max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
_unittests/ut_grabber/test_box_mock_render.py
sdpython/pymmails
3
12785651
<gh_stars>1-10 # -*- coding: utf-8 -*- """ @brief test log(time=2s) """ import os import unittest from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder from pymmails import MailBoxMock, EmailMessageRenderer, EmailMessageListRenderer class TestMessageBoxMock(unittest.TestCase): def test_box_mock_render(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") data = os.path.abspath(os.path.join(os.path.dirname(__file__), "data")) temp = get_temp_folder(__file__, "temp_render_mock_list_mail") box = MailBoxMock(data, b"unittestunittest", fLOG) box.login() folders = box.folders() assert len(folders) == 1 fLOG(folders) mails = list(box.enumerate_mails_in_folder("trav")) box.logout() email_render = EmailMessageRenderer() def tempf(message, location, prev_mail, next_mail): email_render.render(location, message, None, file_css="mail_style.css", prev_mail=prev_mail, next_mail=next_mail) return "" mails = list((m, tempf) for m in mails) render = EmailMessageListRenderer( title="list of mails", email_renderer=email_render, fLOG=fLOG) res = render.render(iter=mails, location=temp) render.flush() # fLOG(res[0]) exp = ('<a href="d_2015-08-01_p_noreply-at-voyages-sncf-com_ii_8de6a63addb7c03407bc6f0caabd967e.html">' + '2015/08/01 -\n Voyages-sncf.com</a>') if exp not in res[0]: raise Exception(res[0]) def test_box_mock_write(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") data = os.path.abspath(os.path.join(os.path.dirname(__file__), "data")) temp = get_temp_folder(__file__, "temp_write_mock_list_mail") box = MailBoxMock(data, b"unittestunittest", fLOG) box.login() folders = box.folders() assert len(folders) == 1 fLOG(folders) mails = list(box.enumerate_mails_in_folder("trav")) box.logout() email_render = EmailMessageRenderer() render = EmailMessageListRenderer( title="list of mails", email_renderer=email_render, fLOG=fLOG) res = render.write(iter=mails, location=temp, filename="essai.html") render.flush() with open(res[0], "r", encoding="utf8") as f: content = f.read() exp = ('<a href="d_2015-12-20_p_noreply-at-voyages-sncf-com_ii_1bb6fa70421145bed927e00c5e292277.html">' + '2015/12/20 -\n Voyages-sncf.com</a>') if exp not in content: raise Exception(content) if 'list of mails</h1>' not in content: raise Exception(content) allfiles = render.BufferWrite.listfiles() assert len(allfiles) > 0 allfiles.sort() with open(allfiles[0], "r", encoding="utf8") as f: content = f.read() if '<a href="d_2015-08-01_p_noreply-at-voyages-sncf-com_ii_8de6a63addb7c03407bc6f0caabd967e.html">&lt;--</a>' not in content: raise Exception(content) if __name__ == "__main__": unittest.main()
2.296875
2
blogSite/blog/templatetags/blog_tags.py
sharafx2qeshta/Django-3-by-example
0
12785652
# this file for custom tags from django import template from ..models import Post from django.db.models import Count # these two lines below for custom filters from django.utils.safestring import mark_safe import markdown register = template.Library() ''' Each module that contains template tags needs to define a variable called register to be a valid tag library. This variable is an instance of template.Library, and it's used to register your own template tags and filters. ''' @register.simple_tag def total_posts(): # return the number of post published return Post.published.count() @register.inclusion_tag('blog/post/latest_posts.html') # you should create a file to handle the way the returned # data will be displayed def show_latest_posts(count=5): latest_posts = Post.published.order_by('-publish')[:count] return {'latest_posts': latest_posts} @register.simple_tag def get_most_commented_posts(count=5): return Post.published.annotate( total_comments=Count('comments') ).order_by('-total_comments')[:count] ''' After adding a new template tags module, you will need to restart the Django development server in order to use the new tags and filters in templates. ''' ''' custom tags types : 1-simple_tag: Processes the data and returns a string 2-inclusion_tag: Processes the data and returns a rendered template ''' ''' to use custom tags in html files just load the file by {% load blog_tags %} at the top of the file to call any function inside html file just use {% functionName %} anywhere in the html file if the function have parameters you can call it by {% functionName param1 param2 %} and so on ''' @register.filter(name='markdown') def markdown_format(text): return mark_safe(markdown.markdown(text))
2.71875
3
irrd/server/whois/query_parser.py
morrowc/irrd
0
12785653
import logging import re from typing import Optional import ujson from IPy import IP from ordered_set import OrderedSet from irrd import __version__ from irrd.conf import get_setting, RPKI_IRR_PSEUDO_SOURCE from irrd.mirroring.nrtm_generator import NRTMGenerator, NRTMGeneratorException from irrd.rpki.status import RPKIStatus from irrd.rpsl.rpsl_objects import (OBJECT_CLASS_MAPPING, RPKI_RELEVANT_OBJECT_CLASSES) from irrd.server.query_resolver import QueryResolver, RouteLookupType, InvalidQueryException from irrd.storage.database_handler import DatabaseHandler, RPSLDatabaseResponse from irrd.storage.preload import Preloader from irrd.storage.queries import DatabaseStatusQuery from irrd.utils.validators import parse_as_number, ValidationError from .query_response import WhoisQueryResponseType, WhoisQueryResponseMode, WhoisQueryResponse from ..access_check import is_client_permitted logger = logging.getLogger(__name__) class WhoisQueryParser: """ Parser for all whois-style queries. This parser distinguishes RIPE-style, e.g. '-K 192.0.2.1' or '-i mnt-by FOO' from IRRD-style, e.g. '!oFOO'. Query processing is mostly handled by QueryResolver, with a few exceptions that are whois-specific. Some query flags, particularly -k/!! and -s/!s retain state across queries, so a single instance of this object should be created per session, with handle_query() being called for each individual query. """ def __init__(self, client_ip: str, client_str: str, preloader: Preloader, database_handler: DatabaseHandler) -> None: self.multiple_command_mode = False self.timeout = 30 self.key_fields_only = False self.client_ip = client_ip self.client_str = client_str self.database_handler = database_handler self.query_resolver = QueryResolver( preloader=preloader, database_handler=database_handler, ) def handle_query(self, query: str) -> WhoisQueryResponse: """ Process a single query. Always returns a WhoisQueryResponse object. Not thread safe - only one call must be made to this method at the same time. """ self.key_fields_only = False if query.startswith('!'): try: return self.handle_irrd_command(query[1:]) except InvalidQueryException as exc: logger.info(f'{self.client_str}: encountered parsing error while parsing query "{query}": {exc}') return WhoisQueryResponse( response_type=WhoisQueryResponseType.ERROR_USER, mode=WhoisQueryResponseMode.IRRD, result=str(exc) ) except Exception as exc: logger.error(f'An exception occurred while processing whois query "{query}": {exc}', exc_info=exc) return WhoisQueryResponse( response_type=WhoisQueryResponseType.ERROR_INTERNAL, mode=WhoisQueryResponseMode.IRRD, result='An internal error occurred while processing this query.' ) try: return self.handle_ripe_command(query) except InvalidQueryException as exc: logger.info(f'{self.client_str}: encountered parsing error while parsing query "{query}": {exc}') return WhoisQueryResponse( response_type=WhoisQueryResponseType.ERROR_USER, mode=WhoisQueryResponseMode.RIPE, result=str(exc) ) except Exception as exc: logger.error(f'An exception occurred while processing whois query "{query}": {exc}', exc_info=exc) return WhoisQueryResponse( response_type=WhoisQueryResponseType.ERROR_INTERNAL, mode=WhoisQueryResponseMode.RIPE, result='An internal error occurred while processing this query.' ) def handle_irrd_command(self, full_command: str) -> WhoisQueryResponse: """Handle an IRRD-style query. full_command should not include the first exclamation mark. """ if not full_command: raise InvalidQueryException('Missing IRRD command') command = full_command[0] parameter = full_command[1:] response_type = WhoisQueryResponseType.SUCCESS result = None # A is not tested here because it is already handled in handle_irrd_routes_for_as_set queries_with_parameter = list('tg6ijmnors') if command in queries_with_parameter and not parameter: raise InvalidQueryException(f'Missing parameter for {command} query') if command == '!': self.multiple_command_mode = True result = None response_type = WhoisQueryResponseType.NO_RESPONSE elif full_command.upper() == 'FNO-RPKI-FILTER': self.query_resolver.disable_rpki_filter() result = 'Filtering out RPKI invalids is disabled for !r and RIPE style ' \ 'queries for the rest of this connection.' elif full_command.upper() == 'FNO-SCOPE-FILTER': self.query_resolver.disable_out_of_scope_filter() result = 'Filtering out out-of-scope objects is disabled for !r and RIPE style ' \ 'queries for the rest of this connection.' elif command == 'v': result = self.handle_irrd_version() elif command == 't': self.handle_irrd_timeout_update(parameter) elif command == 'g': result = self.handle_irrd_routes_for_origin_v4(parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == '6': result = self.handle_irrd_routes_for_origin_v6(parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == 'a': result = self.handle_irrd_routes_for_as_set(parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == 'i': result = self.handle_irrd_set_members(parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == 'j': result = self.handle_irrd_database_serial_range(parameter) elif command == 'J': result = self.handle_irrd_database_status(parameter) elif command == 'm': result = self.handle_irrd_exact_key(parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == 'n': self.handle_user_agent(parameter) elif command == 'o': result = self.handle_inverse_attr_search('mnt-by', parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == 'r': result = self.handle_irrd_route_search(parameter) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND elif command == 's': result = self.handle_irrd_sources_list(parameter) else: raise InvalidQueryException(f'Unrecognised command: {command}') return WhoisQueryResponse( response_type=response_type, mode=WhoisQueryResponseMode.IRRD, result=result, ) def handle_irrd_timeout_update(self, timeout: str) -> None: """!timeout query - update timeout in connection""" try: timeout_value = int(timeout) except ValueError: raise InvalidQueryException(f'Invalid value for timeout: {timeout}') if timeout_value > 0 and timeout_value <= 1000: self.timeout = timeout_value else: raise InvalidQueryException(f'Invalid value for timeout: {timeout}') def handle_irrd_routes_for_origin_v4(self, origin: str) -> str: """!g query - find all originating IPv4 prefixes from an origin, e.g. !gAS65537""" return self._routes_for_origin(origin, 4) def handle_irrd_routes_for_origin_v6(self, origin: str) -> str: """!6 query - find all originating IPv6 prefixes from an origin, e.g. !6as65537""" return self._routes_for_origin(origin, 6) def _routes_for_origin(self, origin: str, ip_version: Optional[int]=None) -> str: """ Resolve all route(6)s prefixes for an origin, returning a space-separated list of all originating prefixes, not including duplicates. """ try: origin_formatted, _ = parse_as_number(origin) except ValidationError as ve: raise InvalidQueryException(str(ve)) prefixes = self.query_resolver.routes_for_origin(origin_formatted, ip_version) return ' '.join(prefixes) def handle_irrd_routes_for_as_set(self, set_name: str) -> str: """ !a query - find all originating prefixes for all members of an AS-set, e.g. !a4AS-FOO or !a6AS-FOO """ ip_version: Optional[int] = None if set_name.startswith('4'): set_name = set_name[1:] ip_version = 4 elif set_name.startswith('6'): set_name = set_name[1:] ip_version = 6 if not set_name: raise InvalidQueryException('Missing required set name for A query') prefixes = self.query_resolver.routes_for_as_set(set_name, ip_version) return ' '.join(prefixes) def handle_irrd_set_members(self, parameter: str) -> str: """ !i query - find all members of an as-set or route-set, possibly recursively. e.g. !iAS-FOO for non-recursive, !iAS-FOO,1 for recursive """ recursive = False if parameter.endswith(',1'): recursive = True parameter = parameter[:-2] members = self.query_resolver.members_for_set(parameter, recursive=recursive) return ' '.join(members) def handle_irrd_database_serial_range(self, parameter: str) -> str: """ !j query - database serial range This query is legacy and only available in whois, so resolved directly here instead of in the query resolver. """ if parameter == '-*': sources = self.query_resolver.sources_default if self.query_resolver.sources_default else self.query_resolver.all_valid_sources else: sources = [s.upper() for s in parameter.split(',')] invalid_sources = [s for s in sources if s not in self.query_resolver.all_valid_sources] query = DatabaseStatusQuery().sources(sources) query_results = self.database_handler.execute_query(query, refresh_on_error=True) result_txt = '' for query_result in query_results: source = query_result['source'].upper() keep_journal = 'Y' if get_setting(f'sources.{source}.keep_journal') else 'N' serial_newest = query_result['serial_newest_mirror'] fields = [ source, keep_journal, f'0-{serial_newest}' if serial_newest else '-', ] if query_result['serial_last_export']: fields.append(str(query_result['serial_last_export'])) result_txt += ':'.join(fields) + '\n' for invalid_source in invalid_sources: result_txt += f'{invalid_source.upper()}:X:Database unknown\n' return result_txt.strip() def handle_irrd_database_status(self, parameter: str) -> str: """!J query - database status""" if parameter == '-*': sources = None else: sources = [s.upper() for s in parameter.split(',')] results = self.query_resolver.database_status(sources) return ujson.dumps(results, indent=4) def handle_irrd_exact_key(self, parameter: str): """!m query - exact object key lookup, e.g. !maut-num,AS65537""" try: object_class, rpsl_pk = parameter.split(',', maxsplit=1) except ValueError: raise InvalidQueryException(f'Invalid argument for object lookup: {parameter}') query = self.query_resolver.key_lookup(object_class, rpsl_pk) return self._flatten_query_output(query) def handle_irrd_route_search(self, parameter: str): """ !r query - route search with various options: !r1172.16.58.3/24 returns all exact matching objects !r192.0.2.0/24,o returns space-separated origins of all exact matching objects !r192.0.2.0/24,l returns all one-level less specific objects, not including exact !r192.0.2.0/24,L returns all less specific objects, including exact !r192.0.2.0/24,M returns all more specific objects, not including exact """ option: Optional[str] = None if ',' in parameter: address, option = parameter.split(',') else: address = parameter try: address = IP(address) except ValueError: raise InvalidQueryException(f'Invalid input for route search: {parameter}') lookup_types = { None: RouteLookupType.EXACT, 'o': RouteLookupType.EXACT, 'l': RouteLookupType.LESS_SPECIFIC_ONE_LEVEL, 'L': RouteLookupType.LESS_SPECIFIC_WITH_EXACT, 'M': RouteLookupType.MORE_SPECIFIC_WITHOUT_EXACT, } try: lookup_type = lookup_types[option] except KeyError: raise InvalidQueryException(f'Invalid route search option: {option}') result = self.query_resolver.route_search(address, lookup_type) if option == 'o': prefixes = [r['parsed_data']['origin'] for r in result] return ' '.join(prefixes) return self._flatten_query_output(result) def handle_irrd_sources_list(self, parameter: str) -> Optional[str]: """ !s query - set used sources !s-lc returns all enabled sources, space separated !sripe,nttcom limits sources to ripe and nttcom """ if parameter == '-lc': return ','.join(self.query_resolver.sources) sources = parameter.upper().split(',') self.query_resolver.set_query_sources(sources) return None def handle_irrd_version(self): """!v query - return version""" return f'IRRd -- version {__version__}' def handle_ripe_command(self, full_query: str) -> WhoisQueryResponse: """ Process RIPE-style queries. Any query that is not explicitly an IRRD-style query (i.e. starts with exclamation mark) is presumed to be a RIPE query. """ full_query = re.sub(' +', ' ', full_query) components = full_query.strip().split(' ') result = None response_type = WhoisQueryResponseType.SUCCESS while len(components): component = components.pop(0) if component.startswith('-'): command = component[1:] try: if command == 'k': self.multiple_command_mode = True elif command in ['l', 'L', 'M', 'x']: result = self.handle_ripe_route_search(command, components.pop(0)) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND break elif command == 'i': result = self.handle_inverse_attr_search(components.pop(0), components.pop(0)) if not result: response_type = WhoisQueryResponseType.KEY_NOT_FOUND break elif command == 's': self.handle_ripe_sources_list(components.pop(0)) elif command == 'a': self.handle_ripe_sources_list(None) elif command == 'T': self.handle_ripe_restrict_object_class(components.pop(0)) elif command == 't': result = self.handle_ripe_request_object_template(components.pop(0)) break elif command == 'K': self.handle_ripe_key_fields_only() elif command == 'V': self.handle_user_agent(components.pop(0)) elif command == 'g': result = self.handle_nrtm_request(components.pop(0)) elif command in ['F', 'r']: continue # These flags disable recursion, but IRRd never performs recursion anyways else: raise InvalidQueryException(f'Unrecognised flag/search: {command}') except IndexError: raise InvalidQueryException(f'Missing argument for flag/search: {command}') else: # assume query to be a free text search result = self.handle_ripe_text_search(component) return WhoisQueryResponse( response_type=response_type, mode=WhoisQueryResponseMode.RIPE, result=result, ) def handle_ripe_route_search(self, command: str, parameter: str) -> str: """ -l/L/M/x query - route search for: -x 192.0.2.0/2 returns all exact matching objects -l 192.0.2.0/2 returns all one-level less specific objects, not including exact -L 192.0.2.0/2 returns all less specific objects, including exact -M 192.0.2.0/2 returns all more specific objects, not including exact """ try: address = IP(parameter) except ValueError: raise InvalidQueryException(f'Invalid input for route search: {parameter}') lookup_types = { 'x': RouteLookupType.EXACT, 'l': RouteLookupType.LESS_SPECIFIC_ONE_LEVEL, 'L': RouteLookupType.LESS_SPECIFIC_WITH_EXACT, 'M': RouteLookupType.MORE_SPECIFIC_WITHOUT_EXACT, } lookup_type = lookup_types[command] result = self.query_resolver.route_search(address, lookup_type) return self._flatten_query_output(result) def handle_ripe_sources_list(self, sources_list: Optional[str]) -> None: """-s/-a parameter - set sources list. Empty list enables all sources. """ if sources_list: sources = sources_list.upper().split(',') self.query_resolver.set_query_sources(sources) else: self.query_resolver.set_query_sources(None) def handle_ripe_restrict_object_class(self, object_classes) -> None: """-T parameter - restrict object classes for this query, comma-seperated""" self.query_resolver.set_object_class_filter_next_query(object_classes.split(',')) def handle_ripe_request_object_template(self, object_class) -> str: """-t query - return the RPSL template for an object class""" return self.query_resolver.rpsl_object_template(object_class) def handle_ripe_key_fields_only(self) -> None: """-K paramater - only return primary key and members fields""" self.key_fields_only = True def handle_ripe_text_search(self, value: str) -> str: result = self.query_resolver.rpsl_text_search(value) return self._flatten_query_output(result) def handle_user_agent(self, user_agent: str): """-V/!n parameter/query - set a user agent for the client""" self.query_resolver.user_agent = user_agent logger.info(f'{self.client_str}: user agent set to: {user_agent}') def handle_nrtm_request(self, param): try: source, version, serial_range = param.split(':') except ValueError: raise InvalidQueryException('Invalid parameter: must contain three elements') try: serial_start, serial_end = serial_range.split('-') serial_start = int(serial_start) if serial_end == 'LAST': serial_end = None else: serial_end = int(serial_end) except ValueError: raise InvalidQueryException(f'Invalid serial range: {serial_range}') if version not in ['1', '3']: raise InvalidQueryException(f'Invalid NRTM version: {version}') source = source.upper() if source not in self.query_resolver.all_valid_sources: raise InvalidQueryException(f'Unknown source: {source}') if not is_client_permitted(self.client_ip, f'sources.{source}.nrtm_access_list'): raise InvalidQueryException('Access denied') try: return NRTMGenerator().generate(source, version, serial_start, serial_end, self.database_handler) except NRTMGeneratorException as nge: raise InvalidQueryException(str(nge)) def handle_inverse_attr_search(self, attribute: str, value: str) -> str: """ -i/!o query - inverse search for attribute values e.g. `-i mnt-by FOO` finds all objects where (one of the) maintainer(s) is FOO, as does `!oFOO`. Restricted to designated lookup fields. """ result = self.query_resolver.rpsl_attribute_search(attribute, value) return self._flatten_query_output(result) def _flatten_query_output(self, query_response: RPSLDatabaseResponse) -> str: """ Flatten an RPSL database response into a string with object text for easy passing to a WhoisQueryResponse. """ if self.key_fields_only: result = self._filter_key_fields(query_response) else: result = '' for obj in query_response: result += obj['object_text'] if ( self.query_resolver.rpki_aware and obj['source'] != RPKI_IRR_PSEUDO_SOURCE and obj['object_class'] in RPKI_RELEVANT_OBJECT_CLASSES ): comment = '' if obj['rpki_status'] == RPKIStatus.not_found: comment = ' # No ROAs found, or RPKI validation not enabled for source' result += f'rpki-ov-state: {obj["rpki_status"].name}{comment}\n' result += '\n' return result.strip('\n\r') def _filter_key_fields(self, query_response) -> str: results: OrderedSet[str] = OrderedSet() for obj in query_response: result = '' rpsl_object_class = OBJECT_CLASS_MAPPING[obj['object_class']] fields_included = rpsl_object_class.pk_fields + ['members', 'mp-members'] for field_name in fields_included: field_data = obj['parsed_data'].get(field_name) if field_data: if isinstance(field_data, list): for item in field_data: result += f'{field_name}: {item}\n' else: result += f'{field_name}: {field_data}\n' results.add(result) return '\n'.join(results)
1.851563
2
ci/clean-cluster.py
azatoth/telepresence
0
12785654
#!/usr/bin/env python3 """ Delete old deployments and services with test-prefixed names. This is used to clean up the Telepresence test cluster, as Telepresence tests currently leak. """ import argparse import datetime import json from subprocess import check_output from typing import Dict, List def get_kubectl() -> List[str]: """Get correct kubectl command""" k8s_namespace = str( check_output([ "kubectl", "config", "view", "--minify=true", "-o=jsonpath={.contexts[0].context.namespace}" ]).strip(), "ascii" ) if k8s_namespace: return ["kubectl", "--namespace", k8s_namespace] return ["kubectl"] KUBECTL = get_kubectl() def get_now() -> datetime.datetime: """Get current date/time in UTC""" return datetime.datetime.now(tz=datetime.timezone.utc) def parse_k8s_timestamp(timestamp: str) -> datetime.datetime: """Get date/time in UTC from k8s timestamp""" fmt = "%Y-%m-%dT%H:%M:%SZ" naive = datetime.datetime.strptime(timestamp, fmt) return naive.replace(tzinfo=datetime.timezone.utc) def get_kubectl_json(cmd: List[str]) -> Dict: """Call kubectl and parse resulting JSON""" output = str(check_output(KUBECTL + cmd + ["-o", "json"]), "utf-8") return json.loads(output) def get_resources(kind: str, prefix="", min_age=datetime.timedelta(seconds=0)) -> List[str]: """ Return names of k8s resources with the given name prefix and minimum age """ now = get_now() resources = get_kubectl_json(["get", kind])["items"] names = [] for resource in resources: name = resource["metadata"]["name"] if kind == "svc" and name == "kubernetes": continue if not name.startswith(prefix): continue timestamp_str = resource["metadata"]["creationTimestamp"] timestamp = parse_k8s_timestamp(timestamp_str) age = now - timestamp if age < min_age: continue names.append("{}/{}".format(kind, name)) return names def seconds(value: str) -> datetime.timedelta: """Return a timedelta with the given number of seconds""" try: return datetime.timedelta(seconds=int(value)) except ValueError: message = "Invalid age in seconds: {}".format(value) raise argparse.ArgumentTypeError(message) def main(): """Clean up the current Kubernetes cluster""" parser = argparse.ArgumentParser( allow_abbrev=False, # can make adding changes not backwards compatible description=__doc__ ) parser.add_argument( "--prefix", default="testing-", help="prefix for resource name [testing-]" ) parser.add_argument( "--min-age", type=seconds, default="86400", help="minimum age in seconds" ) parser.add_argument( "--dry-run", action="store_true", help="don't really delete anything" ) args = parser.parse_args() names = [ name for kind in ("svc", "deploy") for name in get_resources(kind, args.prefix, args.min_age) ] if not names: print("Nothing to clean up.") return if args.dry_run: print("Would clean up:") else: print("Cleaning up:") for name in names: print(" {}".format(name)) if not args.dry_run: check_output(KUBECTL + ["delete"] + names) if __name__ == "__main__": main()
2.390625
2
cibyl/utils/dicts.py
rhos-infra/cibyl
3
12785655
""" # Copyright 2022 Red Hat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ import logging from cibyl.models.attribute import AttributeDictValue LOG = logging.getLogger(__name__) def subset(dictionary, keys): """Creates a new dictionary from items from another one. A new dictionary is formed by extracting the keys explicitly indicated. If one of the given keys is not present on the dictionary, it is ignored. The original dictionary is left untouched. :param dictionary: The dictionary to extract items from. :type dictionary: dict :param keys: The keys to get from the dictionary. :type keys: list :return: The new dictionary. :rtype: dict """ result = {} for key in keys: # Do not crash if a key is not present if key not in dictionary: message = "Ignoring key '%s' not found in dictionary: %s" LOG.debug(message, key, dictionary) continue result[key] = dictionary[key] return result def nsubset(dictionary, keys): """Creates a new dictionary from items from another one. The 'n' stands for 'negative', meaning that the keys form an excluded list. All keys from the other dictionary will be extracted except for the ones explicitly indicated. The original dictionary is left untouched. :param dictionary: The dictionary to extract items from. :type dictionary: dict :param keys: The keys to not get from the dictionary. :type keys: list :return: The new dictionary. :rtype: dict """ result = {} for key in dictionary.keys(): # Ignore keys on the excluded list if key in keys: continue result[key] = dictionary[key] return result def chunk_dictionary_into_lists(dictionary: dict, size: int = 300) -> list: """It returns a list of sub lists. Each one with the size indicated in the 'size' parameter where every element is the key of the dictionary provided. If the size is less than the quantity provided, it creates just one sublist with those keys. """ chunked_list = [] for chunk_max_value in range( 0, len(list(dictionary.keys())), size ): chunked_list.append( list( dictionary.keys() )[chunk_max_value:chunk_max_value + size] ) return chunked_list def intersect_models(dict1, dict2): """Combine two dictionaries that are returned from a source method call to keep only those models that are present in both. It assumes that the models present in both dictionaries are identical and takes them for the first input dictionary. :param dict1: The first dictionary with models. :type dict1: dict :param dict2: The second dictionary with models. :type dict2: dict :return: A new dictionary that contains only the models present in both input dictionaries. :rtype: dict """ intersection = dict1.keys() & dict2.keys() models = {key: dict1[key] for key in intersection} for key, model in models.items(): # make sure that all the information present in models present in both # dictionaries is incorporated model.merge(dict2[key]) return AttributeDictValue(dict1.name, attr_type=dict1.attr_type, value=models)
2.28125
2
braponto-back/core/serializers.py
TheRodrigoBraga/Braponto
0
12785656
<reponame>TheRodrigoBraga/Braponto<filename>braponto-back/core/serializers.py from rest_framework import serializers from .models import Funcionario from .models import Registro class FuncionarioSerializer(serializers.ModelSerializer): class Meta: model = Funcionario fields = ['id', 'matricula', 'nome'] class FuncionarioSimpleSerializer(serializers.ModelSerializer): class Meta: model = Funcionario fields = ['id', 'matricula', 'nome'] class RegistroSerializer(serializers.ModelSerializer): class Meta: model = Registro fields = ['id', 'funcionario', 'dia', 'primeiro_registro', 'segundo_registro', 'terceiro_registro', 'quarto_registro']
2.03125
2
sagas/ofbiz/finder.py
samlet/stack
3
12785657
<reponame>samlet/stack import sagas.ofbiz.connector from py4j.java_gateway import java_import class Finder(object): def __init__(self, oc): self.oc=oc java_import(oc.j, 'org.apache.ofbiz.service.ServiceUtil') java_import(oc.j, 'org.apache.ofbiz.base.util.UtilDateTime') java_import(oc.j, 'org.apache.ofbiz.entity.util.*') self.user=self.default_user() def success(self, ret): return self.oc.j.ServiceUtil.isSuccess(ret) def hash_map(self, *args): arg_len = len(args) if arg_len % 2 == 1: raise ValueError("You must pass an even sized array to the toMap method (size = " + str(arg_len) + ")") m = self.oc.j.HashMap() i = 0 while i < arg_len: m[args[i]] = args[i + 1] i = i + 2 return m def default_user(self): return self.oc.gateway.getUserLogin() def find(self, entity, inputs): # inputs=oc.jmap(testingId="PERF_TEST_1") ret = self.oc.call("performFind", userLogin=self.user, entityName=entity, inputFields=inputs) if self.oc.j.ServiceUtil.isSuccess(ret): listIt = ret['listIt'] foundElements = listIt.getCompleteList() return (True, foundElements) else: return (False, self.oc.j.ServiceUtil.getErrorMessage(ret)) def find_one(self, entity, params): return self.oc.delegator.findOne(entity, params, True) def find_list(self, entity, limit=20, offset=0): findOptions = self.oc.j.EntityFindOptions() findOptions.setLimit(limit) findOptions.setOffset(offset) rows = self.oc.delegator.findList(entity, None, None, None, findOptions, False) return rows def now(self): UtilDateTime = self.oc.j.UtilDateTime nowTimestamp = UtilDateTime.nowTimestamp() return nowTimestamp def create(self, entity, *args): # print(hash_map(*args)) return self.oc.delegator.create(entity, self.hash_map(*args))
1.984375
2
log_parser/row_parsers.py
LightRevan/log_parse
0
12785658
<reponame>LightRevan/log_parse<gh_stars>0 # -*- coding: utf-8 -*- __author__ = 'lightrevan' import re import functools import collections import datetime as dt class RowParsingError(LookupError): pass def not_none_transform(match): if match is None: raise RowParsingError else: return match date_transform = lambda match: dt.datetime.strptime(not_none_transform(match), '%y-%m-%d %H:%M:%S,%f') int_timestamp = ('^\d+', lambda x: int(not_none_transform(x))) class AbstractRowParser(object): @classmethod def _compile_pattern(cls, pattern): return pattern if isinstance(pattern, re._pattern_type) else re.compile(pattern) def parse_row(self, row): raise NotImplementedError def check_match(self, row): raise NotImplementedError def has_pattern(self, name): raise NotImplementedError class MultiPatternRowParser(AbstractRowParser): def __init__(self, match_pattern, **kwargs): assert 'timestamp' in kwargs, 'Must have timestamp pattern in row parser' match_pattern = match_pattern self._patterns = {'match': (self._compile_pattern(match_pattern), lambda x: x)} for name, data in kwargs.items(): if isinstance(data, tuple): pattern, transform = data else: pattern = data transform = not_none_transform self._patterns[name] = (self._compile_pattern(pattern), transform) def parse_row(self, row): res = {} for name, data in self._patterns.items(): pattern, transform = data match = pattern.search(row) res[name] = transform(match.group(0) if match else None) return res def check_match(self, row): pattern, transform = self._patterns['match'] match = pattern.search(row) return transform(match.group(0) if match else None) def has_pattern(self, name): return name in self._patterns class SinglePatternRowParser(AbstractRowParser): def __init__(self, match_pattern, row_pattern, group_transforms=None): self._match_pattern = self._compile_pattern(match_pattern) self._row_pattern = self._compile_pattern(row_pattern) assert 'timestamp' in self._row_pattern.groupindex, 'Must have timestamp pattern in row parser' self._group_transforms = {name: not_none_transform for name in self._row_pattern.groupindex} if group_transforms is not None: self._group_transforms.update(group_transforms) def parse_row(self, row): params_match = self._row_pattern.search(row) match = self._match_pattern.search(row) res = {'match': match.group(0) if match else None} for name, transform in self._group_transforms.items(): res[name] = transform(params_match.group(name) if params_match else None) return res def check_match(self, row): match = self._match_pattern.search(row) return match.group(0) if match else None def has_pattern(self, name): return name in self._row_pattern.groupindex class SimpleRowGetter(object): def __init__(self, f, row_parser): self._f = f self.row_parser = row_parser def __iter__(self): return self def next(self): row = self._f.next().strip() return row, self.row_parser.parse_row(row) class MergingRowGetter(SimpleRowGetter): def __init__(self, *args): super(MergingRowGetter, self).__init__(*args) self._next_row = None self._next_params = None def next(self): if self._next_row is None: row, params = '', None searching_next = False else: row, params = self._next_row, self._next_params self._next_row = None searching_next = True need_recheck = False row_valid = False try: parse_row = self._f.next().strip(' \n') while not row_valid: try: parse_params = self.row_parser.parse_row(parse_row) if searching_next: self._next_row = parse_row self._next_params = parse_params row_valid = True else: row += ('\n' if row else '') + parse_row params = parse_params parse_row = self._f.next().strip(' \n') searching_next = True except RowParsingError: row += ('\n' if row else '') + parse_row parse_row = self._f.next().strip(' \n') need_recheck = True except StopIteration as e: if self._next_row is None and not row: raise e finally: if need_recheck: params['match'] = self.row_parser.check_match(row) return row, params
