content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
"print.prestonfit" <-
function (x, ...)
{
cat("\nPreston lognormal model\n")
cat("Method:", x$method,"\n")
cat("No. of species:", sum(x$freq), "\n\n")
print(x$coefficients, ...)
cat("\nFrequencies by Octave\n")
print(rbind(Observed = x$freq, Fitted = x$fitted), ...)
cat("\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.prestonfit.R
|
"print.procrustes" <-
function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n")
cat(deparse(x$call), "\n\n")
cat("Procrustes sum of squares:\n")
cat(formatC(x$ss, digits = digits), "\n\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.procrustes.R
|
`print.protest` <-
function(x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n")
cat(deparse(x$call), "\n\n")
cat("Procrustes Sum of Squares (m12 squared): ")
cat(formatC(x$ss, digits=digits), "\n")
cat("Correlation in a symmetric Procrustes rotation: ")
cat(formatC(x$t0, digits = digits), "\n")
cat("Significance: ")
cat(format.pval(x$signif),"\n\n")
cat(howHead(x$control))
cat("\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.protest.R
|
"print.radfit" <-
function(x, digits = max(3, getOption("digits") - 2), ...)
{
cat("\nRAD models, family", x$family$family, "\n")
cat("No. of species ", length(x$y), ", total abundance ",
sum(x$y), "\n\n", sep = "")
p <- coef(x)
if (any(!is.na(p)))
p <- formatC(p, format="g", flag = " ", digits = digits)
p <- apply(p, 2, function(x) gsub("NA", " ", x))
aic <- sapply(x$models, AIC)
bic <- sapply(x$models, AIC, k = log(length(x$y)))
dev <- sapply(x$models, deviance)
stats <- format(cbind(Deviance = dev, AIC = aic, BIC = bic), digits = digits, ...)
out <- cbind(p, stats)
print(out, quote=FALSE)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.radfit.R
|
"print.radfit.frame" <-
function (x, ...)
{
cat("\nDeviance for RAD models:\n\n")
out <- sapply(x, function(x) unlist(lapply(x$models, deviance)))
printCoefmat(out, na.print = "", ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.radfit.frame.R
|
"print.radline" <-
function (x, ...)
{
cat("\nRAD model:", x$model, "\n")
cat("Family:", family(x)$family, "\n")
cat("No. of species: ", length(x$y), "\nTotal abundance:",
sum(x$y), "\n\n")
p <- coef(x)
dev <- deviance(x)
AIC <- AIC(x)
BIC <- AIC(x, k = log(length(x$y)))
tmp <- c(p, dev, AIC, BIC)
names(tmp) <- c(names(p), "Deviance", "AIC", "BIC")
print(tmp, ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.radline.R
|
print.simmat <- function(x, ...) {
isSeq <- ifelse(attr(x, "isSeq"), "sequential", "non-sequential")
if (attr(x, "binary")) {
kind <- "binary"
} else {
kind <- ifelse(attr(x, "mode") == "integer", "count", "abundance")
}
d <- dim(x)
cat("An object of class", dQuote(class(x)[1L]), "\n")
cat(sQuote(attr(x, "method")), " method (",
kind, ", ", isSeq, ")\n", sep="")
cat(d[1L], "x", d[2L], "matrix\n")
cat("Number of permuted matrices =", d[3L], "\n")
if (attr(x, "isSeq")) {
chainInfo <- ""
if (!is.null(attr(x, "chains")) && attr(x, "chains") > 1L)
chainInfo <- paste0(" (", attr(x, "chains"), " chains)")
cat("Start = ", attr(x, "start"), ", End = ", attr(x, "end"),
", Thin = ", attr(x, "thin"), chainInfo, "\n\n", sep="")
} else cat("\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.simmat.R
|
`print.specaccum` <-
function(x, ...)
{
cat("Species Accumulation Curve\n")
if (inherits(x, "fitspecaccum"))
cat("Non-linear regression model:", x$SSmodel, "\n")
cat("Accumulation method:", x$method)
if (x$method == "random") {
cat(", with ", ncol(x$perm), " permutations", sep="")
}
if (!is.null(x$weights))
cat(", weighted")
cat("\n")
cat("Call:", deparse(x$call), "\n\n")
mat <- rbind(Sites = x$sites, Individuals = x$individuals, Effort = x$effort,
Richness = x$richness, sd=x$sd)
colnames(mat) <- rep("", ncol(mat))
print(zapsmall(mat))
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.specaccum.R
|
"print.summary.bioenv" <-
function(x, ...)
{
out <- data.frame(size = x$size, correlation = x$cor)
rownames(out) <- x$var
printCoefmat(out, ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.bioenv.R
|
`print.summary.cca` <-
function (x, digits = x$digits, head=NA, tail=head, ...)
{
hcat <- function(x, head=head, tail=tail, ...) {
if (!is.na(head) && !is.na(tail) && head+tail+4 < nrow(x))
x <- rbind(head(x, n=head), "...." = NA, tail(x, n=tail))
print(x, na.print = "", ...)
}
cat("\nCall:\n")
cat(deparse(x$call), "\n")
statnam <- if (x$method == "cca")
"averages"
else "sums"
cat("\nPartitioning of ", x$inertia, ":\n", sep = "")
out <- c(Total = x$tot.chi, Conditioned = x$partial.chi,
Constrained = x$constr.chi, Unconstrained = x$unconst.chi)
out <- cbind(Inertia = out, Proportion = out/out[1])
print(out, digits = digits, ...)
cat("\nEigenvalues, and their contribution to the", x$inertia,
"\n")
if (!is.null(x$partial.chi)) {
cat("after removing the contribution of conditiniong variables\n")
}
cat("\n")
print(x$cont$importance, ...)
if (!is.null(x$concont)) {
cat("\nAccumulated constrained eigenvalues\n")
print(x$concont$importance, ...)
}
cat("\nScaling", x$scaling, "for species and site scores\n")
if (abs(x$scaling) == 2) {
ev.ent <- "Species"
other.ent <- "Sites"
}
else if (abs(x$scaling) == 1) {
ev.ent <- "Sites"
other.ent <- "Species"
}
else if (abs(x$scaling) == 3) {
ev.ent <- "Both sites and species"
other.ent <- NULL
}
if (x$scaling) {
cat("*", ev.ent, "are scaled proportional to eigenvalues\n")
if (!is.null(other.ent))
cat("*", other.ent, "are unscaled: weighted dispersion equal")
cat(" on all dimensions\n")
}
if (!x$scaling) {
cat("* Both are 'unscaled' or as they are in the result\n")
}
if (x$scaling < 0) {
if (x$method == "cca")
cat("* Hill scaling performed on both scores\n")
else
cat("* Species scores divided by species standard deviations\n")
cat(" so that they no longer are biplot scores\n")
}
if (x$method != "cca") {
cat("* General scaling constant of scores: ",
attr(x, "const"), "\n")
}
if (!is.null(x$species)) {
cat("\n\nSpecies scores\n\n")
hcat(x$species, head=head, tail=tail, digits = digits, ...)
}
if (!is.null(x$sites)) {
cat("\n\nSite scores (weighted", statnam, "of species scores)\n\n")
hcat(x$sites, head=head, tail=tail, digits = digits, ...)
}
if (!is.null(x$constraints)) {
cat("\n\nSite constraints (linear combinations of constraining variables)\n\n")
hcat(x$constraints, head=head, tail=tail, digits = digits, ...)
}
if (!is.null(x$biplot)) {
cat("\n\nBiplot scores for constraining variables\n\n")
print(x$biplot, digits = digits, ...)
}
if (!is.null(x$centroids) && !is.na(x$centroids[1])) {
cat("\n\nCentroids for factor constraints\n\n")
print(x$centroids, digits = digits, ...)
}
cat("\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.cca.R
|
print.summary.clamtest <- function(x, digits=max(3, getOption("digits") - 3), ...) {
cat("Two Groups Species Classification Method (CLAM)\n\n")
cat("Specialization threshold =", x$specialization)
cat("\nAlpha level =", x$alpha)
cat("\n\nEstimated sample coverage:\n")
print(x$coverage, digits=digits)
cat("\nMinimum abundance for classification:\n")
print(structure(c(x$minv[[1]][1,2], x$minv[[2]][1,1]),
.Names=x$labels))
cat("\n")
printCoefmat(x$summary, digits=digits, ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.clamtest.R
|
`print.summary.decorana` <-
function (x, head=NA, tail=head, ...)
{
digits <- x$digits
hcat <- function(x, head=head, tail=tail, ...) {
if(!is.na(head) && !is.na(tail) && head + tail + 4 < nrow(x))
x <- rbind(head(x, n=head), "...." = NA, tail(x, n=tail))
printCoefmat(x, na.print="", ...)
}
if (!is.null(x$spec.scores)) {
cat("Species scores:\n\n")
TABLE <- cbind(x$spec.scores, Weights = x$spec.priorweights,
Totals = x$spec.totals)
hcat(TABLE, head=head, tail=tail, digits = digits, ...)
cat("\n")
}
if (!is.null(x$site.scores)) {
cat("Site scores:\n\n")
TABLE <- cbind(x$site.scores, Totals = x$site.totals)
hcat(TABLE, head=head, tail=tail, digits = digits, ...)
cat("\n")
}
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.decorana.R
|
`print.summary.isomap` <-
function (x, ...)
{
cat("\nCall:\n")
cat(deparse(x$call), "\n\n")
cat("Points:\n")
print(x$points, ...)
cat("\nRetained dissimilarities between points:\n")
print(t(x$net), ...)
cat("\nRetained", x$nnet, "of", x$ndis, "dissimilarities\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.isomap.R
|
`print.summary.meandist` <-
function(x, ...)
{
cat("\nMean distances:\n")
tab <- rbind("within groups" = x$W,
"between groups" = x$B,
"overall" = x$D)
colnames(tab) <- "Average"
print(tab, ...)
cat("\nSummary statistics:\n")
tab <- rbind("MRPP A weights n" = x$A1,
"MRPP A weights n-1" = x$A2,
"MRPP A weights n(n-1)"= x$A3,
"Classification strength"=x$CS)
colnames(tab) <- "Statistic"
print(tab, ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.meandist.R
|
## S3 print method for summary.permat
`print.summary.permat` <-
function(x, digits=2, ...)
{
n <- attr(x$x, "times")
cat("Summary of object of class 'permat'\n\nCall: ")
print(x$x$call)
cat("\nMatrix type:", attr(x$x, "mtype"), "\nPermutation type:", attr(x$x, "ptype"))
cat("\nMethod: ", attr(x$x, "method"), sep = "")
if (attr(x$x, "ptype") == "swap") {
if (!is.na(attr(x$x, "burnin")))
cat(", burnin: ", attr(x$x, "burnin"), sep = "")
if (!is.na(attr(x$x, "thin")))
cat(", thin: ", attr(x$x, "thin"), sep = "")
}
cat("\nRestricted:", attr(x$x, "is.strat"), "\nFixed margins:", attr(x$x, "fixedmar"))
if (!is.na(attr(x$x, "shuffle"))) {
if (attr(x$x, "shuffle")=="ind") cat("\nIndividuals")
if (attr(x$x, "shuffle")=="samp") cat("\nSamples")
if (attr(x$x, "shuffle")=="both") cat("\nIndividuals and samples")
cat(" are shuffled")
}
cat("\n\nMatrix dimensions:", nrow(x$x$orig), "rows,", ncol(x$x$orig), "columns")
cat("\nSum of original matrix:", sum(x$x$orig))
cat("\nFill of original matrix:", round(sum(x$x$orig>0)/(nrow(x$x$orig)*ncol(x$x$orig)),digits))
cat("\nNumber of permuted matrices:", n,"\n")
cat("\nMatrix sums retained:", round(100 * sum(x$sum) / n, digits), "%")
cat("\nMatrix fill retained:", round(100 * sum(x$fill) / n, digits), "%")
cat("\nRow sums retained: ", round(100 * sum(x$rowsums) / n, digits), "%")
cat("\nColumn sums retained:", round(100 * sum(x$colsums) / n, digits), "%")
cat("\nRow incidences retained: ", round(100 * sum(x$browsums) / n, digits), "%")
cat("\nColumn incidences retained:", round(100 * sum(x$bcolsums) / n, digits), "%")
if (!is.null(x$strsum))
cat("\nSums within strata retained:", round(100 * sum(x$strsum) / n, digits), "%")
cat("\n\nBray-Curtis dissimilarities among original and permuted matrices:\n")
print(summary(x$bray))
cat("\nChi-squared for original matrix: ", round(attr(x$chisq, "chisq.orig"), digits), "\n", sep = "")
cat("Chi-squared values among expected and permuted matrices:\n")
print(summary(x$chisq))
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.permat.R
|
"print.summary.prc" <-
function(x, ...)
{
cat("\nCall:\n")
cat(deparse(x$call), "\n")
cat("Species scores:\n")
print(x$sp, digits=x$digits, ...)
cat("\nCoefficients for",
paste(x$names[2], "+", paste(x$names, collapse=":")),
"interaction\n")
cat(paste("which are contrasts to", x$names[2], x$corner, "\n"))
cat(paste(c("rows are",", columns are"), x$names[2:1], collapse=""))
cat("\n")
print(coef(x), digits = x$digits, ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.prc.R
|
"print.summary.procrustes" <-
function (x, digits = x$digits, ...)
{
cat("\nCall:\n")
cat(deparse(x$call), "\n")
cat("\nNumber of objects:", x$n, " Number of dimensions:",
x$k, "\n")
cat("\nProcrustes sum of squares: ")
cat("\n", formatC(x$ss, digits = digits), "\n")
cat("Procrustes root mean squared error: ")
cat("\n", formatC(x$rmse, digits = digits), "\n")
cat("Quantiles of Procrustes errors:\n")
nam <- c("Min", "1Q", "Median", "3Q", "Max")
rq <- structure(quantile(x$resid), names = nam)
print(rq, digits = digits, ...)
cat("\nRotation matrix:\n")
print(x$rotation, digits = digits, ...)
cat("\nTranslation of averages:\n")
print(x$translation, digits = digits, ...)
cat("\nScaling of target:\n")
print(x$scale, digits = digits, ...)
cat("\n")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.procrustes.R
|
`print.summary.taxondive` <-
function (x, ...)
{
printCoefmat(x, na.print="", ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.summary.taxondive.R
|
`print.taxondive` <-
function (x, ...)
{
out <- cbind(x$Species, x$D, x$Dstar, x$Lambda, x$Dplus, x$SDplus)
out <- rbind(out, Expected = c(NA, x$ED, x$EDstar, NA, x$EDplus, NA))
colnames(out) <- c("Species", "Delta", "Delta*", "Lambda+",
"Delta+", "S Delta+")
printCoefmat(out, na.print = "")
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.taxondive.R
|
`print.varpart` <-
function (x, ...)
{
cat("\nPartition of", x$inert, "in", x$RDA, "\n\n")
writeLines(strwrap(pasteCall(x$call)))
if (x$RDA == "RDA") {
if (x$scale)
cat("Columns of Y were scaled to unit variance\n")
if (!is.null(x$transfo))
cat("Species transformation: ", x$transfo)
}
cat("\n")
cat("Explanatory tables:\n")
cat(paste(paste(paste("X", seq_along(x$tables), sep=""),": ",
x$tables, sep=""), collapse="\n"), "\n\n")
print(x$part, ...)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.varpart.R
|
`print.varpart234` <-
function(x, digits = 5, ...)
{
cat("No. of explanatory tables:", x$nsets, "\n")
cat("Total variation (SS):", format(x$SS.Y, digits=digits), "\n")
if (x$ordination == "rda")
cat(" Variance:", format(x$SS.Y/(x$n-1), digits=digits), "\n")
cat("No. of observations:", x$n, "\n")
cat("\nPartition table:\n")
out <- rbind(x$fract, "Individual fractions" = NA, x$indfract)
if (x$nsets > 3)
out <- rbind(out, "Controlling 2 tables X" = NA, x$contr2)
if (x$nsets > 2)
out <- rbind(out, "Controlling 1 table X" = NA, x$contr1)
out[,2:3] <- round(out[,2:3], digits=digits)
out[,1:4] <- sapply(out[,1:4], function(x) gsub("NA", " ", format(x, digits=digits)))
print(out)
cat("---\nUse function", sQuote(x$ordination),
"to test significance of fractions of interest\n")
if (!is.null(x$bigwarning))
for (i in seq_along(x$bigwarning))
warning("collinearity detected: redundant variable(s) between tables ",
x$bigwarning[i],
"\nresults are probably incorrect: remove redundant variable(s) and repeat the analysis",
call. = FALSE)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.varpart234.R
|
`print.vectorfit` <-
function (x, ...)
{
out <- cbind(x$arrows, r2 = x$r, "Pr(>r)" = x$pvals)
printCoefmat(out, na.print = "",
zap.ind = seq_len(ncol(out)-2), ...)
if (x$permutations) {
cat(howHead(x$control))
}
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.vectorfit.R
|
### support functions for wcmdscale results: print, scores and plot.
`print.wcmdscale` <-
function(x, digits = max(3, getOption("digits") - 3), ...)
{
writeLines(strwrap(pasteCall(x$call)))
cat("\n")
## tabulate total inertia and ranks
totev <- sum(x$eig)
negax <- x$eig < 0
if (any(negax)) {
ranks <- c(NA, sum(!negax), sum(negax))
negax <- x$eig < 0
realev <- sum(x$eig[!negax])
imev <- sum(x$eig[negax])
evs <- c("Total" = totev, "Real" = realev, "Imaginary" = imev)
} else {
ranks <- length(x$eig)
evs <- c("Total" = totev)
}
tbl <- cbind("Inertia" = evs, "Rank" = ranks)
printCoefmat(tbl, digits = digits, na.print = "")
if (!is.na(x$ac) && x$ac > 0)
cat("additive constant ", x$ac, " (method ", x$add, ")\n", sep = "")
cat("\nResults have", NROW(x$points), "points,", NCOL(x$points), "axes\n")
## print eigenvalues, but truncate very long lists
PRINLIM <- 120
neig <- length(x$eig)
cat("\nEigenvalues:\n")
print(zapsmall(x$eig[1 : min(neig, PRINLIM)], digits = digits, ...))
if (neig > PRINLIM)
cat("(Showing", PRINLIM, "of", neig, "eigenvalues)\n")
wvar <- var(x$weights)
wlen <- length(x$weights)
cat("\nWeights:")
if (wvar < 1e-6)
cat(" Constant\n")
else {
cat("\n")
print(zapsmall(x$weights[1 : min(wlen, PRINLIM)], digits = digits, ...))
if (wlen > PRINLIM)
cat("(Showing", PRINLIM, "of", wlen, "weights)\n")
}
cat("\n")
invisible(x)
}
`scores.wcmdscale` <-
function(x, choices = NA, tidy = FALSE, ...)
{
p <-
if (any(is.na(choices))) {
x$points
} else {
choices <- choices[choices <= NCOL(x$points)]
x$points[, choices, drop = FALSE]
}
if (tidy) {
p <- data.frame(p, "scores" = "sites", "label" = rownames(p),
"weight" = weights(x))
}
p
}
`plot.wcmdscale` <-
function(x, choices = c(1,2), type = "t", ...)
{
ordiplot(x, display = "sites", choices = choices, type = type, ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.wcmdscale.R
|
`procrustes` <-
function (X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
{
X <- scores(X, display = scores, ...)
