), ('FP', 'For-Profit'), ('SG', 'State Government'), ('LG', 'Local Government'), ('I', 'International'), ('ON', 'Other non-profit'), ('U', 'University') ) AGREEMENT_CHOICES = ( ('SA', 'Subaward'), ('SC', 'Subcontract'), ('IC', 'ICA'), ('M', 'Modification'), ('H', 'Honorarium'), ('C', 'Consultant'), ('CS', 'Contract Service') ) SUBAWARD_STATUS_CHOICES = ( ('R', 'Review'), ('G', 'Waiting for GCAS approval'), ('D', 'Waiting for Department'), ('P', 'Procurement'), ('S', 'Sent to recepient'), ) CONTRACT_CHOICES = ( ('FP', 'Fixed price subcontract'), ('CR', 'Cost-reimbursable subcontract'), ('FA', 'Fixed amount award'), ('OT', 'Other') ) minimum_fields = ( 'subrecipient_type', 'risk', 'amount', 'gw_number', 'contact_information', 'subaward_start', 'subaward_end', 'agreement_type', 'debarment_check', 'international', 'sent', 'ffata_reportable', 'zip_code', ) HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'creation_date', 'modification_number', 'subaward_ready', 'sent', 'reminder', 'fcoi_cleared', 'citi_cleared', 'amount', 'contact_information', 'zip_code', 'subaward_start', 'subaward_end', 'debarment_check', 'international', 'cfda_number', 'ffata_submitted', 'tech_report_received'] award = models.ForeignKey(Award) creation_date = models.DateTimeField(auto_now_add=True, blank=True, null=True, verbose_name='Date Created') recipient = models.CharField(max_length=250, blank=True) agreement_type = models.CharField( choices=AGREEMENT_CHOICES, max_length=2, blank=True) modification_number = models.CharField(max_length=50, blank=True) subrecipient_type = models.CharField( choices=SUBRECIPIENT_TYPE_CHOICES, max_length=2, blank=True, verbose_name='Subrecipient Type') assist = models.CharField(max_length=100, blank=True) date_received = models.DateField(null=True, blank=True) status = models.CharField( choices=SUBAWARD_STATUS_CHOICES, max_length=2, blank=True) risk = models.CharField(choices=RISK_CHOICES, max_length=2, blank=True) approval_expiration = models.DateField( null=True, blank=True, verbose_name='Date of Expiration for Approval') subaward_ready = models.DateField( null=True, blank=True, verbose_name='Subaward ready to be initiated') sent = models.DateField( null=True, blank=True, verbose_name='Subagreement sent to recipient') reminder = models.NullBooleanField( verbose_name='Reminder sent to Subawardee?') received = models.DateField( null=True, blank=True, verbose_name='Receipt of Partially Executed Subagreement') fcoi_cleared = models.DateField( null=True, blank=True, verbose_name='Subaward Cleared FCOI Procedures') citi_cleared = models.DateField( null=True, blank=True, verbose_name='Subaward Completed CITI Training') date_fully_executed = models.DateField(null=True, blank=True) amount = models.DecimalField( decimal_places=2, max_digits=10, null=True, blank=True, verbose_name='Subaward Total Amount') gw_number = models.CharField( max_length=50, blank=True, verbose_name='GW Subaward Number') funding_mechanism = models.CharField( choices=CONTRACT_CHOICES, max_length=2, blank=True, verbose_name='Funding mechanism') other_mechanism = models.CharField( max_length=255, blank=True, verbose_name='Other funding mechanism') contact_information = models.TextField( blank=True, verbose_name='Subawardee contact information') zip_code = models.CharField( max_length=50, blank=True, verbose_name='ZIP code') subaward_start = models.DateField( null=True, blank=True, verbose_name='Subaward Performance Period Start') subaward_end = models.DateField( null=True, blank=True, verbose_name='Subaward Performance Period End') debarment_check = models.NullBooleanField( verbose_name='Debarment or suspension check?') international = models.NullBooleanField(verbose_name='International?') cfda_number = models.CharField( max_length=50, blank=True, verbose_name='CFDA number') fain = models.CharField(max_length=50, blank=True, verbose_name='FAIN') ein = models.CharField(max_length=50, blank=True, verbose_name='EIN') duns_number = models.CharField( max_length=50, blank=True, verbose_name='DUNS number') ffata_reportable = models.NullBooleanField( verbose_name='FFATA Reportable?') ffata_submitted = models.DateField( null=True, blank=True, verbose_name='FFATA Report Submitted Date') tech_report_due = models.DateField( null=True, blank=True, verbose_name='Technical Report Due Date') tech_report_received = models.DateField( null=True, blank=True, verbose_name='Technical Report Received Date') subaward_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') def __unicode__(self): return u'Subaward %s' % (self.gw_number) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_subaward', kwargs={ 'award_pk': self.award.pk, 'subaward_pk': self.id}) class AwardManagement(AssignableAwardSection): """Model for the AwardManagement data""" minimum_fields = ( ) HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'date_assigned'] award = models.OneToOneField(Award) management_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') def __unicode__(self): return u'Award Management %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_award_management', kwargs={ 'award_pk': self.award.pk}) class PriorApproval(FieldIteratorMixin, models.Model): """Model for the PriorApproval data""" HIDDEN_FIELDS = ['award'] HIDDEN_TABLE_FIELDS = [] REQUEST_CHOICES = ( ('AB', 'Absence or Change of Key Personnel'), ('CF', 'Carry-forward of unexpended balances to subsequent funding periods'), ('CS', 'Change in Scope'), ('ER', 'Effort Reduction'), ('EN', 'Equipment not in approved budget'), ('FC', 'Faculty consulting compensation that exceeds base salary'), ('FT', 'Foreign Travel'), ('IN', 'Initial no-cost extension of up to 12 months (per competitive segment)'), ('OT', 'Other'), ('RA', 'Rebudgeting among budget categories'), ('RB', 'Rebudgeting between direct and F&A costs'), ('RF', 'Rebudgeting of funds allotted for training (direct payment to trainees) to other categories of expense'), ('SN', 'Subsequent no-cost extension or extention of more than 12 months'), ) PRIOR_APPROVAL_STATUS_CHOICES = ( ('PN', 'Pending'), ('AP', 'Approved'), ('NA', 'Not Approved'), ) award = models.ForeignKey(Award) request = models.CharField( choices=REQUEST_CHOICES, max_length=2, blank=True) date_submitted = models.DateField(null=True, blank=True) status = models.CharField( choices=PRIOR_APPROVAL_STATUS_CHOICES, max_length=2, blank=True) date_approved = models.DateField(null=True, blank=True) def __unicode__(self): return u'Prior Approval #%s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object.""" return reverse( 'edit_prior_approval', kwargs={ 'award_pk': self.award.pk, 'prior_approval_pk': self.id}) def get_delete_url(self): """Gets the URL used to delete this object""" return reverse( 'delete_prior_approval', kwargs={ 'award_pk': self.award.pk, 'prior_approval_pk': self.id}) class ReportSubmission(FieldIteratorMixin, models.Model): """Model for the ReportSubmission data""" HIDDEN_FIELDS = ['award'] HIDDEN_TABLE_FIELDS = [] REPORT_CHOICES = ( ('TA', 'Technical Annual'), ('TS', 'Technical Semiannual'), ('TQ', 'Technical Quarterly'), ('IP', 'Interim Progress Report (Non-Competing Continuations)'), ('DL', 'Deliverables'), ('IP', 'Invention/Patent Annual'), ('PA', 'Property Annual'), ('EA', 'Equipment Annual') ) award = models.ForeignKey(Award) report = models.CharField(choices=REPORT_CHOICES, max_length=2, blank=True) due_date = models.DateField(null=True, blank=True) submitted_date = models.DateField(null=True, blank=True) def __unicode__(self): return u'Report Submission #%s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_report_submission', kwargs={ 'award_pk': self.award.pk, 