max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
gshiw/quotes_web/quotes/adminx.py
superlead/gsw
0
12785951
# -*- coding: utf-8 -*- from __future__ import unicode_literals from quotes_web.adminx import BaseAdmin import xadmin from .models import Quotes, Categories, Works, Writers, Speakers, Topics class QuotesAdmin(BaseAdmin): exclude = ('owner', 'view_nums', 'dig_nums') xadmin.site.register(Quotes, QuotesAdmin) class CategoryAdmin(BaseAdmin): exclude = ('owner', 'view_nums') xadmin.site.register(Categories, CategoryAdmin) class WorkAdmin(BaseAdmin): exclude = ('owner', 'view_nums') xadmin.site.register(Works, WorkAdmin) class WriterAdmin(BaseAdmin): exclude = ('owner', 'view_nums') xadmin.site.register(Writers, WriterAdmin) class SpeakerAdmin(BaseAdmin): exclude = ('owner', 'view_nums') xadmin.site.register(Speakers, SpeakerAdmin) class TopicAdmin(BaseAdmin): exclude = ('owner', 'view_nums') xadmin.site.register(Topics, TopicAdmin)
2.015625
2
lyapas_to_json.py
tsu-iscd/lyapas-lcc
4
12785952
<filename>lyapas_to_json.py #!/usr/bin/env python2.7 import json import argparse import codecs import sys def main(args): data = args.in_lyapas.read() data = json.dumps(data, ensure_ascii=False, encoding='utf-8') json_data = '{"file": "' + args.in_lyapas.name + '",' + ' "source": ' + data +'}' args.out_filename.write(json_data) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Getting json from lyapas sourses') parser.add_argument('in_lyapas', help='Path in filesystem for input lyapas-file', nargs='?', type=argparse.FileType('r'), default=sys.stdin) parser.add_argument('-out_filename', help='Name of output file', nargs='?', type=argparse.FileType('w'), default=sys.stdout) args = parser.parse_args() main(args)
3.0625
3
src/python/toolchain/plans.py
andyjost/Sprite
1
12785953
<filename>src/python/toolchain/plans.py import collections, itertools from . import _curry2icurry, _icurry2json, _json2py Stage = collections.namedtuple('Stage', ['suffixes', 'step']) class Plan(object): ''' Represents a compilation plan. Describes the sequence of steps that must be performed and the functions that implement them. ''' def __init__(self, kwds={}): self.do_py = kwds.pop('py', False) self.do_json = kwds.pop('json', True) or self.do_py self.do_icy = kwds.pop('icy', True) or self.do_json self.enabled = [self.do_icy, self.do_json, self.do_py] do_zip = kwds.get('zip', True) self.stages = list(self.get_stages(do_zip)) assert len(self.enabled) == len(self.stages) - 1 self.n_steps = sum(1 for _ in itertools.takewhile(lambda a:a, self.enabled)) @staticmethod def get_stages(zip_json): yield Stage(['.curry'] , _curry2icurry.curry2icurry) yield Stage(['.icy'] , _icurry2json.icurry2json) if zip_json: yield Stage(['.json.z'], _json2py.json2py) else: yield Stage(['.json'] , _json2py.json2py) yield Stage(['.py'] , None) @property def suffixes(self): '''Returns the sequence of file suffixes in this plan.''' def seq(): for en, stage in zip([True] + self.enabled, self.stages): if en: for suffix in stage.suffixes: yield suffix else: break return list(seq()) def __len__(self): '''Gives the number of steps in the plan.''' return self.n_steps def position(self, filename): '''Gives the current position in the plan.''' for i,(suffixes,_) in enumerate(self.stages): if any(filename.endswith(suffix) for suffix in suffixes): return i assert False
2.609375
3
air_ticket/views/airline_staff.py
X-czh/Air-Ticket-Reservation-System
0
12785954
from flask import Blueprint, render_template, request, session, redirect, url_for from pymysql import MySQLError from datetime import date, datetime, timedelta from dateutil.relativedelta import relativedelta from air_ticket import conn from air_ticket.utils import requires_login_airline_staff mod = Blueprint('airline_staff', __name__, url_prefix='/airline_staff') # Define route for homepage @mod.route('/') @requires_login_airline_staff def homepage(): return render_template('airline_staff/index.html') # Define route for update @mod.route('/update') @requires_login_airline_staff def update(): return render_template('airline_staff/update.html') # Define route for view @mod.route('/view') @requires_login_airline_staff def view(): return render_template('airline_staff/view.html') # Define route for compare @mod.route('/compare') @requires_login_airline_staff def compare(): return render_template('airline_staff/compare.html') # View my flights in the next 30 days @mod.route('/viewMyFlights', methods=['POST']) @requires_login_airline_staff def viewMyFlights(): # grabs information airline_name = session['airline_name'] # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT * FROM flight WHERE airline_name = %s AND departure_time BETWEEN CURDATE() AND DATE_ADD(NOW(), INTERVAL 30 DAY) ORDER BY departure_time ''' cursor.execute(query, (airline_name)) # stores the results in a variable data = cursor.fetchall() cursor.close() # check data if data: return render_template('airline_staff/index.html', result_viewMyFlights=data) else: msg = 'No records are found!' return render_template('airline_staff/index.html', message=msg) # View my flights option - sepcifying departure/arrival airport and a range of departure date @mod.route('/viewMyFlightsOption', methods=['POST']) @requires_login_airline_staff def viewMyFlightsOption(): # grabs information airline_name = session['airline_name'] start_date = request.form['start_date'] end_date = request.form['end_date'] departure_airport = request.form['departure_airport'] arrival_airport = request.form['arrival_airport'] # check consistence of dates if start_date > end_date: error = 'Error: end date is earlier than start date!' return render_template('airline_staff/index.html', message=error) # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT * FROM flight WHERE airline_name = %s AND departure_airport = %s AND arrival_airport = %s AND departure_time BETWEEN %s AND %s ORDER BY departure_time DESC ''' cursor.execute(query, (airline_name, departure_airport, arrival_airport, start_date, end_date)) # stores the results in a variable data = cursor.fetchall() cursor.close() # check data if data: return render_template('airline_staff/index.html', result_viewMyFlights=data) else: msg = 'No records are found!' return render_template('airline_staff/index.html', message=msg) # View all customers of a flight, sub module for view my flights @mod.route('/viewAllCustomers', methods=['POST']) @requires_login_airline_staff def viewAllCustomers(): # grabs information airline_name = session['airline_name'] flight_num = request.form['flight_num'] # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT ticket_id, customer_email, booking_agent_id, purchase_date FROM ticket NATURAL JOIN purchases WHERE airline_name = %s AND flight_num = %s ORDER by purchase_date DESC ''' cursor.execute(query, (airline_name, flight_num)) data = cursor.fetchall() # check data if data: return render_template('airline_staff/index.html', airline_name=airline_name, flight_num=flight_num, result_viewAllCustomers=data) else: msg = 'No customers yet!' return render_template('airline_staff/index.html', message=msg) @mod.route('/createNewFlights', methods=['POST']) @requires_login_airline_staff def createNewFlights(): # grabs information airline_name = session['airline_name'] flight_num = request.form['flight_num'] departure_airport = request.form['departure_airport'] departure_time = request.form['departure_time'] arrival_airport = request.form['arrival_airport'] arrival_time = request.form['arrival_time'] price = request.form['price'] status = request.form['status'] airplane_id = request.form['airplane_id'] # check consistence of time if departure_time >= arrival_time: error = 'Error: wrong time format or inconsistent departure and arrival time!' return render_template('airline_staff/update.html', result=error) try: msg = 'Create successfully!' with conn.cursor() as cursor: ins = 'INSERT INTO flight VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s)' cursor.execute(ins, (airline_name, flight_num, departure_airport, departure_time, arrival_airport, arrival_time, price, status, airplane_id)) conn.commit() except MySQLError as e: msg = 'Got error {!r}, errno is {}'.format(e, e.args[0]) return render_template('airline_staff/update.html', result=msg) # Change status of flights @mod.route('/changeFlightStatus', methods=['POST']) @requires_login_airline_staff def changeFlightStatus(): # grabs information airline_name = session['airline_name'] flight_num = request.form['flight_num'] status = request.form['status'] try: msg = "Update successfully!" with conn.cursor() as cursor: query = ''' UPDATE flight SET status = %s WHERE airline_name = %s AND flight_num = %s ''' cursor.execute(query, (status, airline_name, flight_num)) conn.commit() except MySQLError as e: msg = 'Got error {!r}, errno is {}'.format(e, e.args[0]) return render_template('airline_staff/update.html', result=msg) # Add new airplane @mod.route('/addNewAirplane', methods=['POST']) @requires_login_airline_staff def addNewAirplane(): # grabs information airline_name = session['airline_name'] airplane_id = request.form['airplane_id'] seats = request.form['seats'] try: msg = 'Add successfully!' with conn.cursor() as cursor: ins = 'INSERT INTO airplane VALUES(%s, %s, %s)' cursor.execute(ins, (airline_name, airplane_id, seats)) conn.commit() except MySQLError as e: msg = 'Got error {!r}, errno is {}'.format(e, e.args[0]) return render_template('airline_staff/update.html', result=msg) # Add new airport @mod.route('/addNewAirport', methods=['POST']) @requires_login_airline_staff def addNewAirport(): # grabs information airport_name = request.form['airport_name'] airport_city = request.form['airport_city'] try: msg = 'Add successfully!' with conn.cursor() as cursor: ins = 'INSERT INTO airport VALUES(%s, %s)' cursor.execute(ins, (airport_name, airport_city)) conn.commit() except MySQLError as e: msg = 'Got error {!r}, errno is {}'.format(e, e.args[0]) return render_template('airline_staff/update.html', result=msg) # View top5 booking agent @mod.route('/viewTop5BookingAgent', methods=['POST']) @requires_login_airline_staff def viewTop5BookingAgent(): # grabs information airline_name = session['airline_name'] # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT booking_agent_id, COUNT(ticket_id) as count FROM ticket NATURAL JOIN purchases WHERE airline_name = %s AND booking_agent_id IS NOT NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 MONTH) AND CURDATE() GROUP BY booking_agent_id ORDER by count DESC LIMIT 5 ''' cursor.execute(query, (airline_name)) top5bycount_past_month = cursor.fetchall() query = ''' SELECT booking_agent_id, COUNT(ticket_id) as count FROM ticket NATURAL JOIN purchases WHERE airline_name = %s AND booking_agent_id IS NOT NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND CURDATE() GROUP BY booking_agent_id ORDER by count DESC LIMIT 5 ''' cursor.execute(query, (airline_name)) top5bycount_past_year = cursor.fetchall() query = ''' SELECT booking_agent_id, SUM(price) * 0.1 as commission FROM ticket NATURAL JOIN purchases NATURAL JOIN flight WHERE airline_name = %s AND booking_agent_id IS NOT NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND CURDATE() GROUP BY booking_agent_id ORDER by commission DESC LIMIT 5 ''' cursor.execute(query, (airline_name)) top5bycommission_past_year = cursor.fetchall() cursor.close() # check data msg = None if top5bycount_past_year == None or top5bycount_past_year == (): msg = 'No records in the last year!' elif top5bycount_past_month == None or top5bycount_past_month == (): msg = 'No records in the last month!' return render_template('airline_staff/view.html', top5bycount_past_month=top5bycount_past_month, top5bycount_past_year=top5bycount_past_year, top5bycommission_past_year=top5bycommission_past_year, message_viewTop5BookingAgent=msg) # View frequent customers @mod.route('/viewFrequentCustomers', methods=['POST']) @requires_login_airline_staff def viewFrequentCustomers(): # grabs information airline_name = session['airline_name'] # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT customer_email, COUNT(ticket_id) AS count FROM ticket NATURAL JOIN purchases WHERE airline_name = %s AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND CURDATE() GROUP BY customer_email ORDER by count DESC ''' cursor.execute(query, (airline_name)) data = cursor.fetchall() if data != None and data != (): return render_template('airline_staff/view.html', result_viewFrequentCustomers=data) else: msg = 'No records are found!' return render_template('airline_staff/view.html', message_viewFrequentCustomers=msg) # View flights taken, sub module for view frequent customers @mod.route('/viewFlightsTaken', methods=['POST']) @requires_login_airline_staff def viewFlightsTaken(): # grabs information airline_name = session['airline_name'] customer_email = request.form['customer_email'] # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT customer_email, flight_num, purchase_date FROM ticket NATURAL JOIN purchases WHERE airline_name = %s AND customer_email = %s ORDER by purchase_date DESC ''' cursor.execute(query, (airline_name, customer_email)) data = cursor.fetchall() return render_template('airline_staff/view.html', result_viewFlightsTaken=data) # View reports @mod.route('/viewReports', methods=['POST']) @requires_login_airline_staff def viewReports(): # grabs information airline_name = session['airline_name'] start_month = request.form['start_month'] end_month = request.form['end_month'] # check consistence of months if start_month > end_month: error = 'Error: end month is earlier than start month!' return render_template('airline_staff/view.html', message_viewReports=error) # computes date start_date = datetime.strptime(start_month, '%Y-%m').date() start_date_str = start_date.strftime('%Y-%m-%d') end_date = datetime.strptime(end_month, '%Y-%m').date() + relativedelta(months=+1) end_date_str = end_date.strftime('%Y-%m-%d') diff = (end_date.year - start_date.year) * 12 + (end_date.month - start_date.month) # cursor used to send queries cursor = conn.cursor() # query query = ''' SELECT COUNT(ticket_id) as total FROM purchases NATURAL JOIN ticket WHERE airline_name = %s AND purchase_date >= %s AND purchase_date < %s ''' # total cursor.execute(query, (airline_name, start_date_str, end_date_str)) data = cursor.fetchone() total = data['total'] if data['total'] != None else 0 # monthwise monthwise_label = [] monthwise_total = [] end_date = start_date + relativedelta(months=+1) for _ in range(diff): start_date_str = start_date.strftime('%Y-%m-%d') end_date_str = end_date.strftime('%Y-%m-%d') cursor.execute(query, (airline_name, start_date_str, end_date_str)) monthwise = cursor.fetchone() monthwise_label.append(start_date.strftime('%y/%m')) monthwise_total.append(monthwise['total'] if monthwise['total'] != None else 0) start_date += relativedelta(months=+1) end_date += relativedelta(months=+1) cursor.close() return render_template('airline_staff/view.html', total=total, monthwise_label=monthwise_label, monthwise_total=monthwise_total) # Compare revenue @mod.route('/compareRevenue', methods=['POST']) @requires_login_airline_staff def compareRevenue(): # grabs information airline_name = session['airline_name'] # cursor used to send queries cursor = conn.cursor() # revenue in the last month query = ''' SELECT SUM(price) as revenue FROM flight NATURAL JOIN ticket NATURAL JOIN purchases WHERE airline_name = %s AND booking_agent_id IS NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 MONTH) AND CURDATE() ''' cursor.execute(query, (airline_name)) data = cursor.fetchone() if data == None: revenue_direct_sale_last_month = 0 elif data['revenue'] == None: revenue_direct_sale_last_month = 0 else: revenue_direct_sale_last_month = data['revenue'] query = ''' SELECT SUM(price) as revenue FROM flight NATURAL JOIN ticket NATURAL JOIN purchases WHERE airline_name = %s AND booking_agent_id IS NOT NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 MONTH) AND CURDATE() ''' cursor.execute(query, (airline_name)) data = cursor.fetchone() if data == None: revenue_indirect_sale_last_month = 0 elif data['revenue'] == None: revenue_indirect_sale_last_month = 0 else: revenue_indirect_sale_last_month = data['revenue'] # revenue in the last year query = ''' SELECT SUM(price) as revenue FROM flight NATURAL JOIN ticket NATURAL JOIN purchases WHERE airline_name = %s AND booking_agent_id IS NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND CURDATE() ''' cursor.execute(query, (airline_name)) data = cursor.fetchone() if data == None: revenue_direct_sale_last_year = 0 elif data['revenue'] == None: revenue_direct_sale_last_year = 0 else: revenue_direct_sale_last_year = data['revenue'] query = ''' SELECT SUM(price) as revenue FROM flight NATURAL JOIN ticket NATURAL JOIN purchases WHERE airline_name = %s AND booking_agent_id IS NOT NULL AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND CURDATE() ''' cursor.execute(query, (airline_name)) data = cursor.fetchone() if data == None: revenue_indirect_sale_last_year = 0 elif data['revenue'] == None: revenue_indirect_sale_last_year = 0 else: revenue_indirect_sale_last_year = data['revenue'] # check data msg = None if revenue_direct_sale_last_year * revenue_indirect_sale_last_year == 0: msg = 'No sale in the last year!' elif revenue_direct_sale_last_month * revenue_indirect_sale_last_month == 0: msg = 'No sale in the last month!' return render_template('airline_staff/compare.html', revenue_direct_sale_last_month=revenue_direct_sale_last_month, revenue_indirect_sale_last_month=revenue_indirect_sale_last_month, revenue_direct_sale_last_year=revenue_direct_sale_last_year, revenue_indirect_sale_last_year=revenue_indirect_sale_last_year, message=msg) # View top3 destinations @mod.route('/viewTop3Destinations', methods=['POST']) @requires_login_airline_staff def viewTop3Destinations(): #grabs information airline_name = session['airline_name'] # cursor used to send queries cursor = conn.cursor() # executes query query = ''' SELECT arrival_airport, airport_city, COUNT(ticket_id) as count FROM flight NATURAL JOIN ticket NATURAL JOIN purchases, airport WHERE airline_name = %s AND arrival_airport = airport_name AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 3 MONTH) AND CURDATE() GROUP BY arrival_airport ORDER BY count DESC LIMIT 3 ''' cursor.execute(query, (airline_name)) top3_past3month = cursor.fetchall() query = ''' SELECT arrival_airport, airport_city, COUNT(ticket_id) as count FROM flight NATURAL JOIN ticket NATURAL JOIN purchases, airport WHERE airline_name = %s AND arrival_airport = airport_name AND purchase_date BETWEEN DATE_SUB(NOW(), INTERVAL 1 YEAR) AND CURDATE() GROUP BY arrival_airport ORDER BY count DESC LIMIT 3 ''' cursor.execute(query, (airline_name)) top3_past1year = cursor.fetchall() cursor.close() # check data msg = None if top3_past1year == None or top3_past1year == (): msg = 'No records in the last year!' elif top3_past3month == None or top3_past3month == (): msg = 'No records in the last 3 months!' return render_template('airline_staff/view.html', top3_past3month=top3_past3month, top3_past1year=top3_past1year, message_viewTop3Destinations=msg) # Define route for logout @mod.route('/logout') @requires_login_airline_staff def logout(): session.pop('username') session.pop('usertype') session.pop('airline_name') return redirect('/')
2.40625
2
sbr_ui/services/gateway_authentication_service.py
ajorpheus/sbr-ui
1
12785955
<reponame>ajorpheus/sbr-ui import logging import requests from structlog import wrap_logger from typing import Tuple from flask import current_app from sbr_ui.models.exceptions import ApiError from sbr_ui.utilities.helpers import log_api_error, base_64_encode logger = wrap_logger(logging.getLogger(__name__)) class GatewayAuthenticationService: Role = str Token = str # A uuid from the API Gateway TokenAndRole = Tuple[Token, Role] @staticmethod def login(username: str, password: str) -> TokenAndRole: gateway_auth_url = current_app.config['AUTH_URL'] timeout = current_app.config['AUTH_TIMEOUT'] logger.debug("Logging user in", username=username) headers = {'content-type': 'application/json', 'Authorization': str(base_64_encode(f'{username}:{password}'))} response = requests.post(gateway_auth_url, headers=headers, timeout=timeout) try: response.raise_for_status() except requests.exceptions.HTTPError: log_api_error(response.status_code, 'Failed to authorize via the API Gateway', gateway_auth_url) raise ApiError(response) json = response.json() token = json.get('token') role = json.get('role') if token is None or role is None: logger.error("Returned Gateway JSON is in the wrong format") raise ValueError(response) return token, role
1.992188
2
containers/mobilenet/dataset/scripts/tar_to_record.py
AustinShalit/ml-react-app
18
12785956
<reponame>AustinShalit/ml-react-app<gh_stars>10-100 import sys, os, shutil, tarfile, argparse, zipfile import json_to_csv, generate_tfrecord, parse_meta, parse_hyperparams from os.path import join, splitext, split def main(dataset_paths, percent_eval, directory): ROOT_PATH, PATH_EXT = os.path.splitext(dataset_paths) DATASET_NAME = ROOT_PATH.split('/')[-1] OUTPUT_PATH = directory EXTRACT_PATH = "/home" TMP_PATH = "/home/tmp" # Placeholder for enum, here 1 is tar, 0 is ZIP NORMAL_MODE = 1 # Assume this is a tar if not os.path.exists(TMP_PATH): os.makedirs(TMP_PATH) if not os.path.exists(EXTRACT_PATH): os.makedirs(EXTRACT_PATH) if PATH_EXT == '.zip': print('.zip file extension found, interpreting as tensorflow object detection csv zip') NORMAL_MODE = 0 # Not a tar file if NORMAL_MODE: # Perform working tar code print("normal mode") try: shutil.copy(dataset_paths, join(EXTRACT_PATH, 'data.tar')) except: print('unable to retrieve a dataset tar file:') sys.exit(1) with tarfile.open(dataset_paths) as tar_file: tar_file.extractall(join(EXTRACT_PATH, 'out')) if percent_eval > 100 or percent_eval < 0: percent_eval = 30 json_to_csv.main(percent_eval) try: generate_tfrecord.main(TMP_PATH + "/train.csv", join(OUTPUT_PATH, 'train.record'), NORMAL_MODE, "/home/") generate_tfrecord.main(TMP_PATH + "/eval.csv", join(OUTPUT_PATH, 'eval.record'), NORMAL_MODE, "/home/") parse_meta.main(join(OUTPUT_PATH, 'map.pbtxt'), NORMAL_MODE, TMP_PATH + "/eval.csv") print(".\nRecords generated") except ValueError: print("The datasets provided do not have the same class labels. Please make sure that labels are spelt the same in both datasets, or label the same objects for both datasets.") if not NORMAL_MODE: print('treating as zip of tf obj detect') #Psuedocode #Unzip the zip in correct dir with zipfile.ZipFile(dataset_paths, 'r') as zip_file: # Unzip the file (Assuming 1 zip at this time) namelist = zip_file.namelist()[-1] if any([namelist.startswith(i) for i in ["valid", "train", "test"]]): zip_file.extractall(EXTRACT_PATH+"/"+DATASET_NAME) else: zip_file.extractall(EXTRACT_PATH) from fnmatch import fnmatch pattern = "*.csv" for path, subdirs, files in os.walk(EXTRACT_PATH): for name in files: if fnmatch(name, pattern): print("CSV:",os.path.join(path, name)) #Generate the records # try: print(EXTRACT_PATH + "/" + DATASET_NAME + "/test/_annotations.csv") generate_tfrecord.main(EXTRACT_PATH + "/" + DATASET_NAME + "/test/_annotations.csv", join(OUTPUT_PATH, 'eval.record'), NORMAL_MODE, EXTRACT_PATH + "/" + DATASET_NAME + "/test/") generate_tfrecord.main(EXTRACT_PATH + "/" + DATASET_NAME + "/train/_annotations.csv", join(OUTPUT_PATH, 'train.record'), NORMAL_MODE, EXTRACT_PATH + "/" + DATASET_NAME + "/train/") print('main records generated') parse_meta.main(join(OUTPUT_PATH, 'map.pbtxt'), NORMAL_MODE, EXTRACT_PATH + "/" + DATASET_NAME + "/train/_annotations.csv") # Edge case of missing label in one csv print(".\nRecords generated") # except ValueError: # print("The datasets provided do not have the same class labels. Please make sure that labels are spelt the same in both datasets, or label the same objects for both datasets.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dir', type=str, help='Path of the folder to train in.') DIRECTORY = parser.parse_args().dir data = parse_hyperparams.parse(os.path.join(DIRECTORY,"hyperparameters.json")) DATASET_PATHS = data["dataset-path"] PERCENT_EVAL = data["percent-eval"] main(DATASET_PATHS, PERCENT_EVAL, DIRECTORY)
2.3125
2
setup.py
caozhichongchong/traits_finder
1
12785957
from setuptools import setup setup( name="traits_finder", packages=['traits_finder'], version="1.6", description="search and summarize traits in genomes and metagenomes", author='<NAME>', author_email='<EMAIL>', url='https://github.com/caozhichongchong/traits_finder', keywords=['metagenomes', 'genomes', 'function', 'traits'], license='MIT', install_requires=[ 'biopython', 'argparse', 'glob2', 'statistics' ], include_package_data=True, long_description=open('README.md').read(), long_description_content_type='text/markdown', package_dir={'traits_finder': 'traits_finder'}, package_data={'traits_finder': ['scripts/*','database/*','example/*','*.py']}, entry_points={'console_scripts': ['traits_finder = traits_finder.__main__:main']}, classifiers=[ #'Development Status :: 1 - Alpha', #'Intended Audience :: Bioinformatics and Researchers', #'License :: MIT', #'Operating System :: MacOS', #'Operating System :: Microsoft :: Windows', #'Operating System :: LINUX', 'Programming Language :: Python :: 3', #'Topic :: Antibiotic resistance :: risk ranking', #'Topic :: Metagenomes :: Antibiotic resistance', ] )
1.3125
1
lstm4backend/train.py
cap-ntu/Autocomplete
1
12785958
import just import json import pandas as pd from pathlib import Path pd.set_option('max_colwidth',300) from encoder_decoder import TextEncoderDecoder, text_tokenize from model import LSTMBase TRAINING_TEST_CASES = ["from keras.layers import"] columns_long_list = ['repo', 'path', 'url', 'code', 'code_tokens', 'docstring', 'docstring_tokens', 'language', 'partition'] def jsonl_list_to_dataframe(file_list, columns=columns_long_list): return pd.concat([pd.read_json(f, orient='records', compression='gzip', lines=True)[columns] for f in file_list], sort=False) def get_data(): print("loading data... \n") python_files = sorted(Path('./data/python/').glob('**/*.gz')) pydf = jsonl_list_to_dataframe(python_files) code_data = pydf["code"].to_numpy() # code_data = list(just.multi_read("data/**/*.py").values()) print(len(code_data), "\n =====> Sample code as training data: \n", code_data[0]) # 只有 30 个训练样本测试 return code_data[:30] def train(ted, model_name): lb = LSTMBase(model_name, ted) try: lb.train(test_cases=TRAINING_TEST_CASES) except KeyboardInterrupt: pass print("saving") lb.save() def train_char(model_name): data = get_data() # list makes a str "str" into a list ["s","t","r"] ted = TextEncoderDecoder(data, tokenize=list, untokenize="".join, padding=" ", min_count=1, maxlen=40) train(ted, model_name) def train_token(model_name): data = get_data() # text tokenize splits source code into python tokens ted = TextEncoderDecoder(data, tokenize=text_tokenize, untokenize="".join, padding=" ", min_count=1, maxlen=20) # print("[Token Training] Loading data...") # python_files = sorted(Path('./data/python/').glob('**/*.gz')) # pydf = jsonl_list_to_dataframe(python_files) # tokens = pydf["code_tokens"] train(ted, model_name) def get_model(model_name): return LSTMBase(model_name) def complete(model, text, diversities): predictions = [model.predict(text, diversity=d, max_prediction_steps=80, break_at_token="\n") for d in diversities] # returning the latest sentence, + prediction suggestions = [text.split("\n")[-1] + x.rstrip("\n") for x in predictions] return suggestions if __name__ == "__main__": import sys if len(sys.argv) != 3: raise Exception( "expecting model name, such as 'neural' and type (either 'char' or 'token'") model_name = "_".join(sys.argv[1:]) if sys.argv[2] == "char": train_char(model_name) elif sys.argv[2] == "token": train_token(model_name) else: msg = "The second argument cannot be {}, but should be either 'char' or 'token'" raise Exception(msg.format(sys.argv[2]))
2.53125
3
uclasm/utils.py
cfld/uclasm
0
12785959
"""Miscellaneous functions and helpers for the uclasm package.""" import numpy as np def one_hot(idx, length): """Return a 1darray of zeros with a single one in the idx'th entry.""" one_hot = np.zeros(length, dtype=np.bool) one_hot[idx] = True return one_hot def index_map(args): """Return a dict mapping elements to their indices. Parameters ---------- args : Iterable[str] Strings to be mapped to their indices. """ return {elm: idx for idx, elm in enumerate(args)} # TODO: change the name of this function def invert(dict_of_sets): """TODO: Docstring.""" new_dict = {} for k, v in dict_of_sets.items(): for x in v: new_dict[x] = new_dict.get(x, set()) | set([k]) return new_dict def values_map_to_same_key(dict_of_sets): """TODO: Docstring.""" matches = {} # get the sets of candidates for key, val_set in dict_of_sets.items(): frozen_val_set = frozenset(val_set) matches[frozen_val_set] = matches.get(frozen_val_set, set()) | {key} return matches def apply_index_map_to_cols(df, cols, values): """Replace df[cols] with their indexes as taken from names. Parameters ---------- df : DataFrame To be modified inplace. cols : Iterable[str] Columns of df to operate on. values : Iterable[str] Values expected to be present in df[cols] to be replaced with their corresponding indexes. """ val_to_idx = index_map(values) df[cols] = df[cols].applymap(val_to_idx.get)
3.21875
3
tools/simulator.py
zhongxinghong/Botzone-Tank2
11
12785960
# -*- coding: utf-8 -*- # @Author: Administrator # @Date: 2019-04-30 11:25:35 # @Last Modified by: Administrator # @Last Modified time: 2019-05-26 01:25:58 """ 无 GUI 的游戏模拟器,可以模拟播放比赛记录 """ import sys sys.path.append("../") from core import const as game_const import os import time import json import subprocess import multiprocessing from _lib.utils import json_load from _lib.simulator.const import BLUE_INPUT_JSON_FILENAME, RED_INPUT_JSON_FILENAME,\ DATASET_DIR, CONFIG_JSON_FILE from _lib.simulator.utils import cut_by_turn from _lib.simulator.stream import SimulatorConsoleOutputStream, SimulatorTextInputStream try: config = json_load(CONFIG_JSON_FILE) except json.JSONDecodeError as e: # 配置文件写错 raise e ## 环境变量设置 ## game_const.DEBUG_MODE = config["environment"]["debug"] # 是否为 DEBUG 模式 game_const.LONG_RUNNING_MODE = config["environment"]["long_running"] # 是否为 LONG_RUNNING 模式 game_const.SIMULATOR_ENV = config["environment"]["simulator"] # 是否为模拟器环境 game_const.COMPACT_MAP = config["debug"]["compact_map"] # 是否以紧凑的形式打印地图 game_const.SIMULATOR_PRINT = config["simulator"]["print"] # 是否输出模拟器日志 ## 游戏相关 ## MATCH_ID = config["game"]["match_id"] # 比赛 ID SIDE = config["game"]["side"] # 我方属于哪一方,这决定了使用什么数据源。 # 0 表示 blue.input.json, 1 表示 red.input.json INITIAL_TURN = config["game"]["initial_turn"] # 从哪一回合开始 ## 模拟器配置 ## TURN_INTERVAL = config["simulator"]["turn_interval"] # 在自动播放的情况下,每回合结束后时间间隔 PAUSE_PER_TURN = config["simulator"]["pause"] # 设置为非自动播放,每回合结束后需要用户按下任意键继续 HIDE_DATA = config["simulator"]["hide_data"] # 是否隐藏游戏输出 json 中的 data 和 globaldata 字段 def main(): from main import main as run_game if SIDE == 0: INPUT_JSON = os.path.join(DATASET_DIR, MATCH_ID, BLUE_INPUT_JSON_FILENAME) elif SIDE == 1: INPUT_JSON = os.path.join(DATASET_DIR, MATCH_ID, RED_INPUT_JSON_FILENAME) else: raise Exception("unknown side %s" % SIDE) wholeInputJSON = json_load(INPUT_JSON) totalTurn = len(wholeInputJSON["responses"]) data = None globaldata = None parentConnection, childrenConnection = multiprocessing.Pipe() for turn in range(INITIAL_TURN, totalTurn+2): CUT_OFF_RULE = "-" * 30 inputJSON = cut_by_turn(wholeInputJSON, turn) if data is not None: inputJSON["data"] = data if globaldata is not None: inputJSON["globaldata"] = globaldata istream = SimulatorTextInputStream(json.dumps(inputJSON)) ostream = SimulatorConsoleOutputStream(connection=childrenConnection, hide_data=HIDE_DATA) p = multiprocessing.Process( target=run_game, args=(istream, ostream) ) p.daemon = True p.start() output = parentConnection.recv() p.join() if p.exitcode != 0: break outputJSON = json.loads(output) data = outputJSON.get("data") globaldata = outputJSON.get("globaldata") print(CUT_OFF_RULE) print("End Turn %s" % turn) if PAUSE_PER_TURN: #subprocess.call("pause",shell=True) os.system('pause') else: time.sleep(TURN_INTERVAL) if __name__ == '__main__': main()
1.703125