2.546875
3
chemex/experiments/relaxation_nz.py
gbouvignies/ChemEx
10
12785659
""" 15N T1 ====== Analyzes 15N T1 experiments. This keeps the spin system purely in-phase throughout, and is calculated using the (1n)×(1n), single-spin matrix, where n is the number of states:: { Iz(a), Iz(b), ... } References ---------- Kay, Nicholson, Delaglio, Bax, and Torchia. J Mag Reson (1992) 97:359-375 Note ---- A sample configuration file for this module is available using the command:: $ chemex config relaxation_nz """ import functools as ft import numpy as np import chemex.experiments.helper as ceh import chemex.helper as ch import chemex.nmr.liouvillian as cnl _SCHEMA = { "type": "object", "properties": { "experiment": { "type": "object", "properties": { "observed_state": {"type": "string", "pattern": "[a-z]", "default": "a"} }, } }, } def read(config): ch.validate(config, _SCHEMA) config["basis"] = cnl.Basis(type="iz", spin_system="nh") config["fit"] = _fit_this() return ceh.load_experiment(config=config, pulse_seq_cls=PulseSeq) def _fit_this(): return { "rates": ["r1_i_{observed_state}"], "model_free": ["tauc_{observed_state}", "s2_{observed_state}"], } class PulseSeq: def __init__(self, config, propagator): self.prop = propagator settings = config["experiment"] self.prop.detection = f"[iz_{settings['observed_state']}]" @ft.lru_cache(maxsize=10000) def calculate(self, times, params_local): self.prop.update(params_local) start = self.prop.get_equilibrium() delays = self.prop.delays(times) return np.array([self.prop.detect(delay @ start) for delay in delays])
2.25
2
bin/filter_msa.py
CFIA-NCFAD/scovtree
0
12785660
<reponame>CFIA-NCFAD/scovtree #!/usr/bin/env python3 import logging import sys from collections import defaultdict from pathlib import Path from typing import Dict, Set, Tuple, Mapping, Optional import pandas as pd import typer from Bio.SeqIO.FastaIO import SimpleFastaParser from rich.logging import RichHandler def main(input_fasta: Path = typer.Option(..., help='FASTA with sequences to filter'), input_metadata: Path = typer.Option(..., help='Metadata for input sequences'), lineage_report: Path = typer.Option(..., help='Pangolin lineage report'), ref_name: str = typer.Option('MN908947.3'), country: Optional[str] = typer.Option(None, help='Preferentially filter for samples from this country'), max_seqs: int = typer.Option(10000, help='Max number of sequences to filter down to'), output_fasta: Path = typer.Option(Path('filtered.fasta'), help='Output filtered sequences FASTA'), output_metadata: Path = typer.Option(Path('metadata.filtered.tsv'), help='Output filtered metadata table')): """Filter MSA FASTA for user specified and higher quality public sequences up to `max_seqs`""" from rich.traceback import install install(show_locals=True, width=120, word_wrap=True) logging.basicConfig( format="%(message)s", datefmt="[%Y-%m-%d %X]", level=logging.INFO, handlers=[RichHandler(rich_tracebacks=True, tracebacks_show_locals=True)], ) logging.info(f'Reading metadata table "{input_metadata}".') df = pd.read_table(input_metadata, index_col=0) nrow = df.shape[0] if nrow <= max_seqs: logging.info(f'MSA sequences ({nrow}) <= {max_seqs}. Creating symlinks...') make_symlinks(input_fasta, output_fasta, input_metadata, output_metadata) logging.info(f'Done!') sys.exit(0) logging.info(f'Filtering. {nrow} > {max_seqs} sequences.') sample_seq = read_fasta(input_fasta) seq_samples = seq_to_samples(sample_seq) keep_samples = init_samples_to_keep(lineage_report, ref_name) if country and 'country' in df.columns: keep_samples = keep_seqs_from_country(df, country, keep_samples, max_seqs) elif country: logging.warning(f'Country "{country}" to preferentially select sequences from ' f'specified, but no column "country" in metadata dataframe!') df_less_n_gaps, keep_samples = quality_filter(keep_samples, seq_samples, df) if (df_less_n_gaps.shape[0] + len(keep_samples)) <= max_seqs: keep_samples |= set(df_less_n_gaps['sample']) else: keep_samples = sampling_lineages(df_less_n_gaps, keep_samples, max_seqs) logging.info(f'Sampled {(len(keep_samples))} samples from top quality sequences.') logging.info(f'Writing {len(keep_samples)} of {len(seq_samples)} sequences to "{output_fasta}".') write_fasta(output_fasta, keep_samples, sample_seq) df.loc[keep_samples & set(df.index), :].to_csv(output_metadata, sep='\t', index=True) logging.info(f'Done!') def sampling_lineages(df: pd.DataFrame, keep_samples: Set[str], max_seqs: int) -> Set[str]: df_lineages_count = df['lineage'].value_counts(ascending=True).to_frame('count') n_lineages = df_lineages_count.shape[0] seqs_per_lineages = int((max_seqs - len(keep_samples)) / n_lineages) for i, (lineage, row) in enumerate(df_lineages_count.iterrows()): seqs_in_lineages = df[df['lineage'] == lineage] if row['count'] < seqs_per_lineages: logging.info( f'No need to sample lineage "{lineage}" (sequences count={row["count"]}; less than {seqs_per_lineages} seqs per lineage)') keep_samples |= set(seqs_in_lineages['sample']) else: logging.info( f'Sampling lineage "{lineage}" sequences (sequences count={row["count"]}; greater than {seqs_per_lineages} seqs per lineage)') keep_samples |= set(seqs_in_lineages['sample'].sample(n=seqs_per_lineages)) if n_lineages < i + 1: seqs_per_lineages = (max_seqs - len(keep_samples)) / (n_lineages - i + 1) return keep_samples def keep_seqs_from_country(df: pd.DataFrame, country: str, keep_samples: Set[str], max_seqs: int) -> Set[str]: country_matching_samples = set(df[df.country.str.contains(country, case=False)].index) n_country_keep = len(country_matching_samples | keep_samples) if n_country_keep <= max_seqs: logging.info(f'Keeping {n_country_keep} sequences matching country "{country}".') keep_samples |= country_matching_samples else: logging.info(f'{len(country_matching_samples)} country "{country}" samples ' f'and {len(keep_samples)} user sequences greater than ' f'{max_seqs} threshold. Randomly sampling all ' f'sequences based on quality.') return keep_samples def quality_filter( keep_samples: Set[str], seq_samples: Mapping[str, Set[str]], df: pd.DataFrame ) -> Tuple[pd.DataFrame, Set[str]]: seq_recs = [] for seq, samples in seq_samples.items(): if samples & keep_samples: keep_samples |= samples continue seq = seq.upper() sample: str = list(samples)[0] lineage: str = df.loc[sample, 'Pango_lineage'] seq_recs.append(dict( sample=sample, lineage=lineage, seq_n=seq.count('N'), seq_gap=seq.count('-'), )) df_seq_recs = pd.DataFrame(seq_recs) # TODO: more flexible and dynamic sequence quality filtering based on total number of sequences and number of sequences required so that sequences aren't unnecessarily filtered out [peterk87 2021-06-22] df_percentile_75 = df_seq_recs.describe() seq_n_75 = df_percentile_75.loc['75%', 'seq_n'] seq_gap_75 = df_percentile_75.loc['75%', 'seq_gap'] df_less_n_gaps = df_seq_recs.query('seq_n <= @seq_n_75 and seq_gap <= @seq_gap_75') return df_less_n_gaps, keep_samples def write_fasta(fasta_output: Path, keep_samples: Set[str], sample_seq: Dict[str, str]) -> None: with open(fasta_output, 'w') as fout: for sample in keep_samples: fout.write(f'>{sample}\n{sample_seq[sample]}\n') def init_samples_to_keep(lineage_report: Path, ref_name: str) -> Set[str]: df_lineage_report = pd.read_csv(lineage_report, index_col=0) keep_samples = set(df_lineage_report.index.astype(str)) keep_samples.add(ref_name) return keep_samples def make_symlinks(input_fasta: Path, fasta_output: Path, metadata_input: Path, metadata_output: Path): metadata_output.symlink_to(metadata_input.resolve()) logging.info(f'Created symlink "{metadata_output}" to "{metadata_input}"') fasta_output.symlink_to(Path(input_fasta).resolve()) logging.info(f'Created symlink "{fasta_output}" to "{input_fasta}"') def read_fasta(fasta: Path) -> Dict[str, str]: out = {} with open(fasta) as fin: for strain, seq in SimpleFastaParser(fin): out[strain] = seq return out def seq_to_samples(sample_seq: Dict[str, str]) -> Mapping[str, Set[str]]: seq_samples = defaultdict(set) for sample, seq in sample_seq.items(): seq_samples[seq].add(sample) return seq_samples if __name__ == '__main__': typer.run(main)
1.953125
2
python/chap_0/0.5.5.py
RyodoTanaka/Cording_Matrix
0
12785661
<filename>python/chap_0/0.5.5.py<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- x={1,2,3,4,5} ret={i**2 for i in x} print ret
2.4375
2
functions.py
theSlayer4089/EasyFNBotGlitch
2
12785662
import fortnitepy,fortniteAPI async def SetCosmeticMSG(self,message): msg = message.content.upper().strip() args = msg.split(" ") Lang = self.DefaultLang if "--LANG=" in msg: msg = msg + " " Lang = GetValue(msg,"--LANG="," ") msg = msg.replace("--LANG=" + Lang, "").strip() Lang = Lang.lower() if args[0] == "!SKIN": Item = GetName("!SKIN",msg) Item = await fortniteAPI.GetSkin(Item,Lang) elif args[0] == "!BACKPACK": Item = GetName("!BACKPACK",msg) Item = await fortniteAPI.GetBackpack(Item,Lang) elif args[0] == "!PICKAXE": Item = GetName("!PICKAXE",msg) Item = await fortniteAPI.GetPickaxe(Item,Lang) elif args[0] == "!EMOJI": Item = GetName("!EMOJI",msg) Item = await fortniteAPI.GetEmoji(Item,Lang) elif args[0] == "!EMOTE": Item = GetName("!EMOTE",msg) Item = await fortniteAPI.GetEmote(Item,Lang) if "status" in Item: await message.reply("Can't find this item") return else: v = [] if msg.count("--") != 0: if Item["variants"][Lang]: #Make sure that the item has variants for Variant in GetValues(msg): VariantChannelName = (Variant.split("=")[0])[2:] Variant = Variant.split("=")[1] for variant in Item["variants"][Lang]: if variant["type"].upper() == VariantChannelName: for tag in variant["options"]: if tag["name"].upper() == Variant: v.append(create_variant(variant["channel"],tag["tag"],item=Item["backendType"])) else: #The item has no variants await message.reply("Can't find any variants for this item") asset=f'{str(Item["path"]).replace("FortniteGame/Content","/Game")}.{Item["id"]}' if args[0] == "!SKIN": await self.user.party.me.set_outfit(asset=asset,variants=v) elif args[0] == "!BACKPACK": await self.user.party.me.set_backpack(asset=asset,variants=v) elif args[0] == "!PICKAXE": await self.user.party.me.set_pickaxe(asset=asset,variants=v) elif args[0] == "!EMOJI": await self.user.party.me.set_emote(asset=asset) elif args[0] == "!EMOTE": await self.user.party.me.set_emote(asset=asset) await message.reply(f'{Item["type"].capitalize()} set to {Item["Names"][Lang]}') def GetName(Name,Message): if Message.count("--") != 0: Item = GetValue(Message,f'{Name} ',"--") else: Item = Message[(len(Name) + 1):] return Item.strip() def create_variant(VariantChannelName,Variant,item="AthenaCharacter"): return {'item': item,'channel': VariantChannelName,'variant': Variant} def GetValue(fullLine,startWith,endWith): startIndex = fullLine.index(startWith) + len(startWith) endIndex = fullLine[startIndex:].index(endWith) + startIndex return fullLine[startIndex:endIndex] def GetValues(fullLine): Variants = [] for Variant in range(0,fullLine.count("--")): try: startIndex = fullLine.index("--") ValueStartIndex = fullLine[startIndex:].index("=") + startIndex + 1 try: endIndex = fullLine[ValueStartIndex:].index("--") + ValueStartIndex except: endIndex = len(fullLine) Variants.append(fullLine[startIndex:endIndex]) fullLine = fullLine.replace(fullLine[startIndex:endIndex],"") except: return None return Variants
2.453125
2
test/test_add_group.py
Zaichkov/python_training
0
12785663
<gh_stars>0 from model.group import Group import pytest import re # @pytest.mark.parametrize("group", test_data, ids=[repr(x) for x in test_data]) def test_add_group(app, orm, json_groups, check_ui): group = json_groups old_groups = orm.get_group_list() app.group.create(group) new_groups = orm.get_group_list() old_groups.append(group) assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) if check_ui: ui_list = app.group.get_group_list() orm_list = app.group.make_list_like_ui(new_groups) assert sorted(orm_list, key=Group.id_or_max) == sorted(ui_list, key=Group.id_or_max)
2.46875
2
tests/cloud_client_test.py
dgorissen/dronekit-python
0
12785664
<filename>tests/cloud_client_test.py import unittest import os from droneapi.lib.CloudClient import * class CloudClientTest(unittest.TestCase): def __init__(self, *args, **kwargs): api_key = os.environ['DRONEAPI_KEY'] self.api = CloudClient(api_key) super(CloudClientTest, self).__init__(*args, **kwargs) def setUp(self): """Create simple data set with headers""" pass def tearDown(self): """Teardown.""" pass def test_unhandled_endpoint(self): self.assertRaises(CloudError, self.api.bogus) def test_mission_endpoint(self): self.api.mission() def test_mission_static_map(self): self.api.mission_staticMap() def test_mission_by_id_endpoint(self): self.api.mission_(1141) def test_mission_by_id_analysis_endpoint(self): self.api.mission_analysis(1141) def test_mission_by_id_geo_endpoint(self): self.api.mission_geo(1141) def test_mission_by_id_messages_endpoint(self): self.api.mission_messages(1141) def test_mission_by_id_parameters_endpoint(self): self.api.mission_parameters(1141) def test_mission_by_id_dseries_endpoint(self): self.api.mission_dseries(1141) def test_vehicle_endpoint(self): self.api.vehicle() def test_vehicle_by_id_endpoint(self): self.api.vehicle_(218) def test_user_endpoint(self): self.api.user() def test_user_by_login_endpoint(self): self.api.user('mrpollo') if __name__ == '__main__': unittest.main()
2.65625
3
bundle/fpga_simu.py
davidbrochart/bundle
4
12785665
from pyclk import Sig, Reg, In, Out, List, Module from .memory import memory from .ddr2fpga import ddr2fpga from .fpga2ddr import fpga2ddr from .iterator import iterator from .functions import func from .fpga_state import FPGA_state from random import randint import asyncio import numpy as np class Simu(Module): def __init__(self, fpga_config): self.func_layout = fpga_config.func_layout self.mem_nb = fpga_config.config['mem_nb'] self.ddr2fpga_nb = fpga_config.config['ddr2fpga_nb'] self.fpga2ddr_nb = fpga_config.config['fpga2ddr_nb'] self.func_nb = fpga_config.config['func_nb'] self.iter_nb = fpga_config.config['iter_nb'] self.mem_depth = fpga_config.config['mem_depth'] self.chunk_array = [[0 for j in range(fpga_config.config['mem_depth'])] for i in range(fpga_config.config['mem_nb'])] #self.chunk_array = [np.zeros(fpga_config.config['mem_depth'], dtype=np.uint64) for i in range(fpga_config.config['mem_nb'])] self.cycle_nb = -1 self.randmax = 2 self.trace = None # memories self.u_mem = List() self.s_mem_wena = List() self.s_mem_addr = List() self.s_mem_din = List() self.s_mem_dout = List() for i in range(self.mem_nb): self.s_mem_wena[i] = Sig() self.s_mem_addr[i] = Sig() self.s_mem_din[i] = Sig() self.s_mem_dout[i] = Sig() self.u_mem[i] = _ = memory(self.mem_depth) _.i_wena (self.s_mem_wena[i]) _.i_addr (self.s_mem_addr[i]) _.i_din (self.s_mem_din[i]) _.o_dout (self.s_mem_dout[i]) # ddr2fpga self.u_ddr2fpga = List() self.s_ddr2fpga_mem_i = List() self.s_ddr2fpga_data_nb = List() self.s_ddr2fpga_done = List() self.s_ddr2fpga_wena = List() self.s_ddr2fpga_addr = List() self.s_ddr2fpga_din = List() for i in range(self.ddr2fpga_nb): self.s_ddr2fpga_mem_i[i] = Sig() self.s_ddr2fpga_data_nb[i] = Sig() self.s_ddr2fpga_done[i] = Sig() self.s_ddr2fpga_wena[i] = Sig() self.s_ddr2fpga_addr[i] = Sig() self.s_ddr2fpga_din[i] = Sig() self.u_ddr2fpga[i] = _ = ddr2fpga() _.i_data_nb (self.s_ddr2fpga_data_nb[i]) _.o_done (self.s_ddr2fpga_done[i]) _.o_mem_wena (self.s_ddr2fpga_wena[i]) _.o_mem_addr (self.s_ddr2fpga_addr[i]) _.o_mem_din (self.s_ddr2fpga_din[i]) # fpga2ddr self.s_fpga2ddr_mem_i = List() self.s_fpga2ddr_data_nb = List() self.s_fpga2ddr_done = List() self.s_fpga2ddr_addr = List() self.s_fpga2ddr_mem_dout = List() self.u_fpga2ddr = List() for i in range(self.fpga2ddr_nb): self.s_fpga2ddr_mem_dout[i] = Sig() self.s_fpga2ddr_addr[i] = Sig() self.s_fpga2ddr_mem_i[i] = Sig() self.s_fpga2ddr_data_nb[i] = Sig() self.s_fpga2ddr_done[i] = Sig() self.u_fpga2ddr[i] = _ = fpga2ddr() _.i_data_nb (self.s_fpga2ddr_data_nb[i]) _.o_done (self.s_fpga2ddr_done[i]) _.o_mem_addr (self.s_fpga2ddr_addr[i]) _.i_mem_dout (self.s_fpga2ddr_mem_dout[i]) # iterators self.u_iter = List() self.s_iter_data_nb = List() self.s_iter_done = List() self.s_iter_raddr = List() self.s_iter_waddr = List() self.s_iter_wena = List() self.s_iter_arg_valid = List() self.s_iter_res_valid = List() for i in range(self.iter_nb): self.s_iter_data_nb[i] = Sig() self.s_iter_done[i] = Sig() self.s_iter_raddr[i] = Sig() self.s_iter_waddr[i] = Sig() self.s_iter_wena[i] = Sig() self.s_iter_arg_valid[i] = Sig() self.s_iter_res_valid[i] = Sig() self.u_iter[i] = _ = iterator() _.i_data_nb (self.s_iter_data_nb[i]) _.o_done (self.s_iter_done[i]) _.o_raddr (self.s_iter_raddr[i]) _.o_waddr (self.s_iter_waddr[i]) _.o_wena (self.s_iter_wena[i]) _.o_arg_valid (self.s_iter_arg_valid[i]) _.i_res_valid (self.s_iter_res_valid[i]) # functions self.u_func = List() self.s_func_arg0 = List() self.s_func_arg1 = List() self.s_func_arg_valid = List() self.s_func_res = List() self.s_func_res_valid = List() i = 0 for fname, fnb in self.func_layout.items(): for j in range(fnb): self.s_func_arg0[i] = Sig() self.s_func_arg1[i] = Sig() self.s_func_arg_valid[i] = Sig() self.s_func_res[i] = Sig() self.s_func_res_valid[i] = Sig() self.u_func[i] = _ = func(fname) _.i_arg0 (self.s_func_arg0[i]) _.i_arg1 (self.s_func_arg1[i]) _.i_arg_valid (self.s_func_arg_valid[i]) _.o_res (self.s_func_res[i]) _.o_res_valid (self.s_func_res_valid[i]) i += 1 self.s_iter_rmem0_i = List() self.s_iter_rmem1_i = List() self.s_iter_wmem_i = List() self.s_iter_func_i = List() for i in range(self.iter_nb): self.s_iter_rmem0_i[i] = Sig() self.s_iter_rmem1_i[i] = Sig() self.s_iter_wmem_i[i] = Sig() self.s_iter_func_i[i] = Sig() self.state = FPGA_state(fpga_config) self.config = fpga_config.config def logic(self): # DDR <-> memory for i in range(self.mem_nb): self.s_mem_addr[i].d = 0 self.s_mem_din[i].d = 0 self.s_mem_wena[i].d = 0 for i in range(self.fpga2ddr_nb): self.s_mem_addr[self.s_fpga2ddr_mem_i[i].d].d += self.s_fpga2ddr_addr[i].d self.s_fpga2ddr_mem_dout[i].d = self.s_mem_dout[self.s_fpga2ddr_mem_i[i].d].d for i in range(self.ddr2fpga_nb): self.s_mem_wena[self.s_ddr2fpga_mem_i[i].d].d += self.s_ddr2fpga_wena[i].d self.s_mem_addr[self.s_ddr2fpga_mem_i[i].d].d += self.s_ddr2fpga_addr[i].d self.s_mem_din[self.s_ddr2fpga_mem_i[i].d].d += self.s_ddr2fpga_din[i].d # memory <-> iterator <-> function for i in range(self.func_nb): self.s_func_arg_valid[i].d = 0 self.s_func_arg0[i].d = 0 self.s_func_arg1[i].d = 0 for i in range(self.iter_nb): self.s_mem_addr[self.s_iter_rmem0_i[i].d].d += self.s_iter_raddr[i].d self.s_mem_addr[self.s_iter_rmem1_i[i].d].d += self.s_iter_raddr[i].d self.s_mem_addr[self.s_iter_wmem_i[i].d].d += self.s_iter_waddr[i].d self.s_mem_wena[self.s_iter_wmem_i[i].d].d += self.s_iter_wena[i].d self.s_func_arg_valid[self.s_iter_func_i[i].d].d += self.s_iter_arg_valid[i].d self.s_iter_res_valid[i].d = self.s_func_res_valid[self.s_iter_func_i[i].d].d if self.s_iter_data_nb[i].d != 0: self.s_mem_din[self.s_iter_wmem_i[i].d].d += self.s_func_res[self.s_iter_func_i[i].d].d if self.s_iter_arg_valid[i].d == 1: self.s_func_arg0[self.s_iter_func_i[i].d].d += self.s_mem_dout[self.s_iter_rmem0_i[i].d].d self.s_func_arg1[self.s_iter_func_i[i].d].d += self.s_mem_dout[self.s_iter_rmem1_i[i].d].d def set_cycle_nb(self, cycle_nb=-1): self.cycle_nb = cycle_nb def set_trace(self, trace): self.trace = trace async def op(self, iter_i, func_i, rmem0_i, rmem1_i, wmem_i, data_nb): # operation request self.s_iter_data_nb[iter_i].d = data_nb self.s_iter_func_i[iter_i].d = func_i self.s_iter_rmem0_i[iter_i].d = rmem0_i self.s_iter_rmem1_i[iter_i].d = rmem1_i self.s_iter_wmem_i[iter_i].d = wmem_i clkNb = randint(1, self.randmax) self.run(clkNb=clkNb, trace=self.trace) # operation completion check # software is polling, run the FPGA done = False while not done: if (self.cycle_nb >= 0) and (self.time >= self.cycle_nb): return if self.s_iter_done[iter_i].d == 1: self.s_iter_data_nb[iter_i].d = 0 done = True else: done = False clkNb = randint(1, self.randmax) self.run(clkNb=clkNb, trace=self.trace) await asyncio.sleep(0) async def ddr2fpga(self, ddr2fpga_i, mem_i, array_ptr, data_nb): # memory write self.s_ddr2fpga_mem_i[ddr2fpga_i].d = mem_i self.s_ddr2fpga_data_nb[ddr2fpga_i].d = data_nb self.u_ddr2fpga[ddr2fpga_i].array_ptr = array_ptr clkNb = randint(1, self.randmax) self.run(clkNb=clkNb, trace=self.trace) # memory copy completion check # software is polling, run the FPGA done = False while not done: if (self.cycle_nb >= 0) and (self.time >= self.cycle_nb): return if self.s_ddr2fpga_done[ddr2fpga_i].d == 1: self.s_ddr2fpga_data_nb[ddr2fpga_i].d = 0 done = True else: done = False clkNb = randint(1, self.randmax) self.run(clkNb=clkNb, trace=self.trace) await asyncio.sleep(0) async def fpga2ddr(self, fpga2ddr_i, mem_i, array_ptr, data_nb): # memory read self.s_fpga2ddr_mem_i[fpga2ddr_i].d = mem_i self.s_fpga2ddr_data_nb[fpga2ddr_i].d = data_nb self.u_fpga2ddr[fpga2ddr_i].array_ptr = array_ptr clkNb = randint(1, self.randmax) self.run(clkNb=clkNb, trace=self.trace) # memory copy completion check # software is polling, run the FPGA done = False while not done: if (self.cycle_nb >= 0) and (self.time >= self.cycle_nb): return if self.s_fpga2ddr_done[fpga2ddr_i].d == 1: self.s_fpga2ddr_data_nb[fpga2ddr_i].d = 0 done = True else: done = False clkNb = randint(1, self.randmax) self.run(clkNb=clkNb, trace=self.trace) await asyncio.sleep(0)
2.328125
2
dandi/metadata.py
AlmightyYakob/dandi-cli
0
12785666
from datetime import datetime import os.path as op import re from uuid import uuid4 from . import models from .pynwb_utils import ( _get_pynwb_metadata, get_neurodata_types, get_nwb_version, ignore_benign_pynwb_warnings, metadata_cache, ) from .utils import ensure_datetime from . import __version__, get_logger from .dandiset import Dandiset lgr = get_logger() @metadata_cache.memoize_path def get_metadata(path): """Get selected metadata from a .nwb file or a dandiset directory If a directory given and it is not a Dandiset, None is returned Parameters ---------- path: str or Path Returns ------- dict """ # when we run in parallel, these annoying warnings appear ignore_benign_pynwb_warnings() path = str(path) # for Path meta = dict() if op.isdir(path): try: dandiset = Dandiset(path) return dandiset.metadata except ValueError as exc: lgr.debug("Failed to get metadata for %s: %s", path, exc) return None # First read out possibly available versions of specifications for NWB(:N) meta["nwb_version"] = get_nwb_version(path) # PyNWB might fail to load because of missing extensions. # There is a new initiative of establishing registry of such extensions. # Not yet sure if PyNWB is going to provide "native" support for needed # functionality: https://github.com/NeurodataWithoutBorders/pynwb/issues/1143 # So meanwhile, hard-coded workaround for data types we care about ndtypes_registry = { "AIBS_ecephys": "allensdk.brain_observatory.ecephys.nwb", "ndx-labmetadata-abf": "ndx_dandi_icephys", } tried_imports = set() while True: try: meta.update(_get_pynwb_metadata(path)) break except KeyError as exc: # ATM there is lgr.debug("Failed to read %s: %s", path, exc) import re res = re.match(r"^['\"\\]+(\S+). not a namespace", str(exc)) if not res: raise ndtype = res.groups()[0] if ndtype not in ndtypes_registry: raise ValueError( "We do not know which extension provides %s. " "Original exception was: %s. " % (ndtype, exc) ) import_mod = ndtypes_registry[ndtype] lgr.debug("Importing %r which should provide %r", import_mod, ndtype) if import_mod in tried_imports: raise RuntimeError( "We already tried importing %s to provide %s, but it seems it didn't help" % (import_mod, ndtype) ) tried_imports.add(import_mod) __import__(import_mod) meta["nd_types"] = get_neurodata_types(path) return meta def parse_age(age): """ Convert a human-friendly duration string into an ISO 8601 duration Parameters ---------- age : str Returns ------- str """ m = re.fullmatch(r"(\d+)\s*(y(ear)?|m(onth)?|w(eek)?|d(ay)?)s?", age, flags=re.I) if m: qty = int(m.group(1)) unit = m.group(2)[0].upper() return f"P{qty}{unit}" else: raise ValueError(age) def extract_age(metadata): try: dob = ensure_datetime(metadata["date_of_birth"]) start = ensure_datetime(metadata["session_start_time"]) except (KeyError, TypeError, ValueError): try: duration = parse_age(metadata["age"]) except (KeyError, TypeError, ValueError): return ... else: if start < dob: raise ValueError("session_start_time precedes date_of_birth") duration = timedelta2duration(start - dob) return models.PropertyValue(value=duration, unitText="Years from birth") def timedelta2duration(delta): """ Convert a datetime.timedelta to ISO 8601 duration format Parameters ---------- delta : datetime.timedelta Returns ------- str """ s = "P" if delta.days: s += f"{delta.days}D" if delta.seconds or delta.microseconds: sec = delta.seconds if delta.microseconds: # Don't add when microseconds is 0, so that sec will be an int then sec += delta.microseconds / 1000000 s += f"T{sec}S" if s == "P": s += "0D" return s def extract_sex(metadata): value = metadata.get("sex", None) if value is not None: value = value.lower() if value in ["m", "male"]: value_id = "http://purl.obolibrary.org/obo/PATO_0000384" value = "Male" elif value in ["f", "female"]: value_id = "http://purl.obolibrary.org/obo/PATO_0000383" value = "Female" elif value in ["unknown"]: value_id = None value = "Unknown" elif value in ["other"]: value_id = None value = "Other" elif value.startswith("http"): value_id = value value = None else: raise ValueError(f"Cannot interpret sex field: {value}") return models.SexType(identifier=value_id, name=value) else: return ... def extract_species(metadata): value = metadata.get("species", None) if value is not None: value = value.lower() if "mouse" in value or value.startswith("mus"): value_id = "http://purl.obolibrary.org/obo/NCBITaxon_10090" value = "House mouse" elif "human" in value or value.startswith("homo"): value_id = "http://purl.obolibrary.org/obo/NCBITaxon_9606" value = "Human" elif "rat" in value: value_id = "http://purl.obolibrary.org/obo/NCBITaxon_10117" value = "House rat" elif "mulatta" in value or "rhesus" in value: value_id = "http://purl.obolibrary.org/obo/NCBITaxon_9544" value = "Rhesus monkey" elif "jacchus" in value: value_id = "http://purl.obolibrary.org/obo/NCBITaxon_9483" value = "Common marmoset" elif "melanogaster" in value or "fruit fly" in value: value_id = "http://purl.obolibrary.org/obo/NCBITaxon_7227" value = "Common fruit fly" elif value.startswith("http"): value_id = value value = None else: raise ValueError(f"Cannot interpret species field: {value}") return models.SpeciesType(identifier=value_id, name=value.capitalize()) else: return ... def extract_assay_type(metadata): if "assayType" in metadata: return [models.AssayType(identifier="assayType", name=metadata["assayType"])] else: return ... def extract_anatomy(metadata): if "anatomy" in metadata: return [models.Anatomy(identifier="anatomy", name=metadata["anatomy"])] else: return ... def extract_model(modelcls, metadata, **kwargs): m = modelcls.unvalidated() for field in m.__fields__.keys(): value = kwargs.get(field, extract_field(field, metadata)) if value is not Ellipsis: setattr(m, field, value) # return modelcls(**m.dict()) return m def extract_wasDerivedFrom(metadata): return [ extract_model(models.BioSample, metadata, identifier=metadata.get("subject_id")) ] def extract_digest(metadata): if "digest" in metadata: return models.Digest( value=metadata["digest"], cryptoType=models.DigestType[metadata["digest_type"]], ) else: return ... FIELD_EXTRACTORS = { "wasDerivedFrom": extract_wasDerivedFrom, "age": extract_age, "sex": extract_sex, "assayType": extract_assay_type, "anatomy": extract_anatomy, "digest": extract_digest, "species": extract_species, } def extract_field(field, metadata): if field in FIELD_EXTRACTORS: return FIELD_EXTRACTORS[field](metadata) else: return metadata.get(field, ...) def nwb2asset(nwb_path, digest=None, digest_type=None): start_time = datetime.now().astimezone() metadata = get_metadata(nwb_path) if digest is not None: metadata["digest"] = digest metadata["digest_type"] = digest_type metadata["contentSize"] = op.getsize(nwb_path) metadata["encodingFormat"] = "application/x-nwb" asset = metadata2asset(metadata) end_time = datetime.now().astimezone() asset.wasGeneratedBy = models.Activity( identifier=str(uuid4()), name="Metadata generation", description="Metadata generated by DANDI cli", wasAssociatedWith=models.Software( identifier={"propertyID": "RRID", "value": "SCR_019009"}, name="DANDI Command Line Interface", description=f"dandi-cli {__version__}", version=__version__, url="https://github.com/dandi/dandi-cli", ), startedAt=start_time, endedAt=end_time, ) return asset def metadata2asset(metadata): return extract_model(models.AssetMeta, metadata) """ The following section converts metadata schema from the current girder dandiset model to the new schema in dandi-cli. This section should be removed after the migration is finished to the """ mapping = { "identifier": ["identifier"], "name": ["name"], "description": ["description"], "contributors": ["contributor"], "sponsors": ["contributor", ["Sponsor"]], "license": ["license"], "keywords": ["keywords"], "project": ["generatedBy"], "conditions_studied": ["about"], "associated_anatomy": ["about"], "protocols": ["protocol"], "ethicsApprovals": ["ethicsApproval"], "access": ["access"], "associatedData": ["relatedResource", "IsDerivedFrom"], "publications": ["relatedResource", "IsDescribedBy"], "age": ["variableMeasured"], "organism": ["variableMeasured"], "sex": ["variableMeasured"], "number_of_subjects": ["assetsSummary", "numberOfSubjects"], "number_of_cells": ["assetsSummary", "numberOfCells"], "number_of_tissue_samples": ["assetsSummary", "numberOfSamples"], } def toContributor(value): if not isinstance(value, list): value = [value] out = [] for item in value: contrib = {} if "name" in item: name = item["name"].split() item["name"] = f"{name[-1]}, {' '.join(name[:-1])}" if "roles" in item: roles = [] for role in item["roles"]: tmp = role.split() if len(tmp) > 1: roles.append("".join([val.capitalize() for val in tmp])) else: roles.append(tmp.pop()) contrib["roleName"] = roles del item["roles"] if "awardNumber" in item: contrib["awardNumber"] = item["awardNumber"] del item["awardNumber"] if "orcid" in item: if item["orcid"]: contrib["identifier"] = models.PropertyValue( value=item["orcid"], propertyID="ORCID" ) else: contrib["identifier"] = models.PropertyValue() del item["orcid"] if "affiliations" in item: item["affiliation"] = item["affiliations"] del item["affiliations"] contrib.update(**{f"{k}": v for k, v in item.items()}) out.append(contrib) return out def convertv1(data): oldmeta = data["dandiset"] if "dandiset" in data else data newmeta = {} for oldkey, value in oldmeta.items(): if oldkey in ["language", "altid", "number_of_slices"]: continue if oldkey not in mapping: raise KeyError(f"Could not find {oldkey}") if len(mapping[oldkey]) == 0: newkey = f"schema:{oldkey}" else: newkey = mapping[oldkey][0] if oldkey in ["contributors", "sponsors"]: value = toContributor(value) if oldkey == "access": value = [ models.AccessRequirements( status=models.AccessType.Open, email=value["access_contact_email"] ) ] if oldkey == "identifier": value = models.PropertyValue(value=value, propertyID="DANDI") if len(mapping[oldkey]) == 2: extra = mapping[oldkey][1] if newkey == "contributor": extrakey = "roleName" if oldkey == "sponsors": extrakey = "roleName" if oldkey in ["publications", "associatedData"]: extrakey = "relation" if not isinstance(value, list): value = [value] out = [] for item in value: if isinstance(item, dict): out.append({k: v for k, v in item.items()}) else: present = False for val in out: if item in val.values(): present = True if not present: out.append({"url": item}) value = out if oldkey in [ "number_of_subjects", "number_of_cells", "number_of_tissue_samples", ]: value = {extra: value} extrakey = None if isinstance(value, list): for val in value: if extrakey: val[extrakey] = extra if isinstance(value, dict): if extrakey: value[extrakey] = extra if newkey == "variableMeasured": if oldkey in ["age", "sex"]: vm = {"name": oldkey} if oldkey == "sex": vm["value"] = value else: if "maximum" in value: if "days" in value["maximum"]: value["units"] = "days" if "Gestational" in value["maximum"]: value["units"] = "Gestational Week" value["maximum"] = value["maximum"].split()[-1] if value["maximum"].startswith("P"): value["maximum"] = value["maximum"][1:-1] value["units"] = value["maximum"][-1] if "None" not in value["maximum"]: value["maximum"] = float(value["maximum"].split()[0]) if "minimum" in value: if "days" in value["minimum"]: value["units"] = "days" if "Gestational" in value["minimum"]: value["units"] = "Gestational Week" value["minimum"] = value["minimum"].split()[-1] if value["minimum"].startswith("P"): value["minimum"] = value["minimum"][1:-1] value["units"] = value["minimum"][-1] if "None" not in value["minimum"]: value["minimum"] = float(value["minimum"].split()[0]) value["unitText"] = value["units"] del value["units"] vm.update(**value) else: newvalues = [] for val in value: if "species" in val: newvalues.append(val["species"]) vm = {"name": "species", "value": newvalues} value = vm if newkey not in newmeta: newmeta[newkey] = value else: curvalue = newmeta[newkey] if not isinstance(curvalue, list): newmeta[newkey] = [curvalue] if not isinstance(value, list): value = [value] newmeta[newkey].extend(value) if "assetsSummary" in newmeta: del newmeta["assetsSummary"] if "variableMeasured" in newmeta: del newmeta["variableMeasured"] return newmeta def migrate2newschema(meta): newmeta = convertv1(meta) dandimeta = models.DandiMeta.unvalidated(**newmeta) return dandimeta