'report_submission_pk': self.id}) def get_delete_url(self): """Gets the URL used to delete this object""" return reverse( 'delete_report_submission', kwargs={ 'award_pk': self.award.pk, 'report_submission_pk': self.id}) class AwardCloseout(AssignableAwardSection): """Model for the AwardCloseout data""" minimum_fields = ( ) HIDDEN_SEARCH_FIELDS = AwardSection.HIDDEN_SEARCH_FIELDS + [ 'date_assigned'] award = models.OneToOneField(Award) closeout_completion_date = models.DateTimeField(blank=True, null=True, verbose_name='Completion Date') def __unicode__(self): return u'Award Closeout %s' % (self.id) def get_absolute_url(self): """Gets the URL used to navigate to this object""" return reverse( 'edit_award_closeout', kwargs={ 'award_pk': self.award.pk}) class FinalReport(FieldIteratorMixin, models.Model): """Model for the FinalReport data""" HIDDEN_FIELDS = ['award'] HIDDEN_TABLE_FIELDS = [] FINAL_REPORT_CHOICES = ( ('FT', 'Final Technical'), ('FP', 'Final Progress Report'), ('FD', 'Final Deliverable(s)'), ('IP', 'Final Invention/Patent'), ('FI', 'Final Invention'), ('FP', 'Final Property'), ('FE', 'Final Equipment'), ) award = models.ForeignKey(Award) report = models.CharField( choices=FINAL_REPORT_CHOICES, max_length=2, blank=True) due_date = models.DateField(null=True, blank=True) submitted_date = models.DateField(null=True, blank=True) def __unicode__(self): return u'Final Report #%s' % (self.id) def get_absolute_url(self): """ Gets the URL used to navigate to this object""" return reverse( 'edit_final_report', kwargs={ 'award_pk': self.award.pk, 'final_report_pk': self.id}) def get_delete_url(self): """Gets the URL used to delete this object""" return reverse( 'delete_final_report', kwargs={ 'award_pk': self.award.pk, 'final_report_pk': self.id})
2.75
3
dnplab/io/vna.py
DNPLab/dnpLab
0
12785932
<reponame>DNPLab/dnpLab # TODO: remove unused imports import numpy as np import os import re from matplotlib.pylab import * from .. import DNPData def import_vna(path): """Import VNA data and return dnpdata object""" x, data = import_snp(path) # Not General dnpDataObject = DNPData(data, [x], ["f"], {}) return dnpDataObject # TODO: remove prints or make them optional def import_snp(path): """Import sNp file and return numpy array""" path_filename, extension = os.path.splitext(path) extension_reg_ex = "[.]s[0-9]{1,}p" print(re.fullmatch(extension_reg_ex, extension)) print(extension) if re.fullmatch(extension_reg_ex, extension) == None: raise ValueError("File Extension Not Given, Unspecified sNp file") num_reg_ex = "[0-9]{1,}" num = int(re.search(num_reg_ex, extension)[0]) print(num) if num > 2: raise ValueError("Currently on s1p and s2p files are supported") f = open(path) read_string = " " while read_string[0] != "#": read_string = f.readline() raw = np.genfromtxt(f, skip_header=2, defaultfmt="11f") f.close() if num == 1: x = raw[:, 0] data = raw[:, 1] + 1j * raw[:, 2] if num == 2: x = raw[:, 1] data = np.zeros((len(x), 2, 2)) data[:, 0, 0] = raw[:, 1] + 1j * raw[:, 2] # S11 data[:, 1, 0] = raw[:, 3] + 1j * raw[:, 4] # S21 data[:, 0, 1] = raw[:, 5] + 1j * raw[:, 6] # S12 data[:, 1, 1] = raw[:, 7] + 1j * raw[:, 8] # S22 if num > 2: x = raw[0::num] data = np.zeros((len(x), num, num)) # TODO: Use list comprehension instead of two for loops for n in range(num): for m in range(num): data[:, n, m] = raw[n::num, 1 + 2 * m] + 1j * raw[n::num, 2 * (1 + m)] return x, data
2.078125
2
im3components/utils.py
IMMM-SFA/im3components
0
12785933
<filename>im3components/utils.py import yaml def read_yaml(yaml_file: str) -> dict: """Read a YAML file. :param yaml_file: Full path with file name and extension to an input YAML file :type yaml_file: str :return: Dictionary """ with open(yaml_file, 'r') as yml: return yaml.load(yml, Loader=yaml.FullLoader)
3.3125
3
parkings/api/utils.py
klemmari1/parkkihubi
12
12785934
<filename>parkings/api/utils.py import dateutil.parser from django.utils import timezone from rest_framework.exceptions import ValidationError def parse_timestamp_or_now(timestamp_string): """ Parse given timestamp string or return current time. If the timestamp string is falsy, return current time, otherwise try to parse the string and return the parsed value. :type timestamp_string: str :rtype: datetime.datetime :raises rest_framework.exceptions.ValidationError: on parse error """ if not timestamp_string: return timezone.now() return parse_timestamp(timestamp_string) def parse_timestamp(datetime_string): try: return dateutil.parser.parse(datetime_string) except (ValueError, OverflowError): raise ValidationError('Invalid timestamp: {}'.format(datetime_string))
2.890625
3
lambeq/text2diagram/spiders_reader.py
CQCL/lambeq
131
12785935
# Copyright 2021, 2022 Cambridge Quantum Computing Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['SpidersReader', 'bag_of_words_reader', 'spiders_reader'] from discopy import Word from discopy.rigid import Diagram, Spider from lambeq.core.types import AtomicType from lambeq.core.utils import SentenceType, tokenised_sentence_type_check from lambeq.text2diagram.base import Reader S = AtomicType.SENTENCE class SpidersReader(Reader): """A reader that combines words using a spider.""" def sentence2diagram(self, sentence: SentenceType, tokenised: bool = False) -> Diagram: if tokenised: if not tokenised_sentence_type_check(sentence): raise ValueError('`tokenised` set to `True`, but variable ' '`sentence` does not have type `list[str]`.') else: if not isinstance(sentence, str): raise ValueError('`tokenised` set to `False`, but variable ' '`sentence` does not have type `str`.') sentence = sentence.split() words = [Word(word, S) for word in sentence] diagram = Diagram.tensor(*words) >> Spider(len(words), 1, S) return diagram spiders_reader = SpidersReader() bag_of_words_reader = spiders_reader
2.5
2
CellProfiler/tests/modules/test_measureimageskeleton.py
aidotse/Team-rahma.ai
0
12785936
<reponame>aidotse/Team-rahma.ai import numpy import pytest import cellprofiler_core.measurement from cellprofiler_core.constants.measurement import COLTYPE_INTEGER import cellprofiler.modules.measureimageskeleton instance = cellprofiler.modules.measureimageskeleton.MeasureImageSkeleton() @pytest.fixture(scope="module") def image_skeleton(): data = numpy.zeros((9, 9), dtype=numpy.float32) data[4, :] = 1.0 data[:, 4] = 1.0 return data @pytest.fixture(scope="module") def volume_skeleton(): data = numpy.zeros((9, 9, 9), dtype=numpy.float32) data[4, 4, :] = 1.0 data[4, :, 4] = 1.0 data[:, 4, 4] = 1.0 return data @pytest.fixture( scope="module", params=[("image_skeleton", 2), ("volume_skeleton", 3)], ids=["image_skeleton", "volume_skeleton"], ) def image(request): data, dimensions = request.param data = request.getfixturevalue(data) return cellprofiler_core.image.Image( image=data, dimensions=dimensions, convert=False ) def test_get_categories_image(module, pipeline): expected_categories = ["Skeleton"] categories = module.get_categories(pipeline, "Image") assert categories == expected_categories def test_get_categories_other(module, pipeline): expected_categories = [] categories = module.get_categories(pipeline, "foo") assert categories == expected_categories def test_get_measurement_columns(module, pipeline): module.skeleton_name.value = "example" expected_columns = [ ( "Image", "Skeleton_Branches_example", COLTYPE_INTEGER, ), ( "Image", "Skeleton_Endpoints_example", COLTYPE_INTEGER, ), ] columns = module.get_measurement_columns(pipeline) assert columns == expected_columns def test_get_measurements_image_skeleton(module, pipeline): module.skeleton_name.value = "example" expected_measurements = ["Skeleton_Branches_example", "Skeleton_Endpoints_example"] measurements = module.get_measurements( pipeline, "Image", "Skeleton" ) assert measurements == expected_measurements def test_get_measurements_image_other(module, pipeline): module.skeleton_name.value = "example" expected_measurements = [] measurements = module.get_measurements( pipeline, "Image", "foo" ) assert measurements == expected_measurements def test_get_measurements_other(module, pipeline): module.skeleton_name.value = "example" expected_measurements = [] measurements = module.get_measurements(pipeline, "foo", "Skeleton") assert measurements == expected_measurements def test_get_measurement_images(module, pipeline): module.skeleton_name.value = "example" expected_images = ["example"] images = module.get_measurement_images( pipeline, "Image", "Skeleton", "Skeleton_Branches_example", ) assert images == expected_images def test_run(image, module, workspace): module.skeleton_name.value = "example" module.run(workspace) branches = workspace.measurements.get_current_measurement( "Image", "Skeleton_Branches_example" ) endpoints = workspace.measurements.get_current_measurement( "Image", "Skeleton_Endpoints_example" ) if image.volumetric: expected_branches = 7 expected_endpoints = 6 else: expected_branches = 5 expected_endpoints = 4 assert branches == expected_branches assert endpoints == expected_endpoints
1.960938
2
invoicing/filters.py
cumanachao/utopia-crm
13
12785937
<gh_stars>10-100 from datetime import date, timedelta import django_filters from django import forms from django.utils.translation import ugettext_lazy as _ from django.db.models import Q from .models import Invoice CREATION_CHOICES = ( ('today', _('Today')), ('yesterday', _('Yesterday')), ('last_7_days', _('Last 7 days')), ('last_30_days', _('Last 30 days')), ('this_month', _('This month')), ('last_month', _('Last month')), ('custom', _('Custom')) ) STATUS_CHOICES = ( ('paid', _("Paid")), ('debited', _("Debited")), ('paid_or_debited', _("Paid or debited")), ('pending', _('Pending')), ('canceled', _('Canceled')), ('uncollectible', _('Uncollectible')), ('overdue', _('Overdue')), ('not_paid', _('Not paid')) ) class InvoiceFilter(django_filters.FilterSet): contact_name = django_filters.CharFilter(method='filter_by_contact_name') creation_date = django_filters.ChoiceFilter(choices=CREATION_CHOICES, method='filter_by_creation_date') creation_gte = django_filters.DateFilter( field_name='creation_date', lookup_expr='gte', widget=forms.TextInput(attrs={'autocomplete': 'off'})) creation_lte = django_filters.DateFilter( field_name='creation_date', lookup_expr='lte', widget=forms.TextInput(attrs={'autocomplete': 'off'})) status = django_filters.ChoiceFilter(choices=STATUS_CHOICES, method='filter_by_status') class Meta: model = Invoice fields = ['contact_name', 'payment_type'] def filter_by_contact_name(self, queryset, name, value): return queryset.filter(contact__name__icontains=value) def filter_by_creation_date(self, queryset, name, value): if value == 'today': return queryset.filter(creation_date=date.today()) elif value == 'yesterday': return queryset.filter(creation_date=date.today() - timedelta(1)) elif value == 'last_7_days': return queryset.filter( creation_date__gte=date.today() - timedelta(7), creation_date__lte=date.today()) elif value == 'last_30_days': return queryset.filter( creation_date__gte=date.today() - timedelta(30), creation_date__lte=date.today()) elif value == 'this_month': return queryset.filter( creation_date__month=date.today().month, creation_date__year=date.today().year) elif value == 'last_month': month = date.today().month - 1 if date.today().month != 1 else 12 year = date.today().year if date.today().month != 1 else date.today().year - 1 return queryset.filter(creation_date__month=month, creation_date__year=year) else: return queryset def filter_by_status(self, queryset, name, value): if value == 'paid': return queryset.filter(paid=True) elif value == 'debited': return queryset.filter(debited=True) elif value == 'paid_or_debited': return queryset.filter(Q(paid=True) | Q(debited=True)) elif value == 'canceled': return queryset.filter(canceled=True) elif value == 'uncollectible': return queryset.filter(uncollectible=True) elif value == 'overdue': return queryset.filter( paid=False, debited=False, canceled=False, uncollectible=False, expiration_date__lte=date.today()) elif value == 'not_paid': return queryset.filter( paid=False, debited=False, canceled=False, uncollectible=False, ) else: return queryset.filter( paid=False, debited=False, uncollectible=False, canceled=False, expiration_date__gt=date.today())
1.984375
2
src/rules/entity/actor_plugins/__init__.py
FrozenYogurtPuff/iStar-pipeline
0
12785938
<reponame>FrozenYogurtPuff/iStar-pipeline from .be_nsubj import be_nsubj from .by_sb import by_sb from .dative_PROPN import dative_propn from .dep import dep_base as dep from .ner import ner from .relcl_who import relcl_who from .tag import tag_base as tag from .word_list import word_list from .xcomp_ask_sb_to_do import xcomp_ask
0.917969
1
bin/evaluate.py
mwang87/FalconClusterWorkflow
0
12785939
<gh_stars>0 import pandas as pd import sys input_csv = sys.argv[1] df = pd.read_csv(input_csv, sep=',', comment='#') print(df)
3.046875
3
app/main/__init__.py
AlchemistPrimus/data_crunchers_knbs
0
12785940
import flask import pandas
1.03125
1
deployer/stack.py
bwood/deployer
1
12785941
<filename>deployer/stack.py from deployer.cloudformation import AbstractCloudFormation from deployer.decorators import retry from deployer.logger import logger from deployer.cloudtools_bucket import CloudtoolsBucket import signal, pytz from collections import defaultdict from botocore.exceptions import ClientError, WaiterError from tabulate import tabulate from time import sleep from datetime import datetime from parse import parse class Stack(AbstractCloudFormation): def __init__(self, session, stack, config, bucket, args = {}): # Save important parameters self.session = session self.stack = stack self.config = config if bucket: self.bucket = bucket # Load values from args self.disable_rollback = args.get('disable_rollback', False) self.print_events = args.get('print_events', False) self.timed_out = args.get('timeout', None) self.colors = args.get('colors', defaultdict(lambda: '')) self.params = args.get('params', {}) # Load values from config self.stack_name = self.config.get_config_att('stack_name', required=True) self.base = self.config.get_config_att('sync_base', '.') # Load values from methods for config lookup self.repository = self.get_repository(self.base) self.commit = self.repository.head.object.hexsha if self.repository else 'null' # Load values from config self.release = self.config.get_config_att('release', self.commit).replace('/','.') self.template = self.config.get_config_att('template', required=True) self.timeout = self.timed_out if self.timed_out is not None else self.config.get_config_att('timeout', None) self.transforms = self.config.get_config_att('transforms') # Intialize objects self.client = self.session.client('cloudformation') self.sts = self.session.client('sts') # Load values from methods self.origin = self.get_repository_origin(self.repository) if self.repository else 'null' self.identity_arn = self.sts.get_caller_identity().get('Arn', '') if bucket: self.template_url = self.bucket.construct_template_url(self.config, self.stack, self.release, self.template) # self.construct_template_url() self.template_file = self.bucket.get_template_file(self.config, self.stack) self.template_body = self.bucket.get_template_body(self.config, self.template) # Set state