Y <- scores(Y, display = scores, ...)
if (nrow(X) != nrow(Y))
stop(gettextf("matrices have different number of rows: %d and %d",
nrow(X), nrow(Y)))
if (ncol(X) < ncol(Y)) {
warning("X has fewer axes than Y: X adjusted to comform Y\n")
addcols <- ncol(Y) - ncol(X)
for (i in 1:addcols) X <- cbind(X, 0)
}
ctrace <- function(MAT) sum(MAT^2)
c <- 1
if (symmetric) {
X <- scale(X, scale = FALSE)
Y <- scale(Y, scale = FALSE)
X <- X/sqrt(ctrace(X))
Y <- Y/sqrt(ctrace(Y))
}
xmean <- apply(X, 2, mean)
ymean <- apply(Y, 2, mean)
if (!symmetric) {
X <- scale(X, scale = FALSE)
Y <- scale(Y, scale = FALSE)
}
XY <- crossprod(X, Y)
sol <- svd(XY)
A <- sol$v %*% t(sol$u)
if (scale) {
c <- sum(sol$d)/ctrace(Y)
}
Yrot <- c * Y %*% A
## Translation (b) needs scale (c) although Mardia et al. do not
## have this. Reported by Christian Dudel.
b <- xmean - c * ymean %*% A
R2 <- ctrace(X) + c * c * ctrace(Y) - 2 * c * sum(sol$d)
reslt <- list(Yrot = Yrot, X = X, ss = R2, rotation = A,
translation = b, scale = c, xmean = xmean,
symmetric = symmetric, call = match.call())
reslt$svd <- sol
class(reslt) <- "procrustes"
reslt
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/procrustes.R
|
`profile.MOStest` <-
function(fitted, alpha = 0.01, maxsteps = 10, del = zmax/5, ...)
{
Pnam <- if(fitted$isHump) "hump" else "pit"
k <- coef(fitted$mod)
u <- -k[2]/2/k[3]
n <- length(residuals(fitted$mod))
std.error <- fieller.MOStest(fitted, level=0.6)
std.error <- u - std.error[1]
if (is.na(std.error))
std.error <- diff(range(model.matrix(fitted$mod)[,2]))
OrigDev <- deviance(fitted$mod)
summ <- summary(fitted$mod)
DispPar <- summ$dispersion
fam <- family(fitted$mod)
Y <- fitted$mod$y
X <- model.matrix(fitted$mod)[,-3]
Xi <- X
if (fam$family %in% c("poisson", "binomial", "Negative Binomial")) {
zmax <- sqrt(qchisq(1 - alpha/2, 1))
profName <- "z"
} else {
zmax <- sqrt(qf(1 - alpha/2, 1, n - 1))
profName <- "tau"
}
zi <- 0
prof <- vector("list", length=1)
names(prof) <- Pnam
uvi <- u
for (sgn in c(-1, 1)) {
step <- 0
z <- 0
while((step <- step + 1) < maxsteps && abs(z) < zmax) {
ui <- u + sgn * step * del * std.error
Xi[,2] <- (X[,2] - ui)^2
fm <- glm.fit(x = Xi, y = Y, family=fam,
control = fitted$mod$control)
uvi <- c(uvi, ui)
zz <- (fm$deviance - OrigDev)/DispPar
z <- sgn * sqrt(zz)
zi <- c(zi, z)
}
si <- order(zi)
prof[[Pnam]] <- structure(data.frame(zi[si]), names=profName)
uvi <- as.matrix(uvi)
colnames(uvi) <- Pnam
prof[[Pnam]]$par.vals <- uvi[si, , drop=FALSE]
}
of <- list()
of$coefficients <- structure(Pnam, names=Pnam)
val <- structure(prof, original.fit = of, summary = summ)
class(val) <- c("profile.MOStest", "profile.glm", "profile")
val
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/profile.MOStest.R
|
`profile.humpfit` <-
function(fitted, parm=1:3, alpha=0.01, maxsteps = 20, del = zmax/5, ...)
{
INSERT3 <- function(vec, fix, val) {
switch(fix,
c(val, vec),
c(vec[1], val, vec[2]),
c(vec, val)
)
}
HUMP <- function(p, mass, spno, fix, val, ...) {
b <- INSERT3(p, fix, val)
x <- ifelse(mass < b[1], mass/b[1], b[1]*b[1]/mass/mass)
fv <- b[3] * log(1 + b[2]*x/b[3])
n <- wt <- rep(1, length(x))
dev <- sum(dev.resids(spno, fv, wt))
aicfun(spno, n, fv, wt, dev)/2
}
dev.resids <- fitted$family$dev.resids
aicfun <- fitted$family$aic
minll <- fitted$nlm$minimum
p <- coefficients(fitted)
pv0 <- t(as.matrix(p))
n <- length(fitted$residuals)
Pnames <- names(p)
summ <- summary(fitted)
dispersion <- summ$dispersion
std.err <- summ$est[, "Std. Error"]
if (summ$family == "poisson") {
zmax <- sqrt(qchisq(1 - alpha/2, 3))
profName <- "z"
} else {
zmax <- sqrt(3 * qf(1 - alpha/2, 3, n-3))
profName <- "tau"
}
prof <- vector("list", length = length(parm))
names(prof) <- Pnames[parm]
for (i in parm) {
zi <- 0
par <- pv0
pvi <- pv0[-i]
pi <- Pnames[i]
for (sgn in c(-1, 1)) {
step <- 0
z <- 0
while ((step <- step + 1) < maxsteps && abs(z) < zmax) {
bi <- p[i] + sgn * step * del * std.err[i]
fm <- nlm(HUMP, p = pvi, mass = fitted$x, spno = fitted$y, fix = i, val = bi)
pvi <- fm$estimate
ri <- INSERT3(pvi, i, bi)
names(ri) <- Pnames
par <- rbind(par, ri)
zz <- 2*(fm$minimum - minll)/dispersion
if (zz > -0.001)
zz <- max(0, zz)
else
stop(gettextf(
"profiling found a better solution: original fit had not converged:\n%s: %f",
Pnames[i], bi))
z <- sgn*sqrt(zz)
zi <- c(zi, z)
}
}
si <- order(zi)
prof[[pi]] <- structure(data.frame(zi[si]), names= profName)
prof[[pi]]$par.vals <- par[si,]
}
val <- structure(prof, original.fit = fitted, summary = summ)
class(val) <- c("profile.humpfit", "profile.glm", "profile")
val
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/profile.humpfit.R
|
`protest` <-
function (X, Y, scores = "sites", permutations = how(nperm = 999),
...)
{
EPS <- sqrt(.Machine$double.eps)
X <- scores(X, display = scores, ...)
Y <- scores(Y, display = scores, ...)
## Centre and normalize X & Y here so that the permutations will
## be faster
X <- scale(X, scale = FALSE)
Y <- scale(Y, scale = FALSE)
X <- X/sqrt(sum(X^2))
Y <- Y/sqrt(sum(Y^2))
## Transformed X and Y will yield symmetric procrustes() and we
## need not specify that in the call (but we set it symmetric
## after the call).
sol <- procrustes(X, Y, symmetric = FALSE)
sol$symmetric <- TRUE
sol$t0 <- sqrt(1 - sol$ss)
N <- nrow(X)
## Permutations: We only need the goodness of fit statistic from
## Procrustes analysis, and therefore we only have the necessary
## function here. This avoids a lot of overhead of calling
## procrustes() for each permutation. The following gives the
## Procrustes r directly.
procr <- function(X, Y) sum(svd(crossprod(X, Y), nv=0, nu=0)$d)
permutations <- getPermuteMatrix(permutations, N)
if (ncol(permutations) != N)
stop(gettextf("'permutations' have %d columns, but data have %d observations",
ncol(permutations), N))
np <- nrow(permutations)
perm <- sapply(seq_len(np),
function(i, ...) procr(X, Y[permutations[i,],]))
Pval <- (sum(perm >= sol$t0 - EPS) + 1)/(np + 1)
sol$t <- perm
sol$signif <- Pval
sol$permutations <- np
sol$control <- attr(permutations, "control")
sol$call <- match.call()
class(sol) <- c("protest", "procrustes")
sol
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/protest.R
|
"rad.lognormal" <-
function (x, family = poisson, ...)
{
x <- as.rad(x)
n <- length(x)
rnk <- -qnorm(ppoints(n))
fam <- family(link = "log")
## Must be > 2 species to fit a model
if (length(x) > 1)
ln <- try(glm(x ~ rnk, family = fam))
if (length(x) < 2) {
aic <- NA
dev <- rdf <- 0
ln <- nl <- NA
p <- rep(NA, 2)
fit <- x
res <- rep(0, length(x))
wts <- rep(1, length(x))
}
else if (inherits(ln, "try-error")) {
aic <- rdf <- ln <- nl <- dev <- NA
p <- rep(NA, 2)
fit <- res <- wts <- rep(NA, length(x))
}
else {
p <- coef(ln)
fit <- fitted(ln)
aic <- AIC(ln)
rdf <- df.residual(ln)
dev <- deviance(ln)
res <- ln$residuals
wts <- weights(ln)
}
names(p) <- c("log.mu", "log.sigma")
out <- list(model = "Log-Normal", family = fam, y = x,
coefficients = p, fitted.values = fit, aic = aic, rank = 2,
df.residual = rdf, deviance = dev, residuals = res,
prior.weights = wts)
class(out) <- c("radline", "glm")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rad.lognormal.R
|
"rad.null" <-
function(x, family=poisson, ...)
{
fam <- family(link="log")
aicfun <- fam$aic
dev.resids <- fam$dev.resids
x <- as.rad(x)
nsp <- length(x)
wt <- rep(1, nsp)
if (nsp > 0) {
fit <- rev(cumsum(1/nsp:1)/nsp) * sum(x)
res <- dev.resids(x, fit, wt)
deviance <- sum(res)
aic <- aicfun(x, nsp, fit, wt, deviance)
}
else {
fit <- NA
aic <- NA
res <- NA
deviance <- NA
}
residuals <- x - fit
rdf <- nsp
names(fit) <- names(x)
p <- NA
names(p) <- "S"
out <- list(model = "Brokenstick", family=fam, y = x, coefficients = p,
fitted.values = fit, aic = aic, rank = 0, df.residual = rdf,
deviance = deviance, residuals = residuals, prior.weights=wt)
class(out) <- c("radline", "glm")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rad.null.R
|
"rad.preempt" <-
function (x, family = poisson, ...)
{
canfun <- function(p, x, ...) {
if (length(x) <= 1)
return(0)
p <- plogis(p)
if (p == 1)
p <- 1 - .Machine$double.eps
fv <- linkinv(logJ + log(p) + log(1 - p) * rnk)
n <- rep(1, length(fv))
dev <- sum(dev.resids(x, fv, wt))
aicfun(x, n, fv, wt, dev)/2
}
fam <- family(link = "log")
aicfun <- fam$aic
linkinv <- fam$linkinv
dev.resids <- fam$dev.resids
x <- as.rad(x)
nsp <- length(x)
rnk <- seq(along = x) - 1
wt <- rep(1, length(x))
logJ <- log(sum(x))
p <- qlogis(0.1)
canon <- try(nlm(canfun, p = p, x = x, rnk = rnk, logJ = logJ,
wt = wt, hessian = TRUE, ...))
if (inherits(canon, "try-error")) {
aic <- rdf <- deviance <- NA
p <- rep(NA, 1)
fit <- residuals <- wt <- rep(NA, length(x))
} else {
if (nsp > 1) {
p <- plogis(canon$estimate)
fit <- exp(logJ + log(p) + log(1 - p) * rnk)
} else {
p <- if (nsp > 0) 1 else NA
fit <- x
}
res <- dev.resids(x, fit, wt)
deviance <- sum(res)
residuals <- x - fit
if (nsp > 0)
aic <- aicfun(x, rep(1, length(x)), fit, wt, deviance) + 2
else
aic <- NA
rdf <- length(x) - 1
}
names(fit) <- names(x)
names(p) <- c("alpha")
out <- list(model = "Preemption", family = fam, y = x, coefficients = p,
fitted.values = fit, aic = aic, rank = 1, df.residual = rdf,
deviance = deviance, residuals = residuals, prior.weights = wt)
class(out) <- c("radline", "glm")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rad.preempt.R
|
"rad.zipf" <-
function (x, family = poisson, ...)
{
x <- as.rad(x)
rnk <- seq(along = x)
off <- rep(log(sum(x)), length(x))
fam <- family(link = "log")
if (length(x) > 1)
ln <- try(glm(x ~ log(rnk) + offset(off), family = fam))
if (length(x) < 2) {
aic <- NA
dev <- rdf <- 0
ln <- nl <- NA
p <- rep(NA, 2)
fit <- x
res <- rep(0, length(x))
wts <- rep(1, length(x))
}
else if (inherits(ln, "try-error")) {
aic <- rdf <- ln <- nl <- dev <- NA
p <- rep(NA, 2)
fit <- res <- wts <- rep(NA, length(x))
}
else {
fit <- fitted(ln)
p <- coef(ln)
p[1] <- exp(p[1])
aic <- AIC(ln)
rdf <- df.residual(ln)
dev <- deviance(ln)
res <- ln$residuals
wts <- weights(ln)
}
names(p) <- c("p1", "gamma")
out <- list(model = "Zipf", family = fam, y = x, coefficients = p,
fitted.values = fit, aic = aic, rank = 2, df.residual = rdf,
deviance = dev, residuals = res, prior.weights = wts)
class(out) <- c("radline", "glm")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rad.zipf.R
|
"rad.zipfbrot" <-
function (x, family = poisson, ...)
{
mandelfun <- function(p, x, ...) {
brnk <- log(rnk + exp(p))
sol <- glm(x ~ brnk + offset(off), family = family(link = "log"))
-logLik(sol)
}
x <- as.rad(x)
rnk <- seq(along = x)
off <- rep(log(sum(x)), length(x))
p <- 0
fam <- family(link = "log")
if (length(x) > 2)
nl <- try(nlm(mandelfun, p = p, x = x, rnk = rnk, off = off,
family = fam, hessian = TRUE, ...))
if (length(x) < 3) {
aic <- NA
dev <- rdf <- 0
ln <- nl <- NA
p <- rep(NA, 3)
fit <- x
res <- rep(0, length(x))
wts <- rep(1, length(x))
}
else if (inherits(nl, "try-error")) {
aic <- rdf <- ln <- nl <- dev <- NA
p <- rep(NA, 3)
fit <- res <- wts <- rep(NA, length(x))
}
else {
ln <- glm(x ~ log(rnk + exp(nl$estimate)) + offset(off),
family = family(link = "log"))
fit <- fitted(ln)
p <- c(coef(ln), exp(nl$estimate))
p[1] <- exp(p[1])
aic <- AIC(ln) + 2
rdf <- df.residual(ln) - 1
dev <- deviance(ln)
res <- ln$residuals
wts <- weights(ln)
}
names(p) <- c("c", "gamma", "beta")
out <- list(model = "Zipf-Mandelbrot", family = fam,
y = x, coefficients = p, fitted.values = fit, aic = aic,
rank = 3, df.residual = rdf, deviance = dev,
residuals = res, prior.weights = wts)
class(out) <- c("radline", "glm")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rad.zipfbrot.R
|
`radfit` <-
function (x, ...)
{
UseMethod("radfit")
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/radfit.R
|
`radfit.data.frame` <-
function(x, ...)
{
## x *must* have rownames
rownames(x) <- rownames(x, do.NULL = TRUE)
## remove empty rows with no species
nspec <- specnumber(x)
if (any(nspec == 0)) {
warning("removed empty rows with no species")
x <- x[nspec>0,, drop=FALSE]
}
out <- apply(x, 1, radfit, ...)
if (length(out) == 1)
out <- out[[1]]
else {
class(out) <- "radfit.frame"
}
out
}
`radfit.matrix` <-
function(x, ...)
{
radfit(as.data.frame(x), ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/radfit.data.frame.R
|
"radfit.default" <-
function (x, ...)
{
x <- as.rad(x)
NU <- rad.null(x, ...)
PE <- rad.preempt(x, ...)
##BS <- rad.brokenstick(x, ...)
LN <- rad.lognormal(x, ...)
ZP <- rad.zipf(x, ...)
ZM <- rad.zipfbrot(x, ...)
out <- list(y = x, family = PE$family)
models <- list(Null = NU, Preemption = PE, Lognormal = LN,
Zipf = ZP, Mandelbrot = ZM)
out$models <- models
class(out) <- "radfit"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/radfit.default.R
|
`radlattice` <-
function(x, BIC = FALSE, ...)
{
if (!inherits(x, "radfit"))
stop("function only works with 'radfit' results for single site")
y <- x$y
fv <- unlist(fitted(x))
mods <- names(x$models)
p <- length(mods)
n <- length(y)
Abundance <- rep(y, p)
Rank <- rep(1:n, p)
Model <- factor(rep(mods, each=n), levels = mods)
if (BIC)
k <- log(length(y))
else
k <- 2
aic <- AIC(x, k = k)
col <- trellis.par.get("superpose.line")$col
if (length(col) > 1)
col <- col[2]
xyplot(Abundance ~ Rank | Model, subscripts = TRUE,
scales = list(y = list(log = 2)), as.table = TRUE,
panel = function(x, y, subscripts) {
panel.xyplot(x, y, ...)
panel.xyplot(x, log2(fv[subscripts]), type="l", lwd=3,
col = col, ...)
panel.text(max(x), max(y), paste(if (BIC) "BIC" else "AIC", "=",
formatC(aic[panel.number()], digits=2, format="f")),
pos=2)
}
)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/radlattice.R
|
"rankindex" <-
function (grad, veg, indices = c("euc", "man", "gow", "bra",
"kul"), stepacross = FALSE, method = "spearman",
metric = c("euclidean", "mahalanobis", "manhattan", "gower"), ...)
{
metric = match.arg(metric)
grad <- as.data.frame(grad)
if (any(sapply(grad, is.factor))) {
span <- daisy(grad)
} else {
span <- switch(metric,
"euclidean" = dist(scale(grad, scale=TRUE)),
"mahalanobis" = dist(veganMahatrans(scale(grad, scale=FALSE))),
"manhattan" = dist(decostand(grad, "range"), "manhattan"),
"gower" = daisy(grad, metric = "gower"))
}
veg <- as.matrix(veg)
res <- numeric(length(indices))
## create names if indices is a list of functions without names
if (is.list(indices)) {
nam <- names(indices)
if (is.null(nam))
nam <- paste("dis", 1:length(indices), sep="")
} else nam <- indices
names(res) <- nam
## indices is a list of functions which return dist objects
if (is.list(indices)) {
for (i in seq_along(indices)) {
## don't accept similarities
if (indices[[i]](matrix(1, 2, 2)) != 0)
stop("define dissimilarity and not similarity")
y <- indices[[i]](veg)
## check class of output
if (!inherits(y, "dist"))
stop("function in 'indices' must return a 'dist' object")
if (stepacross) {
is.na(y) <- no.shared(veg)
y <- stepacross(y, trace = FALSE, toolong = -1, ...)
}
res[i] <- cor(span, y, method = method)
}
## indices is a character vector naming methods in vegdist
} else {
for (i in indices) {
y <- vegdist(veg, i)
if (stepacross) {
is.na(y) <- no.shared(veg)
y <- stepacross(y, trace = FALSE, toolong = -1, ...)
}
res[i] <- cor(span, y, method = method)
}
}
res
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rankindex.R
|
`rarecurve` <-
function(x, step = 1, sample, xlab = "Sample Size", ylab = "Species",
label = TRUE, col, lty, tidy = FALSE, ...)