2
{{ cookiecutter.repo_name }}/test/__init__.py
jakebrinkmann/waldo-jakebrinkmann
0
12785961
<gh_stars>0 """Common testing configuration. """
1.015625
1
neural_cdes/ode_with_context.py
jb-c/dissertation
0
12785962
<reponame>jb-c/dissertation<filename>neural_cdes/ode_with_context.py import numpy as np from F import F #------------------------ ODE MODEL With Context --------------------------- # The idea is to use a neural ode with context for sequence to sequence forcasting #---------------------------------------------------------------------------
1.859375
2
src/illumideskdummyauthenticator/tests/test_authenticator.py
IllumiDesk/illumidesk
41
12785963
import json from unittest.mock import Mock from unittest.mock import patch import pytest from illumideskdummyauthenticator.authenticator import IllumiDeskDummyAuthenticator from illumideskdummyauthenticator.validators import IllumiDeskDummyValidator from tornado.web import RequestHandler @pytest.mark.asyncio async def test_authenticator_returns_auth_state(make_dummy_authentication_request_args): """ Ensure we get a valid authentication dictionary. """ with patch.object( IllumiDeskDummyValidator, "validate_login_request", return_value=True ): authenticator = IllumiDeskDummyAuthenticator() handler = Mock( spec=RequestHandler, get_secure_cookie=Mock(return_value=json.dumps(["key", "secret"])), request=Mock( arguments=make_dummy_authentication_request_args(), headers={}, items=[], ), ) result = await authenticator.authenticate(handler, None) expected = { "name": "foobar", "auth_state": { "assignment_name": "lab101", "course_id": "intro101", "lms_user_id": "abc123", "user_role": "Student", }, } assert result == expected
2.265625
2
atcoder/abc/abc140_d.py
knuu/competitive-programming
1
12785964
N, K = map(int, input().split()) S = input() intervals = [] idx = 0 dirs = [] while idx < N: start = idx dirs.append([0, 1][S[idx] == "R"]) while idx < N and S[idx] == S[start]: idx += 1 intervals.append(idx - start) assert(sum(intervals) == N) def calc_ans(result_dirs): ans = N if result_dirs[0] == 0: ans -= 1 for i in range(len(result_dirs)-1): now_dir, next_dir = result_dirs[i], result_dirs[i+1] if now_dir == 1 and next_dir == 0: ans -= 2 if result_dirs[-1] == 1: ans -= 1 return ans rest = K result_dirs = [dirs[0]] for now_dir in dirs[1:]: if rest > 0 and now_dir == 1: result_dirs.append(0) rest -= 1 else: result_dirs.append(now_dir) if rest > 0 and dirs[0] == 1: result_dirs[0] = 0 left_ans = calc_ans(result_dirs) rest = K result_dirs = [dirs[0]] for now_dir in dirs[1:]: if rest > 0 and now_dir == 0: result_dirs.append(1) rest -= 1 else: result_dirs.append(now_dir) if rest > 0 and dirs[0] == 0: result_dirs[0] = 1 right_ans = calc_ans(result_dirs) print(max(left_ans, right_ans))
2.703125
3
Hack-Message/hack_message.py
yashk2810/Alert-on-Intrusion
5
12785965
#!/usr/bin/env python import urllib2,re,pygeoip,json import os import twilio from twilio.rest import TwilioRestClient import pygame import pygame.camera TWILIO_ACCOUNT_SID="YOUR_ACCOUNT_SID" TWILIO_AUTH_TOKEN="<PASSWORD>" def main (): new=open("/home/yash/auth",'r') for i in new: length1=len(i) new.close() new_file=open("/home/yash/auth",'w') f=open("/var/log/auth.log",'r') text=f.read() failed=re.findall(r'failed|FAILED',text) new_file.write(str(failed)) new_file.close() new2=open("/home/yash/auth",'r') for i in new2: length2=len(i) new2.close() if length2>length1: ip_url=urllib2.urlopen("http://whatismyip.org").read() ip_search=re.search(r'\d+.\d+.\d+.\d+',ip_url) ip=ip_search.group() url="http://www.freegeoip.net/json/"+ip location=urllib2.urlopen(url).read() data=json.loads(location) hack_message="City: "+data['city']+\ ", Country: "+data['country_name']+\ ", IP: "+data['ip']+\ ", Latitude: "+str(data['latitude'])+\ ", longitude: "+str(data['longitude'])+\ ", zipcode: "+str(data['zip_code']) pygame.camera.init() pygame.camera.list_cameras() cam = pygame.camera.Camera("/dev/video0", (640, 480)) cam.start() img = cam.get_image() f=open("/home/yash/logs/count",'r') c=f.read() pygame.image.save(img, "/home/yash/logs/intruder"+c+".jpg") cam.stop() file_write=open("/home/yash/logs/count",'w') c=str(int(c)+1) file_write.write(c) file_write.close() f.close() client = TwilioRestClient(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN) message=client.messages.create( body="Someone is trying to break into your laptop. The details are: "+hack_message, to="YOUR_CONTACT_NUMBER", from_="YOUR_TWILIO_PHONE_NUMBER") try: logs=open('logs/file.txt', 'a') except IOError as e: # dir & file don't exist; create them os.mkdir('logs') logs=open('logs/file.txt', 'a') except Exception as e: print e else: pass # log it logs.write("Message with sid {} sent at {}".format(message.sid,strftime("%a, %d %b %Y %H:%M:%S") + "\n")) logs.close() if __name__ == '__main__': main()
2.921875
3
ticketbase/codebase/migrations/0005_ticket_is_closed.py
Hipo/codebase-ultra
0
12785966
# Generated by Django 2.2.4 on 2019-09-27 09:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('codebase', '0004_ticket_status'), ] operations = [ migrations.AddField( model_name='ticket', name='is_closed', field=models.BooleanField(default=True), ), ]
1.578125
2
python/html-color-converter.py
ModestTG/scripts
0
12785967
<reponame>ModestTG/scripts<filename>python/html-color-converter.py from __future__ import print_function, unicode_literals, division def rgb_to_hex(value): rgb_values = value.split(",") rgb_values = [int(i) for i in rgb_values] print(rgb_values) converted_values = [] for j, value in enumerate(rgb_values): converted_values[j] = hex(rgb_values[j]) print("The converted color value is: #{}{}{}", *converted_values) print("Convert HTML Colors to and from both RGB and Hex.\nHex format: #000000\nRGB format: ###,###,### (don't need leading zeroes but commas are important)\n") try: color = raw_input("Enter an RGB combination, or Hex value to have it converted. Hex must start with a \'#\': ") except NameError: color = input("Enter an RGB combination, or Hex value to have it converted. Hex must start with a \'#\': ") if color[0] == '#': pass else: rgb_to_hex(color)
4.0625
4
puck_install.py
drsooch/puck-python
0
12785968
""" This is the main setup file for Puck. """ from pathlib import Path import subprocess import json import psycopg2 as pg PUCK = Path.home().joinpath('.puck/') print('Creating Configuration file...') if Path.exists(PUCK): for file in Path.iterdir(PUCK): Path.unlink(file) Path.rmdir(PUCK) Path.mkdir(PUCK) Path.touch(PUCK.joinpath('config.json')) print( """NOTE: Please make sure you have set up a database for puck. I have not been able to get Postgres to cooperate to allow for generic \ database and user creation.""" ) connected = False with open(PUCK.joinpath('config.json'), 'w') as f: while not connected: db_name = input('Please enter the name of the database created\n> ') db_user = input( 'Please enter the name of the user associated with the DB\n> ' ) try: pg.connect(database=db_name, user=db_user) except pg.OperationalError as err: if db_name in str(err): print(f'{db_name} is not a valid database.') elif db_user in str(err): print(f'{db_user} is not a valid username.') else: connected = True json.dump({'dbName': db_name, 'dbUser': db_user}, f)
2.5
2
src/pyff/exceptions.py
dnmvisser/pyFF
15
12785969
<filename>src/pyff/exceptions.py __author__ = 'leifj' import six class PyffException(BaseException): def __init__(self, msg, wrapped=None, data=None): self._wrapped = wrapped self._data = data if six.PY2: super(self.__class__, self).__init__(msg) else: super().__init__(msg) def raise_wrapped(self): raise self._wrapped class ResourceException(PyffException): pass class MetadataException(ResourceException): pass class MetadataExpiredException(MetadataException): pass
2.59375
3
mc_pdf.py
shclem/mcdeck
5
12785970
<filename>mc_pdf.py import os.path from fpdf import FPDF from mc_args import MCArgs from mc_progress import MCProgress class MCPdf(FPDF): __args: MCArgs = None __progress: MCProgress = None def __init__(self, args, progress): FPDF.__init__(self, orientation=args.pageOrientation, unit='mm', format=args.pageFormat) self.__args = args self.__progress = progress self.pageMarginWidth = 10 self.pageMarginHeight = 10 self.cardIndexX = 0 self.cardIndexY = 0 self.cardWidth = 62 self.cardHeight = 88 self.columlIndexX = 0 self.columnWidth = 31 self.columnMarginTop = 9 self.columnMarginStart = 2 self.set_fill_color(230) self.set_font("Arial", size = 6) self.x = self.pageMarginWidth self.y = self.pageMarginHeight self.nbCardOnPageWidth = int((self.w - 2*self.pageMarginWidth) // self.cardWidth) self.nbCardOnPageHeight = int((self.h - 2*self.pageMarginHeight) // self.cardHeight) self.nbCardOnPage = self.nbCardOnPageWidth * self.nbCardOnPageHeight def __drawCutLines(self): self.set_draw_color(128) for xIndex in range(self.nbCardOnPageWidth+1): x = self.pageMarginWidth + xIndex * self.cardWidth self.line(x,0, x, self.h) for yIndex in range(self.nbCardOnPageHeight+1): y = self.pageMarginHeight + yIndex * self.cardHeight self.line(0,y,self.w,y) def __drawDeckSection(self,title,cards,count): if count > 0: self.x = self.pageMarginWidth + self.cardIndexX*self.cardWidth + self.columlIndexX*self.columnWidth if (self.y-self.pageMarginHeight-self.cardIndexY*self.cardHeight) > self.cardHeight - 12: self.columlIndexX = 1 self.y = self.pageMarginHeight + self.cardIndexY*self.cardHeight + self.columnMarginTop self.x = self.pageMarginWidth + self.cardIndexX*self.cardWidth + self.columlIndexX*self.columnWidth self.set_font("Arial", size = 6, style = 'B') self.cell(20, 3, txt = f"{title} ({count})",ln = 2, align = 'L') self.x = self.pageMarginWidth + self.cardIndexX*self.cardWidth + self.columlIndexX*self.columnWidth + self.columnMarginStart self.y += 0.7 self.set_font("Arial", size = 6, style = self.__args.itemFontStyle) cards.sort(key=lambda card: 'a' if card['icon']=='resources/basic.png' else card['icon']) for card in cards: if (self.y-self.pageMarginHeight-self.cardIndexY*self.cardHeight) > self.cardHeight - 8: self.columlIndexX = 1 self.y = self.pageMarginHeight + self.cardIndexY*self.cardHeight + self.columnMarginTop self.x = self.pageMarginWidth + self.cardIndexX*self.cardWidth + self.columlIndexX*self.columnWidth + self.columnMarginStart x = self.x y = self.y self.image(card['icon'], w=2, h=2) self.y = y self.x += 2 self.cell(4, 2.8, txt = f"{card['quantity']}X",ln = 0, align = 'L') self.multi_cell(22, 2.8, txt = card['name'], align = 'L', border = 0) self.x = x self.y += 0.2 self.y += 0.7 def __drawDeck(self,deck): totalCount = 0 for section in deck['sections'].values(): totalCount += section["count"] deckName = deck["name"] heroName = deck["hero"] self.x = self.pageMarginWidth + self.cardIndexX * self.cardWidth self.y = self.pageMarginHeight + self.cardIndexY * self.cardHeight if self.__args.background: dir = self.__args.backgroundDir imagePath = f"{dir}/{heroName}.png" if os.path.exists(imagePath): self.image(imagePath, w=self.cardWidth, h=self.cardHeight) self.x = self.pageMarginWidth + self.cardIndexX * self.cardWidth self.y = self.pageMarginHeight + self.cardIndexY * self.cardHeight self.set_font("Arial", size = 6, style = 'UB') self.cell(62, 6, txt = f"{deckName}", ln = 0, align = 'C', border = 0) self.x = self.pageMarginWidth + self.cardIndexX*self.cardWidth self.y = self.pageMarginHeight + self.cardIndexY*self.cardHeight + 4 self.set_font("Arial", size = 6, style = 'I') self.cell(62, 4, txt = f"{heroName} ({totalCount})", ln = 0, align = 'C', border = 0) self.columlIndexX = 0 self.y = self.pageMarginHeight + self.cardIndexY*self.cardHeight + self.columnMarginTop for sectionType, section in deck['sections'].items(): self.__drawDeckSection(sectionType, section["cards"], section["count"]) self.x = self.pageMarginWidth + self.cardIndexX * self.cardWidth self.y = self.pageMarginHeight + (self.cardIndexY+1) * self.cardHeight - 5 self.set_font("Arial", size = 5, style = 'I') self.cell(2, 6, txt = f"(v{deck['version']})",ln = 0, align = 'L', border = 0) self.cell(60, 6, txt = deck['url'],ln = 0, align = 'R', border = 0, link = deck['url']) def drawDecks(self,decks): count = 1 for deck in self.__progress.apply(decks,desc="Create Pdf "): if count > self.nbCardOnPage: self.__drawCutLines() # Draw cut lines before to add new one count = 1 if count==1: self.add_page() self.cardIndexX = (count-1)%self.nbCardOnPageWidth self.cardIndexY = (count-1)//self.nbCardOnPageWidth self.rect( self.pageMarginWidth + self.cardIndexX*self.cardWidth, self.pageMarginHeight + self.cardIndexY*self.cardHeight, self.cardWidth, self.cardHeight, style = 'F' ) self.__drawDeck(deck) count+=1 if count>1: self.__drawCutLines()
2.875
3
URI/1-Beginner/1759.py
vicenteneto/online-judge-solutions
0
12785971
# -*- coding: utf-8 -*- n = int(raw_input()) result = ''.join(['Ho ' for x in range(n)]) print result[:-1] + '!'
3.734375
4
src/signer/secret20/signer.py
RainbowNetwork/RainbowBridge
14
12785972
<gh_stars>10-100 import json from collections import namedtuple from threading import Thread, Event from typing import Dict, Union from mongoengine import signals from mongoengine import OperationError from src.contracts.ethereum.multisig_wallet import MultisigWallet from src.db.collections.commands import Commands from src.db.collections.eth_swap import Swap, Status from src.db.collections.signatures import Signatures from src.util.common import temp_file from src.util.config import Config from src.util.logger import get_logger from src.util.secretcli import sign_tx as secretcli_sign, decrypt, account_info SecretAccount = namedtuple('SecretAccount', ['address', 'name']) class Secret20Signer(Thread): """Signs on the SCRT side, after verifying Ethereum tx stored in the db""" def __init__(self, multisig: SecretAccount, contract: MultisigWallet, config: Config, **kwargs): self.multisig = multisig self.contract = contract self.config = config self.stop_event = Event() self.logger = get_logger( db_name=config.db_name, loglevel=config.log_level, logger_name=config.logger_name or f"SecretSigner-{self.multisig.name}" ) super().__init__(group=None, name=f"SecretSigner-{self.multisig.name}", target=self.run, **kwargs) self.setDaemon(True) # so tests don't hang self.account_num, _ = self._account_details() signals.post_save.connect(self._sign_add_token, sender=Commands) def running(self): return self.is_alive() def stop(self): self.logger.info("Stopping..") self.stop_event.set() def run(self): """Scans the db for unsigned swap tx and signs them""" self.logger.info("Starting..") while not self.stop_event.is_set(): failed = False for tx in Swap.objects(status=Status.SWAP_UNSIGNED): # if there are 2 transactions that depend on each other (sequence number), and the first fails we mark # the next as "retry" if failed: tx.status = Status.SWAP_RETRY continue self.logger.info(f"Found new unsigned swap event {tx}") try: self._validate_and_sign(tx) self.logger.info( f"Signed transaction successfully id:{tx.id}") except ValueError as e: self.logger.error(f'Failed to sign transaction: {tx} error: {e}') failed = True for tx in Commands.objects(status=Status.SWAP_UNSIGNED): self.logger.info(f"Found new unsigned swap event {tx}") try: self._sign_add_token(sender="", document=tx) self.logger.info( f"Signed transaction successfully id:{tx.id}") except ValueError as e: self.logger.error(f'Failed to sign transaction: {tx} error: {e}') self.stop_event.wait(self.config.sleep_interval) def _validate_and_sign_command(self, tx: Commands): """ Makes sure that the tx is valid and signs it :raises: ValueError """ if self._is_signed(tx): self.logger.debug(f"This signer already signed this transaction. Waiting for other signers... id:{tx.id}") return self.sign(tx) def _validate_and_sign(self, tx: Union[Commands, Swap]): """ Makes sure that the tx is valid and signs it :raises: ValueError """ if self._is_signed(tx): self.logger.debug(f"This signer already signed this transaction. Waiting for other signers... id:{tx.id}") return if not self._is_valid(tx): self.logger.error(f"Validation failed. Signer: {self.multisig.name}. Tx id:{tx.id}.") tx.status = Status.SWAP_FAILED tx.save() raise ValueError self.sign(tx) def sign(self, tx: Union[Commands, Swap]): try: signed_tx = self._sign_with_secret_cli(tx.unsigned_tx, tx.sequence) except RuntimeError as e: tx.status = Status.SWAP_FAILED tx.save() raise ValueError from e try: Signatures(tx_id=tx.id, signer=self.multisig.name, signed_tx=signed_tx).save() except OperationError as e: self.logger.error(f'Failed to save tx in database: {tx}') raise ValueError from e def _is_signed(self, tx: Union[Swap, Commands]) -> bool: """ Returns True if tx was already signed by us, else False """ return Signatures.objects(tx_id=tx.id, signer=self.multisig.name).count() > 0 def _sign_add_token(self, sender, document: Commands, **kwargs): # pylint: disable=unused-argument decrypted_data = self.decrypt_tx(document) if not decrypted_data['add_token']: raise ValueError('Tried to get a signature for a different command than add_token!') self._validate_and_sign_command(document) def _is_valid(self, tx: Swap) -> bool: """Assert that the data in the unsigned_tx matches the tx on the chain""" log = self.contract.get_events_by_tx(tx.src_tx_hash) if not log: # because for some reason event_log can return None??? return False try: decrypted_data = self.decrypt_tx(tx) except json.JSONDecodeError: self.logger.error(f'Tried to load tx with hash: {tx.src_tx_hash} {tx.id}' f'but got data as invalid json, or failed to decrypt') return False # extract address and value from unsigned transaction try: tx_amount = int(decrypted_data['mint_from_ext_chain']['amount']) tx_address = decrypted_data['mint_from_ext_chain']['address'] except KeyError: self.logger.error(f"Failed to validate tx data: {tx}, {decrypted_data}, " f"failed to get amount or destination address from tx") return False # extract amount from on-chain swap tx try: eth_on_chain_amount = self.contract.extract_amount(log) eth_on_chain_address = self.contract.extract_addr(log) except AttributeError: self.logger.error(f"Failed to validate tx data: {tx}, {log}, " f"failed to get amount or address from on-chain eth tx") return False # check that amounts on-chain and in the db match the amount we're minting if tx_amount != eth_on_chain_amount or tx_amount != int(tx.amount): self.logger.error(f"Failed to validate tx data: {tx} ({tx_amount}, {eth_on_chain_amount}, {int(tx.amount)})" f" amounts do not match") return False # check that the address we're minting to matches the target from the TX if tx_address != eth_on_chain_address: self.logger.error(f"Failed to validate tx data: {tx}, ({tx_address}, {eth_on_chain_address})," f" addresses do not match") return False return True def decrypt_tx(self, tx: Union[Commands, Swap]): unsigned_tx = json.loads(tx.unsigned_tx) res = self._decrypt(unsigned_tx) self.logger.debug(f'Decrypted unsigned tx successfully {res}') json_start_index = res.find('{') json_end_index = res.rfind('}') + 1 decrypted_data = json.loads(res[json_start_index:json_end_index]) return decrypted_data def _sign_with_secret_cli(self, unsigned_tx: str, sequence: int) -> str: with temp_file(unsigned_tx) as unsigned_tx_path: res = secretcli_sign(unsigned_tx_path, self.multisig.address, self.multisig.name, self.account_num, sequence) return res @staticmethod def _decrypt(unsigned_tx: Dict): msg = unsigned_tx['value']['msg'][0]['value']['msg'] return decrypt(msg) def _account_details(self): details = account_info(self.multisig.address) return details["value"]["account_number"], details["value"]["sequence"]
2.171875
2
src/fractal/world/state.py
jedhsu/fractal
0
12785973
""" World State =========== A type of world state described by fractums. # [TODO] clarify """ class WorldState: pass
1.90625
2
INBa/2015/Mitin_D_S/task_8_15.py
YukkaSarasti/pythonintask
0
12785974
# Задача 8. Вариант 15. # Доработайте игру "Анаграммы" (см. М.Доусон Программируем на Python. Гл.4) так, чтобы к каждому слову полагалась подсказка. # Игрок должен получать право на подсказку в том случае, если у него нет никаких предположений. # Разработайте систему начисления очков, по которой бы игроки, отгадавшие слово без подсказки, получали больше тех, кто запросил подсказку. # <NAME>. # 19.04.2016, 11:08 import random ochki = 500000 slova = ("питон", "программирование", "компьютер", "университет", "россия", "безопасность", "информатика") zagadka=random.choice(slova) proverka = zagadka i=0 jumble = "" while zagadka: bykva = random.randrange(len(zagadka)) jumble += zagadka[bykva] zagadka = zagadka[:bykva] + zagadka[(bykva+1):] print("Вы попали в передачу 'Анаграммы'") print("Загаданное слово: ", jumble) slovo = input ("Ваш ответ: ") while (slovo != proverka): if(slovo == "не знаю"): print(i,"буква: ",proverka[i]) i+=1 if ochki <= 0: break slovo=input("Неправильно. Попробуй еще раз: ") ochki-=50000 if slovo == proverka: print("\nПравильно! Это слово: ", proverka) print("Вы набрали",ochki," очков! Поздравляем!") else: print("К сожалению, у вас 0 очков, и вы проиграли :( Загаданное слово:",proverka) input ("Нажмите ENTER для продолжения")
3.09375
3
iserver.py
DreamVB/httpServer
1
12785975
<filename>iserver.py<gh_stars>1-10 # A Very simple web server to serve statoc pages # By <NAME> a.k.a DreamVB import servfunc import os.path import cfgread from http.server import BaseHTTPRequestHandler, HTTPServer class testHTTPServer_RequestHandler(BaseHTTPRequestHandler): def do_GET(self): # Send response status code self.send_response(200) # Get home root root = cfgread.readVal("HOME_DIR") # Get the request line b = self.raw_requestline.decode("utf-8") # Split the line by the spaces items = b.split(" ") # Get the second item it should be the request page page = items[1].replace("/","\\") if page == "\\": page = cfgread.readVal("DEFAULT_PAGE") # Get the file ext file_ext = servfunc.getFileExt(page) # Get the full path to the page to serv full_file = servfunc.fixPath(root) + page # Get the file in question mimetype mime_type = cfgread.readVal(file_ext) # Make sure the full path filename is found if os.path.exists(full_file): # Send headers self.send_header('Content-type', mime_type) self.end_headers() self.wfile.write(servfunc.get_bytes_from_file(full_file)) else: # Send 404 error page self.send_header('Content-type',"text/html") self.wfile.write(servfunc.get_bytes_from_file("err_pages\\404.html")) return def start_server(): print('Starting Server...') # Load server config cfgread.loadCfg("server.cfg") server_address = ("", int(cfgread.readVal("PORT"))) httpd = HTTPServer(server_address, testHTTPServer_RequestHandler) print('Running Server...') # Keep the server running httpd.serve_forever() if __name__ == '__main__': # Start the web server start_server()
3.171875
3
Exercises/Exercises Chapter 04/Collect Digits.py
tonysulfaro/CSE-231
2
12785976
<filename>Exercises/Exercises Chapter 04/Collect Digits.py s = input("Input a string: ") digits = "" for i,ch in enumerate(s): if ch.isdigit(): digits += ch print(digits)
3.984375
4
chcd.py
JohanAR/chcd
0
12785977
<reponame>JohanAR/chcd<filename>chcd.py #!/usr/bin/python # CHCD by <NAME> import os import os.path import getpass USERNAME = getpass.getuser() def meFirstGen(iterable): if USERNAME in iterable: yield USERNAME for item in iterable: if item != USERNAME: yield item def recfind(curpath, dirs, lastdir): # print(curpath, dirs, lastdir) try: files = os.listdir(curpath) except OSError: return None if not dirs: if lastdir in files: finalpath = os.path.join(curpath, lastdir) if os.path.isdir(finalpath): return finalpath else: for filename in meFirstGen(files): if filename.startswith(dirs[0]): nextpath = os.path.join(curpath, filename) if os.path.isdir(nextpath): res = recfind(nextpath, dirs[1:], lastdir) if res: return res return None def chcd(shortpath): dirs = shortpath.split('/') lastdir = dirs[-1] dirs = dirs[:-1] if not dirs: return os.getcwd() elif not dirs[0]: curpath = '/' dirs = dirs[1:] elif dirs[0] == '~': curpath = os.path.expanduser(dirs[0]) dirs = dirs[1:] elif dirs[0] == '.': curpath = os.getcwd() dirs = dirs[1:] else: curpath = os.getcwd() return recfind(curpath, dirs, lastdir) if __name__ == '__main__': import sys if len(sys.argv) == 1: print('') else: print(chcd(sys.argv[1]))
2.765625
3
recommender/core/models.py
abhishekpathak/recommendation-system
0
12785978
<gh_stars>0 # -*- coding: utf-8 -*- import json from collections import Generator from server import config from server.extensions import redis_conn """ A simple, quickly-prototyped ORM layer on top of Redis. Supports all the functions needed by the serving layer, and nothing more. The implementation details are hackish, and best left alone. """ class Users(object): """ A model that represents the user. Supports the following queries: * get a user from id * get all users in the system * get the ratings given by a user * persist the given ratings for a user * get all the products used by a user * get the recommendations for a user """ redis = redis_conn def __init__(self, id: int, data_partition: str): self.id = id self.data_partition = data_partition @classmethod def get(cls, id: int, data_partition: str): if id in config.ALLOWED_USER_IDS: return cls(id=id, data_partition=data_partition) else: raise KeyError("user with id: {} does not exist.".format(id)) @classmethod def get_all(cls, data_partition: str) -> list: return [cls.get(id=user_id, data_partition=data_partition) for user_id in config.ALLOWED_USER_IDS] def get_ratings(self) -> list: key = '{}_ratings_{}'.format(self.data_partition, self.id) ratings_hash = self.redis.hgetall(key) ratings = [] for key, value in ratings_hash.items(): ratings.append({ 'product_id': int(key), 'rating': int(value) }) return ratings def get_products_used(self) -> list: ratings = self.get_ratings() return [item['product_id'] for item in ratings] def get_recommendations(self) -> list: key = '{}_recommendations_{}'.format(self.data_partition, self.id) return self._get_recommendations_for_key(key) def set_recommendations(self, recommendations: list) -> None: key = '{}_recommendations_{}'.format(self.data_partition, self.id) value = json.dumps(recommendations) self.redis.set(key, value) @classmethod def _get_recommendations_for_key(cls, key): value = cls.redis.get(key) recommendations = json.loads(value) if value else [] return recommendations @classmethod def get_default_recommendations(cls, data_partition: str): key = '{}_recommendations_-1'.format(data_partition) return cls._get_recommendations_for_key(key) def set_ratings(self, ratings: list) -> None: key = '{}_ratings_{}'.format(self.data_partition, self.id) for rating in ratings: self.redis.hset(key, rating['product_id'], rating['rating']) def has_rated(self): return self.get_ratings() != [] class Products(object): """ A model that represents the Product. Supports the following queries: * get a product from id * get all products in the system * add a new product to the system. If the product already exists, update it. """ redis = redis_conn def __init__(self, id: int, name: str, desc: str): self.id = id self.name = name self.desc = desc @classmethod def get(cls, id: int, data_partition: str): key = '{}_products_{}'.format(data_partition, id) meta = cls.redis.get(key) if meta: meta = json.loads(meta) return cls(id=id, name=meta['name'], desc=meta['desc']) @classmethod def get_all(cls, data_partition: str) -> Generator: # products catalog can be large, use a generator return (cls.get(id=key, data_partition=data_partition) for key in cls.redis.keys('{}_products_*'.format(data_partition))) @classmethod def upsert(cls, id, name, desc, data_partition: str) -> None: key = '{}_products_{}'.format(data_partition, id) value = json.dumps({ 'name': name, 'desc': desc }) cls.redis.set(key, value)
2.9375
3
post/migrations/0002_auto_20180224_1857.py
bozburak/Blog_With_Django
0
12785979
<filename>post/migrations/0002_auto_20180224_1857.py<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.10 on 2018-02-24 15:57 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('post', '0001_initial'), ] operations = [ migrations.AddField( model_name='post', name='image', field=models.ImageField(default=1, upload_to=b''), preserve_default=False, ), migrations.AlterField( model_name='post', name='content', field=models.TextField(verbose_name='\u0130\xe7erik'), ), migrations.AlterField( model_name='post', name='publishing_date', field=models.DateTimeField(verbose_name='Yay\u0131nlanma Tarihi'), ), migrations.AlterField( model_name='post', name='title', field=models.CharField(max_length=100, verbose_name='Ba\u015fl\u0131k'), ), ]
1.492188
1
pyecore/__init__.py
4ekin/pyecore
0
12785980
<filename>pyecore/__init__.py """ """ __version__ = "0.11.6"
0.964844
1
omsdk/sdkunits.py
DanielFroehlich/omsdk
61
12785981