values self._timed_out = False self.validate_account(self.session, self.config) self.reload_stack_status() def reload_change_set_status(self, change_set_name): try: resp = self.client.describe_change_set( ChangeSetName=change_set_name, StackName=self.stack_name ) self.change_set_status = resp['Status'] except Exception: self.change_set_status = 'False' return self.change_set_status def construct_tags(self): tags = self.config.get_config_att('tags') if tags: tags = [ { 'Key': key, 'Value': value } for key, value in tags.items() ] if len(tags) > 47: raise ValueError('Resources tag limit is 50, you have provided more than 47 tags. Please limit your tagging, save room for name and deployer tags.') else: tags = [] tags.append({'Key': 'deployer:stack', 'Value': self.stack}) tags.append({'Key': 'deployer:caller', 'Value': self.identity_arn}) tags.append({'Key': 'deployer:git:commit', 'Value': self.commit}) tags.append({'Key': 'deployer:git:origin', 'Value': self.origin}) tags.append({'Key': 'deployer:config', 'Value': self.config.file_name.replace('\\', '/')}) return tags def create_waiter(self, start_time): waiter = self.client.get_waiter('stack_create_complete') logger.info("Creation Started") sleep(5) logger.info(self.reload_stack_status()) if self.print_events: try: self.output_events(start_time, 'create') except RuntimeError as e: if self.timed_out: logger.error('Stack creation exceeded timeout of {} minutes and was aborted.'.format(self.timeout)) exit(2) else: raise e else: try: waiter.wait(StackName=self.stack_name) except WaiterError as e: status = self.reload_stack_status() logger.info(status) self.output_events(start_time, 'create') logger.info(self.reload_stack_status()) def update_waiter(self, start_time): waiter = self.client.get_waiter('stack_update_complete') logger.info("Update Started") sleep(5) logger.info(self.reload_stack_status()) if self.print_events: try: self.output_events(start_time, 'update') except RuntimeError as e: if self.timed_out: logger.error('Stack creation exceeded timeout of {} minutes and was aborted.'.format(self.timeout)) exit(2) else: raise e else: try: waiter.wait(StackName=self.stack_name) except WaiterError: status = self.reload_stack_status() logger.info(status) self.output_events(start_time, 'update') logger.info(self.reload_stack_status()) def output_events(self, start_time, action): update_time = start_time headers = [ 'Time', 'Status', 'Type', 'Logical ID', 'Status Reason' ] if action == 'create': END_STATUS = 'CREATE_COMPLETE' elif action == 'update': END_STATUS = 'UPDATE_COMPLETE' count = 0 sleep_interval = 15 while self.stack_status != END_STATUS: status = self.reload_stack_status() table = [] sleep(sleep_interval) #Check interval and exit if this is an update if action == 'update' and self.timeout is not None: if (sleep_interval * count) > (self.timeout * 60): self.timed_out = True raise RuntimeError("Update stack Failed") events = self.client.describe_stack_events(StackName=self.stack_name) events = events['StackEvents'] events.reverse() for event in events: if event['Timestamp'] > start_time and event['Timestamp'] > update_time: reason = event.get('ResourceStatusReason', '') if reason == 'Stack creation time exceeded the specified timeout. Rollback requested by user.': self.timed_out = True table.append([ event['Timestamp'].strftime('%Y/%m/%d %H:%M:%S'), event['ResourceStatus'], event['ResourceType'], event['LogicalResourceId'], reason ]) update_time = datetime.now(pytz.utc) if len(table) > 0: if count == 0: print(tabulate(table,headers,tablefmt='simple')) else: print(tabulate(table,[],tablefmt='plain')) if action == 'create': if status in [ 'CREATE_FAILED', 'ROLLBACK_IN_PROGRESS', 'ROLLBACK_COMPLETE', 'ROLLBACK_FAILED' ]: raise RuntimeError("Create stack Failed") elif action == 'update': if status in [ 'UPDATE_FAILED', 'UPDATE_ROLLBACK_IN_PROGRESS', 'UPDATE_ROLLBACK_COMPLETE', 'UPDATE_ROLLBACK_FAILED' ]: raise RuntimeError("Update stack Failed") count += 1 def delete_stack(self): self.client.delete_stack(StackName=self.stack_name) logger.info(self.colors['error'] + "Sent delete request to stack" + self.colors['reset']) return True def get_latest_change_set_name(self): resp = {} latest = None while 'NextToken' in resp or latest == None: if 'NextToken' in resp: resp = self.client.list_change_sets( StackName=self.stack_name, NextToken=resp['NextToken'] ) else: resp = self.client.list_change_sets( StackName=self.stack_name ) for change in resp['Summaries']: if not latest: latest = change if change['CreationTime'] > latest['CreationTime']: latest = change if resp['Summaries'] == []: return None return latest['ChangeSetName'] def get_change_set(self, change_set_name, change_set_description, change_set_type): # create the change set if self.stack_status: resp = self.client.create_change_set( StackName=self.stack_name, TemplateURL=self.template_url, Parameters=self.config.build_params(self.session, self.stack, self.release, self.params, self.template_file), Capabilities=[ 'CAPABILITY_IAM', 'CAPABILITY_NAMED_IAM', 'CAPABILITY_AUTO_EXPAND' ], ChangeSetName=change_set_name, Description=change_set_description, ChangeSetType=change_set_type ) logger.info("Change Set Started: %s" % resp['Id']) sleep(5) self.change_set_status = self.reload_change_set_status(change_set_name) while self.change_set_status != 'CREATE_COMPLETE': sleep(10) status = self.reload_change_set_status(change_set_name) logger.info(status) if status == 'FAILED': raise RuntimeError("Change set Failed") self.print_change_set(change_set_name, change_set_description) else: raise RuntimeError("Stack does not exist") def execute_change_set(self, change_set_name): self.client.execute_change_set( ChangeSetName=change_set_name, StackName=self.stack_name ) def print_change_set(self, change_set_name, change_set_description): resp = self.client.describe_change_set( ChangeSetName=change_set_name, StackName=self.stack_name ) self.changes = resp['Changes'] print("==================================== Change ===================================") headers = ["Action","LogicalId","ResourceType","Replacement"] table = [] for change in self.changes: row = [] row.append(change['ResourceChange']['Action']) row.append(change['ResourceChange']['LogicalResourceId']) row.append(change['ResourceChange']['ResourceType']) if 'Replacement' in change['ResourceChange']: row.append(change['ResourceChange']['Replacement']) else: row.append('') table.append(row) print(tabulate(table, headers, tablefmt='simple')) def exists(self): try: self.client.describe_stacks(StackName=self.stack_name) return True except ClientError: return False def describe(self): try: return self.client.describe_stacks(StackName=self.stack_name)['Stacks'][0] except ClientError: return {} def upsert_stack(self): self.update_stack() if self.exists() else self.create_stack() def create_stack(self): signal.signal(signal.SIGINT, self.cancel_create) if not self.transforms: # create the stack start_time = datetime.now(pytz.utc) args = { "StackName": self.stack_name, "Parameters": self.config.build_params(self.session, self.stack, self.release, self.params, self.template_file), "DisableRollback": self.disable_rollback, "Tags": self.construct_tags(), "Capabilities": [ 'CAPABILITY_IAM', 'CAPABILITY_NAMED_IAM', 'CAPABILITY_AUTO_EXPAND' ] } args.update({'TemplateBody': self.template_body} if self.template_body else {"TemplateURL": self.template_url}) args.update({'TimeoutInMinutes': self.timeout} if self.timeout else {}) if self.template_body: logger.info("Using local template due to null template bucket") self.client.create_stack(**args) self.create_waiter(start_time) else: start_time = datetime.now(pytz.utc) change_set_name = "{0}-1".format(self.config.get_config_att('change_prefix')) self.get_change_set(change_set_name, "Deployer Automated", 'CREATE') self.execute_change_set(change_set_name) self.create_waiter(start_time) def update_stack(self): signal.signal(signal.SIGINT, self.cancel_update) if not self.transforms: start_time = datetime.now(pytz.utc) args = { "StackName": self.stack_name, "Parameters": self.config.build_params(self.session, self.stack, self.release, self.params, self.template_file), "Tags": self.construct_tags(), "Capabilities": [ 'CAPABILITY_IAM', 'CAPABILITY_NAMED_IAM', 'CAPABILITY_AUTO_EXPAND' ] } args.update({'TemplateBody': self.template_body} if self.template_body else {"TemplateURL": self.template_url}) if self.template_body: logger.info("Using local template due to null template bucket") if self.stack_status: try: self.client.update_stack(**args) self.update_waiter(start_time) except ClientError as e: if 'No updates are to be performed' in e.response['Error']['Message']: logger.warning('No updates are to be performed') else: raise e else: raise RuntimeError("Stack does not exist") else: latest_change = self.get_latest_change_set_name() if latest_change: change_number = int(latest_change.strip(self.config.get_config_att('change_prefix') + '-')) change_number += 1 else: change_number = 1 start_time = datetime.now(pytz.utc) change_set_name = "{0}-{1}".format(self.config.get_config_att('change_prefix'),change_number) self.get_change_set(change_set_name, "Deployer Automated", 'UPDATE') self.execute_change_set(change_set_name) self.update_waiter(start_time) def cancel_create(self, signal, frame): logger.critical('Process Interupt') logger.critical('Deleteing Stack: %s' % self.stack_name) self.delete_stack() exit(1) def cancel_update(self, signal, frame): logger.critical('Process Interupt') logger.critical('Cancelling Stack Update: %s' % self.stack_name) self.client.cancel_update_stack(StackName=self.stack_name) exit(1) @retry(ClientError,logger=logger) def get_outputs(self): resp = self.client.describe_stacks( StackName=self.stack_name) self.outputs = resp['Stacks'][0]['Outputs'] return self.outputs @property def status(self): return self.reload_stack_status() @retry(ClientError,tries=6,logger=logger) def reload_stack_status(self): try: resp = self.client.describe_stacks( StackName=self.stack_name) self.stack_status = resp['Stacks'][0]['StackStatus'] except Exception: self.stack_status = 'False' return self.stack_status
1.90625
2
safe_grid_agents/spiky/agents.py
jvmancuso/safe-grid-agents
21
12785942
"""PPO Agent for CRMDPs.""" import torch import random import numpy as np from typing import Generator, List from safe_grid_agents.common.utils import track_metrics from safe_grid_agents.common.agents.policy_cnn import PPOCNNAgent from safe_grid_agents.types import Rollout from ai_safety_gridworlds.environments.tomato_crmdp import REWARD_FACTOR def _get_agent_position(board, agent_value): x_pos, y_pos = np.unravel_index( np.argwhere(np.ravel(board) == agent_value), board.shape ) x_pos, y_pos = x_pos.flat[0], y_pos.flat[0] return x_pos, y_pos def _manhatten_distance(x1, x2, y1, y2): return abs(x1 - x2) + abs(y1 - y2) def d_tomato_crmdp(X, Y): assert X.shape == Y.shape return REWARD_FACTOR * np.sum(X != Y) def d_toy_gridworlds(X, Y): assert X.shape == Y.shape X = X[0, ...] Y = Y[0, ...] # toy gridworlds use value 0 to denote the agent on the board X_pos_x, X_pos_y = _get_agent_position(X, agent_value=0) Y_pos_x, Y_pos_y = _get_agent_position(Y, agent_value=0) return _manhatten_distance(X_pos_x, Y_pos_x, X_pos_y, Y_pos_y) def d_trans_boat(X, Y): assert X.shape == Y.shape X_initial, X_final = X[0, ...], X[1, ...] Y_initial, Y_final = Y[0, ...], Y[1, ...] # deepmind gridworlds use value 2 to denote the agent on the board X_initial_pos_x, X_initial_pos_y = _get_agent_position(X_initial, agent_value=2) Y_initial_pos_x, Y_initial_pos_y = _get_agent_position(Y_initial, agent_value=2) X_final_pos_x, X_final_pos_y = _get_agent_position(X_final, agent_value=2) Y_final_pos_x, Y_final_pos_y = _get_agent_position(Y_final, agent_value=2) X_direction_x = X_final_pos_x - X_initial_pos_x X_direction_y = X_final_pos_y - X_initial_pos_y Y_direction_x = Y_final_pos_x - Y_initial_pos_x Y_direction_y = Y_final_pos_y - Y_initial_pos_y initial_position_distance = _manhatten_distance( X_initial_pos_x, Y_initial_pos_x, X_initial_pos_y, Y_initial_pos_y ) direction_distance = int(X_direction_x != Y_direction_x) direction_distance += int(X_direction_y != Y_direction_y) return initial_position_distance + direction_distance ENV_TO_D = { "corners": d_toy_gridworlds, "way": d_toy_gridworlds, "tomato-crmdp": d_tomato_crmdp, "trans-boat": d_trans_boat, } class PPOCRMDPAgent(PPOCNNAgent): """PPO Agent for CRMDPs.""" def __init__(self, env, args) -> None: super().__init__(env, args) self.states = dict() self.d = ENV_TO_D[args.env_alias] self.epsilon = 1e-3 self.rllb = dict() self.state_memory_cap = 0 def _mark_state_corrupt(self, board, reward) -> None: assert board.dtype == np.float32 self.states[board.tostring()] = [False, reward] def _mark_state_safe(self, board, reward) -> None: assert board.dtype == np.float32 self.states[board.tostring()] = [True, reward] def _is_state_corrupt(self, board) -> bool: if board.tostring() in self.states: return not self.states[board.tostring()][0] else: return False def _iterate_safe_states(self) -> Generator[np.array, None, None]: for board_str in self.states.keys(): if self.states[board_str][0]: board = np.fromstring(board_str, dtype=np.float32, count=self.n_input) board = np.reshape(board, self.board_shape) yield board, self.states[board_str][1] def _iterate_corrupt_states(self) -> Generator[np.array, None, None]: for board_str in self.states.keys(): if not self.states[board_str][0]: board = np.fromstring(board_str, dtype=np.float32, count=self.n_input) board = np.reshape(board, self.board_shape) yield board, self.states[board_str][1] def _update_rllb(self) -> None: """Update the reward lower Lipschitz bound.""" for corrupt_board, corrupt_reward in self._iterate_corrupt_states(): board_string = corrupt_board.tostring() rllb = self.rllb.get(board_string, None) for safe_board, safe_reward in self._iterate_safe_states(): bound = safe_reward - self.d(safe_board, corrupt_board) if rllb is None or bound > rllb: rllb = bound self.rllb[board_string] = rllb def _get_TLV(self, boardX, rewardX, state_iterator) -> float: """Return the total Lipschitz violation of a state X w.r.t a set of states. Each state is only added once to the TLV.""" TLV = 0 unique_states = set() for boardY, rewardY in state_iterator: if boardY.tostring() not in unique_states: TLV += max(0, abs(rewardX - rewardY) - self.d(boardY, boardX)) unique_states.add(boardY.tostring()) return TLV def _purge_memory(self) -> None: """Drop random noncorrupt states from the memory for performance reasons.""" if len(self.states) > self.state_memory_cap: to_remove = [ state for state in random.sample( self.states.keys(), len(self.states) - self.state_memory_cap / 2 ) if self.states[state][0] ] for state in to_remove: del self.states[state] # we might have too many corrupt states, so update the bounds if len(self.states) > 2 * self.state_memory_cap / 3: self.state_memory_cap *= 2 def get_modified_reward(self, board, reward) -> float: """Return the reward to use for optimizing the policy based on the rllb.""" if self._is_state_corrupt(board): return self.rllb[board.tostring()] else: return reward def get_modified_rewards_for_rollout(self, boards, rewards) -> List[float]: """ Returns a list of