content
stringlengths
0
14.9M
filename
stringlengths
44
136
### ### Editable Tcl/Tk plot for ordination ### `orditkplot` <- function(x, display = "species", choices = 1:2, width, xlim, ylim, tcex=0.8, tcol, pch = 1, pcol, pbg, pcex = 0.7, labels, ...) { if (!capabilities("tcltk")) stop("your R has no capability for Tcl/Tk") requireNamespace("tcltk") || stop("requires package tcltk") ############################ ### Check and sanitize input ########################### ## Graphical parameters and constants, and save some for later plotting p <- par() sparnam <- c("bg","cex", "cex.axis","cex.lab","col", "col.axis", "col.lab", "family", "fg", "font", "font.axis", "font.lab", "lheight", "lwd", "mar", "mex", "mgp", "ps", "tcl", "las") ## Get par given in the command line and put them to p if (inherits(x, "orditkplot")) { dots <- x$par for (arg in names(x$args)) assign(arg, unlist(x$args[arg])) } else { dots <- match.call(expand.dots = FALSE)$... } if (length(dots) > 0) { dots <- dots[names(dots) %in% sparnam] ## eval() or mar=c(4,4,1,1) will be a call, not numeric dots <- lapply(dots, function(x) if (is.call(x)) eval(x) else x) p <- check.options(new = dots, name.opt = "p", envir = environment()) } savepar <- p[sparnam] PPI <- 72 # Points per Inch p2p <- as.numeric(tcltk::tclvalue(tcltk::tcl("tk", "scaling"))) # Pixel per point DIAM <- 2.7 # diam of plotting symbol ## Plotting symbol diam diam <- round(pcex * DIAM * p2p, 1) ## Sanitize colours sanecol <- function(x) { if (is.numeric(x)) x <- palette()[x] x <- gsub("transparent", "", x) x[is.na(x)] <- "" x } p$bg <- sanecol(p$bg) p$fg <- sanecol(p$fg) p$col <- sanecol(p$col) p$col.axis <- sanecol(p$col.axis) p$col.lab <- sanecol(p$col.lab) ## Point and label colours if (missing(pcol)) pcol <- p$col if (missing(pbg)) pbg <- "transparent" if (missing(tcol)) tcol <- p$col pcol <- sanecol(pcol) pbg <- sanecol(pbg) tcol <- sanecol(tcol) ## Define fonts idx <- match(p$family, c("","serif","sans","mono")) if (!is.na(idx)) p$family <- c("Helvetica", "Times", "Helvetica", "Courier")[idx] saneslant <- function(x) { list("roman", "bold", "italic", c("bold", "italic"))[[x]] } ## fnt must be done later, since family, font and size can be ## vectors and slant can be of length 1 or 2 ## fnt <- c(p$family, round(p$ps*p$cex*tcex), saneslant(p$font)) labfam <- p$family labsize <- round(p$ps * p$cex * tcex) fnt.axis <- c(p$family, round(p$ps*p$cex.axis), saneslant(p$font.axis)) fnt.lab <- c(p$family, round(p$ps*p$cex.lab), saneslant(p$font.lab)) ## Imitate R plotting symbols pch SQ <- sqrt(2) # Scaling factor for plot Point <- function(x, y, pch, col, fill, diam) { x <- round(x) y <- round(y) switch(as.character(pch), "0" = Point(x, y, 22, col, fill = "", diam), "1" = Point(x, y, 21, col, fill = "", diam), "2" = Point(x, y, 24, col, fill = "", diam), "3" = {tcltk::tkcreate(can, "line", x, y+SQ*diam, x, y-SQ*diam, fill=col) tcltk::tkcreate(can, "line", x+SQ*diam, y, x-SQ*diam, y, fill=col)}, "4" = {tcltk::tkcreate(can, "line", x-diam, y-diam, x+diam, y+diam, fill=col) tcltk::tkcreate(can, "line", x-diam, y+diam, x+diam, y-diam, fill=col)}, "5" = Point(x, y, 23, col, fill = "", diam), "6" = Point(x, y, 25, col, fill = "", diam), "7" = {Point(x, y, 4, col, fill, diam) Point(x, y, 0, col, fill, diam)}, "8" = {Point(x, y, 3, col, fill, diam) Point(x, y, 4, col, fill, diam)}, "9" = {Point(x, y, 3, col, fill, diam) Point(x, y, 5, col, fill, diam)}, "10" = {Point(x, y, 3, col, fill, diam/SQ) Point(x, y, 1, col, fill, diam)}, "11" = {Point(x, y, 2, col, fill, diam) Point(x, y, 6, col, fill, diam)}, "12" = {Point(x, y, 3, col, fill, diam/SQ) Point(x, y, 0, col, fill, diam)}, "13" = {Point(x, y, 4, col, fill, diam) Point(x, y, 1, col, fill, diam)}, "14" = {tcltk::tkcreate(can, "line", x-diam, y-diam, x, y+diam, fill = col) tcltk::tkcreate(can, "line", x+diam, y-diam, x, y+diam, fill = col) Point(x, y, 0, col, fill, diam)}, "15" = Point(x, y, 22, col = col, fill = col, diam), "16" = Point(x, y, 21, col = col, fill = col, diam), "17" = Point(x, y, 24, col = col, fill = col, diam), "18" = Point(x, y, 23, col = col, fill = col, diam/SQ), "19" = Point(x, y, 21, col = col, fill = col, diam), "20" = Point(x, y, 21, col = col, fill = col, diam/2), "21" = tcltk::tkcreate(can, "oval", x-diam, y-diam, x+diam, y+diam, outline = col, fill = fill), "22" = tcltk::tkcreate(can, "rectangle", x-diam, y-diam, x+diam, y+diam, outline = col, fill = fill), "23" = tcltk::tkcreate(can, "polygon", x, y+SQ*diam, x+SQ*diam, y, x, y-SQ*diam, x-SQ*diam, y, outline = col, fill = fill), "24" = tcltk::tkcreate(can, "polygon", x, y-SQ*diam, x+sqrt(6)/2*diam, y+SQ/2*diam, x-sqrt(6)/2*diam, y+SQ/2*diam, outline = col, fill = fill), "25" = tcltk::tkcreate(can, "polygon", x, y+SQ*diam, x+sqrt(6)/2*diam, y-SQ/2*diam, x-sqrt(6)/2*diam, y-SQ/2*diam, outline = col, fill = fill), "o" = Point(x, y, 1, col, fill, diam), ## default: text with dummy location of the label {tcltk::tkcreate(can, "text", x, y, text = as.character(pch), fill = col) Point(x, y, 21, col="", fill="", diam)} ) } ############################ ### Initialize Tcl/Tk Window ############################ ## toplevel w <- tcltk::tktoplevel() tcltk::tktitle(w) <- deparse(match.call()) ## Max dim of windows (depends on screen) YSCR <- as.numeric(tcltk::tkwinfo("screenheight", w)) - 150 XSCR <- as.numeric(tcltk::tkwinfo("screenwidth", w)) ################################ ### Buttons and button functions ################################ ## Buttons buts <- tcltk::tkframe(w) ## Copy current canvas to EPS using the standard Tcl/Tk utility cp2eps <- tcltk::tkbutton(buts, text="Copy to EPS", command=function() tcltk::tkpostscript(can, x=0, y=0, height=height, width=width, file=tcltk::tkgetSaveFile( filetypes="{{EPS file} {.eps}}", defaultextension=".eps"))) dismiss <- tcltk::tkbutton(buts, text="Close", command=function() tcltk::tkdestroy(w)) ## Dump current plot to an "orditkplot" object (internally) ordDump <- function() { xy <- matrix(0, nrow=nrow(sco), ncol=2) rownames(xy) <- rownames(sco) colnames(xy) <- colnames(sco) for(nm in names(pola)) { xy[as.numeric(tcltk::tclvalue(id[[nm]])),] <- xy2usr(nm) } curdim <- round(c(width, height) /PPI/p2p, 2) ## Sanitize colours for R plot pbg[pbg == ""] <- "transparent" pcol[pcol == ""] <- "transparent" ## Reduce vector args if all entries are constant argcollapse <- function(x) if (length(unique(x)) == 1) x[1] else x pch <- argcollapse(pch) pcol <- argcollapse(pcol) pbg <- argcollapse(pbg) tcol <- argcollapse(tcol) ## Save args <- list(tcex = tcex, tcol = tcol, pch = pch, pcol = pcol, pbg = pbg, pcex = pcex, xlim = xlim, ylim = ylim) xy <- list(labels = xy, points = sco, par = savepar, args = args, dim = curdim) class(xy) <- "orditkplot" xy } ## Button to dump "orditkplot" object to the R session pDump <- function() { xy <- ordDump() dumpVar <- tcltk::tclVar("") tt <- tcltk::tktoplevel() tcltk::tktitle(tt) <- "R Dump" entryDump <- tcltk::tkentry(tt, width=20, textvariable=dumpVar) tcltk::tkgrid(tcltk::tklabel(tt, text="Enter name for an R object")) tcltk::tkgrid(entryDump, pady="5m") isDone <- function() { dumpName <- tcltk::tclvalue(dumpVar) if (exists(dumpName, envir = parent.frame())) { ok <- tcltk::tkmessageBox(message=paste(sQuote(dumpName), "exists.