<gh_stars>10-100 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # # Copyright © 2018 Dell Inc. or its subsidiaries. All rights reserved. # Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. # Other trademarks may be trademarks of their respective owners. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: <NAME> # import math class iUnitsFactory(object): def __init__(self): self.units_spec = { "Bytes": [ ("B", 1024), ("KB", 1024), ("MB", 1024), ("GB", 1024), ("TB", 1024) ], "Voltage": [ ("V", 1000), ("KV", 1000), ], "Bandwidth": [ ("Bps", 1024), ("KBps", 1024), ("MBps", 1024), ("GBps", 1024), ("TBps", 1024) ], "Watts": [ ("W", 1000), ("KW", 1000), ("MW", 1000), ("GW", 1000), ("TW", 1000) ], "ClockSpeed": [ ("Hz", 1000), ("KHz", 1000), ("MHz", 1000), ("GHz", 1000), ("THz", 1000) ], "MetricDistance": [ ("MM", 10), ("CM", 100), ("M", 1000), ("KM", 1000), ] } def Convert(self, rjson): for field in ['Type', 'InUnits', 'Value']: if not field in rjson: raise Exception("No " + field + " in the json") if not (isinstance(rjson['Value'], int) or \ isinstance(rjson['Value'], float)): raise Exception("invalid value type!") if not rjson['Type'] in self.units_spec: raise Exception("Units for " + rjson['Type'] + " not defined") uspec = self.units_spec[rjson['Type']] cur_index = -1 for i in range(0, len(uspec)): if rjson['InUnits'] == uspec[i][0]: cur_index = i if cur_index < 0: raise Exception("Invalid Value Units Specified") tgt_index = -1 expected_units = None if 'OutUnits' in rjson: expected_units = rjson['OutUnits'] if 'Metrics' in rjson: expected_units = rjson['Metrics'] if not expected_units: tgt_index = len(uspec) else: for i in range(0, len(uspec)): if expected_units == uspec[i][0]: tgt_index = i if tgt_index < 0: tgt_index = len(uspec) if tgt_index < 0: raise Exception("Invalid Value Units Specified for target") final_value = rjson['Value'] found = False if tgt_index == cur_index: found = True final_spec = uspec[tgt_index][0] elif tgt_index > cur_index: k = rjson['Value'] for i in range(cur_index, tgt_index + 1): k1 = k / uspec[i][1] if (expected_units == None and k1 < 1) or (i == tgt_index): found = True final_value = k final_spec = uspec[i][0] break k = k1 elif tgt_index < cur_index: k = rjson['Value'] for i in range(tgt_index, cur_index): k = k * uspec[i][1] found = True final_value = k final_spec = uspec[i][0] final_value = round(final_value, 2) if not found: return rjson['Value'] if 'Metrics' in rjson: return final_value else: return str(final_value) + " " + final_spec def append_sensors_unit(self, reading, unitmodifier, unitstr): if reading : if str(reading).isdigit() : retval = float(reading) * math.pow(10, int(unitmodifier)) s = str(retval).rstrip('0').rstrip('.') if unitstr: s = s + " " + unitstr return s return "Not Available" UnitsFactory = iUnitsFactory()
1.976563
2
basis_selector/nwchem.py
adewyer/Exabyte
0
12785982
<gh_stars>0 """ Author: <NAME> Date: September 7, 2020 Class to create nwchem input file for basis set testing """ import re import os import sys import logging import subprocess import pkg_resources import basis_selector from basis_selector import basis_sets as basis from basis_selector import molecule as mol from basis_selector.parameters import Parameters class Nwchem: """ Class creates an NWChem object. NWChem objects are used to: 1. Create NWChem input files 2. Run NWChem calculations from input files 3. Check the status of NWChem calculations (Running or Finished) 4. Pull data about properties from NWChem output files """ def __init__(self, param): self.param = param self.molname = param.par['molecule_name'] self.jobDescription = param.par['job_description'] self.charge = param.par['charge'] self.mult = param.par['multiplicity'] self.qcMethod = param.par['qc_method'] # Default set to DFT self.dft = param.par['dft_method'] # Default set to B3LYP self.optThreshold = param.par['opt_threshold'] self.refType = param.par['reference_type'] self.refVal = param.par['reference_value'] self.propertyThreshold = param.par['property_threshold'] self.structure = param.par['structure'] def get_nwchem_args(self, basisSet): # Function to grab keyword arguments for NWChem input kwargs = { 'molname': self.molname, 'title': self.jobDescription, 'charge': self.charge, 'basis': basisSet, 'functional': self.dft, 'mult': self.mult, 'thresh': self.optThreshold } return kwargs def write_nwchem_input(self, basis): """ Creation of a single point calculation input file for NWChem. Input files with varying basis sets are created for the same molecule as defined by within the 'self' parameter. """ # molecule object created based on the 'self' parameter molecule = mol.Molecule(self.charge, self.mult, self.structure) kwargs = self.get_nwchem_args(basis) molName = kwargs.get('molname') calcName = molName + '_' + basis # Filename for NWChem input """ Formatting of geometry for NWChem input so that each atom label and corresponding XYZ coordinates on an individual line within the NWChem input file. """ geometry = molecule.reshape_geom(self.structure) formattedGeom = [] sep = '\t' for line in geometry: newLine = sep.join(line) formattedGeom.append(newLine) sep2 = '\n ' formattedGeom = sep2.join(formattedGeom) # Use of NWChem template file to create NWChem input files nwChemInpFi = pkg_resources.resource_filename(__name__, 'templates/nwchem_energy.tpl') with open(nwChemInpFi, 'r') as f: self.nwChemInpFi = f.read() nwChemInput = self.nwChemInpFi.format(molname=calcName, description=kwargs.get('title'), charge=self.charge, structure=formattedGeom, basis=basis, functional=kwargs.get('functional'), mult=self.mult, method=self.qcMethod) # Creation of input files inside of the singlePoints dir. # SinglePoints Dir is where all single point calculations are stored with open('./singlePoints/' + calcName + '.inp', 'w') as nwChemFile: nwChemFile.write(nwChemInput) logging.info("NWChem input file created for {}.".format(calcName)) return calcName def nwchem_submit(self, calcName): # Function that submits NWChem calculations to the computer for completion os.chdir('./singlePoints') cmd = 'nwchem ' + calcName + '.inp' + ' >> ' + calcName + '.out 2>' + calcName + '.err' nwchemRun = os.popen(cmd) os.chdir('../') return None def check_nwchem(self, calcName): """ Function to check whether an NWChem calculation is running or not. Calculation status is checked by looking at the output on the final line of the output file. 0 = running, 1 = done """ status = 0 os.chdir('./singlePoints') with open(calcName + '.out', 'r') as fi: line = fi.read().splitlines() sep='' finalLine = sep.join(line[-1]) if 'Total times' in finalLine: status = 1 # calc done, finished successfully elif "For further details see manual section:" in finalLine: status = -1 # calc done, failed logging.info("Calculation failed for {}.".format(calcName)) os.chdir('../') return status def get_nwchem_energy(self, calcName): # Function grabs and returns the energy from an NWChem output file. energyKeywords = 'Total DFT energy' os.chdir('./singlePoints') with open(calcName + '.out', 'r') as fi: lines = fi.read().splitlines() if "For further details see manual section:" in lines[-1]: energy = 0 # Set energy to 0 if calculation failed else: for line in lines: if energyKeywords in line: energy = line[34::] # Location of energy in file os.chdir('../') return energy
2.796875
3
pytest_sqlalchemy.py
crowdcomms/pytest-sqlalchemy
3
12785983
# -*- coding: utf-8 -*- import os from sqlalchemy import create_engine from sqlalchemy.engine.url import make_url from sqlalchemy.exc import ProgrammingError import logging import pytest logger = logging.getLogger(__name__) def pytest_addoption(parser): group = parser.getgroup('sqlalchemy') group.addoption( '--test-db-prefix', action='store', dest='test_db_prefix', default='test', help='Define a prefix for the test database that is created' ) parser.addini('test_db_prefix', 'Prefix for test database') parser.addini('drop_existing_test_db', 'Drop existing test database for each session') @pytest.fixture(scope='session') def test_db_prefix(): return 'test_' @pytest.fixture(scope='session') def database_url(): return os.environ['DATABASE_URL'] @pytest.fixture(scope='session') def test_database_url(test_db_prefix, database_url): test_url = make_url(database_url) test_url.database = test_db_prefix + test_url.database return test_url @pytest.fixture(scope='session') def test_db(database_url, test_database_url): engine = create_engine(database_url) conn = engine.connect() conn.execution_options(autocommit=False) conn.execute('ROLLBACK') try: conn.execute("DROP DATABASE {}".format(test_database_url.database)) except ProgrammingError: pass finally: conn.execute('ROLLBACK') logger.debug('Creating Test Database {}'.format(test_database_url.database)) conn.execute("CREATE DATABASE {}".format(test_database_url.database)) conn.close() engine.dispose() @pytest.fixture(scope='session') def sqlalchemy_base(): raise ValueError('Please supply sqlalchemy_base fixture') @pytest.fixture(scope='session') def sqlalchemy_session_class(): raise ValueError('Please supply sqlalchemy_session_class fixture') @pytest.fixture(scope='session') def engine(test_database_url): return create_engine(test_database_url) @pytest.yield_fixture(scope='session') def tables(engine, sqlalchemy_base, test_db): sqlalchemy_base.metadata.create_all(engine) yield sqlalchemy_base.metadata.drop_all(engine) @pytest.yield_fixture(scope='function') def db_session(engine, tables, sqlalchemy_session_class): sqlalchemy_session_class.remove() with engine.connect() as connection: transaction = connection.begin_nested() sqlalchemy_session_class.configure(bind=connection) session = sqlalchemy_session_class() session.begin_nested() yield session session.close() transaction.rollback()
2.421875
2
spaghetti/__init__.py
boris-hanin/spaghetti
0
12785984
# -*- coding: utf-8 -*- __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.1.0'
1.054688
1
Retrieve Comments/ConvertText.py
zhoudanxie/analyzing-public-comments
2
12785985
#--------------------------------------Convert Attachment (DOC & PDF) Comments to Text---------------------------------# #---------------------------------------------The GW Regulatory Studies Center-----------------------------------------# #--------------------------------------------------Author: <NAME>-------------------------------------------------# # Import packages import sys import os import comtypes.client from PIL import Image import pytesseract import sys from pdf2image import convert_from_path import fitz import json filePath="Retrieve Comments/Comment Attachments/" #! Specify the path of the folder where the comment attachments are saved #-------------------------------------------Convert DOC files to PDF---------------------------------------------------- # Define a function to convert doc to pdf def docToPdf(filePath,fileName): wdFormatPDF = 17 in_file = os.path.abspath(filePath+fileName+'.doc') out_file = os.path.abspath(filePath+fileName+'.pdf') word = comtypes.client.CreateObject('Word.Application') word.Visible = False doc = word.Documents.Open(in_file) doc.SaveAs(out_file, FileFormat=wdFormatPDF) doc.Close() word.Quit() # Convert DOC comments to PDF for file in os.listdir(filePath): if file.endswith(".doc"): fileName = str(file).split('.doc')[0] if os.path.isfile(filePath + fileName + ".pdf"): pass else: docToPdf(filePath,fileName) #---------------------------------------------Convert PDF files to text------------------------------------------------- # Define a function to convert scanned PDF to text def convertScanPDF(file): ## Part 1 : Converting PDF to images # Store all the pages of the PDF in a variable pages = convert_from_path(file, 500) # Counter to store images of each page of PDF to image image_counter = 1 # Iterate through all the pages stored above for page in pages: # Declaring filename for each page of PDF as JPG # For each page, filename will be: # PDF page 1 -> page_1.jpg # .... # PDF page n -> page_n.jpg filename = "page_" + str(image_counter) + ".jpg" # Save the image of the page in system page.save(filename, 'JPEG') # Increment the counter to update filename image_counter = image_counter + 1 ##Part 2 - Recognizing text from the images using OCR # Variable to get count of total number of pages filelimit = image_counter - 1 text='' # Iterate from 1 to total number of pages for i in range(1, filelimit + 1): # Set filename to recognize text from # Again, these files will be: # page_1.jpg # page_2.jpg # .... # page_n.jpg filename = "page_" + str(i) + ".jpg" # Recognize the text as string in image using pytesserct new_text = str(((pytesseract.image_to_string(Image.open(filename))))) # The recognized text is stored in variable text. # Any string processing may be applied on text # Here, basic formatting has been done: In many PDFs, at line ending, if a word can't be written fully, # a 'hyphen' is added. The rest of the word is written in the next line. Eg: This is a sample text this # word here GeeksF-orGeeks is half on first line, remaining on next. To remove this, we replace every '-\n' to ''. new_text = new_text.replace('-\n', '') # Finally, write the processed text to the file. text += new_text return text # Convert PDF comments to text dic_pdfComments={} notConverted=[] for file in os.listdir(filePath): if file.endswith(".pdf"): doc = fitz.open(filePath+file) fileName=str(file).split('.pdf')[0] num_pages = doc.pageCount count = 0 text = "" while count < num_pages: page = doc[count] count += 1 text += page.getText('text') if text != "": text=text.replace('\n',' ') dic_pdfComments.update({fileName: text}) else: try: text = convertScanPDF(filePath+file) text = text.replace('\n', ' ') dic_pdfComments.update({fileName: text}) except: notConverted.append(file) doc.close print("The number of PDF files that have been converted to text is:", len(dic_pdfComments)) if len(notConverted)>0: print("The following PDF files could not be converted:") print(notConverted) print("END") # Print an example print(dic_pdfComments.keys()) for key, value in dic_pdfComments.items(): if key=="<KEY>": #! Print the text of a specified document print(key, ":", value) #---------------------------------------------Export converted text------------------------------------------------- # Export to JSON ## Output file will include text from all converted comments in one file js_pdfComments=json.dumps(dic_pdfComments) with open('Retrieve Comments/Attachment Comments Example.json', 'w', encoding='utf-8') as f: #! Specify the file to which you want to export the JSON json.dump(js_pdfComments, f, ensure_ascii=False, indent=4)
3.03125
3
day_16/main.py
orfeasa/advent-of-code-2021
29
12785986
<gh_stars>10-100 from dataclasses import dataclass, field @dataclass class Packet: version: int = 0 type_id: int = 0 value: int = None subpackets: list = field(default_factory=list) def parse_transmission( transmission: str, length=None, number_of_packets=None ) -> list[Packet]: if len(transmission) == 0: return [] first_bit = 0 packet = Packet() packet.version = int(transmission[first_bit : first_bit + 3], 2) packet.type_id = int(transmission[first_bit + 3 : first_bit + 6], 2) last_bit = first_bit + 6 # literal if packet.type_id == 4: keep_reading = True number = "" while keep_reading: keep_reading = bool(int(transmission[last_bit : last_bit + 1])) number += transmission[last_bit + 1 : last_bit + 5] last_bit += 5 packet.value = int(number, 2) else: length_type_id = int(transmission[last_bit : last_bit + 1]) last_bit += 1 if length_type_id == 0: total_length = int(transmission[last_bit : last_bit + 15], 2) last_bit += 15 packet.subpackets = parse_transmission( transmission[last_bit : last_bit + total_length] ) last_bit += total_length else: number_of_subpackets = int(transmission[last_bit : last_bit + 11], 2) last_bit += 11 packet.subpackets = parse_transmission( transmission[last_bit:], number_of_packets=number_of_subpackets ) if len(packet.subpackets) == number_of_subpackets: return [packet] if ( len(transmission) == last_bit or transmission[last_bit:] == len(transmission[last_bit:]) * "0" # or length is not None and last_bit == length ): return [packet] return [packet] + parse_transmission(transmission[last_bit:]) def sum_version(packets: list) -> int: sum = 0 for packet in packets: sum += packet.version if packet.version else 0 sum += sum_version(packet.subpackets) if packet.subpackets else 0 return sum def part_one(filename: str) -> int: with open(filename) as f: transmission = f.read().strip() transmission = "620080001611562C8802118E34" transmission = str(bin(int(transmission, 16)))[2:].zfill(len(transmission) * 4) packets = parse_transmission(transmission) return sum_version(packets) def part_two(filename: str) -> int: return 0 if __name__ == "__main__": input_path = "./day_16/input.txt" print("---Part One---") print(part_one(input_path)) print("---Part Two---") print(part_two(input_path))
2.765625
3
neural_compilers/utils/config.py
jordiae/neural-compilers
4
12785987
from enum import Enum from dataclasses import dataclass from typing import Optional class TokenizerType(str, Enum): PYGMENTS = 'pygments' class SubwordType(str, Enum): SUBWORD_NMT = 'subword-nmt' @dataclass class TokenizerConfig: tokenizer_type: TokenizerType subword_tokenizer: SubwordType subword_vocab_size: int shared_vocab: bool @dataclass class DataGenConfig: input_path: str output_path: str min_tokens: int max_tokens: int supervised: bool valid_test_size: int seed: int tokenizer_config: TokenizerConfig just_func: bool = False config_path: Optional[str] = None max_train_data: Optional[int] = None @classmethod def from_dict(cls, d): res = cls(**d) res.tokenizer_config = TokenizerConfig(**d['tokenizer_config']) return res
2.953125
3
data/scripts/compile_acs_data.py
datamade/just-spaces
6
12785988
<filename>data/scripts/compile_acs_data.py import csv import sys from django.conf import settings # Set up a temporary settings file to ensure that we can import the pldp app settings.configure(INSTALLED_APPS=['pldp'], USE_I18N=False) from pldp import forms as pldp_forms from fobi_custom.plugins.form_elements.fields.intercept import forms as plugin_forms def display(choices, slug): """ Get the display name for a form choice based on its slug. We need this function because we want to be able to store ACS data using the human-readable display name for each field, but in the code we want to reference the fields using their slugs, which are easier to change. :param choices: A list of tuples representing Django-style form choices. :param slug: The slug of the choice to select. :return: The display name for the given slug. """ for choice_slug, display_name in choices: if choice_slug == slug: return display_name raise NameError('No choice for for slug {} in {}'.format(slug, str(choices))) # Create mappings for compiled ACS tables based on the input variables that we can # sum to generate those tables. For example, the value for `age_complex.under_5` # is the sum of the ACS variables `male_under_5` and `female_under_5`. FIELD_MAPPINGS = { # Ages don't need display names because their slugs are the same as their # human-readable names. 'age_basic': { '0-14': [ 'male_under_5', 'male_5_to_9', 'male_10_to_14', 'female_under_5', 'female_5_to_9', 'female_10_to_14', ], '15-24': [ 'male_15_to_17', 'male_18_to_19', 'male_20', 'male_21', 'male_22_to_24', 'female_15_to_17', 'female_18_to_19', 'female_20', 'female_21', 'female_22_to_24', ], '25-64': [ 'male_25_to_29', 'male_30_to_34', 'male_35_to_39', 'male_40_to_44', 'male_45_to_49', 'male_50_to_54', 'male_55_to_59', 'male_60_to_61', 'male_62_to_64', 'female_25_to_29', 'female_30_to_34', 'female_35_to_39', 'female_40_to_44', 'female_45_to_49', 'female_50_to_54', 'female_55_to_59', 'female_60_to_61', 'female_62_to_64', ], '65+': [ 'male_65_to_66', 'male_67_to_69', 'male_70_to_74', 'male_75_to_79', 'male_80_to_84', 'male_85_plus', 'female_65_to_66', 'female_67_to_69', 'female_70_to_74', 'female_75_to_79', 'female_80_to_84', 'female_85_plus', ] }, 'age_detailed': { '0-4': ['male_under_5', 'female_under_5'], '5-14': ['male_5_to_9', 'male_10_to_14', 'female_5_to_9', 'female_10_to_14'], '15-24': [ 'male_15_to_17', 'male_18_to_19', 'male_20', 'male_21', 'male_22_to_24', 'female_15_to_17', 'female_18_to_19', 'female_20', 'female_21', 'female_22_to_24', ], '25-44': [ 'male_25_to_29', 'male_30_to_34', 'male_35_to_39', 'male_40_to_44', 'female_25_to_29', 'female_30_to_34', 'female_35_to_39', 'female_40_to_44', ], '45-64': [ 'male_45_to_49', 'male_50_to_54', 'male_55_to_59', 'male_60_to_61', 'male_62_to_64', 'female_45_to_49', 'female_50_to_54', 'female_55_to_59', 'female_60_to_61', 'female_62_to_64', ], '65-74': [ 'male_65_to_66', 'male_67_to_69', 'male_70_to_74', 'female_65_to_66', 'female_67_to_69', 'female_70_to_74', ], '75+': [ 'male_75_to_79', 'male_80_to_84', 'male_85_plus', 'female_75_to_79', 'female_80_to_84', 'female_85_plus', ], }, 'age_complex': { '0-4': ['male_under_5', 'female_under_5'], '5-9': ['male_5_to_9', 'female_5_to_9'], '10-14': ['male_10_to_14', 'female_10_to_14'], '15-17': ['male_15_to_17', 'female_15_to_17'], '18-24': [ 'male_18_to_19', 'male_20', 'male_21', 'male_22_to_24', 'female_18_to_19', 'female_20', 'female_21', 'female_22_to_24', ], '25-34': ['male_25_to_29', 'male_30_to_34', 'female_25_to_29', 'female_30_to_34'], '35-44': ['male_35_to_39', 'male_40_to_44', 'female_35_to_39', 'female_40_to_44'], '45-54': ['male_45_to_49', 'male_50_to_54', 'female_45_to_49', 'female_50_to_54'], '55-64': [ 'male_55_to_59', 'male_60_to_61', 'male_62_to_64', 'female_55_to_59', 'female_60_to_61', 'female_62_to_64', ], '65-74': [ 'male_65_to_66', 'male_67_to_69', 'male_70_to_74', 'female_65_to_66', 'female_67_to_69', 'female_70_to_74', ], '75+': [ 'male_75_to_79', 'male_80_to_84', 'male_85_plus', 'female_75_to_79', 'female_80_to_84', 'female_85_plus', ], }, 'gender_observational': { display(pldp_forms.GENDER_BASIC_CHOICES, 'male'): ['male_total'], display(pldp_forms.GENDER_BASIC_CHOICES, 'female'): ['female_total'], display(pldp_forms.GENDER_BASIC_CHOICES, 'unknown'): [], }, 'gender_intercept': { display(plugin_forms.GENDER_INTERCEPT_CHOICES, 'male'): ['male_total'], display(plugin_forms.GENDER_INTERCEPT_CHOICES, 'female'): ['female_total'], display(plugin_forms.GENDER_INTERCEPT_CHOICES, 'non_binary'): [], display(plugin_forms.GENDER_INTERCEPT_CHOICES, 'no_answer'): [], }, 'income': { display(plugin_forms.INCOME_CHOICES, 'under_20k'): ['under_10k', '10k_to_15k', '15k_to_20k'], display(plugin_forms.INCOME_CHOICES, '20_40k'): ['20k_to_25k', '25k_to_30k', '30k_to_35k', '35k_to_40k'], display(plugin_forms.INCOME_CHOICES, '40_60k'): ['40k_to_45k', '45k_to_50k', '50k_to_60k'], display(plugin_forms.INCOME_CHOICES, '60_75k'): ['60k_to_75k'], display(plugin_forms.INCOME_CHOICES, '75_100k'): ['75k_to_100k'], display(plugin_forms.INCOME_CHOICES, '100k_plus'): ['100k_to_125k', '125k_to_150k', '150k_to_200k', '200k_plus'], }, 'education': { display(plugin_forms.EDUCATION_CHOICES, 'no_high_school'): [ 'no_schooling', 'nursery', 'kindergarten', 'first_grade', 'second_grade', 'third_grade', 'fourth_grade', 'fifth_grade', 'sixth_grade', 'seventh_grade', 'eighth_grade', 'ninth_grade', 'tenth_grade', 'eleventh_grade', 'twelfth_grade', ], display(plugin_forms.EDUCATION_CHOICES, 'high_school'): [ 'high_school_diploma', 'ged', 'less_than_1_year_college', 'one_or_more_years_college' ], display(plugin_forms.EDUCATION_CHOICES, 'associate'): ['associates'], display(plugin_forms.EDUCATION_CHOICES, 'bachelor'): ['bachelors'], display(plugin_forms.EDUCATION_CHOICES, 'graduate'): ['masters', 'professional', 'doctorate'], }, 'race': { display(plugin_forms.RACE_CHOICES, 'black'): ['black'], display(plugin_forms.RACE_CHOICES, 'asian'): ['asian'], display(plugin_forms.RACE_CHOICES, 'white'): ['white'], display(plugin_forms.RACE_CHOICES, 'hispanic_latino'): [], # ACS doesn't include Hispanic as a race display(plugin_forms.RACE_CHOICES, 'native'): ['american_indian'], display(plugin_forms.RACE_CHOICES, 'hawaiian'): ['pacific_islander'], display(plugin_forms.RACE_CHOICES, 'multiple'): ['two_or_more'], display(plugin_forms.RACE_CHOICES, 'other'): ['other'], }, 'household_tenure': { # Household tenure is a free response intercept question, so it doesn't have # official choices in its form. '0-1979': ['owner_1979_or_earlier', 'renter_1979_or_earlier'], '1980-1989': ['owner_1980_to_1989', 'renter_1980_to_1989'], '1990-1999': ['owner_1990_to_1999', 'renter_1990_to_1999'], '2000-2009': ['owner_2000_to_2009', 'renter_2000_to_2009'], '2010-2014': ['owner_2010_to_2014', 'renter_2010_to_2014'], '2015+': ['owner_2015_plus', 'renter_2015_plus'], }, 'employment': { display(plugin_forms.EMPLOYMENT_CHOICES, 'employed'): ['employed'], display(plugin_forms.EMPLOYMENT_CHOICES, 'seeking'): ['unemployed'], display(plugin_forms.EMPLOYMENT_CHOICES, 'not_seeking'): ['not_in_labor_force'], display(plugin_forms.EMPLOYMENT_CHOICES, 'in_armed_forces'): ['in_armed_forces'], }, 'own_or_rent': { display(plugin_forms.OWN_OR_RENT_CHOICES, 'owner'): ['owner_total'], display(plugin_forms.OWN_OR_RENT_CHOICES, 'renter'): ['renter_total'], display(plugin_forms.OWN_OR_RENT_CHOICES, 'other'): [], }, 'transportation': { display(plugin_forms.TRANSPORTATION_CHOICES, 'walked'): ['walked'], display(plugin_forms.TRANSPORTATION_CHOICES, 'bicycle'): ['bicycle'], display(plugin_forms.TRANSPORTATION_CHOICES, 'car_truck_van'): ['car_truck_van'], display(plugin_forms.TRANSPORTATION_CHOICES, 'motorcycle'): ['motorcycle'], display(plugin_forms.TRANSPORTATION_CHOICES, 'train'): ['subway', 'railroad'], display(plugin_forms.TRANSPORTATION_CHOICES, 'bus'): ['bus'], display(plugin_forms.TRANSPORTATION_CHOICES, 'trolley'): ['trolley'], display(plugin_forms.TRANSPORTATION_CHOICES, 'ferryboat'): ['ferryboat'], display(plugin_forms.TRANSPORTATION_CHOICES, 'taxicab'): ['taxicab'], display(plugin_forms.TRANSPORTATION_CHOICES, 'other_means'): ['other_means'], }, } if __name__ == '__main__': # Parse input files from the command line variable_name = sys.argv[1] if len(variable_name) == 0: raise NameError( 'Script requires an argument representing the name of the output variable' ) field_mapping = FIELD_MAPPINGS[variable_name] reader = csv.DictReader(sys.stdin) writer = csv.DictWriter(sys.stdout, fieldnames=['fips'] + list(field_mapping.keys())) writer.writeheader() for row in reader: output_row = {'fips': row['fips']} for output_field, input_fields in field_mapping.items(): output_row[output_field] = 0 for input_field in input_fields: output_row[output_field] += float(row[input_field]) writer.writerow(output_row)
2.75
3
tests/util.py
Codesflow-Simon/Poker-framework
0
12785989
import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../src'))) from card import Card, suit_num_dict, rank_num_dict from itertools import product deck = [] suits = [] ranks = [] for suit, rank in product(suit_num_dict.keys(),rank_num_dict.keys()): deck.append(Card(suit, rank)) suits.append(suit) ranks.append(rank)
2.6875
3
tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/models_test.py
SoaringChicken/tensorflow-privacy
0
12785990
# Copyright 2020, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest import numpy as np from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import models from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData class TrainedAttackerTest(absltest.TestCase): def test_base_attacker_train_and_predict(self): base_attacker = models.TrainedAttacker() self.assertRaises(NotImplementedError, base_attacker.train_model, [], []) self.assertRaises(AssertionError, base_attacker.predict, []) def test_predict_before_training(self): lr_attacker = models.LogisticRegressionAttacker() self.assertRaises(AssertionError, lr_attacker.predict, []) def test_create_attacker_data_loss_only(self): attack_input = AttackInputData( loss_train=np.array([1, 3]), loss_test=np.array([2, 4])) attacker_data = models.create_attacker_data(attack_input, 2) self.assertLen(attacker_data.features_all, 4) def test_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData( logits_train=np.array([[1, 2], [5, 6], [8, 9]]), logits_test=np.array([[10, 11], [14, 15]]), loss_train=np.array([3, 7, 10]), loss_test=np.array([12, 16])) attacker_data = models.create_attacker_data(attack_input, balance=False) self.assertLen(attacker_data.features_all, 5) self.assertLen(attacker_data.fold_indices, 5) self.assertEmpty(attacker_data.left_out_indices) def test_unbalanced_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData( logits_train=np.array([[1, 2], [5, 6], [8, 9]]), logits_test=np.array([[10, 11], [14, 15]]), loss_train=np.array([3, 7, 10]), loss_test=np.array([12, 16])) attacker_data = models.create_attacker_data(attack_input, balance=True) self.assertLen(attacker_data.features_all, 5) self.assertLen(attacker_data.fold_indices, 4) self.assertLen(attacker_data.left_out_indices, 1) self.assertIn(attacker_data.left_out_indices[0], [0, 1, 2]) def test_balanced_create_attacker_data_loss_and_logits(self): attack_input = AttackInputData( logits_train=np.array([[1, 2], [5, 6], [8, 9]]), logits_test=np.array([[10, 11], [14, 15], [17, 18]]), loss_train=np.array([3, 7, 10]), loss_test=np.array([12, 16, 19])) attacker_data = models.create_attacker_data(attack_input) self.assertLen(attacker_data.features_all, 6) self.assertLen(attacker_data.fold_indices, 6) self.assertEmpty(attacker_data.left_out_indices) if __name__ == '__main__': absltest.main()
2
2
challonge.py
garsh0p/garpr-goog
2
12785991
<gh_stars>1-10 import iso8601 import os import requests from requests_toolbelt.adapters import appengine appengine.monkeypatch() BASE_CHALLONGE_API_URL = 'https://api.challonge.com/v1/tournaments' URLS = { 'tournament': os.path.join(BASE_CHALLONGE_API_URL, '%s.json'), 'participants': os.path.join( BASE_CHALLONGE_API_URL, '%s', 'participants.json'), 'matches': os.path.join(BASE_CHALLONGE_API_URL, '%s', 'matches.json'), } # http://api.challonge.com/v1 class ChallongeScraper(object): def __init__(self, tournament_id): self.api_key = os.environ.get('CHALLONGE_KEY') self.api_key_dict = {'api_key': self.api_key} self.tournament_id = tournament_id self.raw_dict = None self.get_raw() def get_raw(self): if self.raw_dict is not None: return self.raw_dict self.raw_dict = {} for key, url in URLS.items(): url = url % self.tournament_id self.raw_dict[key] = self._check_for_200( requests.get(url, params=self.api_key_dict)).json() return self.raw_dict def get_url(self): return self.get_raw()['tournament']['tournament']['full_challonge_url'] def get_name(self): return self.get_raw()['tournament']['tournament']['name'].strip() def get_date(self): return iso8601.parse_date(self.get_raw()['tournament']['tournament']['created_at']) def _human_round_names(self, matches): """Convert round names from numbers into strings like WQF and LF.""" last_round = matches[-1]['round'] SUFFIXES = ['GF', 'F', 'SF', 'QF'] rounds = {} for i, finals in enumerate(SUFFIXES): rounds[last_round-i] = finals for i, finals in enumerate(SUFFIXES[1:]): rounds[-(last_round-i)-1] = finals reset = matches[-1]['round'] == matches[-2]['round'] reset_count = 1 for m in matches: r = m['round'] name = 'W' if r > 0 else 'L' if r not in rounds: name = '{}R{}'.format(name, abs(r)) else: if rounds[r] != 'GF': name += rounds[r] else: name = 'GF' if reset: name += str(reset_count) reset_count += 1 m['round'] = name def get_matches(self): # sometimes challonge seems to use the "group_player_ids" parameter of "participant" instead # of the "id" parameter of "participant" in the "matches" api. # not sure exactly when this happens, but the following code checks for both player_map = dict() for p in self.get_raw()['participants']: if p['participant'].get('name'): player_name = p['participant']['name'].strip() else: player_name = p['participant'].get('username', '<unknown>').strip() player_map[p['participant'].get('id')] = player_name if p['participant'].get('group_player_ids'): for gpid in p['participant']['group_player_ids']: player_map[gpid] = player_name matches = [] for m in self.get_raw()['matches']: m = m['match'] set_count = m['scores_csv'] winner_id = m['winner_id'] loser_id = m['loser_id'] round_num = m['round'] if winner_id is not None and loser_id is not None: winner = player_map[winner_id] loser = player_map[loser_id] # TODO db object here? match_result = {'winner': winner, 'loser': loser, 'round': round_num} matches.append(match_result) self._human_round_names(matches) return matches def get_players(self): return [p['participant']['name'].strip() if p['participant']['name'] else p['participant']['username'].strip() for p in self.get_raw()['participants']] def _check_for_200(self, response): response.raise_for_status() return response