1.96875
2
src/user.py
livibetter/twimonial
0
12785667
import logging import os from google.appengine.api import memcache from google.appengine.ext import webapp from google.appengine.ext.webapp import template from google.appengine.ext.webapp.util import run_wsgi_app from twimonial.models import User, Twimonial from twimonial.ui import render_write import config class UserPage(webapp.RequestHandler): def get(self, screen_name): if config.CACHE: # Check cache first cached_page = memcache.get(screen_name, 'userpage') if cached_page: self.response.out.write(cached_page) return user = User.get_by_screen_name(screen_name) if not user: self.error(404) rendered_page = render_write({'screen_name': screen_name}, 'user_404.html', self.request, self.response) return user.check_profile_image() tmpl_values = { 'user': user.dictize(), } # Send out and cache it rendered_page = render_write(tmpl_values, 'user.html', self.request, self.response) if config.CACHE: memcache.set(screen_name, rendered_page, config.CACHE_TIME_USERPAGE, namespace='userpage') def head(self, screen_name): pass class UserListPage(webapp.RequestHandler): def get(self, screen_name, screen_names_string): limit = 10 screen_names = [name for name in screen_names_string.split('-') if name][:limit] screen_names.sort() screen_names_string = '-'.join(screen_names) if config.CACHE: # Check cache first cached_page = memcache.get(screen_names_string, 'userlist_%s' % screen_name) if cached_page: self.response.out.write(cached_page) return user = User.get_by_screen_name(screen_name) if not user: self.error(404) rendered_page = render_write({'screen_name': screen_name}, 'user_404.html', self.request, self.response) return twimonials = [t.dictize() for t in Twimonial.get_tos_from(screen_names, user)] missings = [] t_screen_names = [t['to_user']['screen_name'].lower() for t in twimonials] for name in screen_names: if name.lower() not in t_screen_names: missings.append(name) tmpl_values = { 'user': user, 'twimonials': twimonials, 'missings': ', '.join(missings), } # Send out and cache it rendered_page = render_write(tmpl_values, 'userlist.html', self.request, self.response) if config.CACHE: memcache.set(screen_names_string, rendered_page, config.CACHE_TIME_USERLISTPAGE, namespace='userlist_%s' % screen_name) application = webapp.WSGIApplication([ ('/user/([_a-zA-Z0-9]+)', UserPage), ('/userlist/([_a-zA-Z0-9]+)/([-_a-zA-Z0-9]+)', UserListPage), ], debug=config.DEBUG) def main(): run_wsgi_app(application) if __name__ == "__main__": main()
2.0625
2
route.py
LemonPi/Pathtreker
1
12785668
import queue import networkx from math import radians, sin, cos, sqrt, asin from util import hav def shortest_path(g, source, dest): """Return single source single destination shortest path using A* search. Haversine distance is used as heuristic. Arguments: g -- networkx graph loaded from shapefile source -- source intersection's index in g dest -- destination intersection's index in g """ def heuristic(a,b): """Return heuristic distance between two nodes in g. Haversine distance guranteed to be shorter than actual distance, since it's the shortest distance between points on a sphere (which the earth approximates). Arguments: a -- one node index in g b -- another node index in g """ # lat and lon internally stored in degrees, convert and call function # lona, lonb, lata, latb = [g.node[a]['lon'], g.node[b]['lon'], g.node[a]['lat'], g.node[b]['lat']] return 0 # hav((lona, lata), (lonb, latb)) # frontier of nodes to explore exploring = queue.PriorityQueue() # property maps which will be built and returned outside # actual cost to node cost = {} # which immediate node was the shortest path from parent = {} # queue.PriorityQueue expects put(priority, data) we store node index as data exploring.put((0,source)) parent[source] = None cost[source] = 0 while not exploring.empty(): u_cost, u = exploring.get() if u == dest: break for v in g[u]: new_cost = cost[u] + g[u][v]['length'] if v not in cost or new_cost < cost[v]: # relax edge with new_cost cost[v] = new_cost parent[v] = u heuristic_cost = new_cost + heuristic(u,v) # doesn't matter if v's already in exploring queue with higher cost # we'll have duplicate nodes, but those won't affect correctness # since they'll be explored after the cheaper ones are explored, # they won't yield any new shorter paths exploring.put((heuristic_cost,v)) return cost, parent
3.6875
4
package/spack-curl/package.py
ctuning/ck-spack
1
12785669
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by <NAME>, <EMAIL>, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * import sys class Curl(AutotoolsPackage): """cURL is an open source command line tool and library for transferring data with URL syntax""" homepage = "http://curl.haxx.se" # URL must remain http:// so Spack can bootstrap curl url = "http://curl.haxx.se/download/curl-7.60.0.tar.bz2" version('7.60.0', 'bd2aabf78ded6a9aec8a54532fd6b5d7') version('7.59.0', 'a2192804f7c2636a09320416afcf888e') version('7.56.0', 'e0caf257103e0c77cee5be7e9ac66ca4') version('7.54.0', '89bb7ba87384dfbf4f1a3f953da42458') version('7.53.1', 'fb1f03a142236840c1a77c035fa4c542') version('7.52.1', 'dd014df06ff1d12e173de86873f9f77a') version('7.50.3', 'bd177fd6deecce00cfa7b5916d831c5e') version('7.50.2', '6e161179f7af4b9f8b6ea21420132719') version('7.50.1', '015f6a0217ca6f2c5442ca406476920b') version('7.49.1', '6bb1f7af5b58b30e4e6414b8c1abccab') version('7.47.1', '9ea3123449439bbd960cd25cf98796fb') version('7.46.0', '9979f989a2a9930d10f1b3deeabc2148') version('7.45.0', '62c1a352b28558f25ba6209214beadc8') version('7.44.0', '6b952ca00e5473b16a11f05f06aa8dae') version('7.43.0', '11bddbb452a8b766b932f859aaeeed39') version('7.42.1', '296945012ce647b94083ed427c1877a8') variant('nghttp2', default=False, description='build nghttp2 library (requires C++11)') variant('libssh2', default=False, description='enable libssh2 support') variant('libssh', default=False, description='enable libssh support') # , when='7.58:') variant('darwinssl', default=sys.platform == 'darwin', description="use Apple's SSL/TLS implementation") conflicts('+libssh', when='@:7.57.99') # on OSX and --with-ssh the configure steps fails with # one or more libs available at link-time are not available run-time # unless the libssh are installed externally (e.g. via homebrew), even # though spack isn't supposed to know about such a libssh installation. # C.f. https://github.com/spack/spack/issues/7777 conflicts('platform=darwin', when='+libssh2') conflicts('platform=darwin', when='+libssh') conflicts('platform=linux', when='+darwinssl') depends_on('openssl', when='~darwinssl') depends_on('zlib') depends_on('nghttp2', when='+nghttp2') depends_on('libssh2', when='+libssh2') depends_on('libssh', when='+libssh') def configure_args(self): spec = self.spec args = ['--with-zlib={0}'.format(spec['zlib'].prefix)] if spec.satisfies('+darwinssl'): args.append('--with-darwinssl') else: args.append('--with-ssl={0}'.format(spec['openssl'].prefix)) args += self.with_or_without('nghttp2') args += self.with_or_without('libssh2') args += self.with_or_without('libssh') return args
1.773438
2
mlcomp/__version__.py
gorogoroyasu/mlcomp
0
12785670
<filename>mlcomp/__version__.py<gh_stars>0 __version__ = '19.10'
1.023438
1
atest/testdata/keywords/PositionalOnly.py
bhirsz/robotframework
7,073
12785671
def one_argument(arg, /): return arg.upper() def three_arguments(a, b, c, /): return '-'.join([a, b, c]) def with_normal(posonly, /, normal): return posonly + '-' + normal def defaults(required, optional='default', /): return required + '-' + optional def types(first: int, second: float, /): return first + second def kwargs(x, /, **y): return '%s, %s' % (x, ', '.join('%s: %s' % item for item in y.items()))
3.15625
3
rx/internal/basic.py
mmpio/RxPY
4,342
12785672
from typing import Any from datetime import datetime # Defaults def noop(*args, **kw): """No operation. Returns nothing""" pass def identity(x: Any) -> Any: """Returns argument x""" return x def default_now() -> datetime: return datetime.utcnow() def default_comparer(x: Any, y: Any) -> bool: return x == y def default_sub_comparer(x, y): return x - y def default_key_serializer(x: Any) -> str: return str(x) def default_error(err) -> Exception: if isinstance(err, BaseException): raise err else: raise Exception(err)
2.953125
3
wxgigo/wxmp/api/webauth.py
rfancn/wxgigo
0
12785673
#!/usr/bin/env python # coding=utf-8 """ Copyright (C) 2010-2013, <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ from __future__ import absolute_import import requests import json import urllib from celery import shared_task, Task from sdk.constants import * from sdk.web.helper import WebHelper class BaseWeb(Task): abstract = True web_helper = WebHelper(Task.app.db) app_id, app_key = Task.app.db.hmget(WXMP_CONFIG, 'APP_ID', 'APP_KEY') #class get_access_token(BaseWeb): # def run(self, open_id): # return self.web_helper.get_access_token(open_id) class auth(BaseWeb): """ Authorization to obtain web access token @param: code @return: if succeed, returns openid """ def run(self, code): if not self.app_id or not self.app_key: print "No app_id or app_key when doing web authentication" return None url = 'https://api.weixin.qq.com/sns/oauth2/access_token?' \ 'appid={0}&secret={1}&code={2}&' \ 'grant_type=authorization_code'.format(self.app_id, self.app_key, code) try: resp = requests.get(url).json() except Exception,e: print "Failed to do web authentication because of:{0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when do web authentication" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when do web authentication: {0}".format(resp['errmsg']) return None if not self.web_helper.save_auth_info(resp): return None return resp['openid'] class get_auth_url(BaseWeb): def run(self, redirect_url, scope): if not self.app_id: print "Failed to get app_id in get_auth_url()" return None auth_url = 'https://open.weixin.qq.com/connect/oauth2/authorize?' \ 'appid={0}&redirect_uri={1}&response_type=code' \ '&scope={2}#wechat_redirect'.format(self.app_id, urllib.quote_plus(redirect_url), scope) return auth_url class get_user_info(BaseWeb): def refresh_access_token(self, open_id): if not self.app_id: print "Failed to get app_id when refresh web access token" return None refresh_token = self.web_helper.get_refresh_token(open_id) if not refresh_token: return None url = 'https://api.weixin.qq.com/sns/oauth2/refresh_token?' \ 'appid={0}&grant_type=refresh_token&refresh_token={1}'.format( self.app_id, refresh_token ) try: resp = requests.get(url).json() except Exception,e: print "Failed to get refresh web access token because of:{0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when refresh web access token" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when refresh web access token: {0}".format(resp['errmsg']) return None # resp is a authentication info dict contains following: # # { # "access_token":"ACCESS_TOKEN", # "expires_in":7200, # "refresh_token":"<PASSWORD>_TOKEN", # "openid":"OPENID", # "scope":"SCOPE" # } if not self.web_helper.save_auth_info(resp): return None return resp['access_token'] def run(self, open_id): access_token = self.web_helper.get_access_token(open_id) # first time check if we can get valid access_token from db if not access_token: # may be access_token expired, try refresh it print "Failed to get valid access_token from db, try to refresh it..." access_token = self.refresh_access_token(open_id) # second time check after refresh if not access_token: print "Failed to get access_token after refresh" return None url = 'https://api.weixin.qq.com/sns/userinfo?' \ 'access_token={0}&openid={1}&lang=zh_CN'.format(access_token, open_id) try: resp = requests.get(url) # Important: Must not use requests.response.json() method here # otherwise, requests will doing ascii encode against the unicode string resp = json.loads(resp.content) except Exception,e: print "Failed to get userinfo because of:{0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when get userinfo from Weixin server" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when get userinfo info from Weixin server: {0}".format(resp['errmsg']) return None return resp
2.234375
2
src/simod/writers/xml_writer.py
Mcamargo85/SiMo-Discoverer
12
12785674
<filename>src/simod/writers/xml_writer.py import uuid from lxml import etree from lxml.builder import ElementMaker # lxml only ! # --------------- General methods ---------------- from simod.configuration import QBP_NAMESPACE_URI def create_file(output_file, element): # file_exist = os.path.exists(output_file) with open(output_file, 'wb') as f: f.write(element) f.close() # -------------- kernel -------------- def print_parameters(bpmn_input, output_file, parameters): my_doc = xml_template(parameters.get('arrival_rate'), parameters.get('resource_pool'), parameters.get('elements_data'), parameters.get('sequences'), parameters.get('instances'), parameters.get('start_time')) # insert timetable if parameters.get('time_table') is not None: ns = {'qbp': QBP_NAMESPACE_URI} childs = parameters['time_table'].findall('qbp:timetable', namespaces=ns) node = my_doc.find('qbp:timetables', namespaces=ns) for i, child in enumerate(childs): node.insert((i + 1), child) # Append parameters to the bpmn model root = append_parameters(bpmn_input, my_doc) create_file(output_file, etree.tostring(root, pretty_print=True)) def xml_template(arrival_rate=None, resource_pool=None, elements_data=None, sequences=None, instances=None, start_time=None): E = ElementMaker(namespace=QBP_NAMESPACE_URI, nsmap={'qbp': QBP_NAMESPACE_URI}) PROCESSSIMULATIONINFO = E.processSimulationInfo ARRIVALRATEDISTRIBUTION = E.arrivalRateDistribution TIMEUNIT = E.timeUnit TIMETABLES = E.timetables RESOURCES = E.resources RESOURCE = E.resource ELEMENTS = E.elements ELEMENT = E.element DURATION = E.durationDistribution RESOURCESIDS = E.resourceIds RESOURCESID = E.resourceId SEQUENCEFLOWS = E.sequenceFlows SEQUENCEFLOW = E.sequenceFlow rootid = "qbp_" + str(uuid.uuid4()) arrival_doc = None if arrival_rate: arrival_doc = ARRIVALRATEDISTRIBUTION( TIMEUNIT("seconds"), type=arrival_rate['dname'], mean=str(arrival_rate['dparams']['mean']), arg1=str(arrival_rate['dparams']['arg1']), arg2=str(arrival_rate['dparams']['arg2'])) resources_doc = None if resource_pool: resources_doc = RESOURCES( *[ RESOURCE( id=res['id'], name=res['name'], totalAmount=res['total_amount'], costPerHour=res['costxhour'], timetableId=res['timetable_id']) for res in resource_pool ] ) elements_doc = None if elements_data: elements_doc = ELEMENTS( *[ ELEMENT( DURATION( TIMEUNIT("seconds"), type=e['type'], mean=e['mean'], arg1=e['arg1'], arg2=e['arg2'] ), RESOURCESIDS( RESOURCESID(str(e['resource'])) ), id=e['id'], elementId=e['elementid'] ) for e in elements_data ] ) sequences_doc = None if sequences: sequences_doc = SEQUENCEFLOWS( *[ SEQUENCEFLOW( elementId=seq['elementid'], executionProbability=str(seq['prob'])) for seq in sequences ] ) docs = list(filter(lambda doc: doc is not None, [arrival_doc, resources_doc, elements_doc, sequences_doc])) my_doc = PROCESSSIMULATIONINFO( TIMETABLES(), *docs, id=rootid, processInstances=str(instances) if instances else "", startDateTime=start_time if start_time else "", currency="EUR" ) return my_doc def append_parameters(bpmn_input, my_doc): node = etree.fromstring(etree.tostring(my_doc, pretty_print=True)) tree = etree.parse(bpmn_input) root = tree.getroot() froot = etree.fromstring(etree.tostring(root, pretty_print=True)) froot.append(node) return froot
2.40625
2
hkpy/hkpyo/model/hko_model.py
renan-souza/hkpy
7
12785675
<gh_stars>1-10 ### # Copyright (c) 2019-present, IBM Research # Licensed under The MIT License [see LICENSE for details] ### import json from collections import Counter from typing import TypeVar, Union, Dict from hkpy import hkfy CONCEPT_IRI = "http://brl.ibm.com/ontologies/hko#Concept" PROPERTY_IRI = "http://brl.ibm.com/ontologies/hko#Property" INDIVIDUAL_IRI = "http://brl.ibm.com/ontologies/hko#Individual" #TOP_CONTEXT_IRI = "http://brl.ibm.com/ontology/hko$Everything" TOP_CONTEXT_IRI = None TOP_CONCEPT_IRI = "http://brl.ibm.com/ontologies/hko#Entity" TOP_PROPERTY_IRI = "http://brl.ibm.com/ontologies/hko#property" HKOContext = TypeVar('HKOContext') HKOProperty = TypeVar('HKOProperty') HKOContextManager = TypeVar("HKOContextManager") HKOLiteral = TypeVar('Union[str,int,float]') HKO_NUMBER_DATATYPE = "http://brl.ibm.com/ontologies/hko#Number" HKO_STRING_DATATYPE = "http://brl.ibm.com/ontologies/hko#String" class HKOElement: """Any syntactic element should extend this class""" def __init__(self): pass class HKOContextElement(HKOElement): def __init__(self, context: HKOContext) -> None: super().__init__() self.context = context class HKONamedElement(HKOContextElement): """All named elements are contextualized """ def __init__(self, iri: str, context: HKOContext) -> None: super().__init__(context=context) self.iri = iri def __str__(self) -> str: return self.iri #do not add hash and eq. class HKOConceptExpression(HKOElement): pass class HKOConcept(HKOConceptExpression, HKONamedElement): def __init__(self, iri: str, context: HKOContext): HKONamedElement.__init__(self, iri, context) def __eq__(self, o: object) -> bool: if isinstance(o, HKOConcept): #it might happen that the same iri can identify concepts/properties and individuals return self.iri == o.iri else: return super().__eq__(o) def __hash__(self) -> int: return hash(str(HKOConcept)+self.iri) class HKOExistsExpression(HKOConceptExpression): def __init__(self, property: HKOProperty, concept: HKOConceptExpression): super().__init__() self.property = property self.concept = concept def __str__(self) -> str: return f"""(exists {self.property} {self.concept})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOExistsExpression) and o.concept == self.concept and o.property == self.property def __hash__(self) -> int: return hash(hash(HKOExistsExpression) + self.property.__hash__() + self.concept.__hash__()) class HKOForallExpression(HKOConceptExpression): def __init__(self, property: HKOProperty, concept: HKOConceptExpression): super().__init__() self.property = property self.concept = concept def __str__(self) -> str: return f"""(forall {self.property} {self.concept})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOForallExpression) and o.concept == self.concept and o.property == self.property def __hash__(self) -> int: return hash(hash(HKOForallExpression) + self.property.__hash__() + self.concept.__hash__()) class HKOConjunctionExpression(HKOConceptExpression): def __init__(self, *concepts: HKOConceptExpression): super().__init__() self.concepts = tuple(concepts) def __str__(self) -> str: return f"""(and {' '.join(map(lambda x : str(x), self.concepts))})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOConjunctionExpression) and Counter(o.concepts) == Counter(self.concepts) def __hash__(self) -> int: #TODO: check if self.concepts should be changed to a set implementation return hash(hash(HKOConjunctionExpression) + sum(hash(e) for e in self.concepts)) class HKODisjunctionExpression(HKOConceptExpression): def __init__(self, *concepts: HKOConceptExpression): super().__init__() self.concepts = concepts def __str__(self) -> str: return f"""(or {' '.join(map(lambda x : str(x), self.concepts))})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKODisjunctionExpression) and Counter(o.concepts) == Counter(self.concepts) def __hash__(self) -> int: #TODO: check if self.concepts should be changed to a set implementation return hash(hash(HKODisjunctionExpression) + sum(hash(e) for e in self.concepts)) class HKOConceptNegationExpression(HKOConceptExpression): def __init__(self, concept_expr: HKOConceptExpression): super().__init__() self.concept_expr = concept_expr def __str__(self) -> str: return f"""(not {self.concept_expr})""" # class HKOPropertyExpression(HKOElement): # context: HKOContext # # def __init__(self, context: HKOContext): # super().__init__() # self.context = context class HKOIndividual(HKONamedElement): def __init__(self, iri: str, context: HKOContext): HKONamedElement.__init__(self, iri, context) def __str__(self) -> str: return self.iri def __eq__(self, o: object) -> bool: if isinstance(o, HKOIndividual): #it might happen that the same iri can identify concepts/properties and individuals return self.iri == o.iri else: return super().__eq__(o) def __hash__(self) -> int: return hash(str(HKOIndividual)+self.iri) class HKOProperty(HKONamedElement): def __init__(self, iri: str, context: HKOContext): HKONamedElement.__init__(self, iri, context) def __str__(self) -> str: return self.iri def __eq__(self, o: object) -> bool: if isinstance(o, HKOProperty): #it might happen that the same iri can identify concepts/properties and individuals return self.iri == o.iri else: return super().__eq__(o) def __hash__(self) -> int: return hash(str(HKOProperty)+self.iri) # class HKORoleExpression(HKOPropertyExpression) : # property: HKOProperty # //role: HKORole # concept: HKOConceptExpression # # constructor(iri: string, context: HKOContext, property: HKOProperty, concept: HKOConcept) # super(context) # self.property = property # //self.role = role # self.concept = concept # # class HKOAxiom(HKOContextElement): def __init__(self, context: HKOContext): super().__init__(context=context) class HKOSubConceptAxiom(HKOAxiom): def __init__(self, context: HKOContext, sub: HKOConceptExpression, sup: HKOConceptExpression): assert(isinstance(context, HKOContext)) assert(isinstance(sub, HKOConceptExpression)) assert(isinstance(sup, HKOConceptExpression)) super().__init__(context) self.sub = sub self.sup = sup def __str__(self) -> str: return f"""(subconcept {self.sub} {self.sup})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOSubConceptAxiom) and o.context == self.context and o.sub == self.sub and o.sup == self.sup def __hash__(self) -> int: return hash(hash(HKOSubConceptAxiom) + hash(self.context) + hash(self.sub)+ hash(self.sup)) class HKOEquivalentConceptAxiom(HKOAxiom): def __init__(self, context: HKOContext, conceptA: HKOConceptExpression, conceptB: HKOConceptExpression): assert(isinstance(context, HKOContext)) assert(isinstance(conceptA, HKOConceptExpression)) assert(isinstance(conceptB, HKOConceptExpression)) super().__init__(context) self.conceptA = conceptA self.conceptB = conceptB def __str__(self) -> str: return f"""(eqconcept {self.conceptA} {self.conceptB})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOEquivalentConceptAxiom) and o.context == self.context and o.conceptA == self.conceptA and o.conceptB == self.conceptB def __hash__(self) -> int: return hash(str(HKOEquivalentConceptAxiom) + hash(self.context) + hash(self.conceptA)+ hash(self.conceptB)) class HKOAssertion(HKOContextElement): def __init__(self, context: HKOContext): super().__init__(context=context) class HKOConceptAssertion(HKOAssertion): def __init__(self, context: HKOContext, concept: HKOConceptExpression, individual: HKOIndividual): super().__init__(context) assert(isinstance(concept,HKOConceptExpression)) assert(isinstance(individual,HKOIndividual)) self.concept = concept self.individual = individual def __str__(self) -> str: return f"""({self.concept} {self.individual})""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOConceptAssertion) \ and o.context == self.context \ and o.concept == self.concept \ and o.individual == self.individual def __hash__(self) -> int: return hash(hash(HKOConceptAssertion) + self.context.__hash__() + self.concept.__hash__() + self.individual.__hash__()) class HKOPropertyAssertion(HKOAssertion): def __init__(self, context: HKOContext, property: HKOProperty, arg1: HKOIndividual, arg2: Union[HKOIndividual, str, int, float]): assert(isinstance(property,HKOProperty)) assert(isinstance(arg1,HKOIndividual)) assert(isinstance(arg2,HKOIndividual) or isinstance(arg2,str) or isinstance(arg2,int) or isinstance(arg2,float)) super().__init__(context) self.property = property self.arg1 = arg1 #self.arg2 = arg2 self.arg2 = arg2 if isinstance(arg2, HKOIndividual) else str(arg2) def __str__(self) -> str: if isinstance(self.arg2, HKOIndividual): return f"""({self.property} {self.arg1} {self.arg2})""" else: return f"""({self.property} {self.arg1} "{str(self.arg2)}")""" def __eq__(self, o: object) -> bool: return isinstance(o, HKOPropertyAssertion) \ and o.context == self.context \ and o.property == self.property \ and o.arg1 == self.arg1 \ and o.arg2 == self.arg2 def __hash__(self) -> int: return hash(hash(HKOConceptAssertion) + self.context.__hash__() + self.property.__hash__() + self.arg1.__hash__() + self.arg2.__hash__()) class HKOContext(HKONamedElement): def __init__(self, iri: str, context: HKOContext, *elements: HKOElement): super().__init__(iri, context) self.elements = list(elements) def __eq__(self, o: object) -> bool: #simple implementation return isinstance(o, HKOContext) and o.iri == self.iri def __hash__(self) -> int: return hash(str(HKOContext) + self.iri) def addAxiom(self, axiom: HKOAxiom): self.elements.append(axiom) def axioms(self): return self.elements def addAssertion(self, assertion: HKOAxiom): self.elements.append(assertion) def __str__(self) -> str: str_elements = ',\n'.join(map(lambda x : str(x), self.elements)) return f"""{self.iri}:[ {str_elements} ]""" TOP_CONTEXT: HKOContext = HKOContext(TOP_CONTEXT_IRI, None) class HKOContextBuilder: def __init__(self, context): self.context = context def getHKOConcept(self, iri: str) -> HKOConcept: return HKOConcept(iri, self.context) def getHKOProperty(self, iri: str) -> HKOProperty: return HKOProperty(iri, self.context) def getHKOExistsExpression(self, property: HKOProperty, concept: HKOConceptExpression) -> HKOExistsExpression: return HKOExistsExpression(property, concept) def getHKOForallExpression(self, property: HKOProperty, concept: HKOConceptExpression) -> HKOExistsExpression: return HKOForallExpression(property, concept) def getHKOConjunctionExpression(self, *concepts: HKOConceptExpression) -> HKOConjunctionExpression: return HKOConjunctionExpression(*concepts) def getHKODisjunctionExpression(self, *concepts: HKOConceptExpression) -> HKODisjunctionExpression: return HKODisjunctionExpression(*concepts) def getHKOConceptNegationExpression(self, concept: HKOConceptExpression) -> HKOConceptNegationExpression: return HKOConceptNegationExpression(concept) def getHKOSubConceptAxiom(self, sub: HKOConcept, sup: HKOConceptExpression) -> HKOSubConceptAxiom: return HKOSubConceptAxiom(self.context, sub, sup) def getHKOEquivalentConceptAxiom(self, conceptA: HKOConcept, conceptB: HKOConceptExpression) -> HKOEquivalentConceptAxiom: return HKOEquivalentConceptAxiom(self.context, conceptA, conceptB) def getHKOIndividual(self, iri) -> HKOIndividual: return HKOIndividual(iri, self.context) def getHKOConceptAssertion(self, concept : HKOConceptExpression, individual : HKOIndividual) -> HKOConceptAssertion: return HKOConceptAssertion(self.context, concept, individual) def getHKOPropertyAssertion(self, property: HKOProperty, arg1: HKOIndividual, arg2: Union[HKOIndividual, str, int, float]): return HKOPropertyAssertion(self.context, property, arg1, arg2) class HKOContextManager: _manager_singleton : HKOContextManager = None def __init__(self): self.loaded_contexts: Dict[str, HKOContext] = {} def get_global_context_manager() -> HKOContextManager: if not HKOContextManager._manager_singleton: HKOContextManager._manager = HKOContextManager() return HKOContextManager._manager def getHKOContext(self, iri: str, parent: Union[str,HKOContext] = TOP_CONTEXT) -> HKOContext: if iri not in self.loaded_contexts: return None context = HKOContext(iri, parent) return context def createHKOContext(self, iri: str, parent: Union[str,HKOContext] = TOP_CONTEXT) -> HKOContext: if iri in self.loaded_contexts: raise Exception('Existing context already loaded.') context = HKOContext(iri, parent) self.loaded_contexts[iri] = context return context def getHKOContextBuilder(self, context=TOP_CONTEXT) -> HKOContextBuilder: return HKOContextBuilder(context=context) def addAxiom(self, context: HKOContext, *axioms: HKOAxiom) -> None: for axiom in axioms : axiom.context = context context.elements.extend(axioms) def addAssertion(self, context: HKOContext, *assertions: HKOAxiom) -> None: for assertion in assertions: assertion.context = context context.elements.extend(assertions) def saveHKOContextToFile(self, context : HKOContext, file_path : str): with open(file_path, mode="w") as f: from hkpy.hkpyo.converters.HKOWriterHKG import HKOWriterHKG writer = HKOWriterHKG() entities = writer.writeHKOContext(context) buffer = {} for x in entities: buffer[x.id_] = x.to_dict() json_entities = list(buffer.values()) f.write(json.dumps(json_entities)) def readHKOContextFromFile(self, context_iri : str, file_path : str) -> HKOContext: with open(file_path, mode="r") as f: file_data = f.read() file_data_json = json.loads(file_data) hkg_graph = {} for e in file_data_json: hke = hkfy(e) hkg_graph[hke.id_] = hke hkg_context = hkg_graph.get('<' + context_iri + '>', None) del hkg_graph[hkg_context.id_] if hkg_context is None: raise Exception('Context iri is not present in the file.') from hkpy.hkpyo.converters.HKOReaderHKG import HKOContextExpandable hko_pcontext = HKOContext(hkg_context.id_[1:-1], HKOContextExpandable(iri=hkg_context.parent)) from hkpy.hkpyo.converters.HKOReaderHKG import HKOReaderHKG reader = HKOReaderHKG() reader.readHKOintoContextFromHKGJson(file_data_json, self.getHKOContextBuilder(hko_pcontext)) return hko_pcontext
2.203125
2
plot_clustering.py
lthUniBonn/AWERA
0
12785676