\nOK to overwrite?"), icon="warning", type="okcancel", default="ok") if(tcltk::tclvalue(ok) == "ok") { assign(dumpName, xy, envir = parent.frame()) tcltk::tkdestroy(tt) } } else { assign(dumpName, xy, envir = parent.frame()) tcltk::tkdestroy(tt) } } tcltk::tkbind(entryDump, "<Return>", isDone) tcltk::tkfocus(tt) } dump <- tcltk::tkbutton(buts, text="Save to R", command=pDump) ## Button to write current "orditkplot" object to a graphical device devDump <- function() { xy <- ordDump() ftypes <- c("eps" = "{EPS File} {.eps}", "pdf" = "{PDF File} {.pdf}", "svg" = "{SVG File} {.svg}", "png" = "{PNG File} {.png}", "jpg" = "{JPEG File} {.jpg .jpeg}", "bmp" = "{BMP File} {.bmp}", "tiff"= "{TIFF File} {.tif .tiff}", "fig" = "{XFig File} {.fig}") falt <- rep(TRUE, length(ftypes)) names(falt) <- names(ftypes) if (!capabilities("png")) falt["png"] <- FALSE if (!capabilities("jpeg")) falt["jpg"] <- FALSE if (!capabilities("cairo")) falt["svg"] <- FALSE ## Should work also in R < 2.8.0 with no capabilities("tiff") if (!isTRUE(unname(capabilities("tiff")))) falt["tiff"] <- FALSE ftypes <- ftypes[falt] ## External Tcl/Tk in Windows seems to buggy with type ## extensions of the file name: the extension is not ## automatically appended, but defaultextension is interpreted ## wrongly so that its value is not used as extension but ## correct appending is done if defaultextension has any ## value. The following kluge is against Tcl/Tk documentation, ## and should be corrected if Tcl/Tk is fixed. if (.Platform$OS.type == "windows") fname <- tcltk::tkgetSaveFile(filetypes=ftypes, defaultextension = TRUE) else fname <- tcltk::tkgetSaveFile(filetypes=ftypes) if(tcltk::tclvalue(fname) == "") return(NULL) fname <- tcltk::tclvalue(fname) ftype <- unlist(strsplit(fname, "\\.")) ftype <- ftype[length(ftype)] if (ftype == "jpeg") ftype <- "jpg" if (ftype == "tif") ftype <- "tiff" mess <- "is not a supported type: file not produced. Supported types are" if (!(ftype %in% names(ftypes))) { tcltk::tkmessageBox(message=paste(sQuote(ftype), mess, paste(names(ftypes), collapse=", ")), icon="warning") return(NULL) } pixdim <- round(xy$dim*PPI*p2p) switch(ftype, eps = postscript(file=fname, width=xy$dim[1], height=xy$dim[2], paper="special", horizontal = FALSE), pdf = pdf(file=fname, width=xy$dim[1], height=xy$dim[2]), svg = svg(filename=fname, width=xy$dim[1], height=xy$dim[2]), png = png(filename=fname, width=pixdim[1], height=pixdim[2]), jpg = jpeg(filename=fname, width=pixdim[1], height=pixdim[2], quality = 100), tiff = tiff(filename=fname, width=pixdim[1], height=pixdim[2]), bmp = bmp(filename=fname, width=pixdim[1], height=pixdim[2]), fig = xfig(file=fname, width=xy$dim[1], height=xy$dim[2])) plot.orditkplot(xy) dev.off() } export <- tcltk::tkbutton(buts, text="Export plot", command=devDump) ########## ### Canvas ########## ## Make canvas sco <- try(scores(x, display=display, choices = choices, ...), silent = TRUE) if (inherits(sco, "try-error")) { tcltk::tkmessageBox(message=paste("No ordination scores were found in", sQuote(deparse(substitute(x)))), icon="error") tcltk::tkdestroy(w) stop("argument x did not contain ordination scores") } if (!missing(labels)) rownames(sco) <- labels ## Recycle graphical parameters in plots nr <- nrow(sco) pcol <- rep(pcol, length=nr) pbg <- rep(pbg, length=nr) pch <- rep(pch, length=nr) tcol <- rep(tcol, length=nr) diam <- rep(diam, length=nr) labfam <- rep(labfam, length=nr) labsize <- rep(labsize, length=nr) if (inherits(x, "ordipointlabel")) labfnt <- attr(x$labels, "font") else labfnt <- rep(p$font, length=nr) ## Select only items within xlim, ylim take <- rep(TRUE, nr) if (!missing(xlim)) take <- take & sco[,1] >= xlim[1] & sco[,1] <= xlim[2] if (!missing(ylim)) take <- take & sco[,2] >= ylim[1] & sco[,2] <= ylim[2] sco <- sco[take,, drop=FALSE] labs <- rownames(sco) pcol <- pcol[take] pbg <- pbg[take] tcol <- tcol[take] pch <- pch[take] diam <- diam[take] labfam <- labfam[take] labsize <- labsize[take] labfnt <- labfnt[take] ## Ranges and pretty values for axes if (missing(xlim)) xlim <- range(sco[,1], na.rm = TRUE) if (missing(ylim)) ylim <- range(sco[,2], na.rm = TRUE) xpretty <- pretty(xlim) ypretty <- pretty(ylim) ## Extend ranges by 4% xrange <- c(-0.04, 0.04) * diff(xlim) + xlim xpretty <- xpretty[xpretty >= xrange[1] & xpretty <= xrange[2]] yrange <- c(-0.04, 0.04) * diff(ylim) + ylim ypretty <- ypretty[ypretty >= yrange[1] & ypretty <= yrange[2]] ## Canvas like they were in the default devices when I last checked if (missing(width)) width <- p$din[1] width <- width * PPI * p2p ## Margin row width also varies with platform and devices ## rpix <- (p$mai/p$mar * PPI * p2p)[1] rpix <- p$cra[2] mar <- round(p$mar * rpix) xusr <- width - mar[2] - mar[4] xincr <- xusr/diff(xrange) yincr <- xincr xy0 <- c(xrange[1], yrange[2]) # upper left corner ## Functions to translate scores to canvas coordinates and back usr2xy <- function(row) { x <- (row[1] - xy0[1]) * xincr + mar[2] y <- (xy0[2] - row[2]) * yincr + mar[3] c(x,y) } ## User coordinates of an item xy2usr <- function(item) { xy <- as.numeric(tcltk::tkcoords(can, item)) x <- xy[1] y <- xy[2] x <- xrange[1] + (x - mar[2])/xincr y <- yrange[2] - (y - mar[3])/yincr c(x,y) } ## Canvas x or y to user coordinates x2usr <- function(xcan) { xrange[1] + (xcan - mar[2])/xincr } y2usr <- function(ycan) { yrange[2] - (ycan - mar[3])/yincr } ## Equal aspect ratio height <- round((diff(yrange)/diff(xrange)) * xusr) height <- height + mar[1] + mar[3] ## Canvas, finally can <- tcltk::tkcanvas(w, relief="sunken", width=width, height=min(height,YSCR), scrollregion=c(0,0,width,height)) if (p$bg != "") tcltk::tkconfigure(can, bg=p$bg) yscr <- tcltk::tkscrollbar(w, command = function(...) tcltk::tkyview(can, ...)) tcltk::tkconfigure(can, yscrollcommand = function(...) tcltk::tkset(yscr, ...)) ## Pack it up tcltk::tkpack(buts, side="bottom", fill="x", pady="2m") tcltk::tkpack(can, side="left", fill="x") tcltk::tkpack(yscr, side="right", fill="y") tcltk::tkgrid(cp2eps, export, dump, dismiss, sticky="s") ## Box