2.453125
2
RecoJets/JetAnalyzers/test/DijetRatioPlotExample_cfg.py
ckamtsikis/cmssw
852
12785992
<gh_stars>100-1000 # PYTHON configuration file. # Description: Example of dijet ratio plot # with corrected and uncorrected jets # Author: <NAME> # Date: 22 - November - 2009 import FWCore.ParameterSet.Config as cms process = cms.Process("Ana") process.load("FWCore.MessageService.MessageLogger_cfi") ############# Set the number of events ############# process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) ############# Define the source file ############### process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( '/store/mc/Summer09/QCDFlat_Pt15to3000/GEN-SIM-RECO/MC_31X_V9_7TeV-v1/0000/FABD2A94-C0D3-DE11-B6FD-00237DA13C2E.root') ) process.source.inputCommands = cms.untracked.vstring("keep *","drop *_MEtoEDMConverter_*_*") ############# Include the jet corrections ########## process.load("JetMETCorrections.Configuration.L2L3Corrections_Summer09_7TeV_ReReco332_cff") # set the record's IOV. Must be defined once. Choose ANY correction service. # process.prefer("L2L3JetCorrectorAK5Calo") ############# User analyzer (calo jets) ## process.DijetRatioCaloJets = cms.EDAnalyzer("DijetRatioCaloJets", # Uncorrected CaloJets UnCorrectedJets = cms.string('ak5CaloJets'), # Corrected CaloJets CorrectedJets = cms.string('L2L3CorJetAK5Calo'), # Name of the output ROOT file containing the histograms HistoFileName = cms.untracked.string('DijetRatioCaloJets.root') ) ############# User analyzer (PF jets) ## process.DijetRatioPFJets = cms.EDAnalyzer("DijetRatioPFJets", # Uncorrected PFJets UnCorrectedJets = cms.string('ak5PFJets'), # Corrected PFJets CorrectedJets = cms.string('L2L3CorJetAK5PF'), # Name of the output ROOT file containing the histograms HistoFileName = cms.untracked.string('DijetRatioPFJets.root') ) ############# User analyzer (gen jets) ## # ak5GenJets are NOT there: First load the needed modules process.load("RecoJets.Configuration.GenJetParticles_cff") process.load("RecoJets.JetProducers.ak5GenJets_cfi") process.DijetRatioGenJets = cms.EDAnalyzer("DijetRatioGenJets", # Uncorrected GenJets UnCorrectedJets = cms.string('ak5GenJets'), # Corrected GenJets == Uncorrected GenJets CorrectedJets = cms.string('ak5GenJets'), # Name of the output ROOT file containing the histograms HistoFileName = cms.untracked.string('DijetRatioGenJets.root') ) ############# Path ########################### process.p = cms.Path(process.L2L3CorJetAK5Calo * process.DijetRatioCaloJets) process.p2 = cms.Path(process.L2L3CorJetAK5PF * process.DijetRatioPFJets) process.p3 = cms.Path(process.genParticlesForJets * process.ak5GenJets * process.DijetRatioGenJets) ############# Format MessageLogger ################# process.MessageLogger.cerr.FwkReport.reportEvery = 10
1.765625
2
bin/bucmup.py
aelzenaar/bucephalus
0
12785993
<reponame>aelzenaar/bucephalus import sys import argparse import json import dbops import config from pathlib import Path parser = argparse.ArgumentParser(description='Bucephalus: Update Metadata') parser.add_argument('id', metavar='IDENT', type=str, nargs=1, help='article ID') parser.add_argument('-t', metavar='TITLE', type=str, nargs=1, help='set title', default=None) parser.add_argument('-a', metavar='AUTHOR', type=str, nargs=1, help='set author name', default=None) parser.add_argument('-T', metavar='TAGS', type=str, nargs='+', help='set tags', default=None) args = vars(parser.parse_args()) record = dbops.get_record_by_id(args['id'][0]) didSomething = False if(args['a'] != None): record['Buc_author'] = args['a'][0] didSomething = True if(args['t'] != None): record['Buc_title'] = args['t'][0] didSomething = True if(args['T'] != None): record['Buc_tags'] = args['T'] didSomething = True if didSomething: dbops.write_metadata(record)
2.421875
2
005/011.py
gerssivaldosantos/MeuGuru
1
12785994
<gh_stars>1-10 """ Crie uma função que irá pegar alguma jogada válida do usuário. No 2048, as jogadas válidas serão ’a’, ’s’, ’d’, ’w’. Não aceite qualquer outro tipo de informação Atenção 2: A função recebe a informação a partir no shell, não confunda com parâmetros """ def receber_jogada(): """ Lê uma jogada e confere se ela é válida """ #Lista com as jogadas válidas validas = ["a","s","d","w"] while True: #Conferindo se a jogada faz parte do conjunto #de válidas jogada = str(input("Digite a jogada :")) if jogada in validas: break else: print("Jogada inválida. ",end="")
3.46875
3
slnee_quality/slnee_quality/doctype/strategic_plan/strategic_plan.py
erpcloudsystems/slnee_quality
0
12785995
# Copyright (c) 2021, erpcloud.systems and contributors # For license information, please see license.txt # import frappe from __future__ import unicode_literals import frappe from frappe.utils import getdate, nowdate from frappe import _ from frappe.model.document import Document from frappe.utils import cstr, get_datetime, formatdate class StrategicPlan(Document): def validate(self): self.validate_duplicate_record() def validate_duplicate_record(self): res = frappe.db.sql(""" select name from `tabStrategic Plan` where workflow_state NOT IN ("Approved","Rejected","Completed") and name != %s and docstatus != 2 """, (self.name)) if res: frappe.throw(_("You Can't Create A New Strategic Plan While Another Plan Is Still In Progress").format( frappe.bold(self.name))) #pass
2.0625
2
addons/azureblobstorage/provider.py
tsukaeru/RDM-osf.io
11
12785996
# -*- coding: utf-8 -*- from osf.models.external import BasicAuthProviderMixin class AzureBlobStorageProvider(BasicAuthProviderMixin): """An alternative to `ExternalProvider` not tied to OAuth""" name = 'Azure Blob Storage' short_name = 'azureblobstorage' def __init__(self, account=None): super(AzureBlobStorageProvider, self).__init__() # provide an unauthenticated session by default self.account = account def __repr__(self): return '<{name}: {status}>'.format( name=self.__class__.__name__, status=self.account.display_name if self.account else 'anonymous' )
2.484375
2
GermanOK/Book.py
romainledru/GermanOK
0
12785997
<reponame>romainledru/GermanOK import random from Save import Save class Word: def __init__(self): """Initialisation: download the actual version of data.json """ d = Save("") self.dico = d.download() def getDico(self): return self.dico def pickWord(self): print("A Word is picked") key = random.choice(list(self.dico)) return key ,self.dico[key] def compareWord(self,key,word): word = word.lower() counter = 0 for letter in range(len(word)): if self.dico[key][0][letter] == word[letter]: counter += 1 if counter >= len(self.dico[key][0])-2: return True else: return False def updateWord(self,word,point): word = word.lower() if point: self.dico[word][1] += 1 else: self.dico[word][2] += 1 d = Save(self.getDico()) d.upload() def deleteWord(self,word): word = word.lower() try: self.dico.pop(word) except KeyError: print("Word does not exist on database") pass d = Save(self.getDico()) d.upload() def newWord(self,de,fr): de = de.lower() fr = fr.lower() print("New Word learned: {} for {}".format(de,fr)) try: if self.dico[de]: print("Word Already Exist") pass except KeyError: print("Creating New Word") self.dico[de] = [fr,0,0] d = Save(self.getDico()) d.upload()
3.53125
4
_note_/_xml_.py
By2048/_python_
2
12785998
<reponame>By2048/_python_ from xml.etree.ElementTree import parse def main(): with open("T:\\keymap.xml", 'r', encoding='utf-8') as file: data = parse(file).getroot() for action in data.findall('action'): if not action.findall('keyboard-shortcut'): continue print(action.attrib['id'].lstrip('$')) for keystroke in action.findall('keyboard-shortcut'): first = keystroke.attrib['first-keystroke'] second = keystroke.attrib.get('second-keystroke') print(f'{first}{" " + second if second else ""}') print() if __name__ == '__main__': main()
3.078125
3
Camera/AutoDriving.py
maroneal/MircoITS
0
12785999
<reponame>maroneal/MircoITS # import the necessary packages from picamera.array import PiRGBArray from picamera import PiCamera from time import sleep import cv2 import numpy as np import socket import time #Variables for the communication with the C program TCP_IP = "127.0.0.1" TCP_PORT = 4200 print ("TCP target IP:"), TCP_IP print ("TCP target port:"), TCP_PORT #Variables sent according of the position on the line DataOnLine = 0xAC #Robot on the line DataNoLine = 0xAF #No line seen DataRight = 0xAE #Turn Right DataLeft = 0xAD #Turn Left # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (640, 480) camera.framerate = 32 rawCapture = PiRGBArray(camera) i=1; ThreshBin = 90 #binarization level RightLim = 380 #Limit when a point is consider on the right LeftLim = 260 #Limit when a point is consider on the left ThreshObjSize = 27000 #limit area when an object is considered an obstacle ObjectDetected = 0; #Object detected or not # allow the camera to warmup sleep(0.1) # capture frames from the camera for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image - this array # will be 3D, representing the width, height, and # of channels image = frame.array #IMAGE PROCESSING FOR THE OBJECT DETECTION crop_img_high = image[120:320, 0:640] #The top of the camera is selected gray = cv2.cvtColor(crop_img_high, cv2.COLOR_BGR2GRAY) #Color to grayscale blur=cv2.GaussianBlur(gray,(5,5),0) #remove noise ret, thresh = cv2.threshold(blur,ThreshBin,255,cv2.THRESH_BINARY_INV) #Binarization # Erode and dilate to remove accidental line detections mask = cv2.erode(thresh, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # Find the contours of the frame _,contours,hierarchy = cv2.findContours(mask, 1, cv2.CHAIN_APPROX_NONE) # Find the biggest contour (if detected) if len(contours) > 0: #We take informations about the object detected c = max(contours, key=cv2.contourArea) M = cv2.moments(c) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) cv2.line(crop_img_high,(cx,0),(cx,720),(255,0,0),1) cv2.line(crop_img_high,(0,cy),(1280,cy),(255,0,0),1) cv2.drawContours(crop_img_high, contours, -1, (0,255,0), 1) #If the object is small enough, we consider it as the line if (M['m00']<ThreshObjSize): ObjectDetected = 0; else: #sending the data to the C program sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((TCP_IP, TCP_PORT)) print("I see an obstacle") MESSAGE = TCP_IP+";0;0;0;0;0;0;0;0;"+chr(DataNoLine)+";" sock.send((MESSAGE).encode()) sock.close() ObjectDetected = 1; #IMAGE PROCESSING FOR THE LINE FOLLOWING crop_img_low = image[200:640, 0:640] #We only consider the low part of the camera gray2 = cv2.cvtColor(crop_img_low, cv2.COLOR_BGR2GRAY) blur2=cv2.GaussianBlur(gray2,(5,5),0) ret, thresh2 = cv2.threshold(blur2,ThreshBin,255,cv2.THRESH_BINARY_INV) # Erode and dilate to remove accidental line detections mask2 = cv2.erode(thresh2, None, iterations=2) mask2 = cv2.dilate(mask2, None, iterations=2) # Find the contours of the frame _,contours2,_ = cv2.findContours(mask2, 1, cv2.CHAIN_APPROX_NONE) # Find the biggest contour (if detected) if ((len(contours2) > 0) and ObjectDetected==0): c = max(contours2, key=cv2.contourArea) M = cv2.moments(c) cv2.imshow("Line", mask2) #Show the frame of the line cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) cv2.line(crop_img_low,(cx,0),(cx,720),(255,0,0),1) cv2.line(crop_img_low,(0,cy),(1280,cy),(255,0,0),1) cv2.drawContours(crop_img_low, contours2, -1, (0,255,0), 1) if cx >= RightLim: #sending the data to the C program sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((TCP_IP, TCP_PORT)) print ("Turn Right") MESSAGE = TCP_IP+";0;0;0;0;0;0;0;0;"+chr(DataRight)+";" sock.send((MESSAGE).encode()) sock.close() if cx < RightLim and cx > LeftLim: #sending the data to the C program sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((TCP_IP, TCP_PORT)) print ("On Track!") MESSAGE =TCP_IP+";0;0;0;0;0;0;0;0;"+chr(DataOnLine)+";" sock.send((MESSAGE).encode()) sock.close() if cx <= LeftLim: #sending the data to the C program sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((TCP_IP, TCP_PORT)) print ("Turn Left") MESSAGE = TCP_IP+";0;0;0;0;0;0;0;0;"+chr(DataLeft)+";" sock.send((MESSAGE).encode()) sock.close() else: #sending the data to the C program sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((TCP_IP, TCP_PORT)) print("I don't see the line") MESSAGE = TCP_IP+";0;0;0;0;0;0;0;0;"+chr(DataNoLine)+";" sock.send((MESSAGE).encode()) sock.close() # show the frame cv2.imshow("Obstacle", mask) #cv2.imshow("Camera", image) key = cv2.waitKey(1) & 0xFF # clear the stream in preparation for the next frame rawCapture.truncate(0) #Press "r" to start a record and "s" to stop if key == ord("r"): camera.start_recording('/home/pi/Desktop/MicroITS/Camera/Server/video.h264') if key == ord("s"): camera.stop_recording() # if the `p` key was pressed, take a picture if key == ord("p"): camera.capture('/home/pi/Desktop/MicroITS/Camera/Server/capture%s.jpg' %i) i= i+1 # if the `q` key was pressed, break from the loop if key == ord("q"): cv2.destroyAllWindows() break
2.703125
3
pdiff/__main__.py
nkouevda/pdiff
5
12786000
<gh_stars>1-10 import os import sys from . import argument_parser from . import diff_formatter def main(): parser = argument_parser.get_parser() args = parser.parse_args() for filename in (args.old_filename, args.new_filename): if not os.path.exists(filename): sys.stderr.write('error: file does not exist: %s\n' % filename) return 1 elif os.path.isdir(filename): sys.stderr.write('error: path is a directory: %s\n' % filename) return 1 formatter = diff_formatter.DiffFormatter( args.old_filename, args.new_filename, args.context, args.width, args.tab_size, args.signs, args.line_numbers, args.background) for line in formatter.get_lines(): sys.stdout.write(line) return 0 if __name__ == '__main__': sys.exit(main())
2.875
3
src/data_processing/Dallas/dallas_data.py
cyrusneary/multiscaleLockdownCovid19
0
12786001
# %% import sys, os import pandas as pd import networkx as nx # import matplotlib.pyplot as plt import numpy as np import pickle base_file_path = os.path.abspath(os.path.join(os.curdir, '..','..', '..')) # should point to the level above the src directory data_path = os.path.join(base_file_path, 'data', 'Intercity_Dallas') # (grocery_demand, fitness_demand, pharmacy_demand, physician_demand, hotel_demand, religion_demand, restaurant_demand) # Entity indexes # 0 - groceries # 1 - fitness # 2 - pharmacy # 3 - physician # 4 - hotel # 5 - religion # 6 - restaurant # Data processing parameters fitness_freq = 94/12 # visits per unique visitor per month pharmacy_freq = 35/12 # visits per unique visitor per month physician_freq = 1 # visits per unique visitor per month hotel_freq = 1 # visits per unique visitor per month # religion_freq = 25/12 # visits per unique visitor per month grocery_freq = 2 # visits per unique visitor per month restaurant_freq = 1 # Assume each restaurant-goer only visits a given restaurant once per month (if at all) month_day_time_conversion = 1/30 # months/day min_demand_val = 5 # %% # First get a list of the counties in Dallas MSA county_fitness = pd.read_excel(os.path.join(data_path,'TX_Fitness_County.xlsx')) counties = list(county_fitness.CNTY_NM.unique()) num_counties = len(counties) print(counties) county_data = dict() for county in counties: county_data[county] = {'index' : counties.index(county)} # %% # In county data, save a list of the block groups belonging to each county. for county in counties: county_data[county]['bg_list'] = set() # Load and store block-group statistics bg_info = dict() # Save population data by county print('Processing population data...') population_data = pd.read_excel(os.path.join(data_path, 'Population_bg_Dallas.xlsx')) for index, row in population_data.iterrows(): county = row['NAME'] if county in counties: bg_id = row['GEO_ID'] population = row['Population'] bg_info[bg_id] = dict() bg_info[bg_id]['county'] = county bg_info[bg_id]['population'] = population county_data[county]['bg_list'].add(bg_id) # Save devices data by county print('Processing device data...') device_data = pd.read_excel(os.path.join(data_path, 'TX_Devices_bg.xlsx')) for index, row in device_data.iterrows(): bg_id = row['census_block_group'] if bg_id in bg_info.keys(): devices = row['number_devices_residing'] bg_info[bg_id]['devices'] = devices # %% # Create arrays to store population and related data devices = np.zeros((num_counties,)) populations = np.zeros((num_counties,)) # Now save populations and device counts by county for county in counties: county_data[county]['population'] = 0 county_data[county]['devices'] = 0 # Iterate over the block groups in each county and add the population and device count for bg_id in county_data[county]['bg_list']: county_data[county]['population'] = county_data[county]['population'] + bg_info[bg_id]['population'] county_data[county]['devices'] = county_data[county]['devices'] + bg_info[bg_id]['devices'] devices[county_data[county]['index']] = county_data[county]['devices'] populations[county_data[county]['index']] = county_data[county]['population'] # %% # Create a map from safegraph ID to county sgid_to_county = dict() fitness_county = pd.read_excel(os.path.join(data_path, 'TX_Fitness_County.xlsx')) for index, row in fitness_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county grocery_county = pd.read_excel(os.path.join(data_path, 'TX_Grocery_County.xlsx')) for index, row in grocery_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county hmotel_county = pd.read_excel(os.path.join(data_path, 'TX_HMotel_County.xlsx')) for index, row in hmotel_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county pharmacy_county = pd.read_excel(os.path.join(data_path, 'TX_Pharmacy_County.xlsx')) for index, row in pharmacy_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county physician_county = pd.read_excel(os.path.join(data_path, 'TX_Physician_County.xlsx')) for index, row in physician_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM_1'] sgid_to_county[sgid] = county restaurant_county = pd.read_excel(os.path.join(data_path, 'TX_Restaurant_County.xlsx')) for index, row in restaurant_county.iterrows(): sgid = row['safegraph_'] county = row['CNTY_NM'] sgid_to_county[sgid] = county # %% # Create arrays to store demand data fitness_demand = np.zeros((num_counties,1)) pharmacy_demand = np.zeros((num_counties,1)) physician_demand = np.zeros((num_counties,1)) hotel_demand = np.zeros((num_counties,1)) religion_demand = np.zeros((num_counties,1)) grocery_demand = np.zeros((num_counties,1)) restaurant_demand = np.zeros((num_counties,1)) # %% # Process grocery data print('Processing grocery data...') grocery_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Grocery.xlsx')) grocery_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in grocery_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] grocery_demand_dest_mat[origin_ind, destination_ind] = \ int(grocery_demand_dest_mat[origin_ind, destination_ind] + (count * grocery_freq)) for i in range(num_counties): for j in range(num_counties): grocery_demand_dest_mat[i,j] = grocery_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['grocery_demand_dest'] = grocery_demand_dest_mat[i, :] for i in range(num_counties): grocery_demand[i] = np.sum(grocery_demand_dest_mat[i,:]) if grocery_demand[i] <= min_demand_val: grocery_demand[i] = min_demand_val county_data[counties[i]]['grocery_demand'] = grocery_demand[i] # %% # Process fintess data print('Processing fitness data...') fitness_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Fitness.xlsx')) fitness_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in fitness_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] fitness_demand_dest_mat[origin_ind, destination_ind] = \ int(fitness_demand_dest_mat[origin_ind, destination_ind] + (count * fitness_freq)) for i in range(num_counties): for j in range(num_counties): fitness_demand_dest_mat[i,j] = fitness_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['fitness_demand_dest'] = fitness_demand_dest_mat[i, :] for i in range(num_counties): fitness_demand[i] = np.sum(fitness_demand_dest_mat[i,:]) if fitness_demand[i] <= min_demand_val: fitness_demand[i] = min_demand_val county_data[counties[i]]['fitness_demand'] = fitness_demand[i] # %% # Process pharmacy data print('Processing pharmacy data...') pharmacy_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Pharmacy.xlsx')) pharmacy_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in pharmacy_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] pharmacy_demand_dest_mat[origin_ind, destination_ind] = \ int(pharmacy_demand_dest_mat[origin_ind, destination_ind] + (count * pharmacy_freq)) for i in range(num_counties): for j in range(num_counties): pharmacy_demand_dest_mat[i,j] = pharmacy_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['pharmacy_demand_dest'] = pharmacy_demand_dest_mat[i, :] for i in range(num_counties): pharmacy_demand[i] = np.sum(pharmacy_demand_dest_mat[i,:]) if pharmacy_demand[i] <= min_demand_val: pharmacy_demand[i] = min_demand_val county_data[counties[i]]['pharmacy_demand'] = pharmacy_demand[i] # %% # Process physician data print('Processing physician data...') physician_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Physician.xlsx')) physician_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in physician_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] physician_demand_dest_mat[origin_ind, destination_ind] = \ int(physician_demand_dest_mat[origin_ind, destination_ind] + (count * physician_freq)) for i in range(num_counties): for j in range(num_counties): physician_demand_dest_mat[i,j] = physician_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['physician_demand_dest'] = physician_demand_dest_mat[i, :] for i in range(num_counties): physician_demand[i] = np.sum(physician_demand_dest_mat[i,:]) if physician_demand[i] <= min_demand_val: physician_demand[i] = min_demand_val county_data[counties[i]]['physician_demand'] = physician_demand[i] # %% # Process hotel data print('Processing hotel data...') hotel_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_HotelMotel.xlsx')) hotel_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in hotel_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] hotel_demand_dest_mat[origin_ind, destination_ind] = \ int(hotel_demand_dest_mat[origin_ind, destination_ind] + (count * hotel_freq)) for i in range(num_counties): for j in range(num_counties): hotel_demand_dest_mat[i,j] = hotel_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['hotel_demand_dest'] = hotel_demand_dest_mat[i, :] for i in range(num_counties): hotel_demand[i] = np.sum(hotel_demand_dest_mat[i,:]) if hotel_demand[i] <= min_demand_val: hotel_demand[i] = min_demand_val county_data[counties[i]]['hotel_demand'] = hotel_demand[i] # %% # Process restaurant data print('Processing restaurant data...') restaurant_data = pd.read_excel(os.path.join(data_path, 'Intercity_Dallas_Restaurant.xlsx')) restaurant_demand_dest_mat = np.zeros((num_counties, num_counties)) for indexDF, rowDF in restaurant_data.iterrows(): sgid = rowDF['safegraph_place_id'] destination_county = sgid_to_county[sgid] origin_county = bg_info[rowDF['visitor_home_cbgs']]['county'] count = rowDF['Count'] destination_ind = county_data[destination_county]['index'] origin_ind = county_data[origin_county]['index'] restaurant_demand_dest_mat[origin_ind, destination_ind] = \ int(restaurant_demand_dest_mat[origin_ind, destination_ind] + (count * restaurant_freq)) for i in range(num_counties): for j in range(num_counties): restaurant_demand_dest_mat[i,j] = restaurant_demand_dest_mat[i,j] * populations[i] / devices[i] * month_day_time_conversion county_data[counties[i]]['restaurant_demand_dest'] = restaurant_demand_dest_mat[i, :] for i in range(num_counties): restaurant_demand[i] = np.sum(restaurant_demand_dest_mat[i,:]) if restaurant_demand[i] <= min_demand_val: restaurant_demand[i] = min_demand_val county_data[counties[i]]['restaurant_demand'] = restaurant_demand[i] # %% # Save the results # First check if the save directory exists if not os.path.isdir(os.path.join(data_path, 'data_processing_outputs')): os.mkdir(os.path.join(data_path, 'data_processing_outputs')) demand_array=np.concatenate((grocery_demand, fitness_demand, pharmacy_demand, physician_demand, hotel_demand, restaurant_demand), axis=1) demand_array.shape print(demand_array) np.save(os.path.join(data_path, 'data_processing_outputs', 'demand_array_dallas.npy'), demand_array) np.save(os.path.join(data_path, 'data_processing_outputs', 'populations_array_dallas.npy'), populations) pickle.dump(county_data, open(os.path.join(data_path, 'data_processing_outputs', 'county_data.p'), 'wb')) # %%
2.6875
3
quizzes/00.organize.me/Cracking the Coding Interview/18-8.py
JiniousChoi/encyclopedia-in-code
2
12786002
#!/usr/bin/env python3 ''' 문자열 s와 s보다 짧은 길이를 갖는 문자열의 배열인 T가 주어졌을 때, T에 있는 각 문자열을 s에서 찾는 메서드를 작성하라.''' import unittest class TreeRoot: def __init__(self, s): self.root = SuffixTreeNode() root = self.root for i in range(len(s)): root.insertString(s[i:], i) def search(self, s): return self.root.search(s) class SuffixTreeNode: def __init__(self): self.indexes = [] #self.value는 self.children의 key로 존재한다. self.children = {} def insertString(self, s, i): ''' build a sub-tree(children) for characters of `s` i indicates starting index of sub-string `s` in original string `s` ''' if not s: return first = s[0] remainder = s[1:] if first not in self.children: child = SuffixTreeNode() self.children[first] = child child = self.children[first] child.indexes.append(i) child.insertString(remainder, i) def search(self, s): ''' follow through sub-nodes for `s` path. Return indexes of the path if there was. Otherwise, None''' #invariant: there is a path in the tree so far. if not s: return self.indexes first = s[0] remainder = s[1:] if first in self.children: return self.children[first].search(remainder) #invariant: Path cuts here. return None #def search(self, s): # ''' follow through sub-nodes for `s` path. # Return indexes of the path if there was. # Otherwise, None''' # assert s # #invariant: there is a path in the tree so far. # first = s[0] # remainder = s[1:] # if first not in self.children: # return None # child = self.children[first] # if remainder: # return child.search(remainder) # else: # return child.indexes class SUffixTreeTest(unittest.TestCase): def test_sample(self): root = TreeRoot("bibs") #self.assertEqual(root.search(""), []) self.assertEqual(root.search("b"), [0,2]) self.assertEqual(root.search("bi"), [0]) self.assertEqual(root.search("bib"), [0]) self.assertEqual(root.search("bibs"), [0]) self.assertEqual(root.search("i"), [1]) self.assertEqual(root.search("ib"), [1]) self.assertEqual(root.search("ibs"), [1]) self.assertEqual(root.search("bs"), [2]) self.assertEqual(root.search("s"), [3]) self.assertEqual(root.search("not-exist"), None) if __name__=="__main__": unittest.main()
3.84375
4
app/senders/queries.py
mcherdakov/herodotus
0
12786003
from time import time from uuid import UUID import asyncpg from app.senders.models import (EmailConfInDb, EmailStatus, Message, MessageStatus, TelegramConfInDb, TelegramStatus) async def insert_email_conf(conn: asyncpg.Connection, conf: EmailConfInDb): await conn.execute( "INSERT INTO email_conf(uuid, project_uuid, email) VALUES ($1, $2, $3)", conf.uuid, conf.project_uuid, conf.email, ) async def insert_telegram_conf(conn: asyncpg.Connection, conf: TelegramConfInDb): await conn.execute( "INSERT INTO telegram_conf(uuid, project_uuid, chat_id) VALUES ($1, $2, $3)", conf.uuid, conf.project_uuid, conf.chat_id, ) async def get_email_conf( conn: asyncpg.Connection, conf_uuid: UUID ) -> EmailConfInDb | None: raw: asyncpg.Record = await conn.fetchrow( "SELECT * FROM email_conf WHERE uuid = $1", conf_uuid, ) if raw is None: return None return EmailConfInDb(**raw) async def get_telegram_conf( conn: asyncpg.Connection, conf_uuid: UUID ) -> TelegramConfInDb | None: raw: asyncpg.Record = await conn.fetchrow( "SELECT * FROM telegram_conf WHERE uuid = $1", conf_uuid, ) if raw is None: return None return TelegramConfInDb(**raw) async def get_project_confs( conn: asyncpg.Connection, project_uuid: UUID ) -> list[EmailConfInDb | TelegramConfInDb]: raw_email_confs: list[asyncpg.Record] = await conn.fetch( "SELECT * FROM email_conf WHERE project_uuid = $1", project_uuid ) email_confs = [EmailConfInDb(**c) for c in raw_email_confs] raw_telegram_confs: list[asyncpg.Record] = await conn.fetch( "SELECT * FROM telegram_conf WHERE project_uuid = $1", project_uuid ) telegram_confs = [TelegramConfInDb(**c) for c in raw_telegram_confs] return [*email_confs, *telegram_confs] async def insert_message(conn: asyncpg.Connection, message: Message): await conn.execute( """ INSERT INTO messages(uuid, project_uuid, title, text, sync, scheduled_ts, status, attempts) VALUES($1, $2, $3, $4, $5, $6, $7, $8); """, message.uuid, message.project_uuid, message.title, message.text, message.sync, message.scheduled_ts, message.status, message.attempts, ) async def get_message(conn: asyncpg.Connection, message_uuid: UUID) -> Message | None: raw: asyncpg.Record = await conn.fetchrow( "SELECT * FROM messages WHERE uuid = $1", message_uuid ) if raw is None: return None return Message(**raw) async def insert_email_statuses( conn: asyncpg.Connection, email_statuses: list[EmailStatus] ): await conn.executemany( """ INSERT INTO email_status(uuid, message_uuid, email_conf_uuid, status) VALUES ($1, $2, $3, $4); """, [ ( email_status.uuid, email_status.message_uuid, email_status.email_conf_uuid, email_status.status, ) for email_status in email_statuses ], ) async def update_email_status(conn: asyncpg.Connection, email_status: EmailStatus): await conn.execute( """ UPDATE email_status SET (message_uuid, email_conf_uuid, status) = ($1, $2, $3) WHERE uuid = $4; """, email_status.message_uuid, email_status.email_conf_uuid, email_status.status, email_status.uuid, ) async def insert_telegram_statuses( conn: asyncpg.Connection, telegram_statuses: list[TelegramStatus] ): await conn.executemany( """ INSERT INTO telegram_status(uuid, message_uuid, telegram_conf_uuid, status) VALUES ($1, $2, $3, $4); """, [ ( telegram_status.uuid, telegram_status.message_uuid, telegram_status.telegram_conf_uuid, telegram_status.status, ) for telegram_status in telegram_statuses ], ) async def update_telegram_status( conn: asyncpg.Connection, telegram_status: TelegramStatus ): await conn.execute( """ UPDATE telegram_status SET (message_uuid, telegram_conf_uuid, status) = ($1, $2, $3) WHERE uuid = $4; """, telegram_status.message_uuid, telegram_status.telegram_conf_uuid, telegram_status.status, telegram_status.uuid, ) async def get_statuses_for_message( conn: asyncpg.Connection, message_uuid: UUID ) -> list[EmailStatus | TelegramStatus]: email_raw = await conn.fetch( "SELECT * FROM email_status WHERE message_uuid = $1", message_uuid ) email_statuses = [EmailStatus(**s) for s in email_raw] telegram_raw = await conn.fetch( "SELECT * FROM telegram_status WHERE message_uuid = $1", message_uuid ) telegram_statuses = [TelegramStatus(**s) for s in telegram_raw] return [*email_statuses, *telegram_statuses] async def get_unprocessed_messages( conn: asyncpg.Connection, limit: int = 100 ) -> list[Message]: raw = await conn.fetch( """ SELECT * FROM messages WHERE sync = false AND status = $1 AND scheduled_ts <= $2 ORDER BY scheduled_ts LIMIT $3 """, MessageStatus.scheduled, time(), limit, ) return [Message(**m) for m in raw] async def update_message(conn: asyncpg.Connection, message: Message): await conn.execute( """ UPDATE messages SET (project_uuid, title, text, sync, scheduled_ts, status) = ($1, $2, $3, $4, $5, $6) WHERE uuid = $7; """, message.project_uuid, message.title, message.text, message.sync, message.scheduled_ts, message.status, message.uuid, )