{
## matrix is faster than data.frame
x <- as.matrix(x)
## check input data: must be counts
if (!identical(all.equal(x, round(x)), TRUE))
stop("function accepts only integers (counts)")
## should be observed counts
minobs <- min(x[x > 0])
if (minobs > 1)
warning(gettextf("most observed count data have counts 1, but smallest count is %d", minobs))
## sort out col and lty
if (missing(col))
col <- par("col")
if (missing(lty))
lty <- par("lty")
tot <- rowSums(x)
S <- specnumber(x)
## remove empty rows or we fail
if (any(S <= 0)) {
message("empty rows removed")
x <- x[S > 0,, drop =FALSE]
tot <- tot[S > 0]
S <- S[S > 0]
}
nr <- nrow(x)
## rep col and lty to appropriate length
col <- rep(col, length.out = nr)
lty <- rep(lty, length.out = nr)
## Rarefy
out <- lapply(seq_len(nr), function(i) {
n <- seq(1, tot[i], by = step)
if (n[length(n)] != tot[i]) {
## don't want names on n an `c` adds a name from `tot[i]`)
n <- c(n, tot[i], use.names = FALSE)
}
## already warned on possibly non-observed counts: do not
## repeat warnings for every row
drop(suppressWarnings(rarefy(x[i,], n)))
})
## instead of plotting a rarecurve, return a "tidy" data frame and
## the let the user figure out how to display the results
if (tidy) {
len <- sapply(out, length)
nm <- rownames(x)
df <- data.frame(
"Site" = factor(rep(nm, len), levels=nm),
"Sample" = unlist(lapply(out, attr, which="Subsample")),
"Species" = unlist(out))
return(df) # exit with data.frame
}
Nmax <- sapply(out, function(x) max(attr(x, "Subsample")))
Smax <- sapply(out, max)
## set up plot
plot(c(1, max(Nmax)), c(1, max(Smax)), xlab = xlab, ylab = ylab,
type = "n", ...)
## rarefied richnesses for given 'sample'
if (!missing(sample)) {
abline(v = sample)
rare <- sapply(out, function(z) approx(x = attr(z, "Subsample"), y = z,
xout = sample, rule = 1)$y)
abline(h = rare, lwd=0.5)
}
## rarefaction curves
for (ln in seq_along(out)) {
N <- attr(out[[ln]], "Subsample")
lines(N, out[[ln]], col = col[ln], lty = lty[ln], ...)
}
## label curves at their endpoitns
if (label) {
ordilabel(cbind(tot, S), labels=rownames(x), ...)
}
invisible(out)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rarecurve.R
|
`rarefy` <-
function (x, sample, se = FALSE, MARGIN = 1)
{
x <- as.matrix(x)
## as.matrix changes an n-vector to a n x 1 matrix
if (ncol(x) == 1 && MARGIN == 1)
x <- t(x)
if (!identical(all.equal(x, round(x)), TRUE))
stop("function accepts only integers (counts)")
minobs <- min(x[x > 0])
if (minobs > 1)
warning(gettextf("most observed count data have counts 1, but smallest count is %d", minobs))
minsample <- min(apply(x, MARGIN, sum))
if (missing(sample)) {
stop(
gettextf(
"the size of 'sample' must be given --\nHint: Smallest site maximum %d",
minsample))
}
if (any(sample > minsample))
warning(
gettextf(
"requested 'sample' was larger than smallest site maximum (%d)",
minsample))
rarefun <- function(x, sample) {
x <- x[x > 0]
J <- sum(x)
ldiv <- lchoose(J, sample)
p1 <- ifelse(J - x < sample, 0, exp(lchoose(J - x, sample) -
ldiv))
out <- sum(1 - p1)
if (se) {
V <- sum(p1 * (1 - p1))
Jxx <- J - outer(x, x, "+")
ind <- lower.tri(Jxx)
Jxx <- Jxx[ind]
V <- V + 2 * sum(ifelse(Jxx < sample, 0, exp(lchoose(Jxx,
sample) - ldiv)) - outer(p1, p1)[ind])
## V is >= 0, but numerical zero can be negative (e.g,
## -1e-16), and we avoid taking its square root
out <- cbind(out, sqrt(max(V, 0)))
}
out
}
if (length(sample) > 1) {
S.rare <- sapply(sample, function(n) apply(x, MARGIN, rarefun, sample = n))
S.rare <- matrix(S.rare, ncol=length(sample))
colnames(S.rare) <- paste("N", sample, sep="")
if (se) {
dn <- unlist(dimnames(x)[MARGIN])
rownames(S.rare) <- paste(rep(dn, each=2), c("S","se"), sep=".")
}
} else {
S.rare <- apply(x, MARGIN, rarefun, sample = sample)
if (se)
rownames(S.rare) <- c("S", "se")
}
attr(S.rare, "Subsample") <- sample
S.rare
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rarefy.R
|
#' Slope of Rarefunction Curve at Given Sample Size
#'
#' Function evaluates the derivative of the rarefaction
#' function at given sample size. The derivative was
#' directly derived from the expression used in \code{rarefy}.
#'
#' @param x Community counts, either an integer vector for a single
#' site or a data frame or matrix with each row giving site vectors.
#' @param sample Sample sizes where the derivatives are evaluated; can
#' be real
#'
`rareslope` <-
function(x, sample)
{
## 'x' must be integers ('sample' need not be)
if (!identical(all.equal(x, round(x)), TRUE))
stop("community data 'x' must be integers (counts)")
minobs <- min(x[x > 0])
if (minobs > 1)
warning(gettextf("most observed count data have counts 1, but smallest count is %d", minobs))
slope <- function(x, sample) {
x <- x[x>0]
J <- sum(x)
## Replace Hurlbert's factorials with gamma() functions and do
## some algebra for derivatives. NB., rarefy() does not use
## factorials but lchoose directly.
d <- digamma(pmax(J-sample+1, 1)) - digamma(pmax(J-x-sample+1, 1))
g <- lgamma(pmax(J-x+1, 1)) + lgamma(pmax(J-sample+1, 1)) -
lgamma(pmax(J-x-sample+1, 1)) - lgamma(J+1)
d <- d*exp(g)
sum(d[is.finite(d)])
}
if (length(dim(x)) == 2)
out <- sapply(sample, function(n) apply(x, 1, slope, sample = n))
else
out <- sapply(sample, function(n) slope(x, sample=n))
out <- drop(out)
if (length(sample) > 1) {
if (is.matrix(out))
colnames(out) <- paste0("N", sample)
else
names(out) <- paste0("N", sample)
}
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rareslope.R
|
`raupcrick` <-
function(comm, null = "r1", nsimul = 999, chase = FALSE, ...)
{
comm <- as.matrix(comm)
comm <- ifelse(comm > 0, 1, 0)
## 'tri' is a faster alternative to as.dist(): it takes the lower
## diagonal, but does not set attributes of a "dist" object
N <- nrow(comm)
tri <- matrix(FALSE, N, N)
tri <- row(tri) > col(tri)
## function(x) designdist(x, "J", terms="binary") does the same,
## but is much slower
sol <- oecosimu(comm, function(x) tcrossprod(x)[tri], method = null,
nsimul = nsimul,
alternative = if (chase) "less" else "greater",
...)
## Chase et al. way, or the standard way
if (chase)
out <- 1 - sol$oecosimu$pval
else
out <- sol$oecosimu$pval
## set attributes of a "dist" object
attributes(out) <- list("class"=c("raupcrick", "dist"), "Size"=N,
"Labels" = rownames(comm), "maxdist" = 1,
"call" = match.call(), "Diag" = FALSE,
"Upper" = FALSE, "method" = "raupcrick")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/raupcrick.R
|
"rda" <-
function (...)
{
UseMethod("rda")
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rda.R
|
`rda.default` <-
function (X, Y = NULL, Z = NULL, scale = FALSE, ...)
{
## Protect against grave misuse: some people have used
## dissimilarities instead of data
if (inherits(X, "dist") || NCOL(X) == NROW(X) &&
isTRUE(all.equal(X, t(X))))
stop("function cannot be used with (dis)similarities")
X <- as.matrix(X)
if (!is.null(Y)) {
if (is.data.frame(Y) || is.factor(Y))
Y <- model.matrix(~ ., as.data.frame(Y))[,-1,drop=FALSE]
Y <- as.matrix(Y)
}
if (!is.null(Z)) {
if (is.data.frame(Z) || is.factor(Z))
Z <- model.matrix(~ ., as.data.frame(Z))[,-1,drop=FALSE]
Z <- as.matrix(Z)
}
sol <- ordConstrained(X, Y, Z, arg = scale, method = "rda")
call <- match.call()
call[[1]] <- as.name("rda")
sol$call <- call
inertia <- if (scale) "correlations" else "variance"
sol <- c(sol,
list("inertia" = inertia))
## package klaR also has rda(): add a warning text that will be
## printed if vegan::rda object is displayed with klaR:::print.rda
sol$regularization <- "this is a vegan::rda result object"
class(sol) <- c("rda", "cca")
sol
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rda.default.R
|
`rda.formula` <-
function (formula, data, scale = FALSE, na.action = na.fail,
subset = NULL, ...)
{
if (missing(data)) {
data <- parent.frame()
} else {
data <- eval(match.call()$data, environment(formula),
enclos = .GlobalEnv)
}
d <- ordiParseFormula(formula, data = data, na.action = na.action,
subset = substitute(subset))
sol <- rda.default(d$X, d$Y, d$Z, scale)
if (!is.null(sol$CCA) && sol$CCA$rank > 0) {
centroids <- centroids.cca(sol$CCA$wa, d$modelframe)
if (!is.null(sol$CCA$alias))
centroids <- unique(centroids)
if (!is.null(centroids)) {
rs <- rowSums(centroids^2)
centroids <- centroids[rs > 1e-04,, drop = FALSE]
if (length(centroids) == 0)
centroids <- NULL
}
if (!is.null(centroids))
sol$CCA$centroids <- centroids
}
## replace rda.default call
call <- match.call()
call[[1]] <- as.name("rda")
call$formula <- formula(d$terms)
sol$call <- call
if (!is.null(d$na.action)) {
sol$na.action <- d$na.action
sol <- ordiNAexclude(sol, d$excluded)
}
if (!is.null(d$subset))
sol$subset <- d$subset
## drops class in c()
sol <- c(sol,
list(terms = d$terms,
terminfo = ordiTerminfo(d, d$modelframe)))
class(sol) <- c("rda", "cca")
sol
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rda.formula.R
|
### Reads condensed CEP and similar CANOCO formatted data
### This function was originally based on Fortran code to interpret
### the format and read the data, but Fortran I/O is no longer allowed
### in CRAN packages. The original Fortran version was made available
### in github package vegandevs/cepreaded. This function uses
### utils::read.fortran. For that function we must translate the
### Fortran format in form understood by read.fortran(). This may
### fail, and read.fortran() can also fail, in particular wih
### interpreting the length of decimal part in F format.
### The original Fortran (and cepreader) can also interpret open
### (ordinary) Fortran format and Canoco FREE format, but this
### function currently only reads condensed data.
`read.cep` <-
function (file, positive = TRUE)
{
## Read all file first, interpret contents later
cep <- readLines(file)
## skip first line and get the format
i <- 2
fmt <- substr(cep[i], 1, 60) # CEP sets fmt in cols 1-60
fmt <- toupper(fmt)
fmt <- gsub(" ", "", fmt)
## get the number of data entries per record
nrecord <- as.numeric(substr(cep[i], 61,80))
if (is.na(nrecord)) {
i <- i+1
nrecord <- as.numeric(cep[i])
}
## check format: there should be to I-elements (site id, species
## id), and there should be two opening "("
fmt1 <- strsplit(fmt, NULL)[[1]]
if (sum(fmt1 == "I") != 2 || (nrecord > 1 && sum(fmt1 == "(") != 2))
stop(gettextf("format %s does not look correct for condensed data",
fmt))
## process format: basically the format should have elements for
## (INT, n(INT, REAL)). read.fortran() does not understand
## multiplier 'n', but we need to rep((INT,REAL), n) in the
## fmt vector.
fmt <- gsub(paste0(nrecord, "\\("), ";", fmt) # separate with ;
fmt <- gsub("\\(","",fmt)
fmt <- gsub("\\)","",fmt)
## number of decimals: there should be one and only one Fa.b
## format, and we need 'b'
ndec <- as.numeric(strsplit(fmt, "\\.")[[1]][2])
## now split format for plotid and nrecord couplets
fmt <- strsplit(fmt, ";")[[1]]
fmt <- c(strsplit(fmt[1], ",")[[1]], rep(strsplit(fmt[2], ",")[[1]],
nrecord))
if (any(is.na(fmt)))
fmt <- fmt[!is.na(fmt)]
## vectors to store results (with safe size)
nlines <- length(cep)-i
siteid <- numeric(nlines * nrecord)
specid <- numeric(nlines * nrecord)
abund <- numeric(nlines * nrecord)
ids <- seq(2, by=2, len=nrecord)
id <- 0
## read until there an empty siteid
repeat {
i <- i+1
x <- drop(as.matrix(read.fortran(textConnection(cep[i]), fmt)))
if(is.na(x[1]) || x[1] <= 0) break
for(j in ids) {
if(!is.na(x[j])) {
id <- id+1
siteid[id] <- x[1]
specid[id] <- x[j]
abund[id] <- x[j+1]
}
else
break
}
}
## check there are no duplicate entries: only last one would be
## used, and this causes an error (and this has happened in
## literature)
if (any(dups <- duplicated(cbind(siteid, specid))[seq_len(id)]))
stop("you have duplicated data entries: ",
paste(siteid[seq_len(id)][dups], specid[seq_len(id)][dups],
collapse = ", "))
## max identifiers
nsp <- max(specid)
nst <- max(siteid)
## read dimnames
i <- i+1
nomina <- read.fwf(textConnection(cep[i:length(cep)]), rep(8, 10),
as.is=TRUE)
nomina <- gsub(" ", "", as.vector(t(nomina)))
spnam <- make.names(nomina[seq_len(nsp)], unique = TRUE)
nst0 <- ceiling(nsp/10) * 10
stnam <- make.names(nomina[seq_len(nst) + nst0], unique = TRUE)
## utils::read.fortran divides with 10^ndec of F format even when
## there is an explicit decimal point: undo if this seems to have
## happened
if (ndec > 0 && min(abund[1:id]) <= 10^(-ndec))
abund <- abund * 10^ndec
## make as a matrix
out <- matrix(0, nst, nsp)
for(j in seq_len(id))
out[siteid[j], specid[j]] <- abund[j]
dimnames(out) <- list(stnam, spnam)
if (positive) {
rs <- rowSums(out)
cs <- colSums(out)
if (any(cs <= 0) || any(rs <= 0))
out <- out[rs > 0, cs > 0]
}
as.data.frame(out)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/read.cep.R
|
`renyi` <-
function (x, scales = c(0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,
Inf), hill = FALSE)
{
x <- as.matrix(x)
n <- nrow(x)
p <- ncol(x)
if (p == 1) {
x <- t(x)
n <- nrow(x)
p <- ncol(x)
}
## scale rows to unit total
x <- sweep(x, 1, rowSums(x), "/")
m <- length(scales)
result <- array(0, dim = c(n, m))
dimnames(result) <- list(sites = rownames(x), scale = scales)
for (a in 1:m) {
result[,a] <-
switch(as.character(scales[a]),
"0" = log(rowSums(x > 0)),
"1" = -rowSums(x * log(x), na.rm = TRUE),
"2" = -log(rowSums(x^2)),
"Inf" = -log(apply(x, 1, max)),
log(rowSums(x^scales[a]))/(1 - scales[a]))
}
if (hill)
result <- exp(result)
if (any(dim(result) == 1))
result <- drop(result)
else
result <- as.data.frame(result)
class(result) <- c("renyi", class(result))
result
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/renyi.R
|
`renyiaccum` <-
function(x, scales=c(0, 0.5, 1, 2, 4, Inf), permutations = 100,
raw = FALSE, collector = FALSE, subset, ...)
{
if (!missing(subset))
x <- subset(x, subset)
x <- as.matrix(x)
n <- nrow(x)
p <- ncol(x)
if (p==1) {
x <- t(x)
n <- nrow(x)
p <- ncol(x)
}
pmat <- getPermuteMatrix(permutations, n)
permutations <- nrow(pmat)
m <- length(scales)
result <- array(dim=c(n,m,permutations))
dimnames(result) <- list(pooled.sites=c(1:n), scale=scales,
permutation=c(1:permutations))
for (k in 1:permutations) {
result[,,k] <- as.matrix(renyi((apply(x[pmat[k,],],2,cumsum)),
scales=scales, ...))
}
if (raw)
collector <- FALSE
if (collector)
ref <- as.matrix(renyi(apply(x, 2, cumsum), scales = scales, ...))
if (raw) {
if (m==1) {
result <- result[,1,]
}
}else{
tmp <- array(dim=c(n,m,6 + as.numeric(collector)))
for (i in 1:n) {
for (j in 1:m) {
tmp[i,j,1] <- mean(result[i,j,1:permutations])
tmp[i,j,2] <- sd(result[i,j,1:permutations])
tmp[i,j,3] <- min(result[i,j,1:permutations])
tmp[i,j,4] <- max(result[i,j,1:permutations])
tmp[i,j,5] <- quantile(result[i,j,1:permutations],0.025)
tmp[i,j,6] <- quantile(result[i,j,1:permutations],0.975)
if (collector)
tmp[i,j,7] <- ref[i,j]
}
}
result <- tmp
dimnames(result) <- list(pooled.sites=c(1:n),
scale=scales,
c("mean", "stdev", "min", "max", "Qnt 0.025", "Qnt 0.975", if (collector) "Collector"))
}
attr(result, "control") <- attr(pmat, "control")
class(result) <- c("renyiaccum", class(result))
result
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/renyiaccum.R
|
"residuals.cca" <-
function(object, ...) fitted(object, model = "CA", ...)
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/residuals.cca.R
|
`residuals.procrustes` <-
function (object, ...)
{
distance <- object$X - object$Yrot
resid <- rowSums(distance^2)
sqrt(resid)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/residuals.procrustes.R
|
### Random rarefied subsample: sample without replacement
`rrarefy` <-
function(x, sample)
{
x <- as.matrix(x)
if (!identical(all.equal(x, round(x)), TRUE))
stop("function is meaningful only for integers (counts)")
## x may not be exactly integer, since, e.g., sqrt(2)^2 != 2
if (!is.integer(x))
x <- round(x)
minobs <- min(x[x > 0])
if (minobs > 1)
warning(gettextf("function should be used for observed counts, but smallest count is %d", minobs))
if (ncol(x) == 1)
x <- t(x)
if (length(sample) > 1 && length(sample) != nrow(x))
stop(gettextf(
"length of 'sample' and number of rows of 'x' do not match"))
sample <- rep(sample, length=nrow(x))
## warn if something cannot be rarefied
if (any(rowSums(x) < sample))
warning("some row sums < 'sample' and are not rarefied")
for (i in 1:nrow(x)) {
x[i,] <- .Call(do_rrarefy, x[i,], sample[i])
}
x
}
### Probabilities that species occur in a rarefied 'sample'
`drarefy` <-
function(x, sample)
{
if (!identical(all.equal(x, round(x)), TRUE))
stop("function accepts only integers (counts)")
minobs <- min(x[x > 0])
if (minobs > 1)
warning(gettextf("most observed count data have counts 1, but smallest count is %d", minobs))
if (length(sample) > 1 && length(sample) != nrow(x))
stop(gettextf(
"length of 'sample' and number of rows of 'x' do not match"))
x <- drop(as.matrix(x))
## warn on too large samples
if (is.matrix(x))
rs <- rowSums(x)
else
rs <- sum(x)
if (any(rs < sample))
warning("some row sums < 'sample' and probabilities either 0 or 1")
## dfun is kluge: first item of vector x must be the sample size,
## and the rest is the community data. This seemed an easy trick
## to evaluate dfun in an apply() instead of a loop.
dfun <- function(x) {
J <- sum(x[-1])
sample <- min(x[1], J)
1 - exp(lchoose(J - x[-1], sample) - lchoose(J, sample))
}
if (length(dim(x)) > 1)
t(apply(cbind(sample, x), 1, dfun))
else
dfun(c(sample, x))
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/rrarefy.R
|
##' @title Utility for handling user friendly scaling --- None exported
##'
##' @description Convert user-friendly descriptions of scalings to numeric codes used by \code{scores} to date.