<gh_stars>0 from AWERA import config, reference_locs, ChainAWERA import time from AWERA.utils.convenience_utils import write_timing_info since = time.time() if __name__ == '__main__': add_plot_eval_dir = 'clustering/' # read config from jobnumber # 8 small jobs # 4 big jobs # settings_id = int(os.environ['SETTINGS_ID']) # test_final_setup_settings = training_settings[10:12] # 5000, 1000 # settings = training_settings[settings_id] settings = { 'Data': {'n_locs': 5000, 'location_type': 'europe'}, 'Clustering': { 'n_clusters': 8, 'training': { 'n_locs': 5000, 'location_type': 'europe' } }, } settings['General'] = {'use_memmap': True} settings['IO'] = { 'result_dir': "/cephfs/user/s6lathim/AWERA_results/", 'format': { 'plot_output': add_plot_eval_dir + config.IO.format.plot_output, 'plot_output_data': add_plot_eval_dir + config.IO.format.plot_output_data, 'training_plot_output': add_plot_eval_dir + config.IO.format.training_plot_output, # 'power_curve': # add_plot_eval_dir + config.IO.format.power_curve, # 'cut_wind_speeds': # add_plot_eval_dir + config.IO.format.cut_wind_speeds, # 'refined_cut_wind_speeds': # add_plot_eval_dir + config.IO.format.refined_cut_wind_speeds, # 'optimizer_history': # add_plot_eval_dir + config.IO.format.optimizer_history, } } settings['Processing'] = {'n_cores': 15} print(settings) # Single locaion evaluation loc = reference_locs[0] sample_id = 27822 # Update settings to config config.update(settings) # Initialise AWERA eval with chosen config awera = ChainAWERA(config) working_title = 'Plotting clustering' n_clusters_list = [8, 16] # 80 for n_clusters in n_clusters_list: prod_settings = { 'Clustering': {'n_clusters': n_clusters}} awera.config.update(prod_settings) # awera.cluster_frequency_maps(use_rel='cluster') # awera.cluster_frequency_maps(use_rel='loc') # # ---------------------------------------- # awera.visualize_clustering_flow(loc=loc, sample_id=sample_id) # awera.original_vs_cluster_wind_profile_shapes(loc=loc, # sample_id=sample_id, # x_lim=(-12, 17), # y_lim=(-12, 12)) # awera.plot_cluster_shapes(scale_back_sf=False, # x_lim_profiles=[-2.2, 3.2], # y_lim_profiles=[-1.7, 1.7]) data = awera.cluster_pc_projection(return_data=True) awera.analyse_pc(data=data) # ---------------------------------------- print('{} clusters done.'.format(n_clusters)) print('------------------------------ Time:') write_timing_info('{} AWERA run finished.'.format(working_title), time.time() - since) # -------------------------------------- print('Done.') print('------------------------------ Config:') print(awera.config) print('------------------------------ Time:') write_timing_info('{} AWERA run finished.'.format(working_title), time.time() - since) # plt.show()
1.8125
2
filter_provider.py
aniloutdo/Fitness-Gadgets
2
12785677
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- from numpy import arange class AcceptanceTester: """Tests data points for acceptance into dataset_container.""" def __init__(self, tester_type): """Initialize with the type of data to test. Parameters ---------- tester_type : string The type of data that validity should be tested for. Returns ------- None """ self._tester_map = {'heartrate': self._test_heartrate, 'intensity': self._test_intensity, 'steps': self._test_steps} self._tester = self._tester_map.get(tester_type, self._test_accept_all) def __call__(self, Datapoint): """Pass a Datapoint to test, returns acceptance based on the type set. Parameters ---------- Datapoint : Datapoint The Datapoint to test for acceptance Returns ------- bool Whether or not the value is valid. """ return self._tester(Datapoint) def _test_accept_all(self, Datapoint): """Accept all datapoints. Parameters ---------- Datapoint : Datapoint The Datapoint being tested. Returns ------- True This function always returns True to accept all data points. """ return True def _test_heartrate(self, Datapoint): """Test HR datapoints for acceptance. Do not accept values that match the following: * HR == 255 * HR <= 0 Parameters ---------- Datapoint : Datapoint The Datapoint to test for acceptance Returns ------- bool Whether or not the value is valid. """ return not Datapoint.value >= 255 and not Datapoint.value <= 0 def _test_intensity(self, Datapoint): """Test intensity datapoints for acceptance. Do not accept values that match the following: * intensity == 255 Parameters ---------- Datapoint : Datapoint The Datapoint to test for acceptance Returns ------- bool Whether or not the value is valid. """ return not Datapoint.value >= 255 def _test_steps(self, Datapoint): """Test step datapoints for acceptance. Do not accept values that match the following: * steps < 0 Parameters ---------- Datapoint : Datapoint The Datapoint to test for acceptance Returns ------- bool Whether or not the value is valid. """ return not Datapoint.value < 0 class DatasetFilter: """A class providing dataset filtering.""" def __init__(self): """Initialize the filters. Parameters ---------- None Returns ------- None """ self._filter_map = {'heartrate': self._filter_hr} self._filter_params = {} self._filters = [] def add_filter(self, filtername, **kwargs): """Add a filter to be applied to the dataset. The first parameter selects the filter type, any other parameters must be named and will be stored and passed to the filter function as parameters. Parameters ---------- filtername : string The name of the filter to add. kwargs : dict Any other named parameters will be stored and passed to the filter when it is called. Returns ------- None """ if filtername in self._filter_map and not filtername in self._filters: self._filters.append(filtername) self._filter_params[filtername] = kwargs def __call__(self, timestamps, values): """Apply the filters that have been set up for this provider to the dataset passed and return the resulting dataset. Parameters ---------- timestamps : numpy.array The timestamps of the data to be filtered values : numpy.array The values of the data to be filtered """ for filtername in self._filters: timestamps, values = self._filter_map[filtername](timestamps, values, **self._filter_params[filtername]) return timestamps, values def count(self): """Returns the number of filter functions applied to data. Parameters ---------- None Returns int The number of filters stored """ return len(self._filters) def _filter_hr(self, timestamps, values, delta_doublefilter=3): """A heartrate-specific filter. It checks if a value is twice as high as the ones preceding and following it, within the delta_doublefilter environment, and divides the values matching by two. Parameters ---------- timestamps : numpy.array The timestamps of the data to be filtered values : numpy.array The values of the data to be filtered delta_doublefilter : int The delta around double the value of a heartrate value for which the filter will still be applied. Returns ------- None """ for i in arange(1, len(values) - 1): diff_lower = abs((float(values[i])/2.) - values[i - 1]) diff_upper = abs((float(values[i])/2.) - values[i + 1]) if (diff_lower < delta_doublefilter)*\ (diff_upper < delta_doublefilter): values[i] /= 2. return timestamps, values
3.265625
3
conjur/controller/hostfactory_controller.py
cyberark/conjur-api-python3
16
12785678
<gh_stars>10-100 # -*- coding: utf-8 -*- """ HostFactoryController This Module represents the Presentation Layer for the HostFactory command """ import http import logging import sys # Internals from conjur.errors import MissingRequiredParameterException from conjur.data_object.create_token_data import CreateTokenData from conjur.data_object.create_host_data import CreateHostData from conjur.logic.hostfactory_logic import HostFactoryLogic # pylint: disable=too-few-public-methods,logging-fstring-interpolation class HostFactoryController: """ HostFactoryController This class represents the Presentation Layer for the HostFactory command """ def __init__(self, hostfactory_logic: HostFactoryLogic): self.hostfactory_logic = hostfactory_logic def create_token(self, create_token_data: CreateTokenData): """ Method that facilitates create token call to the logic """ if create_token_data is None: raise MissingRequiredParameterException('Missing required parameters') logging.debug(f"Creating token for hostfactory '{create_token_data.host_factory}'...") result = self.hostfactory_logic.create_token(create_token_data) sys.stdout.write(result + '\n') logging.debug("Successfully created token for hostfactory " f"'{create_token_data.host_factory}'") def create_host(self, create_host_data: CreateHostData): """ Method that facilitates create token call to the logic """ if create_host_data is None: raise MissingRequiredParameterException('Missing required parameters') logging.debug(f"Creating host: '{create_host_data.host_id}'...") result = self.hostfactory_logic.create_host(create_host_data) sys.stdout.write(result + '\n') logging.debug("Successfully created host using hostfactory: host_id:" f"'{create_host_data.host_id}'") def revoke_token(self, token: str): """ Method that facilitates token revocation call to the logic """ if token is None: raise MissingRequiredParameterException('Missing required parameters') logging.debug("Attempting to revoke a token") response = self.hostfactory_logic.revoke_token(token) if response == http.HTTPStatus.NO_CONTENT: sys.stdout.write(f'Token \'{token}\' has been revoked.\n') logging.debug(f'Successfully revoked token' f', return code: {response}')
2.515625
3
test.py
EMUN123/TTF-xunlei
0
12785679
<reponame>EMUN123/TTF-xunlei<filename>test.py<gh_stars>0 import os import re # in the following codes, I almost made every important mistakes about re... file_list = os.listdir(r'C:\Users\HZB\Downloads') file_str = "match".join(file_list) ''' re can't deel with "()" in english, we need to switch it into sth else ''' file_str = file_str.replace('(', '') file_str = file_str.replace(')', '') print(file_str) ''' re can't affectively compile blankspace and tabs ''' ''' re also can't direct compile '$ < > /'... and maybe other special characters as they stand for different meanings in re ''' ''' we need to use [\u4e00-\u9fa5]+ to match Chinese characters ''' ''' we add 'r' before the pattern to be compiled is just to avoid ''' regex = re.compile(r'match([\u4e00-\u9fa5]+.*?).crdownload') if regex.findall(file_str): print('yes')
2.703125
3
optionvisualizer/utilities.py
GBERESEARCH/optionvisualizer
8
12785680
<gh_stars>1-10 """ Utility functions for refreshing parameters """ import copy import numpy as np import scipy.stats as si from optionvisualizer.visualizer_params import vis_params_dict # pylint: disable=invalid-name class Utils(): """ Utility functions for refreshing parameters """ @staticmethod def _init_params(inputs): """ Initialise parameter dictionary Parameters ---------- inputs : Dict Dictionary of parameters supplied to the function. Returns ------- params : Dict Dictionary of parameters. """ # Copy the default parameters params = copy.deepcopy(vis_params_dict) # For all the supplied arguments for key, value in inputs.items(): # Replace the default parameter with that provided params[key] = value return params @staticmethod def refresh_dist_params(opt_params, params): """ Calculate various parameters and distributions Returns ------- Various Assigns parameters to the object """ # Cost of carry as risk free rate less dividend yield params['b'] = opt_params['r'] - opt_params['q'] params['carry'] = np.exp( (params['b'] - opt_params['r']) * opt_params['T']) params['discount'] = np.exp(-opt_params['r'] * opt_params['T']) with np.errstate(divide='ignore'): params['d1'] = ( (np.log(opt_params['S'] / opt_params['K']) + (params['b'] + (0.5 * opt_params['sigma'] ** 2)) * opt_params['T']) / (opt_params['sigma'] * np.sqrt(opt_params['T']))) params['d2'] = ( (np.log(opt_params['S'] / opt_params['K']) + (params['b'] - (0.5 * opt_params['sigma'] ** 2)) * opt_params['T']) / (opt_params['sigma'] * np.sqrt(opt_params['T']))) # standardised normal density function params['nd1'] = ( (1 / np.sqrt(2 * np.pi)) * (np.exp(-params['d1'] ** 2 * 0.5))) # Cumulative normal distribution function params['Nd1'] = si.norm.cdf(params['d1'], 0.0, 1.0) params['minusNd1'] = si.norm.cdf(-params['d1'], 0.0, 1.0) params['Nd2'] = si.norm.cdf(params['d2'], 0.0, 1.0) params['minusNd2'] = si.norm.cdf(-params['d2'], 0.0, 1.0) return params @staticmethod def refresh_combo_params(params, inputs): """ Set parameters for use in various pricing functions Parameters ---------- **kwargs : Various Takes any of the arguments of the various methods that use it to refresh data. Returns ------- Various Runs methods to fix input parameters and reset defaults if no data provided """ default_values = copy.deepcopy(vis_params_dict) # Certain combo payoffs (found in the mod_payoffs list) require # specific default parameters if params['combo_payoff'] in params['mod_payoffs']: # For each parameter in the combo parameters dictionary # corresponding to this combo payoff for parameter in params[ 'combo_parameters'][params['combo_payoff']]: # If the parameter has been supplied as an input if parameter in inputs.keys(): # Set this value in the parameter dictionary params[parameter] = inputs[parameter] # Otherwise if the parameter is in the mod_params list elif parameter in params['mod_params']: # Try to extract this from the combo dict default try: params[parameter] = params['combo_dict'][str( params['combo_payoff'])][str(parameter)] # Otherwise except KeyError: # Set to the standard default value params[parameter] = default_values[str(parameter)] # Otherwise else: # Set to the standard default value params[parameter] = default_values[str(parameter)] # For all the other combo_payoffs else: # For each parameter in the combo parameters dictionary # corresponding to this combo payoff for parameter in params[ 'combo_parameters'][params['combo_payoff']]: # If the parameter has been supplied as an input if parameter in inputs.keys(): # Set this value in the parameter dictionary params[parameter] = inputs[parameter] # Otherwise else: # Set to the standard default value params[parameter] = default_values[str(parameter)] return params @staticmethod def barrier_factors(params): """ Calculate the barrier option specific parameters Returns ------- Various Assigns parameters to the object """ # Cost of carry as risk free rate less dividend yield params['b'] = params['r'] - params['q'] barrier_factors = {} barrier_factors['mu'] = (( params['b'] - ((params['sigma'] ** 2) / 2)) / (params['sigma'] ** 2)) barrier_factors['lambda'] = ( np.sqrt(barrier_factors['mu'] ** 2 + ( (2 * params['r']) / params['sigma'] ** 2))) barrier_factors['z'] = ( (np.log(params['H'] / params['S']) / (params['sigma'] * np.sqrt(params['T']))) + (barrier_factors['lambda'] * params['sigma'] * np.sqrt(params['T']))) barrier_factors['x1'] = ( np.log(params['S'] / params['K']) / (params['sigma'] * np.sqrt(params['T'])) + ((1 + barrier_factors['mu']) * params['sigma'] * np.sqrt(params['T']))) barrier_factors['x2'] = ( np.log(params['S'] / params['H']) / (params['sigma'] * np.sqrt(params['T'])) + ((1 + barrier_factors['mu']) * params['sigma'] * np.sqrt(params['T']))) barrier_factors['y1'] = ( np.log((params['H'] ** 2) / (params['S'] * params['K'])) / (params['sigma'] * np.sqrt(params['T'])) + ((1 + barrier_factors['mu']) * params['sigma'] * np.sqrt(params['T']))) barrier_factors['y2'] = ( np.log(params['H'] / params['S']) / (params['sigma'] * np.sqrt(params['T'])) + ((1 + barrier_factors['mu']) * params['sigma'] * np.sqrt(params['T']))) params['carry'] = np.exp((params['b'] - params['r']) * params['T']) barrier_factors['A'] = ( (params['phi'] * params['S'] * params['carry'] * si.norm.cdf((params['phi'] * barrier_factors['x1']), 0.0, 1.0)) - (params['phi'] * params['K'] * np.exp(-params['r'] * params['T']) * si.norm.cdf( ((params['phi'] * barrier_factors['x1']) - (params['phi'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0))) barrier_factors['B'] = ( (params['phi'] * params['S'] * params['carry'] * si.norm.cdf((params['phi'] * barrier_factors['x2']), 0.0, 1.0)) - (params['phi'] * params['K'] * np.exp(-params['r'] * params['T']) * si.norm.cdf( ((params['phi'] * barrier_factors['x2']) - (params['phi'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0))) barrier_factors['C'] = ( (params['phi'] * params['S'] * params['carry'] * ((params['H'] / params['S']) ** (2 * (barrier_factors['mu'] + 1))) * si.norm.cdf((params['eta'] * barrier_factors['y1']), 0.0, 1.0)) - (params['phi'] * params['K'] * np.exp(-params['r'] * params['T']) * ((params['H'] / params['S']) ** (2 * barrier_factors['mu'])) * si.norm.cdf( ((params['eta'] * barrier_factors['y1']) - (params['eta'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0))) barrier_factors['D'] = ( (params['phi'] * params['S'] * params['carry'] * ((params['H'] / params['S']) ** (2 * (barrier_factors['mu'] + 1))) * si.norm.cdf((params['eta'] * barrier_factors['y2']), 0.0, 1.0)) - (params['phi'] * params['K'] * np.exp(-params['r'] * params['T']) * ((params['H'] / params['S']) ** (2 * barrier_factors['mu'])) * si.norm.cdf( ((params['eta'] * barrier_factors['y2']) - (params['eta'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0))) barrier_factors['E'] = ( (params['R'] * np.exp(-params['r'] * params['T'])) * (si.norm.cdf( ((params['eta'] * barrier_factors['x2']) - (params['eta'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0) - (((params['H'] / params['S']) ** (2 * barrier_factors['mu'])) * si.norm.cdf( ((params['eta'] * barrier_factors['y2']) - (params['eta'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0)))) barrier_factors['F'] = ( params['R'] * (((params['H'] / params['S']) ** (barrier_factors['mu'] + barrier_factors['lambda'])) * (si.norm.cdf((params['eta'] * barrier_factors['z']), 0.0, 1.0)) + (((params['H'] / params['S']) ** (barrier_factors['mu'] - barrier_factors['lambda'])) * si.norm.cdf( ((params['eta'] * barrier_factors['z']) - (2 * params['eta'] * barrier_factors['lambda'] * params['sigma'] * np.sqrt(params['T']))), 0.0, 1.0)))) return barrier_factors, params
2.65625
3
C-logging/logging_example3.py
johnehunt/PythonCleanCode
1
12785681
# Using the logger.exception() method import logging logger = logging.getLogger() try: print('starting') x = 1 / 0 print(x) except: logger.exception('an exception message') print('Done')
3.09375
3
examples/pytorch/gin/gin.py
ydwu4/dgl-hack
0
12785682
<gh_stars>0 """ How Powerful are Graph Neural Networks https://arxiv.org/abs/1810.00826 https://openreview.net/forum?id=ryGs6iA5Km Author's implementation: https://github.com/weihua916/powerful-gnns """ import torch import torch as th import torch.nn as nn import torch.nn.functional as F import dgl from dgl.nn.pytorch.conv import GINConv from dgl.nn.pytorch.glob import SumPooling, AvgPooling, MaxPooling import egl from egl import ContextManager from dgl.utils import expand_as_pair class ApplyNodeFunc(nn.Module): """Update the node feature hv with MLP, BN and ReLU.""" def __init__(self, mlp): super(ApplyNodeFunc, self).__init__() self.mlp = mlp self.bn = nn.BatchNorm1d(self.mlp.output_dim) def forward(self, h): h = self.mlp(h) h = self.bn(h) h = F.relu(h) return h class MLP(nn.Module): """MLP with linear output""" def __init__(self, num_layers, input_dim, hidden_dim, output_dim): """MLP layers construction Paramters --------- num_layers: int The number of linear layers input_dim: int The dimensionality of input features hidden_dim: int The dimensionality of hidden units at ALL layers output_dim: int The number of classes for prediction """ super(MLP, self).__init__() self.linear_or_not = True # default is linear model self.num_layers = num_layers self.output_dim = output_dim if num_layers < 1: raise ValueError("number of layers should be positive!") elif num_layers == 1: # Linear model self.linear = nn.Linear(input_dim, output_dim) else: # Multi-layer model self.linear_or_not = False self.linears = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() self.linears.append(nn.Linear(input_dim, hidden_dim)) for layer in range(num_layers - 2): self.linears.append(nn.Linear(hidden_dim, hidden_dim)) self.linears.append(nn.Linear(hidden_dim, output_dim)) for layer in range(num_layers - 1): self.batch_norms.append(nn.BatchNorm1d((hidden_dim))) def forward(self, x): if self.linear_or_not: # If linear model return self.linear(x) else: # If MLP h = x for i in range(self.num_layers - 1): h = F.relu(self.batch_norms[i](self.linears[i](h))) return self.linears[-1](h) class GIN(nn.Module): """GIN model""" def __init__(self, num_layers, num_mlp_layers, input_dim, hidden_dim, output_dim, final_dropout, learn_eps, graph_pooling_type, neighbor_pooling_type): """model parameters setting Paramters --------- num_layers: int The number of linear layers in the neural network num_mlp_layers: int The number of linear layers in mlps input_dim: int The dimensionality of input features hidden_dim: int The dimensionality of hidden units at ALL layers output_dim: int The number of classes for prediction final_dropout: float dropout ratio on the final linear layer learn_eps: boolean If True, learn epsilon to distinguish center nodes from neighbors If False, aggregate neighbors and center nodes altogether. neighbor_pooling_type: str how to aggregate neighbors (sum, mean, or max) graph_pooling_type: str how to aggregate entire nodes in a graph (sum, mean or max) """ super(GIN, self).__init__() self.num_layers = num_layers self.learn_eps = learn_eps # List of MLPs self.ginlayers = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() for layer in range(self.num_layers - 1): if layer == 0: mlp = MLP(num_mlp_layers, input_dim, hidden_dim, hidden_dim) else: mlp = MLP(num_mlp_layers, hidden_dim, hidden_dim, hidden_dim) self.ginlayers.append( GINConv(ApplyNodeFunc(mlp), neighbor_pooling_type, 0, self.learn_eps)) self.batch_norms.append(nn.BatchNorm1d(hidden_dim)) # Linear function for graph poolings of output of each layer # which maps the output of different layers into a prediction score self.linears_prediction = torch.nn.ModuleList() for layer in range(num_layers): if layer == 0: self.linears_prediction.append( nn.Linear(input_dim, output_dim)) else: self.linears_prediction.append( nn.Linear(hidden_dim, output_dim)) self.drop = nn.Dropout(final_dropout) if graph_pooling_type == 'sum': self.pool = SumPooling() elif graph_pooling_type == 'mean': self.pool = AvgPooling() elif graph_pooling_type == 'max': self.pool = MaxPooling() else: raise NotImplementedError def forward(self, g, h): # list of hidden representation at each layer (including input) hidden_rep = [h] for i in range(self.num_layers - 1): h = self.ginlayers[i](g, h) h = self.batch_norms[i](h) h = F.relu(h) hidden_rep.append(h) score_over_layer = 0 # perform pooling over all nodes in each graph in every layer for i, h in enumerate(hidden_rep): pooled_h = self.pool(g, h) score_over_layer += self.drop(self.linears_prediction[i](pooled_h)) return score_over_layer class EglGINConv(nn.Module): r"""Graph Isomorphism Network layer from paper `How Powerful are Graph Neural Networks? <https://arxiv.org/pdf/1810.00826.pdf>`__. .. math:: h_i^{(l+1)} = f_\Theta \left((1 + \epsilon) h_i^{l} + \mathrm{aggregate}\left(\left\{h_j^{l}, j\in\mathcal{N}(i) \right\}\right)\right) Parameters ---------- apply_func : callable activation function/layer or None If not None, apply this function to the updated node feature, the :math:`f_\Theta` in the formula. aggregator_type : str Aggregator type to use (``sum``, ``max`` or ``mean``). init_eps : float, optional Initial :math:`\epsilon` value, default: ``0``. learn_eps : bool, optional If True, :math:`\epsilon` will be a learnable parameter. """ def __init__(self, apply_func, aggregator_type, init_eps=0, learn_eps=False): super(EglGINConv, self).__init__() self.apply_func = apply_func self.aggregator_type = aggregator_type # to specify whether eps is trainable or not. if learn_eps: self.eps = th.nn.Parameter(th.FloatTensor([init_eps])) else: self.register_buffer('eps', th.FloatTensor([init_eps])) self.cm = ContextManager(dgl.backend.run_egl) def forward(self, graph, feat): r"""Compute Graph Isomorphism Network layer. Parameters ---------- graph : DGLGraph The graph. feat : torch.Tensor or pair of torch.Tensor If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. If a pair of torch.Tensor is given, the pair must contain two tensors of shape :math:`(N_{in}, D_{in})` and :math:`(N_{out}, D_{in})`. If ``apply_func`` is not None, :math:`D_{in}` should fit the input dimensionality requirement of ``apply_func``. Returns ------- torch.Tensor The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is the output dimensionality of ``apply_func``. If ``apply_func`` is None, :math:`D_{out}` should be the same as input dimensionality. """ graph = graph.local_var() dgl_context = dgl.utils.to_dgl_context(feat.device) g = graph._graph.get_immutable_gidx(dgl_context) feat_src, feat_dst = expand_as_pair(feat) with self.cm.zoomIn(namespace=[self, torch], graph=g, node_feats={'fsrc':feat_src, 'fdst':feat_dst}) as v: if self.aggregator_type == 'sum': rst = sum([nb.fsrc for nb in v.innbs]) elif self.aggregator_type == 'mean': rst = self.cm.mean([nb.fsrc for nb in v.innbs]) elif self.aggregator_type == 'max': rst = self.cm.max([nb.fsrc for nb in v.innbs]) else: raise NotImplementedError('Cannot find aggregator typoe', self.aggregator_type) # Temp workaround for rst = (1 + self.eps) * v.fdst + rst rst = v.fdst + self.eps * v.fdst + rst self.cm.collect_output(rst) rst = self.cm.zoomOut() if self.apply_func is not None: rst = self.apply_func(rst) return rst class EglGIN(nn.Module): """EglGIN model""" def __init__(self, num_layers, num_mlp_layers, input_dim, hidden_dim, output_dim, final_dropout, learn_eps, graph_pooling_type, neighbor_pooling_type): """model parameters setting Paramters --------- num_layers: int The number of linear layers in the neural network num_mlp_layers: int The number of linear layers in mlps input_dim: int The dimensionality of input features hidden_dim: int The dimensionality of hidden units at ALL layers output_dim: int The number of classes for prediction final_dropout: float dropout ratio on the final linear layer learn_eps: boolean If True, learn epsilon to distinguish center nodes from neighbors If False, aggregate neighbors and center nodes altogether. neighbor_pooling_type: str how to aggregate neighbors (sum, mean, or max) graph_pooling_type: str how to aggregate entire nodes in a graph (sum, mean or max) """ super(EglGIN, self).__init__() self.num_layers = num_layers self.learn_eps = learn_eps # List of MLPs self.ginlayers = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() for layer in range(self.num_layers - 1): if layer == 0: mlp = MLP(num_mlp_layers, input_dim, hidden_dim, hidden_dim) else: mlp = MLP(num_mlp_layers, hidden_dim, hidden_dim, hidden_dim) self.ginlayers.append( EglGINConv(ApplyNodeFunc(mlp), neighbor_pooling_type, 0, self.learn_eps)) self.batch_norms.append(nn.BatchNorm1d(hidden_dim)) # Linear function for graph poolings of output of each layer # which maps the output of different layers into a prediction score self.linears_prediction = torch.nn.ModuleList() for layer in range(num_layers): if layer == 0: self.linears_prediction.append( nn.Linear(input_dim, output_dim)) else: self.linears_prediction.append( nn.Linear(hidden_dim, output_dim)) self.drop = nn.Dropout(final_dropout) if graph_pooling_type == 'sum': self.pool = SumPooling() elif graph_pooling_type == 'mean': self.pool = AvgPooling() elif graph_pooling_type == 'max': self.pool = MaxPooling() else: raise NotImplementedError def forward(self, g, h): # list of hidden representation at each layer (including input) hidden_rep = [h] for i in range(self.num_layers - 1): h = self.ginlayers[i](g, h) h = self.batch_norms[i](h) h = F.relu(h) hidden_rep.append(h) score_over_layer = 0 # perform pooling over all nodes in each graph in every layer for i, h in enumerate(hidden_rep): pooled_h = self.pool(g, h) score_over_layer += self.drop(self.linears_prediction[i](pooled_h)) return score_over_layer
3.265625
3
motor_controls/getArduinoData2.py
ArifSohaib/AutonomousRobotChallenge
13
12785683
# import curses and GPIO import curses import serial import time from picamera.array import PiRGBArray from picamera import PiCamera import cv2 import numpy as np ser = serial.Serial("/dev/ttyUSB0", "9600") serLidar = serial.Serial("/dev/ttyACM0", "115200") cap = cv2.VideoCapture(0) piCam = False #check if picamera exists try: camera = PiCamera() camera.resolution = (224,224) camera.framerate = 20 rawCapture = PiRGBArray(camera, size=(224,224)) piCam = True except: print("Pi camera does not exist, using USB camera") # Get the curses window, turn off echoing of keyboard to screen, turn on # instant (no waiting) key response, and use special values for cursor keys screen = curses.initscr() curses.noecho() curses.cbreak() screen.keypad(True) keyRec = open('key_strokes.txt','w+') train_data = [] try: while True: distString = serLidar.readline() dist = 1000 try: dist = int(distString.decode("utf-8")) except: print("can't convert dist") if piCam == True: for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): image_np = np.array(frame.array) rawCapture.truncate(0) char = screen.getch() key = [0,0,0,0,1] if char == ord('x'): np.save("train_data.npy", train_data) ser.write(b'5') keyRec.close() curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() break elif char == ord('w') and dist > 100: ser.write(b'1') key = [1,0,0,0,0] elif char == ord('s') and dist > 100: ser.write(b'2') key = [0,1,0,0,0] elif char == ord('a') and dist > 100: ser.write(b'3') key = [0,0,1,0,0] elif char == ord('d') and dist > 100: ser.write(b'4') key = [0,0,0,1,0] elif char == ord(' '): ser.write(b'5') key = [0,0,0,0,1] val_dict = {"input":key, "image":image_np} train_data.append(val_dict) keyRec.write(str(key)+"\n") if len(train_data) % 100 == 0: np.save("train_data.npy", train_data) #no pi camera, using USB else: ret, image_np = cap.read() char = screen.getch() key = [0,0,0,0,1] if char == ord('x'): np.save("train_data.npy", train_data) ser.write(b'5') keyRec.close() curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() break elif char == ord('w') and dist > 100: ser.write(b'1') key = [1,0,0,0,0] elif char == ord('s') and dist > 100: ser.write(b'2') key = [0,1,0,0,0] elif char == ord('a') and dist > 100: ser.write(b'3') key = [0,0,1,0,0] elif char == ord('d') and dist > 100: ser.write(b'4') key = [0,0,0,1,0] elif char == ord(' '): ser.write(b'5') key = [0,0,0,0,1] val_dict = {"input":key, "image":image_np} train_data.append(val_dict) keyRec.write(str(key)+"\n") if len(train_data) % 100 == 0: np.save("train_data.npy", train_data) finally: #Close down curses properly, inc turn echo back on! keyRec.close() curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin()
2.796875
3
mitmirror/data/security/authorization.py
Claayton/mitmirror-api
0
12785684
<reponame>Claayton/mitmirror-api """Caso de uso: Authorization""" from typing import Type from fastapi import Request as RequestFastApi import jwt from mitmirror.data.interfaces import UserRepositoryInterface from mitmirror.domain.usecases import AuthorizationInterface from mitmirror.errors import HttpUnauthorized, HttpForbidden from mitmirror.config import SECRET_KEY class Authorization(AuthorizationInterface): """ Classe responsavel pela autorizaçao dos usuarios no sistema. """ def __init__(self, user_repository: Type[UserRepositoryInterface]) -> None: self.__user_repository = user_repository def token_required(self, request: RequestFastApi): """ Serve como dependencia para rotas que necessitam de authorizaçao. :param request: Requisicao que deve receber o header Authorization, com o token de acesso. :return informacoes do usuario. """ try: token = request.headers["Authorization"] except (KeyError, TypeError) as error: raise HttpUnauthorized( message="Essa requisicao necessita de um token de acesso!, error" ) from error try: data = jwt.decode(jwt=token, key=SECRET_KEY, algorithms="HS256") current_user = self.__user_repository.get_user(email=data["email"]) except Exception as error: # pylint: disable=W0703 raise HttpForbidden(message="Token invalido ou expirado!, error") from error return current_user
2.390625
2
examples/tridimensional.py
rennelou/rust-fdmbpm
0
12785685
<reponame>rennelou/rust-fdmbpm<filename>examples/tridimensional.py import h5py import optical_waveguide import numpy as np import matplotlib.pyplot as plt origin = 'lower' lines = 50 output_filename = "tridimensional_result.h5" x_axis = optical_waveguide.get_axis(40, 0.4) y_axis = optical_waveguide.get_axis(40, 0.4) z_axis = optical_waveguide.get_axis(200, 0.5) core = optical_waveguide.get_core(3.377, 3.38, 8, 20, 20) beam = optical_waveguide.get_beam(5.4636, 0.0, 4, 20, 20) simulation = optical_waveguide.get_simulation(core, beam, z_axis, x_axis, y_axis) optical_waveguide.run(simulation, output_filename) with h5py.File(output_filename, "r") as f: [zdelta, ydelta, xdelta] = f['deltas'][()] data = f['intensity'][()] core = f['core'][()] xdepht = data[0][0].size ydepht = data[0].size / xdepht zdepht = data.size / (ydepht * xdepht) y = np.arange(0., ydepht * ydelta, ydelta) x = np.arange(0., xdepht * xdelta, xdelta) X, Y = np.meshgrid(x, y) zstep = zdepht / 4 fig1, axs = plt.subplots(1, 4, constrained_layout=True) for i in range(4): index = int(i * zstep) Z = data[index] ax = axs[i] cs = ax.contourf(X, Y, Z, 10, origin=origin) cs1 = ax.contour(cs, levels=cs.levels[::2], origin=origin) C = core[index] cs3 = ax.contour(X, Y, C, origin=origin) if i == 3: cbar = fig1.colorbar(cs, ax=ax) #barra lateral de intensidade cbar.ax.set_ylabel('intensity') cbar.add_lines(cs1) plt.show()
2.078125
2
applications/tenant/fields.py
dev-easyshares/mighty
0
12785686
<reponame>dev-easyshares/mighty tenant = ('group', 'user', 'sync', 'invitation', 'roles') #tenant_alternate = ('tenant', 'alternate', 'position') role = ('group', 'name', 'is_immutable', 'number',) tenant_invitation = ('group', 'email', 'by', 'roles', 'tenant', 'status', 'token')
1.34375
1
src/transformer_deploy/backends/pytorch_utils.py
dumpmemory/transformer-deploy
698
12785687