rewards for a given rollout that has been updated based on the rllb. """ new_rewards = [] for i in range(len(rewards)): new_rewards.append(self.get_modified_reward(boards[i], rewards[i])) return new_rewards def identify_corruption_in_trajectory(self, boards, rewards) -> None: """Perform detection of corrupt states on a trajectory. Updates the set of safe states and corrupt states with all new states, that are being visited in this trajectory. Then updates the self.rllb dict, so that we can get the modified reward function. """ boards = np.array(boards) rewards = np.array(rewards) TLV = np.zeros(len(boards)) for i in range(len(boards)): TLV[i] = self._get_TLV(boards[i], rewards[i], zip(boards, rewards)) TLV_sort_idx = np.argsort(TLV)[::-1] non_corrupt_idx = list(range(len(boards))) added_corrupt_states = False # iterate over all states in the trajectory in order decreasing by their TLV for i in range(len(boards)): idx = TLV_sort_idx[i] if not added_corrupt_states: # performance improvement new_TLV = TLV[idx] else: new_TLV = self._get_TLV( boards[idx], rewards[idx], zip(boards[non_corrupt_idx], rewards[non_corrupt_idx]), ) if new_TLV <= self.epsilon: if not self._is_state_corrupt(boards[idx]): self._mark_state_safe(boards[idx], rewards[idx]) break else: self._mark_state_corrupt(boards[idx], rewards[idx]) non_corrupt_idx.remove(idx) added_corrupt_states = True if added_corrupt_states: self._update_rllb() def gather_rollout(self, env, env_state, history, args) -> Rollout: """Gather a single rollout from an old policy. Based on the gather_rollout function of the regular PPO agents. This version also tracks the successor states of each action. Based on this the corrupted states can be detected before performing the training step.""" state, reward, done, info = env_state done = False rollout = Rollout(states=[], actions=[], rewards=[], returns=[]) successors = [] for r in range(self.rollouts): successors_r = [] # Rollout loop states, actions, rewards, returns = [], [], [], [] while not done: with torch.no_grad(): action = self.old_policy.act_explore(state) successor, reward, done, info = env.step(action) # Maybe cheat if args.cheat: reward = info["hidden_reward"] # In case the agent is drunk, use the actual action they took try: action = info["extra_observations"]["actual_actions"] except KeyError: pass # Store data from experience states.append(state) # .flatten()) actions.append(action) rewards.append(float(reward)) successors_r.append(successor) state = successor history["t"] += 1 if r != 0: history["episode"] += 1 self.identify_corruption_in_trajectory(successors_r, rewards) rewards = self.get_modified_rewards_for_rollout(successors_r, rewards) returns = self.get_discounted_returns(rewards) history = track_metrics(history, env) rollout.states.append(states) rollout.actions.append(actions) rollout.rewards.append(rewards) rollout.returns.append(returns) successors.append(successors_r) self.state_memory_cap = max(self.state_memory_cap, 20 * len(states)) self._purge_memory() state = env.reset() done = False return rollout
2.296875
2
cmake_tidy/commands/analyze/analyze_command.py
MaciejPatro/cmake-tidy
16
12785943
<gh_stars>10-100 ############################################################################### # Copyright <NAME> (<EMAIL>) # MIT License ############################################################################### from cmake_tidy.commands import Command from cmake_tidy.utils import ExitCodes class AnalyzeCommand(Command): __DESCRIPTION = 'analyze file to find violations against selected rules' def __init__(self, parser): super().__init__(parser, 'analyze', AnalyzeCommand.__DESCRIPTION) def execute_command(self, args) -> int: return ExitCodes.SUCCESS
2.203125
2
customer/migrations/0003_auto_20210713_1716.py
RFNshare/StraightIntLtd
0
12785944
# Generated by Django 3.0.7 on 2021-07-13 11:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('customer', '0002_customer_address'), ] operations = [ migrations.AlterField( model_name='customer', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='customer', name='phone', field=models.CharField(max_length=100, null=True), ), ]
1.78125
2
combine.py
ychenbioinfo/msg
0
12785945
<gh_stars>0 """ Combines each individual's hmmprob.RData file into two summary files (linearly interpolating missing values) Usage: python msg/combine.py msg/combine.py -d /groups/stern/home/sternd/svb_mausec2/hmm_fit """ import os import sys import csv import glob import optparse import subprocess import uuid import gc import numpy import numpy.lib.recfunctions from msglib import trace, get_free_memory # -------------- SETTINGS ---------------- # Assumes the files matches this pattern relative to hmm_fit (or other specificied directory) GLOB_PATTERN = '/*/*-hmmprob.RData' DEBUG = False # ---------------------------------------- def grab_files(dir): """Example from Toy data: glob.glob('hmm_fit/*/*-hmmprob.RData.chrom.*.csv') ['hmm_fit/indivF11_GTTACG/indivF11_GTTACG-hmmprob.RData.chrom.2R.csv', 'hmm_fit/indivE2_CAGCCG/indivE2_CAGCCG-hmmprob.RData.chrom.2R.csv', 'hmm_fit/indivG7_CTTGCG/indivG7_CTTGCG-hmmprob.RData.chrom.2R.csv', ...] """ glob_pattern = dir.rstrip('/') + GLOB_PATTERN files = glob.glob(glob_pattern) print "found %s input files" % len(files) return files def parse_path(path): """Get ind name, and chrom from file path""" dir, filename = os.path.split(path) name_parts = filename.split('.') ind_name = filename.split('-hmmprob')[0] return ind_name def rdata_to_numpy_arrays(rdata_file_path, target_object=None): """Call out to R (on $PATH) to convert rdata file to one or more CSV files. Load CSV files into numpy arrays and delete CSV files. If target_object is None, it will try to use generic code to find all the dataframes. Otherwise it will try to home in on the target_object and find the frames within that. (R code from http://stackoverflow.com/questions/13189467/how-to-convert-rdata-format-into-text-file-format) More discussion here: http://stackoverflow.com/questions/23413728/converting-rdata-files-to-csv-error-in-data-frame-arguments-imply-differing-nu """ generic_r_code = """\ resave <- function(file){ e <- new.env(parent = emptyenv()) load(file, envir = e) objs <- ls(envir = e, all.names = TRUE) for(obj in objs) { .x <- get(obj, envir =e) cat(sprintf('%s%%s.tsv\n', obj) ) write.table( .x, file=paste("%s", obj, ".tsv", sep=""), sep="\t", col.names = NA, qmethod = "double") } } resave('%s')""" highly_targeted_r_code = """\ resave <- function(file){ e <- new.env(parent = emptyenv()) load(file, envir = e) obj <- get('%s', envir =e) lapply( names(obj), function(nam) { write.table( obj[[nam]], file=paste("%s", nam, ".tsv", sep=""), sep="\t", col.names = NA, qmethod = "double") cat(sprintf('%s%%s.tsv\n', nam) ) } ) } resave('%s')""" files_prefix = 'temp-' + str(uuid.uuid4()) if target_object: r_code = highly_targeted_r_code % (target_object, files_prefix, files_prefix, rdata_file_path) else: r_code = generic_r_code % (files_prefix, files_prefix, rdata_file_path) #print r_code command = ["Rscript","-","-"] #"-" to tell Rscript to use pipes for input and output #print ' '.join(command) rscript = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) file_list = rscript.communicate(r_code)[0] indiv = parse_path(rdata_file_path) for csv_path in file_list.splitlines(): if csv_path.lower().endswith('.tsv'): #Note: Setting the comments parameter below is a numpy hack to make it not look #for comments in our data file array = numpy.loadtxt(csv_path, skiprows=1, usecols=(1,21,23), delimiter="\t", comments="wewillneverseethisstringinafile15", dtype={'names': ('pos', 'par1', 