2.34375
2
back-end/legacy/cp_pytorch_ts.py
yenchiah/deep-smoke-machine
88
12786004
<reponame>yenchiah/deep-smoke-machine import torch import torch.nn as nn import torch.nn.functional as F class MotionCNN(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Conv2d(in_channels=72, out_channels=96, kernel_size=7, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), nn.LocalResponseNorm(size=2), nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1), nn.ReLU(), #nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, # stride=1), #nn.MaxPool2d(kernel_size=3, stride=2), #nn.ReLU(), ) mock_input = torch.randn(4, 72, 224, 224) mock_output = self.model(mock_input) flattened_output = torch.flatten(mock_output, start_dim=1) fc_in_dim = flattened_output.shape[1] # Get number of nodes from flattened value's size, then convert 0 dim tensor to integer self.full_conn1 = nn.Linear(in_features=fc_in_dim, out_features=4096) #self.full_conn2 = nn.Linear(in_features=4096, out_features=2048) #self.full_conn3 = nn.Linear(in_features=2048, out_features=2) self.full_conn3 = nn.Linear(in_features=4096, out_features=2) def forward(self, x): x = self.model(x) x = torch.flatten(x, start_dim=1) # Flattens layers without losing batches x = self.full_conn1(x) #x = F.dropout(x) #x = self.full_conn2(x) #x = F.dropout(x) x = self.full_conn3(x) return F.softmax(x, dim=0) class SpatialCNN(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Conv2d(in_channels=108, out_channels=96, kernel_size=7, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), nn.LocalResponseNorm(size=2), nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), nn.LocalResponseNorm(size=2), nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), ) mock_input = torch.randn(32, 108, 224, 224) mock_output = self.model(mock_input) flattened_output = torch.flatten(mock_output, start_dim=1) fc_in_dim = flattened_output.shape[1] # Get number of nodes from flattened value's size, then convert 0 dim tensor to integer self.full_conn1 = nn.Linear(in_features=fc_in_dim, out_features=4096) self.full_conn2 = nn.Linear(in_features=4096, out_features=2048) self.full_conn3 = nn.Linear(in_features=2048, out_features=2) #self.full_conn3 = nn.Linear(in_features=4096, out_features=2) def forward(self, x): x = self.model(x) x = torch.flatten(x, start_dim=1) # Flattens layers without losing batches x = self.full_conn1(x) x = F.dropout(x) x = self.full_conn2(x) x = F.dropout(x) x = self.full_conn3(x) return F.softmax(x, dim=0)
2.3125
2
tools/SMZ-NNP/gatherRMSE-GaN350.py
s-okugawa/HDNNP-tools
0
12786005
# coding: utf-8 import matplotlib.pyplot as plt import csv """ This script is for gathering force/RMSE data from training result of GaN 350 sample and plot them """ if __name__ == '__main__': GaN350folder="/home/okugawa/NNP-F/GaN/SMZ-200901/training_2element/350smpl/" outfile=GaN350folder+"result/RMSE.csv" pltfile=GaN350folder+"result/fRMSE.png" pltdata=[[] for i in range(10)] with open(outfile, 'w') as outf: writer1 = csv.writer(outf, lineterminator='\n') for i in range(1,21): testjobfile= GaN350folder+str(i)+"/testjob.dat" with open(testjobfile, 'r') as testjob: for line in testjob: if "Total number of data:" in line: totnum=int(line.split()[4]) elif "Number of training data:" in line: trnum=int(line.split()[4]) elif "Number of test data:" in line: tsnum=int(line.split()[4]) elif "# RMSE of training:" in line: if "eV/atom" in line: etrn=float(line.split()[4])*1000 elif "eV/ang" in line: ftrn=float(line.split()[4])*1000 elif "# RMSE of test:" in line: if "eV/atom" in line: etstdt=line.split()[4] if etstdt=="NaN": etst=etstdt else: etst=float(etstdt)*1000 elif "eV/ang" in line: ftstdt=line.split()[4] if ftstdt=="NaN": ftst=ftstdt else: ftst=float(ftstdt)*1000 if i<11: pltdata[i-1].append(ftst) else: pltdata[i-11].append(ftst) wrdata= [i,totnum,trnum,tsnum,etrn,ftrn,etst,ftst] writer1.writerow(wrdata) #Plot force/RMSE data xlbl=["2:8","5:5"] clr=["b","green"] fig = plt.figure() ax1 = fig.add_subplot(111) plt.title("GaN 350sample force/RMSE") ax1.set_xlabel("Loss-F Energy:Force") ax1.set_ylabel("force/RMSE (meV/ang)") ax1.grid(True) for j in range(10): ax1.scatter(xlbl,pltdata[j],c=clr,marker='.') plt.savefig(pltfile) plt.close()
2.6875
3
tests/event_demo/event_demo.py
erikgqp8645/vnpy
0
12786006
<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Tue Nov 13 13:50:45 2018 @author: 18665 """ # encoding: UTF-8 import sys from datetime import datetime from threading import * #sys.path.append('D:\\works\\TestFile') #print(sys.path) from .eventManager import * #事件名称 新文章 EVENT_ARTICAL = "Event_Artical" #事件源 公众号 class PublicAccounts: def __init__(self,eventManager): self.__eventManager = eventManager def WriteNewArtical(self): #事件对象,写了新文章 event = Event(type_=EVENT_ARTICAL) event.dict["artical"] = u'如何写出更优雅的代码\n' #发送事件 self.__eventManager.SendEvent(event) print(u'公众号发送新文章\n') #监听器 订阅者 class Listener: def __init__(self,username): self.__username = username #监听器的处理函数 读文章 def ReadArtical(self,event): print(u'%s 收到新文章' % self.__username) print(u'正在阅读新文章内容:%s' % event.dict["artical"]) """测试函数""" #-------------------------------------------------------------------- def test(): # 实例化监听器 listner1 = Listener("thinkroom") #订阅者1 listner2 = Listener("steve") #订阅者2 # 实例化事件操作函数 eventManager = EventManager() #绑定事件和监听器响应函数(新文章) eventManager.AddEventListener(EVENT_ARTICAL, listner1.ReadArtical) eventManager.AddEventListener(EVENT_ARTICAL, listner2.ReadArtical) # 启动事件管理器,# 启动事件处理线程 eventManager.Start() publicAcc = PublicAccounts(eventManager) timer = Timer(2, publicAcc.WriteNewArtical) timer.start() if __name__ == '__main__': test()
2.390625
2
pyb4ml/inference/factored/factored_algorithm.py
ax-va/PyB4ML
0
12786007
<gh_stars>0 import copy from pyb4ml.modeling.categorical.variable import Variable from pyb4ml.modeling.factor_graph.factor import Factor from pyb4ml.modeling.factor_graph.factor_graph import FactorGraph class FactoredAlgorithm: """ This is an abstract class of some factored algorithm, which is inherited by the classes of real factored algorithms, e.g. the Belief Propagation or Bucket Elimination algorithms. The class contains and defines common attributes and methods, respectively. """ def __init__(self, model: FactorGraph): # Inner model not specified self._inner_model = None # Outer model not specified self._outer_model = None # Specify the outer and inner models self._set_model(model) # Query not specified self._query = () # Evidential variables not specified self._evidence = () # Evidence tuples of (var, val) not specified self._evidence_tuples = () # Probability distribution P(query) or P(query|evidence) not specified self._distribution = None @property def elimination_variables(self): """ Returns the non-query and non-evidential algorithm variables """ if self._query: if self._evidence: return tuple(var for var in self.variables if var not in self._query and var not in self._evidence) else: return tuple(var for var in self.variables if var not in self._query) else: if self._evidence: return tuple(var for var in self.variables if var not in self._evidence) else: return self.variables @property def evidential(self): """ Returns the evidential algorithm variables """ return self._evidence @property def factors(self): return self._inner_model.factors @property def non_evidential(self): return tuple(var for var in self.variables if not var.is_evidential()) @property def pd(self): """ Returns the probability distribution P(Q_1, ..., Q_s) or if an evidence is set then P(Q_1, ..., Q_s | E_1 = e_1, ..., E_k = e_k) as a function of q_1, ..., q_s, where q_1, ..., q_s are in the value domains of random variable Q_1, ..., Q_s, respectively. The order of values must correspond to the order of variables in the query. For example, if algorithm.set_query(difficulty, intelligence) sets random variables Difficulty and Intelligence as the query, then algorithm.pd('d0', 'i1') returns a probability corresponding to Difficulty = 'd0' and Intelligence = 'i1' from a pre-calculated probability distribution. """ if self._distribution is not None: def distribution(*values): if len(values) != len(self._query): raise ValueError( f'the number {len(values)} of given values does not match ' f'the number {len(self._query)} of query variables' ) for variable, value in zip(self._query, values): if value not in variable.domain: raise ValueError(f'value {value!r} not in domain {variable.domain} of {variable.name}') return self._distribution[values] return distribution else: raise AttributeError('distribution not computed') @property def query(self): return self._query @property def variables(self): return self._inner_model.variables def check_non_empty_query(self): if not self._query: raise AttributeError('query not specified') def check_one_variable_query(self): if len(self._query) > 1: raise ValueError('the query contains more than one variable') if len(self._query) < 1: raise ValueError('the query contains less than one variable') def check_query_and_evidence_intersection(self): if self._evidence: query_set = set(self._query) evidence_set = set(self._evidence) if not query_set.isdisjoint(evidence_set): raise ValueError(f'query variables {tuple(var.name for var in self._query)} and ' f'evidential variables {tuple(var.name for var in self._evidence)} must be disjoint') def print_evidence(self): if self._evidence is not None: print('Evidence: ' + ', '.join(f'{var.name} = {var.domain[0]!r}' for var in self._evidence)) else: print('No evidence') def print_pd(self): """ Prints the complete probability distribution of the query variables """ if self._distribution is not None: evidence_str = ' | ' + ', '.join(f'{var.name} = {var.domain[0]!r}' for var in self._evidence) \ if self._evidence \ else '' for values in Variable.evaluate_variables(self._query): query_str = 'P(' + ', '.join(f'{var.name} = {val!r}' for var, val in zip(self._query, values)) value_str = str(self.pd(*values)) equal_str = ') = ' print(query_str + evidence_str + equal_str + value_str) else: raise AttributeError('distribution not computed') def print_query(self): if self._query is not None: print('Query: ' + ', '.join(variable.name for variable in self.query)) else: print('No query') def set_evidence(self, *evidence): """ Sets the evidence. For example, algorithm.set_evidence((difficulty, 'd0'), (intelligence, 'i1')) assigns the evidential values 'd0' and 'i1' to random variables Difficulty and Intelligence, respectively. In fact, the domain of a variable is reduced to one evidential value. The variable is encapsulated in the algorithm (in the inner model) and the domain of the corresponding model variable (in the outer model) is not changed. """ # Return the original domains of evidential variables and delete the evidence in factors self._delete_evidence() if evidence[0]: self._set_evidence(*evidence) else: self._evidence = () self._set_evidence_tuples() def set_query(self, *variables): """ Sets the query. For example, algorithm.set_query(difficulty, intelligence) sets the random variables Difficulty and Intelligence as the query. The values of variables in a computed probability distribution must have the same order. For example, algorithm.pd('d0', 'i1') returns a probability corresponding to Difficulty = 'd0' and Intelligence = 'i1'. """ if variables[0]: self._set_query(*variables) else: self._query = () def _clear_evidence(self): self._evidence = () for inner_factor in self._inner_model.factors: inner_factor.clear_evidence() def _delete_evidence(self): for var in self._evidence: var.set_domain(self._inner_to_outer_variables[var].domain) for factor in var.factors: factor.delete_evidence(var) del self._evidence self._evidence = () def _print_start(self): if self._print_info: print('*' * 40) print(f'{self._name} started') def _print_stop(self): if self._print_info: print(f'\n{self._name} stopped') print('*' * 40) def _set_evidence(self, *evidence_tuples): evidence_variables = tuple(var_val[0] for var_val in evidence_tuples) if len(evidence_variables) != len(set(evidence_variables)): raise ValueError(f'evidence must not contain duplicates') for outer_var, val in evidence_tuples: try: inner_var = self._outer_to_inner_variables[outer_var] except KeyError: # Also clear the evidence in the factors self._clear_evidence() raise ValueError(f'no model variable corresponds to evidential variable {outer_var.name}') try: inner_var.check_value(val) except ValueError as exception: # Also clear the evidence in the factors self._clear_evidence() raise exception # Set the new domain containing only one value inner_var.set_domain({val}) # Add the evidence into its factors for inner_factor in inner_var.factors: inner_factor.add_evidence(inner_var) self._evidence = tuple( sorted( (self._outer_to_inner_variables[outer_var] for outer_var in evidence_variables), key=lambda x: x.name ) ) def _set_evidence_tuples(self): self._evidence_tuples = tuple((var, var.domain[0]) for var in self._evidence) def _set_query(self, *query_variables): # Check whether the query has duplicates if len(query_variables) != len(set(query_variables)): raise ValueError(f'query must not contain duplicates') for outer_var in query_variables: try: self._outer_to_inner_variables[outer_var] except KeyError: self._query = () raise ValueError(f'no model variable corresponds to query variable {outer_var.name}') self._query = tuple( sorted( (self._outer_to_inner_variables[outer_var] for outer_var in query_variables), key=lambda x: x.name ) ) def _set_model(self, model: FactorGraph): self._outer_model = model # Create algorithm variables (inner variables) self._inner_to_outer_variables = {} self._outer_to_inner_variables = {} for outer_variable in self._outer_model.variables: inner_variable = Variable( domain=outer_variable.domain, name=copy.deepcopy(outer_variable.name) ) self._inner_to_outer_variables[inner_variable] = outer_variable self._outer_to_inner_variables[outer_variable] = inner_variable # Create algorithm factors (inner factors) self._inner_to_outer_factors = {} self._outer_to_inner_factors = {} for outer_factor in self._outer_model.factors: inner_factor = Factor( variables=tuple(self._outer_to_inner_variables[outer_var] for outer_var in outer_factor.variables), function=copy.deepcopy(outer_factor.function), name=copy.deepcopy(outer_factor.name) ) self._inner_to_outer_factors[inner_factor] = outer_factor self._outer_to_inner_factors[outer_factor] = inner_factor # Create an algorithm model (an inner model) self._inner_model = FactorGraph(factors=self._inner_to_outer_factors.keys())
2.796875
3
utilities/HSV_detection.py
jlittek/Anki-Vector
0
12786008
from cv2 import cv2 import numpy as np import anki_vector from anki_vector.util import distance_mm, speed_mmps, degrees def empty(a): pass robot=anki_vector.Robot() robot.connect() robot.camera.init_camera_feed() robot.behavior.set_lift_height(0.0) robot.behavior.set_head_angle(degrees(0)) cv2.namedWindow("TrackBars") cv2.resizeWindow("TrackBars", 640, 600) cv2.createTrackbar("Hue Min", "TrackBars", 10, 179, empty) cv2.createTrackbar("Hue Max", "TrackBars", 47, 179, empty) cv2.createTrackbar("Sat Min", "TrackBars", 66, 255, empty) cv2.createTrackbar("Sat Max", "TrackBars", 186, 255, empty) cv2.createTrackbar("Val Min", "TrackBars", 171, 255, empty) cv2.createTrackbar("Val Max", "TrackBars", 255, 255, empty) while True: h_min = cv2.getTrackbarPos("Hue Min", "TrackBars") h_max = cv2.getTrackbarPos("Hue Max", "TrackBars") s_min = cv2.getTrackbarPos("Sat Min", "TrackBars") s_max = cv2.getTrackbarPos("Sat Max", "TrackBars") v_min = cv2.getTrackbarPos("Val Min", "TrackBars") v_max = cv2.getTrackbarPos("Val Max", "TrackBars") img = np.array(robot.camera.latest_image.raw_image) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) imgBlur = cv2.GaussianBlur(img, (3,3), 1) imgHSV = cv2.cvtColor(imgBlur, cv2.COLOR_BGR2HSV) print(h_min, h_max, s_min, s_max, v_min, v_max) lower = np.array([h_min, s_min, v_min]) upper = np.array([h_max, s_max, v_max]) mask = cv2.inRange(imgHSV, lower, upper) # Alternative method to find the Ball: Approximation of the area with a Polygon. contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.02*peri,True) objCor = len(approx) # Number of corners print(objCor) x, y, w, h = cv2.boundingRect(approx) if objCor > 6: cv2.circle(img, center=(int(x+w/2), int(y+h/2)), radius=int((h)/2), color=(0, 255, 0), thickness=3) cv2.imshow("Camera", img) cv2.imshow("Mask", mask) if cv2.waitKey(1) & 0xFF == ord('q'): break
2.921875
3
tests/test_lock_apis.py
pjz/etcd3-py
96
12786009
<filename>tests/test_lock_apis.py import time from threading import Thread import pytest from etcd3.client import Client from tests.docker_cli import docker_run_etcd_main from .envs import protocol, host from .etcd_go_cli import NO_ETCD_SERVICE, etcdctl @pytest.fixture(scope='module') def client(): """ init Etcd3Client, close its connection-pool when teardown """ _, p, _ = docker_run_etcd_main() c = Client(host, p, protocol) yield c c.close() class context: def __init__(self): self.exit = False def clear(): etcdctl('del', '--from-key', '') KEY = 'test-lock' @pytest.mark.timeout(60) def test_lock_flow(client): clear() holds = {} def hold(name, ctx): lock = None try: lock = holds[name] = client.lock(KEY) print("%s is holding the lock" % name) while not ctx.exit: time.sleep(0.5) finally: if lock: client.unlock(lock.key) holds[name] = None ctx1 = context() ctx2 = context() t1 = Thread(target=lambda: hold('User1', ctx1)) t2 = Thread(target=lambda: hold('User2', ctx2)) t1.setDaemon(True) t2.setDaemon(True) t1.start() time.sleep(1) assert holds['User1'].key key1 = holds['User1'].key keys1 = client.range(key1) assert keys1.kvs[0].lease assert client.lease_time_to_live(keys1.kvs[0].lease).TTL > 0 assert 'User2' not in holds t2.start() time.sleep(1) assert holds['User1'].key key1 = holds['User1'].key keys1 = client.range(key1) assert keys1.kvs[0].lease assert client.lease_time_to_live(keys1.kvs[0].lease).TTL > 0 assert 'User2' not in holds print("killing lock1") ctx1.exit = True t1.join() time.sleep(1) assert holds['User1'] is None # https://github.com/etcd-io/etcd/blob/3546c4868cec93e1587471b42fd815684a7dd439/clientv3/concurrency/mutex.go#L82 # only key been deleted not the lease assert client.range(key1).kvs is None assert holds['User2'].key key2 = holds['User2'].key keys2 = client.range(key2) assert keys2.kvs[0].lease assert client.lease_time_to_live(keys2.kvs[0].lease).TTL > 0 ctx2.exit = True t2.join() assert holds['User1'] is None assert holds['User2'] is None assert client.range(key2).kvs is None # with lease lease1 = client.Lease(5) lease1.grant() lock1 = client.lock('test_lock', lease1.ID) assert lock1.key.startswith(b'test_lock/') lease2 = client.Lease(15) lease2.grant() start_lock_ts = time.time() client.lock('test_lock', lease2.ID) assert (time.time() - start_lock_ts) > 3 lease2.revoke() lease3 = client.Lease(5) lease3.grant() start_lock_ts = time.time() lock3 = client.lock('test_lock', lease3.ID) assert (time.time() - start_lock_ts) < 2 client.unlock(lock3.key)
2.015625
2
src/snpahoy/utilities.py
asp8200/snpahoy
5
12786010
from statistics import mean from typing import List from snpahoy.core import SNP def count_heterozygotes(snps: List[SNP]) -> int: """Exactly as advertized. Counts the number of heterozygote sites.""" return len([snp for snp in snps if snp.is_heterozygote()]) def mean_minor_allele_frequency(snps: List[SNP]) -> float: """Computes the mean minor allele frequency SNPs.""" if not snps: return 0.0 return mean([snp.minor_allele_frequency() for snp in snps]) def mean_off_genotype_frequency(snps: List[SNP]) -> float: """Compues the mean off genotype frequency of SNPs.""" if not snps: return 0.0 return mean([snp.off_genotype_frequency() for snp in snps])
3.671875
4
tests/unit/task/contexts/network/test_existing_network.py
jogeo/rally-openstack
0
12786011
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from rally_openstack.task.contexts.network import existing_network from tests.unit import test CTX = "rally_openstack.task.contexts.network" class ExistingNetworkTestCase(test.TestCase): def setUp(self): super(ExistingNetworkTestCase, self).setUp() self.config = {"foo": "bar"} self.context = test.get_test_context() self.context.update({ "users": [ {"id": 1, "tenant_id": "tenant1", "credential": mock.Mock(tenant_name="tenant_1")}, {"id": 2, "tenant_id": "tenant2", "credential": mock.Mock(tenant_name="tenant_2")}, ], "tenants": { "tenant1": {}, "tenant2": {}, }, "config": { "existing_network": self.config }, }) @mock.patch("rally_openstack.common.osclients.Clients") def test_setup(self, mock_clients): clients = { # key is tenant_name "tenant_1": mock.MagicMock(), "tenant_2": mock.MagicMock() } mock_clients.side_effect = lambda cred: clients[cred.tenant_name] networks = { # key is tenant_id "tenant_1": [mock.Mock(), mock.Mock()], "tenant_2": [mock.Mock()] } subnets = { # key is tenant_id "tenant_1": [mock.Mock()], "tenant_2": [mock.Mock()] } neutron1 = clients["tenant_1"].neutron.return_value neutron2 = clients["tenant_2"].neutron.return_value neutron1.list_networks.return_value = { "networks": networks["tenant_1"]} neutron2.list_networks.return_value = { "networks": networks["tenant_2"]} neutron1.list_subnets.return_value = {"subnets": subnets["tenant_1"]} neutron2.list_subnets.return_value = {"subnets": subnets["tenant_2"]} context = existing_network.ExistingNetwork(self.context) context.setup() mock_clients.assert_has_calls([ mock.call(u["credential"]) for u in self.context["users"]]) neutron1.list_networks.assert_called_once_with() neutron1.list_subnets.assert_called_once_with() neutron2.list_networks.assert_called_once_with() neutron2.list_subnets.assert_called_once_with() self.assertEqual( self.context["tenants"], { "tenant1": {"networks": networks["tenant_1"], "subnets": subnets["tenant_1"]}, "tenant2": {"networks": networks["tenant_2"], "subnets": subnets["tenant_2"]}, } ) def test_cleanup(self): # NOTE(stpierre): Test that cleanup is not abstract existing_network.ExistingNetwork({"task": mock.MagicMock()}).cleanup()
1.851563
2
train.py
DheerajRacha/Image-Segmentation
1
12786012
<filename>train.py import os import sys import csv import numpy as np import tensorflow as tf from arguments import flags from DataLoader import DataLoader from models.DeepLabV3 import build_deeplabv3 from utils import evaluate_segmentation def train(args): image = tf.placeholder(tf.float32, shape=[None, None, None, 3], name="InputImage") annotation = tf.placeholder(tf.int32, shape=[None, None, None, args.num_class], name="Annotation") output_logits, init_fn = build_deeplabv3(inputs=image, num_classes=args.num_class, pretrained_dir=args.resnet_ckpt) loss_fn = tf.reduce_mean((tf.nn.softmax_cross_entropy_with_logits(logits=output_logits, labels=annotation, name="Loss"))) theta = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) grads, _ = tf.clip_by_global_norm(tf.gradients(loss_fn, theta), 5) optimizer = tf.train.AdamOptimizer(args.learning_rate, beta1=0.5, beta2=0.99) train_op = optimizer.apply_gradients(zip(grads, theta)) sess = tf.Session() saver = tf.train.Saver(max_to_keep=10) init_fn(sess) sess.run(tf.global_variables_initializer()) for epoch in range(args.num_epochs): print("Epoch: {}".format(epoch)) ''' Train for one epoch ''' data_loader = DataLoader(args.train_dir, "train") load_batch = data_loader.load_data(args.batch_size) num_batches = int(data_loader.dataset_size / args.batch_size) for batch in range(num_batches): x_batch, y_batch = next(load_batch) feed_dict = {image: x_batch, annotation: y_batch} sess.run([train_op], feed_dict=feed_dict) if batch % 1000 == 0: sys.stdout.write("\tBatch: " + str(batch) + "\r") sys.stdout.flush() if epoch == 0: eval_file = open("evaluation.txt", "w") eval_file.write("Epoch, avg_accuracy, precision, recall, f1 score, mean iou\n") writer = csv.writer(eval_file) else: eval_file = open("evaluation.txt", "a") writer = csv.writer(eval_file) ''' Evaluate on Training Dataset ''' loss_train = 0 load_batch = data_loader.load_data(args.batch_size) print("\n\tLoss on Train Dataset") for batch in range(num_batches): x_batch, y_batch = next(load_batch) feed_dict = {image: x_batch, annotation: y_batch} loss_train += sess.run(loss_fn, feed_dict=feed_dict) if batch % 1000 == 0: sys.stdout.write("\t\tBatch: %d\r" % batch) sys.stdout.flush() print("\tTrain Loss: " + str(loss_train)) ''' Evaluate on Validation Dataset ''' loss_val = 0 scores_list, class_scores_list, precision_list, recall_list, f1_list, iou_list = [], [], [], [], [], [] data_loader = DataLoader(args.val_dir, "train") load_batch = data_loader.load_data(args.batch_size) num_batches = int(data_loader.dataset_size / args.batch_size) print("\n\tLoss on Validation Dataset") for batch in range(num_batches): x_batch, y_batch = next(load_batch) feed_dict = {image: x_batch, annotation: y_batch} prediction_batch, loss = sess.run([annotation, loss_fn], feed_dict=feed_dict) loss_val += loss for pred, annot in zip(prediction_batch, y_batch): accuracy, class_accuracies, prec, rec, f1, iou = evaluate_segmentation(pred=pred, label=annot, num_classes=args.num_class) scores_list.append(accuracy) class_scores_list.append(class_accuracies) precision_list.append(prec) recall_list.append(rec) f1_list.append(f1) iou_list.append(iou) if batch % 100 == 0: sys.stdout.write("\t\tBatch: %d\r" % batch) sys.stdout.flush() avg_accuracy = np.mean(scores_list) avg_prec = np.mean(precision_list) avg_rec = np.mean(recall_list) avg_f1 = np.mean(f1_list) avg_iou = np.mean(iou_list) fields = [epoch, avg_accuracy, avg_prec, avg_rec, avg_f1, avg_iou] writer.writerow(fields) print("\tValidation Loss: " + str(loss_val)) ''' Save Checkpoints for every 10 epochs ''' if epoch % 10 == 0: checkpoint_path = os.path.join(args.ckpt_dir, str(epoch)) os.makedirs(checkpoint_path) checkpoint_path = os.path.join(checkpoint_path, "checkpoints.ckpt") saver.save(sess, checkpoint_path) fields = [loss_train, loss_val] if epoch == 0: with open("losses.txt", "w") as f: writer = csv.writer(f) writer.writerow(fields) else: with open("losses.txt", "a") as f: writer = csv.writer(f) writer.writerow(fields) latest = os.path.join(args.ckpt_dir, "latest_checkpoints") if not os.path.isdir(latest): os.makedirs(latest) saver.save(sess, latest) if __name__ == "__main__": train(flags())
2.640625
3
app/core/parser/parser.py
SLB974/GrandPyBot-dev
0
12786013
# coding: utf-8 from unidecode import unidecode import re from .utils import stop_words class Parser: """Parse user's query""" def __init__(self, user_query): self.user_query = user_query def clean_string(self): """remove accents, upper and punctuation and split into list compare to stop_words reference and remove found items""" cleaned = unidecode(self.user_query).lower() cleaned = re.compile("\w+").findall(cleaned) return [item for item in cleaned if item not in stop_words]
3.578125
4
python/tools/cepton_georeference.py
frank-qcd-qk/cepton_sdk_redist
23
12786014