##'
##' @param scaling character or numeric; which type of scaling is required? Numeric values are returned unaltered
##' @param correlation logical; should correlation-like scores be returned?
##' @param hill logical; should Hill's scaling scores be returned?
`scalingType` <- function(scaling = c("none", "sites", "species", "symmetric"),
correlation = FALSE, hill = FALSE) {
## Only process scaling further if it is character
if (is.numeric(scaling)) {
return(scaling) # numeric; return early
} else if (is.character(scaling)) {
## non-numeric scaling: change to correct numeric code
scaling <- match.arg(scaling) # match user choice
## Keep `tab` as this is the order of numeric codes
## Allows potential to change the default ordering of formal argument 'scaling'
tab <- c("none", "sites", "species", "symmetric")
scaling <- match(scaling, tab) - 1 # -1 as none == scaling 0
if (correlation || hill) {
scaling <- -scaling
}
} else {
stop("'scaling' is not 'numeric' nor 'character'.")
}
scaling # return
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scalingUtils.R
|
"scores" <-
function(x, ...) UseMethod("scores")
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.R
|
`scores.betadisper` <-
function(x, display = c("sites", "centroids"),
choices = c(1,2), ...)
{
display <- match.arg(display, several.ok = TRUE)
sol <- list()
if("sites" %in% display)
sol$sites <- x$vectors[, choices]
if("centroids" %in% display) {
if(is.matrix(x$centroids))
sol$centroids <- x$centroids[, choices, drop = FALSE]
else
sol$centroids <- matrix(x$centroids[choices], ncol = length(choices), byrow = TRUE)
}
if (length(sol) == 1)
sol <- sol[[1]]
sol
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.betadisper.R
|
`scores.betadiver` <-
function(x, triangular = TRUE, ...)
{
if (triangular) {
tot <- x$a + x$b + x$c
a <- x$a/tot
c <- x$c/tot
y <- sqrt(0.75)*a
x <- c + a/2
out <- cbind(x, y)
} else {
out <- sapply(x, cbind)
}
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.betadiver.R
|
`scores.cca` <-
function (x, choices = c(1, 2), display = c("sp", "wa", "bp", "cn"),
scaling = "species", hill = FALSE, tidy = FALSE, ...)
{
## Check the na.action, and pad the result with NA or WA if class
## "exclude"
if (!is.null(x$na.action) && inherits(x$na.action, "exclude"))
x <- ordiNApredict(x$na.action, x)
tabula <- c("species", "sites", "constraints", "biplot",
"regression", "centroids")
names(tabula) <- c("sp", "wa", "lc", "bp", "reg", "cn")
if (is.null(x$CCA))
tabula <- tabula[1:2]
display <- match.arg(display, c("sites", "species", "wa",
"lc", "bp", "reg", "cn", "all"),
several.ok = TRUE)
## set "all" for tidy scores
if (tidy)
display <- "all"
if("sites" %in% display)
display[display == "sites"] <- "wa"
if("species" %in% display)
display[display == "species"] <- "sp"
if("all" %in% display)
display <- names(tabula)
take <- tabula[display]
slam <- sqrt(c(x$CCA$eig, x$CA$eig)[choices])
rnk <- x$CCA$rank
sol <- list()
## process scaling; numeric scaling will just be returned as is
scaling <- scalingType(scaling = scaling, hill = hill)
if ("species" %in% take) {
v <- cbind(x$CCA$v, x$CA$v)[, choices, drop = FALSE]
if (scaling) {
scal <- list(1, slam, sqrt(slam))[[abs(scaling)]]
v <- sweep(v, 2, scal, "*")
if (scaling < 0) {
scal <- sqrt(1/(1 - slam^2))
v <- sweep(v, 2, scal, "*")
}
}
sol$species <- v
}
if ("sites" %in% take) {
wa <- cbind(x$CCA$wa, x$CA$u)[, choices, drop = FALSE]
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
wa <- sweep(wa, 2, scal, "*")
if (scaling < 0) {
scal <- sqrt(1/(1 - slam^2))
wa <- sweep(wa, 2, scal, "*")
}
}
sol$sites <- wa
}
if ("constraints" %in% take) {
u <- cbind(x$CCA$u, x$CA$u)[, choices, drop = FALSE]
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
u <- sweep(u, 2, scal, "*")
if (scaling < 0) {
scal <- sqrt(1/(1 - slam^2))
u <- sweep(u, 2, scal, "*")
}
}
sol$constraints <- u
}
if ("biplot" %in% take && !is.null(x$CCA$biplot)) {
b <- matrix(0, nrow(x$CCA$biplot), length(choices))
b[, choices <= rnk] <- x$CCA$biplot[, choices[choices <=
rnk]]
colnames(b) <- c(colnames(x$CCA$u), colnames(x$CA$u))[choices]
rownames(b) <- rownames(x$CCA$biplot)
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
b <- sweep(b, 2, scal, "*")
}
sol$biplot <- b
}
if ("regression" %in% take) {
b <- coef(x, norm = TRUE)
reg <- matrix(0, nrow(b), length(choices))
reg[, choices <= rnk] <- b[, choices[choices <= rnk]]
dimnames(reg) <- list(rownames(b),
c(colnames(x$CCA$u), colnames(x$CA$u))[choices])
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
reg <- sweep(reg, 2, scal, "*")
}
sol$regression <- reg
}
if ("centroids" %in% take) {
if (is.null(x$CCA$centroids))
sol$centroids <- NULL
else {
cn <- matrix(0, nrow(x$CCA$centroids), length(choices))
cn[, choices <= rnk] <- x$CCA$centroids[, choices[choices <=
rnk]]
colnames(cn) <- c(colnames(x$CCA$u), colnames(x$CA$u))[choices]
rownames(cn) <- rownames(x$CCA$centroids)
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
cn <- sweep(cn, 2, scal, "*")
if (scaling < 0) {
scal <- sqrt(1/(1 - slam^2))
cn <- sweep(cn, 2, scal, "*")
}
}
sol$centroids <- cn
}
}
## Take care that scores have names
if (length(sol)) {
for (i in seq_along(sol)) {
if (is.matrix(sol[[i]]))
rownames(sol[[i]]) <-
rownames(sol[[i]], do.NULL = FALSE,
prefix = substr(names(sol)[i], 1, 3))
}
}
## tidy scores
if (tidy) {
if (length(sol) == 0) # no requested scores existed
return(NULL)
## re-group biplot arrays duplicating factor centroids
if (!is.null(sol$biplot) && !is.null(sol$centroids)) {
dup <- rownames(sol$biplot) %in% rownames(sol$centroids)
if (any(dup)) {
sol$factorbiplot <- sol$biplot[dup,, drop=FALSE]
sol$biplot <- sol$biplot[!dup,, drop=FALSE]
}
}
group <- sapply(sol, nrow)
group <- rep(names(group), group)
sol <- do.call(rbind, sol)
label <- rownames(sol)
rw <- x$rowsum # weights(x) can fail with na.action=na.exclude
cw <- weights(x, "species")
w <- rep(NA, nrow(sol))
if (any(weighted <- group == "sites"))
w[weighted] <- rw
if (any(weighted <- group == "constraints"))
w[weighted] <- rw
if (any(weighted <- group == "species"))
w[weighted] <- cw
sol <- as.data.frame(sol)
sol$score <- as.factor(group)
sol$label <- label
sol$weight <- w
}
## return NULL instead of list(), and matrix instead of a list of
## one matrix
switch(min(2, length(sol)), sol[[1]], sol)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.cca.R
|
`scores.decorana` <-
function (x, display="sites", choices = 1:4, origin=TRUE,
tidy = FALSE, ...)
{
display <- match.arg(display, c("sites", "species", "both"), several.ok = TRUE)
## return "both" in tidy scores
if(tidy)
display <- "both"
out <- list()
if(any(c("sites", "both") %in% display)) {
sites <- x$rproj
if (origin)
sites <- sweep(sites, 2, x$origin, "-")
out$sites <- sites[, choices, drop=FALSE]
}
if(any(c("species", "both") %in% display)) {
species <- x$cproj
if (origin)
species <- sweep(species, 2, x$origin, "-")
out$species <- species[, choices]
}
if (tidy) {
if (length(out) == 0) # no scores (never TRUE?)
return(NULL)
group <- sapply(out, nrow)
group <- rep(names(group), group)
out <- do.call(rbind, out)
label <- rownames(out)
out <- as.data.frame(out)
out$score <- group
out$label <- label
wts <- rep(NA, nrow(out))
if (any(take <- group == "sites"))
wts[take] <- weights(x, display="sites")
if (any(take <- group == "species"))
wts[take] <- weights(x, display="species")
out$weight <- wts
}
## two kind of scores: return NULL, matrix or a list
if (length(out) == 1)
out[[1]]
else
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.decorana.R
|
"scores.default" <-
function (x, choices, display = c("sites", "species", "both"),
tidy = FALSE, ...)
{
display <- match.arg(display)
X <- Y <- NULL
if (tidy)
display <- "both"
att <- names(x)
if (is.data.frame(x) && all(sapply(x, is.numeric)))
x <- as.matrix(x)
if (is.list(x) && display %in% c("sites", "both")) {
if ("points" %in% att)
X <- x$points
else if ("rproj" %in% att)
X <- x$rproj
else if ("x" %in% att)
X <- x$x
else if ("scores" %in% att)
X <- x$scores
else if ("sites" %in% att)
X <- x$sites
else if("li" %in% att)
X <- x$li
else if("l1" %in% att)
X <- x$l1
else stop("cannot find scores")
}
if (is.list(x) && display %in% c("species", "both")) {
if ("species" %in% att)
Y <- x$species
else if ("cproj" %in% att)
Y <- x$cproj
else if ("rotation" %in% att)
Y <- x$rotation
else if ("loadings" %in% att)
Y <- x$loadings
else if ("co" %in% att)
Y <- x$co
else if ("c1" %in% att)
Y <- x$c1
else if (display == "species") # fail if species explicitly requested
stop("cannot find species scores")
else { # "both" may be non-chalant: only warn
warning("cannot find species scores")
}
}
else if (is.numeric(x)) {
X <- as.matrix(x)
## as.matrix() changes a score vector to 1-col matrix: this is
## a hack which may fail sometimes (but probably less often
## than without this hack):
## Removed this hack after an issue raised by
## vanderleidebastiani in github. He was worried for getting
## an error when 'choices' were not given with genuinely 1-dim
## (1-col) results. At a second look, it seems that this hack
## will fail both with missing 'choices', and also often with
## 'choices' given because 'choices' are only applied later,
## so that nrow(X) > length(choices). Only vectors (dim arg
## missing) should fail here. Let's see...
##if (ncol(X) == 1 && nrow(X) == length(choices))
## X <- t(X)
}
if (!is.null(X) && NROW(X) && is.null(rownames(X))) {
rownames(X) <- paste0("site", 1:nrow(X))
}
if (!is.null(Y) && NROW(Y) && is.null(rownames(Y))) {
rownames(Y) <- paste0("spec", 1:nrow(Y))
}
if (!is.null(X) && NCOL(X) && is.null(colnames(X))) {
colnames(X) <- paste0("Dim", 1:ncol(X))
}
if (!is.null(Y) && NCOL(Y) && is.null(colnames(Y))) {
colnames(Y) <- paste0("Dim", 1:ncol(Y))
}
if (!missing(choices)) {
if (!is.null(X))
X <- X[, choices[choices <= NCOL(X)], drop = FALSE]
if (!is.null(Y))
Y <- Y[, choices[choices <= NCOL(Y)], drop = FALSE]
}
out <- list("sites" = X, "species" = Y)
if (tidy) {
score <- sapply(out, NROW)
out <- data.frame(do.call(rbind, out),
"scores" = rep(names(score), score))
out$label <- rownames(out)
}
if (any(drop <- sapply(out, is.null))) {
out <- out[!drop]
if (is.list(out) && length(out) == 1)
out <- out[[1]]
}
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.default.R
|
`scores.envfit` <-
function (x, display, choices, arrow.mul = 1, tidy = FALSE, ...)
{
display <- match.arg(display,
c("vectors", "bp", "factors", "cn"),
several.ok = TRUE)
out <- list()
if (any(display %in% c("vectors", "bp"))) {
vects <- x$vectors$arrows[, , drop = FALSE]
if (!missing(choices))
vects <- vects[, choices, drop=FALSE]
if (!is.null(vects))
out$vectors <- arrow.mul * sqrt(x$vectors$r) * vects
}
if (any(display %in% c("factors", "cn"))) {
facts <- x$factors$centroids[, , drop = FALSE]
if (!missing(choices))
facts <- facts[, choices, drop=FALSE]
out$factors <- facts
}
if (tidy) {
if (length(out) == 0) # no scores
return(NULL)
group <- sapply(out, nrow)
group <- rep(names(group), group)
out <- do.call(rbind, out)
label <- rownames(out)
out <- as.data.frame(out)
out$score <- group
out$label <- label
}
## only two kind of scores: return NULL, matrix or a list
switch(length(out), out[[1]], out)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.envfit.R
|
`scores.lda` <-
function(x, display, ...)
{
display <- match.arg(display,
c("sites", "species", "scores", "predictors", "x", "coef"),
several.ok = TRUE)
out <- NULL
if (display %in% c("sites", "scores", "x"))
out[["scores"]] <- predict(x)$x
if (display %in% c("species", "predictors", "coef"))
out[["coefficients"]] <- coef(x)
if (length(out) == 1)
out <- out[[1]]
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.lda.R
|
`scores.metaMDS` <-
function(x, display = c("sites", "species"), shrink = FALSE, choices,
tidy = FALSE, ...)
{
display <- match.arg(display, c("sites","species"), several.ok = TRUE)
if (missing(choices))
choices <- seq_len(x$ndim)
else
choices <- choices[choices <= x$ndim]
out <- list()
if ("sites" %in% display) {
sites <- x$points[, choices, drop=FALSE]
colnames(sites) <- paste0("NMDS", choices)
out$sites <- sites
}
if ("species" %in% display && !is.null(x$species) && !all(is.na(x$species))) {
species <- x$species[, choices, drop=FALSE]
colnames(species) <- paste0("NMDS", choices)
if (shrink) {
## [,choices] drops attributes
mul <- sqrt(attr(x$species, "shrinkage"))
cnt <- attr(x$species, "centre")
if (is.null(mul))
message("species are not shrunken, because they were not expanded")
else {
mul <- mul[choices]
cnt <- cnt[choices]
species <- sweep(species, 2, cnt, "-")
species <- sweep(species, 2, mul, "*")
species <- sweep(species, 2, cnt, "+")
}
}
out$species <- species
}
if (tidy) {
if (length(out) == 0) # no scores (species scores may not exist)
return(NULL)
group <- sapply(out, nrow)
group <- rep(names(group), group)
out <- do.call(rbind, out)
label <- rownames(out)
out <- as.data.frame(out)
out$score <- group
out$label <- label
}
## only two kind of scores, return NULL, matrix, or a list of scores
if (length(out) == 1)
out[[1]]
else
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.metaMDS.R
|
## Extract the points in the hull as a one matrix
`scores.ordihull` <-
function(x, ...)
{
out <- NULL
for(i in seq_along(x))
out <- rbind(out, x[[i]])
hulls <- rep(names(x), sapply(x, function(z) NROW(z)))
attr(out, "hulls") <- hulls
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.ordihull.R
|
`scores.ordiplot` <-
function (x, display = "sites", ...)
{
if (length(x) == 1)
return(x[[1]])
items <- names(x)
items <- items[!is.na(items)]
display <- match.arg(display, items)
x <- x[[display]]
attr(x, "score") <- display
x
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.ordiplot.R
|
`scores.orditkplot` <-
function(x, display, ...)
{
if (!missing(display) && !is.na(pmatch(display, "labels")))
x$labels
else
x$points
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.orditkplot.R
|
`scores.pcnm` <-
function(x, choices, ...)
{
if (missing(choices))
x$vectors
else
x$vectors[, choices]
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.pcnm.R
|
### extract scores from rda, capscale and dbrda results. The two
### latter can have special features which are commented below. cca
### results are handled by scores.cca.
`scores.rda` <-
function (x, choices = c(1, 2), display = c("sp", "wa", "bp", "cn"),
scaling = "species", const, correlation = FALSE, tidy = FALSE,
...)
{
## Check the na.action, and pad the result with NA or WA if class
## "exclude"
if (!is.null(x$na.action) && inherits(x$na.action, "exclude"))
x <- ordiNApredict(x$na.action, x)
tabula <- c("species", "sites", "constraints", "biplot",
"regression", "centroids")
names(tabula) <- c("sp", "wa", "lc", "bp", "reg", "cn")
if (is.null(x$CCA))
tabula <- tabula[1:2]
display <- match.arg(display, c("sites", "species", "wa",
"lc", "bp", "cn", "reg", "all"),
several.ok = TRUE)
## set "all" for tidy scores
if (tidy)
display <- "all"
if("sites" %in% display)
display[display == "sites"] <- "wa"
if("species" %in% display)
display[display == "species"] <- "sp"
if ("all" %in% display)
display <- names(tabula)
take <- tabula[display]
sumev <- x$tot.chi
## dbrda can have negative eigenvalues, but have scores only for
## positive
eigval <- eigenvals(x)
if (inherits(x, "dbrda") && any(eigval < 0))
eigval <- eigval[eigval > 0]
slam <- sqrt(eigval[choices]/sumev)
nr <- if (is.null(x$CCA))
nrow(x$CA$u)
else
nrow(x$CCA$u)
## const multiplier of scores
if (missing(const))
const <- sqrt(sqrt((nr-1) * sumev))
## canoco 3 compatibility -- canoco 4 is incompatible
##else if (pmatch(const, "canoco")) {
## const <- (sqrt(nr-1), sqrt(nr))
##}
##
## const[1] for species, const[2] for sites and friends
if (length(const) == 1) {
const <- c(const, const)
}
## in dbrda we only have scores for positive eigenvalues
if (inherits(x, "dbrda"))
rnk <- x$CCA$poseig
else
rnk <- x$CCA$rank
sol <- list()
## process scaling; numeric scaling will just be returned as is
scaling <- scalingType(scaling = scaling, correlation = correlation)
if ("species" %in% take) {
v <- cbind(x$CCA$v, x$CA$v)[, choices, drop=FALSE]
if (scaling) {
scal <- list(1, slam, sqrt(slam))[[abs(scaling)]]
v <- sweep(v, 2, scal, "*")
if (scaling < 0) {
v <- sweep(v, 1, x$colsum, "/")
v <- v * sqrt(sumev / (nr - 1))
}
v <- const[1] * v
}
if (nrow(v) > 0)
sol$species <- v
else
sol$species <- NULL
}
if ("sites" %in% take) {
wa <- cbind(x$CCA$wa, x$CA$u)[, choices, drop=FALSE]
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
wa <- sweep(wa, 2, scal, "*")
wa <- const[2] * wa
}
sol$sites <- wa
}
if ("constraints" %in% take) {
u <- cbind(x$CCA$u, x$CA$u)[, choices, drop=FALSE]
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
u <- sweep(u, 2, scal, "*")
u <- const[2] * u
}
sol$constraints <- u
}
if ("biplot" %in% take && !is.null(x$CCA$biplot)) {
b <- matrix(0, nrow(x$CCA$biplot), length(choices))
b[, choices <= rnk] <- x$CCA$biplot[, choices[choices <= rnk]]
colnames(b) <- c(colnames(x$CCA$u), colnames(x$CA$u))[choices]
rownames(b) <- rownames(x$CCA$biplot)
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
b <- sweep(b, 2, scal, "*")
}
sol$biplot <- b
}
if ("regression" %in% take) {
b <- coef(x, norm = TRUE)
reg <- matrix(0, nrow(b), length(choices))
reg[, choices <= rnk] <- b[, choices[choices <= rnk]]
dimnames(reg) <- list(rownames(b),
c(colnames(x$CCA$u), colnames(x$CA$u))[choices])
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
reg <- sweep(reg, 2, scal, "*")
}
sol$regression <- reg
}
if ("centroids" %in% take) {
if (is.null(x$CCA$centroids))
sol$centroids <- NULL
else {
cn <- matrix(0, nrow(x$CCA$centroids), length(choices))
cn[, choices <= rnk] <- x$CCA$centroids[, choices[choices <= rnk]]
colnames(cn) <- c(colnames(x$CCA$u), colnames(x$CA$u))[choices]
rownames(cn) <- rownames(x$CCA$centroids)
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
cn <- sweep(cn, 2, scal, "*")
cn <- const[2] * cn
}
sol$centroids <- cn
}
}
## Take care that scores have names
if (length(sol)) {
for (i in seq_along(sol)) {
if (is.matrix(sol[[i]]))
rownames(sol[[i]]) <-
rownames(sol[[i]], do.NULL = FALSE,
prefix = substr(names(sol)[i], 1, 3))
}
}
## tidy scores
if (tidy) {
if (length(sol) == 0) # no scores
return(NULL)
## re-group biplot arrays duplicating factor centroids
if (!is.null(sol$biplot) && !is.null(sol$centroids)) {
dup <- rownames(sol$biplot) %in% rownames(sol$centroids)
if (any(dup)) {
sol$factorbiplot <- sol$biplot[dup,, drop=FALSE]
sol$biplot <- sol$biplot[!dup,, drop=FALSE]
}
}
group <- sapply(sol, nrow)
group <- rep(names(group), group)
sol <- do.call(rbind, sol)
label <- rownames(sol)
sol <- as.data.frame(sol)
sol$score <- as.factor(group)
sol$label <- label
}
## collapse const if both items identical
if (identical(const[1], const[2]))
const <- const[1]
## return NULL for list(), matrix for single scores, and a list
## for several scores
sol <- switch(min(2, length(sol)), sol[[1]], sol)
if (!is.null(sol))
attr(sol, "const") <- const
sol
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/scores.rda.R
|
`screeplot.cca` <-
function(x, bstick = FALSE, type = c("barplot", "lines"),
npcs = min(10, if(is.null(x$CCA) || x$CCA$rank == 0) x$CA$rank else x$CCA$rank),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick, ...)