x0 <- usr2xy(c(xrange[1], yrange[1])) x1 <- usr2xy(c(xrange[2], yrange[2])) tcltk::tkcreate(can, "rectangle", x0[1], x0[2], x1[1], x1[2], outline = p$fg, width = p$lwd) ## Axes and ticks tl <- -p$tcl * rpix # -p$tcl * p$ps * p2p axoff <- p$mgp[3] * rpix tmp <- xpretty for (i in seq_along(tmp)) { x0 <- usr2xy(c(xpretty[1], yrange[1])) x1 <- usr2xy(c(xpretty[length(xpretty)], yrange[1])) tcltk::tkcreate(can, "line", x0[1], x0[2]+axoff, x1[1], x1[2]+axoff, fill=p$fg) xx <- usr2xy(c(tmp[i], yrange[1])) tcltk::tkcreate(can, "line", xx[1], xx[2] + axoff, xx[1], xx[2]+tl+axoff, fill=p$fg) tcltk::tkcreate(can, "text", xx[1], xx[2] + rpix * p$mgp[2], anchor="n", text=as.character(tmp[i]), fill=p$col.axis, font=fnt.axis) } xx <- usr2xy(c(mean(xrange), yrange[1])) tcltk::tkcreate(can, "text", xx[1], xx[2] + rpix * p$mgp[1], text=colnames(sco)[1], fill=p$col.lab, anchor="n", font=fnt.lab) tmp <- ypretty for (i in seq_along(tmp)) { x0 <- usr2xy(c(xrange[1], tmp[1])) x1 <- usr2xy(c(xrange[1], tmp[length(tmp)])) tcltk::tkcreate(can, "line", x0[1]-axoff, x0[2], x1[1]-axoff, x1[2]) yy <- usr2xy(c(xrange[1], tmp[i])) tcltk::tkcreate(can, "line", yy[1]-axoff, yy[2], yy[1]-tl-axoff, yy[2], fill=p$fg ) tcltk::tkcreate(can, "text", yy[1] - rpix * p$mgp[2] , yy[2], anchor="e", text=as.character(tmp[i]), fill = p$col.axis, font=fnt.axis) } ## Points and labels ## The following 'inherits' works with ordipointlabel, but not ## with zooming if (inherits(x, "orditkplot")) { lsco <- scores(x, "labels") laboff <- rep(0, nrow(lsco)) lsco <- lsco[rownames(sco),] } else { lsco <- sco laboff <- round(p2p * p$ps/2 + diam + 1) } pola <- tcltk::tclArray() # points labtext <- tcltk::tclArray() # text id <- tcltk::tclArray() # index for (i in 1:nrow(sco)) { xy <- usr2xy(sco[i,]) item <- Point(xy[1], xy[2], pch = pch[i], col = pcol[i], fill = pbg[i], diam = diam[i]) xy <- usr2xy(lsco[i,]) fnt <- c(labfam[i], labsize[i], saneslant(labfnt[i])) lab <- tcltk::tkcreate(can, "text", xy[1], xy[2]-laboff[i], text=labs[i], fill = tcol[i], font=fnt) tcltk::tkaddtag(can, "point", "withtag", item) tcltk::tkaddtag(can, "label", "withtag", lab) pola[[lab]] <- item labtext[[lab]] <- labs[i] id[[lab]] <- i } ############################## ### Mouse operations on canvas ############################## ## Plotting and Moving ## Mouse enters a label pEnter <- function() { tcltk::tkdelete(can, "box") hbox <- tcltk::tkcreate(can, "rectangle", tcltk::tkbbox(can, "current"), outline = "red", fill = "yellow") tcltk::tkaddtag(can, "box", "withtag", hbox) tcltk::tkitemraise(can, "current") } ## Mouse leaves a label pLeave <- function() { tcltk::tkdelete(can, "box") } ## Select label pDown <- function(x, y) { x <- as.numeric(x) y <- as.numeric(y) tcltk::tkdtag(can, "selected") tcltk::tkaddtag(can, "selected", "withtag", "current") tcltk::tkitemraise(can, "current") p <- as.numeric(tcltk::tkcoords(can, pola[[tcltk::tkfind(can, "withtag", "current")]])) .pX <<- (p[1]+p[3])/2 .pY <<- (p[2]+p[4])/2 .lastX <<- x .lastY <<- y } ## Move label pMove <- function(x, y) { x <- as.numeric(x) y <- as.numeric(y) tcltk::tkmove(can, "selected", x - .lastX, y - .lastY) tcltk::tkdelete(can, "ptr") tcltk::tkdelete(can, "box") .lastX <<- x .lastY <<- y ## xadj,yadj: adjust for canvas scrolling xadj <- as.numeric(tcltk::tkcanvasx(can, 0)) yadj <- as.numeric(tcltk::tkcanvasy(can, 0)) hbox <- tcltk::tkcreate(can, "rectangle", tcltk::tkbbox(can, "selected"), outline = "red") tcltk::tkaddtag(can, "box", "withtag", hbox) conn <- tcltk::tkcreate(can, "line", .lastX + xadj, .lastY+yadj, .pX, .pY, fill="red") tcltk::tkaddtag(can, "ptr", "withtag", conn) } ## Edit label pEdit <- function() { tcltk::tkdtag(can, "selected") tcltk::tkaddtag(can, "selected", "withtag", "current") tcltk::tkitemraise(can, "current") click <- tcltk::tkfind(can, "withtag", "current") txt <- tcltk::tclVar(labtext[[click]]) i <- as.numeric(id[[click]]) tt <- tcltk::tktoplevel() labEd <- tcltk::tkentry(tt, width=20, textvariable=txt) tcltk::tkgrid(tcltk::tklabel(tt, text = "Edit label")) tcltk::tkgrid(labEd, pady="5m", padx="5m") isDone <- function() { txt <- tcltk::tclvalue(txt) tcltk::tkitemconfigure(can, click, text = txt) rownames(sco)[i] <<- txt tcltk::tkdestroy(tt) } tcltk::tkbind(labEd, "<Return>", isDone) } ## Zooming: draw rectangle and take its user coordinates ## Rectangle: first corner pRect0 <- function(x, y) { x <- as.numeric(x) y <- as.numeric(y) ## yadj here and below adjusts for canvas scrolling yadj <- as.numeric(tcltk::tkcanvasy(can, 0)) .pX <<- x .pY <<- y + yadj } ## Grow rectangle pRect <- function(x, y) { x <- as.numeric(x) y <- as.numeric(y) tcltk::tkdelete(can, "box") yadj <- as.numeric(tcltk::tkcanvasy(can, 0)) .lastX <<- x .lastY <<- y + yadj rect <- tcltk::tkcreate(can, "rectangle", .pX, .pY, .lastX, .lastY, outline="blue") tcltk::tkaddtag(can, "box", "withtag", rect) } ## Redraw ordiktplot with new xlim and ylim pZoom <- function() { nxlim <- sort(c(x2usr(.pX), x2usr(.lastX))) nylim <- sort(c(y2usr(.pY), y2usr(.lastY))) xy <- ordDump() ## Move labels closer to points in zoom ## FIXME: Doesn't do a perfect job mul <- abs(diff(nxlim)/diff(xlim)) xy$labels <- xy$points + (xy$labels - xy$points)*mul xy$args$xlim <- nxlim xy$args$ylim <- nylim orditkplot(xy) } ## Dummy location of the mouse .lastX <- 0 .lastY <- 0 .pX <- 0 .pY <- 0 ## Mouse bindings: ## Moving a label tcltk::tkitembind(can, "label", "<Any-Enter>", pEnter) tcltk::tkitembind(can, "label", "<Any-Leave>", pLeave) tcltk::tkitembind(can, "label", "<1>", pDown) tcltk::tkitembind(can, "label", "<ButtonRelease-1>", function() {tcltk::tkdtag(can, "selected") tcltk::tkdelete(can, "ptr")}) tcltk::tkitembind(can, "label", "<B1-Motion>", pMove) ## Edit labels tcltk::tkitembind(can, "label", "<Double-Button-1>", pEdit) ## Zoom (with one-button mouse) tcltk::tkbind(can, "<Shift-Button-1>", pRect0) tcltk::tkbind(can, "<Shift-B1-Motion>", pRect) tcltk::tkbind(can, "<Shift-ButtonRelease>", pZoom) ## Zoom (with right button) tcltk::tkbind(can, "<Button-3>", pRect0) tcltk::tkbind(can, "<B3-Motion>", pRect) tcltk::tkbind(can, "<ButtonRelease-3>", pZoom) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/orditkplot.R
`orditorp` <- function (x, display, labels, choices = c(1, 2), priority, select, cex = 0.7, pcex, col = par("col"), pcol, pch = par("pch"), air = 1, ...) { if (missing(pcex)) pcex <- cex if (missing(pcol)) pcol <- col x <- scores(x, display = display, choices = choices, ...) kk <- complete.cases(x) if (missing(labels)) labels <- rownames(x) if (missing(priority)) priority <- rowSums((scale(x)^2)) if (!missing(select)) { x <- .checkSelect(select, x) labels <- .checkSelect(select, labels) priority <- .checkSelect(select, priority) kk <- .checkSelect(select, kk) } ## remove NA scores x <- x[kk,] priority <- priority[kk] labels <- labels[kk] w <- abs(strwidth(labels, cex = cex))/2 * air h <- abs(strheight(labels, cex = cex))/2 * air xx <- cbind(x[, 1] - w, x[, 1] + w, x[, 2] - h, x[, 2] + h) is.na(priority) <- w == 0 ord <- rev(order(priority, na.last = FALSE)) xx <- xx[ord, ] x <- x[ord, ] labels <- labels[ord] tt <- logical(nrow(xx)) tt[1] <- TRUE for (i in 2:(nrow(xx) - sum(is.na(priority)))) { j <- 1:(i - 1) j <- j[tt[j]] tt[i] <- all(xx[i, 1] > xx[j, 2] | xx[j, 1] > xx[i, 2] | xx[i, 3] > xx[j, 4] | xx[j, 3] > xx[i, 4]) } if (sum(!tt)) { if (length(pch) > 1) pch <- (pch[ord])[!tt] if (length(pcex) > 1) pcex <- (pcex[ord])[!tt] if (length(pcol) > 1) pcol <- (pcol[ord])[!tt] ordiArgAbsorber(x[!tt, , drop = FALSE], pch = pch, cex = pcex, col = pcol, FUN = points, ...) } if (length(cex) > 1) cex <- (cex[ord])[tt] if (length(col) > 1) col <- (col[ord])[tt] ordiArgAbsorber(x[tt, , drop = FALSE], labels = labels[tt], cex = cex, col = col, FUN = text, ...) names(tt) <- labels invisible(tt[order(ord)]) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/orditorp.R
`ordixyplot` <- function(x, data = NULL, formula, display = "sites", choices=1:3, panel = "panel.ordi", aspect = "iso", envfit, type = c("p", "biplot"), ...) { localXyplot <- function(..., shrink, origin, scaling) xyplot(...) p <- as.data.frame(scores(x, display = display, choices = choices, ...)) if (!is.null(data)) p <- cbind(p, data) if (missing(formula)) { v <- colnames(p) formula <- as.formula(paste(v[2], "~", v[1])) } if ("biplot" %in% type && ((!is.null(x$CCA) && x$CCA$rank > 0) || !missing(envfit))) { if (missing(envfit)) envfit <- NULL env <- ordilattice.getEnvfit(formula, x, envfit, choices, ...) if (!is.null(env$arrows)) { mul <- apply(p[,colnames(env$arrows)], 2, range)/apply(env$arrows, 2, range) mul <- min(mul[is.finite(mul) & mul > 0]) env$arrows <- mul * env$arrows } } else { env <- NULL } ## plot polygon for all data plus superpose polygons for each panel if ("polygon" %in% type) { pol <- p[, all.vars(formula)[2:1]] pol <- pol[chull(pol),] } else { pol <- NULL } localXyplot(formula, data = p, panel = panel, aspect = aspect, biplot = env, polygon = pol, type = type, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordixyplot.R
panel.ordi <- function(x, y, biplot, polygon, type = type, ...) { tp <- trellis.par.get() sp <- tp$superpose.symbol ps <- tp$plot.symbol ## ordixyplot passes polygon of all points, but ordisplom does not if ("polygon" %in% type && !missing(polygon)) { ppar <- tp$plot.polygon lpolygon(polygon, col = ppar$col, border = ppar$border, alpha = ppar$alpha, lty = ppar$lty, lwd = ppar$lwd, ...) inpol <- chull(x, y) par <- tp$superpose.polygon lpolygon(x[inpol], y[inpol], col = par$col[1L], border = par$border[1L], alpha = par$alpha[1L], lty = par$lty[1L], lwd = par$lwd[1L], ...) } panel.xyplot(x, y, type = type, ...) if ("biplot" %in% type && !is.null(biplot$arrows)) { panel.arrows(0, 0, biplot$arrows[,2], biplot$arrows[,1], col=sp$col, ...) } if ("biplot" %in% type && !is.null(biplot$centres)) { panel.xyplot(biplot$centres[,2], biplot$centres[,1], col = ps$col, pch = "+", cex = 3*ps$cex, lwd=2, ...) } if ("arrows" %in% type) { panel.superpose(x, y, panel.groups= "panel.ordiarrows", ...) } panel.abline(h=0, lty = 3) panel.abline(v=0, lty = 3) } ## needed for "arrows" %in% type panel.ordiarrows <- function(x, y, subscripts, ends = "last", type = "open", length = 0.25, angle = 30, code = 2, ...) { n <- length(x) col <- trellis.par.get("superpose.line")$col group <- list(...)$group.number if (is.null(group)) col <- col[1] else col = rep(col, len=group)[group] panel.arrows(x[-n], y[-n], x[-1], y[-1], ends = ends, type = "open", length = length, angle = angle, code = code, col = col, lwd = trellis.par.get("superpose.line")$lwd, ) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/panel.ordi.R
`panel.ordi3d` <- function(x, y, z, aspect, ...) { dx <- diff(range(x)) dy <- diff(range(y)) dz <- diff(range(z)) aspect <- c(dy/dx, dz/dx) panel.cloud(x = x, y = y, z = z, aspect = aspect, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/panel.ordi3d.R
`pasteCall` <- function (call, prefix = "Call:") { call.str <- paste(deparse(call), collapse = " ") paste(prefix, call.str, "\n", sep = " ") }
/scratch/gouwar.j/cran-all/cranData/vegan/R/pasteCall.R
`pcnm` <- function(dis, threshold, w, dist.ret = FALSE) { ## square matrix to dist if ((is.matrix(dis) || is.data.frame(dis)) && isSymmetric(unname(as.matrix(dis)))) dis <- as.dist(dis) if (!inherits(dis, "dist")) stop("'dis' does not appear to be distances") if (missing(threshold)) { threshold <- max(spantree(dis)$dist) } dis[dis > threshold] <- 4*threshold ## vegan:::wcmdscale is able to use weights which also means that ## 'k' need not be given, but all vecctors with >0 eigenvalues ## will be found mypcnm <- wcmdscale(dis, eig = TRUE, w=w) res <- list(vectors = mypcnm$points, values = mypcnm$eig, weights = mypcnm$weig) k <- ncol(mypcnm$points) res$vectors <- sweep(res$vectors, 2, sqrt(res$values[seq_len(k)]), "/") if (NCOL(res$vectors)) colnames(res$vectors) <- paste("PCNM", 1:k, sep="") res$threshold <- threshold if (dist.ret) { attr(dis, "method") <- paste(attr(dis, "method"), "pcnm") attr(dis, "threshold") <- threshold res$dist <- dis } class(res) <- "pcnm" res }
/scratch/gouwar.j/cran-all/cranData/vegan/R/pcnm.R
## permatfull function `permatfull` <- function(m, fixedmar="both", shuffle="both", strata=NULL, mtype="count", times=99, ...) { mtype <- match.arg(mtype, c("prab", "count")) shuffle <- match.arg(shuffle, c("ind", "samp", "both")) fixedmar <- match.arg(fixedmar, c("none", "rows", "columns", "both")) m <- as.matrix(m) str <- if (is.null(strata)) 1 else as.integer(as.factor(strata)[drop = TRUE]) levstr <- unique(str) nstr <- length(unique(str)) if (!is.null(strata) && any(table(str) < 2)) stop("strata should contain at least two observations") ALGO <- switch(fixedmar, "none" = "r00", "rows" = "r0", "columns" = "c0", "both" = ifelse(mtype=="prab", "quasiswap", "r2dtable")) if (mtype=="count") { if (fixedmar!