<gh_stars>10-100 #!/usr/bin/env python3 """ Sample script to combine LiDAR data to generate point cloud. """ import argparse import datetime import json import os.path import matplotlib.pyplot import numpy import pytz import scipy.interpolate import scipy.spatial.transform import utm from mpl_toolkits.mplot3d import Axes3D import cepton_sdk.export import cepton_sdk.load import cepton_sdk.plot from cepton_sdk.common import * from cepton_util.common import * def from_gps_time(weeks, seconds): d = datetime.datetime(1980, 1, 6) + \ datetime.timedelta(weeks=weeks, seconds=seconds) # leapseconds d -= datetime.timedelta(seconds=18) return pytz.utc.localize(d).timestamp() class Transforms(StructureOfArrays): def __init__(self, n=0): super().__init__(n) self.timestamps = numpy.zeros([n]) self.translations = numpy.zeros([n, 3]) self.quaternions = numpy.zeros([n, 4]) @classmethod def _get_array_member_names(cls): return ["timestamps", "translations", "quaternions"] @property def rotations(self): return scipy.spatial.transform.Rotation(self.quaternions) def main(): parser = argparse.ArgumentParser(usage="%(prog)s [OPTIONS]",) parser.add_argument("--downsample", action="store_true") parser.add_argument("--duration", default="-1", help="Export duration (if negative, export entire file).") all_file_types = [x.name for x in cepton_sdk.export.PointsFileType] parser.add_argument("--format", default="LAS", choices=all_file_types, type=str.upper, help="Output file format.") parser.add_argument("-o", "--output_path", help="Output path.") parser.add_argument("--raw", action="store_true") parser.add_argument("--plot", action="store_true") parser.add_argument("--points_path", help="Path to points", required=True) parser.add_argument( "--serial_path", help="Path to serial data", required=True) parser.add_argument("--version", action="version", version="cepton_sdk {}".format(cepton_sdk.__version__)) args = parser.parse_args() duration = parse_time_hms(args.duration) file_type = cepton_sdk.export.PointsFileType[args.format] assert (file_type in [cepton_sdk.export.PointsFileType.LAS, cepton_sdk.export.PointsFileType.PLY]) timer = SimpleTimer() # Load odometry transform settings_dir = os.path.dirname(points_path) transforms_path = os.path.join(settings_dir, "cepton_transforms.json") if not os.path.isfile(transforms_path): transforms_path = None transform_manager = cepton_sdk.load.load_transforms(transforms_path) odometry_transform = transform_manager.transforms[1] # Load points points_path = fix_path(args.points_path) points = cepton_sdk.export.load_points_las(points_path)[0] if duration > 0: is_valid = points.timestamps < points.timestamps[0] + duration points = points[is_valid] odometry_path = os.path.join(os.path.dirname(serial_path), "odometry.txt") if os.path.isfile(odometry_path): # Load odometry with open(odometry_path, "r") as f: lines = f.readlines() transforms = Transforms(len(lines)) for i, line in enumerate(lines): transform_dict = json.loads(line) transforms.timestamps[i] = transform_dict["timestamp"] transforms.translations[i, :] = transform_dict["translation"] transforms.quaternions[i, :] = transform_dict["rotation"] else: # Load serial serial_path = fix_path(args.serial_path) with open(serial_path, "r") as f: serial_lines = f.readlines() transforms = Transforms(len(serial_lines)) i_transform = 0 for line in serial_lines: if line.startswith("#INSPVA"): # Novatel line = line.split("*")[0] header, data = line.split(";") header = header.split(",") data = [None, None] + data.split(",") if len(data) != 14: continue if data[13] != "INS_SOLUTION_GOOD": continue transforms.timestamps[i_transform] = \ from_gps_time(float(data[2]), float(data[3])) transforms.translations[i_transform, :2] = utm.from_latlon( float(data[4]), float(data[5]))[:2] if i_transform == 0: print("UTM: {}".format(utm.from_latlon( float(data[4]), float(data[5]))[2:])) transforms.translations[i_transform, 2] = float(data[6]) transforms.quaternions[i_transform, :] = \ scipy.spatial.transform.Rotation.from_euler( "zxy", [-float(data[12]), float(data[11]), float(data[10])], degrees=True).as_quat() i_transform += 1 transforms = transforms[:i_transform] assert (numpy.all(numpy.diff(transforms.timestamps) > 0)) # Save odometry with open(odometry_path, "w") as f: for i in range(len(transforms)): transform_dict = { "timestamp": transforms.timestamps[i], "translation": transforms.translations[i, :].tolist(), "rotation": transforms.quaternions[i, :].tolist(), } f.write(json.dumps(transform_dict) + "\n") # DEBUG # print(datetime.datetime.utcfromtimestamp(transforms.timestamps[0])) # print(datetime.datetime.utcfromtimestamp(points.timestamps[0])) # print(datetime.datetime.utcfromtimestamp(points.timestamps[-1])) # print(datetime.datetime.utcfromtimestamp(transforms.timestamps[-1])) # Plot point timestamps # matplotlib.pyplot.plot(transforms.timestamps) # # matplotlib.pyplot.plot(points.timestamps) # matplotlib.pyplot.show() # return # Plot 3d trajectory # fig = matplotlib.pyplot.figure() # ax = fig.add_subplot(projection="3d") # matplotlib.pyplot.plot( # transforms.translations[:, 0], transforms.translations[:, 1], # transforms.translations[:, 2], 'o') # matplotlib.pyplot.show() # return # Plot 2d trajectory with directions # matplotlib.pyplot.axis("equal") # matplotlib.pyplot.plot( # transforms.translations[:, 0], transforms.translations[:, 1]) # directions = numpy.zeros([len(transforms), 3]) # directions[:, 1] = 1.0 # directions = transforms.rotations.apply(directions) # matplotlib.pyplot.quiver( # transforms.translations[::10, 0], transforms.translations[::10, 1], # directions[::10, 0], directions[::10, 1]) # matplotlib.pyplot.show() # return indices = numpy.arange(0, len(points)) # Apply pose if not args.raw: is_valid = numpy.logical_and( points.timestamps > transforms.timestamps[0], points.timestamps < transforms.timestamps[-1]) indices = indices[is_valid] translations_tmp = scipy.interpolate.interp1d( transforms.timestamps, transforms.translations, axis=0)( points.timestamps[indices]) rotations_tmp = \ scipy.spatial.transform.Slerp( transforms.timestamps, transforms.rotations)( points.timestamps[indices]) odometry_transform_inv = numpy.linalg.inv( odometry_transform.to_matrix()) points.positions[indices, :] = numpy.matmul( points.positions[indices, :], odometry_transform_inv[:3, :3].transpose()) + \ odometry_transform_inv[:3, 3] points.positions[indices, :] = \ rotations_tmp.apply(points.positions[indices, :]) + \ translations_tmp # Grid downsample if args.downsample: grid_lb = numpy.amin(points.positions, axis=0) grid_ub = numpy.amax(points.positions, axis=0) grid_spacing = numpy.full([3], 0.01) grid_shape = ((grid_ub - grid_lb) / grid_spacing).astype(int) def get_flat_grid_indices(positions): grid_indices = ((positions - grid_lb) / grid_spacing).astype(int) is_valid = numpy.logical_and( numpy.all(grid_indices >= 0, axis=1), numpy.all(grid_indices < grid_shape, axis=1)) flat_grid_indices = numpy.full(grid_indices.shape[0], -1) flat_grid_indices[is_valid] = numpy.ravel_multi_index( grid_indices[is_valid, :].transpose(), grid_shape) return flat_grid_indices grid_indices = get_flat_grid_indices(points.positions[indices, :]) is_valid = grid_indices >= 0 indices = indices[is_valid] grid_indices = grid_indices[is_valid] is_valid = numpy.unique(grid_indices, return_index=True)[1] indices = indices[is_valid] grid_indices = grid_indices[is_valid] assert (len(indices) > 0) points = points[indices] # Save if args.output_path is not None: if file_type is not cepton_sdk.export.PointsFileType.LAS: points.positions[:, :] -= numpy.mean(points.positions, axis=0) output_ext = \ cepton_sdk.export.get_points_file_type_extension(file_type) output_path = set_extension(fix_path(args.output_path), output_ext) cepton_sdk.export.save_points(points, output_path, file_type=file_type) # Check points_tmp = cepton_sdk.export.load_points(output_path)[0] assert (numpy.max(numpy.abs(points.positions - points_tmp.positions)) < 1e-3) points = points_tmp # Plot if args.plot: cepton_sdk.plot.plot_points(points) if __name__ == "__main__": main()
2.296875
2
generator/storage_spider_template.django.py
chongiadung/choinho
0
12786015
<reponame>chongiadung/choinho<filename>generator/storage_spider_template.django.py # Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "{{ spider.xpath.name|safe }}", 'price' : "{{ spider.xpath.price|safe }}", 'category' : "{{ spider.xpath.category|safe}}", 'description' : "{{ spider.xpath.description|safe}}", 'images' : "{{ spider.xpath.images|safe}}", 'canonical' : "{{spider.xpath.canonical|safe}}", 'base_url' : "{{spider.xpath.base_url|safe}}", 'brand' : "{{spider.xpath.brand|safe}}", 'in_stock' : "{{spider.xpath.in_stock|safe}}", 'guarantee' : "{{spider.xpath.guarantee|safe}}", 'promotion' : "{{spider.xpath.promotion|safe}}" } name = '{{ spider.spider }}' allowed_domains = ['{{ spider.allowed_domain }}'] start_urls = ['{{ spider.start_url|safe }}'] tracking_url = '{{ spider.tracking_url|safe }}' sitemap_urls = ['{{ spider.sitemap_urls|safe }}'] sitemap_rules = [('{{ spider.sitemap_rules|safe }}', 'parse_item')] sitemap_follow = ['{{ spider.sitemap_follow|safe }}'] rules = [ {{ spider.hashtag_no_rule|safe }}Rule(LinkExtractor({{ spider.item_url_pattern|safe }}), 'parse_item'), {{ spider.hashtag_no_rule|safe }}Rule(LinkExtractor({{ spider.follow_link_pattern|safe }}), 'parse'), {{ spider.hashtag_all_rule|safe }}Rule(LinkExtractor({{ spider.all_links_pattern|safe }}), 'parse_item_and_links'), ]
1.789063
2
km_api/rest_order/mixins.py
knowmetools/km-api
4
12786016
from rest_framework.response import Response class SortModelMixin(object): sort_child_name = None sort_parent = None sort_serializer = None def get_sort_serializer(self, *args, **kwargs): serializer_class = self.sort_serializer kwargs["context"] = self.get_serializer_context() return serializer_class(*args, **kwargs) def sort(self, request, *args, **kwargs): parent_pk = kwargs.get("pk", None) parent = self.sort_parent.objects.get(pk=parent_pk) serializer = self.get_sort_serializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.save(parent) collection = getattr(parent, self.sort_child_name).all() serializer = self.get_serializer(collection, many=True) return Response(serializer.data)
2.15625
2
app/audit/tasks.py
getmetamapper/metamapper
53
12786017
# -*- coding: utf-8 -*- from metamapper.celery import app from datetime import timedelta from django.utils.timezone import now from app.audit.models import Activity @app.task(bind=True) def audit(self, actor_id, workspace_id, verb, old_values, new_values, extras=None, target_object_id=None, target_content_type_id=None, action_object_object_id=None, action_object_content_type_id=None): """Task to commit an audit activity to a database. """ activity_kwargs = { 'actor_id': actor_id, 'workspace_id': workspace_id, 'verb': verb, 'target_object_id': target_object_id, 'target_content_type_id': target_content_type_id, 'action_object_object_id': action_object_object_id, 'action_object_content_type_id': action_object_content_type_id, } defaults = { 'extras': extras or {}, 'timestamp': now(), 'old_values': old_values, 'new_values': new_values, } datefrom = now() - timedelta(minutes=15) queryset = ( Activity.objects .filter(**activity_kwargs) .filter(timestamp__gte=datefrom) ) for field in old_values.keys(): queryset = queryset.filter(old_values__has_key=field) activity = queryset.first() if activity: activity.update_attributes(**defaults) else: activity_kwargs.update(defaults) activity = Activity.objects.create(**activity_kwargs) return activity.pk
2.015625
2
test/swift_project_test.py
Dan2552/SourceKittenSubl
163
12786018
from src import swift_project from helpers import path_helper import unittest class TestSourceKitten(unittest.TestCase): # Test with a simple project directory # (i.e. without xcodeproj) def test_source_files_simple_project(self): project_directory = path_helper.monkey_example_directory() output = swift_project.source_files(project_directory) expectation = [ project_directory + "/Banana.swift", project_directory + "/Monkey.swift" ] self.assertEqual(sorted(list(output)), sorted(expectation))
2.625
3
pymodaq_plugins/daq_viewer_plugins/plugins_2D/daq_2Dviewer_AndorCCD.py
SofyMeu/pymodaq_plugins
0
12786019
from pymodaq_plugins.hardware.andor.daq_AndorSDK2 import DAQ_AndorSDK2 class DAQ_2DViewer_AndorCCD(DAQ_AndorSDK2): """ =============== ================== =============== ================== See Also -------- utility_classes.DAQ_Viewer_base """ control_type = "camera" #could be "camera", "shamrock" or "both" hardware_averaging = False def __init__(self, *args, **kwargs): super(DAQ_2DViewer_AndorCCD, self).__init__(*args, control_type=self.control_type, **kwargs)
2.28125
2
Cura/Cura/plugins/VersionUpgrade/VersionUpgrade33to34/VersionUpgrade33to34.py
TIAO-JI-FU/3d-printing-with-moveo-1
0
12786020
<reponame>TIAO-JI-FU/3d-printing-with-moveo-1<filename>Cura/Cura/plugins/VersionUpgrade/VersionUpgrade33to34/VersionUpgrade33to34.py # Copyright (c) 2018 <NAME>. # Cura is released under the terms of the LGPLv3 or higher. import configparser #To parse preference files. import io #To serialise the preference files afterwards. from typing import Dict, List, Tuple from UM.VersionUpgrade import VersionUpgrade #We're inheriting from this. _renamed_settings = { "infill_hollow": "infill_support_enabled" } # type: Dict[str, str] ## Upgrades configurations from the state they were in at version 3.3 to the # state they should be in at version 3.4. class VersionUpgrade33to34(VersionUpgrade): ## Gets the version number from a CFG file in Uranium's 3.3 format. # # Since the format may change, this is implemented for the 3.3 format only # and needs to be included in the version upgrade system rather than # globally in Uranium. # # \param serialised The serialised form of a CFG file. # \return The version number stored in the CFG file. # \raises ValueError The format of the version number in the file is # incorrect. # \raises KeyError The format of the file is incorrect. def getCfgVersion(self, serialised: str) -> int: parser = configparser.ConfigParser(interpolation = None) parser.read_string(serialised) format_version = int(parser.get("general", "version")) #Explicitly give an exception when this fails. That means that the file format is not recognised. setting_version = int(parser.get("metadata", "setting_version", fallback = "0")) return format_version * 1000000 + setting_version ## Upgrades instance containers to have the new version # number. def upgradeInstanceContainer(self, serialized: str, filename: str) -> Tuple[List[str], List[str]]: parser = configparser.ConfigParser(interpolation = None) parser.read_string(serialized) # Update version number. parser["general"]["version"] = "4" if "values" in parser: #If infill_hollow was enabled and the overhang angle was adjusted, copy that overhang angle to the new infill support angle. if "infill_hollow" in parser["values"] and parser["values"]["infill_hollow"] and "support_angle" in parser["values"]: parser["values"]["infill_support_angle"] = parser["values"]["support_angle"] #Renamed settings. for original, replacement in _renamed_settings.items(): if original in parser["values"]: parser["values"][replacement] = parser["values"][original] del parser["values"][original] result = io.StringIO() parser.write(result) return [filename], [result.getvalue()]
2.390625
2
general.py
SoniramSotirach/SecSerres1
0
12786021
import pandas as pd file = r'file.log' cols=['host','1','userid','date','tz','endpoint','status','data','referer','user_agent'] df=pd.read_csv(file,delim_whitespace=True,names=cols).drop('1',1) print (df.head()) unique_ip=df.host.unique() print(unique_ip) total = df['data'].sum() print('the server traffic is :',(total)) status_freq = pd.DataFrame(columns=['status', 'Frequency']) status_freq['Frequency'] = df.groupby('status').size() status_freq['status']=df.groupby('status').agg({'status':lambda x:list(x).__getitem__(1)}) ap = status_freq[status_freq['status']>=500].sum() print ('the requests generated requests a 5xx server error :',(ap['Frequency'])) print('distring ips visited server :',len(unique_ip))
3.046875
3
doc/rexi/strategies_for_solving_rexi_terms/helmholtz_problem_fault_tolerance.py
valentinaschueller/sweet
6
12786022
<gh_stars>1-10 #! /usr/bin/env python3 import math a_list = [ -0.86304 + 0j, -0.86304 + 1j, -0.86304 + 10j, -0.86304 + 100j, -0.86304 + 1000j ] f = 1.0 g = 1.0 eta0_hat = 1.0 u0_hat = 1.0 v0_hat = 0.5 eta_bar = 1.0 for a in a_list: for k in [0.01, 0.1, 1.0]: # for k in [0.1]: lhs = (a*a+f*f)+g*eta_bar*(2.0*math.pi*k)**2 rhs = (f*f+a*a)/a * eta0_hat - eta_bar *1.0j*2.0*math.pi*k*(u0_hat + v0_hat) - (f * eta_bar / a) *1.0j*2.0*math.pi*k*(v0_hat - u0_hat) eta_hat = rhs / lhs print("a="+str(a)+", k="+str(k)+" > "+str(eta_hat))
2.875
3
till_looping/4_3.py
mdazharuddin1011999/IoT_Assignment_2
0
12786023
<filename>till_looping/4_3.py from math import factorial x = int(input("Enter x: ")) n = int(input("Enter n: ")) print(1+sum([x**i/factorial(i) for i in range(2,n+1, 2)]))
3.46875
3
tests/test_persistence.py
DiscoverAI/pungi
0
12786024
<reponame>DiscoverAI/pungi import pungi.persistence as persistence from collections import defaultdict import os import shutil def test_save_simple_q_table(): test_q_table = defaultdict(lambda: (5, 5, 5, 5, 5)) test_q_table[0] = (4, 5, 6, 7, 8) test_q_table[(1, 2)] = (7, 5, 4, 3, 2) test_dir = "./tests/out/" filename = "model.pkl" if not os.path.exists(test_dir): os.makedirs(test_dir) persistence.save_q_table(test_q_table, test_dir + filename) loaded = persistence.load_q_table(test_dir + filename) assert test_q_table == loaded assert (5, 5, 5, 5, 5) == loaded["non_existing_key"] shutil.rmtree(test_dir)
2.453125
2
algorithms/python/leetcode/x3Sum.py
ytjia/coding-pratice
0
12786025
# -*- coding: utf-8 -*- # Authors: <NAME> <<EMAIL>> """ Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. https://leetcode.com/problems/3sum/description/ """ class Solution(object): def threeSum(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ triplets_list = list() if nums is None or len(nums) < 3: return triplets_list nums.sort() i = 0 pre_i_value = None while i < len(nums) - 2: if nums[i] == pre_i_value: i += 1 continue else: pre_i_value = nums[i] l, j = i + 1, len(nums) - 1 while l < j: s = nums[i] + nums[j] + nums[l] if s < 0: l += 1 elif s > 0: j -= 1 else: triplets_list.append([nums[i], nums[j], nums[l]]) while l < j and nums[l] == nums[l + 1]: l += 1 while l < j and nums[j] == nums[j - 1]: j -= 1 l += 1 j -= 1 i += 1 return triplets_list
3.4375
3
cc_backend_lib/models/country.py
prio-data/cc_backend_lib
0
12786026
<reponame>prio-data/cc_backend_lib from typing import List, Optional from pydantic import BaseModel from geojson_pydantic import features, geometries class Country(features.Feature): class Meta: QUERY_ORDER = ["gwno","name","iso2c","shape"] properties: "CountryProperties" @classmethod def from_row(cls, gwno: int, name: str, iso2c: str, shape: geometries.Geometry): return cls( geometry = shape, properties = CountryProperties( gwno = gwno, name = name, iso2c = iso2c ), id = gwno ) class CountryIdentity(BaseModel): gwno: int name: str class CountryProperties(CountryIdentity): iso2c: Optional[str] = None predictions: Optional[int] = None participants:Optional[int] = None class CountryPropertiesList(BaseModel): countries: List[CountryProperties] class CountryList(BaseModel): countries: List[CountryIdentity] Country.update_forward_refs()
2.4375
2
Ago-Dic-2021/fernandez-salinas-cristian-alejandro/Practica3/calculator_test.py
CristianF50/DAS_Sistemas
41
12786027
import unittest from calculator import * class CalculatorTest(unittest.TestCase): def test_suma_dos_numeros(self): calc = Calculator(5, 10) self.assertEqual(15, calc.suma()) def test_resta_dos_numeros(self): calc = Calculator(19, 8) self.assertEqual(11, calc.resta()) def test_multiplica_dos_numeros(self): calc = Calculator(42, 2) self.assertEqual(84, calc.multiplicacion()) def test_divide_dos_numeros(self): calc = Calculator(18, 3) self.assertEqual(6, calc.division()) def test_potencia_de_un_numero(self): calc = Calculator(3, 3) self.assertEqual(27, calc.potencia()) def test_raiz_de_un_numero(self): calc = Calculator(216, 3) self.assertEqual(6, calc.raiz()) def test_dividir_entre_cero(self): calc = Calculator(25, 0) self.assertEqual(0, calc.division()) def test_dividir_entre_cero_2(self): calc = Calculator(0, 25) self.assertEqual(0, calc.division()) def test_raiz_num_negativo(self): calc = Calculator(-8,2) self.assertEqual(0, calc.raiz()) if __name__ == "__main__": unittest.main()
3.71875
4
tests/cmdline/test_plot.py
JuDFTteam/masci-tools
15
12786028
<filename>tests/cmdline/test_plot.py # -*- coding: utf-8 -*- """ Test of the plot commands in the cli Here we do not test the actual content of the plot but only that the commands work without error """ from pathlib import Path import os import pytest def test_fleur_dos(): """ Test of the fleur-dos routine without options """ from masci_tools.cmdline.commands.plot import plot_fleur_banddos_dos from click.testing import CliRunner TEST_FILE = Path(__file__).parent.resolve() / Path('../files/hdf5_reader/banddos_dos.hdf') runner = CliRunner() args = [os.fspath(TEST_FILE), '--save'] with runner.isolated_filesystem(): result = runner.invoke(plot_fleur_banddos_dos, args) print(result.output) assert result.exception is None, 'An unexpected exception occured: {result.exception}' assert os.path.isfile('dos_plot.png') def test_fleur_dos_recipe(): """ Test of the fleur-dos routine with options """ from masci_tools.cmdline.commands.plot import plot_fleur_banddos_dos from click.testing import CliRunner TEST_FILE = Path(__file__).parent.resolve() / Path('../files/hdf5_reader/banddos_spinpol_dos.hdf') runner = CliRunner() args = [os.fspath(TEST_FILE), '--save', '--recipe', 'FleurJDOS', '--l_resolved', 'all', '--interstitial', 'False'] with runner.isolated_filesystem(): with pytest.warns(UserWarning): result = runner.invoke(plot_fleur_banddos_dos, args) print(result.output) assert result.exception is None, 'An unexpected exception occured: {result.exception}' assert os.path.isfile('dos_plot.png') def test_fleur_bands(): """ Test of the fleur-bands routine without options """ from masci_tools.cmdline.commands.plot import plot_fleur_banddos_bands from click.testing import CliRunner TEST_FILE = Path(__file__).parent.resolve() / Path('../files/hdf5_reader/banddos_bands.hdf') runner = CliRunner() args = [os.fspath(TEST_FILE), '--save'] with runner.isolated_filesystem(): result = runner.invoke(plot_fleur_banddos_bands, args) print(result.output) assert result.exception is None, 'An unexpected exception occured: {result.exception}' assert os.path.isfile('bandstructure.png') def test_fleur_bands_recipe(): """ Test of the fleur-bands routine with options """ from masci_tools.cmdline.commands.plot import plot_fleur_banddos_bands from click.testing import CliRunner TEST_FILE = Path(__file__).parent.resolve() / Path('../files/hdf5_reader/banddos_bands.hdf') runner = CliRunner() args = [os.fspath(TEST_FILE), '--save', '--weight', 'MT:1s'] with runner.isolated_filesystem(): result = runner.invoke(plot_fleur_banddos_bands, args) print(result.output) assert result.exception is None, 'An unexpected exception occured: {result.exception}' assert os.path.isfile('bandstructure.png')
2.15625
2
vietnamese_utils.py
khiemdoan/aivivn_vietnamese_tone_prediction
1
12786029
<filename>vietnamese_utils.py import re import string uni_chars_l = 'áàảãạâấầẩẫậăắằẳẵặđèéẻẽẹêếềểễệíìỉĩịóòỏõọôốồổỗộơớờởỡợúùủũụưứừửữựýỳỷỹỵ' uni_chars_u = 'ÁÀẢÃẠÂẤẦẨẪẬĂẮẰẲẴẶĐÈÉẺẼẸÊẾỀỂỄỆÍÌỈĨỊÓÒỎÕỌÔỐỒỔỖỘƠỚỜỞỠỢÚÙỦŨỤƯỨỪỬỮỰÝỲỶỸỴ' AEIOUYD = ['a', 'e', 'i', 'o', 'u', 'y', 'd'] A_FAMILY = list('aáàảãạăắằẳẵặâấầẩẫậ') E_FAMILY = list('eéèẻẽẹêếềểễệ') I_FAMILY = list('iíìỉĩị') O_FAMILY = list('oóòỏõọôốồổỗộơớờởỡợ') U_FAMILY = list('uúùủũụưứừửữự') Y_FAMILY = list('yýỳỷỹỵ') D_FAMILY = list('dđ') tones_l = [ '1', '2', '3', '4', '5', '6', '61', '62', '63', '64', '65', '8', '81', '82', '83', '84', '85', '9', '1', '2', '3', '4', '5', '6', '61', '62', '63', '64', '65', '1', '2', '3', '4', '5', '1', '2', '3', '4', '5', '6', '61', '62', '63', '64', '65', '7', '71', '72', '73', '74', '75', '1', '2', '3', '4', '5', '7', '71', '72', '73', '74', '75', '1', '2', '3', '4', '5' ] tones_u = [ '1', '2', '3', '4', '5', '6', '61', '62', '63', '64', '65', '8', '81', '82', '83', '84', '85', '9', '1', '2', '3', '4', '5', '6', '61', '62', '63', '64', '65', '1', '2', '3', '4', '5', '1', '2', '3', '4', '5', '6', '61', '62', '63', '64', '65', '7', '71', '72', '73', '74', '75', '1', '2', '3', '4', '5', '7', '71', '72', '73', '74', '75', '1', '2', '3', '4', '5' ] no_tone_chars_l = 'a'*17 + 'd' + 'e'*11 + 'i'*5 + 'o'*17 + 'u'*11 + 'y'*5 no_tone_chars_u = 'A'*17 + 'D' + 'E'*11 + 'I'*5 + 'O'*17 + 'U'*11 + 'Y'*5 tones_dict = dict(zip(uni_chars_l + uni_chars_u, tones_l + tones_u)) no_tone_dict = dict(zip(uni_chars_l + uni_chars_u, no_tone_chars_l + no_tone_chars_u)) def decompose_predicted(text: str) -> str: text = [c for c in text if c in tones_dict] if len(text) == 0: return '0' text = [tones_dict[c] for c in text] return ''.join(text) def remove_vietnamese_tone(text: str) -> str: text = [no_tone_dict.get(c, c) for c in text] return ''.join(text) def is_vietnamese_word(word: str) -> bool: word = remove_vietnamese_tone(word) word = word.lower() pattern = r'^[bcdghklmnpqrstvx]{0,3}[aeiouy]{1,3}[bcdghklmnpqrstvx]{0,2}$' return bool(re.match(pattern, word)) def get_vietnamese_alphabet() -> str: return string.ascii_lowercase + tones_l
2.3125
2
nlpipe/Tools/alpino.py
ccs-amsterdam/nlpipe
0
12786030
<gh_stars>0 """ Wrapper around the RUG Alpino Dependency parser The module expects either ALPINO_HOME to point at the alpino installation dir or an alpino server to be running at ALPINO_SERVER (default: localhost:5002) You can use the following command to get the server running: (see github.com/vanatteveldt/alpino-server) docker run -dp 5002:5002 vanatteveldt/alpino-server If running alpino locally, note that the module needs the dependencies end_hook, which seems to be missing in some builds. See: http://www.let.rug.nl/vannoord/alp/Alpino """ import csv import json import logging import os import subprocess import requests import tempfile from io import StringIO from nlpipe.Tools.toolsInterface import Tool log = logging.getLogger(__name__) CMD_PARSE = ["bin/Alpino", "end_hook=dependencies", "-parse"] CMD_TOKENIZE = ["Tokenization/tok"] class AlpinoParser(Tool): name = "alpino" def check_status(self): # check if the alpino server is running if 'ALPINO_HOME' in os.environ: alpino_home = os.environ['ALPINO_HOME'] if not os.path.exists(alpino_home): raise Exception("Alpino not found at ALPINO_HOME={alpino_home}".format(**locals())) else: alpino_server = os.environ.get('ALPINO_SERVER', 'http://localhost:5002') # server runs on port 5002 r = requests.get(alpino_server) # check on the server if r.status_code != 200: raise Exception("No server found at {alpino_server} and ALPINO_HOME not set".format(**locals())) def process(self, text, **kwargs): # process the test using alpino if 'ALPINO_HOME' in os.environ: # run using command line (not using server API) tokens = tokenize(text) # tokenize the text return parse_raw(tokens) else: alpino_server = os.environ.get('ALPINO_SERVER', 'http://localhost:5002') url = "{alpino_server}/parse".format(**locals()) body = {"text": text, "output": "dependencies"} r = requests.post(url, json=body) if r.status_code != 200: raise Exception("Error calling Alpino at {alpino_server}: {r.status_code}:\n{r.content!r}" .format(**locals())) return r.text def convert(self, doc_id, result, return_format): """ convert the text to an indicated return_format :param doc_id: id of the document :result: text/output to convert :return_format: e.g., csv :return: converted format """ assert return_format in ["csv"] s = StringIO() w = csv.writer(s) # write in csv w.writerow(["doc", "doc_id", "sentence", "offset", "word", "lemma", "pos", "rel", "parent"]) # for each row for line in interpret_parse(result): # read line by line and format the results w.writerow((doc_id,) + line) return s.getvalue() AlpinoParser.register() # register alpino in the known_tools def _call_alpino(command, input_text): """ Calls alpino given the command and input text """ alpino_home = os.environ['ALPINO_HOME'] p = subprocess.Popen(command, shell=False, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=alpino_home) # start a subprocess with the command out, err = [x.decode("utf-8") for x in p.communicate(input_text.encode("utf-8"))] if not out: with tempfile.NamedTemporaryFile(suffix=".txt", delete=False, mode="wb") as f: f.write(input_text.encode("utf-8")) logging.exception("Error calling Alpino, input file written to {f.name}, command was {command}" .format(**locals())) raise Exception("Problem calling {command}, output was empty. Error: {err!r}".format(**locals())) return out def tokenize(text: str) -> str: # tokenize and replace "|" return _call_alpino(CMD_TOKENIZE, text).replace("|", "") def parse_raw(tokens): # parse the tokens return _call_alpino(CMD_PARSE, tokens) def get_fields(parse): if parse.strip().startswith("{"): parse = json.loads(parse) for sid in parse: for row in parse[sid]['triples']: yield row + [sid] else: for line in parse.split("\n"): if line.strip(): yield line.strip().split("|") def interpret_parse(parse): rels = {} # child: (rel, parent) for line in get_fields(parse): assert len(line) == 16 sid = int(line[-1]) func, rel = line[7].split("/") child = interpret_token(sid, *line[8:15]) if func == "top": parent = None else: parent = interpret_token(sid, *line[:7]) rels[child] = (rel, parent) # get tokenid for each token, preserving order tokens = sorted(rels.keys(), key=lambda token: token[:2]) tokenids = {token: i for (i, token) in enumerate(tokens)} for token in tokens: (rel, parent) = rels[token] tokenid = tokenids[token] parentid = tokenids[parent] if parent is not None else None yield (tokenid, ) + token + (rel, parentid) def interpret_token(sid, lemma, word, begin, _end, major_pos, _pos, full_pos): """Convert to raw alpino token into a (word, lemma, begin, pos1) tuple""" if major_pos not in POSMAP: logging.warn("UNKNOWN POS: {major_pos}".format(**locals())) pos1 = POSMAP.get(major_pos, '?') # simplified POSMAP return sid, int(begin), word, lemma, pos1 POSMAP = {"pronoun": 'O', "pron": 'O', "verb": 'V', "noun": 'N', "preposition": 'P', "prep": 'P', "determiner": "D", "det": "D", "comparative": "C", "comp": "C", "adverb": "B", 'adv': 'B', "adj": "A", "complementizer": "C", "punct": ".", "conj": "C", "vg": 'C', "prefix": 'C', # not quite sure what vg stands for, sorry "tag": "?", "particle": "R", "fixed": 'R', "name": "M", "part": "R", "intensifier": "B", "number": "Q", "num": 'Q', "cat": "Q", "n": "Q", "reflexive": 'O', "conjunct": 'C', "pp": 'P', 'anders': '?', 'etc': '?', 'enumeration': '?', 'np': 'N', 'p': 'P', 'quant': 'Q', 'sg': '?', 'zo': '?', 'max': '?', 'mogelijk': '?', 'sbar': '?', '--': '?', }
2.296875
2
thenewboston_node/business_logic/models/signed_change_request/base.py
thenewboston-developers/thenewboston-node
30
12786031
import copy import logging from dataclasses import dataclass from typing import Any, Optional, Type, TypeVar from thenewboston_node.business_logic.exceptions import ValidationError from thenewboston_node.business_logic.models.base import BaseDataclass from thenewboston_node.core.logging import validates from thenewboston_node.core.utils.cryptography import derive_public_key from thenewboston_node.core.utils.dataclass import cover_docstring, revert_docstring from thenewboston_node.core.utils.types import hexstr from ..mixins.signable import SignableMixin from ..signed_change_request_message import SignedChangeRequestMessage T = TypeVar('T', bound='SignedChangeRequest') logger = logging.getLogger(__name__) @revert_docstring @dataclass @cover_docstring class SignedChangeRequest(SignableMixin, BaseDataclass): message: SignedChangeRequestMessage @classmethod def deserialize_from_dict(cls, dict_, complain_excessive_keys=True, override: Optional[dict[str, Any]] = None): from . import SIGNED_CHANGE_REQUEST_TYPE_MAP # TODO(dmu) MEDIUM: This polymorphic deserializer duplicates the logic in Block/BlockMessage. # Consider keeping only this serializer # TODO(dmu) MEDIUM: Maybe we do not really need to subclass SignedChangeRequest, but # subclassing of SignedChangeRequestMessage is enough signed_change_request_type = (dict_.get('message') or {}).get('signed_change_request_type') if cls == SignedChangeRequest: class_ = SIGNED_CHANGE_REQUEST_TYPE_MAP.get(signed_change_request_type) if class_ is None: raise ValidationError('message.signed_change_request_type must be provided') return class_.deserialize_from_dict(dict_, complain_excessive_keys=complain_excessive_keys) # type: ignore if signed_change_request_type: class_ = SIGNED_CHANGE_REQUEST_TYPE_MAP.get(signed_change_request_type) if class_ is None: raise ValidationError(f'Unsupported signed_change_request_type: {signed_change_request_type}') if not issubclass(cls, class_): raise ValidationError( f'{cls} does not match with signed_change_request_type: {signed_change_request_type}' ) return super().deserialize_from_dict(dict_, complain_excessive_keys=complain_excessive_keys) @classmethod def create_from_signed_change_request_message( cls: Type[T], message: SignedChangeRequestMessage, signing_key: hexstr ) -> T: request = cls(signer=derive_public_key(signing_key), message=copy.deepcopy(message)) request.sign(signing_key) return request @validates('signed request') def validate(self, blockchain, block_number: int): self.validate_message() with validates('block signature'): self.validate_signature() @validates('signed request message') def validate_message(self): self.message.validate() def get_updated_account_states(self, blockchain): raise NotImplementedError('Must be implemented in subclass')
1.9375
2
src/harness/grpc_pb2.py
vmagamedov/harness
6
12786032