{
if(is.null(x$CCA) || x$CCA$rank == 0)
eig.vals <- x$CA$eig
else
eig.vals <- x$CCA$eig
ncomps <- length(eig.vals)
if(npcs > ncomps)
npcs <- ncomps
comps <- seq(len=npcs)
type <- match.arg(type)
if (bstick && !is.null(x$CCA) && x$CCA$rank > 0) {
warning("'bstick' unavailable for constrained ordination")
bstick <- FALSE
}
if(bstick) {
ord.bstick <- bstick(x)
ylims <- range(eig.vals[comps], ord.bstick[comps])
} else {
ylims <- range(eig.vals)
}
if(type=="barplot") {
## barplot looks weird if 0 not included
ylims <- range(0, ylims)
mids <- barplot(eig.vals[comps],
names = names(eig.vals[comps]),
main = main, ylab = ylab, ylim = ylims,
...)
} else {
plot(eig.vals[comps], type = ptype, axes = FALSE,
ylim = ylims, xlab = xlab, ylab = ylab,
main = main, ...)
axis(2)
axis(1, at = comps, labels = names(eig.vals[comps]))
box()
mids <- comps
}
if(bstick) {
dot.args <- list(...)
dot.nams <- names(dot.args)
pch <- if("pch" %in% dot.nams)
dot.args$pch
else
par("pch")
lines(mids, ord.bstick[comps], type = ptype, col = bst.col,
lty = bst.lty, pch = pch)
if(legend) {
col <- if("col" %in% dot.nams)
dot.args$col
else
par("col")
lty <- if("lty" %in% dot.nams)
dot.args$lty
else
par("lty")
if(type == "lines") {
legend("topright",
legend = c("Ordination","Broken Stick"),
bty = "n", col = c(col, bst.col),
lty = c(lty, bst.lty),
pch = pch)
} else {
legend("topright",
legend = "Broken Stick", bty = "n",
col = bst.col, lty = bst.lty, pch = pch)
}
}
}
invisible(xy.coords(x = mids, y = eig.vals[comps]))
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/screeplot.cca.R
|
`screeplot.decorana` <-
function(x, bstick = FALSE, type = c("barplot", "lines"), npcs = 4,
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick, ...)
{
eig.vals <- if (x$ira == 1) x$evals else x$evals.ortho
comps <- seq(len=npcs)
type <- match.arg(type)
if (bstick) {
ord.bstick <- bstick(x)
ylims <- range(0, eig.vals[comps], ord.bstick[comps])
} else {
ylims <- range(c(0, eig.vals))
}
if(type=="barplot") {
mids <- barplot(eig.vals[comps], names = names(eig.vals[comps]),
main = main, ylab = ylab, ylim = ylims, ...)
} else {
plot(eig.vals[comps], type = ptype, axes = FALSE,
xlab = xlab, ylab = ylab, main = main, ylim = ylims, ...)
axis(2)
axis(1, at = comps, labels = names(eig.vals[comps]))
mids <- comps
box()
}
if (bstick) {
dot.args <- list(...)
dot.nams <- names(dot.args)
pch <- if ("pch" %in% dot.nams)
dot.args$pch
else
par("pch")
lines(mids, ord.bstick[comps], type = ptype, col = bst.col,
lty = bst.lty, pch = pch)
if (legend) {
col <- if ("col" %in% dot.nams)
dot.args$col
else
par("col")
lty <- if ("lty" %in% dot.nams)
dot.args$lty
else
par("lty")
if (type == "lines") {
legend("topright", legend = c("Ordination", "Broken Stick"),
bty = "n", col = c(col, bst.col),
lty = c(lty, bst.lty), pch = pch)
}
else {
legend("topright", legend = "Broken Stick", bty = "n",
col = bst.col, lty = bst.lty, pch = pch)
}
}
}
invisible(xy.coords(x = mids, y = eig.vals[comps]))
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/screeplot.decorana.R
|
`screeplot.prcomp` <-
function(x, bstick = FALSE, type = c("barplot", "lines"),
npcs = min(10, length(x$sdev)), ptype = "o", bst.col = "red",
bst.lty = "solid", xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick, ...)
{
type <- match.arg(type)
eig.vals <- x$sdev^2
## fix-up names on eig.vals
names(eig.vals) <- dimnames(x$rotation)[[2]]
ncomps <- length(eig.vals)
if(npcs > ncomps)
npcs <- ncomps
comps <- seq(len=npcs)
if(bstick) {
ord.bstick <- bstick(x)
ylims <- range(eig.vals[comps], ord.bstick[comps])
} else {
ylims <- range(eig.vals)
}
if(type=="barplot") {
## barplot looks weird if 0 not included
ylims <- range(0, ylims)
mids <- barplot(eig.vals[comps], names = names(eig.vals[comps]),
main = main, ylab = ylab, ylim = ylims, ...)
} else {
plot(comps, eig.vals[comps], type = ptype, axes = FALSE, main = main,
xlab = xlab, ylab = ylab, ...)
axis(2)
axis(1, at = comps, labels = names(eig.vals[comps]))
mids <- comps
box()
}
if(bstick) {
dot.args <- list(...)
dot.nams <- names(dot.args)
pch <- if("pch" %in% dot.nams)
dot.args$pch
else
par("pch")
lines(mids, ord.bstick[comps], type = ptype, col = bst.col,
lty = bst.lty, pch = pch)
if(legend) {
col <- if("col" %in% dot.nams)
dot.args$col
else
par("col")
lty <- if("lty" %in% dot.nams)
dot.args$lty
else
par("lty")
if(type == "lines") {
legend("topright",
legend = c("Ordination","Broken Stick"),
bty = "n", col = c(col, bst.col),
lty = c(lty, bst.lty),
pch = pch)
} else {
legend("topright",
legend = "Broken Stick", bty = "n",
col = bst.col, lty = bst.lty, pch = pch)
}
}
}
invisible(xy.coords(x = mids, y = eig.vals[comps]))
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/screeplot.prcomp.R
|
`screeplot.princomp` <-
function(x, bstick = FALSE,
type = c("barplot", "lines"),
npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick, ...)
{
type <- match.arg(type)
eig.vals <- x$sdev^2
ncomps <- length(eig.vals)
if(npcs > ncomps)
npcs <- ncomps
comps <- seq(len=npcs)
if(bstick) {
ord.bstick <- bstick(x)
ylims <- range(eig.vals[comps], ord.bstick[comps])
} else {
ylims <- range(eig.vals)
}
if(type=="barplot") {
## barplot looks weird if 0 not included
ylims <- range(0, ylims)
mids <- barplot(eig.vals[comps], names = names(eig.vals[comps]),
main = main, ylab = ylab, ylim = ylims, ...)
} else {
plot(comps, eig.vals[comps], type = ptype, axes = FALSE, main = main,
xlab = xlab, ylab = ylab, ...)
axis(2)
axis(1, at = comps, labels = names(eig.vals[comps]))
mids <- comps
box()
}
if(bstick) {
dot.args <- list(...)
dot.nams <- names(dot.args)
pch <- if("pch" %in% dot.nams)
dot.args$pch
else
par("pch")
lines(mids, ord.bstick[comps], type = ptype, col = bst.col,
lty = bst.lty, pch = pch)
if(legend) {
col <- if("col" %in% dot.nams)
dot.args$col
else
par("col")
lty <- if("lty" %in% dot.nams)
dot.args$lty
else
par("lty")
if(type == "lines") {
legend("topright",
legend = c("Ordination","Broken Stick"),
bty = "n", col = c(col, bst.col),
lty = c(lty, bst.lty),
pch = pch)
} else {
legend("topright",
legend = "Broken Stick", bty = "n",
col = bst.col, lty = bst.lty, pch = pch)
}
}
}
invisible(xy.coords(x = mids, y = eig.vals[comps]))
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/screeplot.princomp.R
|
`showvarparts` <-
function(parts, labels, bg = NULL, alpha=63, Xnames, id.size=1.2, ...)
{
rad <- 0.725
## Default names
if (missing(Xnames))
Xnames <- paste("X", seq_len(parts), sep="")
## transparent fill colours
if (!is.null(bg)) {
bg <- rgb(t(col2rgb(bg)), alpha = alpha, maxColorValue = 255)
if (length(bg) < parts)
bg <- rep(bg, length.out = parts)
}
## centroids of circles (parts < 4) or individual fractions (parts
## == 4)
cp <- switch(parts,
matrix(c(0,0), ncol=2, byrow=TRUE),
matrix(c(0,0, 1,0), ncol=2, byrow=TRUE),
matrix(c(0,0, 1,0, 0.5, -sqrt(3/4)), ncol=2, byrow=TRUE),
structure(
c(-1.2, -0.6, 0.6, 1.2, -0.7, 0, -0.7, 0, 0.7, 0.7,
0.3, -0.4, 0.4, -0.3, 0, 0, 0.7, 0.7, 0, 0.3, 0.4,
-0.6,-1.2, -0.6, 0.3, -0.7, 0, 0, -0.7, -0.4),
.Dim = c(15L, 2L))
)
## plot limits
if (parts < 4) {
xlim <- range(cp[,1]) + c(-rad, rad)
ylim <- range(cp[,2]) + c(-rad, rad)
} else {
xlim <- c(-1.7, 1.7)
ylim <- c(-1.7, 1.1)
}
## plot
plot(cp, axes=FALSE, xlab="", ylab="", asp=1, type="n",
xlim = xlim, ylim = ylim)
box()
if (parts < 4) {
symbols(cp, circles = rep(rad, min(parts,3)), inches = FALSE,
add=TRUE, bg = bg, ...)
## Explanatory data set names added by PL
if(parts==2) {
pos.names = matrix(c(-0.65,1.65,0.65,0.65),2,2)
} else if(parts==3) {
pos.names = matrix(c(-0.65,1.65,-0.16,0.65,0.65,-1.5),3,2)
}
text(pos.names,labels=Xnames[1:parts], cex=id.size)
} else {
## Draw ellipses with veganCovEllipse. Supply 2x2
## matrix(c(d,a,a,d), 2, 2) which defines an ellipse of
## semi-major axis length sqrt(d+a) semi-minor axis sqrt(d-a).
d <- 1
a <- 1/sqrt(2)
## Small ellipses X2, X3 at the centroid
e2 <- veganCovEllipse(matrix(c(d,-a,-a,d), 2, 2))
e3 <- veganCovEllipse(matrix(c(d, a, a,d), 2, 2))
## wider ellipses X1, X4 at sides going through the centroid
L <- d+a
W <- (sqrt(L) - sqrt(d-a))^2
d <- (L+W)/2
a <- (L-W)/2
cnt <- sqrt(W/2)
e1 <- veganCovEllipse(matrix(c(d,-a,-a,d), 2, 2), c(-cnt, -cnt))
e4 <- veganCovEllipse(matrix(c(d, a, a,d), 2, 2), c( cnt, -cnt))
polygon(rbind(e1,NA,e2,NA,e3,NA,e4), col = bg, ...)
## Explanatory data set names added by PL
pos.names = matrix(c(-1.62,-1.10,1.10,1.62,0.54,1.00,1.00,0.54),4,2)
text(pos.names,labels=Xnames[1:4], cex=id.size)
}
## label fractions
nlabs <- switch(parts, 2, 4, 8, 16)
if (missing(labels))
labels <- paste("[", letters[1:nlabs], "]", sep="")
if (length(labels) != nlabs)
stop(gettextf("needs %d labels, but input has %d",
nlabs, length(labels)))
switch(parts,
text(0,0, labels[-nlabs], ...),
text(rbind(cp, colMeans(cp)), labels[-nlabs], ...),
text(rbind(cp, colMeans(cp[1:2,]), colMeans(cp[2:3,]),
colMeans(cp[c(1,3),]), colMeans(cp)), labels[-nlabs], ...),
text(cp, labels[-nlabs], ...)
)
xy <- par("usr")
text(xy[2] - 0.05*diff(xy[1:2]), xy[3] + 0.05*diff(xy[3:4]),
paste("Residuals =", labels[nlabs]), pos = 2, ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/showvarparts.R
|
### SIMPER: contributions of species on overall dissimilarity with
### emphasis on among-group dissimilarities. Generate full
### dissimilarity matrix first and then subsample.
`simper` <-
function(comm, group, permutations = 999, parallel = 1, ...)
{
## parallel processing not yet implemented
if (!missing(parallel))
.NotYetUsed("parallel", error = FALSE)
EPS <- sqrt(.Machine$double.eps)
comm <- as.matrix(comm)
## take lower triangle without as.dist overhead
tri <- outer(seq_len(nrow(comm)), seq_len(nrow(comm)), ">")
## Species contributions of differences needed for every species,
## but denominator is constant. Bray-Curtis is actually
## manhattan/(mean(rowsums)) and this is the way we collect data
rs <- rowSums(comm)
rs <- outer(rs, rs, "+")[tri]
spcontr <- sapply(seq_len(ncol(comm)),
function(i) as.vector(vegdist(comm[, i, drop = FALSE], "man")))
## Bray-Curtis
spcontr <- sweep(spcontr, 1, rs, "/")
colnames(spcontr) <- colnames(comm)
outlist <- NULL
## Averages of species contributions
## Case 1: overall differences without grouping
if (missing(group) || length(unique(group)) == 1) {
nperm <- 0
permat <- NULL
average <- colMeans(spcontr)
overall <- sum(average)
sdi <- apply(spcontr, 2, sd)
ord <- order(average, decreasing = TRUE)
cusum <- cumsum(average[ord])/overall
outlist[["total"]] <- list(species = colnames(comm),
average = average, overall = overall,
sd = sdi, ratio = average/sdi,
ava = NULL, avb = NULL, ord = ord,
cusum = cusum, p = NULL)
} else {
## Case 2: two or more groups
comp <- t(combn(as.character(unique(group)), 2))
## data averages by group (do we need these?)
spavg <- apply(comm, 2, function(x) tapply(x, group, mean))
## function to match constrasts
contrmatch <- function(X, Y, patt)
X != Y & X %in% patt & Y %in% patt
for (i in seq_len(nrow(comp))) {
tmat <- outer(group, group, FUN=contrmatch, patt=comp[i,])
take <- tmat[tri]
average <- colMeans(spcontr[take,,drop=FALSE])
overall <- sum(average)
sdi <- apply(spcontr[take,,drop=FALSE], 2, sd)
ratio <- average/sdi
ord <- order(average, decreasing = TRUE)
cusum <- cumsum(average[ord])/overall
ava <- spavg[comp[i,1],]
avb <- spavg[comp[i,2],]
## Permutation tests for average
permat <- getPermuteMatrix(permutations, nrow(comm))
nperm <- nrow(permat)
if (nperm) {
Pval <- rep(1, ncol(comm))
for (k in seq_len(nperm)) {
take <- tmat[permat[k,],permat[k,]][tri]
Pval <- Pval + ((colMeans(spcontr[take,]) - EPS) >= average)
}
Pval <- Pval/(nperm+1)
} else {
Pval <- NULL
}
## output
outlist[[paste(comp[i,], collapse="_")]] <-
list(species = colnames(comm), average = average,
overall = overall, sd = sdi, ratio = ratio, ava = ava,
avb = avb, ord = ord, cusum = cusum, p = Pval)
}
}
class(outlist) <- "simper"
attr(outlist, "permutations") <- nperm
attr(outlist, "control") <- attr(permat, "control")
outlist
}
`print.simper` <-
function(x, ...)
{
cat("cumulative contributions of most influential species:\n\n")
cusum <- lapply(x, function(z) z$cusum)
spec <- lapply(x, function(z) z$species[z$ord])
for (i in seq_along(cusum)) {
names(cusum[[i]]) <- spec[[i]]
}
## this probably fails with empty or identical groups that have 0/0 = NaN
out <- lapply(cusum, function(z) z[seq_len(min(which(z >= 0.7)))])
print(out)
invisible(x)
}
`summary.simper` <-
function(object, ordered = TRUE, digits = max(3, getOption("digits") - 3), ...)
{
if (ordered) {
out <- lapply(object, function(z)
data.frame(cbind(average = z$average, sd = z$sd, ratio = z$ratio,
ava = z$ava, avb = z$avb)[z$ord, ]))
cusum <- lapply(object, function(z) z$cusum)
for(i in seq_along(out)) {
out[[i]]$cumsum <- cusum[[i]]
if(!is.null(object[[i]]$p)) {
out[[i]]$p <- object[[i]]$p[object[[i]]$ord]
}
}
}
else {
out <- lapply(object, function(z)
data.frame(cbind(average = z$average, sd = z$sd, ratio = z$ratio,
ava = z$ava, avb = z$avb, p = z$p)))
}
attr(out, "digits") <- digits
attr(out, "permutations") <- attr(object, "permutations")
attr(out, "control") <- attr(object, "control")
class(out) <- "summary.simper"
out
}
`print.summary.simper`<-
function(x, digits = attr(x, "digits"), ...)
{
for (nm in names(x)) {
cat("\nContrast:", nm, "\n\n")
printCoefmat(x[[nm]], digits = digits, has.Pvalue = TRUE,
zap.ind = seq_len(ncol(x[[nm]])), ...)
}
if (!is.null(attr(x, "control")))
cat(howHead(attr(x, "control")))
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/simper.R
|
### An internal function used in varpart(): Returns only the raw
### Rsquare and the rank of constraints in RDA.
`simpleRDA2` <-
function (Y, X, SS.Y, ...)