<filename>src/transformer_deploy/backends/pytorch_utils.py # Copyright 2022, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utils related to Pytorch inference. """ from typing import Callable, Dict, Tuple import torch from torch.onnx import TrainingMode from transformers import AutoConfig, PreTrainedModel def infer_classification_pytorch( model: PreTrainedModel, run_on_cuda: bool ) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]: """ Perform Pytorch inference for classification task :param model: Pytorch model (transformers) :param run_on_cuda: True if should be ran on GPU :return: a function to perform inference """ def infer(inputs: Dict[str, torch.Tensor]) -> torch.Tensor: model_output = model(**inputs).logits.detach() # noqa: F821 if run_on_cuda: torch.cuda.synchronize() return model_output return infer def infer_feature_extraction_pytorch( model: PreTrainedModel, run_on_cuda: bool ) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]: """ Perform Pytorch inference for feature extraction task :param model: Pytorch model (sentence-transformers) :param run_on_cuda: True if should be ran on GPU :return: a function to perform inference """ def infer(inputs: Dict[str, torch.Tensor]) -> torch.Tensor: model_output = model(**inputs).detach() # noqa: F821 if run_on_cuda: torch.cuda.synchronize() return model_output return infer def get_model_size(path: str) -> Tuple[int, int]: """ Find number of attention heads and hidden layer size of a model :param path: path to model :return: tupple of # of attention heads and hidden layer size (0 if not found) """ config = AutoConfig.from_pretrained(pretrained_model_name_or_path=path) num_attention_heads = getattr(config, "num_attention_heads", 0) hidden_size = getattr(config, "hidden_size", 0) return num_attention_heads, hidden_size # TODO manage encoder / decoder architecture + cache def convert_to_onnx( model_pytorch: torch.nn.Module, output_path: str, inputs_pytorch: Dict[str, torch.Tensor], quantization: bool, var_output_seq: bool, ) -> None: """ Convert a Pytorch model to an ONNX graph by tracing the provided input inside the Pytorch code. Pytorch sometimes fails to infer output tensor shape of models In ONNX graph, some axis name may be marked like "Divoutput_dim_1" which is a generated name, and there may be a warning: ** "WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function." ** ex.: https://discuss.pytorch.org/t/bidirectional-lstm-and-onnx-runtime-warnings/136374 :param model_pytorch: Pytorch model (transformers) :param output_path: where to save ONNX file :param inputs_pytorch: Tensor, can be dummy data, shape is not important as we declare all axes as dynamic. Should be on the same device than the model (CPU or GPU) :param quantization: model is quantized :param var_output_seq: variable size sequence """ if quantization: try: from pytorch_quantization.nn import TensorQuantizer except ImportError: raise ImportError( "It seems that pytorch-quantization is not yet installed. " "It is required when you enable the quantization flag and use CUDA device." "Please find installation instructions on " "https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization or use:\n" "pip3 install git+ssh://[email protected]/NVIDIA/TensorRT#egg=pytorch-quantization\\&" "subdirectory=tools/pytorch-quantization/" ) TensorQuantizer.use_fb_fake_quant = True if hasattr(model_pytorch, "config") and hasattr(model_pytorch.config, "use_cache"): use_cache = getattr(model_pytorch.config, "use_cache") setattr(model_pytorch.config, "use_cache", False) # dynamic axis == variable length axis dynamic_axis = dict() for k in inputs_pytorch.keys(): if var_output_seq: # seq axis name is fixed to be matched with output seq axis name (for output shape prediction) dynamic_axis[k] = {0: "batch_size", 1: "sequence"} else: # if there is no specific requirement, each axis name is unique, fix some issue on T5 model dynamic_axis[k] = {0: "batch_size", 1: f"sequence-{k}"} dynamic_axis["output"] = {0: "batch_size"} if var_output_seq: dynamic_axis["output"][1] = "sequence" # replace int64 input tensors by int32 -> for ONNX Runtime binding API and expected by TensorRT engine for k, v in inputs_pytorch.items(): if not isinstance(v, torch.Tensor): continue if v.dtype in [torch.long, torch.int64]: inputs_pytorch[k] = v.type(torch.int32) with torch.no_grad(): torch.onnx.export( model_pytorch, # model to optimize args=tuple(inputs_pytorch.values()), # tuple of multiple inputs f=output_path, # output path / file object opset_version=13, # the ONNX version to use, >= 13 supports channel quantized model do_constant_folding=True, # simplify model (replace constant expressions) input_names=list(inputs_pytorch.keys()), # input names output_names=["output"], # output axis name, hard coded so only 1 output supported dynamic_axes=dynamic_axis, # declare dynamix axis for each input / output training=TrainingMode.EVAL, # always put the model in evaluation mode verbose=False, ) if quantization: TensorQuantizer.use_fb_fake_quant = False if hasattr(model_pytorch, "config") and hasattr(model_pytorch.config, "use_cache"): setattr(model_pytorch.config, "use_cache", use_cache)
2
2
lucid4keras/optimizers.py
smgpulse007/lucid4keras
15
12785688
<reponame>smgpulse007/lucid4keras import numpy as np def rmsprop(grads, cache=None, decay_rate=0.95): if cache is None: cache = np.zeros_like(grads) cache = decay_rate * cache + (1 - decay_rate) * grads ** 2 step = -grads / np.sqrt(cache + 1e-8) return step, cache def adam(grads, cache_m,cache_v,iters, lr, beta1, beta2): if cache_m is None: cache_m = np.zeros_like(grads) if cache_v is None: cache_v = np.zeros_like(grads) iters += 1 cache_m = (beta1 * cache_m) + (1. - beta1) * grads cache_v = (beta2 * cache_v) + (1 - beta2) * (grads * grads) mc = cache_m / (1. - (beta1 ** iters)) vc = cache_v / (1. - (beta2 ** iters)) lr_t = lr * np.sqrt(1. - (beta2 ** iters)) / (1. - (beta1 ** iters)) #learning rate step = (lr_t * mc)/ (np.sqrt(vc) + 1e-8) return step, cache_m, cache_v, iters
2.296875
2
gs/group/messages/topic/base/latestpost.py
groupserver/gs.group.messages.topic.base
0
12785689
# -*- coding: utf-8 -*- ############################################################################ # # Copyright © 2013, 2015 OnlineGroups.net and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################ from __future__ import absolute_import, unicode_literals from zope.cachedescriptors.property import Lazy from zope.component import createObject from gs.group.base import GroupViewlet class LatestPost(GroupViewlet): def __init__(self, messages, request, view, manager): super(LatestPost, self).__init__(messages, request, view, manager) @Lazy def topic(self): retval = [post for post in self.view.topic if not(post['hidden'])] return retval @Lazy def relativeUrl(self): retval = '' if self.topic: lastPost = self.topic[-1] url = '{groupUrl}/messages/topic/{lastPostId}/'\ '#post-{lastPostId}' retval = url.format(groupUrl=self.groupInfo.relativeURL, lastPostId=lastPost['post_id']) return retval @Lazy def authorInfo(self): if self.topic: lastPost = self.topic[-1] authorId = lastPost['author_id'] else: authorId = '' retval = createObject('groupserver.UserFromId', self.context, authorId) return retval @Lazy def lastPostDate(self): retval = None if self.topic: retval = self.topic[-1]['date'] return retval @Lazy def show(self): retval = len(self.topic) > 1 return retval
1.960938
2
reward/batcher/prioritized_replay_batcher.py
lgvaz/torchrl
5
12785690
<gh_stars>1-10 import reward.utils as U from reward.batcher import ReplayBatcher from reward.utils.buffers import PrReplayBuffer # TODO: Fix args and kwargs class PrReplayBatcher(ReplayBatcher): def __init__( self, *args, min_pr=0.01, pr_factor=0.6, is_factor=1., rbuff_fn=PrReplayBuffer, **kwargs ): self.min_pr = min_pr self._pr_factor = pr_factor self._is_factor = is_factor # TODO: Remove *args and **kwargs super().__init__(*args, rbuff_fn=rbuff_fn, **kwargs) def _create_rbuff(self, rbuff_fn): return rbuff_fn( maxlen=self.maxlen, num_envs=self.runner.num_envs, min_pr=self.min_pr, pr_factor=self._pr_factor, is_factor=self._is_factor, ) @property def pr_factor(self): return self.rbuff.get_pr_factor(step=self.num_steps) @property def is_factor(self): return self.rbuff.get_is_factor(step=self.num_steps) def update_pr(self, idx, pr): self.rbuff.update_pr(idx=idx, pr=pr, step=self.num_steps) def get_is_weight(self, idx): return self.rbuff.get_is_weight(idx=idx, step=self.num_steps) def write_logs(self, logger): super().write_logs(logger=logger) logger.add_log("ExpReplay/alpha", self.pr_factor) logger.add_log("ExpReplay/beta", self.is_factor)
2.109375
2
templateMatching_classes.py
Fs-agadir/StageDetect
0
12785691
# Copyright (c) 2021, Fs-Agadir # All rights reserved. import numpy as np import pylab as plt import cv2 #perform template matching in images to detect GCPs class templateMatch: #define template position and size and search area position def __init__(self, template_size_x=300, template_size_y=300, search_area_x=0, search_area_y=0, plot_results=False): self.template_size_x = template_size_x self.template_size_y = template_size_y self.search_area_x = search_area_x self.search_area_y = search_area_y self.plot_results=plot_results #define template at image point position (of corresponding GCP) def getTemplateAtImgpoint(self, img, img_pts, template_width=10, template_height=10): #consideration that row is y and column is x #careful that template extent even to symmetric size around point of interest template_img = [] anchor_pts = [] for pt in img_pts: if img_pts.shape[1] > 2: template_width_for_cut_left = pt[2]/2 template_width_for_cut_right = pt[2]/2 + 1 elif template_width > 0: template_width_for_cut_left = template_width/2 template_width_for_cut_right = template_width/2 + 1 else: print 'missing template size assignment' if img_pts.shape[1] > 2: template_height_for_cut_lower = pt[3]/2 template_height_for_cut_upper = pt[3]/2 + 1 elif template_height > 0: template_height_for_cut_lower = template_height/2 template_height_for_cut_upper = template_height/2 + 1 else: print 'missing template size assignment' cut_anchor_x = pt[0] - template_width_for_cut_left cut_anchor_y = pt[1] - template_height_for_cut_lower #consideration of reaching of image boarders (cutting of templates) if pt[1] + template_height_for_cut_upper > img.shape[0]: template_height_for_cut_upper = np.int(img.shape[0] - pt[1]) if pt[1] - template_height_for_cut_lower < 0: template_height_for_cut_lower = np.int(pt[1]) cut_anchor_y = 0 if pt[0] + template_width_for_cut_right > img.shape[1]: template_width_for_cut_right = np.int(img.shape[1] - pt[0]) if pt[0] - template_width_for_cut_left < 0: template_width_for_cut_left = np.int(pt[0]) cut_anchor_x = 0 template = img[pt[1]-template_height_for_cut_lower:pt[1]+template_height_for_cut_upper, pt[0]-template_width_for_cut_left:pt[0]+template_width_for_cut_right] #template_img = np.dstack((template_img, template)) template_img.append(template) anchor_pts.append([cut_anchor_x, cut_anchor_y]) anchor_pts = np.asarray(anchor_pts, dtype=np.float32) #template_img = np.delete(template_img, 0, axis=2) return template_img, anchor_pts #anchor_pts defines position of lower left of template in image #template matching for automatic detection of image coordinates of GCPs def performTemplateMatch(self, img_extracts, template_img, anchor_pts): new_img_pts = [] template_nbr = 0 count_pts = 0 while template_nbr < len(template_img): template_array = np.asarray(template_img[template_nbr]) if (type(img_extracts) is list and len(img_extracts) > 1) or (type(img_extracts) is tuple and len(img_extracts.shape) > 2): img_extract = img_extracts[template_nbr] else: img_extract = img_extracts res = cv2.matchTemplate(img_extract, template_array, cv2.TM_CCORR_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) #min_loc for TM_SQDIFF match_position_x = max_loc[0] + template_array.shape[1]/2 match_position_y = max_loc[1] + template_array.shape[0]/2 del min_val, min_loc if max_val > 0.9: new_img_pts.append([match_position_x + anchor_pts[template_nbr,0], match_position_y + anchor_pts[template_nbr,1]]) count_pts = count_pts + 1 template_nbr = template_nbr + 1 if self.plot_results: plt.subplot(131),plt.imshow(res,cmap = 'gray') plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.plot(match_position_x-template_array.shape[1]/2, match_position_y-template_array.shape[0]/2, "r.", markersize=10) plt.subplot(132),plt.imshow(img_extract,cmap = 'gray') plt.title('Detected Point'), plt.xticks([]), plt.yticks([]) plt.plot(match_position_x, match_position_y, "r.", markersize=10) plt.subplot(133),plt.imshow(template_array,cmap = 'gray') plt.title('Template'), plt.xticks([]), plt.yticks([]) plt.show() new_img_pts = np.asarray(new_img_pts, dtype=np.float32) new_img_pts = new_img_pts.reshape(count_pts, 2) return new_img_pts #perform template matching def templateMatching(self, img_pts, img_for_template, img_for_search): #if no search area defined, squared search are triple of template size if self.search_area_x == 0 and self.search_area_y == 0: search_area = np.ones((img_pts.shape[0], 2)) * self.template_size_x * 3 #search_area_...: if only in x direction defined, used as same size for y (squared search area) elif self.search_area_x > 0 and self.search_area_y == 0: search_area = np.ones((img_pts.shape[0], 2)) * self.search_area_x elif self.search_area_x == 0 and self.search_area_y > 0: search_area = np.ones((img_pts.shape[0], 2)) * self.search_area_y else: search_area_x = np.ones((img_pts.shape[0], 1)) * self.search_area_x search_area_y = np.ones((img_pts.shape[0], 1)) * self.search_area_y search_area = np.hstack((search_area_x.reshape(search_area_x.shape[0],1), search_area_y.reshape(search_area_y.shape[0],1))) #if template size defined only in one direction, squared template size are calculated if self.template_size_x == 30 and self.template_size_y == 30: template_sizes = np.ones((img_pts.shape[0], 2)) * self.template_size_x #else side specific template size else: template_size_x = np.ones((img_pts.shape[0], 1)) * self.template_size_x template_size_y = np.ones((img_pts.shape[0], 1)) * self.template_size_y template_sizes = np.hstack((template_size_x.reshape(template_size_x.shape[0],1), template_size_y.reshape(template_size_y.shape[0],1))) #calculate template with corresponding template size template_prepare = np.hstack((img_pts, template_sizes)) pt_templates, _ = self.getTemplateAtImgpoint(img_for_template, template_prepare) #approximation of template position for subsequent images searchArea_perPoint = np.hstack((img_pts, search_area)) searchArea_clip, anchor_pts = self.getTemplateAtImgpoint(img_for_search, searchArea_perPoint) #perform template matching img_pts_matched = self.performTemplateMatch(searchArea_clip, pt_templates, anchor_pts) return img_pts_matched #quality measure of detected templates considering distance pattern def pt_distances(self, pts): #pts: id and x y coordinates of image points (np array) pt_distances_sum = [] for pt in pts: pt_for_dist = np.ones((pts.shape[0], pts.shape[1])) * pt pt_dist = np.sqrt(np.square(pt_for_dist[:,1] - pts[:,1]) + np.square(pt_for_dist[:,2] - pts[:,2])) pt_distances_sum.append([pt[0], np.sum(pt_dist)]) return pt_distances_sum #plot matched points into corresponding image def plot_pts(self, img, points, switchColRow=False, plt_title='', output_save=False, output_img=None, edgecolor='blue'): plt.clf() plt.figure(frameon=False) plt.gray() if switchColRow: plt.plot([p[1] for p in points], [p[0] for p in points], marker='o', ms=5, color='none', markeredgecolor=edgecolor, markeredgewidth=1) else: plt.plot([p[0] for p in points], [p[1] for p in points], marker='o', ms=5, color='none', markeredgecolor=edgecolor, markeredgewidth=1) plt.title(plt_title) plt.axis('off') plt.imshow(img) if not output_save: plt.waitforbuttonpress() plt.close() else: plt.savefig(output_img, dpi=600)
2.71875
3
predict.py
hdvvip/AI_Image_Classifier
0
12785692
<reponame>hdvvip/AI_Image_Classifier from functions_col import import_func, process_image, imshow, predict, save_checkpoint, load_checkpoint, load_train_data, load_val_data, train_model, get_key_from_value import argparse import pandas as pd import numpy as np import torch from torch import nn,optim import torch.nn.functional as F from torchvision import datasets, transforms, models from workspace_utils import active_session from PIL import Image import json # Main if __name__ == '__main__': # Set up ArgumentParser to retrieve data from command line parser = argparse.ArgumentParser( description="AI Image Classfication App" ) # Add parameters parser.add_argument('data_input', help="Path to Input File for ex: ..../image_07090.jpg") parser.add_argument('checkpoint', help="File Path where trained model saved to", default='checkpointTrainedModel.pth') parser.add_argument('--top_k', help="Top Predicted Classes", default=5, type=int) parser.add_argument('--category_names', help="file hold real name of classes", default='cat_to_name.json') parser.add_argument('--gpu', help="Train on GPU", action='store_true') #Parser the arguments args = parser.parse_args() # get values parsed from command line data_input = args.data_input checkpoint = args.checkpoint top_k = args.top_k category_names = args.category_names gpu = args.gpu # Get real names cat_to_name = None with open(category_names, 'r') as f: cat_to_name = json.load(f) # set up AUTOMATICALLY device to use is: gpu or cpu device = None # if(torch.cuda.is_available()): # print("GPU available: YES \nRunning On: GPU \n") # else: # print("GPU available: NO \nRunning On: CPU \n") if (gpu): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: device = torch.device("cpu") if(gpu and device == torch.device("cuda")): print("GPU available: YES \nRunning On: GPU \n") else: check_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if(check_device == torch.device("cuda")): print("GPU available: YES \nRunning On: CPU \n") else: print("GPU available: NO \nRunning On: CPU \n") # Load model model = load_checkpoint(checkpoint) model.to(device) # Image path image_path = data_input # Get Image Label label = image_path.split('/')[2] # Predict the flower class based on iamge_path top_p, top_class = predict(image_path, model, device, top_k) # Map the predicted class to real label based on train_data.class_to_idx # The reason is: train_data = datasets.ImageFolder(train_dir, transform=train_transform) # train_data map 0,1,2,3,4,5... to images based on the folder position from top to bottom # NOT the real label of image # Hence train_data.class_to_idx saved information about real label of the image # Therefore map the label 0,1,2,3,4,5... back to the real label of the iamge # model.class_to_idx == train_data.class_to_idx ==> TRUE lable_name_dictionary = model.class_to_idx top_class_mapped = [get_key_from_value(lable_name_dictionary, class_name) for class_name in top_class] # Get predicted top_class_name and real class name top_class_name = [cat_to_name.get(class_name) for class_name in top_class_mapped] # label_name = cat_to_name.get(str(label)) print(top_p) print(top_class_name)
2.640625
3
runtime/stdlib/jitlog.py
cheery/lever
136
12785693
<gh_stars>100-1000 # There is a convenient PYPYLOG=jit-log-opt:logfile # to enable jit logging from outside. # But I like having the option to # enable it from the inside. from rpython.rtyper.lltypesystem import rffi, lltype, llmemory from rpython.rlib.rjitlog import rjitlog from rpython.rlib import jit from space import * import fs module = Module(u'jitlog', {}, frozen=True) def builtin(fn): name = fn.__name__.rstrip('_').decode('utf-8') module.setattr_force(name, Builtin(fn, name)) return fn @builtin @signature(fs.File) def enable(fileobj): try: rjitlog.enable_jitlog(rffi.r_long(fileobj.fd)) except rjitlog.JitlogError as error: raise unwind(LError( error.msg.decode('utf-8'))) return null @builtin @signature() @jit.dont_look_inside def disable(): rjitlog.disable_jitlog() return null
1.8125
2
tests/integration/operators_test/asinh_test.py
gglin001/popart
61
12785694
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. import numpy as np import popart import torch from op_tester import op_tester def test_asinh(op_tester): # create test data # Notice: as asinh(x) = ln(x + sqrt(x^2 + 1)), absolute precision # deteriorates for larger negative numbers as you will have ln(0.0001). d1 = np.array([ -30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0 ], dtype=np.float32) def init_builder(builder): i1 = builder.addInputTensor(d1) o = builder.aiOnnx.asinh([i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): out = np.arcsinh(d1) return [out] op_tester.setPatterns(['DecomposeBinaryConstScalar'], enableRuntimeAsserts=False) op_tester.run(init_builder, reference, 'infer') def test_asinh_inplace(op_tester): # create test data d1 = np.array([ -30.0, -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0 ], dtype=np.float32) def init_builder(builder): i1 = builder.addInputTensor(d1) o = builder.aiOnnx.asinh([i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): out = np.arcsinh(d1) return [out] op_tester.setPatterns(['InPlace', 'DecomposeBinaryConstScalar'], enableRuntimeAsserts=False) op_tester.run(init_builder, reference, 'infer') def test_asinh_grad(op_tester): # create test data d1 = np.array([ -20.12, -2.2, -1.5, -0.2, 0.0, 0.234, 1.0, 1.2, 2.0, 3.0, 10.0, 100.0, 2001.0 ], dtype=np.float32) def derivative_asinh(x): return 1 / (np.sqrt(np.power(x, 2) + 1)) def init_builder(builder): i1 = builder.addInputTensor(d1) o = builder.aiOnnx.asinh([i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i1, popart.reservedGradientPrefix() + o, ] def reference(ref_data): out = np.arcsinh(d1) d__o = derivative_asinh(d1) * ref_data.getOutputTensorGrad(0) return [out, d__o, None] op_tester.setPatterns([ 'SubtractArg1GradOp', 'LogGradOp', 'SqrtGradOp', 'PowArg0GradOp', 'DecomposeBinaryConstScalar' ], enableRuntimeAsserts=False) op_tester.run(init_builder, reference, 'train')
2.1875
2
actions.py
ElectricMaxxx/jon-knows-rasa
0
12785695
<filename>actions.py import logging import json from rasa_core.actions import Action from rasa_core.events import AllSlotsReset class ActionWhoKnowsTopic(Action): def name(self): return 'action_who_knows_topic' def run(self, dispatcher, tracker, domain): topic = tracker.get_slot('topic') if tracker.get_slot('topic') else None if topic is None: dispatcher.utter_message('Ich habe kein Topic bekommen') return [] topic = str(topic) bests = [] with open('./data/skills.json') as f: skillData = json.load(f) if 'skills' not in skillData: dispatcher.utter_message('Keine Skills sinds vorhanden') return [] for persistedTopic in skillData['skills']: if topic.lower() != persistedTopic.lower() or len(skillData['skills'][persistedTopic]) == 0: continue for user in skillData['skills'][persistedTopic]: bests.append(user) if len(bests) == 0: dispatcher.utter_message('Kein Kollege weiß etwas zun Thema '+topic) else: bestsString = '' for user in bests: bestsString += user['name']+' (Score: '+str(user['score'])+'), ' if bestsString.endswith(", "): bestsString = bestsString[:-2] dispatcher.utter_message('Die folgenden Kollegen meinen Ahnung zu haben: '+bestsString) return [AllSlotsReset()] class ActionIForgot(Action): def name(self): return 'action_forgotten' def run(self, dispatcher, tracker, domain): dispatcher.utter_message('Action forgotten') return [] class ActionClaimToKnowTopic(Action): def name(self): return 'action_claim_to_know_topic' def run(self, dispatcher, tracker, domain): topic = tracker.get_slot('topic') user = tracker.get_slot('user') if topic is None: dispatcher.utter_message('No topic given') return [] if user is None: dispatcher.utter_message('No user given') return [] topic = str(topic) with open('./data/skills.json') as f: skillData = json.load(f) if 'skills' not in skillData: dispatcher.utter_message('Keine Skills sinds vorhanden') return [] if topic not in skillData['skills']: skillData['skills'][topic] = [] dispatcher.utter_message('Das Topic '+topic+' ist noch nicht bekannt, wird angelegt') persistedTopic = skillData['skills'][topic] foundUser = False for key in persistedTopic: if persistedTopic[key].name == user: persistedTopic[key].score = persistedTopic[key].score + 1 dispatcher.utter_message('User '+user+'` Score um eins erhöht für Topic: '+topic) foundUser = True break if foundUser is True: skillData[topic].append({"name": user, "score": 1}) dispatcher.utter_message('User '+user+'` wurde für das Topic vermerkt: '+topic) return [AllSlotsReset()] def dump(self, obj): for attr in dir(obj): print("obj.%s = %r" % (attr, getattr(obj, attr))) class ActionTopicsInCategory(Action): def name(self): return 'action_topics_in_category' def run(self, dispatcher, tracker, domain): category = tracker.get_slot('category') if tracker.get_slot('category') else 'None' category = str(category) with open('./data/skills.json') as f: skillData = json.load(f) if 'categories' not in skillData: dispatcher.utter_message('Keine Skills sinds vorhanden') return [] for persistedCategory in skillData['categories']: if persistedCategory.lower() != category.lower(): continue topics = skillData['categories'][persistedCategory] if len(topics) == 0: dispatcher.utter_message('Kein Topic gefunden in Kategroie: '+category) return [] topicsString = '' for topic in topics: topicsString += ', '+topic dispatcher.utter_message('Folgen Topics habe ich in Kategoie '+category+' gefunden: '+topicsString) return [AllSlotsReset()] categories = '' for category in skillData['categories']: categories += ', '+category dispatcher.utter_message('Keine Kategorie mit dem name '+category+' gefunden, wähle doch eine von '+categories) return [AllSlotsReset()]
2.5
2
Python/kepco.py
ultpnml/ult_instruments
1
12785696
<gh_stars>1-10 #Controls KEPCO BHK 2000-0.1MG high voltage power supply #For now, it only reads. It does not set voltage/current. import visa class kepco: #The primary address is assumed to be 6 def __init__(self, address = 6, gpib_num = 1): self.primary_id = 'GPIB' + str(gpib_num) + '::' +str(address) +'::INSTR' #Measures voltage def query(self, message): rm = visa.ResourceManager() if self.primary_id in rm.list_resources(): inst = rm.open_resource(self.primary_id) answer = inst.query(message) inst.control_ren(6) inst.close() rm.close() return answer #Measures volgage def read_voltage(self): return float(self.query('MEAS:SCAL:VOLT?')) #Measures current def read_current(self): return float(self.query('MEAS:SCAL:CURR?'))
2.890625
3
src/pythontemplate/example.py
colms/pythontemplate
0
12785697
import argparse def add_one(num: int) -> int: if not num: return 0 return num + 1 def add_with_args(num: int) -> int: added = add_one(num) return added def parse_command_line_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description='My python template.') parser.add_argument('--foo', type=int, help='foo help') args = parser.parse_args() return args def main() -> None: args = parse_command_line_args() added = add_with_args(args.foo) print(f'added: {added}') if __name__ == '__main__': main()
3.734375
4
test_80.py
VinkDong/scripts
0
12785698
<filename>test_80.py from werkzeug.wrappers import Request, Response @Request.application def application(request): return Response('Hello World! 80 port') if __name__ == '__main__': from werkzeug.serving import run_simple run_simple('0.0.0.0', 80, application)
2
2
examples/stable_radical_optimization/stable_radical_molecule_state.py
dmdu/rlmolecule
0
12785699
<reponame>dmdu/rlmolecule from typing import Optional, Sequence import rdkit from rdkit import Chem from rdkit.Chem import Mol, MolToSmiles from rlmolecule.molecule.molecule_state import MoleculeState from rlmolecule.molecule.builder.builder import AddNewAtomsAndBonds class StableRadMoleculeState(MoleculeState): """ A State implementation which uses simple transformations (such as adding a bond) to define a graph of molecules that can be navigated. Molecules are stored as rdkit Mol instances, and the rdkit-generated SMILES string is also stored for efficient hashing. """ def __init__( self, molecule: Mol, builder: any, force_terminal: bool = False, smiles: Optional[str] = None, ) -> None: super(StableRadMoleculeState, self).__init__(molecule, builder, force_terminal, smiles) def get_next_actions(self) -> Sequence['StableRadMoleculeState']: result = [] if not self._forced_terminal: if self.num_atoms < self.builder.max_atoms: result.extend( (StableRadMoleculeState(molecule, self.builder) for molecule in self.builder(self.molecule))) if self.num_atoms >= self.builder.min_atoms: result.extend((StableRadMoleculeState(radical, self.builder, force_terminal=True) for radical in build_radicals(self.molecule))) return result def build_radicals(starting_mol): """Build organic radicals. """ generated_smiles = set() for i, atom in enumerate(starting_mol.GetAtoms()): if AddNewAtomsAndBonds._get_free_valence(atom) > 0: rw_mol = rdkit.Chem.RWMol(starting_mol) rw_mol.GetAtomWithIdx(i).SetNumRadicalElectrons(1) Chem.SanitizeMol(rw_mol) smiles = Chem.MolToSmiles(rw_mol) if smiles not in generated_smiles: # This makes sure the atom ordering is standardized yield Chem.MolFromSmiles(smiles) generated_smiles.add(smiles)
2.625
3
packages/core/minos-microservice-common/minos/common/datetime.py
sorasful/minos-python
247
12785700
from datetime import ( datetime, timezone, ) def current_datetime() -> datetime: """Get current datetime in `UTC`. :return: A ``datetime`` instance. """ return datetime.now(tz=timezone.utc) NULL_DATETIME = datetime.max.replace(tzinfo=timezone.utc)
3.140625
3
pyroms_toolbox/pyroms_toolbox/BGrid_GFDL/__init__.py
dcherian/pyroms
1
12785701
""" BGrid_GFDL module """ from BGrid_GFDL import BGrid_GFDL from get_nc_BGrid_GFDL import get_nc_BGrid_GFDL from make_remap_grid_file import make_remap_grid_file from get_coast_line import get_coast_line from plot_coast_line import plot_coast_line from get_Bgrid_proj import get_Bgrid_proj from flood import flood
1.203125
1
neverlose/models/base/event.py
neverlosecc/api-wrapper
2
12785702
<reponame>neverlosecc/api-wrapper from pydantic import BaseModel class BaseEvent(BaseModel): unique_id: int signature: str
1.632813
2
painting.py
applejenny66/PythonDrawing
0
12785703
# painting.py import os import cv2 as cv import numpy as np from matplotlib import pyplot as plt from preprocess import Kmeans from monitor import Monitor import tkinter as tk import csv from utils import BlankImg class Painting(): def __init__(self, K, shape): #self.radius = 3 self.K = K self.size = shape self.count = 0 self.fixcount = 0 self.brush_size = 3 self.img = np.zeros((self.size)) for i in range(0, self.size[0]): for j in range(0, self.size[1]): self.img[i, j, 0] = self.img[i, j, 1] = self.img[i, j, 2] = 255 def Painting(self): img = BlankImg(self.size) self.color_list = [] for i in range(0, self.K): filename = "./points/" + str(i) + "_point.csv" with open(filename, newline='') as csvfile: rows = csv.reader(csvfile) for row in rows: print(row) if (len(row) != 2): r, g, b = int(row[3]), int(row[4]), int(row[5]) self.color_list.append((r, g, b)) else: x = int(row[0]) y = int(row[1]) for a in range(x-self.brush_size, x+self.brush_size): for b in range(y-self.brush_size, y+self.brush_size): if (a >= 0 and a <= self.size[0]-1): if (b >= 0 and b <= self.size[1]-1): img[a, b, 0] = r img[a ,b ,1] = g img[a ,b, 2] = b save_name = "./painting/" + str(i) + ".png" cv.imwrite(save_name, img) words = "finished " + str(i) print (words) return (self.color_list) def DectectImg(self, targetname, comparename): target_img = cv.imread(targetname) compare_img = cv.imread(comparename) different_img = BlankImg(self.size) for x in range(0, self.size[0]): for y in range(0, self.size[1]): if (int(target_img[x, y, 0]) != int(compare_img[x, y, 0])): different_img[x, y, 0] = target_img[x, y, 0] different_img[x, y, 1] = target_img[x, y, 1] different_img[x, y, 2] = target_img[x, y, 2] else: if (int(target_img[x, y, 1]) != int(compare_img[x, y, 1])): different_img[x, y, 0] = target_img[x, y, 0] different_img[x, y, 1] = target_img[x, y, 1] different_img[x, y, 2] = target_img[x, y, 2] else: if (int(target_img[x, y, 2]) != int(compare_img[x, y, 2])): different_img[x, y, 0] = target_img[x, y, 0] different_img[x, y, 1] = target_img[x, y, 1] different_img[x, y, 2] = target_img[x, y, 2] save_name = "./difference/" + str(self.count) + ".png" cv.imwrite(save_name, different_img) self.count += 1 """ def DectectImg(self, targetname, comparedname): targetimg = cv.imread(targetname) comparedimg = cv.imread(comparedname) print (type(targetimg)) print (type(comparedimg)) fiximg = np.zeros((self.size)) for x in range(0, self.size[0]): for y in range(0, self.size[1]): if (targetimg[x, y, 0] == comparedimg[x, y, 0] and \ targetimg[x, y, 1] == comparedimg[x, y, 1] and \ targetimg[x, y, 2] == comparedimg[x, y, 2]): fiximg[x, y, 0] = fiximg[x, y, 1] = fiximg[x, y, 2] = 255 else: fiximg[x, y, 0] = targetimg[x, y, 0] fiximg[x, y, 1] = targetimg[x, y, 1] fiximg[x, y, 2] = targetimg[x, y, 2] save_name = "./fixpoint/" + str(self.fixcount) + "_fix.png" cv.imwrite(save_name, fiximg) print ("save name: ", save_name) self.fixcount += 1 return (save_name) """ if __name__ == "__main__": K = 298 filename = "K_298_1_2.png" img = cv.imread(filename) size = img.shape new = Painting(K, size) #filename = "./points/0_line.csv" color_list = new.Painting() comparename = "./painting/297.png" new.DectectImg(filename, comparename) print ("finished.")