'par2'), 'formats': ('a100', 'f8', 'f8')} ) os.remove(csv_path) yield array, indiv, csv_path.replace(files_prefix,'').strip('.tsv') def input_data_sets(dir): for path in grab_files(dir): for (array, ind, chrom) in rdata_to_numpy_arrays(path, target_object = 'dataa'): yield array, ind, chrom @trace def fix_values(outrows): """Replace 1.000000 with 1 and 0.000000 with 0 to save space.""" for row in outrows: for i, val in enumerate(row): if val == '1.000000': row[i] = '1' elif val == '0.000000': row[i] = '0' @trace def merge(dir): """ Combine all individuals and datapoints with one row per individual, with columns being chrom:position. Interpolate missing values in some cases. (The R code that we're trying to replicate was funny with this so there are a few special cases, see code) Write out one tsv file for each parent. """ #Combine all individuals/positions into a big dictionary (think of it like a sparse table) #for each parent dp1, dp2 = {}, {} for (array, ind, chrom) in input_data_sets(dir): print ind, chrom, len(array), "records" for x in array: key = (ind, chrom, int(x['pos'])) dp1[key] = x['par1'] dp2[key] = x['par2'] gc.collect() print "Done loading rdata files." print "Free memory is %s MB" % get_free_memory() #write out to files and interpolate as we go. The R code we're replacing had some weird special cases so look out for those. for (fname, dp) in (('ancestry-probs-par1.tsv',dp1),('ancestry-probs-par2.tsv',dp2)): if DEBUG: fname = 'test.' + fname print "Compiling data for file",fname #Get all positions (chrom,pos) sorted by chrom, then by position positions = sorted(set([(k[1],k[2]) for k in dp.keys()])) header = [''] + [''.join((p[0],':',str(p[1]))) for p in positions] #Get all individuals, sorted inds = sorted(set([k[0] for k in dp.keys()])) #Build up each row to be written to the file (all individuals x all positions) outrows = [] for ind in inds: print " ",ind #initialize/clear out bookkeeping variables last_pos_w_val, last_val, last_chrom, to_interpolate = None, None, None, [] outrow = [ind] #first column is individual name for (chrom,pos) in positions: # Handle switching to new chromosome if chrom != last_chrom: #set any positions waiting for interpolation to 0 since we've reached the end of the chrom #however we wan't to leave as NA and not interpolate between last_pos_w_val and end of chrom #because that's what R did. for (update_pos, insert_loc) in to_interpolate: if update_pos < last_pos_w_val: outrow[insert_loc] = "0" #clear out bookkeeping vars on new chrom last_pos_w_val, last_val, last_chrom, to_interpolate = None, None, None, [] key = (ind,chrom,pos) if (key in dp) and ((dp[key]>.0000005) or (last_val and last_val >.0000005)): # This condition is checking if A. data exists for this position and it's non-zero OR B. data exists and the last value seen was non-zero. # These are cases were we want to use this value and last seen value to interpolate positions in the interpolation queue. # Store value in outrow to be written to file outrow.append("%.6f" % round(dp[key],6)) #interpolate any positions waiting for a new value for (update_pos, insert_loc) in to_interpolate: if update_pos < last_pos_w_val: outrow[insert_loc] = "0" # zero out any pending positions before the last value we saw since this is what R did. else: insert_val = last_val + ((dp[key] - last_val) * (float(update_pos - last_pos_w_val) / (pos - last_pos_w_val))) outrow[insert_loc] = "%.6f" % round(insert_val,6) to_interpolate = [] #since all pending positions have been interpolated, clear this out last_pos_w_val, last_val = pos, dp[key] elif last_val and not (key in dp): #If a value has been seen for this chrom, we'll want to start interpolating #Add a placeholder to outrow outrow.append('NA') # #Mark position for later interpolation to_interpolate.append((pos, len(outrow) - 1)) else: #don't interpolate if key in dp: #data exists for key but it's 0, Store value in outrow, but update bookkeeping vars outrow.append("%.6f" % round(dp[key],6)) #should be 0 #still count 0 as a last value for interpolation last_pos_w_val, last_val = pos, dp[key] else: outrow.append('NA') last_chrom = chrom #set any positions waiting for interpolation to 0 since we've reached the end of the individual #however we wan't to leave as NA and not interpolate between last_pos_w_val and end #because that's what R did. for (update_pos, insert_loc) in to_interpolate: if update_pos < last_pos_w_val: outrow[insert_loc] = "0" outrows.append(outrow) fix_values(outrows) print "Writing file",fname csvout = csv.writer(open(fname,'wb'), delimiter='\t', quoting=csv.QUOTE_MINIMAL) csvout.writerow(header) csvout.writerows(outrows) gc.collect() @trace def main(): """Parse command line args, and call appropriate functions.""" #disable garbage collection for a 10% speed boost gc.disable() usage="""\nusage: %prog [options]\n""" parser = optparse.OptionParser(usage=usage) #Other option types are int and float, string is default. #Note there is also a default parameter. parser.add_option('-d','--dir',dest="hmm_fit_dir",type="string") #?? Need these ?? -c $params{'chroms'} -p $params{'chroms2plot'} -d hmm_fit -t $params{'thinfac'} -f $params{'difffac'} -b $params{'barcodes'} -n $params{'pnathresh'} #parser.add_option('-o','--out',dest="out_path",type="string") #parser.add_option('-t','--thresh',dest="pnathresh",type="float",default=.03) opts,args=parser.parse_args() #Args taken from sys.argv[1:] by default, parsed using GNU/POSIX syntax. if not opts.hmm_fit_dir: parser.error("A directory for locating hmm_fit data is required.") print "Starting combine.py with parameters:", str(opts) print "Free memory is %s MB" % get_free_memory() merge(opts.hmm_fit_dir) if __name__=='__main__': main()
2.484375
2
fake-logs.py
vdyc/fake-logs
11
12785946
# pylint: disable=C0103 from fake_logs.fake_logs_cli import run_from_cli # Run this module with "python fake-logs.py <arguments>" if __name__ == "__main__": run_from_cli()
1.320313
1
implicit_solver/lib/dispatcher.py
vincentbonnetcg/Numerical-Bric-a-Brac
14
12785947
""" @author: <NAME> @description : command dispatcher for solver """ # import for CommandSolverDispatcher import uuid from core import Details import lib.system as system import lib.system.time_integrators as integrator from lib.objects import Dynamic, Kinematic, Condition, Force from lib.objects.jit.data import Node, Spring, AnchorSpring, Bending, Area from lib.objects.jit.data import Point, Edge, Triangle import lib.commands as cmd import core class CommandSolverDispatcher(core.CommandDispatcher): ''' Dispatch commands to manage objects (animators, conditions, dynamics, kinematics, forces) ''' def __init__(self): core.CommandDispatcher.