="both") ALGO <- paste(ALGO, shuffle, sep="_") } if (is.null(strata)) { tmp <- simulate(nullmodel(m, ALGO), nsim=times, ...) perm <- vector("list", times) for (i in seq_len(times)) perm[[i]] <- tmp[,,i] } else { perm <- vector("list", times) tmp <- vector("list", length(unique(strata))) for (j in seq_len(nstr)) { tmp[[j]] <- simulate(nullmodel(m[strata==levstr[j],], ALGO), nsim=times, ...) } for (i in seq_len(times)) { perm[[i]] <- array(0, dim(m)) for (j in seq_len(nstr)) { perm[[i]][strata==levstr[j],] <- tmp[[j]][,,i] } } } if (fixedmar == "both") shuffle <- NA if (mtype == "prab") m <- ifelse(m > 0, 1, 0) out <- list(call=match.call(), orig=m, perm=perm) attr(out, "mtype") <- mtype attr(out, "ptype") <- "full" attr(out, "method") <- ALGO attr(out, "fixedmar") <- fixedmar attr(out, "times") <- times attr(out, "shuffle") <- shuffle attr(out, "is.strat") <- !is.null(strata) attr(out, "strata") <- str attr(out, "burnin") <- NA attr(out, "thin") <- NA class(out) <- c("permatfull", "permat") out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/permatfull.R
## permatswap function `permatswap` <- function(m, method="quasiswap", fixedmar="both", shuffle="both", strata=NULL, mtype="count", times=99, burnin = 0, thin = 1, ...) { mtype <- match.arg(mtype, c("prab", "count")) fixedmar <- match.arg(fixedmar, c("rows", "columns", "both")) shuffle <- match.arg(shuffle, c("samp", "both")) count <- mtype == "count" m <- as.matrix(m) str <- if (is.null(strata)) 1 else as.integer(as.factor(strata)[drop = TRUE]) levstr <- unique(str) nstr <- length(unique(str)) if (!is.null(strata) && any(table(str) < 2)) stop("strata should contain at least two observations") ## evaluating algo type if (count) { method <- match.arg(method, c("swap", "quasiswap", "swsh", "abuswap")) if (method == "swap") { warning("quantitative swap method may not yield random null models, use only to study its properties") isSeq <- TRUE if (fixedmar != "both") stop("if 'method=\"swap\"', 'fixedmar' must be \"both\"") } else { if (method == "abuswap") { if (fixedmar == "both") stop("if 'method=\"abuswap\"', 'fixedmar' must not be \"both\"") direct <- if (fixedmar == "columns") 0 else 1 isSeq <- TRUE } else { isSeq <- FALSE if (method != "swsh" && fixedmar != "both") stop("'fixedmar' must be \"both\"") } } if (method %in% c("swap", "quasiswap")) ALGO <- paste(method, "count", sep="_") if (method == "abuswap") ALGO <- paste(method, substr(fixedmar, 1, 1), sep="_") if (method == "swsh") { if (fixedmar=="both") stop("if 'method=\"swsh\"', 'fixedmar' must not be \"both\"") ALGO <- if (fixedmar=="none") { paste(method, shuffle, sep="_") } else { paste(method, shuffle, substr(fixedmar, 1, 1), sep="_") } } } else { if (fixedmar != "both") stop("if 'mtype=\"prab\"', 'fixedmar' must be \"both\"") method <- match.arg(method, c("swap", "quasiswap", "tswap", "backtracking")) isSeq <- method != "quasiswap" ALGO <- method } if (is.null(strata)) { tmp <- simulate(nullmodel(m, ALGO), nsim=times, burnin=burnin, thin=thin, ...) perm <- vector("list", times) for (i in seq_len(times)) perm[[i]] <- tmp[,,i] } else { perm <- vector("list", times) tmp <- vector("list", length(unique(strata))) for (j in seq_len(nstr)) { tmp[[j]] <- simulate(nullmodel(m[strata==levstr[j],], ALGO), nsim=times, burnin=burnin, thin=thin, ...) } for (i in seq_len(times)) { perm[[i]] <- array(0, dim(m)) for (j in seq_len(nstr)) { perm[[i]][strata==levstr[j],] <- tmp[[j]][,,i] } } } if (mtype == "prab") m <- ifelse(m > 0, 1, 0) out <- list(call=match.call(), orig=m, perm=perm) attr(out, "mtype") <- mtype attr(out, "ptype") <- "swap" attr(out, "method") <- ALGO attr(out, "fixedmar") <- if (method == "swsh") "none" else fixedmar attr(out, "times") <- times attr(out, "shuffle") <- if (method == "swsh") shuffle else NA attr(out, "is.strat") <- !is.null(strata) attr(out, "strata") <- str attr(out, "burnin") <- burnin attr(out, "thin") <- thin class(out) <- c("permatswap", "permat") out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/permatswap.R
### Functions to extract permutation statististic or null model ### results from various vegan objects. ## extract items as 'statistic' and 'permutations'. Specific methods ## towards the end of this file `permustats` <- function(x, ...) { UseMethod("permustats") } ## something like str() `print.permustats` <- function(x, ...) { print(str(x)) invisible(x) } ### modelled after print.oecosimu (should perhaps have oecosimu() args ### like 'alternative' `summary.permustats` <- function(object, interval = 0.95, alternative, ...) { TAB <- c("two.sided", "greater", "less") if (missing(alternative)) alt <- TAB[match(object$alternative, TAB)] else alt <- match.arg(alternative, TAB, several.ok = TRUE) if (any(is.na(alt))) stop("alternative missing") nstat <- length(object$statistic) nalt <- length(alt) ## Replicate alternative to length of statistic if ((nalt < nstat) && identical(nalt, 1L)) { alt <- rep(alt, length.out = nstat) } compint <- (1 - interval) / 2 PROBS <- list(two.sided = c(compint, 0.5, interval + compint), greater = c(NA, 0.5, interval), less = c(1 - interval, 0.5, NA)) probs <- PROBS[alt] ## take care that permutations are in a column matrix permutations <- as.matrix(object$permutations) object$means <- colMeans(permutations) sd <- apply(permutations, 2, sd) object$z <- (object$statistic - object$means)/sd qFun <- function(i, sim, probs) { quantile(sim[, i], probs = probs[[i]], na.rm = TRUE) } object$quantile <- lapply(seq_along(probs), qFun, sim = permutations, probs = probs) object$quantile <- do.call("rbind", object$quantile) dimnames(object$quantile) <- list(NULL, c("lower", "median", "upper")) object$interval <- interval ## P-values if (is.integer(object$statistic) && is.integer(permutations)) { pless <- rowSums(object$statistic >= t(permutations), na.rm = TRUE) pmore <- rowSums(object$statistic <= t(permutations), na.rm = TRUE) } else { EPS <- sqrt(.Machine$double.eps) pless <- rowSums(object$statistic + EPS >= t(permutations), na.rm = TRUE) pmore <- rowSums(object$statistic - EPS <= t(permutations), na.rm = TRUE) } nsimul <- nrow(permutations) if (any(is.na(permutations))) { warning("some simulated values were NA and were removed") nsimul <- nsimul - colSums(is.na(permutations)) } p <- rep(NA, length(object$statistic)) for(i in seq_along(p)) p[i] <- switch(alt[i], two.sided = 2*pmin(pless[i], pmore[i]), greater = pmore[i], less = pless[i]) object$p <- pmin(1, (p + 1)/(nsimul + 1)) ## out class(object) <- "summary.permustats" object } `print.summary.permustats` <- function(x, ...) { m <- cbind("statistic" = x$statistic, "SES" = x$z, "mean" = x$means, x$quantile, "Pr(perm)" = x$p) cat("\n") printCoefmat(m, tst.ind = 1:(ncol(m)-1), na.print = "", ...) writeLines(strwrap(paste0("(Interval (Upper - Lower) = ", x$interval, ")", sep = ""), initial = "\n")) invisible(x) } ### combine permustats objects. Function