3.015625
3
pages/views.py
Garinmckayl/monet
0
12785704
import re import requests from accounts.models import Company, CustomUser from django.contrib.auth.decorators import login_required from django.shortcuts import redirect, render from django.urls import reverse from django.views import View from django.views.generic import DetailView, ListView, TemplateView from django.views.generic.edit import CreateView, UpdateView from pages.models import Auction, Bid, DataSource class HomePageView(TemplateView): template_name = 'pages/home.html' def get_context_data(self, *args, **kwargs): context = super(HomePageView, self).get_context_data(*args, **kwargs) context['users'] = CustomUser.objects.all() return context class AboutPageView(TemplateView): template_name = 'pages/about.html' # @login_required class DashboardPageView(TemplateView): template_name = 'pages/dashboard.html' def get_context_data(self, *args, **kwargs): context = super(DashboardPageView, self).get_context_data( *args, **kwargs) return context class AuctionListView(ListView): model = Auction def get_context_data(self, *args, **kwargs): context = super(AuctionListView, self).get_context_data( *args, **kwargs) # company=Company.objects.get(user=self.request.user) # context['company'] = company return context class MyAuctionDetailView(View): def get(self, request, *args, **kwargs): my_auction = Auction.objects.filter(user=request.user).first() if my_auction: return render(request, 'pages/my-auction-detail.html', {"my_auction": my_auction}) else: return redirect('auction-create') class AuctionCreateView(CreateView): model = Auction fields = ['description', 'starting_price', 'category', 'active'] def form_valid(self, form): company = Company.objects.filter(user=self.request.user).first() if company: form.instance.user = self.request.user form.instance.company = company return super().form_valid(form) else: return redirect('company-create') class AuctionUpdateView(UpdateView): model = Auction fields = ['description', 'starting_price', 'category', 'active'] template_name_suffix = '_update_form' class AuctionDetailView(DetailView): context_object_name = 'auction' queryset = Auction.objects.all() def get_context_data(self, *args, **kwargs): context = super(AuctionDetailView, self).get_context_data( *args, **kwargs) company = Company.objects.get(user=self.request.user) context['company'] = company return context class StripeConnectionView(View): # stripe.api_key = "<KEY>" # stripe.client_id = "ca_L3q4MuEPR0JHtn2AlFe5bbf8TqrZDAcq" def get(self, request, *args, **kwargs): # get the company of the user company, created = Company.objects.get_or_create(user=request.user) # at this time, the Company should be created at Codat baseUrl = "https://api-uat.codat.io" authHeaderValue = "Basic bDRlbDRiWDhwdGdhbzVYR1c2d2dxV0s2NHpEa3NOYTlIQk9wOVFEZQ==" # Add your authorization header headers = {"Authorization": authHeaderValue} # TODO first create the company data = {"name": "Recipe test company"} response = requests.post( 'https://api.codat.io/companies', json=data, headers=headers) data = response.json() data_source, created = DataSource.objects.get_or_create( company=company) data_source.codat_id = data['id'] data_source.save() redirect_url = data['redirect'] # url = stripe.OAuth.authorize_url(scope='read_write') # company=Company.objects.first() # data, created= DataSource.objects.update_or_create(company=company, url=url) # print("this is the url ........................", url) # return render(request, "pages/stripe-connection.html") return redirect(redirect_url) class DatasourceView(View): def get(self, request, *args, **kwargs): # get the company of the user company, created = Company.objects.get_or_create(user=request.user) # at this time, the Company should be created at Codat baseUrl = "https://api-uat.codat.io" authHeaderValue = "Basic bDRlbDRiWDhwdGdhbzVYR1c2d2dxV0s2NHpEa3NOYTlIQk9wOVFEZQ==" # Add your authorization header headers = {"Authorization": authHeaderValue} data_source, created = DataSource.objects.get_or_create( company=company) codat_id = data_source.codat_id print('codat id ....................', codat_id) response = requests.get( 'https://api.codat.io/companies/'+codat_id, headers=headers) data = response.json() print('data, ........', data) print('hey .................', data['dataConnections'][0]['status'] == 'Linked') if data['dataConnections'][0]['status'] == 'Linked': data_source.codac_id = data['id'] data_source.platform = data['platform'] data_source.redirect = data['redirect'] data_source.last_sync = data['lastSync'] data_source.status = data['dataConnections'][0]['status'] data_source.save() return render(request, 'pages/data-source.html', {'data_source': data_source}) else: return redirect('company-create') def get_context_data(self, *args, **kwargs): context = super(DatasourceView, self).get_context_data( *args, **kwargs) company = Company.objects.get(user=self.request.user) context['company'] = company return context class BidCreateView(CreateView): model = Bid fields = ['user', 'auction', 'bid_price'] def get_absolute_url(self): return reverse('bid-detail', kwargs={'pk': self.pk}) def get_context_data(self, *args, **kwargs): context = super(BidCreateView, self).get_context_data(*args, **kwargs) company = Company.objects.get(user=self.request.user) context['company'] = company return context class BidDetailView(DetailView): context_object_name = 'bid' queryset = Bid.objects.all() def get_context_data(self, *args, **kwargs): context = super(BidDetailView, self).get_context_data(*args, **kwargs) company = Company.objects.get(user=self.request.user) context['company'] = company return context
2.109375
2
examples/diameter-app2/bromelia_hss.py
post-cyberlabs/bromelia
25
12785705
# -*- coding: utf-8 -*- """ examples.bromelia_hss ~~~~~~~~~~~~~~~~~~~~~ This module contains an example on how to setup a dummy HSS by using the Bromelia class features of bromelia library. :copyright: (c) 2020 <NAME>. :license: MIT, see LICENSE for more details. """ import os import sys basedir = os.path.dirname(os.path.abspath(__file__)) examples_dir = os.path.dirname(basedir) bromelia_dir = os.path.dirname(examples_dir) sys.path.insert(0, bromelia_dir) from bromelia import Bromelia from bromelia.avps import * from bromelia.constants import * from bromelia.etsi_3gpp_s6a_s6d.avps import * from bromelia.etsi_3gpp_s6a_s6d.messages import CancelLocationAnswer as CLA from bromelia.etsi_3gpp_s6a_s6d.messages import CancelLocationRequest as CLR #: Application initialization config_file = os.path.join(basedir, "bromelia_hss_config.yaml") app = Bromelia(config_file=config_file) app.load_messages_into_application_id([CLA, CLR], DIAMETER_APPLICATION_S6a_S6d) CLR = app.s6a_s6d.CLR #: Creating CLR alias if __name__ == "__main__": app.run() #: It will be blocked until connection has been established clr = CLR(user_name="123456789012345", clr_flags=2, destination_host=app.configs[0]["PEER_NODE_HOSTNAME"], supported_features=[ VendorIdAVP(VENDOR_ID_3GPP), FeatureListIdAVP(1), FeatureListAVP(134217728)]) cla = app.send_message(clr)
2.015625
2
setup.py
OscarSilvaOfficial/fast_orm
2
12785706
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="fast_sql_manager", version="0.1.5", author="<NAME>", author_email="<EMAIL>", description="Um pacote simples para realizar operações no banco", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/OscarSilvaOfficial/easy_sql", packages=setuptools.find_packages(), install_requires=[ 'six>=1.15.0', 'mysqlclient>=2.0.3', 'mysql-connector-python>=8.0.22', 'mysql>=0.0.2' ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
1.421875
1
cq/views.py
furious-luke/django-cq
31
12785707
from django.db import transaction from rest_framework import viewsets from .serializers import TaskSerializer, CreateTaskSerializer from .models import Task class TaskViewSet(viewsets.ModelViewSet): queryset = Task.objects.all() serializer_class = TaskSerializer def get_serializer(self, data=None, *args, **kwargs): if getattr(self, 'creating', False): return CreateTaskSerializer(data=data) return super().get_serializer(data, *args, **kwargs) def create(self, request, *args, **kwargs): self.creating = True with transaction.atomic(): return super().create(request, *args, **kwargs)
2.140625
2
Code/Python/Kamaelia/Kamaelia/BaseIPC.py
sparkslabs/kamaelia_orig
12
12785708
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- # Licensed to the BBC under a Contributor Agreement: RJL """\ Base IPC class. Subclass it to create your own IPC classes. When doing so, make sure you set the following: - Its doc string, so a string explanation can be generated for an instance of your subclass. - 'Parameters' class attribute to a list of named parameters you accept at creation, prefixing optional parameters with "?", e.g. "?depth" For example ----------- A custom IPC class to report a theft taking place! :: class Theft(Kamaelia.BaseIPC.IPC): \"\"\"Something has been stolen!\"\"\" Parameters = ["?who","what"] So what happens when we use it? :: >>> ipc = Theft(who="Sam", what="sweeties") >>> ipc.__doc__ 'Something has been stolen!' >>> ipc.who 'Sam' >>> ipc.what 'sweeties' """ class IPC(object): """explanation %(foo)s did %(bar)s""" Parameters = [] # ["foo", "bar"] def __init__(self, **kwds): super(IPC, self).__init__() for param in self.Parameters: optional = False if param[:1] == "?": param = param[1:] optional = True if not ( param in kwds ) : if not optional: raise ValueError(param + " not given as a parameter to " + str(self.__class__.__name__)) else: self.__dict__[param] = None else: self.__dict__[param] = kwds[param] del kwds[param] for additional in kwds.keys(): raise ValueError("Unknown parameter " + additional + " to " + str(self.__class__.__name__)) self.__dict__.update(kwds) def __str__(self): return self.__class__.__doc__ % self.__dict__
2.359375
2
paranoia_data.py
reckenrode/ParanoiaCharGen
1
12785709
import operator specs = { 'Management': ['Bootlicking', 'Chutzpah', 'Hygiene', 'Con Games', 'Interrogation', 'Intimidation', 'Moxie', 'Oratory'], 'Stealth': ['Concealment', 'Disguise', 'High Alert', 'Security Systems', 'Shadowing', 'Sleight of Hand', 'Sneaking', 'Surveillance'], 'Violence': ['Agility', 'Energy Weapons', 'Demolition', 'Field Weapons', 'Fine Manipulation', 'Hand Weapons', 'Projectile Weapons', 'Thrown Weapons', 'Unarmed Combat', 'Vehicular Combat'], 'Hardware': ['Bot Ops & Maintenance', 'Chemical Engineering', 'Electronic Engineering', 'Habitat Engineering', 'Mechanical Engineering', 'Nuclear Engineering', 'Vehicle Ops & Maintenance', 'Weapons & Armor Maintenance'], 'Software': ['Bot Programming', 'C-Bay', 'Data Analysis', 'Data Search', 'Financial Systems', 'Hacking', 'Operating Systems', 'Vehicle Programming'], 'Wetware': ['Biosciences', 'Bioweapons', 'Cloning', 'Medical', 'Outdoor Life', 'Pharmatherapy', 'Psychotherapy', 'Suggestion'] } action_skills = ['Management', 'Stealth', 'Violence'] knowledge_skills = ['Hardware', 'Software', 'Wetware'] groups = { 'Armed Forces': { 'weight': 3, 'firms': ['Ammunition Fresheners', 'Armed Forces Friends Network', 'Bodyguard Communications Liaisons', 'Blast Shield Maintenance', 'Crowd Control', 'Sensitivity Trainers', 'Threat Assessors', 'Tool & Die Works', 'Vulture Squadron Recruiters'], 'specs': ['Demolition', 'Energy Weapons', 'Hand Weapons', 'Projectile Weapons', 'Thrown Weapons', 'Unarmed Combat', 'Vehicle Ops & Maintenance'], 'societies': [(3, 'Anti-Mutant'), (3, 'Death Leopard'), (3, 'Frankenstein Destroyers'), (3, 'PURGE'), (1, 'Communists'), (1, 'FCCC-P'), (1, 'Free Enterprise'), (1, 'Pro Tech'), (1, 'Psion'), (1, 'Illuminati'), (1, 'Spy')] }, 'Central Processing Unit': { 'weight': 2, 'firms': ['116 Emergency Systems', 'Credit License Checkers', 'Facility Surveillance' 'Form Facilitators', 'Form Inventory Officers', 'Form Disposal Advisors', 'Pocket Protector Refurbishers', 'Security System Installers', 'Volunteer Collection Agencies'], 'specs': ['Security Systems', 'Electronic Engineering', 'Bot Programming', 'Data Analysis', 'Financial Systems', 'Data Search', 'Vehicle Programming'], 'societies': [(4, 'Computer Phreaks'), (4, 'Corpore Metal'), (2, 'FCCC-P'), (2, 'Sierra Club'), (1, 'Anti-Mutant'), (1, 'Communists'), (1, 'Pro Tech'), (1, 'Psion'), (1, 'PURGE'), (1, 'Illuminati'), (1, 'Spy')] }, 'HPD & Mind Control': { 'weight': 3, 'firms': ['Entertainment Scouting Agencies', 'History Purifiers', 'News Services', 'Public Hating Coordination', 'Psyche Ward Administration', 'Sector Expansion Surveyors', 'Semantics Control', 'Singalong Agents', 'Subliminals Police'], 'specs': ['Bootlicking', 'Chutzpah', 'Con Games', 'Moxie', 'Bot Ops & Maintenance', 'Pharmatherapy', 'Medical'], 'societies': [(2, 'Anti-Mutant'), (2, 'FCCC-P'), (3, 'Humanists'), (4, 'Romantics'), (2, 'Sierra Club'), (1, 'Communists'), (1, 'Mystics'), (1, 'Psion'), (1, 'PURGE'), (1, 'Illuminati'), (1, 'Spy')] }, 'Internal Security': { 'weight': 2, 'firms': ['Crowd Control', 'Forensic Analysis', 'Glee Quota Adjutants', 'Re-Education Client Procurement', 'Surveillance Operatives', 'Termination Center Janitorial', 'Thought Surveyors', 'Threat Assessors', 'Treason Scene Cleanup'], 'specs': ['Interrogation', 'Intimidation', 'Security Systems', 'Surveillance', 'Energy Weapons', 'Hand Weapons', 'Unarmed Combat'], 'societies': [(3, 'Anti-Mutant'), (3, 'Death Leopard'), (3, 'FCCC-P'), (3, 'Frankenstein Destroyers'), (1, 'Communists'), (1, 'Free Enterprise'), (1, 'Pro Tech'), (1, 'Psion'), (1, 'PURGE'), (1, 'Illuminati'), (1, 'Spy')] }, 'Production, Logistics & Commissary': { 'weight': 3, 'firms': ['Armored Autocar Escorts', 'BLUE Room Caterers', 'Equipment Assembly Control', 'Field Logistics Advisors', 'Food Vat Control', 'Inventory System Updaters', 'Printing Office Field Checkers', 'Storage Media Integrity Assessors', 'Warehouse System Inspectors'], 'specs': ['Chutzpah', 'Con Games', 'Bot Ops & Maintenance', 'Habitat Engineering', 'Vehicle Ops & Maintenance', 'Data Search', 'Biosciences'], 'societies': [(5, 'Free Enterprise'), (3, 'Humanists'), (2, 'Mystics'), (2, 'Romantics'), (1, 'Communists'), (1, 'Pro Tech'), (1, 'Psion'), (1, 'Sierra Club'), (1, 'Illuminati'), (1, 'Spy')] }, 'Power Services': { 'weight': 2, 'firms': ['Battery Backup', 'Bum Radius Assessors', 'Circuit Maintenance', 'Fuel Cell Replenishment', 'Fuel Rod Disposal Consultants', 'Odor Fresheners', 'Power Oscillation Professionals', 'Safe Atoms Initiative', 'Wire Supply Checkers'], 'specs': ['Data Analysis', 'Data Search', 'Chemical Engineering', 'Electronic Engineering', 'Habitat Engineering', 'Mechanical Engineering', 'Nuclear Engineering'], 'societies': [(2, 'Computer Phreaks'), (2, 'Death Leopard'), (2, 'FCCC-P'), (2, 'Frankenstein Destroyers'), (2, 'Free Enterprise'), (2, 'Mystics'), (2, 'Pro Tech'), (2, 'PURGE'), (1, 'Communists'), (1, 'Illuminati'), (1, 'Spy')] }, 'Research & Design': { 'weight': 2, 'firms': ['Biological Niceness Indexers', 'Bot Processing', 'Drug Interaction Testers', 'Field Data Collectors', 'Goo Cleanup', 'RoboPsych Auditing', 'Scienctist Sanity Checkers', 'Vehicle Therapists', 'Weapon Effectiveness Assessors'], 'specs': ['Chemical Engineering', 'Mechanical Engineering', 'Nuclear Engineering', 'Bot Programming', 'Vehicle Programming', 'Bioweapons', 'Cloning'], 'societies': [(3, 'Computer Phreaks'), (3, 'Corpore Metal'), (3, 'Pro Tech'), (3, 'Psion'), (3, 'PURGE'), (1, 'FCCC-P'), (1, 'Communists'), (1, 'Illuminati'), (1, 'Spy')] }, 'Technical Services': { 'weight': 2, 'firms': ['Bedding Inspectors', 'Clone Tank Support Services', 'Consolidated Motorized Transport (CMT)', 'Fuel Cell Replenishment', 'MemoMax Quality Assurance', 'Medical Services', 'Paint Control', 'Slime Identification', 'Tech Support'], 'specs': ['Chemical Engineering', 'Electronic Engineering', 'Habitat Engineering', 'Vehicle Ops & Maintenance', 'Bot Programming', 'Vehicle Programming', 'Pharmatherapy'], 'societies': [(2, 'Computer Phreaks'), (2, 'Corpore Metal'), (2, 'Death Leopard'), (2, 'Frankenstein Destroyers'), (2, 'Mystics'), (2, 'Pro Tech'), (2, 'Psion'), (2, 'Sierra Club'), (1, 'Communists'), (1, 'Illuminati'), (1, 'Spy')] }, 'Industrial spy or saboteur': { 'weight': 1, 'firms': [], 'specs': [] } } weighted_groups = reduce(operator.add, [[g for w in xrange(v['weight'])] for g, v in groups.iteritems()]) powers = { 'classic': ['Charm', 'Corrosion', 'Detect Mutant Power', 'Electroshock', 'Empathy', 'Energy Field', 'Hypersenses', 'Levitation', 'Machine Empathy', 'Matter Eater', 'Mental Blast', 'Polymorphism', 'Puppeteer', 'Pyrokinesis', 'Regeneration', 'Slippery Skin', 'Telekinesis', 'Teleportation', 'Uncanny Luck', 'X-Ray Vision'], 'straight': ['Adhesive Skin', 'Adrenalin Control', 'Bureaucratic Intuition', 'Charm', 'Death Simulation', 'Deep Thought', 'Electroshock', 'Empathy', 'Energy Field', 'Hypersenses', 'Machine Empathy', 'Matter Eater', 'Mechanical Intuition', 'Mental Blast', 'Pyrokinesis', 'Regeneration', 'Rubbery Bones', 'Toxic Metabolism', 'Uncanny Luck', 'Ventriloquist'], 'zap': ['Absorption', 'Chameleon', 'Charm', 'Desolidity', 'Electroshock', 'Energy Field', 'Growth', 'Levitation', 'Machine Empathy', 'Matter Eater', 'Mental Blast', 'Polymorphism', 'Puppeteer', 'Pyrokinesis', 'Regeneration', 'Shrinking', 'Telekinesis', 'Teleportation', 'Transmutaiton', 'X-Ray Vision'] } mutant_experience_powers = { 'classic': ["Charm", "Corrosion", "Detect Mutant Power", "Electroshock", "Empathy", "Energy Field", "Hypersenses", "Levitation", "Machine Empathy", "Matter Eater", "Mental Blast", "Polymorphism", "Puppeteer", "Pyrokinesis", "Regeneration", "Slippery Skin", "Telekinesis", "Teleportation", "Uncanny Luck", "X-Ray Vision", "Call Bots", "Chromativariation", "Creeping Madness", "Environmental Control", "Gravity Manipulation", "Haze", "Hyperreflexes", "Jump!", "Light Control", "Magnetize", "Pouches", "Push Mutant Powers", "Radioactivity", "Scream", "Sculpt", "Second Skin", "Speed", "Spikes", "Stench", "Stretchy"], 'straight': ["Adhesive Skin", "Adrenalin Control", "Bureaucratic Intuition", "Charm", "Death Simulation", "Deep Thought", "Electroshock", "Empathy", "Energy Field", "Hypersenses", "Machine Empathy", "Matter Eater", "Mechanical Intuition", "Mental Blast", "Pyrokinesis", "Regeneration", "Rubbery Bones", "Toxic Metabolism", "Uncanny Luck", "Ventriloquist", "Adaptive Metabolism", "Call Bots", "Clean Slate", "Creeping Madness", "Environmental Control", "Find Location", "Forgettable", "Haze", "Hyperreflexes", "Jump!", "Light Control", "Mind Sense", "Pouches", "Psychometry", "Push Mutant Powers", "Radioactivity", "Second Skin", "Speed", "Stench", "Stretchy"], 'zap': ["Absorption", "Chameleon", "Charm", "Desolidity", "Electroshock", "Energy Field", "Growth", "Levitation", "Machine Empathy", "Matter Eater", "Mental Blast", "Polymorphism", "Puppeteer", "Pyrokinesis", "Regeneration", "Shrinking", "Telekinesis", "Teleportation", "Transmutation", "X-Ray Vision", "Acidic Spit", "Bouncy", "Chromativariation", "Creeping Madness", "Cryokinesis", "Enervating Darkness", "Gravity Manipulation", "Haze", "Hyperreflexes", "Jump!", "Magnetize", "Radioactivity", "Scream", "Sculpt", "Second Skin", "Speed", "Spikes", "Stasis", "Stench", "Stretchy"] } # A skill of 'M' indicates the next is mandatory for that society societyskills = [# Uncommon Unlikely Unhealthy ['Anti-Mutant', 'Power Studies', 'Comic Book Trivia', 'Twitchtalk'], ['Computer Phreaks', 'Cash Hacking', 'Jargon', ('Hacking', 'programming skills')], ['Communists', 'Demolition', 'Tractor Maintenance', ('M', 'Propaganda')], ['Corpore Metal', 'Cyborging', 'Botspotting', 'Bioweapons'], ['Death Leopard', ('M', 'Demolition'), ('Action Movies', 'Partying'), 'Gambling'], ['FCCC-P', 'Alpha Complex History', 'priestly skills', 'Meeting Machine Empaths'], ['Frankenstein Destroyers', 'Demolition', 'toolmaking skills', 'programming skills'], ['Free Enterprise', 'Haggling', 'Advertising & Marketing', ('Bribery', 'Forgery')], ['Humanists', 'Marital Arts', ('hobbies', 'languages'), 'Old Reckoning Cultures'], ['Mystics', ('M', 'Drug Procurement'), ('Meditation', 'Partying'), 'Old Reckoning Drugs'], ['Pro Tech', 'Experimental Equipment Repair', 'Video Games', 'WMD'], ['Psion', 'Power Studies', 'Comic Book Trivia', 'Twitchtalk'], ['PURGE', ('M', 'Demolition'), 'Gloating', ('Bioweapons', 'Twitchtalk')], ['Romantics', 'Archival Studies', ('Cooking', 'Knitting', 'Music'), ('M', 'Old Reckoning Cultures')], ['Sierra Club', ('Survial', 'Wild Lore', 'Travel'), ('Birdwatching', 'Botany', 'Spoor Recognition'), 'Bioweapons'] ]
1.648438
2
tardis/gui/tests/test_gui.py
saksham-kaushal/tardis
1
12785710
<filename>tardis/gui/tests/test_gui.py<gh_stars>1-10 import os import pytest from tardis.io.config_reader import Configuration from tardis.simulation import Simulation import astropy.units as u from tardis.gui import interface from tardis.gui.widgets import Tardis from tardis.gui.datahandler import SimpleTableModel from PyQt5 import QtWidgets @pytest.fixture(scope='module') def refdata(tardis_ref_data): def get_ref_data(key): return tardis_ref_data[os.path.join( 'test_simulation', key)] return get_ref_data @pytest.fixture(scope='module') def config(): return Configuration.from_yaml( 'tardis/io/tests/data/tardis_configv1_verysimple.yml') @pytest.fixture(scope='module') def simulation_one_loop( atomic_data_fname, config, tardis_ref_data, generate_reference): config.atom_data = atomic_data_fname config.montecarlo.iterations = 2 config.montecarlo.no_of_packets = int(4e4) config.montecarlo.last_no_of_packets = int(4e4) simulation = Simulation.from_config(config) simulation.run() return simulation def test_gui(simulation_one_loop): simulation = simulation_one_loop app = QtWidgets.QApplication([]) tablemodel = SimpleTableModel win = Tardis(tablemodel) win.show_model(simulation) app.quit()
1.984375
2
techk/apps/base/configs.py
danilovergara/fullstack
0
12785711
<filename>techk/apps/base/configs.py scraper_url = "http://books.toscrape.com/" # The URL to be scraped
1.476563
1
Task/Even-or-odd/Python/even-or-odd-1.py
LaudateCorpus1/RosettaCodeData
5
12785712
<reponame>LaudateCorpus1/RosettaCodeData<filename>Task/Even-or-odd/Python/even-or-odd-1.py<gh_stars>1-10 >>> def is_odd(i): return bool(i & 1) >>> def is_even(i): return not is_odd(i) >>> [(j, is_odd(j)) for j in range(10)] [(0, False), (1, True), (2, False), (3, True), (4, False), (5, True), (6, False), (7, True), (8, False), (9, True)] >>> [(j, is_even(j)) for j in range(10)] [(0, True), (1, False), (2, True), (3, False), (4, True), (5, False), (6, True), (7, False), (8, True), (9, False)] >>>
3.390625
3
ML_service/run_classifier_app.py
ykpgrr/Hate-Speech-Detection
4
12785713
import os import pickle import re import string from flask import Flask, request, jsonify CUR_DIR = os.path.dirname(__file__) STOP_WORDS = pickle.load(open( os.path.join(CUR_DIR, 'pkl_objects', 'stopwords.pkl'), 'rb')) VECTORIZER = pickle.load(open( os.path.join(CUR_DIR, 'pkl_objects', 'vectorizer.pkl'), 'rb')) CLF = pickle.load(open( os.path.join(CUR_DIR, 'pkl_objects', 'classifier.pkl'), 'rb')) LABEL_DICT = {0: 'The tweet contains hate speech', 1: 'The tweet is not offensive', 2: 'The tweet uses offensive language but not hate speech'} app = Flask(__name__) def preprocess_tweet(tweet): tweet = tweet.lower() # Remove urls tweet = re.sub('((www\.[^\s]+)|(https?://[^\s]+))', '', tweet) # Remove usernames tweet = re.sub('@[^\s]+', '', tweet) # Remove white space tweet = tweet.strip() # Remove hashtags tweet = re.sub(r'#([^\s]+)', '', tweet) # Remove stopwords tweet = " ".join([word for word in tweet.split(' ') if word not in STOP_WORDS]) # Remove punctuation tweet = "".join(l for l in tweet if l not in string.punctuation) return tweet @app.route("/analyse/sentiment", methods=['POST']) def classify_tweet(): sentence = request.get_json()['sentence'] sentence_to_clf = preprocess_tweet(sentence) sentence_to_clf = VECTORIZER.transform([sentence_to_clf]) label = CLF.predict(sentence_to_clf)[0] confidence = max(CLF.predict_proba(sentence_to_clf)[0]) * 100 return jsonify( sentence=LABEL_DICT[label], polarity=confidence ) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
2.859375
3
src/users/models/componentsschemasmicrosoft_graph_onenoteentitybasemodelallof1.py
peombwa/Sample-Graph-Python-Client
0
12785714
<filename>src/users/models/componentsschemasmicrosoft_graph_onenoteentitybasemodelallof1.py<gh_stars>0 # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ComponentsschemasmicrosoftGraphOnenoteentitybasemodelallof1(Model): """onenoteEntityBaseModel. :param self: :type self: str """ _attribute_map = { 'self': {'key': 'self', 'type': 'str'}, } def __init__(self, self=None): super(ComponentsschemasmicrosoftGraphOnenoteentitybasemodelallof1, self).__init__() self.self = self
2.09375
2
testdata/python/setup/setup.py
lade-io/jet
18
12785715
try: from setuptools import setup except ImportError: from distutils.core import setup REQUIRES = ['numpy', 'pytest', 'flask'] config = { 'description': 'Fibonacci webservice (with neural network)', 'author': '<NAME>', 'url': 'https://github.com/soerendip/fibo', 'download_url': 'https://github.com/soerendip/fibo', 'author_email': '<EMAIL>', 'version': '0.1', 'install_requires': [REQUIRES], 'name': 'fibo', 'packages': ['fibo'], 'description': 'A webservice for fibonacci numbers.', 'platform': 'Linux' } setup(**config)
1.460938
1
venv/lib/python3.8/site-packages/azureml/_tracing/_tracer.py
amcclead7336/Enterprise_Data_Science_Final
0
12785716
<reponame>amcclead7336/Enterprise_Data_Science_Final # --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os from ._constants import USER_FACING_NAME, TRACEPARENT_ENV_VAR from ._span import Span from ._vendored import _execution_context as execution_context class AmlTracer: def __init__(self, span_processors): self._span_processors = span_processors def start_as_current_span(self, name, parent=None, user_facing_name=None): parent = parent or self.__class__._get_ambient_parent() span = Span(name, parent, self._span_processors) self.__class__.decorate_span(span, user_facing_name) span.__enter__() return span def start_span(self, name, parent=None, user_facing_name=None): span = Span(name, parent, self._span_processors) self.__class__.decorate_span(span, user_facing_name) return span @staticmethod def decorate_span(span, user_facing_name): if user_facing_name: span.attributes[USER_FACING_NAME] = user_facing_name @staticmethod def _get_ambient_parent(): current_parent = execution_context.get_current_span() if current_parent: return current_parent traceparent = os.environ.get(TRACEPARENT_ENV_VAR, '').split('-') if not traceparent or len(traceparent) != 4: return None return Span._from_traceparent(*traceparent) class DefaultTraceProvider: def __init__(self, tracer): self._tracer = tracer def get_tracer(self, name): return self._tracer def get_current_span(self): return execution_context.get_current_span()
2.0625
2
wpca/tests/test_utils.py
radicamc/wpca
123
12785717
from itertools import chain, combinations import numpy as np from numpy.testing import assert_allclose from wpca.tests.tools import assert_allclose_upto_sign from wpca.utils import orthonormalize, random_orthonormal, weighted_mean def test_orthonormalize(): rand = np.random.RandomState(42) X = rand.randn(3, 4) X2 = orthonormalize(X) assert_allclose_upto_sign(X[0] / np.linalg.norm(X[0]), X2[0]) assert_allclose(np.dot(X2, X2.T), np.eye(X2.shape[0]), atol=1E-15) def test_random_orthonormal(): def check_random_orthonormal(N, M, rows): X = random_orthonormal(N, M, rows=rows, random_state=42) assert X.shape == (N, M) if rows: C = np.dot(X, X.T) else: C = np.dot(X.T, X) assert_allclose(C, np.eye(C.shape[0]), atol=1E-15) for M in [5]: for N in range(1, M + 1): yield check_random_orthonormal, N, M, True yield check_random_orthonormal, M, N, False def test_weighted_mean(): def check_weighted_mean(shape, axis): rand = np.random.RandomState(0) x = rand.rand(*shape) w = rand.rand(*shape) wm = weighted_mean(x, w, axis) assert_allclose(wm, np.average(x, axis, w)) assert_allclose(wm, (w * x).sum(axis) / w.sum(axis)) for ndim in range(1, 5): shape = tuple(range(3, 3 + ndim)) axis_tuples = chain(*(combinations(range(ndim), nax) for nax in range(ndim + 1))) for axis in chain([None], range(ndim), axis_tuples): yield check_weighted_mean, shape, axis
2.375
2
notebooks/utils.py
djfedos/djfedos-boostrap
0
12785718
def find_max(list_of_numbers:list): max_number = list_of_numbers[0] for number in list_of_numbers: if number > max_number: max_number = number return(max_number)
3.796875
4
src/bxcommon/models/blockchain_peer_info.py
dolphinridercrypto/bxcommon
12
12785719
<reponame>dolphinridercrypto/bxcommon<filename>src/bxcommon/models/blockchain_peer_info.py from dataclasses import dataclass from typing import Optional from bxcommon.utils.blockchain_utils.eth import eth_common_constants @dataclass class BlockchainPeerInfo: ip: str port: int node_public_key: Optional[str] = None blockchain_protocol_version: int = eth_common_constants.ETH_PROTOCOL_VERSION connection_established: bool = False def __repr__(self): return f"BlockchainPeerInfo(ip address: {self.ip}, " \ f"port: {self.port}, " \ f"node public key: {self.node_public_key}, " \ f"blockchain protocol version: {self.blockchain_protocol_version})" def __eq__(self, other) -> bool: return ( isinstance(other, BlockchainPeerInfo) and other.port == self.port and other.ip == self.ip ) def __hash__(self): return hash(f"{self.ip}:{self.port}")
2.453125
2
Camera_comments.py
JoseZalez/Houdini-scripts
19
12785720
<filename>Camera_comments.py<gh_stars>10-100 #Add parameters to the camera #https://www.linkedin.com/in/jose-gonzalezvfx/ import os import sys from PySide2.QtWidgets import QDialog, QApplication, QLineEdit, QLabel, QPushButton, QCheckBox, QHBoxLayout, QVBoxLayout from PySide2.QtCore import Qt class UI(QDialog): """""" def __init__(self, parent=None): """Constructor""" super(UI, self).__init__(parent) main_layout = QVBoxLayout() self.setWindowTitle("Add parameters to camera") #Keep the window on top always self.setWindowFlags(self.windowFlags() | Qt.WindowStaysOnTopHint) #Get Houdini window style and apply to interface self.setStyleSheet(hou.qt.styleSheet()) self.setProperty("houdiniStyle", True) #Create a path input camera_layout = QHBoxLayout() lbl = QLabel("Camera node:") self.camera = QLineEdit("") camera_layout.addWidget(lbl) camera_layout.addWidget(self.camera) camera_layout.setSpacing(10) #Create an extension input solver_layout = QHBoxLayout() lbl = QLabel("Node:") self.solver = QLineEdit("") solver_layout.addWidget(lbl) solver_layout.addWidget(self.solver) solver_layout.setSpacing(10) #Set a button to start self.buttonCreate = QPushButton('Create') #Set a button to delete old parms self.buttonAdd = QPushButton('Add') #Set a button to delete old parms self.buttonReset = QPushButton('Reset') #Add all the layout together main_layout.addLayout(camera_layout, stretch=1) main_layout.addLayout(solver_layout, stretch=1) main_layout.addWidget(self.buttonCreate) main_layout.addWidget(self.buttonAdd) main_layout.addWidget(self.buttonReset) self.setLayout(main_layout) #Start the main code self.buttonCreate.clicked.connect(self.createcomment) self.buttonAdd.clicked.connect(self.add) self.buttonReset.clicked.connect(self.reset) def getCameraNode(self): camera_path = self.camera.text() return hou.node(camera_path) def gettext(self): #Gets the camera and solver node solver_path = self.solver.text() solver = hou.node(solver_path) camera = self.getCameraNode() #Creates a list of parms from the selected node all_parms = solver.parms() #Initialize a dictionary and a list for the parms thisdict ={} parmlist=[] i=0 #Iterates for each paramater, adds the name with the value in the dictionary, also adds the name to the list filter_word=["Interpolation","Position","Value","Visualization","Control"] previousname="" for parm in all_parms: name=parm.name() long_name=parm.description() if not any(x in long_name for x in filter_word): if "enable" not in name: if long_name == previousname: vectorname=name[:-1] del parmlist[-1] i-=1 thisdict[str(i)] = "data+=" + "'"+ long_name +": "+"'"+" + "+ 'str(solver.parmTuple({}).eval())'.format("'"+vectorname+"'") + "+" + "'\\n'" previousname=long_name long_name+=" (vector) " else: thisdict[str(i)] = "data+=" + "'"+ long_name +": "+"'"+" + "+ 'str(solver.parm({}).eval())'.format("'"+name+"'") + "+" + "'\\n'" previousname=long_name parmlist.append(long_name) i+=1 text = 'data=""' + "\n"+'solver = hou.node({})'.format("'"+self.solver.text()+"'") +"\n" #Shows a list of all the parameters for the user to select which he wants selected = hou.ui.selectFromList(parmlist, exclusive=False, title='Import parameters', column_header="Parameters", num_visible_rows=10, clear_on_cancel=False) #Iterates for all the parms with the values from the ditionary and appends it to a string with a line jump for x in range(len(selected)): index = str(selected[x]) text += thisdict[index] + '\n' return text def createcomment(self): text_out=self.gettext() camera = self.getCameraNode() text_out+="return data" if not camera.parm("vcomment"): #Add a string parameter to the camera input ptg = camera.parmTemplateGroup() parm_folder = hou.FolderParmTemplate('folder', 'Notes') parmtemplate=hou.StringParmTemplate('vcomment', 'Text', 1) parmtemplate.setTags({"editor": "1","editorlang": "python"}) parm_folder.addParmTemplate(parmtemplate) ptg.append(parm_folder) camera.setParmTemplateGroup(ptg) #Set the paramaters with the values in the string parameter as a expression camera.parm("vcomment").setExpression(text_out, hou.exprLanguage.Python) else: hou.ui.displayMessage("Please click 'Reset' to create new parameters or 'Add' to add new parameters", buttons=('OK',), severity=hou.severityType.Message, default_choice=0, close_choice=0, title="Select a node",details_expanded=False) def add(self): text_out=self.gettext() camera = self.getCameraNode() #Set the paramaters with the values in the string parameter current_text=camera.parm("vcomment").expression() old_out=current_text.split("\n", 1)[1] new_text=text_out+old_out camera.parm("vcomment").setExpression(new_text, hou.exprLanguage.Python) def reset(self): #Deletes the folder and the comment stored in the camera node camera = self.getCameraNode() ptg = camera.parmTemplateGroup() folder_to_delete = ptg.findFolder('Notes') ptg.remove(folder_to_delete) camera.setParmTemplateGroup(ptg) #Starts the script window for the user app = QApplication.instance() if app is None: app = QApplication(sys.argv) CommentUI = UI() CommentUI.show()