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: harness/grpc.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from harness import net_pb2 as harness_dot_net__pb2 from harness import wire_pb2 as harness_dot_wire__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='harness/grpc.proto', package='harness.grpc', syntax='proto3', serialized_options=None, serialized_pb=b'\n\x12harness/grpc.proto\x12\x0charness.grpc\x1a\x11harness/net.proto\x1a\x12harness/wire.proto\"6\n\x07\x43hannel\x12+\n\x07\x61\x64\x64ress\x18\x01 \x01(\x0b\x32\x13.harness.net.SocketB\x05\x92}\x02\x08\x02\"2\n\x06Server\x12(\n\x04\x62ind\x18\x01 \x01(\x0b\x32\x13.harness.net.SocketB\x05\x92}\x02\x08\x02\x62\x06proto3' , dependencies=[harness_dot_net__pb2.DESCRIPTOR,harness_dot_wire__pb2.DESCRIPTOR,]) _CHANNEL = _descriptor.Descriptor( name='Channel', full_name='harness.grpc.Channel', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='address', full_name='harness.grpc.Channel.address', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\222}\002\010\002', file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=75, serialized_end=129, ) _SERVER = _descriptor.Descriptor( name='Server', full_name='harness.grpc.Server', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='bind', full_name='harness.grpc.Server.bind', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\222}\002\010\002', file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=131, serialized_end=181, ) _CHANNEL.fields_by_name['address'].message_type = harness_dot_net__pb2._SOCKET _SERVER.fields_by_name['bind'].message_type = harness_dot_net__pb2._SOCKET DESCRIPTOR.message_types_by_name['Channel'] = _CHANNEL DESCRIPTOR.message_types_by_name['Server'] = _SERVER _sym_db.RegisterFileDescriptor(DESCRIPTOR) Channel = _reflection.GeneratedProtocolMessageType('Channel', (_message.Message,), { 'DESCRIPTOR' : _CHANNEL, '__module__' : 'harness.grpc_pb2' # @@protoc_insertion_point(class_scope:harness.grpc.Channel) }) _sym_db.RegisterMessage(Channel) Server = _reflection.GeneratedProtocolMessageType('Server', (_message.Message,), { 'DESCRIPTOR' : _SERVER, '__module__' : 'harness.grpc_pb2' # @@protoc_insertion_point(class_scope:harness.grpc.Server) }) _sym_db.RegisterMessage(Server) _CHANNEL.fields_by_name['address']._options = None _SERVER.fields_by_name['bind']._options = None # @@protoc_insertion_point(module_scope)
1.117188
1
src/configure/Flink-demo/genes.py
HICAS-ChameLeon/Chameleon
4
12786033
<gh_stars>1-10 import random import numpy as np from sklearn.externals import joblib from deap import base from deap import creator from deap import tools from itertools import repeat from collections import Sequence clf=joblib.load('./data/models/Jmodel.pkl') importance = clf.feature_importances_ creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", np.ndarray, fitness=creator.FitnessMin) IND_SIZE = 28 # 染色体数 toolbox = base.Toolbox() toolbox.register("attr_float", random.uniform, -1, 1) # toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE) toolbox.register("population", tools.initRepeat, list, toolbox.individual) # ind1 = toolbox.individual() # print(ind1) # print(ind1.fitness.valid) def evaluate(individual): return clf.predict(individual.reshape(1,-1)), '''根据每个特征的重要性决定个体的基因是否变异''' def mutate(individual,low,up,indpbs): """Mutate an individual by replacing attributes, with probability *indpb*, by a integer uniformly drawn between *low* and *up* inclusively. :param individual: :term:`Sequence <sequence>` individual to be mutated. :param low: The lower bound or a :term:`python:sequence` of of lower bounds of the range from wich to draw the new integer. :param up: The upper bound or a :term:`python:sequence` of of upper bounds of the range from wich to draw the new integer. :param indpbs: Independent probability for each attribute to be mutated. :returns: A tuple of one individual. """ size = len(individual) if not isinstance(low, Sequence): low = repeat(low, size) elif len(low) < size: raise IndexError("low must be at least the size of individual: %d < %d" % (len(low), size)) if not isinstance(up, Sequence): up = repeat(up, size) elif len(up) < size: raise IndexError("up must be at least the size of individual: %d < %d" % (len(up), size)) for i, xl, xu, indpb in zip(range(size-1), low, up,indpbs): if random.random() < indpb*10: individual[i] = individual[i]+random.uniform(xl, xu)/3 return individual, LOW=0.0 UP=1.0 toolbox.register("evaluate", evaluate) toolbox.register("mate", tools.cxTwoPoint) #交叉 toolbox.register("mutate",mutate,low=LOW,up=UP, indpbs=importance) toolbox.register("select", tools.selTournament, tournsize=3) def main(confs): random.seed(64) NGEN=10 CXPB,MUTPB=0.5 ,0.2 #交叉概率 变异概率 pop = toolbox.population(n=0) for i in confs: pop.append(creator.Individual(i)) fitnesses = map(toolbox.evaluate, pop) # print(fitnesses) for ind, fit in zip(pop, fitnesses): ind.fitness.values = fit print(" Evaluated %i individuals" % len(pop)) print("-- Iterative %i times --" % NGEN) for g in range(NGEN): if g % 10 == 0: print("-- Generation %i --" % g) # Select the next generation individuals offspring = toolbox.select(pop, len(pop)) # Clone the selected individuals offspring = list(map(toolbox.clone, offspring)) # Apply crossover and mutation on the offspring for child1, child2 in zip(offspring[::2], offspring[1::2]): if random.random() < CXPB: toolbox.mate(child1, child2) del child1.fitness.values del child2.fitness.values for mutant in offspring: if random.random() < MUTPB: toolbox.mutate(mutant) del mutant.fitness.values # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # The population is entirely replaced by the offspring pop[:] = offspring print("-- End of (successful) evolution --") best_ind = tools.selBest(pop, 1)[0] return best_ind, best_ind.fitness.values # return the result:Last individual,The Return of Evaluate function
2.6875
3
src/service/setup.py
MrMonkeyPi/monkey-pi
0
12786034
import os import shelve APP_SETTING_FILE = os.path.join(os.getcwd(), 'instance', "data", "app") CACHE_DIR = os.path.join(os.getcwd(), 'instance', 'cache') try: os.makedirs(CACHE_DIR) os.makedirs(os.path.dirname(APP_SETTING_FILE)) except OSError: pass # for item, value in os.environ.items(): # print(f"{item} > {value}") MEDIA_HOME = os.environ.get('MEDIA_HOME') if MEDIA_HOME is not None: with shelve.open(APP_SETTING_FILE) as db: db['MEDIA_HOME'] = list(map(lambda x: os.path.abspath(x), MEDIA_HOME.split(':'))) with shelve.open(APP_SETTING_FILE) as db: print(dict(db))
2.546875
3
meal_plan_optimizer/__init__.py
ilSommo/meal-plan-optimizer
2
12786035
<filename>meal_plan_optimizer/__init__.py __version__ = '1.3.0' __author__ = '<NAME>'
0.996094
1
webcheck/webcheck.py
sintrb/webcheck
0
12786036
# -*- coding: UTF-8 -* from __future__ import print_function __version__ = "1.2.0" def get_certificate(hostname, port, sername=None): import idna from socket import socket from OpenSSL import SSL sock = socket() sock.setblocking(True) sock.connect((hostname, port), ) ctx = SSL.Context(SSL.SSLv23_METHOD) ctx.check_hostname = False ctx.verify_mode = SSL.VERIFY_NONE sock_ssl = SSL.Connection(ctx, sock) sock_ssl.set_tlsext_host_name(idna.encode(sername or hostname)) sock_ssl.set_connect_state() sock_ssl.do_handshake() cert = sock_ssl.get_peer_certificate() sock_ssl.close() sock.close() return cert _last_line = '' def _print_status(s): import sys global _last_line if not sys.stdout.isatty(): return if _last_line: print('\b' * len(_last_line), end='') sys.stdout.flush() print(' ' * len(_last_line), end='') sys.stdout.flush() print(u'\r%s' % s, end='') _last_line = s sys.stdout.flush() def main(): import io import sys import time import socket import argparse import datetime from collections import OrderedDict import ssl try: import urlparse as parse import urllib2 urlopen = urllib2.urlopen except: from urllib import parse, request urlopen = request.urlopen ssl._create_default_https_context = ssl._create_unverified_context parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-f', '--file', help='the text file(or uri) to read URLs') parser.add_argument('-e', '--expire', help='the expire days for ssl certificate', type=int, default=7) parser.add_argument('-c', '--code', help='the http response status code', type=int, default=[200], nargs='*') parser.add_argument('-t', '--timeout', help='the timeout to check', type=int, default=10) parser.add_argument('urls', help='the URLs what will be check', default=[], type=str, nargs='*') args = parser.parse_args() start = time.time() rawurls = [] + args.urls if args.file: if '://' in args.file: # uri _print_status('fetch urls file from %s...' % args.file) r = urlopen(args.file) for l in r.readlines(): if type(l) != type(''): l = l.decode() rawurls.append(l) else: rawurls += list(io.open(args.file, encoding='utf-8').readlines()) urls = [] for l in rawurls: if '://' not in l: continue ls = l.split('#') if not ls: continue u = ls[0].strip() if not u or u in urls: continue ud = { 'url': u } urls.append(ud) if not urls: _print_status('') print('no url to check', file=sys.stderr) exit(1) today = datetime.datetime.today() results = [] socket.setdefaulttimeout(args.timeout) errct = 0 for ix, ud in enumerate(urls): url = ud['url'] _print_status(u'%s/%d/%d %s...' % (errct, ix + 1, len(urls), url)) rs = parse.urlparse(url) res = OrderedDict() if args.expire and rs.scheme == 'https': # ssl check err = '' try: cert = get_certificate(rs.hostname, int(rs.port or 443)) es = cert.get_notAfter()[:-1] if type(es) != type(''): es = es.decode() expdate = datetime.datetime.strptime(es, '%Y%m%d%H%M%S') offdays = (expdate - today).days if offdays <= args.expire: err = 'days %s' % offdays except Exception as e: err = str(e) or str(type(e).__name__) res['ssl'] = { 'title': 'ssl', 'error': err } if args.code: # check http status err = '' try: code = urlopen(url, timeout=args.timeout).getcode() if code not in args.code: err = 'code %s' % code except Exception as e: err = str(e) res['http'] = { 'title': 'http', 'error': err } errors = list([u'%s(%s)' % (r['title'], r['error']) for r in res.values() if r['error']]) results.append({ 'title': ud.get('title', url), 'url': url, 'result': res, 'error': u'/'.join(errors) if errors else '' }) if errors: errct += 1 # print(results) _print_status('') errors = list(['%s [%s]' % (r['title'], r['error']) for r in results if r['error']]) print('TIME:%ds CHECKED:%d ERROR:%s' % (int(time.time() - start), len(results), len(errors))) if errors: print('\n'.join(errors)) if __name__ == '__main__': main()
2.984375
3
goodman_pipeline/wcs/tests/test_functional.py
SunilSimha/goodman_pipeline
6
12786037
from __future__ import absolute_import from unittest import TestCase, skip from ..wcs import WCS import numpy as np import os import re import sys from astropy.io import fits from astropy.modeling import (models, fitting, Model) import matplotlib.pyplot as plt from ccdproc import CCDData class TestWCSBase(TestCase): def setUp(self): self.data_path = os.path.join( os.path.dirname(sys.modules['goodman_pipeline'].__file__), 'data/test_data/wcs_data') self.wcs = WCS() @staticmethod def _recover_lines(ccd): lines_pixel = [] lines_angstrom = [] pixel_keywords = ccd.header['GSP_P*'] for pixel_key in pixel_keywords: if re.match(r'GSP_P\d{3}', pixel_key) is not None: angstrom_key = re.sub('GSP_P', 'GSP_A', pixel_key) if int(ccd.header[angstrom_key]) != 0: lines_pixel.append(float(ccd.header[pixel_key])) lines_angstrom.append(float(ccd.header[angstrom_key])) return lines_pixel, lines_angstrom class TestWCS(TestWCSBase): # def test_wcs__call__(self): # self.assertRaisesRegex(SystemExit, '1', self.wcs) # self.assertRaises(SystemExit, self.wcs) def test_fit_chebyshev(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) model = self.wcs.fit(physical=pixel, wavelength=angstrom) self.assertIsInstance(model, Model) self.assertEqual(model.__class__.__name__, ccd.header['GSP_FUNC']) self.assertEqual(model.degree, ccd.header['GSP_ORDR']) for i in range(model.degree + 1): self.assertAlmostEqual(model.__getattribute__('c{:d}'.format(i)).value, ccd.header['GSP_C{:03d}'.format(i)]) def test_fit_linear(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) model = self.wcs.fit(physical=pixel, wavelength=angstrom, model_name='linear') self.assertIsInstance(model, Model) def test_fit_invalid(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) self.assertRaisesRegex(NotImplementedError, 'The model invalid is not implemented', self.wcs.fit, pixel, angstrom, 'invalid') self.assertRaises(NotImplementedError, self.wcs.fit, pixel, angstrom, 'invalid') def test_fit__unable_to_fit(self): pixel = [0, 1, 2, 3] angstrom = [20, 30, 40] # self.assertRaisesRegex(ValueError, # 'x and y should have the same shape', # self.wcs.fit, pixel, angstrom) self.assertRaises(ValueError, self.wcs.fit, pixel, angstrom) def test_read__linear(self): test_file = os.path.join(self.data_path, 'linear_fits_solution.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read(ccd=ccd) self.assertIsInstance(result, list) self.assertEqual(len(result), 2) self.assertIsInstance(self.wcs.get_model(), Model) def test_read__log_linear(self): test_file = os.path.join(self.data_path, 'log-linear_fits_solution.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') # # result = self.wcs.read(ccd=ccd) # # self.assertIsInstance(result, list) # self.assertEqual(len(result), 2) # self.assertIsInstance(self.wcs.get_model(), Model) self.assertRaises(NotImplementedError, self.wcs.read, ccd) def test_read__non_linear_chebyshev(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_cheb.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read(ccd=ccd) self.assertIsInstance(self.wcs.model, Model) self.assertEqual(self.wcs.model.__class__.__name__, 'Chebyshev1D') def test_read__non_linear_legendre(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_legendre.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read(ccd=ccd) self.assertIsInstance(self.wcs.model, Model) self.assertEqual(self.wcs.model.__class__.__name__, 'Legendre1D') def test_read__non_linear_lspline(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_linear-spline.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') # self.wcs.read(ccd=ccd) self.assertRaises(NotImplementedError, self.wcs.read, ccd) self.assertRaisesRegex(NotImplementedError, 'Linear spline is not implemented', self.wcs.read, ccd) def test_read__non_linear_cspline(self): test_file = os.path.join(self.data_path, 'non-linear_fits_solution_cubic-spline.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') self.assertRaises(NotImplementedError, self.wcs.read, ccd) self.assertRaisesRegex(NotImplementedError, 'Cubic spline is not implemented', self.wcs.read, ccd) def test_write_fits_wcs(self): self.assertRaises(NotImplementedError, self.wcs.write_fits_wcs, None, None) def test_read__invalid(self): test_file = os.path.join(self.data_path, 'linear_fits_solution.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') ccd.wcs.wcs.ctype[0] = 'INVALID' self.assertRaisesRegex(NotImplementedError, 'CTYPE INVALID is not recognized', self.wcs.read, ccd) self.assertRaises(NotImplementedError, self.wcs.read, ccd) def test_write_gsp_wcs(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') ccd = CCDData.read(test_file, unit='adu') pixel, angstrom = self._recover_lines(ccd=ccd) model = self.wcs.fit(physical=pixel, wavelength=angstrom) self.assertIsInstance(model, Model) blank_ccd = CCDData(data=np.ones(ccd.data.shape), meta=fits.Header(), unit='adu') blank_ccd.header.set('GSP_WREJ', value=None, comment='empty') new_ccd = self.wcs.write_gsp_wcs(ccd=blank_ccd, model=model) self.assertEqual(new_ccd.header['GSP_FUNC'], ccd.header['GSP_FUNC']) self.assertEqual(new_ccd.header['GSP_ORDR'], ccd.header['GSP_ORDR']) self.assertEqual(new_ccd.header['GSP_NPIX'], ccd.header['GSP_NPIX']) for i in range(model.degree + 1): self.assertAlmostEqual(new_ccd.header['GSP_C{:03d}'.format(i)], ccd.header['GSP_C{:03d}'.format(i)]) def test_read_gsp_wcs(self): test_file = os.path.join(self.data_path, 'goodman_comp_400M1_HgArNe.fits') self.assertTrue(os.path.isfile(test_file)) ccd = CCDData.read(test_file, unit='adu') result = self.wcs.read_gsp_wcs(ccd=ccd) self.assertIsInstance(result, list) self.assertEqual(len(result), 2) self.assertIsInstance(self.wcs.get_model(), Model) def test_get_model_is_None(self): self.wcs.model = None self.assertIsNone(self.wcs.get_model()) def test_get_model_is_not_None(self): self.wcs.model = models.Chebyshev1D(degree=3) self.assertIsInstance(self.wcs.get_model(), Model) def test_pm_none(self): # test_file = os.path.join(self.data_path, # 'non-linear_fits_solution_cheb.fits') # self.assertTrue(os.path.isfile(test_file)) # # ccd = CCDData.read(test_file, unit='adu') # # WAT2_001 = 'wtype = multispec spec1 = "1 1 2 1. 1.5114461210693 4096 0. 834.39 864' # WAT2_002 = '.39 1. 0. 1 3 1616.37 3259.98 5115.64008185559 535.515983711607 -0.7' # WAT2_003 = '79265625182385"' # # dtype = -1 self.assertRaises(NotImplementedError, self.wcs._none)
2.03125
2
Guizero/05.Widgets.py
sarincr/Python-modules-for-GUI-Dev
0
12786038
from guizero import App, TextBox, Text def count(): character_count.value = len(entered_text.value) app = App() entered_text = TextBox(app, command=count) character_count = Text(app) app.display()
2.71875
3
warehouse/utils/admin_flags.py
jw/warehouse
0
12786039
<filename>warehouse/utils/admin_flags.py # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sqlalchemy import Column, Boolean, Text from warehouse import db class AdminFlag(db.Model): __tablename__ = "warehouse_admin_flag" id = Column(Text, primary_key=True, nullable=False) description = Column(Text, nullable=False) enabled = Column(Boolean, nullable=False) @classmethod def is_enabled(cls, session, flag_name): flag = (session.query(cls) .filter(cls.id == flag_name) .first()) if flag is None: return False return flag.enabled
2.171875
2
mobile/views/mobile_data_tool_view.py
invinst/CPDB
16
12786040
from django.views.generic import RedirectView from mobile.constants import DEFAULT_REDIRECT_URL, DEFAULT_REDIRECTORS from mobile.services.mobile_redirector_service import DesktopToMobileRedirectorService from share.models import Session class MobileDataToolView(RedirectView): def get_redirect_url(self, *args, **kwargs): hash_id = kwargs.get('hash_id', '') try: session_id = Session.id_from_hash(hash_id)[0] session = Session.objects.get(id=session_id) self.filters = session.query.get('filters', {}) except (IndexError, Session.DoesNotExist): self.filters = {} redirect_urls = DesktopToMobileRedirectorService(DEFAULT_REDIRECTORS).perform(self.filters) if len(redirect_urls) == 1: return redirect_urls[0] return DEFAULT_REDIRECT_URL
1.992188
2
lib/exaproxy/icap/parser.py
oriolarcas/exaproxy
124
12786041
<reponame>oriolarcas/exaproxy #!/usr/bin/env python # encoding: utf-8 from .request import ICAPRequestFactory from .response import ICAPResponseFactory from .header import ICAPResponseHeaderFactory class ICAPParser (object): ICAPResponseHeaderFactory = ICAPResponseHeaderFactory ICAPRequestFactory = ICAPRequestFactory ICAPResponseFactory = ICAPResponseFactory VERSIONS = ('ICAP/1.0',) METHODS = ('REQMOD', 'OPTIONS') HEADERS = ('cache-control', 'connection', 'date', 'trailer', 'upgrade', 'via', 'authorization','allow','from','host','referer','user-agent', 'preview', 'encapsulated','proxy-authenticate','proxy-authorization', 'istag') def __init__ (self, configuration): self.configuration = configuration self.header_factory = self.ICAPResponseHeaderFactory(configuration) self.request_factory = self.ICAPRequestFactory(configuration) self.response_factory = self.ICAPResponseFactory(configuration) def parseRequestLine (self, request_line): request_parts = request_line.split() if request_line else [] if len(request_parts) == 3: method, url, version = request_parts method = method.upper() version = version.upper() else: method, url, version = None, None, None return method, url, version def parseResponseLine (self, response_line): response_parts = response_line.split(' ', 2) if response_line else [] if len(response_parts) == 3: version, code, status = response_parts if code.isdigit(): code = int(code) else: version, code, status = None, None, None else: version, code, status = None, None, None return version, code, status def readHeaders (self, request_lines): headers = {} for line in request_lines: if not line: break if ':' not in line: headers = None break key, value = line.split(':', 1) key = key.lower().strip() value = value.strip() if key in self.HEADERS or key.startswith('x-'): headers[key] = value if key == 'pragma' and ':' in value: pkey, pvalue = value.split(':', 1) pkey = pkey.lower().strip() pvalue = pvalue.strip() headers.setdefault(key, {})[pkey] = pvalue return headers def parseRequest (self, icap_string, http_string): request_lines = (p for ss in icap_string.split('\r\n') for p in ss.split('\n')) try: request_line = request_lines.next() except StopIteration: request_line = None method, url, version = self.parseRequestLine(request_line) if method in self.METHODS and version in self.VERSIONS: headers = self.readHeaders(request_lines) site_name = url.rsplit(',',1)[-1] if ',' in url else 'default' headers['x-customer-name'] = site_name else: headers = None offsets = self.getOffsets(headers) if headers is not None else [] length, complete = self.getBodyLength(offsets) if set(('res-hdr', 'res-body')).intersection(dict(offsets)): headers = None return self.request_factory.create(method, url, version, headers, icap_string, http_string, offsets, length, complete) if headers else None def getOffsets (self, headers): encapsulated_line = headers.get('encapsulated', '') parts = (p.strip() for p in encapsulated_line.split(',') if '=' in p) pairs = (p.split('=',1) for p in parts) offsets = ((k,int(v)) for (k,v) in pairs if v.isdigit()) return sorted(offsets, lambda (_,a), (__,b): 1 if a >= b else -1) def getBodyLength (self, offsets): final, offset = offsets[-1] if offsets else ('null-body', 0) return offset, final == 'null-body' def splitResponseParts (self, offsets, body_string): final, offset = offsets[-1] if offsets else (None, None) if final != 'null-body': offsets = offsets + [('null-body', len(body_string))] names = [name for name,offset in offsets] positions = [offset for name,offset in offsets] blocks = ((positions[i], positions[i+1]) for i in xrange(len(positions)-1)) strings = (body_string[start:end] for start,end in blocks) return dict(zip(names, strings)) def parseResponseHeader (self, header_string): response_lines = (p for ss in header_string.split('\r\n') for p in ss.split('\n')) try: response_line = response_lines.next() except StopIteration: response_line = None version, code, status = self.parseResponseLine(response_line) if version in self.VERSIONS: headers = self.readHeaders(response_lines) headers['server'] = 'EXA Proxy 1.0' else: headers = {} offsets = self.getOffsets(headers) if headers is not None else [] length, complete = self.getBodyLength(offsets) return self.header_factory.create(version, code, status, headers, header_string, offsets, length, complete) def continueResponse (self, response_header, body_string): version, code, status = response_header.info headers = response_header.headers header_string = response_header.header_string # split the body string into components parts = self.splitResponseParts(response_header.offsets, body_string) response_string = parts.get('res-hdr', '') request_string = parts.get('req-hdr', '') if request_string.startswith('CONNECT'): intercept_string, new_request_string = self.splitResponse(request_string) if headers.get('x-intercept', '') != 'active' and not new_request_string: intercept_string = None else: request_string = new_request_string else: intercept_string = None body_string = parts.get('res-body', None) if response_string else parts.get('req-body', None) return self.response_factory.create(version, code, status, headers, header_string, request_string, response_string, body_string, intercept_string) def splitResponse (self, response_string): for delimiter in ('\n\n', '\r\n\r\n'): if delimiter in response_string: header_string, subheader_string = response_string.split(delimiter, 1) break else: header_string, subheader_string = response_string, '' return header_string, subheader_string
2.125
2
objs/objs.py
n-hachi/raytrace
0
12786042
<reponame>n-hachi/raytrace<gh_stars>0 from abc import ABCMeta, abstractmethod import numpy as np from .ray import Ray class AbsObject(metaclass=ABCMeta): @abstractmethod def normal(self, ray): raise NotImplementedError() @abstractmethod def reflect(self, ray): raise NotImplementedError() @abstractmethod def intersect(self, ray): raise NotImplementedError() # surface # | o(origin) # | ,` # | ,` | # | ,` | ov(orthographic vector) # |,` v # * ----->*---> n(normal) # |`,rn(resized normal) # | `, # | `, # | `, # | r(reflect) # def reflect(self, ray): n = self.normal(ray) cos = np.dot(ray.direction(), n.direction()) * -1 # Cosine rn = np.multiply(n.direction(), cos) # Resize normal ov = np.add(ray.direction(), rn) # Vector between origin ray and normal ray. rd = rn + ov # Reflect vector direction. # Create new ray. _, p = self.intersect(ray) p2 = np.add(p, np.multiply(rd, 1e-5)) # Move the origin of ray slightly forward. return Ray(p2, rd) # Reflect ray. def color(self, ray, objects, lights): r = self.reflect(ray) n = self.normal(ray) diffues = 0 specular = 0 # Generate ray between intersect point and light source. for l in lights: # Ray to light source r2l = Ray(r.origin(), l.center() - r.origin()) o, _, _ = r2l.intersect(objects) if o is not None: continue diffues += max(0, np.dot(r2l.direction(), n.direction())) specular += max(0, np.dot(r2l.direction(), r.direction())) ** 50 * l.intensity() coefficient = (diffues + specular) / 2 return np.multiply(self._surface_color, coefficient)
2.40625
2
applications/camera_calibration/scripts/derive_jacobians.py
lingbo-yu/camera_calibration
474
12786043
import math import sys import time from sympy import * from sympy.solvers.solveset import nonlinsolve from optimizer_builder import * # ### Math functions ### # Simple model for the fractional-part function used for bilinear interpolation # which leaves the function un-evaluated. Ignores the discontinuities when # computing the derivative. They do not matter. class frac(Function): # Returns the first derivative of the function. # A simple model for the function within the range between two discontinuities is: # f(x) = x - c, with a constant c. So f'(x) = 1. def fdiff(self, argindex=1): if argindex == 1: return S.One else: raise ArgumentIndexError(self, argindex) def UnitQuaternionRotatePoint(q, pt): t2 = q[0] * q[1] t3 = q[0] * q[2] t4 = q[0] * q[3] t5 = -q[1] * q[1] t6 = q[1] * q[2] t7 = q[1] * q[3] t8 = -q[2] * q[2] t9 = q[2] * q[3] t1 = -q[3] * q[3] return Matrix([[2 * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]], [2 * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]], [2 * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]]]) # Transformation is a 7-vector [quaternion, translation]. def TransformPoint(transformation, point): point_out = UnitQuaternionRotatePoint(transformation, point) point_out[0] += transformation[4]; point_out[1] += transformation[5]; point_out[2] += transformation[6]; return point_out # Both transformations are 7-vectors [quaternion, translation]. def RigTransformPoint(camera_tr_rig, rig_tr_global, global_point): point_rig = UnitQuaternionRotatePoint(rig_tr_global, global_point) point_rig[0] += rig_tr_global[4]; point_rig[1] += rig_tr_global[5]; point_rig[2] += rig_tr_global[6]; point_out = UnitQuaternionRotatePoint(camera_tr_rig, point_rig) point_out[0] += camera_tr_rig[4]; point_out[1] += camera_tr_rig[5]; point_out[2] += camera_tr_rig[6]; return point_out # 3-Vector dot product: def DotProduct3(vector1, vector2): return vector1[0] * vector2[0] + vector1[1] * vector2[1] + vector1[2] * vector2[2] def CubicHermiteSpline(p0, p1, p2, p3, x): a = (0.5) * (-p0 + (3.0) * p1 - (3.0) * p2 + p3) b = (0.5) * ((2.0) * p0 - (5.0) * p1 + (4.0) * p2 - p3) c = (0.5) * (-p0 + p2) d = p1 return d + x * (c + x * (b + x * a)) def EvalUniformCubicBSpline(a, b, c, d, x): # x must be in [3, 4[. # i == 3 x_for_d = x - 3 d_factor = 1./6. * x_for_d * x_for_d * x_for_d # i == 2 c_factor = -1./2.*x*x*x + 5*x*x - 16*x + 50./3. # i == 1 b_factor = 1./2.*x*x*x - 11./2.*x*x + (39./2.)