{
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, Y)
SS <- sum(Yfit.X^2)
if (missing(SS.Y)) SS.Y <- sum(Y^2)
Rsquare <- SS/SS.Y
R2adj <- RsquareAdj(Rsquare, nrow(Y), Q$rank)
list(Rsquare = Rsquare, RsquareAdj = R2adj, m = Q$rank)
}
### Analogous function, but the input must be Gower double-centred
### dissimilarities 'G = -GowerDblcen(as.matrix(dist(Y)^2))/2'. The
### math is based on McArdle & Anderson, Ecology 82: 290-297 (2001).
`simpleDBRDA` <-
function(G, X, SS.G, ...)
{
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, G)
SS <- sum(diag(Yfit.X))
if (missing(SS.G)) SS.G <- sum(diag(G))
Rsquare <- SS/SS.G
R2adj <- RsquareAdj(Rsquare, nrow(G), Q$rank)
list(Rsquare = Rsquare, RsquareAdj = R2adj, m = Q$rank)
}
### Analogous function for CCA. We initialize data with weighted
### double standaradization, and centre constraints X by row
### weights. The approximation of weighted R-square is found via
### permutations in permat (which must be given).
`simpleCCA` <-
function(Y, X, SS.Y, permat, ...)
{
Y <- initCA(Y)
if(missing(SS.Y)) SS.Y <- sum(Y^2)
w <- attr(Y, "RW")
X <- .Call(do_wcentre, X, w)
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, Y)
SS <- sum(Yfit.X^2)
Rsquare <- SS/SS.Y
## permutation to estimate adjusted R2
meanSS <- mean(sapply(seq_len(nrow(permat)),
function(i) sum(qr.fitted(Q, Y[permat[i,],])^2)))
R2adj <- 1 - ((1 - Rsquare) / (1 - meanSS/SS.Y))
list(Rsquare = Rsquare, RsquareAdj = R2adj, m = Q$rank)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/simpleRDA2.R
|
### unbiased Simpson index, Hurlbert (1971) "nonconcept" paper, eq. 5,
### but implemented here with rarefy (because I'm lazy and just re-use
### work already done).
`simpson.unb` <-
function(x, inverse = FALSE)
{
d <- rarefy(x, 2) - 1
## alternatively use directly the Hurlbert equation
## n <- rowSums(x)
## d <- rowSums(x/n*(n-x)/(n-1))
if (inverse)
d <- 1/(1-d)
attr(d, "Subsample") <- NULL
d
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/simpson.unb.R
|
simulate.nullmodel <-
function(object, nsim=1, seed = NULL, burnin=0, thin=1, ...)
{
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
if (is.null(seed))
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
if (nsim < 1)
stop("'nsim' must be at least 1")
m <- object$data
if (object$commsim$isSeq) {
## here is burnin, see update method
if (burnin > 0)
object <- update(object, burnin, ...)
x <- object$state
} else {
x <- m
## non-sequential models have no burnin -- but they may have
## thinning: set burnin=0, but leave thin like user set it.
burnin <- 0L
}
perm <- object$commsim$fun(x=x,
n=as.integer(nsim),
nr=object$nrow,
nc=object$ncol,
rs=object$rowSums,
cs=object$colSums,
rf=object$rowFreq,
cf=object$colFreq,
s=object$totalSum,
fill=object$fill,
thin=as.integer(thin), ...)
if (object$commsim$isSeq) {
Start <- object$iter + thin
End <- object$iter + nsim * thin
## sequence can overflow integer
if (Start <= .Machine$integer.max)
Start <- as.integer(Start)
if (End <= .Machine$integer.max)
End <- as.integer(End)
state <- perm[,,nsim]
storage.mode(state) <- object$commsim$mode
assign("state", state, envir=object)
assign("iter", End, envir=object)
} else {
Start <- 1L
End <- as.integer(nsim)
}
attr(perm, "data") <- m
attr(perm, "seed") <- RNGstate
attr(perm, "method") <- object$commsim$method
attr(perm, "binary") <- object$commsim$binary
attr(perm, "isSeq") <- object$commsim$isSeq
attr(perm, "mode") <- object$commsim$mode
attr(perm, "start") <- Start
attr(perm, "end") <- End
attr(perm, "thin") <- as.integer(thin)
class(perm) <- c("simmat", "array")
dimnames(perm) <- list(rownames(m), colnames(m),
paste("sim", seq_len(nsim), sep = "_"))
perm
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/simulate.nullmodel.R
|
`simulate.rda` <-
function(object, nsim = 1, seed = NULL, indx = NULL, rank = "full",
correlated = FALSE, ...)
{
## Fail if there is no constrained component (it could be possible
## to change the function to handle unconstrained ordination, too,
## when rank < "full", but that would require redesign)
if (is.null(object$CCA))
stop("function can be used only with constrained ordination")
## Handle RNG: code directly from stats::simulate.lm
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
if (is.null(seed))
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
## indx can be an output of permute::shuffleSet in which case it
## is a nsim x nrow matrix, or it may be a single vector, in which
## case it will changed to shuffleSet
if (!is.null(indx))
if (is.vector(indx))
dim(indx) <- c(1, length(indx))
## If nsim is missing, take it from indx (if given)
if (missing(nsim) && !is.null(indx))
nsim <- nrow(indx)
## Check that dims match
if (!is.null(indx))
if(nrow(indx) != nsim)
stop(gettextf("'nsim' (%d) and no. of 'indx' rows (%d) do not match",
nsim, nrow(indx)))
## collect data to back-transform data to the scale of observations
sqnr1 <- sqrt(nobs(object) - 1)
## the ifs are only needed to cope with pre-2.5-0 vegan: now
## we always have Ybar, but earlier we needed to check whether
## we had CA or CCA Xbar
if (!is.null(object$Ybar)) {
cnt <- attr(object$Ybar, "scaled:center")
scl <- attr(object$Ybar, "scaled:scale")
} else { # needed for vegan-2.4 compatibility
if (is.null(object$CCA))
tmp <- object$CA$Xbar
else tmp <- object$CCA$Xbar
cnt <- attr(tmp, "scaled:center")
scl <- attr(tmp, "scaled:scale")
}
## Proper simulation: very similar for simulate.lm, but produces
## an array of response matrices
ftd <- predict(object, type = "working", rank = rank)
## pRDA: add partial Fit to the constrained
if (!is.null(object$pCCA))
ftd <- ftd + ordiYbar(object, "pCCA")
## if(is.null(indx)), we have parametric Gaussian simulation and
## need to generate sd matrices. The residuals sd is always taken
## from the unconstrained (residual) component. If
## species are uncorrelated, we need only species sd's, but if
## correlated, we also need species covariances.
CAYbar <- ordiYbar(object, "CA")
if (!correlated)
dev <- outer(rep(1, nrow(ftd)), apply(CAYbar, 2, sd))
else
dev <- cov(CAYbar)
## Generate an array
ans <- array(0, c(dim(ftd), nsim))
for (i in seq_len(nsim)) {
if (!is.null(indx))
ans[,,i] <- as.matrix(ftd + CAYbar[indx[i,],])
else if (!correlated)
ans[,,i] <- as.matrix(ftd + matrix(rnorm(length(ftd), sd = dev),
nrow = nrow(ftd)))
else {
ans[,,i] <- t(apply(ftd, 1,
function(x) mvrnorm(1, mu = x, Sigma = dev)))
}
## ans to the scale of observations
ans[,,i] <- ans[,,i] * sqnr1
if (!is.null(scl))
ans[,,i] <- sweep(ans[,,i], 2, scl, "*")
ans[,,i] <- sweep(ans[,,i], 2, cnt, "+")
}
## set RNG attributes
if (is.null(indx))
attr(ans, "seed") <- RNGstate
else
attr(ans, "seed") <- "index"
## set commsim attributes if nsim > 1, else return a 2-dim matrix
if (nsim == 1) {
ans <- ans[,,1]
attributes(ans) <- attributes(ftd)
} else {
dimnames(ans) <- list(rownames(ftd), colnames(ftd),
paste("sim", seq_len(nsim), sep = "_"))
orig <- (ftd + CAYbar) * sqnr1
if (!is.null(scl))
orig <- sweep(orig, 2, scl, "*")
orig <- sweep(orig, 2, cnt, "+")
attr(ans, "data") <- round(orig, 12)
attr(ans, "method") <- paste("simulate", ifelse(is.null(indx),
"parametric", "index"))
attr(ans, "binary") <- FALSE
attr(ans, "isSeq") <- FALSE
attr(ans, "mode") <- "double"
attr(ans, "start") <- 1L
attr(ans, "end") <- as.integer(nsim)
attr(ans, "thin") <- 1L
class(ans) <- c("simulate.rda", "simmat", "array")
}
ans
}
### simulate. cca was cloned from simulate.rda. Works with internal
### Chi-square standardized form, and at the end back-standardizes
### with row and column totals and matrix grand totals. This does not
### still guarantee that all marginal totals are positive.
`simulate.cca` <-
function(object, nsim = 1, seed = NULL, indx = NULL, rank = "full",
correlated = FALSE, ...)
{
## Fail if no CCA
if (is.null(object$CCA))
stop("function can be used only with constrained ordination")
## Handle RNG: code directly from stats::simulate.lm
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
if (is.null(seed))
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
## Preparations like in simulate.rda()
if (!is.null(indx))
if (is.vector(indx))
dim(indx) <- c(1, length(indx))
if (missing(nsim) && !is.null(indx))
nsim <- nrow(indx)
if (!is.null(indx))
if(nrow(indx) != nsim)
stop(gettextf("'nsim' (%d) and no. of 'indx' rows (%d) do not match",
nsim, nrow(indx)))
## Need sqrt of rowsums for weighting
sq.r <- sqrt(object$rowsum)
## Fitted value
ftd <- predict(object, type = "working", rank = rank)
## pCCA: add partial Fit to the constrained
if (!is.null(object$pCCA))
ftd <- ftd + ordiYbar(object, "pCCA")
## Residual Xbar need weighting and back-weighting
Xbar <- sweep(ordiYbar(object, "CA"), 1, sq.r, "*")
## Simulation
if (correlated)
dev <- cov(Xbar)
else
dev <- outer(rep(1, nrow(ftd)), apply(Xbar, 2, sd))
ans <- array(0, c(dim(ftd), nsim))
for (i in seq_len(nsim)) {
if (is.null(indx)) {
if (correlated)
tmp <- mvrnorm(nrow(ftd), numeric(ncol(ftd)), Sigma = dev)
else
tmp <- matrix(rnorm(length(ftd), sd = dev),
nrow = nrow(ftd))
ans[,,i] <- as.matrix(ftd + sweep(tmp, 1, sq.r, "/"))
}
else
ans[,,i] <- as.matrix(ftd + sweep(Xbar[indx[i,],], 1, sq.r, "/"))
}
## From internal form to the original form with fixed marginal totals
rc <- object$rowsum %o% object$colsum
for (i in seq_len(nsim))
ans[,,i] <- (ans[,,i] * sqrt(rc) + rc) * object$grand.total
## RNG attributes
if (is.null(indx))
attr(ans, "seed") <- RNGstate
else
attr(ans, "seed") <- "index"
## set commsim attributes if nsim > 1, else return a 2-dim matrix
if (nsim == 1) {
ans <- ans[,,1]
attributes(ans) <- attributes(ftd)
} else {
dimnames(ans) <- list(rownames(ftd), colnames(ftd),
paste("sim", seq_len(nsim), sep = "_"))
obsdata <- ordiYbar(object, "initial")
obsdata <- (obsdata * sqrt(rc) + rc) * object$grand.total
attr(ans, "data") <- round(obsdata, 12)
attr(ans, "method") <- paste("simulate", ifelse(is.null(indx),
"parametric", "index"))
attr(ans, "binary") <- FALSE
attr(ans, "isSeq") <- FALSE
attr(ans, "mode") <- "double"
attr(ans, "start") <- 1L
attr(ans, "end") <- as.integer(nsim)
attr(ans, "thin") <- 1L
class(ans) <- c("simulate.cca", "simmat", "array")
}
ans
}
### capscale method: copies simulate.rda as much as possible. Function
### works with the internal metric scaling mapping of fit and error,
### but returns Euclidean distances adjusted to the original scaling
### of input dissimilarities. Only the real components are used, and
### capscale() of simulated dissimilarities have no Imaginary
### component.
`simulate.capscale` <-
function(object, nsim = 1, seed = NULL, indx = NULL, rank = "full",
correlated = FALSE, ...)
{
## Fail if no CCA component
if (is.null(object$CCA))
stop("function can be used only with constrained ordination")
if (is.null(indx) && correlated)
warning("argument 'correlated' does not work and will be ignored")
## Handle RNG: code directly from stats::simulate.lm
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
if (is.null(seed))
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
if (nsim > 1)
.NotYetUsed("nsim")
## predict.capscale cannot be used because it returns either
## dissimilarities ("response") or scores with the rank of the
## constrained solution, and we need rank of the data (not of
## constraints).
if (rank > 0) {
ftd <- ordiYbar(object, "CCA")
## redo analysis when rank < full
if (rank < object$CCA$rank) {
x <- svd(ftd, nu = rank, nv = rank)
ftd <- x$u %*% diag(x$d[1:rank], nrow=rank) %*% t(x$v)
}
} else {
ftd <- 0
}
## add partial Fit to the constrained
if (!is.null(object$pCCA))
ftd <- ftd + ordiYbar(object, "pCCA")
if (is.null(indx))
ans <- as.data.frame(ftd + matrix(rnorm(length(ftd),
sd = outer(rep(1,nrow(ftd)), apply(ordiYbar(object, "CA"), 2, sd))),
nrow = nrow(ftd)))
else
ans <- ftd + ordiYbar(object, "CA")[indx,]
## return Euclidean distances
ans <- ans * object$adjust
ans <- dist(ans)
## remove adjustment done in capscale and put dissimilarities to
## (approximately) original scale
if (is.null(indx))
attr(ans, "seed") <- RNGstate
else
attr(ans, "seed") <- indx
ans
}
### simulate.dbrda cannot be done along similar lines as
### simulate.capscale, because low-rank approximation needs column
### scores v and cannot be found only from row scores u that are the
### only ones we have in dbrda(). Residuals also need exra thinking,
### and therefore we just disable simulate.dbrda()
`simulate.dbrda` <-
function(object, nsim = 1, seed = NULL, ...)
{
.NotYetImplemented()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/simulate.rda.R
|
`smbind` <-
function (object, ..., MARGIN, strict = TRUE)
{
if (missing(MARGIN))
stop("MARGIN argument must be specified")
MARGIN <- as.integer(MARGIN)
if (length(MARGIN) != 1L)
stop("MARGIN length must be 1")
if (!(MARGIN %in% 1L:3L))
stop("MARGIN value must be in 1:3")
if (is.list(object)) {
obj <- object
if (!missing(...))
warning("'object' was a list, '...' ignored")
} else {
obj <- list(object, ...)
}
l <- length(obj)
if (l < 2L)
return(obj[[1L]])
att <- lapply(obj, attributes)
isSeq <- att[[1L]]$isSeq
startEq <- endEq <- thinEq <- OKseed <- TRUE
for (i in 2L:l) {
## data must be identical when MARGIN=3
if (MARGIN == 3L && !identical(att[[1L]][["data"]], att[[i]][["data"]]))
stop("'data' attributes are not identical")
## dimensions need to match except for MARGIN
if (!identical(att[[1L]][["dim"]][-MARGIN], att[[i]][["dim"]][-MARGIN]))
stop("dimension mismatch")
## method settings need to be set on return object
## thus these need to be identical
for (NAM in c("method", "binary", "isSeq", "mode", "class")) {
if (!identical(att[[1L]][[NAM]], att[[i]][[NAM]]))
stop(gettextf("'%s' attributes not identical", NAM))
}
## ts attributes are tricky: evaluate outside of the loop
for (NAM in c("start", "end", "thin")) {
if (!identical(att[[1L]][["start"]], att[[i]][["start"]]))
startEq <- FALSE
if (!identical(att[[1L]][["end"]], att[[i]][["end"]]))
endEq <- FALSE
if (!identical(att[[1L]][["thin"]], att[[i]][["thin"]]))
thinEq <- FALSE
}
## seed is important when 'data' are the same (MARGIN=3)
## but it is up to the user
## return value has NULL seed attribute
if (MARGIN == 3L && identical(att[[1L]][["seed"]], att[[i]][["seed"]])) {
OKseed <- FALSE
}
}
if (!OKseed)
warning("identical 'seed' attributes found")
if (isSeq) {
outStart <- outEnd <- outThin <- NA
type <- "none"
## if MARGIN != 3
## all match or fail
## when all match: keep ts attributes, type: "strat"
## if MARGIN==3
## sequential algorithms need identical ts attributes
## * if parallel (start/end/thin identical): "par"
## --> original start, end, thin, + set chains attr
## * if subsequent (start/end/thin form a sequence): "seq"
## --> calculate start & end, thin same
## * all else: "none"
## --> fail unless strict=FALSE (when start=NA, end=NA, thin=NA)
if (MARGIN != 3L) {
if (startEq && endEq && thinEq) {
type <- "strat"
outStart <- att[[1L]]$start
outEnd <- att[[1L]]$end
outThin <- att[[1L]]$thin
}
} else {
if (startEq && endEq && thinEq) {
type <- "par"
outStart <- att[[1L]]$start
outEnd <- att[[1L]]$end
outThin <- att[[1L]]$thin
}
if (!startEq && !endEq && thinEq) {
stv <- sapply(att, "[[", "start")
o <- order(stv)
att <- att[o]
obj <- obj[o]
stv <- sapply(att, "[[", "start")
env <- sapply(att, "[[", "end")
thv <- att[[1L]]$thin
nsv <- sapply(obj, function(z) dim(z)[3L])
vals <- lapply(1:l, function(i)
seq(stv[i], env[i], by=thv))
OK <- logical(4L)
if (length(stv) == length(unique(stv)))
OK[1L] <- TRUE
if (length(env) == length(unique(env)))
OK[2L] <- TRUE
if (all(nsv == sapply(vals, length)))
OK[3L] <- TRUE
if (length(seq(stv[1], env[l], by=thv)) == length(unlist(vals)))
OK[4L] <- TRUE
if (all(OK)) {
if (all(seq(stv[1], env[l], by=thv) == unlist(vals))) {
type <- "seq"
outStart <- stv[1]
outEnd <- env[l]
outThin <- thv
}
}
}
}
if (type == "none") {
if (strict) {
stop("incosistent 'start', 'end', 'thin' attributes")
} else {
warning("incosistent 'start', 'end', 'thin' attributes")
}
}
}
## set final dimensions
DIM <- att[[1L]]$dim
DIMs <- sapply(att, function(z) z$dim[MARGIN])
cDIMs <- cumsum(DIMs)
DIM[MARGIN] <- cDIMs[l]
out <- array(NA, dim = DIM)
## copy the 1st object
if (MARGIN == 1L)
out[1L:dim(obj[[1L]])[1L],,] <- obj[[1L]]
if (MARGIN == 2L)
out[,1L:dim(obj[[1L]])[2L],] <- obj[[1L]]
if (MARGIN == 3L)
out[,,1L:dim(obj[[1L]])[3L]] <- obj[[1L]]
## data attribute will change when MARGIN != 3
DATA <- att[[1L]]$data
## copy 2:l objects and data argument
for (i in 2L:l) {
j <- (cDIMs[i - 1L] + 1L):cDIMs[i]
if (MARGIN == 1L) {
out[j,,] <- obj[[i]]
DATA <- rbind(DATA, att[[i]]$data)
}
if (MARGIN == 2L) {
out[,j,] <- obj[[i]]
DATA <- cbind(DATA, att[[i]]$data)
}
if (MARGIN == 3L) {
out[,,j] <- obj[[i]]
}
}
## assembling return object
ratt <- att[[1L]]
ratt$data <- DATA
ratt$seed <- NA
ratt$dim <- DIM
if (!isSeq)
ratt$end <- cDIMs[l]
if (isSeq) {
ratt$start <- outStart
ratt$end <- outEnd
ratt$thin <- outThin
if (type == "par")
ratt$chains <- l
}
ratt$dimnames[[MARGIN]] <- make.names(unlist(lapply(att, function(z)
z$dimnames[[MARGIN]])), unique = TRUE)
attributes(out) <- ratt
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/smbind.R
|
### The depths of nodes in a 'spantree' object: The nodes are either
### leaves with one link, or internal nodes with >1 links. The leaves
### are removed recursively from the tree and at each step the depth
### is increased with one.
`spandepth` <-
function (x)
{
if (!inherits(x, "spantree"))
stop("'x' must be 'spantree' result")
kid <- c(NA, x$kid)
par <- p <- seq_along(kid)
par[1] <- NA
## Isolated nodes in disconnected tree have depth 0, other nodes
## start from depth 1
intree <- p %in% kid | !is.na(kid)
depth <- numeric(length(par))
depth[intree] <- 1
if (!is.null(x$labels))
names(depth) <- x$labels
while(any(intree)) {
## Node is internal (intree) if it is both a parent and a kid
## and kid is in the tree or it is kid to two or more parents
intree <- (p %in% intersect(kid[intree], par[intree]) &
p %in% p[intree][kid[intree] %in% p[intree]] |
p %in% kid[intree][duplicated(kid[intree])])
depth[intree] <- depth[intree] + 1
}
depth
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/spandepth.R
|
`spantree` <-
function (d, toolong = 0)
{
if (!inherits(d, "dist")) {
if ((is.matrix(d) || is.data.frame(d)) &&
isSymmetric(unname(as.matrix(d)))) {
d <- as.dist(d)
} else {
stop("input must be dissimilarities")
}
}
if (!is.numeric(d))
stop("input data must be numeric")
n <- attr(d, "Size")
labels <- labels(d)
dis <- .C(primtree, dist = as.double(d), toolong = as.double(toolong),
n = as.integer(n), val = double(n + 1),
dad = integer(n + 1), NAOK = TRUE)
out <- list(kid = dis$dad[2:n] + 1, dist = dis$val[2:n],
labels = labels, n = n, call = match.call())
class(out) <- "spantree"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/spantree.R
|
`specaccum` <-
function (comm, method = "exact", permutations = 100, conditioned=TRUE,
gamma="jack1", w = NULL, subset, ...)