2.65625
3
examples/turbulence.py
andimarafioti/python-acoustics
1
12785721
import numpy as np from acoustics.turbulence import Gaussian2DTemp, VonKarman2DTemp, Comparison, Field2D def main(): mu_0 = np.sqrt(10.0**(-6)) correlation_length = 1.0 # Typical correlation length for Gaussian spectrum. x = 20.0 y = 0.0 z = 40.0 plane = (1,0,1) #f_resolution = wavenumber_resolution / (2.0*np.pi) spatial_resolution = 0.05 N = 100 min_wavenumber = 0.01 max_wavenumber = 10.0 wavenumber_resolution = (max_wavenumber - min_wavenumber) / N """Create an object to describe an Gaussian turbulence spectrum.""" g = Gaussian2DTemp(plane=plane, a=correlation_length, mu_0=mu_0, wavenumber_resolution=wavenumber_resolution, max_mode_order=N) """Create an object to describe a VonKarman turbulence spectrum.""" s = VonKarman2DTemp(plane=plane, a=correlation_length, mu_0=mu_0, wavenumber_resolution=wavenumber_resolution, max_mode_order=N) g.plot_mode_amplitudes('Gaussian2DTemp_mode_amplitudes.png') s.plot_mode_amplitudes('VonKarman2DTemp_mode_amplitudes.png') c = Comparison([g, s]) c.plot_mode_amplitudes('Gaussian2DTemp_and_VonKarman2DTemp_mode_amplitudes.png') field_g = Field2D(x=x, y=y, z=z, spatial_resolution=spatial_resolution, spectrum=g) field_s = Field2D(x=x, y=y, z=z, spatial_resolution=spatial_resolution, spectrum=s) field_g.generate().plot('Gaussian2DTemp_field.png') field_s.generate().plot('VonKarman2DTemp_field.png') if __name__ == '__main__': main()
3.1875
3
LightSail.py
CFP106020008/Light-Sail-Simulation
0
12785722
<filename>LightSail.py # -*- coding: utf-8 -*- """ Created on Wed Mar 24 01:09:23 2021 @author: <EMAIL> """ import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp import matplotlib.cm as cm from matplotlib.animation import FuncAnimation import matplotlib as mpl from matplotlib.gridspec import GridSpec # Fundamental Constants Msun = 2e30 # Solar Mass (k) G = 6.67e-11 # Gravitational Constant AU = 1.5e11 # Astronmical Unit (m) rE = 1.*AU # Orbital radius of Earth (m) Rsun = 7e8 # Radius of the sun (m) yr2s = 86400*365 # Conversion of year to second #%% # Adjustable parameters # Simulation properties tmax = 1e0*yr2s # Simulation time # Sail properties aE = 1e-3 # Maxium acceleration of the sail at 1AU. delay = 0.*yr2s # How long does the sail wait # on the earth orbit before starting manuver perihelion = 10*Rsun # Visualization properties Box_size = 3e11 # Size of the plot frames = int(1e3) # Output frames Tracing = False # Viewing the sail with tracing mode. SAVE_VIDEO = False # Whether you want to save the video #%% def initial_condition(): def cicular(k): v_sun_circular = np.sqrt(G*Msun/k) return [0, -k, v_sun_circular, 0] def eliptical(): a = AU R_init = a*2-1*Rsun v = np.sqrt(G*Msun*(2/R_init-1/a)) return [R_init, 0, 0, v] return cicular(AU) y_0 = initial_condition() #%% def Etot(x, y, vx, vy): r = np.sqrt(x**2 + y**2) K = 0.5*(vx**2 + vy**2) return K - G*Msun/r #%% def Decide_Pointing(t, x, y, vx, vy): r = np.array([x, y]) v = np.array([vx, vy]) rhat = r/np.linalg.norm(r) vhat = v/np.linalg.norm(v) Acc = False if t > delay: if np.linalg.norm(r)>perihelion and Acc == False: phat = (rhat - vhat)/np.sqrt(2) else: Acc = True phat = (rhat + vhat)/np.sqrt(2) else: phat = np.array([-rhat[1], rhat[0]]) return phat #%% def function(t, y): r_vec = y[:2] r = np.linalg.norm(r_vec) v_vec = y[2:] phat = Decide_Pointing(t, y[0], y[1], y[2], y[3]) dxdt = v_vec[0] dydt = v_vec[1] a_rp = aE*rE**2/r**2*np.dot(r_vec, phat)/np.linalg.norm(r_vec)*phat a_g = -G*Msun/r**3*r_vec a = a_rp + a_g dvxdt = a[0] dvydt = a[1] return np.array([dxdt, dydt, dvxdt, dvydt]) #%% # Solving the orbit sol = solve_ivp(fun=function, t_span=[0, tmax], y0=y_0, t_eval=np.linspace(0,tmax,frames), method='LSODA') t = sol.t Data = sol.y x = Data[0,:] y = Data[1,:] vx = Data[2,:] vy = Data[3,:] #%% # Visualization Setup COLOR = '#303030' LineColor = 'silver' #fig, ax = plt.subplots(facecolor=COLOR) fig = plt.figure(figsize = (8, 4.5), facecolor=COLOR) gs = GridSpec(2, 4, figure=fig) # Picture ax = fig.add_subplot(gs[:, :2]) ax.set_facecolor(COLOR) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.spines['bottom'].set_color(COLOR) ax.spines['top'].set_color(COLOR) ax.spines['right'].set_color(COLOR) ax.spines['left'].set_color(COLOR) # Solar system bodies sun = plt.Circle((0, 0), Rsun, color='y') mercury = plt.Circle((0, 0), 0.387*AU, edgecolor='cyan', fill=False) venus = plt.Circle((0, 0), 0.723*AU, edgecolor='y', fill=False) earth = plt.Circle((0, 0), 1.*AU, edgecolor='skyblue', fill=False) mars = plt.Circle((0, 0), 1.524*AU, edgecolor='r', fill=False) ax.add_patch(sun) ax.add_patch(mercury) ax.add_patch(venus) ax.add_patch(earth) ax.add_patch(mars) ax.set_aspect('equal', 'box') line, = ax.plot(x[0], y[0], color='silver', linestyle='-', linewidth=1) dot, = ax.plot([], [], color='silver', marker='o', markersize=1, markeredgecolor='w', linestyle='') #Vel = ax.text(0.05, 0.9, 'Velocity: {:.2e} m/s'.format(np.sqrt(vx[0]**2 + vy[0]**2)), horizontalalignment='left', # verticalalignment='top', transform=ax.transAxes, color='w') #E_tot = ax.text(0.05, 0.85, 'Specific Total Energy: {:.2e} J/kg'.format(Etot(x[0], y[0], vx[0], vy[0])), horizontalalignment='left', # verticalalignment='top', transform=ax.transAxes, color='w') #Time = ax.text(0.05, 0.95, 'Time: {:.2f} yr'.format(t[0]/86400/365), horizontalalignment='left', # verticalalignment='top', transform=ax.transAxes, color='w') ax.set_xlim([-Box_size,Box_size]) ax.set_ylim([-Box_size,Box_size]) #%% # Velocity Plot ax1 = fig.add_subplot(gs[0, 2:]) ax1.set_facecolor(COLOR) velline, = ax1.plot(t[0]/yr2s, np.sqrt(vx[0]**2+vy[0]**2), color='silver') ax1.spines['bottom'].set_color(LineColor) ax1.spines['top'].set_color(LineColor) ax1.spines['right'].set_color(LineColor) ax1.spines['left'].set_color(LineColor) ax1.set_xlim([0,tmax/yr2s]) ax1.set_ylim([0,np.max(np.sqrt(vx**2+vy**2))*1.2]) ax1.tick_params(labelcolor=LineColor, labelsize='medium', width=3, colors=LineColor) ax1.ticklabel_format(axis='y', style='sci', useMathText=True, scilimits=(4,5)) ax1.set_xlabel('Time (yr)') ax1.set_ylabel('Velocity (m/s)') ax1.xaxis.label.set_color(LineColor) ax1.yaxis.label.set_color(LineColor) #%% # Energy Plot ax2 = fig.add_subplot(gs[1, 2:]) ax2.set_facecolor(COLOR) Etotline, = ax2.plot(t[0]/yr2s, Etot(x[0], y[0], vx[0], vy[0]), color='silver') ax2.spines['bottom'].set_color(LineColor) ax2.spines['top'].set_color(LineColor) ax2.spines['right'].set_color(LineColor) ax2.spines['left'].set_color(LineColor) ax2.set_xlim([0, tmax/yr2s]) ax2.set_ylim([np.min(Etot(x, y, vx, vy))*1.2, np.max(Etot(x, y, vx, vy))*1.2]) ax2.tick_params(labelcolor=LineColor, labelsize='medium', width=3, colors=LineColor) ax2.ticklabel_format(style='sci', useMathText=True) ax2.set_xlabel('Time (yr)') ax2.set_ylabel('Specific total energy (J/kg)') ax2.xaxis.label.set_color(LineColor) ax2.yaxis.label.set_color(LineColor) plt.tight_layout() #%% ms2AUyr = 86400*365/1.5e11 def update(i): dot.set_data(x[i], y[i]) line.set_data(x[:i], y[:i]) velline.set_data(t[:i]/yr2s, np.sqrt(vx[:i]**2+vy[:i]**2)) Etotline.set_data(t[:i]/yr2s, Etot(x[:i], y[:i], vx[:i], vy[:i])) r = np.sqrt(x[i]**2 + y[i]**2) if Tracing: ax.set_xlim([-1.5*r,1.5*r]) ax.set_ylim([-1.5*r,1.5*r]) O1 = ax.add_patch(sun) O2 = ax.add_patch(mercury) O3 = ax.add_patch(venus) O4 = ax.add_patch(earth) O5 = ax.add_patch(mars) #Vel.set_text('Velocity: {:.2e} m/s'.format(np.sqrt(vx[i]**2 + vy[i]**2))) #Vel.set_text('Velocity: {:.2e} AU/yr'.format(np.sqrt(vx[i]**2 + vy[i]**2)*ms2AUyr)) #E_tot.set_text('Total Energy: {:.2e} J/kg'.format(Etot(x[i], y[i], vx[i], vy[i]))) #Time.set_text('Time: {:.2f} yr'.format(t[i]/86400/365)) return [dot, line, velline, Etotline, O1, O2, O3, O4, O5] ani = FuncAnimation(fig=fig, func=update, frames=frames, interval=10000/frames, blit=True, repeat=False) if SAVE_VIDEO: ani.save("sail.mp4", dpi=300, savefig_kwargs={'facecolor':COLOR}) plt.show()
2.875
3
tests/test_0434.py
msztylko/2020ify-leetcoding
0
12785723
import ctypes import pytest c_lib = ctypes.CDLL('../solutions/0434-segment-string/segment-string.so') @pytest.mark.parametrize('str, ans', [(b'Hello, my name is John', 5), (b'Hello', 1), (b"love live! mu'sic forever", 4), (b"", 0)]) def test_segment_string(str, ans): out = c_lib.countSegments(str) assert out == ans
2.421875
2
polyaxon/hpsearch/tasks/health.py
elyase/polyaxon
0
12785724
<gh_stars>0 from checks import health_task from polyaxon.celery_api import celery_app from polyaxon.settings import HPCeleryTasks @celery_app.task(name=HPCeleryTasks.HP_HEALTH, ignore_result=False) def hp_health(x, y): return health_task.health_task(x, y)
1.59375
2
openhgnn/trainerflow/GATNE_trainer.py
clearhanhui/OpenHGNN
0
12785725
import torch as th from tqdm import tqdm from . import BaseFlow, register_flow from ..models import build_model from ..models.GATNE import NSLoss import torch from tqdm.auto import tqdm from numpy import random import dgl from ..sampler.GATNE_sampler import NeighborSampler, generate_pairs @register_flow("GATNE_trainer") class GATNE(BaseFlow): def __init__(self, args): super(GATNE, self).__init__(args) self.model = build_model(self.model_name).build_model_from_args(self.args, self.hg).to(self.device) self.train_pairs = None self.train_dataloader = None self.nsloss = None self.neighbor_sampler = None self.orig_val_hg = self.task.val_hg self.orig_test_hg = self.task.test_hg self.preprocess() self.train() def preprocess(self): assert len(self.hg.ntypes) == 1 bidirected_hg = dgl.to_bidirected(dgl.to_simple(self.hg.to('cpu'))) all_walks = [] for etype in self.hg.etypes: nodes = torch.unique(bidirected_hg.edges(etype=etype)[0]).repeat(self.args.rw_walks) traces, types = dgl.sampling.random_walk( bidirected_hg, nodes, metapath=[etype] * (self.args.rw_length - 1) ) all_walks.append(traces) self.train_pairs = generate_pairs(all_walks, self.args.window_size, self.args.num_workers) self.neighbor_sampler = NeighborSampler(bidirected_hg, [self.args.neighbor_samples]) self.train_dataloader = torch.utils.data.DataLoader( self.train_pairs, batch_size=self.args.batch_size, collate_fn=self.neighbor_sampler.sample, shuffle=True, num_workers=self.args.num_workers, pin_memory=True, ) self.nsloss = NSLoss(self.hg.num_nodes(), self.args.neg_size, self.args.dim).to(self.device) self.optimizer = torch.optim.Adam( [{"params": self.model.parameters()}, {"params": self.nsloss.parameters()}], lr=self.args.learning_rate ) return def train(self): best_score = 0 patience = 0 for self.epoch in range(self.args.max_epoch): self._full_train_step() cur_score = self._full_test_step() if cur_score > best_score: best_score = cur_score patience = 0 else: patience += 1 if patience > self.args.patience: self.logger.train_info(f'Early Stop!\tEpoch:{self.epoch:03d}.') break def _full_train_step(self): self.model.train() random.shuffle(self.train_pairs) data_iter = tqdm( self.train_dataloader, desc="epoch %d" % self.epoch, total=(len(self.train_pairs) + (self.args.batch_size - 1)) // self.args.batch_size, ) avg_loss = 0.0 for i, (block, head_invmap, tails, block_types) in enumerate(data_iter): self.optimizer.zero_grad() # embs: [batch_size, edge_type_count, embedding_size] block_types = block_types.to(self.device) embs = self.model(block[0].to(self.device))[head_invmap] embs = embs.gather( 1, block_types.view(-1, 1, 1).expand(embs.shape[0], 1, embs.shape[2]) )[:, 0] loss = self.nsloss( block[0].dstdata[dgl.NID][head_invmap].to(self.device), embs, tails.to(self.device), ) loss.backward() self.optimizer.step() avg_loss += loss.item() post_fix = { "epoch": self.epoch, "iter": i, "avg_loss": avg_loss / (i + 1), "loss": loss.item(), } data_iter.set_postfix(post_fix) def _full_test_step(self): self.model.eval() # {'1': {}, '2': {}} final_model = dict( zip(self.hg.etypes, [th.empty(self.hg.num_nodes(), self.args.dim) for _ in range(len(self.hg.etypes))])) for i in tqdm(range(self.hg.num_nodes()), desc='Evaluating...'): train_inputs = ( torch.tensor([i for _ in range(len(self.hg.etypes))]) .unsqueeze(1) .to(self.device) ) # [i, i] train_types = ( torch.tensor(list(range(len(self.hg.etypes)))).unsqueeze(1).to(self.device) ) # [0, 1] pairs = torch.cat( (train_inputs, train_inputs, train_types), dim=1 ) # (2, 3) ( train_blocks, train_invmap, fake_tails, train_types, ) = self.neighbor_sampler.sample(pairs) node_emb = self.model(train_blocks[0].to(self.device))[train_invmap] node_emb = node_emb.gather( 1, train_types.to(self.device) .view(-1, 1, 1) .expand(node_emb.shape[0], 1, node_emb.shape[2]), )[:, 0] for j in range(len(self.hg.etypes)): final_model[self.hg.etypes[j]][i] = node_emb[j].detach() metric = {} score = [] for etype in self.hg.etypes: self.task.val_hg = dgl.edge_type_subgraph(self.orig_val_hg, [etype]) self.task.test_hg = dgl.edge_type_subgraph(self.orig_test_hg, [etype]) for split in ['test', 'valid']: n_embedding = {self.hg.ntypes[0]: final_model[etype].to(self.device)} res = self.task.evaluate(n_embedding=n_embedding, mode=split) metric[split] = res if split == 'valid': score.append(res.get('roc_auc')) self.logger.train_info(etype + self.logger.metric2str(metric)) avg_score = sum(score) / len(score) return avg_score
2.078125
2
STACK/minStack.py
rajansh87/Algorithms-Implementations
1
12785726
class Stack: def __init__(self): self.min = None self.stack = list() # function to get minimum element of the stack def getMin(self): if len(self.stack) == 0: return -1 else: return self.min # function to return the top element def top(self): if len(self.stack) == 0: return -1 top = self.stack[-1] if self.min > top: return self.min else: return top # function to pop the element from the stack def pop(self): if len(self.stack) == 0: return top = self.stack[-1] self.stack.pop() if top < self.min: self.min = 2*self.min-top # function to append element in the array def push(self, item): if len(self.stack) == 0: self.min = item self.stack.append(item) return if item < self.min: self.stack.append(2*item - self.min) self.min = item else: self.stack.append(item)
3.921875
4
c/exam/B.py
wangrunlin/lanqiao
0
12785727
n = 2020 cnt = 0 for i in range(2, n+1): tmp = i while tmp > 1: if tmp % 10 == 2: cnt += 1 tmp /= 10 print(cnt)
3.25
3
Building/urls.py
LukaszHoszowski/Django_ProEstate
1
12785728
<gh_stars>1-10 from django.urls import path from Building.views import BuildingListView, BuildingDetailView, \ BuildingCartographyView, BuildingCoopView, BuildingPhotosView, BuildingDocsView, BuildingPhotosCreate, \ BuildingDocsCreate, BuildingFlatsView, FlatDetailView, FlatUpdateView, FlatAddUserUpdate, FlatDeleteUserUpdate, \ MeasureUpdateView app_name = 'Building' urlpatterns = [ # Building urls path('', BuildingListView.as_view(), name='buildings'), path('<slug:slug>/', BuildingDetailView.as_view(), name='building_details'), path('<slug:slug>/flats/', BuildingFlatsView.as_view(), name='building_flats'), path('<slug:slug>/cartography/', BuildingCartographyView.as_view(), name='building_cartography'), path('<slug:slug>/coop/', BuildingCoopView.as_view(), name='building_coop'), path('<slug:slug>/photos/', BuildingPhotosView.as_view(), name='building_photos'), path('<slug:slug>/add_photos/', BuildingPhotosCreate.as_view(), name='building_photos_add'), path('<slug:slug>/documents/', BuildingDocsView.as_view(), name='building_documents'), path('<slug:slug>/add_docs/', BuildingDocsCreate.as_view(), name='building_docs_add'), # Flat urls path('<slug:slug>/<int:pk>', FlatDetailView.as_view(), name='flat_details'), path('<slug:slug>/<int:pk>/update', FlatUpdateView.as_view(), name='flat_update'), path('add/user_to_flat/<int:pk>/', FlatAddUserUpdate.as_view(), name='flat_add_user'), path('del/user_from_flat/<int:pk>/', FlatDeleteUserUpdate.as_view(), name='flat_delete_user'), path('update/measure/<int:pk>/', MeasureUpdateView.as_view(), name='measure_update'), ]
1.867188
2
provider_daft/app/main.py
madpin/renthub
0
12785729
# import logging from pathlib import Path from enum import Enum import uvicorn from fastapi import FastAPI from custom_logger import CustomizeLogger import schemas from mappings.daft_listings import get_daft_search_result from mappings.listing_details import get_listing_details # logger = logging.getLogger(__name__) config_path=Path(__file__).with_name("custom_logger.json") def create_app() -> FastAPI: app = FastAPI(title='CustomLogger', debug=False) logger = CustomizeLogger.make_logger(config_path) app.logger = logger return app app = create_app() # app = FastAPI() @app.get("/search_result/", response_model=schemas.SearchResultList) async def search_result(): result = await get_daft_search_result() return result class DaftMethodListing(str, Enum): json_details = "json_details" selenium = "selenium" @app.get("/listing_details/", response_model=schemas.DaftListing) async def daft_listing(url, method: DaftMethodListing): result = await get_listing_details(url) return result if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
2.328125
2
src/JaccardWikipediaHeart.py
nik7273/computational-medical-knowledge
0
12785730
# -*- coding: utf-8 -*- #GET JACCARD SIMILARITY OF ALL HEART RELATED ARTICLES ON WIKIPEDIA (BETWEEN THEMSELVES) from utils import jaccard import wikipedia, codecs, nltk from findRelevantArticles import findRelevantArticles from pprint import pprint from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import subprocess as sub #Running BASH script within python??? import matplotlib.pyplot as plt import numpy as np lemma = nltk.WordNetLemmatizer() relArticles = findRelevantArticles("Heart Attack") articlefilelist = [] wordslist = ['../STEMI_words','../NSTEMI_words','../WIKI_words'] for article in relArticles: articlefilename = "content_"+str(article)+".txt" with codecs.open(articlefilename,'wb', 'utf-8') as outfile: content = wikipedia.page(article).content content = [lemma.lemmatize(word) for word in content] content = set(content) for word in content: print>>outfile,word articlefilelist.append(articlefilename) for piece in wordslist: articlefilelist.append(piece) matrix = np.matrix([[jaccard(i,j) for i in articlefilelist] for j in articlefilelist]) print matrix with open('jaccardVals', 'wb') as outfile: print>>outfile,matrix
2.96875
3
test.py
mu2019/pyrestrecord
0
12785731
#!/usr/bin/env python # -*- coding: utf-8 -*- import restrecord a=restrecord.Meta() a.a = 'abc' a.b = 1 print(a['a'],a.a,a.b) del a.a print(a.a) print(dir(a)) print('record') rc = restrecord.Record((['a','b'],[1,2])) print(rc.keys()) print(rc[0],rc.a
2.421875
2
cogs/mod.py
jeraldlyh/horizon
2
12785732
import asyncio import discord import datetime import pytz import random import colorsys import os from discord.ext import commands from cogs.utils.embed import passembed from cogs.utils.embed import errorembed class Mod(commands.Cog): def __init__(self, bot): self.bot = bot self.case = {} def check_me(ctx): return ctx.message.author.id == os.getenv("OWNER_ID") # Purge message @commands.command() @commands.has_any_role('Server Moderator') async def purge(self, ctx, amount=100): amount = int(amount) await ctx.channel.purge(limit=amount+1) pembed = passembed(description='{0} messages have been deleted.'.format(amount)) await ctx.send(embed=pembed, delete_after=25) @purge.error async def purge_error(self, ctx, error): if isinstance(error, commands.CheckFailure): return # Ban command @commands.command() @commands.has_any_role('Server Moderator') async def ban(self, ctx, user: discord.Member, *, reason: str=None): if reason is None: reason = 'no reason' await user.ban(reason=reason) pembed = passembed(description='{0} has been banned by {1} due to {2}.'.format(user, ctx.message.author, reason)) await ctx.send(embed=pembed) # Logging for channel in ctx.guild.channels: if channel.name == 'mod-logs': guild_id = ctx.message.guild.id if guild_id in self.case: self.case[guild_id]+=1 embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Ban | {1}'.format(int(self.case.get(guild_id)), user), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.add_field(name='Reason', value='{0}'.format(reason), inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) else: self.case[guild_id]=0 self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Ban | {1}'.format(int(self.case.get(guild_id)), user), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.add_field(name='Reason', value='{0}'.format(reason), inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) @ban.error async def ban_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please indicate the User you wish to ban.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='Invalid User. Please tag the User you wish to ban.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Force ban command @commands.command() @commands.has_any_role('Server Moderator') async def forceban(self, ctx, id: int, *, reason: str=None): if reason is None: reason = 'no reason' try: limitedUser = await self.bot.fetch_user(id) pembed = passembed(description='{0} has been banned by {1} due to {2}.'.format(user, ctx.message.author, reason)) await ctx.send(embed=pembed) except Exception as e: if 'Unknown User' in str(e): eembed = errorembed(description='User ID could not be found. Please input a valid User ID.') await ctx.send(embed=eembed) @forceban.error async def forceban_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please indicate the User you wish to force ban.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='User ID is invalid. Please input a valid User ID.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Unban command @commands.command() @commands.has_any_role('Server Moderator') async def unban(self, ctx, id: int): try: banuser = await self.bot.fetch_user(id) await ctx.guild.unban(banuser) pembed = passembed(description='{0} has been unbanned by {1} due to {2}.'.format(banuser, ctx.message.author, reason)) await ctx.send(embed=pembed) except Exception as e: if 'Unknown Ban' in str(e): eembed = errorembed(description='{0} {1} is not banned in the server. Please check again.'.format(ctx.message.author.mention, banuser)) await ctx.send(embed=eembed) elif 'Unknown User' in str(e): eembed = errorembed(description='User ID could not be found. Please input a valid User ID.') await ctx.send(embed=eembed) # Logging for channel in ctx.guild.channels: if channel.name == 'mod-logs': guild_id = ctx.message.guild.id if guild_id in self.case: self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Unban | {1}'.format(int(self.case.get(guild_id)), banuser), icon_url=banuser.avatar_url) embed.add_field(name='User',value='{0}'.format(banuser.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.set_footer(text='ID: {0}'.format(banuser.id)) await channel.send(embed=embed) else: self.case[guild_id]=0 self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Unban | {1}'.format(int(self.case.get(guild_id)), banuser), icon_url=banuser.avatar_url) embed.add_field(name='User',value='{0}'.format(banuser.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.set_footer(text='ID: {0}'.format(banuser.id)) await channel.send(embed=embed) @unban.error async def unban_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please indicate the User ID you wish to unban.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='User ID is either not banned or invalid/not found. Please input a valid User ID.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Mute command @commands.command() @commands.has_any_role('Server Moderator') async def mute(self, ctx, user: discord.Member, reason: str=None, time: int=5): # If not specified, defaulted as 5 minutes. secs = time * 60 if reason is None: reason = 'no reason' for channel in ctx.guild.channels: if isinstance(channel, discord.TextChannel): await ctx.channel.set_permissions(user, overwrite=discord.PermissionOverwrite(send_messages=False)) elif isinstance(channel, discord.VoiceChannel): await ctx.channel.set_permissions(user, overwrite=discord.PermissionOverwrite(connect=False)) pembed = passembed(description='{0} has been muted for {1} minutes due to {2}.'.format(user, time, reason)) await ctx.send(embed=pembed) # Logging for channel in ctx.guild.channels: if channel.name == 'mod-logs': guild_id = ctx.message.guild.id if guild_id in self.case: self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Mute | {1}'.format(int(self.case.get(guild_id)), user.name), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.add_field(name='Length', value='{0} mins'.format(time), inline=True) embed.add_field(name='Reason', value='{0}'.format(reason), inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) else: self.case[guild_id]=0 self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) case = self.case.get(guild_id) embed.set_author(name='Case #{0} | Mute | {1}'.format(int(self.case.get(guild_id)), user.name), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.add_field(name='Length', value='{0} mins'.format(time), inline=True) embed.add_field(name='Reason', value='{0}'.format(reason), inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) await asyncio.sleep(secs) for channel in ctx.guild.channels: if isinstance(channel, discord.TextChannel): await ctx.channel.set_permissions(user, overwrite=None) elif isinstance(channel, discord.VoiceChannel): await ctx.channel.set_permissions(user, overwrite=None) pembed = passembed(description='{0} has been unmuted in the server.'.format(user)) await ctx.send(embed=pembed) # Logging for channel in ctx.guild.channels: if channel.name == 'mod-logs': guild_id = ctx.message.guild.id if guild_id in self.case: self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Unmute | {1}'.format(int(self.case.get(guild_id)), user.name), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(self.bot.user.mention), inline=True) embed.add_field(name='Reason', value='timeout', inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) else: self.case[guild_id]=0 self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) case = self.case.get(guild_id) embed.set_author(name='Case #{0} | Unmute | {1}'.format(int(self.case.get(guild_id)), user.name), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(self.bot.user.mention), inline=True) embed.add_field(name='Reason', value='timeout', inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) @mute.error async def mute_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please indicate the user you wish to mute.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='User could not be found. Please tag a valid User.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Unmute command @commands.command() @commands.has_any_role('Server Moderator') async def unmute(self, ctx, user: discord.Member, reason: str=None): if reason is None: reason = 'no reason' for channel in ctx.guild.channels: if isinstance(channel, discord.TextChannel): await ctx.channel.set_permissions(user, send_messages=None) elif isinstance(channel, discord.VoiceChannel): await ctx.channel.set_permissions(user, connect=None) pembed = passembed(description='{0} has been unmuted in the server.'.format(user)) await ctx.send(embed=pembed) # Logging for channel in ctx.guild.channels: if channel.name == 'mod-logs': guild_id = ctx.message.guild.id if guild_id in self.case: self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) embed.set_author(name='Case #{0} | Unmute | {1}'.format(int(self.case.get(guild_id)), user.name), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.add_field(name='Reason', value='{0}'.format(reason), inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) else: self.case[guild_id]=0 self.case[guild_id]+=1 print(self.case) embed=discord.Embed(color=discord.Color.red()) embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) case = self.case.get(guild_id) embed.set_author(name='Case #{0} | Unmute | {1}'.format(int(self.case.get(guild_id)), user.name), icon_url=user.avatar_url) embed.add_field(name='User',value='{0}'.format(user.mention), inline=True) embed.add_field(name='Moderator',value='{0}'.format(ctx.message.author.mention), inline=True) embed.add_field(name='Reason', value='{0}'.format(reason), inline=True) embed.set_footer(text='ID: {0}'.format(user.id)) await channel.send(embed=embed) @unmute.error async def unmute_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please indicate the user you wish to unmute.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='User could not be found. Please tag a valid User.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Announce command @commands.command() @commands.has_any_role('Server Moderator') async def announce(self, ctx, channel: discord.TextChannel, *,message: str): await channel.send(message) @announce.error async def announce_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please specify text channel in the command.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='Channel could not be found in the server. Please specify the correct text channel.') return await ctx.send(embed=eembed) elif 'message is a required argument' in str(error): eembed = errorembed(description='Please indicate your message in the command.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Embed announce command @commands.command() @commands.has_any_role('Server Moderator') async def emannounce(self, ctx, channel: discord.TextChannel, *, message: str): r, g, b = tuple(int(x * 255) for x in colorsys.hsv_to_rgb(random.random(), 1, 1)) embed=discord.Embed(description="{0}".format(message), color=discord.Color((r << 16) + (g << 8) + b), icon_url=self.bot.user.avatar_url) #embed.timestamp=datetime.datetime.now(tz=pytz.timezone('Asia/Singapore')) #embed.set_footer(text='Announced by {0}'.format(ctx.message.author), icon_url=ctx.message.author.avatar_url) await channel.send(embed=embed) @emannounce.error async def emannounce_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): eembed = errorembed(description='Please specify text channel in the command.') return await ctx.send(embed=eembed) elif isinstance(error, commands.BadArgument): eembed = errorembed(description='Channel could not be found. Please specify the correct text channel.') return await ctx.send(embed=eembed) elif 'message is a required argument' in str(error): eembed = errorembed(description='Please indicate your message in the command.') return await ctx.send(embed=eembed) elif isinstance(error, commands.CheckFailure): return # Set watching status @commands.command() @commands.check(check_me) async def watching(self, ctx, *name: str): type = discord.ActivityType.watching activity = discord.Activity(name=name, type=type) await self.bot.change_presence(activity=activity) pembed = passembed(description='Status has been updated.') await ctx.send(embed=pembed, delete_after=5) #@watching.error #async def watching_error(self, ctx, error): # if isinstance(error, commands.CheckFailure): # return # Resets status of bot @commands.command() @commands.check(check_me) async def reset(self, ctx): await self.bot.change_presence(activity=discord.Activity(name=f'{str(len(bot.users))} users in FortniteAsia', type=2)) pembed = passembed(description='Status has been reseted.') await ctx.send(embed=pembed, delete_after=5) @reset.error async def reset_error(self, ctx, error): if isinstance(error, commands.CheckFailure): return # Lock command @commands.command() @commands.has_any_role('Server Moderator') async def lock(self, ctx, channelname: discord.TextChannel=None): overwrite = discord.PermissionOverwrite(send_messages=False) # Can be used without specifying channel name if channelname is None: await ctx.message.channel.set_permissions(ctx.guild.default_role, overwrite=overwrite) pembed = passembed(description='{0} has been locked by {1}.'.format(ctx.channel.mention, ctx.message.author)) await ctx.send(embed=pembed) else: await channelname.set_permissions(ctx.guild.default_role, overwrite=overwrite) pembed = passembed(description='{0} has been locked by {1}.'.format(channelname.mention, ctx.message.author)) await ctx.send(embed=pembed) @lock.error async def lock_error(self, ctx, error): if isinstance(error, commands.CheckFailure): return # Unlock command @commands.command() @commands.has_any_role('Server Moderator') async def unlock(self, ctx, channelname: discord.TextChannel=None): overwrite = discord.PermissionOverwrite(send_messages=True) # Can be used without specifying channel name if channelname is None: await ctx.message.channel.set_permissions(ctx.guild.default_role, overwrite=overwrite) pembed = passembed(description='{0} has been unlocked by {1}.'.format(ctx.channel.mention, ctx.message.author)) await ctx.send(embed=pembed) else: await channelname.set_permissions(ctx.guild.default_role, overwrite=overwrite) pembed = passembed(description='{0} has been unlocked by {1}.'.format(channelname.mention, ctx.message.author)) await ctx.send(embed=pembed) @unlock.error async def unlock_error(self, ctx, error): if isinstance(error, commands.CheckFailure): return # Adding the cog to main script def setup(bot): bot.add_cog(Mod(bot))