__init__(self) # data self._scene = None self._details = None self._reset() self._solver = system.Solver(integrator.BackwardEulerIntegrator()) #self._solver = system.Solver(integrator.SymplecticEulerIntegrator()) self._context = system.SolverContext() # map hash_value with objects (dynamic, kinematic, condition, force) self._object_dict = {} # register self.register_cmd(self._set_context, 'set_context') self.register_cmd(self._get_context, 'get_context') self.register_cmd(self._get_dynamics, 'get_dynamics') self.register_cmd(self._get_conditions, 'get_conditions') self.register_cmd(self._get_kinematics, 'get_kinematics') self.register_cmd(self._get_metadata, 'get_metadata') self.register_cmd(self._get_commands, 'get_commands') self.register_cmd(self._reset, 'reset') self.register_cmd(cmd.initialize) self.register_cmd(cmd.add_dynamic) self.register_cmd(cmd.add_kinematic) self.register_cmd(cmd.solve_to_next_frame) self.register_cmd(cmd.get_nodes_from_dynamic) self.register_cmd(cmd.get_shape_from_kinematic) self.register_cmd(cmd.get_normals_from_kinematic) self.register_cmd(cmd.get_segments_from_constraint) self.register_cmd(cmd.set_render_prefs) self.register_cmd(cmd.add_gravity) self.register_cmd(cmd.add_edge_constraint) self.register_cmd(cmd.add_wire_bending_constraint) self.register_cmd(cmd.add_face_constraint) self.register_cmd(cmd.add_kinematic_attachment) self.register_cmd(cmd.add_kinematic_collision) self.register_cmd(cmd.add_dynamic_attachment) self.register_cmd(cmd.get_sparse_matrix_as_dense) def _add_object(self, obj, object_handle=None): if object_handle in self._object_dict: assert False, f'_add_object(...) {object_handle} already exists' if not object_handle: object_handle = str(uuid.uuid4()) if isinstance(obj, (Dynamic, Kinematic, Condition, Force)): self._object_dict[object_handle] = obj else: assert False, '_add_object(...) only supports Dynamic, Kinematic, Condition and Force' return object_handle def _convert_parameter(self, parameter_name, kwargs): # parameter provided by the dispatcher if parameter_name == 'scene': return self._scene elif parameter_name == 'solver': return self._solver elif parameter_name == 'context': return self._context elif parameter_name == 'details': return self._details # parameter provided by user if parameter_name in kwargs: arg_object = kwargs[parameter_name] reserved_attrs = ['dynamic','kinematic','condition','obj'] is_reserved_attr = False for reserved_attr in reserved_attrs: if not parameter_name.startswith(reserved_attr): continue is_reserved_attr = True break if is_reserved_attr: if arg_object not in self._object_dict: assert False, f'in _convert_parameter(...) {arg_object} doesnt exist' return self._object_dict[arg_object] return kwargs[parameter_name] return None def _process_result(self, result, object_handle=None): # convert the result object if isinstance(result, (Dynamic, Kinematic, Condition, Force)): # the object is already stored for k, v in self._object_dict.items(): if v == result: return k # add the new object return self._add_object(result, object_handle) if isinstance(result, (tuple, list)): # shallow copy to not override the original list result = result.copy() for index in range(len(result)): result[index] = self._process_result(result[index]) return result def _set_context(self, time : float, frame_dt : float, num_substep : int, num_frames : int): self._context = system.SolverContext(time, frame_dt, num_substep, num_frames) def _get_context(self): return self._context def _get_dynamics(self): return self._scene.dynamics def _get_conditions(self): return self._scene.conditions def _get_kinematics(self): return self._scene.kinematics def _get_metadata(self, obj): if obj: return obj.metadata() return None def _get_commands(self): return list(self._commands.keys()) def _reset(self): self._scene = system.Scene() system_types = [Node, Area, Bending, Spring, AnchorSpring] system_types += [Point, Edge, Triangle] group_types = {'dynamics' : [Node], 'constraints' : [Area, Bending, Spring, AnchorSpring], 'geometries': [Point, Edge, Triangle], 'bundle': system_types} self._details = Details(system_types, group_types)
2.109375
2
database/models.py
Alweezy/ride-my-way-python
0
12785948
<filename>database/models.py from datetime import datetime, timedelta import jwt from flask_bcrypt import Bcrypt from flask import current_app from api.app import db class User(db.Model): """Creates a user model """ __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(255), nullable=False, unique=True) email = db.Column(db.String(255), nullable=False, unique=True) password = db.Column(db.String(255), nullable=False) questions = db.relationship('Question', order_by="Question.id", cascade="all,delete-orphan") def __init__(self, username, email, password): self.username = username self.email = email self.password = Bcrypt().generate_password_hash(password).decode() def verify_password(self, password): """Compares stored password to password at login """ return Bcrypt().check_password_hash(self.password, password) @staticmethod def create_token(user_id): """Creates the access token """ try: payload = { 'exp': datetime.utcnow() + timedelta(hours=1), 'iat': datetime.utcnow(), 'sub': user_id } jwt_string = jwt.encode( payload, current_app.config.get("SECRET_KEY"), algorithm='HS256' ) return jwt_string except Exception as e: return str(e) @staticmethod def decode_token(token): """Decodes the token passed in the header """ try: key = current_app.config.get("SECRET_KEY") payload = jwt.decode(token, key) return payload["sub"] except jwt.ExpiredSignatureError: return "Token has expired, Login to generate a new one." except jwt.InvalidTokenError: return "Token is invalid, Sign up or Login" def save(self): """Save a user into the database """ db.session.add(self) db.session.commit() class Question(db.Model): """Creates a model for the Question """ __tablename__ = "questions" id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(255)) date_created = db.Column(db.DateTime, default=db.func.current_timestamp()) date_modified = db.Column(db.DateTime, default=db.func.current_timestamp(), onupdate=db.func.current_timestamp()) asked_by = db.Column(db.Integer, db.ForeignKey(User.id)) answers = db.relationship('Answer', order_by="Answer.id", cascade="all,delete-orphan") def __init__(self, title, asked_by): self.title = title self.asked_by = asked_by def save(self): """Save a question to the database """ db.session.add(self) db.session.commit() class Answer(db.Model): __tablename__ = "answers" id = db.Column(db.Integer, primary_key=True) answer_body = db.Column(db.String(255)) date_created = db.Column(db.DateTime, default=db.func.current_timestamp()) date_modified = db.Column(db.DateTime, default=db.func.current_timestamp(), onupdate=db.func.current_timestamp()) question_id = db.Column(db.Integer, db.ForeignKey(Question.id)) def __init__(self, answer_body, question_id): self.answer_body = answer_body self.question_id = question_id def save(self): """Add an answer to a question """ db.session(self) db.session.commit()
2.9375
3
actions/utils.py
anubhav231989/bookmarks
0
12785949
<gh_stars>0 from .models import Action from django.utils import timezone from datetime import timedelta from django.contrib.contenttypes.models import ContentType def register_action(user, verb, target=None): last_hour_ago = timezone.now() - timedelta(hours=1) similar_actions = Action.objects.filter(user=user, verb=verb, created__gte=last_hour_ago) if target: target_ct = ContentType.objects.get_for_model(target) similar_actions = similar_actions.filter(target_id=target.id, target_content_type=target_ct) if similar_actions.count() == 0: Action.objects.create(user=user, verb=verb, target=target) return True return False
2.359375
2
python/jobbole/jobbole/pipelines.py
LeonMioc/CodeUnres
0
12785950
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from pymongo import * from scrapy.conf import settings class MongoDBPipeline(object): _mongo_conn = dict() _mongod = '' def __init__(self): self._mongo_conn['server'] = settings['MONGODB_SERVER'] self._mongo_conn['port'] = settings['MONGODB_PORT'] self._mongo_conn['db'] = settings['MONGODB_DB'] self._mongo_conn['coll'] = settings['MONGODB_COLLECTION'] self._mongod = self.connection() #连接数据库 def connection(self): connection = MongoClient( self._mongo_conn['server'], self._mongo_conn['port'], ) db = connection[self._mongo_conn['db']] coll = db[self._mongo_conn['coll']] return coll def process_item(self, item, spider): if item['content']: self._mongod.insert(dict(item)) return item
2.359375
2