checks that statistic field ### is equal (name, value) before proceeding, sees if the alternative ### is equal, and then combines permutations. `c.permustats` <- function(..., recursive = FALSE) { mods <- list(...) ## check stats stats <- lapply(mods, function(z) z$statistic) if (!all(sapply(stats[-1], function(z) identical(stats[[1]], z)))) stop("statistics are not equal") stats <- stats[[1]] ## check alternative alt <- lapply(mods, function(z) z$alternative) if (all(sapply(alt[-1], function(z) identical(alt[[1]], z)))) alt <- alt[[1]] else alt <- NA ## combine permutations p <- do.call(rbind, lapply(mods, function(z) z$permutations)) ## return permustats structure(list(statistic = stats, permutations = p, alternative = alt), class = "permustats") } ### densityplot `densityplot.permustats` <- function(x, data, xlab = "Permutations", ...) { obs <- x$statistic sim <- rbind(x$statistic, as.matrix(x$permutations)) nm <- names(obs)[col(sim)] densityplot( ~ as.vector(sim) | factor(nm, levels = unique(nm)), xlab = xlab, panel = function(x, ...) { panel.densityplot(x, ...) panel.abline(v = obs[panel.number()], ...) }, ...) } ### simple density: normally densityplot should be used (or I suggest ### so), but we also offer basic density. This can be either with or ### without observed statistic. `density.permustats` <- function(x, observed = TRUE, ...) { ## only works with statistic if (length(x$statistic) > 1) stop(gettextf("only works with one statistic: you got %d", length(x$statistic))) p <- x$permutations if (observed) p <- c(x$statistic, p) out <- density(p) out$call <- match.call() out$call[[1]] <- as.name("density") out } ### QQ-plot against Guaussian distribution `qqnorm.permustats` <- function(y, observed = TRUE, ...) { ## only works with statistic if (length(y$statistic) > 1) stop(gettextf("only works with one statistic: you got %d", length(y$statistic))) p <- y$permutations if (observed) p <- c(y$statistic, p) q <- qqnorm(p, ...) if (observed) abline(h = y$statistic, ...) invisible(q) } `qqmath.permustats` <- function(x, data, observed = TRUE, sd.scale = FALSE, ylab = "Permutations", ...) { ## sd.scale: standardize before use if (sd.scale) { x$permutations <- scale(x$permutations) x$statistic <- (x$statistic - attr(x$permutations, "scaled:center"))/ attr(x$permutations, "scaled:scale") } obs <- x$statistic if (observed) sim <- rbind(x$statistic, as.matrix(x$permutations)) else sim <- as.matrix(x$permutations) nm <- names(obs)[col(sim)] qqmath( ~ as.vector(sim) | factor(nm, levels = unique(nm)), ylab = ylab, panel = function(x, ...) { panel.qqmath(x, ...) if (observed) panel.abline(h = obs[panel.number()], ...) }, ...) } ## boxplot for (standardized) effect size: permutations are centred to ## the value of statistic, and optionally standardized to equal sd ## w.r.t. to column mean (not to the statistics). This shows the ## effect size, or the deviation from the observed statistic (= 0). `boxplot.permustats` <- function(x, scale = FALSE, names, ...) { p <- x$permutations if (isTRUE(scale)) scale <- apply(p, 2, sd, na.rm = TRUE) p <- scale(p, center = x$statistic, scale = scale) if (missing(names)) names <- attr(x$statistic, "names") boxplot(p, names = names, ...) } ## pairs plot permuted variables against each other `pairs.permustats` <- function(x, ...) { p <- x$permutations colnames(p) <- attr(x$statistic, "names") pairs(p, ...) } ### ### specific methods to extract permustats ### `permustats.anosim` <- function(x, ...) { structure(list( "statistic" = structure(x$statistic, names = "R"), "permutations" = x$perm, "alternative" = "greater"), class = "permustats") } `permustats.mantel` <- function(x, ...) { structure(list( "statistic" = structure(x$statistic, names = "r"), "permutations" = x$perm, "alternative" = "greater"), class = "permustats") } `permustats.mrpp` <- function(x, ...) { structure(list( "statistic" = structure(x$delta, names = "delta"), "permutations" = x$boot.deltas, "alternative" = "less"), class = "permustats") } `permustats.oecosimu` <- function(x, ...) { structure(list( "statistic" = x$oecosimu$statistic, "permutations" = t(x$oecosimu$simulated), "alternative" = x$oecosimu$alternative), class = "permustats") } `permustats.ordiareatest` <- function(x, ...) { structure(list( "statistic" = x$areas, "permutations" = t(x$permutations), "alternative" = "less"), class = "permustats") } `permustats.permutest.cca` <- function(x, ...) { structure(list( "statistic" = structure(x$F.0, names = x$termlabels), "permutations" = x$F.perm, "alternative" = "greater"), class = "permustats") } `permustats.protest` <- function(x, ...) { structure(list( "statistic" = structure(x$t0, names = "r"), "permutations" = x$t, "alternative" = "greater"), class = "permustats") } ### the following do not return permutation data `permustats.CCorA` <- function(x, ...) { stop("no permutation data available") } `permustats.envfit` <- function(x, ...) { stop("no permutation data available") } `permustats.factorfit` <- function(x, ...) { stop("no permutation data available") } `permustats.vectorfit` <- function(x, ...) { stop("no permutation data available") } `permustats.mso` <- function(x, ...) { stop("no permutation data available") } `permustats.permutest.betadisper` <- function(x, ...) { ntypes <- NCOL(x$perm) alt <- if (ntypes > 1) { c("greater", rep("two.sided", ntypes - 1)) } else { "greater" } structure(list("statistic" = x$statistic, "permutations" = x$perm, "alternative" = alt), class = "permustats") } `permustats.anova.cca` <- function(x, ...) { if (is.null(attr(x, "F.perm"))) stop("no permutation data available") F.perm <- attr(x, "F.perm") k <- !is.na(x$F) F.0 <- x$F[k] structure(list( "statistic" = structure(F.0, names = rownames(x)[k]), "permutations" = F.perm, "alternative" = "greater"), class = "permustats") }
/scratch/gouwar.j/cran-all/cranData/vegan/R/permustats.R