2.359375
2
src/main/python/programmingtheiot/cda/sim/TemperatureSensorSimTask.py
Taowyoo/-constrained-device-app
0
12785733
<reponame>Taowyoo/-constrained-device-app<gh_stars>0 ##### # # This class is part of the Programming the Internet of Things project. # # It is provided as a simple shell to guide the student and assist with # implementation for the Programming the Internet of Things exercises, # and designed to be modified by the student as needed. # import logging from programmingtheiot.cda.sim.BaseSensorSimTask import BaseSensorSimTask from programmingtheiot.cda.sim.SensorDataGenerator import SensorDataGenerator from programmingtheiot.common import ConfigConst from programmingtheiot.data.SensorData import SensorData class TemperatureSensorSimTask(BaseSensorSimTask): """ Implementation of TemperatureSensorSimTask """ def __init__(self, sensorType: int = SensorData.TEMP_SENSOR_TYPE, dataSet=None, minVal: float = SensorDataGenerator.LOW_NORMAL_INDOOR_TEMP, maxVal: float = SensorDataGenerator.HI_NORMAL_INDOOR_TEMP): """ Init TemperatureSensorSimTask by using super class constructor with values especially for TemperatureSensorSimTask :param sensorType: Sensor Type, here is temperature sensor :param dataSet: Using local generated default data set :param minVal: Using default indoor temperature from SensorDataGenerator :param maxVal: Using default indoor temperature from SensorDataGenerator """ super(TemperatureSensorSimTask, self).__init__(sensorType=sensorType, dataSet=dataSet, minVal=minVal, maxVal=maxVal) self._sensorName = ConfigConst.TEMP_SENSOR_NAME pass
3.28125
3
attic/gen.py
lojikil/coastML
6
12785734
<filename>attic/gen.py<gh_stars>1-10 #@(#) lazy person's way of generating a lot of classes: #@(#) write the code, then grep for returns, then write #@(#) the classes. This is why I want to make a functional #@(#) language with ADTs to handle this sort of thing... #@(#) #@(#) Usage: #@(#) #@(#) `grep 'return Token' boot.py | awk 'BEGIN {FS="return "} {print $2}' > tokens` #@(#) then `python3 gen.py` tmpl3 = """ class {0}(Token): def __init__(self, c, l, o): self.lexeme = c self.line = l self.offset = o def __repr__(self): return "{0}({{0}})".format(self.lexeme) def __str__(self): return self.lexeme""" tmpl2 = """ class {0}(Token): def __init__(self, l, o): self.line = l self.offset = o def __repr__(self): return "{0}()" def __str__(self): return self.lexeme""" with open('tokens') as fh: data = fh.readlines() generate_cache = [] for d in data: line = d.split('(') if line[0] in generate_cache: continue cnt = len(line[1].split(',')) print("\n#", line[0], cnt) generate_cache.append(line[0]) if cnt == 2: print(tmpl2.format(line[0])) elif cnt == 3: print(tmpl3.format(line[0]))
2.6875
3
models/prov.py
LvanWissen/saa-bevolkingsregisters
0
12785735
<filename>models/prov.py """ Bio ontology to be used in the enrichment of SAA indices by Golden Agents. """ from rdflib import Dataset, Graph, Namespace from rdflib import XSD, RDF, RDFS, OWL from rdflib import URIRef, BNode, Literal from rdfalchemy.rdfSubject import rdfSubject from rdfalchemy.rdfsSubject import rdfsSubject from rdfalchemy import rdfSingle, rdfMultiple, rdfContainer prov = Namespace("http://www.w3.org/ns/prov#") ######## # PROV # ######## class Entity(rdfsSubject): rdf_type = prov.Entity class Derivation(rdfsSubject): rdf_type = prov.Derivation hadActivity = rdfSingle(prov.hadActivity, range_type=prov.Activity) entity = rdfMultiple(prov.entity, range_type=prov.Entity) class Activity(rdfsSubject): rdf_type = prov.Activity wasAssociatedWith = rdfSingle(prov.wasAssociatedWith, range_type=prov.Agent) qualifiedAssociation = rdfSingle(prov.qualifiedAssociation, range_type=prov.Association) comment = rdfSingle(RDFS.comment) class Association(rdfsSubject): rdf_type = prov.Association hadPlan = rdfSingle(prov.hadPlan, range_type=prov.Plan) agent = rdfSingle(prov.agent, range_type=prov.Agent) comment = rdfSingle(RDFS.comment) class Plan(rdfsSubject): rdf_type = prov.Plan comment = rdfSingle(RDFS.comment) class Agent(rdfsSubject): rdf_type = prov.Agent
2.328125
2
test_driven_development/main.py
steph409/snippets_of_code
0
12785736
<gh_stars>0 import logging import re def add(input: str = None) -> str: '''adds numbers from a string''' if not isinstance(input, str): raise TypeError(f"The {input=} is of incorrect type") logging.info(f"received string value {input}") if not re.match("^[0-9,\n]*$", input): raise ValueError(f"The {input=} is not valid") if not input: # == "": return "0" return str(sum([int(i) for i in re.split(r",|\n", input)]))
3.40625
3
rip/ripping_guide.py
My-Little-Cable-Co/rip
0
12785737
<filename>rip/ripping_guide.py import json from pathlib import Path from typing import Dict, List, Optional from jsonschema.validators import validator_for from ripping_guide_schema import RIPPING_GUIDE_SCHEMA class Ripable: def __init__(self, name, disc_title, disc_chapters, file_path): self.name = name self.disc_title = disc_title self.disc_chapters = disc_chapters self.file_path = file_path def __str__(self) -> str: return f'{self.name}: Title {self.disc_title}, Chapter(s) {self.disc_chapters}, saving to "{self.file_path}".' class RippingGuide: def __init__(self, ripping_guide_dict={}, *args, **kwargs): self._ripping_guide_dict = ripping_guide_dict def set_disc_id(self, disc_id): self._ripping_guide_dict['disc_id'] = str(disc_id) def set_title(self, title): self._ripping_guide_dict['title'] = str(title) @staticmethod def from_json(json_string) -> Optional['RippingGuide']: # ensure the string is parsable JSON try: ripping_guide_dict = json.loads(json_string) except json.decoder.JSONDecodeError: print('ERROR: File contents were not valid JSON.') return None # ensure the JSON conforms to the Ripping Guide Schema validator_class = validator_for(RIPPING_GUIDE_SCHEMA) validator = validator_class(RIPPING_GUIDE_SCHEMA) if not validator.is_valid(instance=ripping_guide_dict): print(ripping_guide_dict) print('ERROR: JSON did not adhere to Ripping Guide schema.') return None return RippingGuide(ripping_guide_dict=ripping_guide_dict) @staticmethod def retrieve_from_internet(disc_id) -> Optional['RippingGuide']: raise NotImplementedError('This method is TBD') # ripping_guide_response = requests.get(f'https://example.com/{disc_id}') # if ripping_guide_response.status_code == 200: # RippingGuide.from_json(ripping_guide_response.json()) @staticmethod def from_path(file_path) -> Optional['RippingGuide']: file_candidate = Path(file_path) if not file_candidate.is_file(): return None return RippingGuide.from_json(file_candidate.read_text()) def to_json(self) -> str: return json.dumps(self._ripping_guide_dict, indent=2) @property def title(self) -> Optional[str]: return self._ripping_guide_dict.get('title') @property def features(self) -> List[Dict]: return self._ripping_guide_dict.get('features', []) @property def episodes(self) -> List[Dict]: return self._ripping_guide_dict.get('episodes', []) def add_feature(self, feature: Dict): if 'features' not in self._ripping_guide_dict: self._ripping_guide_dict['features'] = [] self._ripping_guide_dict['features'].append(feature) def add_episode(self, episode: Dict): if 'episodes' not in self._ripping_guide_dict: self._ripping_guide_dict['episodes'] = [] self._ripping_guide_dict['episodes'].append(episode) def ripables(self) -> List[Ripable]: things_to_rip = [] for feature in self.features: feature_ripable = Ripable( name=feature['feature_title'], disc_title=feature['title'], disc_chapters=feature['chapters'], file_path=f"{feature['feature_title']}/{feature['filename']}" ) things_to_rip.append(feature_ripable) for special_feature in feature.get('special_features', []): special_feature_ripable = Ripable( name=special_feature['special_feature_title'], disc_title=special_feature['title'], disc_chapters=special_feature['chapters'], file_path=f"{feature['feature_title']}/{special_feature['filename']}" ) things_to_rip.append(special_feature_ripable) for episode in self.episodes: episode_ripable = Ripable( name=' '.join(episode['filename'].split('.')[0:-1]), disc_title=episode['title'], disc_chapters=episode['chapters'], file_path=f"{episode['show_title']}/Season {episode['season']}/{episode['filename']}" ) things_to_rip.append(episode_ripable) return things_to_rip
2.71875
3
dumbpm/shared/shared.py
poros/dumbpm
7
12785738
<reponame>poros/dumbpm from pandas import DataFrame def compute_stats(duration: list[int]) -> DataFrame: """Statistics to visualize for the result of a Monte Carlo simulation.""" return DataFrame(duration, columns=["Duration"]).describe( percentiles=[0.5, 0.75, 0.90, 0.99] )
2.9375
3
src/test_acceptance.py
AviBuckman/Vulnerability-Checker
0
12785739
<gh_stars>0 import pytest import os from CSV_handler import CSVHandler, DataHandler from checker import Checker import csv libsrpm = ['dbus-tools-1.12.8-9.el8.x86_64'] libsdpkg = [ {'name': 'accountsservice', 'version': '0.6.45-1ubuntu1', 'architecture': 'amd64'} ] def test(): data_handler: DataHandler = CSVHandler() checker: Checker = Checker(data_handler) if checker.PackageOrganized["manager"] == "rpm": checker.scan_library_list(libsrpm) t1 = open('./resources/acceptanceFiles/realOutputRpm.csv', 'r') t3 = open('./resources/acceptanceFiles/realOutputStringsRpm.csv', 'r') else: checker.scan_library_list(libsdpkg) t1 = open('./resources/acceptanceFiles/realOutputUbuntu.csv', 'r') t3 = open('./resources/acceptanceFiles/realOutputStringsUbuntu.csv', 'r') t2 = open('./resources/vulnerability.csv', 'r') t4 = open('./resources/strings.csv', 'r') fileone = t1.readlines() filetwo = t2.readlines() fileone2 = t3.readlines() filetwo2 = t4.readlines() t1.close() t2.close() t3.close() t4.close() vul = equals(fileone, filetwo) st = equals(fileone2, filetwo2) assert vul and st def equals(fileone, filetwo): x = 0 for i in fileone: if i not in filetwo and x != 0: print(i) return False x = x+1 return True def remove_files(): os.remove('./resources/vulnerability.csv') os.remove('./resources/strings.csv') @pytest.yield_fixture(autouse=True, scope='module') def teardown(): yield print("tearing down...") remove_files()
2.234375
2
dragnet/dll/models.py
mozilla/dragnet
1
12785740
from django.db import models from django.db.models.signals import pre_save from django.dispatch import receiver from django.contrib.auth.models import User import datetime class File(models.Model): """The actual DLL file itself""" STATUS_UNKNOWN = 'unknown' STATUS_VALID = 'valid' STATUS_MALWARE = 'malware' STATUS_LIKELY_VALID = 'likely_valid' STATUS_LIKELY_MALWARE = 'likely_malware' STATUS_CHOICES = ( (STATUS_UNKNOWN, 'Unknown'), (STATUS_VALID, 'Valid'), (STATUS_LIKELY_VALID, 'Likely Valid'), (STATUS_LIKELY_MALWARE, 'Likely Malware'), (STATUS_MALWARE, 'Malware'), ) PLATFORM_WINDOWS = 'Windows' PLATFORM_LINUX = 'Linux' PLATFORM_MAC = 'Mac OS X' PLATFORM_CHOICES = ( (PLATFORM_WINDOWS, 'Windows'), (PLATFORM_LINUX, 'Linux'), (PLATFORM_MAC, 'Mac OS X') ) date_created = models.DateTimeField(default=datetime.datetime.utcnow) date_modified = models.DateTimeField(default=datetime.datetime.utcnow, auto_now=True) created_by = models.ForeignKey(User, related_name="created_by") modified_by = models.ForeignKey(User, related_name="modified_by") file_name = models.CharField(max_length=200) common_name = models.CharField(max_length=200, blank=True, null=True) version = models.CharField(max_length=100, blank=True, null=True) platform = models.CharField(max_length=10, choices=PLATFORM_CHOICES, blank=True) vendor = models.CharField(max_length=200, blank=True, null=True) distributors = models.CharField(max_length=200, blank=True, null=True) md5_hash = models.CharField(max_length=32, blank=True, null=True) debug = models.CharField(max_length=60, blank=True, null=True) debug_filename = models.CharField(max_length=60, blank=True, null=True) status = models.CharField(max_length=10, choices=STATUS_CHOICES) released = models.DateField(blank=True, null=True) obsolete = models.BooleanField(default=False) replaced_by = models.CharField(max_length=200, blank=True, null=True) details = models.TextField(blank=True, null=True) def __unicode__(self): return self.file_name class Meta: unique_together = ('file_name', 'debug_filename', 'debug') class Comment(models.Model): """Comments users have made on given DLL files""" user = models.ForeignKey(User) dll = models.ForeignKey(File) date = models.DateTimeField(default=datetime.datetime.utcnow, auto_now=True) comment = models.TextField() class FileHistory(models.Model): """A historical record of the DLL file and the changes made to it over time""" dll = models.ForeignKey(File) user = models.ForeignKey(User) date_changed = models.DateTimeField(auto_now=True) field = models.CharField(max_length=40) original_state = models.CharField(max_length=200, blank=True, null=True) changed_state = models.CharField(max_length=200, blank=True, null=True) @receiver(pre_save, sender=File) def compare_history(sender, instance, **kwargs): if not File.objects.filter(pk=instance.pk).exists(): return sender EVALUATE = ('file_name', 'common_name', 'vendor', 'distributors', 'md5_hash', 'debug', 'status', 'released', 'obsolete', 'replaced_by', 'details', ) existing = File.objects.get(pk=instance.id) for key in EVALUATE: if (getattr(existing, key) != getattr(instance, key) and any([getattr(existing, key), getattr(instance, key)])): user = User.objects.get(pk=instance.modified_by_id) FileHistory.objects.create(user=user, dll=existing, field=key, original_state=getattr(existing, key), changed_state=getattr(instance, key)) return sender
2.140625
2
thiefringer/thiefringer.py
KyuzoM/thiefringer
0
12785741
<gh_stars>0 #!/usr/bin/env python ''' ThiefRinger alarm system - Onion Omega specific python package, motion detection, SMS notification. ''' from __future__ import print_function import signal import sys import os import argparse import json import threading try: from Queue import Queue except (ImportError, ModuleNotFoundError): from queue import Queue import onionGpio import gpydem import ooutils class ThiefRinger(object): ''' ThiefRinger alarm object. ''' def __init__(self, opt): self.opt = opt with open(self.opt.config, 'r') as f: config = json.load(f) self.main_ctl = threading.Event() self.thread_ctl = threading.Event() self.thread_msgq = Queue(maxsize=2) self.threads = [] # setup OS signal handlers signal.signal(signal.SIGINT, self.signal_terminate) signal.signal(signal.SIGTERM, self.signal_terminate) #signal.signal(signal.SIGKILL, self.signal_terminate) # config defaults self.cfg_PIR = config.get('PIR', {}) self.cfg_GSM = config.get('GSM', {}) self.cfg_Battery = config.get('Battery', {}) def run(self): ''' Run alarm system main loop - blocking. Start alarm system, wait for external signal, stop alarm system. ''' if self.opt.verbose: print('run') self.stop_threads() self.start_threads() while not self.main_ctl.wait(60.0): pass self.stop_threads(wait=True) def terminate(self): ''' Terminate alarm system main loop - nonblocking. ''' if self.opt.verbose: print('terminate') self.main_ctl.set() def signal_terminate(self, *args): ''' Catch process exit signals. @param *args: [list] List of additional arguments ''' if self.opt.verbose: print('signal_terminate') self.terminate() def start_threads(self): ''' Start alarm system - nonblocking. ''' if self.opt.verbose: print('start_threads') self.thread_ctl.clear() self.thread_msgq = Queue()#self.thread_msgq.clear() self.threads = [ threading.Thread(target=self.PIR_motion, args=(self.cfg_PIR, self.thread_ctl, self.thread_msgq), name='PIR_motion'), threading.Thread(target=self.GSM_modem, args=(self.cfg_GSM, self.thread_ctl, self.thread_msgq), name='GSM_modem'), threading.Thread(target=self.Battery_monitor, args=(self.cfg_Battery, self.thread_ctl, self.thread_msgq), name='Battery_monitor') ] self.threads.append( threading.Thread(target=self.thread_heartbeat, args=(self.threads, self.thread_ctl)) ) if self.opt.verbose: print('num of threads: %d' % len(self.threads)) for t in self.threads: t.start() def stop_threads(self, wait=False): ''' Stop alarm system - nonblocking. @param wait: [bool] Wait until all alarms are sent or not ''' if self.opt.verbose: print('stop_threads') self.thread_ctl.set() if wait: self.thread_msgq.join() for t in self.threads: t.join() def PIR_motion(self, cfg, ctl, msgq): ''' PIR motion detector main loop. @param cfg: [dict] Configurations @param ctl: [object] Threading control object (Event) @param msgq: [object] Message Queue ''' if self.opt.verbose: print('PIR_motion') # config defaults cfg_pin = cfg.get('pin', -1) cfg_active_value = cfg.get('active_value', '0') cfg_alarm = cfg.get('alarm', {}) cfg_alarm_number = cfg_alarm.get('number', '') cfg_alarm_message = cfg_alarm.get('message', 'ALERT') if sys.version_info[0] == 2: cfg_alarm_number = str(cfg_alarm_number) cfg_alarm_message = str(cfg_alarm_message) # PIR motion detector GPIO pin init gpio = onionGpio.OnionGpio(cfg_pin) if gpio.setInputDirection(): raise RuntimeError("Could not set GPIO direction to input!") prev_value = '0' if cfg_active_value == '1' else '1' # infinite loop malert = False while not ctl.wait(0.1): value = gpio.getValue().strip() if prev_value != value: if (value == cfg_active_value) and (not malert): malert = True if self.opt.verbose: print("PIR_motion ALERT: motion detected!") msgq.put((cfg_alarm_number, cfg_alarm_message), block=True, timeout=0.1) prev_value = value if self.opt.verbose: print('PIR_motion exit') def GSM_modem(self, cfg, ctl, msgq): ''' GSM 3G USB modem main loop. @param cfg: [dict] Configurations @param ctl: [object] Threading control object (Event) @param msgq: [object] Message Queue ''' if self.opt.verbose: print('GSM_modem') # config defaults cfg_modem_type = cfg.get('modem_type', '') cfg_dev_id = cfg.get('dev_id', '/dev/ttyS0') cfg_baudrate = cfg.get('baudrate', 9600) cfg_PIN = cfg.get('PIN', '') cfg_re_timeout = cfg.get('re_timeout', 1) # GSM 3G USB modem serial port init gsm = gpydem.Modem.get(cfg_modem_type, cfg_dev_id, baudrate=cfg_baudrate, PIN=cfg_PIN, re_timeout=cfg_re_timeout) # infinite loop while not ctl.wait(1.0): if not msgq.empty(): number, message = msgq.get(block=True, timeout=0.1) msgq.task_done() if self.opt.verbose: print('GSM_modem sending SMS: {0}, {1}'.format(number, message)) gsm.sendSMS(number, message) if self.opt.verbose: print('GSM_modem SMS sent.') if self.opt.verbose: print('GSM_modem exit') def Battery_monitor(self, cfg, ctl, msgq): ''' LiPo battery level check main loop. @param cfg: [dict] Configurations @param ctl: [object] Threading control object (Event) @param msgq: [object] Message Queue ''' if self.opt.verbose: print('Battery_monitor') # config defaults cfg_frequency = cfg.get('frequency', 60) cfg_timeout = cfg.get('timeout', 1) cfg_vmax = cfg.get('vmax', 4.2) cfg_vmin = cfg.get('vmin', 3.5) cfg_vpthreshold = cfg.get('vpthreshold', 20) cfg_alarm = cfg.get('alarm', {}) cfg_alarm_number = cfg_alarm.get('number', '') cfg_alarm_message = cfg_alarm.get('message', 'BATTERY') if sys.version_info[0] == 2: cfg_alarm_number = str(cfg_alarm_number) cfg_alarm_message = str(cfg_alarm_message) # infinite loop battery = ooutils.ABattery() id = -1 vprevious = -1 valert = False while not ctl.wait(cfg_frequency): id = battery.percentage(vmax=cfg_vmax, vmin=cfg_vmin) opcode, vactual = battery.wait(id, timeout=cfg_timeout) if self.opt.verbose: print('Battery_monitor opcode: {0}, result: {1}'.format(opcode, vactual)) battery.terminate(id) if opcode != ooutils.ABattery.OP_SUCCESS: continue if self.opt.verbose: print('Battery_monitor level: {0} %'.format(vactual)) if vprevious != vactual: vprevious = vactual if vactual <= cfg_vpthreshold: if self.opt.verbose: print('Battery_monitor level low!') if not valert: valert = True # send notification only once msgq.put((cfg_alarm_number, cfg_alarm_message), block=True, timeout=0.1) #return # stop further measurement battery.terminate(id) if self.opt.verbose: print('Battery_monitor exit') def thread_heartbeat(self, threads, ctl): ''' Thread heartbeat main loop. @param threads: [list] Threads to check periodically @param ctl: [object] Threading control object (Event) ''' if self.opt.verbose: print('thread_heartbeat') # infinite loop while not ctl.wait(1.0): for t in threads: if not t.is_alive(): print('Thread {0} is dead! See previous messages for more details.'.format(t.name), file=sys.stderr) self.terminate() if self.opt.verbose: print('thread_heartbeat exit') def main(): ''' Main ThiefRinger function. ''' arg_parser = argparse.ArgumentParser(description='ThiefRinger alarm system.') arg_parser.add_argument('-c', '--config', type=str, default=os.path.join(os.path.abspath(os.path.dirname(__file__)), '.thiefringer.json'), help='Config file') arg_parser.add_argument('-v', '--verbose', action='store_true', help='Increase verbosity') opt = arg_parser.parse_args() try: alarm = ThiefRinger(opt) rc = alarm.run() except KeyboardInterrupt: alarm.terminate() except Exception as e: print(str(e), file=sys.stderr) print("\033[91mUnexpected error happened! Please see the details above.\033[0m", file=sys.stderr) sys.exit(1) else: sys.exit(rc) if __name__ == '__main__': main()
2.265625
2
modules/shared/domain/repository/unit_of_work.py
eduardolujan/hexagonal_architecture_django
6
12785742
# -*- coding: utf-8 -*- # from __future__ import annotations from typing import Optional, TypeVar from abc import ABC, abstractmethod UnitOfWork = TypeVar('UnitOfWork', bound='UnitOfWork') class UnitOfWork(ABC): """ Unit of work """ @abstractmethod def commit(self): """ Commit transaction """ raise NotImplementedError("Not implemented yet") @abstractmethod def add(self, entity) -> None: """ Add entity to transactions @param entity: @type entity: @return: None """ raise NotImplementedError("Not implemented yet") @abstractmethod def flush(self) -> None: """ Remove all transactions @return: None """ raise NotImplementedError("Not implemented yet")
3.34375
3
RunToolkit/for_str/transform.py
Ijustwantyouhappy/RunToolkit
0
12785743
<reponame>Ijustwantyouhappy/RunToolkit # -*- coding: utf-8 -*- # @Time : 2019/10/4 1:51 # @Author : Run # @File : transform.py # @Software : PyCharm from RunToolkit.for_str import split_to_words def camel(s: str) -> str: """ Converts a string to camelcase. """ tmp = ' '.join(split_to_words(s)).title().replace(' ', '') return tmp[0].lower() + tmp[1:] def kebab(s: str) -> str: """ Converts a string to kebab case. Break the string into lowercase words and combine them with `-`. """ return '-'.join(split_to_words(s)).lower() def snake(s: str) -> str: """ Converts a string to snake case. Break the string into lowercase words and combine them with `_`. """ return '_'.join(split_to_words(s)).lower() if __name__ == "__main__": print(camel('some_database_field_name')) # 'someDatabaseFieldName' print(camel('Some label that needs to be camelized')) # 'someLabelThatNeedsToBeCamelized' print(camel('some-javascript-property')) # 'someJavascriptProperty' print(camel('some-mixed_string with spaces_underscores-and-hyphens')) # 'someMixedStringWithSpacesUnderscoresAndHyphens' print(camel('AllThe-small Things')) print() print(kebab('camelCase')) # 'camel-case' print(kebab('some text')) # 'some-text' print(kebab('some-mixed_string With spaces_underscores-and-hyphens')) # 'some-mixed-string-with-spaces-underscores-and-hyphens' print(kebab('AllThe-small Things')) print() print(snake('camelCase')) # 'camel_case' print(snake('some text')) # 'some_text' print(snake('some-mixed_string With spaces_underscores-and-hyphens')) # 'some_mixed_string_with_spaces_underscores_and_hyphens' print(snake('AllThe-small Things')) # "all_the_smal_things" print()
3.421875
3
quero/offer/serializers.py
felipewove/quero-listar
0
12785744
from django.contrib.auth.models import Group, User from rest_framework import serializers from .models import Campus, Course, Offer, University class UserSerializer(serializers.ModelSerializer): """ Serialization of User model to render as JSON. The depth is responsible to render/show information of foreign key """ class Meta: model = User fields = ["id", "username", "email", "groups"] depth = 1 class GroupSerializer(serializers.ModelSerializer): """ Serialization of Group model to render as JSON. """ class Meta: model = Group fields = ["id", "name"] class OfferSerializer(serializers.ModelSerializer): """ Serialization of Offer model to render as JSON. The depth is responsible to render/show information of foreign key """ course = serializers.PrimaryKeyRelatedField(queryset=Course.objects.all()) class Meta: model = Offer depth = 3 fields = "__all__" class CourseSerializer(serializers.ModelSerializer): """ Serialization of Course model to render as JSON. The depth is responsible to render/show information of foreign key """ campus = serializers.PrimaryKeyRelatedField(queryset=Campus.objects.all()) class Meta: model = Course depth = 2 fields = "__all__" class CampusSerializer(serializers.ModelSerializer): """ Serialization of Campus model to render as JSON. The depth is responsible to render/show information of foreign key """ university = serializers.PrimaryKeyRelatedField(queryset=University.objects.all()) class Meta: model = Campus depth = 1 fields = "__all__" class UniversitySerializer(serializers.ModelSerializer): """ Serialization of University model to render as JSON. """ class Meta: model = University fields = "__all__"
2.5
2
chap11/Member03.py
ytianjin/GitTest
0
12785745
<filename>chap11/Member03.py # 健身房会员类(第三版) class Member: """健身房会员类(第三版)""" def __init__(self, no: int, name: str, weight: float) -> None: """构造函数""" self.__no = no self.__name = name self.__weight = weight def lose_weight(self, loss: float) -> None: """减重loss千克""" self.__weight -= loss def print(self) -> None: """打印输出数据""" print('{}: {} {}kg'.format(self.__no, self.__name, self.__weight)) # 测试会员类 yamada = Member(15, '山田太郎', 72.7) sekine = Member(37, '关根信彦', 65.3) yamada.lose_weight(3.5) # 山田君减重3.5kg sekine.lose_weight(5.3) # 关根君减重5.3kg yamada.print() sekine.print()
3.515625
4
xc/xc7/tests/serdes/generate_tests.py
bl0x/symbiflow-arch-defs
183
12785746
#!/usr/bin/env python3 """ Creates the header file for the OSERDES test with the correct configuration of the DATA_WIDTH and DATA_RATE """ import argparse def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--input', required=True, help="Input top file to be generated" ) parser.add_argument( '--output', required=True, help="Output top file to be generated" ) parser.add_argument( '--data_width', required=True, help="Data width of the OSERDES" ) parser.add_argument( '--data_rate', required=True, help="Data rate of the OSERDES" ) args = parser.parse_args() with open(args.input, "r") as f: lines = f.read().splitlines() with open(args.output, 'w') as f: print('`define DATA_WIDTH_DEFINE {}'.format(args.data_width), file=f) print('`define DATA_RATE_DEFINE \"{}\"'.format(args.data_rate), file=f) for line in lines: print(line, file=f) if __name__ == "__main__": main()
2.78125
3
bot/dialogs/phrases.py
sen-den/fcspm-ksu-bot
1
12785747
""" Any phrases used by bot. Tips: Avoid prefix commands as keywords wor different sates: shortest prefix will intercept handling """ EDIT_EMOJI = '🖋 ' MAP_EMOJI = '🗺 ' DOC_EMOJI = '🗒 ' BELL_EMOJI = '🔔 ' TICK_EMOJI = '✔️ ' CROSS_EMOJI = '❌ ' SIGN_EMOJI = '❗ ' WEB_EMOJI = '🌐 ' HOW_TO_ORDER_CERTIFICATE = 'Довідку можна замовити в деканаті, використавши форму на сайті або за допомогою бота' ORDER_CERTIFICATE_HASHTAG = '#ЗАМОВЛЕННЯ_ДОВІДКИ' THANKS = 'Дякую!' WHERE_IS_PREFIX = MAP_EMOJI + 'Де знаходиться' WHERE_IS_SOMETHING = WHERE_IS_PREFIX + '...?' WHERE_IS_FCSPM_DEANS_OFFICE = WHERE_IS_PREFIX + ' деканат на факультеті комп`ютерних наук, фізики та математики' ORDER_CERTIFICATE_PREFIX = DOC_EMOJI + 'Замовити довідку' ORDER_CERTIFICATE_WITH_BOT = ORDER_CERTIFICATE_PREFIX + ' через бота' ORDER_CERTIFICATE_WITH_DATA = DOC_EMOJI + 'Підтвердити замовлення через бота з введеними даними' BELLS_SCHEDULE = BELL_EMOJI + 'Розклад дзвінків' PUT_NAME = TICK_EMOJI + 'Змінити ПІП' POST_NAME = SIGN_EMOJI + 'Ввесити ПІП' PUT_SPECIALITY = TICK_EMOJI + 'Змінити спеціальність' POST_SPECIALITY = SIGN_EMOJI + 'Обрати спеціальність' PUT_COURSE = TICK_EMOJI + 'Змінити курс' POST_COURSE = SIGN_EMOJI + 'Обрати курс' PUT_COMMENT = EDIT_EMOJI + 'Змінити коментар' POST_COMMENT = EDIT_EMOJI + 'Додати коментар' ORDER_CERTIFICATE_COMMANDS = [ ORDER_CERTIFICATE_WITH_BOT, PUT_NAME, POST_NAME, PUT_SPECIALITY, POST_SPECIALITY, PUT_COURSE, POST_COURSE, PUT_COMMENT, POST_COMMENT ] INPUT_PROMPT = 'Введіть, будь ласка' FULFILL = 'Необхідно заповнити інформацію' UPDATE_OR_REQUEST = 'За необхідності можна виправити, якщо інформація вірна - замовити' CANCEL = 'Скасувати' SORRY = 'Вибачте, я нічого не знайшов для вас' BELLS_SCHEDULE_TEXT = '''``` Розклад дзвінків: І пара: 08.30 – 09.50 ІІ пара: 10.00 – 11.20 ІІІ пара: 11.50 – 13.10 ІV пара: 13.30 – 14.50 V пара: 15.00 – 16.20 VІ пара: 16.30 – 17.50 ```''' KSPU_ORDER_CERTIFICATE_PAGE = 'http://www.kspu.edu/About/Faculty/FPhysMathemInformatics/storinki_faculti' \ '/OrderCertificateFromDeansOffice.aspx '
1.8125
2
src/dcos-migrate.py
Ganasagar/migration-tools-repo
0
12785748
#!/usr/bin/env python # -*- coding: utf-8 -*- import re import sys from dcos_migrate.cmd import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) run()
1.710938
2
python/hackathon/src/parser/name_extractor.py
FISHackathon2020/RAN
0
12785749
<gh_stars>0 import spacy from spacy.matcher import Matcher def extract_name_with_rules(resume_text): # load pre-trained model nlp = spacy.load('en_core_web_sm') # initialize matcher with a vocab matcher = Matcher(nlp.vocab) nlp_text = nlp(resume_text) # First name and Last name are always Proper Nouns pattern = [{'POS': 'PROPN'}, {'POS': 'PROPN'}] matcher.add('NAME', None, pattern) matches = matcher(nlp_text) for match_id, start, end in matches: span = nlp_text[start:end] return span.text
3.109375
3
src/PlayVideo.py
jluckenbaugh2/Deepcut
1
12785750
""" Modification History: Date: 3/16/2021 Time: 6:00PM Description: Will extract the phonemes from a TextGrid file and change them into syllables using the ARPABET dictionary. Two functions will be used to do this process. First function, get_phoneme, will get all of the phonemes and their timings from the TextGrid file into arrays. The second function, phoneme_to_syllables, will convert the set of phonemes into syllables. The syllabifier package will be used for the conversion. The syllable codes and syllable timings are saved. Current inputs: TextGrid File Current output: Size of the phoneme interval Output all of the phonemes from the phoneme intervals. NOTES: The code only works iff all TextGrid files are formatted the same as the current input Currently using Anaconda interpreter in base/root environment Packages Downloaded: Download the packages via cmd or anaconda cmd ARPABET dictionary: https://github.com/vgautam/arpabet-syllabifier/blob/master/tests/tmp.ipynb Textgrid Tool: https://github.com/kylebgorman/textgrid CMD download: pip install TextGrid """ # importing pyglet module import pyglet def play_video(video_file): # width / height of window width = 720 height = 720 # creating a window title = "demo" window = pyglet.window.Window(width, height, title) # video path vidPath ="facetest.mp4" # creating a media player object player = pyglet.media.Player() source = pyglet.media.StreamingSource() MediaLoad = pyglet.media.load(vidPath) # add this media in the queue player.queue(MediaLoad) # play the video player.play() # on draw event @window.event def on_draw(): # clea the window window.clear() # if player sorce exist # and video format exist if player.source and player.source.video_format: # get the texture of video and # make surface to display on the screen player.get_texture().blit(0, 0) # # key press event # @window.event # def on_key_press(symbol, modifier): # # key "p" get press # if symbol == pyglet.window.key.P: # # pause the video # player.pause() # # printing message # print("Video is paused") # # key "r" get press # if symbol == pyglet.window.key.R: # # resume the video # player.play() # # printing message # print("Video is resumed") # run the pyglet application pyglet.app.run()
3.59375
4