{
METHODS <- c("collector", "random", "exact", "rarefaction", "coleman")
method <- match.arg(method, METHODS)
if (!is.null(w) && !(method %in% c("random", "collector")))
stop("weights 'w' can be only used with methods 'random' and 'collector'")
if (!missing(subset)) {
comm <- subset(comm, subset)
w <- subset(w, subset)
}
x <- comm
x <- as.matrix(x)
x <- x[, colSums(x) > 0, drop=FALSE]
n <- nrow(x)
p <- ncol(x)
accumulator <- function(x, ind) {
rowSums(apply(x[ind, , drop=FALSE], 2, cumsum) > 0)
}
specaccum <- sdaccum <- sites <- perm <- NULL
if (n == 1 && method != "rarefaction")
message("no actual accumulation since only one site provided")
switch(method, collector = {
sites <- seq_len(n)
xout <- weights <- cumsum(w)
specaccum <- accumulator(x, sites)
perm <- as.matrix(specaccum)
weights <- as.matrix(weights)
}, random = {
permat <- getPermuteMatrix(permutations, n)
perm <- apply(permat, 1, accumulator, x = x)
if (!is.null(w))
weights <- as.matrix(apply(permat, 1, function(i) cumsum(w[i])))
sites <- seq_len(n)
if (is.null(w)) {
specaccum <- apply(perm, 1, mean)
sdaccum <- apply(perm, 1, sd)
} else {
sumw <- sum(w)
xout <- seq(sumw/n, sumw, length.out = n)
intx <- sapply(seq_len(NCOL(perm)), function(i)
approx(weights[,i], perm[,i], xout = xout)$y)
specaccum <- apply(intx, 1, mean)
sdaccum <- apply(intx, 1, sd)
}
}, exact = {
freq <- colSums(x > 0)
freq <- freq[freq > 0]
f <- length(freq)
ldiv <- lchoose(n, 1:n)
result <- array(dim = c(n, f))
for (i in 1:n) {
result[i, ] <- ifelse(n - freq < i, 0,
exp(lchoose(n - freq, i) - ldiv[i]))
}
sites <- 1:n
specaccum <- rowSums(1 - result)
if (conditioned) {
V <- result * (1 - result)
tmp1 <- cor(x > 0)
ind <- lower.tri(tmp1)
tmp1 <- tmp1[ind]
tmp1[is.na(tmp1)] <- 0
cv <- numeric(n)
for (i in 1:n) {
tmp2 <- outer(sqrt(V[i, ]), sqrt(V[i, ]))[ind]
cv[i] <- 2 * sum(tmp1 * tmp2)
}
V <- rowSums(V)
sdaccum <- sqrt(V + cv)
}else{
Stot <- specpool(x)[,gamma]
sdaccum1 <- rowSums((1-result)^2)
sdaccum2 <- specaccum^2/Stot
sdaccum <- sqrt(sdaccum1 - sdaccum2)
}
}, rarefaction = {
## rarefaction should be done on observed counts that usually
## have singletons. Warn here but not on every row when
## calling rarefy().
minobs <- min(x[x > 0])
if (minobs > 1)
warning(
gettextf("most observed count data have counts 1, but smallest count is %d", minobs))
freq <- colSums(x)
freq <- freq[freq > 0]
tot <- sum(freq)
ind <- round(seq(tot/n, tot, length = n))
result <- matrix(NA, nrow = 2, ncol = n)
for (i in 1:n) {
result[, i] <- suppressWarnings(rarefy(t(freq), ind[i], se = TRUE))
}
specaccum <- result[1, ]
sdaccum <- result[2, ]
sites <- ind/tot * n
}, coleman = {
freq <- colSums(x > 0)
result <- array(dim = c(n, p))
for (i in 1:n) {
result[i, ] <- (1 - i/n)^freq
}
result <- 1 - result
sites <- seq_len(n)
specaccum <- rowSums(result)
sdaccum <- sqrt(rowSums(result * (1 - result)))
})
out <- list(call = match.call(), method = method, sites = sites,
richness = specaccum, sd = sdaccum, perm = perm)
if (!is.null(w)) {
out$weights <- weights
out$effort <- xout
}
if (method == "rarefaction")
out$individuals <- ind
## return 'freq' for methods that are solely defined by them
if (method %in% c("exact", "rarefaction", "coleman"))
out$freq <- freq
if (method == "random")
attr(out, "control") <- attr(permat, "control")
class(out) <- "specaccum"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/specaccum.R
|
`specnumber` <-
function(x, groups, MARGIN = 1)
{
if (!missing(groups)) {
if (length(groups) == 1)
groups <- rep(groups, nrow(x))
x <- aggregate(x, list(groups), max)
rownames(x) <- x[,1]
x <- x[,-1]
}
if (length(dim(x)) > 1)
apply(x > 0, MARGIN, sum)
else
sum(x > 0)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/specnumber.R
|
`specpool` <-
function (x, pool, smallsample = TRUE)
{
x <- as.matrix(x)
if (!(is.numeric(x) || is.logical(x)))
stop("input data must be numeric")
if (missing(pool))
pool <- rep("All", nrow(x))
## check dims
if (length(pool) != NROW(x))
stop("length of 'pool' and number rows in 'x' do not match")
## remove missing values
if (any(nas <- is.na(pool))) {
pool <- pool[!nas]
x <- x[!nas, , drop = FALSE]
}
out <- seq(1:nrow(x))
groups <- table(pool)
inds <- names(groups)
S <- var.chao <- chao <- var.jack1 <- jack.1 <- jack.2 <- var.boot <- bootS <-
rep(NA, length(inds))
names(S) <- names(var.chao) <- names(chao) <- names(var.jack1) <-
names(jack.1) <- names(jack.2) <- names(var.boot) <- names(bootS) <- inds
for (is in inds) {
a1 <- a2 <- NA
gr <- out[pool == is]
n <- length(gr)
if (n <= 0)
next
if (smallsample)
ssc <- (n-1)/n
else
ssc <- 1
X <- x[gr, , drop = FALSE]
freq <- colSums(X > 0)
p <- freq[freq > 0]/n
S[is] <- sum(freq > 0)
if (S[is] == 0)
next
if (n >= 1L)
a1 <- sum(freq == 1)
if (n >= 2L)
a2 <- sum(freq == 2)
else
a2 <- 0
chao[is] <- S[is] + if(!is.na(a2) && a2 > 0)
ssc * a1 * a1/2/a2
else
ssc * a1 * (a1-1)/2
jack.1[is] <- S[is] + a1 * (n - 1)/n
if (n > 1L)
jack.2[is] <- S[is] + a1 * (2 * n - 3)/n -
a2 * (n - 2)^2/n/(n - 1)
else
jack.2[is] <- S[is]
bootS[is] <- S[is] + sum((1 - p)^n)
aa <- if (!is.na(a2) && a2 > 0) a1/a2
else 0
if (!is.na(a2) && a2 > 0)
var.chao[is] <- a1 * ssc * (0.5 + ssc * (1 + aa/4) * aa) * aa
else
var.chao[is] <-
ssc * (ssc * (a1*(2*a1-1)^2/4 - a1^4/chao[is]/4) + a1*(a1-1)/2)
if (!is.na(a1) && a1 > 0) {
jf <- table(rowSums(X[, freq == 1, drop = FALSE] >
0))
var.jack1[is] <- (sum(as.numeric(names(jf))^2 * jf) -
a1/n) * (n - 1)/n
} else {
var.jack1[is] <- 0
}
pn <- (1 - p)^n
X <- X[, freq > 0, drop = FALSE]
Zp <- (crossprod(X == 0)/n)^n - outer(pn, pn, "*")
var.boot[is] <- sum(pn * (1 - pn)) + 2 * sum(Zp[lower.tri(Zp)])
}
out <- list(Species = S, chao = chao, chao.se = sqrt(var.chao),
jack1 = jack.1, jack1.se = sqrt(var.jack1), jack2 = jack.2,
boot = bootS, boot.se = sqrt(var.boot), n = as.vector(groups))
out <- as.data.frame(out)
attr(out, "pool") <- pool
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/specpool.R
|
"specpool2vect" <-
function(X, index = c("jack1","jack2", "chao", "boot", "Species"))
{
pool <- attr(X, "pool")
index <- match.arg(index)
X[[index]][pool]
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/specpool2vect.R
|
#' The Slope of Species Accumulation Curve at Given Point
#'
#' Function evaluates the derivative of the species accumulation curve
#' for accumulation methods built upon analytic accumulation
#' methods. These methods are \code{exact}, \code{rarefaction} and
#' \code{coleman}. These methods can be evaluated at any sample size,
#' including non-integer values. For other methods, you must look at
#' the differences between consecutive steps, using
#' \code{diff(predict(mod))}.
#'
#' @param object \code{specaccum} result object fitted with methods
#' \code{"exact"}, \code{"rarefaction"} or \code{"coleman"}.
#' @param at The sample size (number of sites) at which the slope is
#' evaluated. This need not be an integer.
`specslope` <-
function(object, at)
{
UseMethod("specslope")
}
`specslope.specaccum` <-
function(object, at)
{
accepted <- c("exact", "rarefaction", "coleman")
if (!(object$method %in% accepted))
stop(gettextf("accumulation method must be one of: %s",
paste(accepted, collapse=", ")))
## Funcions should accept a vector of 'at', but usually they
## don't. I don't care to change this, and therefore we check the
## input.
if (length(at) > 1 && object$method %in% c("exact", "coleman"))
stop("'at' can only have a single value")
## The following functions are completely defined by species
## frequencies
f <- object$freq
n <- length(object$sites)
switch(object$method,
exact = {
d <- digamma(pmax(n-at+1, 1)) - digamma(pmax(n-f-at+1, 1))
g <- lgamma(pmax(n-f+1,1)) + lgamma(pmax(n-at+1,1)) -
lgamma(pmax(n-f-at+1, 1)) - lgamma(n+1)
d <- d*exp(g)
sum(d[is.finite(d)])
},
rarefaction = {
## fractional number of individuals at 'at', and slope
## for adding whole site instead of one individual
rareslope(f, at/n*sum(f)) * sum(f)/n
},
coleman = {
sum((1 - at/n)^f*f/(n - at))
})
}
## Analytical derivatives for NLS regression models in fitspecaccum
`specslope.fitspecaccum` <-
function(object, at)
{
## functions for single set of fitted parameters. Parameters are
## given as a single vector 'p' as returned by coef(). Below a
## table of original names of 'p':
## arrhenius, gitay, gleason: k slope
## lomolino: Asym xmid slope
## asymp: Asym RO lrc
## gompertz: Asym b2 b3
## michaelis-menten: Vm K (function SSmicmen)
## logis: Asym xmid scal
## weibull: Asym Drop lrc pwr
slope <-
switch(object$SSmodel,
"arrhenius" = function(x,p) p[1]*x^(p[2]-1)*p[2],
"gitay" = function(x,p) 2*(p[1]+p[2]*log(x))*p[2]/x,
"gleason" = function(x,p) p[2]/x,
"lomolino" = function(x,p) p[1]*p[3]^log(p[2]/x)*log(p[3])/
(1+p[3]^log(p[2]/x))^2/x,
"asymp" = function(x,p) (p[1]-p[2])*exp(p[3]-exp(p[3])*x),
"gompertz" = function(x,p) -p[1]*p[2]*p[3]^x*
log(p[3])*exp(-p[2]*p[3]^x),
"michaelis-menten" = function(x,p) p[1]*p[2]/(p[2]+x)^2,
"logis" = function(x,p) p[1]*exp((x-p[2])/p[3])/
(1 + exp((x-p[2])/p[3]))^2/p[3],
"weibull" = function(x, p) p[2]*exp(p[3]-exp(p[3])*x^p[4])*
x^(p[4]-1)*p[4])
## Apply slope with fitted coefficients at 'at'
p <- coef(object)
if (is.matrix(p)) # several fitted models
out <- apply(p, 2, function(i) slope(at, i))
else # single site drops to a vector
out <- slope(at, p)
names(out) <- NULL
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/specslope.R
|
`spenvcor` <-
function (object)
{
if (is.null(object$CCA))
stop("needs results from constrained ordination")
u <- object$CCA$u
wa <- object$CCA$wa
if (!inherits(object, "rda")) { # is CCA
r <- sqrt(object$rowsum)
u <- r * u
wa <- r * wa
}
## because colSums(u*u) = 1, we can simplify diag(cor(u, wa)) --
## and we must for weighted CA
colSums(u * wa)/sqrt(colSums(wa^2))
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/spenvcor.R
|
#' Add Species Scores to Ordination Results
#'
#' @param object Ordination object
#' @param value Community data
#'
`sppscores<-` <-
function(object, value)
{
UseMethod("sppscores<-")
}
## dbrda
`sppscores<-.dbrda` <-
function(object, value)
{
object$vdata <- deparse(substitute(value))
value <- scale(value, center = TRUE, scale = FALSE)
object$colsum <- apply(value, 2, sd)
## pCCA step looks redundant: see comments in commit d915763d
if (!is.null(object$pCCA) && object$pCCA$rank > 0) {
value <- qr.resid(object$pCCA$QR, value)
}
if (!is.null(object$CCA) && object$CCA$rank > 0) {
v <- crossprod(value, object$CCA$u)
v <- decostand(v, "normalize", MARGIN = 2)
object$CCA$v <- v
value <- qr.resid(object$CCA$QR, value)
}
if (!is.null(object$CA) && object$CA$rank > 0) {
v <- crossprod(value, object$CA$u)
v <- decostand(v, "normalize", MARGIN = 2)
object$CA$v <- v
}
object
}
## capscale may have species scores, but is otherwise similar to dbrda
`sppscores<-.capscale` <-
function(object, value)
{
object <- `sppscores<-.dbrda`(object, value)
object$vdata <- deparse(substitute(value))
object
}
## metaMDS
`sppscores<-.metaMDS` <-
function(object, value)
{
wa <- wascores(object$points, value, expand = TRUE)
attr(wa, "data") <- deparse(substitute(value))
object$species <- wa
object
}
## the main purpose of accessor function is to provide nicer command
## autocompletion and cross-references in help, and of course, to tell
## that it is not implemented (and may never be)
`sppscores` <-
function(object)
{
.NotYetImplemented()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/sppscores.R
|
`stepacross` <-
function (dis, path = "shortest", toolong = 1, trace = TRUE, ...)
{
path <- match.arg(path, c("shortest", "extended"))
if (!inherits(dis, "dist"))
dis <- as.dist(dis)
oldatt <- attributes(dis)
n <- attr(dis, "Size")
if (path == "shortest")
dis <- .C(dykstrapath, dist = as.double(dis), n = as.integer(n),
as.double(toolong), as.integer(trace),
out = double(length(dis)), NAOK = TRUE)$out
else dis <- .C(C_stepacross, dis = as.double(dis), as.integer(n),
as.double(toolong), as.integer(trace), NAOK = TRUE)$dis
if("maxdist" %in% oldatt)
oldatt$maxdist <- NA
attributes(dis) <- oldatt
attr(dis, "method") <- paste(attr(dis, "method"), path)
dis
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/stepacross.R
|
`str.nullmodel` <-
function(object, ...) str(as.list(object), ...)
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/str.nullmodel.R
|
`stressplot`<-
function(object, ...)
{
UseMethod("stressplot")
}
`stressplot.monoMDS` <-
function(object, pch, p.col = "blue", l.col = "red", lwd, ...)
{
if (missing(lwd))
if (object$ngrp > 2)
lwd <- 1
else
lwd <- 2
## extract items to plot
x <- object$diss
y <- object$dist
yf <- object$dhat
## all models plot dist against diss, but there can be duplicated
## items in some models: remove duplicates in hybrid (iregn==3)
## and local (ngrp > 1) models:
if (object$iregn == 3)
pts <- seq_along(x) < object$istart[2]
else if (object$ngrp > 2)
pts <- object$iidx > object$jidx
else
pts <- !logical(length(x))
## Plotting character
if (missing(pch))
if (sum(pts) > 5000) pch <- "." else pch <- 1
## plot points
plot(x[pts], y[pts], pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
## collect values for 'linear fit'
ralscal <- 0
## Fit lines: linear (iregn=2) and hybrid (iregn=3) have a smooth line
if (object$iregn > 1) {
if (object$iregn == 3) {
k <- seq(object$istart[2], object$ndis)
yl <- range(yf[k])
xl <- range(x[k])
ralscal <- cor(y[k], yf[k])^2
} else {
yl <- range(yf)
xl <- range(x)
ralscal <- cor(y, yf)^2
}
lines(xl, yl, col = l.col, lwd = lwd, ...)
}
## Monotone line except in linear, and local has several...
if (object$iregn != 2) {
ist <- c(object$istart, object$ndis + 1)
if (object$iregn == 3)
object$ngrp <- 1
for(j in 1:object$ngrp) {
k <- seq(ist[j], ist[j+1]-1)
ralscal <- ralscal + cor(y[k], yf[k])^2
lines(x[k], yf[k], type = "S", col = l.col, lwd = lwd, ...)