*x - 131./6. # i == 0 a_factor = -1./6. * (x - 4) * (x - 4) * (x - 4) return a_factor * a + b_factor * b + c_factor * c + d_factor * d def NoncentralGenericBicubicModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, #camera_intrinsics frac_x, frac_y): f0 = CubicHermiteSpline(l00, l01, l02, l03, frac_x) f1 = CubicHermiteSpline(l10, l11, l12, l13, frac_x) f2 = CubicHermiteSpline(l20, l21, l22, l23, frac_x) f3 = CubicHermiteSpline(l30, l31, l32, l33, frac_x) unprojection = CubicHermiteSpline(f0, f1, f2, f3, frac_y); direction = Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) direction = direction.normalized() return Matrix([[direction[0]], [direction[1]], [direction[2]], [unprojection[3]], [unprojection[4]], [unprojection[5]]]) def NoncentralGenericBSplineModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, #camera_intrinsics frac_x, frac_y): f0 = EvalUniformCubicBSpline(l00, l01, l02, l03, frac_x) f1 = EvalUniformCubicBSpline(l10, l11, l12, l13, frac_x) f2 = EvalUniformCubicBSpline(l20, l21, l22, l23, frac_x) f3 = EvalUniformCubicBSpline(l30, l31, l32, l33, frac_x) unprojection = EvalUniformCubicBSpline(f0, f1, f2, f3, frac_y); direction = Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) direction = direction.normalized() return Matrix([[direction[0]], [direction[1]], [direction[2]], [unprojection[3]], [unprojection[4]], [unprojection[5]]]) def CentralGenericBicubicModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y): f0 = CubicHermiteSpline(p00, p01, p02, p03, frac_x) f1 = CubicHermiteSpline(p10, p11, p12, p13, frac_x) f2 = CubicHermiteSpline(p20, p21, p22, p23, frac_x) f3 = CubicHermiteSpline(p30, p31, p32, p33, frac_x) unprojection = CubicHermiteSpline(f0, f1, f2, f3, frac_y); unprojection = unprojection.normalized() return Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) def CentralGenericBicubicModelFittingProblemError( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y, measurement_x, measurement_y, measurement_z): # Interpolation data points: # col # p00 p01 p02 p03 # row p10 p11 p12 p13 # p20 p21 p22 p23 # p30 p31 p32 p33 f0 = CubicHermiteSpline(p00, p01, p02, p03, frac_x) f1 = CubicHermiteSpline(p10, p11, p12, p13, frac_x) f2 = CubicHermiteSpline(p20, p21, p22, p23, frac_x) f3 = CubicHermiteSpline(p30, p31, p32, p33, frac_x) unprojection = CubicHermiteSpline(f0, f1, f2, f3, frac_y); unprojection = unprojection.normalized() return Matrix([[unprojection[0] - measurement_x], [unprojection[1] - measurement_y], [unprojection[2] - measurement_z]]) def CentralGenericBSplineModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y): a = EvalUniformCubicBSpline(p00, p01, p02, p03, frac_x) b = EvalUniformCubicBSpline(p10, p11, p12, p13, frac_x) c = EvalUniformCubicBSpline(p20, p21, p22, p23, frac_x) d = EvalUniformCubicBSpline(p30, p31, p32, p33, frac_x) unprojection = EvalUniformCubicBSpline(a, b, c, d, frac_y) unprojection = unprojection.normalized() return Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) def CentralGenericBSplineModelFittingProblemError( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y, measurement_x, measurement_y, measurement_z): a = EvalUniformCubicBSpline(p00, p01, p02, p03, frac_x) b = EvalUniformCubicBSpline(p10, p11, p12, p13, frac_x) c = EvalUniformCubicBSpline(p20, p21, p22, p23, frac_x) d = EvalUniformCubicBSpline(p30, p31, p32, p33, frac_x) unprojection = EvalUniformCubicBSpline(a, b, c, d, frac_y) unprojection = unprojection.normalized() return Matrix([[unprojection[0] - measurement_x], [unprojection[1] - measurement_y], [unprojection[2] - measurement_z]]) def CentralGenericBilinearModelUnprojection( p00, p01, p10, p11, #camera_intrinsics frac_x, frac_y): unprojection = ((1 - frac_x) * (1 - frac_y) * p00 + ( frac_x) * (1 - frac_y) * p01 + (1 - frac_x) * ( frac_y) * p10 + ( frac_x) * ( frac_y) * p11) unprojection = unprojection.normalized() return Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) def CentralGenericBilinearModelFittingProblemError( p00, p01, p10, p11, #camera_intrinsics frac_x, frac_y, measurement_x, measurement_y, measurement_z): unprojection = ((1 - frac_x) * (1 - frac_y) * p00 + ( frac_x) * (1 - frac_y) * p01 + (1 - frac_x) * ( frac_y) * p10 + ( frac_x) * ( frac_y) * p11) unprojection = unprojection.normalized() return Matrix([[unprojection[0] - measurement_x], [unprojection[1] - measurement_y], [unprojection[2] - measurement_z]]) def ConvertDirectionToLocalUpdate(base_direction, target_direction, tangent1, tangent2): factor = 1 / DotProduct3(base_direction, target_direction) offset = (factor * target_direction) - base_direction return Matrix([[DotProduct3(tangent1, offset)], [DotProduct3(tangent2, offset)]]) # For quaternion layout: (w, x, y, z). def QuaternionMultiplication(z, w): return Matrix([[z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3]], [z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2]], [z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1]], [z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0]]]) # For quaternion layout: (w, x, y, z). def QuaternionLocalUpdate(delta, q): norm_delta = sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]) sin_delta_by_delta = sin(norm_delta) / norm_delta delta_q = Matrix([[cos(norm_delta)], [sin_delta_by_delta * delta[0]], [sin_delta_by_delta * delta[1]], [sin_delta_by_delta * delta[2]]]) return QuaternionMultiplication(delta_q, q) def ComputeTangentsForLine_ForSmallAbsX(direction): other_vector = Matrix([[1], [0], [0]]) t1 = direction.cross(other_vector).normalized() t2 = direction.cross(t1) return t1.col_join(t2) def ComputeTangentsForLine_ForLargeAbsX(direction): other_vector = Matrix([[0], [1], [0]]) t1 = direction.cross(other_vector).normalized() t2 = direction.cross(t1) return t1.col_join(t2) def DirectionBorderRegularization(outer, inner1, inner2): proj = inner1.dot(inner2) * inner1; mirror = proj + (proj - inner2); return mirror - outer def CentralThinPrismFisheyeProjection( px, py, pz, fx, fy, cx, cy, k1, k2, k3, k4, p1, p2, sx1, sy1, fisheye_case): nx = px / pz ny = py / pz r = sqrt(nx * nx + ny * ny) if fisheye_case: theta_by_r = atan(r) / r fisheye_x = theta_by_r * nx fisheye_y = theta_by_r * ny else: fisheye_x = nx fisheye_y = ny x2 = fisheye_x * fisheye_x xy = fisheye_x * fisheye_y y2 = fisheye_y * fisheye_y r2 = x2 + y2 r4 = r2 * r2 r6 = r4 * r2 r8 = r6 * r2 radial = k1 * r2 + k2 * r4 + k3 * r6 + k4 * r8 dx = 2 * p1 * xy + p2 * (r2 + 2 * x2) + sx1 * r2 dy = 2 * p2 * xy + p1 * (r2 + 2 * y2) + sy1 * r2 distorted_x = fisheye_x + radial * fisheye_x + dx distorted_y = fisheye_y + radial * fisheye_y + dy return Matrix([[fx * distorted_x + cx], [fy * distorted_y + cy]]) def CentralOpenCVProjection( px, py, pz, fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, p1, p2): nx = px / pz ny = py / pz x2 = nx * nx xy = nx * ny y2 = ny * ny r2 = x2 + y2 r4 = r2 * r2 r6 = r4 * r2 radial = (1 + k1 * r2 + k2 * r4 + k3 * r6) / (1 + k4 * r2 + k5 * r4 + k6 * r6) dx = 2 * p1 * xy + p2 * (r2 + 2 * x2) dy = 2 * p2 * xy + p1 * (r2 + 2 * y2) distorted_x = nx * radial + dx distorted_y = ny * radial + dy return Matrix([[fx * distorted_x + cx], [fy * distorted_y + cy]]) def CentralRadialProjection( spline_resolution, spline_param0, spline_param1, spline_param2, spline_param3, fx, fy, cx, cy, p1, p2, sx1, sy1, lx, ly, lz): local_point = Matrix([[lx], [ly], [lz]]) # Radial part original_angle = acos(local_point.normalized()[2]); pos_in_spline = 1. + (spline_resolution - 3.) / (math.pi / 2) * original_angle; # chunk = std::max(1, std::min(spline_resolution() - 3, static_cast<int>(pos_in_spline))); fraction = frac(pos_in_spline) # - chunk; radial_factor = EvalUniformCubicBSpline( spline_param0, spline_param1, spline_param2, spline_param3, fraction + 3.); # Parametric part nx = lx / lz ny = ly / lz x2 = nx * nx xy = nx * ny y2 = ny * ny r2 = x2 + y2 dx = 2 * p1 * xy + p2 * (r2 + 2 * x2) + sx1 * r2 dy = 2 * p2 * xy + p1 * (r2 + 2 * y2) + sy1 * r2 distorted_x = nx + radial_factor * nx + dx distorted_y = ny + radial_factor * ny + dy return Matrix([[fx * distorted_x + cx], [fy * distorted_y + cy]]) if __name__ == '__main__': p00 = Matrix(3, 1, lambda i,j:Symbol('p00_%d' % (i), real=True)) p01 = Matrix(3, 1, lambda i,j:Symbol('p01_%d' % (i), real=True)) p02 = Matrix(3, 1, lambda i,j:Symbol('p02_%d' % (i), real=True)) p03 = Matrix(3, 1, lambda i,j:Symbol('p03_%d' % (i), real=True)) p10 = Matrix(3, 1, lambda i,j:Symbol('p10_%d' % (i), real=True)) p11 = Matrix(3, 1, lambda i,j:Symbol('p11_%d' % (i), real=True)) p12 = Matrix(3, 1, lambda i,j:Symbol('p12_%d' % (i), real=True)) p13 = Matrix(3, 1, lambda i,j:Symbol('p13_%d' % (i), real=True)) p20 = Matrix(3, 1, lambda i,j:Symbol('p20_%d' % (i), real=True)) p21 = Matrix(3, 1, lambda i,j:Symbol('p21_%d' % (i), real=True)) p22 = Matrix(3, 1, lambda i,j:Symbol('p22_%d' % (i), real=True)) p23 = Matrix(3, 1, lambda i,j:Symbol('p23_%d' % (i), real=True)) p30 = Matrix(3, 1, lambda i,j:Symbol('p30_%d' % (i), real=True)) p31 = Matrix(3, 1, lambda i,j:Symbol('p31_%d' % (i), real=True)) p32 = Matrix(3, 1, lambda i,j:Symbol('p32_%d' % (i), real=True)) p33 = Matrix(3, 1, lambda i,j:Symbol('p33_%d' % (i), real=True)) l00 = Matrix(6, 1, lambda i,j:Symbol('l00_%d' % (i), real=True)) l01 = Matrix(6, 1, lambda i,j:Symbol('l01_%d' % (i), real=True)) l02 = Matrix(6, 1, lambda i,j:Symbol('l02_%d' % (i), real=True)) l03 = Matrix(6, 1, lambda i,j:Symbol('l03_%d' % (i), real=True)) l10 = Matrix(6, 1, lambda i,j:Symbol('l10_%d' % (i), real=True)) l11 = Matrix(6, 1, lambda i,j:Symbol('l11_%d' % (i), real=True)) l12 = Matrix(6, 1, lambda i,j:Symbol('l12_%d' % (i), real=True)) l13 = Matrix(6, 1, lambda i,j:Symbol('l13_%d' % (i), real=True)) l20 = Matrix(6, 1, lambda i,j:Symbol('l20_%d' % (i), real=True)) l21 = Matrix(6, 1, lambda i,j:Symbol('l21_%d' % (i), real=True)) l22 = Matrix(6, 1, lambda i,j:Symbol('l22_%d' % (i), real=True)) l23 = Matrix(6, 1, lambda i,j:Symbol('l23_%d' % (i), real=True)) l30 = Matrix(6, 1, lambda i,j:Symbol('l30_%d' % (i), real=True)) l31 = Matrix(6, 1, lambda i,j:Symbol('l31_%d' % (i), real=True)) l32 = Matrix(6, 1, lambda i,j:Symbol('l32_%d' % (i), real=True)) l33 = Matrix(6, 1, lambda i,j:Symbol('l33_%d' % (i), real=True)) frac_x = Symbol("frac_x", real=True) frac_y = Symbol("frac_y", real=True) measurement_x = Symbol("measurement_x", real=True) measurement_y = Symbol("measurement_y", real=True) measurement_z = Symbol("measurement_z", real=True) # For pose and geometry optimization: # Local point Jacobian wrt. image_tr_global, pattern_point image_tr_global = Matrix(7, 1, lambda i,j:Symbol('itg_%d' % (i), real=True)) pattern_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = image_tr_global.col_join(pattern_point) functions = [lambda variables : TransformPoint(variables.extract([0, 1, 2, 3, 4, 5, 6], [0]), variables.extract([7, 8, 9], [0]))] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=True, simplify_residual=False) # For rig pose and geometry optimization: # Local point Jacobian wrt. camera_tr_rig, rig_tr_global, pattern_point camera_tr_rig = Matrix(7, 1, lambda i,j:Symbol('ctr_%d' % (i), real=True)) rig_tr_global = Matrix(7, 1, lambda i,j:Symbol('rtg_%d' % (i), real=True)) pattern_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = rig_tr_global.col_join(camera_tr_rig).col_join(pattern_point) functions = [lambda variables : RigTransformPoint( variables.extract([7, 8, 9, 10, 11, 12, 13], [0]), variables.extract([0, 1, 2, 3, 4, 5, 6], [0]), variables.extract([14, 15, 16], [0]))] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=True, simplify_residual=False) # Tangents Jacobian wrt. direction: direction = Matrix(3, 1, lambda i,j:Symbol('dir_%d' % (i), real=True)) OptimizerBuilder([lambda variables : ComputeTangentsForLine_ForSmallAbsX(variables)], direction, direction, simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) OptimizerBuilder([lambda variables : ComputeTangentsForLine_ForLargeAbsX(variables)], direction, direction, simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) # Jacobian for CentralGenericBilinear unprojection wrt. pixel x, y # (CentralGenericBilinear_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : CentralGenericBilinearModelUnprojection( p00, p01, p10, p11, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # CentralGenericBilinearDirectionCostFunction_ComputeResidualAndJacobian(): # Residual: grid.InterpolateBilinearVector(model->PixelCornerConvToGridPoint(x + 0.5f, y + 0.5f)) - measurement # Variables are p00 .. p33 parameters = p00.col_join( p01.col_join( p10.col_join( p11))) functions = [lambda variables : CentralGenericBilinearModelFittingProblemError( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]), variables.extract([9, 10, 11], [0]), frac_x, frac_y, measurement_x, measurement_y, measurement_z)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # CentralGenericBSplineDirectionCostFunction_ComputeResidualAndJacobian(): # Residual: grid.InterpolateBSplineVector(model->PixelCornerConvToGridPoint(x + 0.5f, y + 0.5f)) - measurement # Variables are p00 .. p33 parameters = p00.col_join( p01.col_join( p02.col_join( p03.col_join( p10.col_join( p11.col_join( p12.col_join( p13.col_join( p20.col_join( p21.col_join( p22.col_join( p23.col_join( p30.col_join( p31.col_join( p32.col_join( p33))))))))))))))) functions = [lambda variables : CentralGenericBSplineModelFittingProblemError( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]), variables.extract([9, 10, 11], [0]), variables.extract([12, 13, 14], [0]), variables.extract([15, 16, 17], [0]), variables.extract([18, 19, 20], [0]), variables.extract([21, 22, 23], [0]), variables.extract([24, 25, 26], [0]), variables.extract([27, 28, 29], [0]), variables.extract([30, 31, 32], [0]), variables.extract([33, 34, 35], [0]), variables.extract([36, 37, 38], [0]), variables.extract([39, 40, 41], [0]), variables.extract([42, 43, 44], [0]), variables.extract([45, 46, 47], [0]), frac_x, frac_y, measurement_x, measurement_y, measurement_z)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralGenericBSpline unprojection wrt. pixel x, y # (CentralGenericBSpline_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : CentralGenericBSplineModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for direction grid border regularization: outer = Matrix(3, 1, lambda i,j:Symbol('o_%d' % (i), real=True)) inner1 = Matrix(3, 1, lambda i,j:Symbol('i1_%d' % (i), real=True)) inner2 = Matrix(3, 1, lambda i,j:Symbol('i2_%d' % (i), real=True)) parameters = outer.col_join(inner1.col_join(inner2)) OptimizerBuilder([lambda variables : DirectionBorderRegularization( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]))], parameters, parameters, simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) # Derive Jacobian of local update to quaternions (as in ceres) # TODO: This only works if replacing subs() by limit() in optimizer_builder's # ComputeValueAndJacobian(). However, it seems that this gave wrong results in other cases ... q = Matrix(4, 1, lambda i,j:Symbol('q_%d' % (i), real=True)) delta_q = Matrix(3, 1, lambda i,j:Symbol('dq_%d' % (i), real=True)) OptimizerBuilder([lambda variables : QuaternionLocalUpdate(variables, q)], delta_q, Matrix([[0], [0], [0]]), simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) # Derivation of LocalUpdateJacobianWrtDirection(): target_direction = Matrix(3, 1, lambda i,j:Symbol('t_%d' % (i), real=True)) base_direction = Matrix(3, 1, lambda i,j:Symbol('d_%d' % (i), real=True)) tangent1 = Matrix(3, 1, lambda i,j:Symbol('t1_%d' % (i), real=True)) tangent2 = Matrix(3, 1, lambda i,j:Symbol('t2_%d' % (i), real=True)) parameters = target_direction parameter_values = base_direction # Taking Jacobian at base_direction functions = [lambda target_dir : ConvertDirectionToLocalUpdate(base_direction, target_dir, tangent1, tangent2)] OptimizerBuilder(functions, parameters, parameter_values, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for NoncentralGenericBicubic unprojection wrt. pixel x, y # (NoncentralGenericBicubic_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : NoncentralGenericBicubicModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralGenericBicubic unprojection wrt. pixel x, y # (CentralGenericBicubic_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : CentralGenericBicubicModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # CentralGenericBicubicDirectionCostFunction_ComputeResidualAndJacobian(): # Residual: grid.InterpolateBicubicVector(model->PixelCornerConvToGridPoint(x + 0.5f, y + 0.5f)) - measurement # Variables are p00 .. p33 parameters = p00.col_join( p01.col_join( p02.col_join( p03.col_join( p10.col_join( p11.col_join( p12.col_join( p13.col_join( p20.col_join( p21.col_join( p22.col_join( p23.col_join( p30.col_join( p31.col_join( p32.col_join( p33))))))))))))))) functions = [lambda variables : CentralGenericBicubicModelFittingProblemError( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]), variables.extract([9, 10, 11], [0]), variables.extract([12, 13, 14], [0]), variables.extract([15, 16, 17], [0]), variables.extract([18, 19, 20], [0]), variables.extract([21, 22, 23], [0]), variables.extract([24, 25, 26], [0]), variables.extract([27, 28, 29], [0]), variables.extract([30, 31, 32], [0]), variables.extract([33, 34, 35], [0]), variables.extract([36, 37, 38], [0]), variables.extract([39, 40, 41], [0]), variables.extract([42, 43, 44], [0]), variables.extract([45, 46, 47], [0]), frac_x, frac_y, measurement_x, measurement_y, measurement_z)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for NoncentralGenericBSpline unprojection wrt. pixel x, y # (NoncentralGenericBicubic_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : NoncentralGenericBSplineModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralThinPrismFisheyeModel::ProjectPointToPixelCornerConv() wrt. the 12 camera model parameters. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) k1 = Symbol("k1", real=True) k2 = Symbol("k2", real=True) k3 = Symbol("k3", real=True) k4 = Symbol("k4", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) sx1 = Symbol("sx1", real=True) sy1 = Symbol("sy1", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[fx], [fy], [cx], [cy], [k1], [k2], [k3], [k4], [p1], [p2], [sx1], [sy1]]) print('Fisheye case:') functions = [lambda variables : CentralThinPrismFisheyeProjection( local_point[0], local_point[1], local_point[2], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], variables[8], variables[9], variables[10], variables[11], True)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) print('Non-fisheye case:') functions = [lambda variables : CentralThinPrismFisheyeProjection( local_point[0], local_point[1], local_point[2], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], variables[8], variables[9], variables[10], variables[11], False)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralOpenCVModel::ProjectPointToPixelCornerConv() wrt. the 12 camera model parameters. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) k1 = Symbol("k1", real=True) k2 = Symbol("k2", real=True) k3 = Symbol("k3", real=True) k4 = Symbol("k4", real=True) k5 = Symbol("k5", real=True) k6 = Symbol("k6", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[fx], [fy], [cx], [cy], [k1], [k2], [k3], [k4], [k5], [k6], [p1], [p2]]) functions = [lambda variables : CentralOpenCVProjection( local_point[0], local_point[1], local_point[2], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], variables[8], variables[9], variables[10], variables[11])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian of CentralRadialModel::Project() wrt. the local point. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) sx1 = Symbol("sx1", real=True) sy1 = Symbol("sy1", real=True) spline_resolution = Symbol("spline_resolution", real=True) spline_param0 = Symbol("spline_param0", real=True) spline_param1 = Symbol("spline_param1", real=True) spline_param2 = Symbol("spline_param2", real=True) spline_param3 = Symbol("spline_param3", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[local_point[0]], [local_point[1]], [local_point[2]]]) functions = [lambda variables : CentralRadialProjection( spline_resolution, spline_param0, spline_param1, spline_param2, spline_param3, fx, fy, cx, cy, p1, p2, sx1, sy1, variables[0], variables[1], variables[2])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian of CentralRadialModel::Project() wrt. the camera model parameters. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) sx1 = Symbol("sx1", real=True) sy1 = Symbol("sy1", real=True) spline_resolution = Symbol("spline_resolution", real=True) spline_param0 = Symbol("spline_param0", real=True) spline_param1 = Symbol("spline_param1", real=True) spline_param2 = Symbol("spline_param2", real=True) spline_param3 = Symbol("spline_param3", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[fx], [fy], [cx], [cy], [p1], [p2], [sx1], [sy1], [spline_param0], [spline_param1], [spline_param2], [spline_param3]]) functions = [lambda variables : CentralRadialProjection( spline_resolution, variables[8], variables[9], variables[10], variables[11], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], local_point[0], local_point[1], local_point[2])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False)
2.640625
3
generate_doc_src.py
epaulson/brick-website
0
12786044
from util import generate_doc_src, auto_dict from rdflib import Graph from urllib.error import URLError # Pull the latest Brick.ttl to /static/schema try: g = Graph() g.parse("https://github.com/brickschema/Brick/releases/latest/download/Brick.ttl", format="turtle") g.serialize("static/schema/Brick.ttl", format="turtle") except URLError as e: print("[WARN]: Unable to pull the latest version of Brick!") # Doc config doc_spec = auto_dict() # Brick v1.0.3 doc_spec["1.0.3"]["input"] = ["static/schema/1.0.3"] doc_spec["1.0.3"]["ns_restriction"] = [ "https://brickschema.org/schema/1.0.3/Brick#", "https://brickschema.org/schema/1.0.3/BrickFrame#", ] doc_spec["1.0.3"]["classes"]["type_restriction"] = [ "http://www.w3.org/2002/07/owl#Class" ] doc_spec["1.0.3"]["relationships"]["type_restriction"] = [ "http://www.w3.org/2002/07/owl#ObjectProperty" ] # Brick v1.1 doc_spec["1.1"]["input"] = ["static/schema/1.1"] doc_spec["1.1"]["ns_restriction"] = ["https://brickschema.org/schema/1.1/Brick#"] doc_spec["1.1"]["classes"]["type_restriction"] = ["http://www.w3.org/2002/07/owl#Class"] doc_spec["1.1"]["relationships"]["type_restriction"] = [ "http://www.w3.org/2002/07/owl#ObjectProperty" ] # Brick v1.2 doc_spec["1.2"]["input"] = ["static/schema/1.2"] doc_spec["1.2"]["ns_restriction"] = ["https://brickschema.org/schema/Brick#"] doc_spec["1.2"]["classes"]["type_restriction"] = ["http://www.w3.org/2002/07/owl#Class"] doc_spec["1.2"]["relationships"]["type_restriction"] = [ "http://www.w3.org/2002/07/owl#ObjectProperty" ] if __name__ == "__main__": generate_doc_src(doc_spec) # Structure # doc_spec = { # "1.0.3": { # "ns_restriction": ["https://brickschema.org/schema/1.0.3/Brick#", "https://brickschema.org/schema/1.0.3/BrickFrame#"] # "classes" : { # "roots": [], # "type_restriction": ["http://www.w3.org/2002/07/owl#Class"] # "ns_restriction": [ # "https://brickschema.org/schema/1.0.3/Brick#", # "https://brickschema.org/schema/1.0.3/BrickFrame#" # ], # "parent_restriction": [], # "no_expansion": [], # "exclusions": [] # } # } # }
2.453125
2
menus/IBook/Chapter4 Digital-Filter/filter_plgs.py
Image-Py/IBook
2
12786045
from sciapp.action import Free import scipy.ndimage as ndimg import numpy as np, wx # from imagepy import IPy #matplotlib.use('WXAgg') import matplotlib.pyplot as plt def block(arr): img = np.zeros((len(arr),30,30), dtype=np.uint8) img.T[:] = arr return np.hstack(img) class Temperature(Free): title = 'Temperature Difference' asyn = False def run(self, para = None): xs = np.array([1,2,3,4,5,6,7,8,9,10,11,12]) ys = np.array([1,2,1,2,2,3,8,9,8,10,9,10], dtype=np.float32) ds = ndimg.convolve1d(ys, [0,1,-1]) lbs = ['Jan','Feb','Mar','Apr','May','June', 'Jul','Aug','Sep','Oct','Nov','Dec'] plt.xticks(xs, lbs) plt.plot(xs, ys, '-o', label='Temperature') plt.plot(xs, ds, '-o', label='Difference') plt.grid() plt.gca().legend() plt.title('Temperature in XX') plt.xlabel('Month') plt.ylabel('Temperature (C)') plt.show() self.app.show_img([block((ys-ys.min())*(180/ys.max()-ys.min()))], 'Temperature') self.app.show_img([block((ds-ds.min())*(180/ds.max()-ds.min()))], 'Difference') class Shake(Free): title = 'Shake Damping' asyn = False def run(self, para = None): xs = np.array([1,2,3,4,5,6,7,8,9,10]) ys = np.array([10,-9,8,-7,6,-5,4,-3,2,-1], dtype=np.float32) ds = ndimg.convolve1d(ys, [1/3,1/3,1/3]) print(ds) plt.plot(xs, ys, '-o', label='Shake') plt.plot(xs, ds, '-o', label='Damping') plt.grid() plt.gca().legend() plt.title('Shake Damping') plt.xlabel('Time') plt.ylabel('Amplitude') plt.show() self.app.show_img([block(ys*10+128)], 'Shake') self.app.show_img([block(ds*10+128)], 'Damping') class Inertia(Free): title = 'Psychological Inertia' asyn = False def run(self, para = None): xs = np.array([1,2,3,4,5,6,7,8,9,10]) ys = np.array([90,88,93,95,91,70,89,92,94,89], dtype=np.float32) ds = ndimg.convolve1d(ys, [1/3,1/3,1/3]) print(ds) plt.plot(xs, ys, '-o', label='Psychological') plt.plot(xs, ds, '-o', label='Inertia') plt.grid() plt.gca().legend() plt.title('Psychological Inertia') plt.xlabel('Time') plt.ylabel('Score') plt.show() self.app.show_img([block((ys-80)*3+80)], 'Psychological') self.app.show_img([block((ds-80)*3+80)], 'Inertia') class GaussCore(Free): title = 'Gaussian Core' asyn = False def run(self, para = None): x, y = np.ogrid[-3:3:10j, -3:3:10j] z = np.exp(-(x ** 2 + y ** 2)/1) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) z = np.exp(-(x ** 2 + y ** 2)/4) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) plt.show() class LoGCore(Free): title = 'Laplace of Gaussian Core' asyn = False def run(self, para = None): plt.figure() x = np.linspace(-3,3,50) y = np.exp(-x**2) dy = np.exp(-x**2)*(4*x**2-2) plt.plot(x, y, label='Gauss') plt.plot(x, -dy, label="Gauss''") plt.grid() plt.legend() x, y = np.ogrid[-3:3:20j, -3:3:20j] z = (4*x**2-2)*np.exp(-y**2-x**2)+(4*y**2-2)*np.exp(-x**2-y**2) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, -z) plt.show() class DogCore(Free): title = 'Difference of Gaussian Core' asyn = False def run(self, para = None): plt.figure() x = np.linspace(-3,3,50) y = np.exp(-x**2) yy = np.exp(-x**2/4)/2 plt.plot(x, y, label='sigma = 1') plt.plot(x, yy, label='sigma = 2') plt.plot(x, y-yy, 'r', lw=3, label="Difference") plt.grid() plt.legend() x, y = np.ogrid[-3:3:20j, -3:3:20j] z = np.exp(-(x ** 2 + y ** 2)/1)-np.exp(-(x ** 2 + y ** 2)/4)/2 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) plt.show() class LaplaceSharp(Free): title = 'Show how to Laplace Sharp' asyn = False def run(self, para = None): x = np.linspace(-10,10,300) y = np.arctan(x) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() ax0.set_title('y = arctan(x)') ax0.plot(x, y) ax0.grid() ax1.set_title("y = arctan(x)'") ax1.plot(x, y) ax1.plot(x, 1/(x**2+1)) ax1.grid() ax2.set_title("y = arctan(x)''") ax2.plot(x, y) ax2.plot(x, (2*x)/(x**4+2*x**2+1)) ax2.grid() ax3.set_title("y = arctan(x) + arctan(x)''") ax3.plot(x, y) ax3.plot(x, y+(2*x)/(x**4+2*x**2+1)) ax3.grid() fig.tight_layout() plt.show() self.app.show_img([(((y*70)+128)*np.ones((30,1))).astype(np.uint8)], 'tan(x)') self.app.show_img([((100/(x**2+1))*np.ones((30,1))).astype(np.uint8)], "tan(x)'") self.app.show_img([((((2*x)/(x**4+2*x**2+1)*70)+128)* np.ones((30,1))).astype(np.uint8)], "tan(x))''") self.app.show_img([((((y+(2*x)/(x**4+2*x**2+1))*70)+128)* np.ones((30,1))).astype(np.uint8)], "tan(x)+tan(x)''") class UnSharp(Free): title = 'Show how to Unsharp Mask' asyn = False def run(self, para = None): x = np.linspace(-10,10,300) y = np.arctan(x) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() gy = ndimg.gaussian_filter1d(y, 30) ax0, ax1, ax2, ax3 = axes.flatten() ax0.set_title('y = arctan(x)') ax0.plot(x, y) ax0.grid() ax1.set_title("gaussian") ax1.plot(x, y) ax1.plot(x, gy) ax1.grid() ax2.set_title("y = arctan(x) - gaussian") ax2.plot(x, y) ax2.plot(x, y-gy) ax2.grid() ax3.set_title("y = arctan(x) + diff") ax3.plot(x, y) ax3.plot(x, y+2*(y-gy)) ax3.grid() fig.tight_layout() plt.show() self.app.show_img([((y*70+128)*np.ones((30,1))).astype(np.uint8)], 'tan(x)') self.app.show_img([((gy*70+128)*np.ones((30,1))).astype(np.uint8)], 'gaussian') self.app.show_img([(((y-gy)*100+128)*np.ones((30,1))).astype(np.uint8)], 'arctan(x) - gaussian') self.app.show_img([(((y+2*(y-gy))*70+128)*np.ones((30,1))).astype(np.uint8)], "arctan(x) + diff") plgs = [Temperature, Shake, Inertia, GaussCore, LoGCore, DogCore, LaplaceSharp, UnSharp]
2.546875
3
tests/test_telemetry_full.py
cruigo93/client
0
12786046
<gh_stars>0 """ telemetry full tests. """ import platform import pytest import wandb try: from unittest import mock except ImportError: # TODO: this is only for python2 import mock def test_telemetry_finish(live_mock_server, parse_ctx): run = wandb.init() run.finish() ctx_util = parse_ctx(live_mock_server.get_ctx()) telemetry = ctx_util.telemetry # finish() assert telemetry and 2 in telemetry.get("3", []) def test_telemetry_imports_hf(live_mock_server, parse_ctx): run = wandb.init() with mock.patch.dict("sys.modules", {"transformers": mock.Mock()}): import transformers run.finish() ctx_util = parse_ctx(live_mock_server.get_ctx()) telemetry = ctx_util.telemetry # hf in finish modules but not in init modules assert telemetry and 11 not in telemetry.get("1", []) assert telemetry and 11 in telemetry.get("2", []) @pytest.mark.skipif( platform.system() == "Windows", reason="test suite does not build jaxlib on windows" ) def test_telemetry_imports_jax(live_mock_server, parse_ctx): import jax wandb.init() wandb.finish() ctx_util = parse_ctx(live_mock_server.get_ctx()) telemetry = ctx_util.telemetry # jax in finish modules but not in init modules assert telemetry and 12 in telemetry.get("1", []) assert telemetry and 12 in telemetry.get("2", []) def test_telemetry_run_organizing_init(live_mock_server, parse_ctx): wandb.init(name="test_name", tags=["my-tag"], config={"abc": 123}, id="mynewid") wandb.finish() ctx_util = parse_ctx(live_mock_server.get_ctx()) telemetry = ctx_util.telemetry assert telemetry and 13 in telemetry.get("3", []) # name assert telemetry and 14 in telemetry.get("3", []) # id assert telemetry and 15 in telemetry.get("3", []) # tags assert telemetry and 16 in telemetry.get("3", []) # config def test_telemetry_run_organizing_set(live_mock_server, parse_ctx): run = wandb.init() run.name = "test-name" run.tags = ["tag1"] wandb.config.update = True wandb.finish() ctx_util = parse_ctx(live_mock_server.get_ctx()) telemetry = ctx_util.telemetry assert telemetry and 17 in telemetry.get("3", []) # name assert telemetry and 18 in telemetry.get("3", []) # tags assert telemetry and 19 in telemetry.get("3", []) # config update
2.25
2
setup.py
istreamlabs/httpie-esni-auth
1
12786047
<filename>setup.py from setuptools import setup try: import multiprocessing except ImportError: pass setup( name='httpie-esni-auth', description='ESNI auth plugin for HTTPie.', long_description=open('README.md').read().strip(), version='1.0.0', author='<NAME>', author_email='<EMAIL>', license='Apache2', url='https://github.com/pd/httpie-esni-auth', download_url='https://github.com/pd/httpie-esni-auth', py_modules=['httpie_esni_auth'], zip_safe=False, entry_points={ 'httpie.plugins.auth.v1': [ 'httpie_esni_auth = httpie_esni_auth:EsniAuthPlugin' ] }, install_requires=[ 'httpie>=0.7.0' ], classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Intended Audience :: Developers', 'Environment :: Plugins', 'License :: OSI Approved :: MIT License', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Utilities' ], )
1.476563
1
census_response.py
dannmorr/greater-chicago-food-despository
0
12786048
from api_keys import CENSUS_KEY import json import requests def getCensusResponse(table_url,get_ls,geo): ''' Concatenates url string and returns response from census api query input: table_url (str): census api table url get_ls (ls): list of tables to get data from geo (str): geographic area and filter output: response (requests.response): api response ''' get = 'NAME,' + ",".join(get_ls) url = f'{table_url}get={get}&for={geo}&key={CENSUS_KEY}' response = requests.get(url) return(response) def searchTable(table_json_ls, keyword_ls=list(), filter_function_ls=list()): ''' Filters variable tables by keyword and filter input: table_json_ls (response.json() object): list of lists from census variable table api keyword_ls (list): list of keyword strings keyword filter applied to the third element of the input list (concept column) filter_function_ls (list): list of functions that filter table_json_ls with filter method output: return_json_ls (list): list, same format as table_json_ls, filtered ''' #verifies parameters are lists assert (type(table_json_ls)==type(keyword_ls)==type(filter_function_ls)==list), "searchTable Parameters must be lists" return_json_ls = list() #runs filter for each function in filter_function_ls for f in filter_function_ls: table_json_ls = list(filter(f, table_json_ls)) #adds rows with keyword(s) in concept column to return_json_ls for d in table_json_ls: try: for k in keyword_ls: #d[2] is the concept column, d[1] is the label column if k.lower() in d[2].lower() or k.lower() in d[1].lower(): continue else: break else: return_json_ls.append(d) except: continue return return_json_ls
3.453125
3
coqconn/client.py
liyi-david/coqconn
0
12786049
<gh_stars>0 from .conn import CoqConnection, CoqConnectionError from .call import Add class CoqClient: def __init__(self, coqtop=None, args=[], timeout=2): self.conn = CoqConnection.connect(coqtop, args, timeout) def add(self, code): self.conn.call(Add(code)) resps = self.conn.read_until(lambda resps: resps[-1].is_value()) v = resps[-1] if v.succeed(): self.conn.state_id = v.data.fst else: pass
2.53125
3
mci/config/__init__.py
brighthive/master-client-index
2
12786050
<reponame>brighthive/master-client-index from mci.config.config import ConfigurationFactory, Config
1.054688
1