}
}
## Stress as R2
rstress <- 1 - object$stress^2
ralscal <- if(object$iregn == 3) ralscal/2 else ralscal/object$ngrp
Rst <- format(rstress, digits = 3)
Ral <- format(ralscal, digits = 3)
lab1 <- bquote("Non-metric fit, " * R^2 == .(Rst))
lab2 <- bquote("Linear fit, " * R^2 == .(Ral))
text(min(x), 0.95*max(y), lab1, pos=4)
text(min(x), 0.95*max(y) - strheight(lab1), lab2, pos=4)
## we want to have invisible return lists in the input order
o <- order(object$jidx, object$iidx)
invisible(list("x" = x[o], "y" = y[o], "yf" = yf[o]))
}
`stressplot.default` <-
function(object, dis, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
## the default function only works with metaMDS or MASS::isoMDS results
if (!(inherits(object, "metaMDS") ||
all(c("points", "stress") %in% names(object))))
stop("can be used only with objects that are compatible with MASS::isoMDS results")
if (missing(dis))
if (inherits(object, "metaMDS"))
dis <- metaMDSredist(object)
else
stop("needs dissimilarities 'dis'")
if (attr(dis, "Size") != nrow(object$points))
stop("dimensions do not match in ordination and dissimilarities")
shep <- Shepard(dis, object$points)
stress <- sum((shep$y - shep$yf)^2)/sum(shep$y^2)
rstress <- 1 - stress
ralscal <- cor(shep$y, shep$yf)^2
stress <- sqrt(stress)*100
if ( abs(stress - object$stress) > 0.001)
stop("dissimilarities and ordination do not match")
if (missing(pch))
if (length(dis) > 5000) pch <- "." else pch <- 1
plot(shep, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
lines(shep$x, shep$yf, type = "S", col = l.col, lwd = lwd, ...)
Rst <- format(rstress, digits = 3)
Ral <- format(ralscal, digits = 3)
lab1 <- bquote("Non-metric fit, " * R^2 == .(Rst))
lab2 <- bquote("Linear fit, " * R^2 == .(Ral))
text(min(shep$x), 0.95*max(shep$y), lab1, pos=4)
text(min(shep$x), 0.95*max(shep$y) - strheight(lab1), lab2, pos=4)
invisible(shep)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/stressplot.R
|
### stressplot() methods for eigenvector ordinations wcmdscale, rda,
### cca, capscale, dbrda
`stressplot.wcmdscale` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
## Check that original distances can be reconstructed: this
## requires that all axes were calculated instead of 'k' first.
hasdims <- NCOL(object$points)
if (!is.null(object$negaxes))
hasdims <- hasdims + NCOL(object$negaxes)
if (hasdims < length(object$eig))
stop("observed distances cannot be reconstructed: all axes were not calculated")
## Get the ordination distances in k dimensions
if (k > NCOL(object$points))
warning(gettextf("max allowed rank is k = %d", NCOL(object$points)))
k <- min(NCOL(object$points), k)
w <- sqrt(object$weights)
u <- diag(w) %*% object$points
odis <- dist(u[,1:k, drop = FALSE])
## Reconstitute the original observed distances
dis <- dist(u)
if (!is.null(object$negaxes))
dis <- sqrt(dis^2 - dist(diag(w) %*% object$negaxes)^2)
## Remove additive constant to get original dissimilarities
if (!is.na(object$ac)) {
if (object$add == "lingoes")
dis <- sqrt(dis^2 - 2 * object$ac)
else if (object$add == "cailliez")
dis <- dis - object$ac
else
stop("unknown Euclidifying adjustment: no idea what to do")
}
##Plot
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
`stressplot.rda` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
## Normalized scores to reconstruct data
u <- cbind(object$CCA$u, object$CA$u)
v <- cbind(object$CCA$v, object$CA$v)
ev <- c(object$CCA$eig, object$CA$eig)
## check that k does not exceed rank
if (k > length(ev)) {
warning(gettextf("max allowed rank is k = %d", length(ev)))
k <- min(k, length(ev))
}
## normalizing constant
nr <- NROW(u)
const <- sqrt(ev * (nr-1))
u <- u %*% diag(const, length(const))
## Distances
Xbar <- u %*% t(v)
Xbark <- u[, seq_len(k), drop = FALSE] %*% t(v[, seq_len(k), drop = FALSE])
if (!is.null(object$pCCA)) {
pFit <- ordiYbar(object, "pCCA") * sqrt(nr-1)
Xbar <- Xbar + pFit
Xbark <- Xbark + pFit
}
dis <- dist(Xbar)
odis <- dist(Xbark)
## plot like above
## Plot
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
`stressplot.cca` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
## Normalized scores to reconstruct data
u <- cbind(object$CCA$u, object$CA$u)
sev <- sqrt(c(object$CCA$eig, object$CA$eig))
w <- sqrt(object$rowsum)
u <- diag(w) %*% u %*% diag(sev, length(sev))
v <- cbind(object$CCA$v, object$CA$v)
v <- diag(sqrt(object$colsum)) %*% v
## check that k <= rank
if (k > length(sev)) {
warning(gettextf("max allowed rank is k = %d", length(sev)))
k <- min(k, length(sev))
}
## Distances
Xbar <- u %*% t(v)
Xbark <- u[,seq_len(k), drop = FALSE] %*% t(v[,seq_len(k), drop = FALSE])
if (!is.null(object$pCCA)) {
pFit <- ordiYbar(object, "pCCA")
Xbar <- Xbar + pFit
Xbark <- Xbark + pFit
}
dis <- dist(Xbar)
odis <- dist(Xbark)
## Plot
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
`stressplot.capscale` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
## Scores to reconstruct data
u <- cbind(object$CCA$u, object$CA$u)
## check rank
if (k > NCOL(u))
warning(gettextf("max allowed rank is k = %d", ncol(u)))
k <- min(k, ncol(u))
ev <- c(object$CCA$eig, object$CA$eig)
u <- u %*% diag(sqrt(ev) * object$adjust, length(ev))
## Constrained ordination needs also scores 'v' to reconstruct
## 'data', but these are not returned by capscale() which replaces
## original 'v' with weighted sums of 'comm' data.
if (!is.null(object$CCA))
v <- svd(ordiYbar(object, "CCA"), nu = 0, nv = object$CCA$qrank)$v
else
v <- NULL
if (!is.null(object$CA))
v <- cbind(v, svd(ordiYbar(object, "CA"), nu = 0,
nv = object$CA$rank)$v)
## Reconstruct Xbar and Xbark
Xbar <- u %*% t(v)
Xbark <- u[,seq_len(k), drop = FALSE] %*% t(v[,seq_len(k), drop = FALSE])
if (!is.null(object$pCCA)) {
pFit <- ordiYbar(object, "pCCA")
Xbar <- Xbar + pFit
Xbark <- Xbark + pFit
}
## Distances
dis <- dist(Xbar)
odis <- dist(Xbark)
if (!is.null(object$CA$imaginary.u.eig)) {
dis <- dis^2 - dist(object$CA$imaginary.u.eig)^2
if (all(dis > -sqrt(.Machine$double.eps)))
dis <- sqrt(pmax(dis, 0))
else # neg dis will be NaN with a warning
dis <- sqrt(dis)
}
## Remove additive constant to get original dissimilarities
if (!is.null(object$ac)) {
if (object$add == "lingoes")
dis <- sqrt(dis^2 - 2 * object$ac)
else if (object$add == "cailliez")
dis <- dis - object$ac
else
stop("unknown Euclidifying adjustment: no idea what to do")
}
## undo internal sqrt.dist
if (object$sqrt.dist)
dis <- dis^2
## plot like above
## Plot
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
### dbrda() returns only row scores 'u' (LC scores for constraints,
### site scores for unconstrained part), and these can be used to
### reconstitute dissimilarities only in unconstrained ordination or
### for constrained component.
`stressplot.dbrda` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
## Reconstructed zero distances can be tiny (negative) non-zero
## values, and we zap them to zero
ZAP <- sqrt(.Machine$double.eps)
## Reconstruct original distances from Gower 'G'
dis <- ordiYbar(object, "initial")
dia <- diag(dis)
dis <- -2 * dis + outer(dia, dia, "+")
dis[abs(dis) < ZAP] <- 0
dis <- sqrt(as.dist(dis)) * object$adjust
## Remove additive constant to get original dissimilarities
if (!is.null(object$ac)) {
if (object$add == "lingoes")
dis <- sqrt(dis^2 - 2 * object$ac)
else if (object$add == "cailliez")
dis <- dis - object$ac
else
stop("unknown Euclidifying adjustment: no idea what to do")
}
## undo internal sqrt.dist
if (object$sqrt.dist)
dis <- dis^2
## Approximate dissimilarities from real components. Can only be
## used for one component.
if (is.null(object$CCA)) {
U <- object$CA$u
eig <- object$CA$eig
} else {
U <- object$CCA$u
eig <- object$CCA$eig
}
eig <- eig[eig > 0]
## check that 'k' does not exceed real rank
if (k > ncol(U))
warning(gettextf("max allowed rank is k = %d", ncol(U)))
k <- min(k, ncol(U))
Gk <- tcrossprod(sweep(U[, seq_len(k), drop=FALSE], 2,
sqrt(eig[seq_len(k)]), "*"))
dia <- diag(Gk)
odis <- -2 * Gk + outer(dia, dia, "+")
odis[abs(odis) < ZAP] <- 0
odis <- sqrt(as.dist(odis)) * object$adjust
## Plot
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
## Standard R PCA functions
`stressplot.prcomp` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
dis <- dist(object$x)
odis <- dist(object$x[, 1:k, drop = FALSE])
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
`stressplot.princomp` <-
function(object, k = 2, pch, p.col = "blue", l.col = "red", lwd = 2, ...)
{
dis <- dist(object$scores)
odis <- dist(object$scores[, 1:k, drop = FALSE])
if (missing(pch))
if (length(dis) > 5000)
pch <- "."
else
pch <- 1
plot(dis, odis, pch = pch, col = p.col, xlab = "Observed Dissimilarity",
ylab = "Ordination Distance", ...)
abline(0, 1, col = l.col, lwd = lwd, ...)
invisible(odis)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/stressplot.wcmdscale.R
|
`summary.anosim` <-
function (object, ...)
{
print(object)
if (object$permutations) {
out <- quantile(object$perm, c(0.9, 0.95, 0.975, 0.99))
cat("Upper quantiles of permutations (null model):\n")
print(out, digits=3)
}
cat("\n")
tmp <- tapply(object$dis.rank, object$class.vec, quantile)
out <- matrix(NA, length(tmp), 5)
for (i in seq_along(tmp)) {
if (!is.null(tmp[[i]])) out[i,] <- tmp[[i]]
}
rownames(out) <- names(tmp)
colnames(out) <- names(tmp$Between)
out <- cbind(out, N = table(object$class.vec))
cat("Dissimilarity ranks between and within classes:\n")
print(out)
cat("\n")
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.anosim.R
|
"summary.bioenv" <-
function(object, ...)
{
x <- object$models
nam <- object$names
size <- seq_along(x)
cor <- unlist(lapply(x, function(tmp) tmp$est))
pars <- unlist(lapply(x, function(tmp) paste(nam[tmp$best], collapse=" ")))
out <- list(size = size, correlation = cor, variables = pars)
class(out) <- "summary.bioenv"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.bioenv.R
|
`summary.cca` <- function (object, scaling = "species", axes = 6,
display=c("sp","wa","lc","bp","cn"),
digits = max(3, getOption("digits") - 3),
correlation = FALSE, hill = FALSE, ...)
{
axes <- min(axes, sum(object$CCA$rank, object$CA$rank))
summ <- list()
## scaling is stored in return object so must be in numeric format
scaling <- scalingType(scaling = scaling, correlation = correlation,
hill = hill)
if (axes && length(display) && !anyNA(display) && !is.null(display))
summ <- scores(object, scaling = scaling, choices = 1:axes, display = display,
...)
## scores() drops list to a matrix if there is only one item: workaround below.
if (!is.list(summ) && length(display) == 1) {
nms <- c("species", "sites", "constraints", "biplot", "centroids")
names(nms) <- c("sp","wa","lc","bp","cn")
summ <- list(summ)
names(summ) <- nms[display]
}
if (length(display) > 0) {
for (i in seq_along(summ)) {
if (is.matrix(summ[[i]]))
rownames(summ[[i]]) <-
rownames(summ[[i]], do.NULL = FALSE,
prefix = substr(names(summ)[i], 1, 3))
}
}
summ$call <- object$call
summ$tot.chi <- object$tot.chi
## only the Real component for capscale() with negative eigenvalues
if (!is.null(object$CA$imaginary.chi))
summ$tot.chi <- summ$tot.chi - object$CA$imaginary.chi
summ$partial.chi <- object$pCCA$tot.chi
summ$constr.chi <- object$CCA$tot.chi
summ$unconst.chi <- object$CA$tot.chi
## nested list cont$importance needed to keep vegan pre-2.5-0 compatibility
summ$cont$importance <- summary(eigenvals(object))
if (!is.null(object$CCA) && object$CCA$rank > 0)
summ$concont$importance <- summary(eigenvals(object, model = "constrained"))
summ$ev.head <- c(summ$ev.con, summ$ev.uncon)[seq_len(axes)]
summ$scaling <- scaling
summ$digits <- digits
summ$inertia <- object$inertia
summ$method <- object$method
class(summ) <- "summary.cca"
summ
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.cca.R
|
summary.clamtest <- function(object, ...) {
structure(c(attr(object, "settings"),
list(summary=cbind(Species=table(object$Classes),
Proportion=table(object$Classes)/nrow(object)),
minv=attr(object, "minv"),
coverage=attr(object, "coverage"))), class="summary.clamtest")
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.clamtest.R
|
"summary.decorana" <-
function (object, digits = 3, origin = TRUE, display = c("both",
"species", "sites", "none"), ...)
{
display <- match.arg(display)
print(object)
if (origin) {
object$cproj <- sweep(object$cproj, 2, object$origin,
"-")
object$rproj <- sweep(object$rproj, 2, object$origin,
"-")
}
tmp <- list()
if (display == "both" || display == "species") {
tmp$spec.scores <- object$cproj
tmp$spec.priorweights <- object$v
tmp$spec.totals <- object$adotj
}
if (display == "both" || display == "sites") {
tmp$site.scores <- object$rproj
tmp$site.totals <- object$aidot
}
tmp$digits <- digits
class(tmp) <- "summary.decorana"
tmp
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.decorana.R
|
### summary methods extracts dispweight attributes, and prints a table
### of dispersion statistics
`summary.dispweight` <-
function(object, ...)
{
x <- attributes(object)
class(x) <- "summary.dispweight"
x
}
`print.summary.dispweight` <-
function(x, ...)
{
tab <- with(x, cbind(D, weights, df, p))
colnames(tab) <- c("Dispersion", "Weight", "Df", "Pr(Disp.)")
printCoefmat(tab, cs.ind = NA, ...)
if (!is.na(x$nsimul))
cat(sprintf("Based on %d simulations on '%s' nullmodel\n",
x$nsimul, x$nullmodel))
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.dispweight.R
|
`summary.isomap` <-
function (object, axes=4, ...)
{
axes <- min(axes, ncol(object$points))
out <- list()
out$call <- object$call
out$points <- object$points[,1:axes]
out$net <- object$net
n <- nrow(object$points)
out$ndis <- n * (n-1) / 2
out$nnet <- nrow(object$net)
class(out) <- "summary.isomap"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.isomap.R
|
`summary.meandist` <-
function(object, ...)
{
n <- attr(object, "n")
wmat <- n %o% n
diag(wmat) <- diag(wmat) - n
## mean distances within, between groups and in total
W <- weighted.mean(diag(object), w = diag(wmat), na.rm = TRUE)
B <- weighted.mean(object[lower.tri(object)],
w = wmat[lower.tri(wmat)], na.rm = TRUE)
D <- weighted.mean(object, w = wmat, na.rm = TRUE)
## Variants of MRPP statistics
A1 <- weighted.mean(diag(object), w = n, na.rm = TRUE)
A2 <- weighted.mean(diag(object), w = n - 1, na.rm = TRUE)
A3 <- weighted.mean(diag(object), w = n * (n - 1), na.rm = TRUE)
##
out <- list(W = W, B = B, D = D, CS = B-A1,
A1 = 1 - A1/D, A2 = 1 - A2/D, A3 = 1 - A3/D)
class(out) <- "summary.meandist"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.meandist.R
|
### Centres and areas of plotted ellipses. The principal axes of the
### conic (oblique ellipse) are found from the eigenvalues of the
### covariance matrix.
`summary.ordiellipse` <-
function(object, ...)
{
cnts <- sapply(object, function(x) x$center)
## 2nd eigenvalue should be zero if points are on line (like two
## points), but sometimes it comes out negative, and area is NaN
areas <- sapply(object,
function(x)
sqrt(pmax(0, det(x$cov))) * pi * x$scale^2)
rbind(cnts, `Area` = areas)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.ordiellipse.R
|
### Centres and areas of convex hulls (simple polygons).
`summary.ordihull` <-
function(object, ...)
{
polyarea <- function(x) {
n <- nrow(x)
if (n < 4)
return(0)
else
abs(sum(x[-n,1]*x[-1,2] - x[-1,1]*x[-n,2]))/2
}
polycentre <- function(x) {
n <- nrow(x)
if (n < 4)
return(colMeans(x[-n,, drop = FALSE]))
xy <- x[-n,1]*x[-1,2] - x[-1,1]*x[-n,2]
A <- sum(xy)/2
xc <- sum((x[-n,1] + x[-1,1]) * xy)/A/6
yc <- sum((x[-n,2] + x[-1,2]) * xy)/A/6
structure(c(xc, yc), names = colnames(x))
}
areas <- sapply(object, function(x) polyarea(x))
cnts <- sapply(object, function(x) polycentre(x))
rbind(cnts, `Area` = areas)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.ordihull.R
|
## S3 summary method for permat
`summary.permat` <-
function(object, ...)
{
x <- object
## calculations are much faster if x$orig is matrix instead of data.frame
x$orig <- data.matrix(x$orig)
ss <- sum(x$orig)
fi <- sum(x$orig > 0)
rs <- rowSums(x$orig)
cs <- colSums(x$orig)
rb <- rowSums(x$orig > 0)
cb <- colSums(x$orig > 0)
nr <- nrow(x$orig)
nc <- ncol(x$orig)
bray <- sapply(x$perm, function(z) sum(abs(x$orig - z)) / sum(x$orig + z))
psum <- sapply(x$perm, function(z) ss == sum(z))
pfill <- sapply(x$perm, function(z) fi == sum(z > 0))
vrow <- sapply(x$perm, function(z) sum(rs == rowSums(z)) == nr)
vcol <- sapply(x$perm, function(z) sum(cs == colSums(z)) == nc)
brow <- sapply(x$perm, function(z) sum(rb == rowSums(z > 0)) == nr)
bcol <- sapply(x$perm, function(z) sum(cb == colSums(z > 0)) == nc)
if (attr(x, "is.strat")) {
int <- attr(x, "strata")
nlev <- length(unique(int))
rsagg <- rowSums(aggregate(x$orig, list(int), sum)[,-1])
ssum <- sapply(x$perm, function(z)
sum(rsagg == rowSums(aggregate(z, list(int), sum)[,-1])) == nlev)
} else ssum <- NULL
## Chisq
E <- rs %o% cs / ss
chisq <- sapply(x$perm, function(z) sum((z - E)^2 / E))
attr(chisq, "chisq.orig") <- sum((x$orig - E)^2 / E)
# attr(chisq, "df") <- (nr - 1) * (nc - 1)
## ts if sequential
seqmethods <- sapply(make.commsim(), function(z) make.commsim(z)$isSeq)
seqmethods <- names(seqmethods)[seqmethods]
# seqmethods <- c("swap", "tswap", "abuswap")
if (attr(x, "method") %in% seqmethods) {
startval <- attr(x, "burnin") + 1
dtime <- max(1, attr(x, "thin"))
bray <- ts(bray, start = startval, deltat = dtime)
chisq <- ts(chisq, start = startval, deltat = dtime)
}
x$perm <- NULL
out <- list(x=x, bray=bray, chisq=chisq, sum=psum, fill=pfill, rowsums=vrow, colsums=vcol,
browsums=brow, bcolsums=bcol, strsum=ssum)
class(out) <- c("summary.permat", "list")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/summary.permat.R
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.