`permutest.betadisper` <- function(x, pairwise = FALSE, permutations = 999, parallel = getOption("mc.cores"), ...) { EPS <- sqrt(.Machine$double.eps) # for P-value comparisons t.statistic <- function(x, y) { m <- length(x) n <- length(y) xbar <- mean(x) ybar <- mean(y) xvar <- var(x) yvar <- var(y) pooled <- sqrt(((m-1)*xvar + (n-1)*yvar) / (m+n-2)) (xbar - ybar) / (pooled * sqrt(1/m + 1/n)) } permFun <- function(idx) { if (!is.matrix(idx)) { dim(idx) <- c(1, length(idx)) } R <- nrow(idx) Fperm <- matrix(nrow = R, ncol = 1) if (pairwise) { # set up object to hold t stats Tperm <- matrix(ncol = n.pairs, nrow = R) Jseq <- seq_len(n.pairs) } rdf <- nobs - p # residual degrees of freedom ## iterate for (i in seq_len(R)) { # iterate take <- idx[i, ] # current permutation from set p.resid <- resids[take] # permute residuals f <- qr.fitted(mod.Q, p.resid) # create new data mss <- sum((f - mean(f))^2) r <- qr.resid(mod.Q, p.resid) rss <- sum(r^2) resvar <- rss / rdf Fperm[i, ] <- (mss / (p - 1)) / resvar ## pairwise tests if(pairwise) { for(j in Jseq) { grp1 <- x$distance[take][group == combin[1, j]] grp2 <- x$distance[take][group == combin[2, j]] Tperm[i, j] <- t.statistic(grp1, grp2) } } } ## bind on pairwise stats if any if (pairwise) { Fperm <- cbind(Fperm, Tperm) } Fperm } if(!inherits(x, "betadisper")) stop("only for class \"betadisper\"") ## will issue error if only a single group mod.aov <- anova(x) nobs <- length(x$distances) ## number of observations mod <- lm(x$distances ~ x$group) mod.Q <- mod$qr p <- mod.Q$rank resids <- qr.resid(mod.Q, x$distances) ## extract groups group <- x$group ## permutations is either a single number, a how() structure or a ## permutation matrix permutations <- getPermuteMatrix(permutations, nobs) nperm <- nrow(permutations) ## pairwise comparisons if(pairwise) { combin <- combn(levels(x$group), 2) # unique pairings n.pairs <- ncol(combin) } ## Parallel processing of permutations if (is.null(parallel)) { parallel <- 1 } hasClus <- inherits(parallel, "cluster") if (hasClus || parallel > 1L) { if (.Platform$OS.type == "unix" && !hasClus) { Pstats <- do.call("rbind", mclapply(seq_len(nperm), function(x) permFun(permutations[x, , drop = FALSE]), mc.cores = parallel)) } else { ## if hasClus, don't set up and top a temporary cluster if (!hasClus) { parallel <- makeCluster(parallel) } Pstats <- parApply(parallel, permutations, 1, function(x) permFun(x)) if (is.null(dim(Pstats))) { Pstats <- matrix(Pstats) # one-column matrix } else { Pstats <- t(Pstats) # transpose statistics to columns } if (!hasClus) { stopCluster(parallel) } } } else { Pstats <- permFun(permutations) } ## Process results F0 <- summary(mod)$fstatistic[1] Fstats <- Pstats[, 1, drop = TRUE] # allow empty dim to be dropped statistic <- F0 names(statistic) <- "Overall (F)" ## pairwise comparisons if(pairwise) { T0 <- apply(combn(levels(group), 2), 2, function(z) { t.statistic(x$distances[group == z[1]], x$distances[group == z[2]])}) Tstats <- Pstats[, -1, drop = FALSE] statistic <- c(statistic, T0) } ## compute permutation p-value pval <- (sum(Fstats >= F0 - EPS) + 1) / (length(Fstats) + 1) if(pairwise) { df <- apply(combin, 2, function(z) { length(x$distances[group == z[1]]) + length(x$distance[group == z[2]]) - 2}) pairp <- (colSums(sweep(abs(Tstats), 2, abs(T0), '>=')) + 1) / (NROW(Tstats) + 1) pairp <- list(observed = 2 * pt(-abs(T0), df), permuted = pairp) tnames <- apply(combin, 2, paste, collapse = "-") names(pairp$observed) <- names(pairp$permuted) <- tnames names(statistic)[-1] <- paste(tnames, "(t)") } else { pairp <- NULL } retval <- cbind(mod.aov[, 1:4], c(nperm, NA), c(pval, NA)) dimnames(retval) <- list(c("Groups", "Residuals"), c("Df", "Sum Sq", "Mean Sq", "F", "N.Perm", "Pr(>F)")) retval <- list(tab = retval, pairwise = pairp, groups = levels(group), statistic = statistic, perm = if (pairwise) { structure(cbind(Fstats, Tstats), dimnames = list(NULL, names(statistic))) } else { structure(Fstats, names = names(statistic)) }, control = attr(permutations, "control")) class(retval) <- "permutest.betadisper" retval }
/scratch/gouwar.j/cran-all/cranData/vegan/R/permutest.betadisper.R
permutest <- function(x, ...) UseMethod("permutest") permutest.default <- function(x, ...) stop("no default permutation test defined") `permutest.cca` <- function (x, permutations = how(nperm=99), model = c("reduced", "direct", "full"), by = NULL, first = FALSE, strata = NULL, parallel = getOption("mc.cores"), ...) { ## do something sensible with insensible input (no constraints) if (is.null(x$CCA)) { sol <- list(call = match.call(), testcall = x$call, model = NA, F.0 = NA, F.perm = NA, chi = c(0, x$CA$tot.chi), num = 0, den = x$CA$tot.chi, df = c(0, nrow(x$CA$u) - max(x$pCCA$QR$rank,0) - 1), nperm = 0, method = x$method, first = FALSE, Random.seed = NA) class(sol) <- "permutest.cca" return(sol) } ## compatible arguments? if (!is.null(by)) { if (first) stop("'by' cannot be used with option 'first=TRUE'") by <- match.arg(by, c("onedf", "terms")) if (by == "terms" && is.null(x$terminfo)) stop("by='terms' needs a model fitted with a formula") } model <- match.arg(model) ## special cases isCCA <- !inherits(x, "rda") # weighting isPartial <- !is.null(x$pCCA) # handle conditions isDB <- inherits(x, c("dbrda")) # only dbrda is distance-based ## C function to get the statististics in one loop getF <- function(indx, E, Q, QZ, effects, first, isPartial, isDB, q, r) { # q is the rank(s) of the effect(s) - 1 # r is the rank of the residual term - 1 if (!is.matrix(indx)) indx <- matrix(indx, nrow = 1) out <- .Call(do_getF, indx, E, Q, QZ, effects, first, isPartial, isDB) p <- length(effects) if (!isPartial && !first) out[, p + 1] <- Chi.tot - rowSums(out[,seq_len(p), drop=FALSE]) if (p > 1) { if (by == "terms") out[, seq_len(p)] <- sweep(out[, seq_len(p), drop = FALSE], 2, q, "/") out <- cbind(out, sweep(out[,seq_len(p), drop=FALSE], 1, out[, p + 1] / r, "/")) } else out <- cbind(out, (out[, 1] / q) / (out[, 2] / r)) out } ## end getF ## wrapper to getF for mcapply getFmcapply <- function(i, permutations, E, Q, QZ, effects, first, isPartial, isDB, q, r) { getF(permutations[i,], E = E, Q = Q, QZ = QZ, effects = effects, first = first, isPartial = isPartial, isDB = isDB, q = q, r = r) } ## wrapper to getF for parRapply getFparRapply <- function(i, E, Q, QZ, effects, first, isPartial, isDB, q, r) { getF(i, E = E, Q = Q, QZ = QZ, effects = effects, first = first, isPartial = isPartial, isDB = isDB, q = q, r = r) } ## QR decomposition Q <- x$CCA$QR if (isPartial) { QZ <- x$pCCA$QR } else { QZ <- NULL } ## statistics: overall tests if (first) { Chi.z <- x$CCA$eig[1] q <- 1 } else { Chi.z <- x$CCA$tot.chi names(Chi.z) <- "Model" q <- x$CCA$qrank } ## effects if (!is.null(by)) { partXbar <- ordiYbar(x, "partial") if (by == "onedf") { effects <- seq_len(q) termlabs <- if (isPartial) colnames(Q$qr)[effects + x$pCCA$QR$rank] else colnames(Q$qr)[effects] } else { # by = "terms" ass <- x$terminfo$assign ## ass was introduced in vegan_2.5-0 if (is.null(ass)) stop("update() old ordination result object") pivot <- Q$pivot if (isPartial) pivot <- pivot[pivot > x$pCCA$QR$rank] - x$pCCA$QR$rank ass <- ass[pivot[seq_len(x$CCA$qrank)]] effects <- cumsum(rle(ass)$length) termlabs <- labels(terms(x$terminfo)) if (isPartial) termlabs <- termlabs[termlabs %in% labels(terms(x))] termlabs <-termlabs[unique(ass)] } q <- diff(c(0, effects)) # d.o.f. if (isPartial) effects <- effects + x$pCCA$QR$rank F.0 <- numeric(length(effects)) for (k in seq_along(effects)) { fv <- qr.fitted(Q, partXbar, k = effects[k]) F.0[k] <- if (isDB) sum(diag(fv)) else sum(fv^2) } } else { effects <- 0 termlabs <- "Model" } ## Set up Chi.xz <- x$CA$tot.chi names(Chi.xz) <- "Residual" r <- nobs(x) - Q$rank - 1 if (model == "full") Chi.tot <- Chi.xz else Chi.tot <- Chi.z + Chi.xz if (is.null(by)) F.0 <- (Chi.z/q)/(Chi.xz/r) else { Chi.z <- numeric(length(effects)) for (k in seq_along(effects)) { fv <- qr.fitted(Q, partXbar, k = effects[k]) Chi.z[k] <- if (isDB) sum(diag(fv)) else sum(fv^2) } Chi.z <- diff(c(0, F.0)) F.0 <- Chi.z/q * r/Chi.xz } ## permutation data E <- switch(model, "direct" = ordiYbar(x, "initial"), "reduced" = ordiYbar(x, "partial"), "full" = ordiYbar(x, "CA")) ## vegan < 2.5-0 cannot use direct model in partial dbRDA if (is.null(E) && isDB && isPartial) stop("'direct' model cannot be used in old partial-dbrda: update() result") ## Save dimensions N <- nrow(E) permutations <- getPermuteMatrix(permutations, N, strata = strata) nperm <- nrow(permutations) ## Parallel processing (similar as in oecosimu) if (is.null(parallel)) parallel <- 1 hasClus <- inherits(parallel, "cluster") if (hasClus || parallel > 1) { if(.Platform$OS.type == "unix" && !hasClus) { tmp <- do.call(rbind, mclapply(seq_len(nperm), getFmcapply, mc.cores = parallel, permutations = permutations, E = E, Q = Q, QZ = QZ, effects = effects, first = first, isPartial = isPartial, isDB = isDB, q = q, r = r)) } else { ## if hasClus, do not set up and stop a temporary cluster if (!hasClus) { parallel <- makeCluster(parallel) } tmp <- parRapply(parallel, permutations, getFparRapply, E = E, Q = Q, QZ = QZ, effects = effects, first = first, isPartial = isPartial, isDB = isDB, q = q, r = r) tmp <- matrix(tmp, nrow = nperm, byrow = TRUE) if (!hasClus) stopCluster(parallel) } } else { tmp <- getF(permutations, E = E, Q = Q, QZ = QZ, effects = effects, first = first, isPartial = isPartial, isDB = isDB, q = q, r = r) } if ((p <- length(effects)) > 1) { num <- tmp[,seq_len(p)] den <- tmp[,p+1] F.perm <- tmp[, seq_len(p) + p + 1] } else { num <- tmp[,1] den <- tmp[,2] F.perm <- tmp[,3, drop=FALSE] } Call <- match.call() Call[[1]] <- as.name("permutest") sol <- list(call = Call, testcall = x$call, model = model, F.0 = F.0, F.perm = F.perm, chi = c(Chi.z, Chi.xz), num = num, den = den, df = c(q, r), nperm = nperm, method = x$method, first = first, termlabels = termlabs) sol$Random.seed <- attr(permutations, "seed") sol$control <- attr(permutations, "control") if (!missing(strata)) { sol$strata <- deparse(substitute(strata)) sol$stratum.values <- strata } class(sol) <- "permutest.cca" sol }
/scratch/gouwar.j/cran-all/cranData/vegan/R/permutest.cca.R
`persp.renyiaccum` <- function(x, theta = 220, col = heat.colors(100), zlim, ...) { dn <- dimnames(x) Sites <- seq(along=dn[[1]]) Scale <- seq(along=dn[[2]]) Diversity <- x[,,"mean"] if (missing(zlim)) zlim <- range(Diversity, 0) if (length(col) > 1) { ind <- Diversity ind <- (ind[-1,-1] + ind[-1,-ncol(ind)] + ind[-nrow(ind),-1] + ind[-nrow(ind),-ncol(ind)])/4 ind <- round((length(col) - 1) * (ind - min(ind))/diff(range(ind)) + 1) col <- col[ind] } persp(Sites, Scale, Diversity, theta = theta, zlim = zlim, col = col, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/persp.renyiaccum.R
persp.tsallisaccum <- function(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...) { persp.renyiaccum(x, theta = theta, phi = phi, col = col, zlim = zlim, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/persp.tsallisaccum.R
`plot.MOStest` <- function(x, which = c(1,2,3,6), ...) { show <- rep(FALSE, 8) show[which] <- TRUE if (show[1]) { X <- x$mod$model$x Y <- x$mod$y xx <- seq(min(X), max(X), len=101) pre <- predict(x$mod, newdata=list(x = xx), se=TRUE) g <- x$mod$family$linkinv fv <- g(pre$fit) hi <- g(pre$fit + 2*pre$se) lo <- g(pre$fit - 2*pre$se) plot(X, Y, ...) matlines(xx, cbind(fv, hi, lo), lty=c(1, 2, 2), lwd=c(2, 1, 1), col=1, ...) } if (show[2]) { ## Covariance ellipse for the coefficients s <- summary(x$mod) k <- coef(s)[2:3, 1:2] ## Fix level to 0.95 (should be changed to an argument?) level = 0.95 if (family(x$mod)$family %in% c("poisson", "binomial")) scale <- sqrt(qchisq(level, 2)) else scale <- sqrt(2 * qf(level, 2, s$df[2])) ci <- veganCovEllipse(s$cov.scaled[2:3, 2:3], k[,1], scale) plot(ci, type="l", lwd=2, xlim=range(ci[,1],0), ylim=range(ci[,2],0), ...) abline(h=0, lty=2, ...) par <- x$hump[c("min", "max")] par[par==0] <- sqrt(.Machine$double.eps) abline(0, -1/2/par[1], ...) abline(0, -1/2/par[2], ...) mul <- qnorm(1 - (1 - level)/2) segments(k[1,1] - k[1,2]*mul, k[2,1], k[1,1]+k[1,2]*mul, k[2,1], lty=3) segments(k[1,1], k[2,1]-k[2,2]*mul, k[1,1], k[2,1]+k[2,2]*mul, lty=3) } if (any(show[-c(1,2)])) { still <- which(show[-c(1,2)]) plot(x$mod, which = still, ...) } invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.MOStest.R
"plot.anosim" <- function (x, title=NULL, ...) { boxplot(x$dis.rank ~ x$class.vec, notch=TRUE, varwidth=TRUE, ...) title(title) if (x$permutations) { pval <- format.pval(x$signif) } else { pval <- "not assessed" } mtext(paste("R = ", round(x$statistic, 3), ", ", "P = ", pval ), 3) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.anosim.R
`plot.betadisper` <- function(x, axes = c(1,2), cex = 0.7, pch = seq_len(ng), col = NULL, lty = "solid", lwd = 1, hull = TRUE, ellipse = FALSE, conf, segments = TRUE, seg.col = "grey", seg.lty = lty, seg.lwd = lwd, label = TRUE, label.cex = 1, ylab, xlab, main, sub, ...) { localAxis <- function(..., col, bg, pch, cex, lty, lwd) axis(...) localBox <- function(..., col, bg, pch, cex, lty, lwd) box(...) localTitle <- function(..., col, bg, pch, cex, lty, lwd) title(...) Ellipse <- function(scrs, centres, conf, col, lty, lwd, ...) { mat <- cov.wt(scrs, center = centres) if (mat$n.obs == 1) mat$cov[] <- 0 xy <- if (mat$n.obs > 1) { veganCovEllipse(mat$cov, mat$center, conf) } else { scrs } ordiArgAbsorber(xy, FUN = lines, col = col, lty = lty, lwd = lwd, ...) } if(missing(main)) main <- deparse(substitute(x)) if(missing(sub)) sub <- paste("method = \"", attr(x, "method"), "\"", sep = "") if(missing(xlab)) xlab <- paste("PCoA", axes[1]) if(missing(ylab)) ylab <- paste("PCoA", axes[2]) t <- if (missing(conf)) { 1 } else { sqrt(qchisq(conf, df = 2)) } g <- scores(x, choices = axes) ng <- length(levels(x$group)) lev <- levels(x$group) ## sort out colour vector if none supplied if (is.null(col)) { col <- palette() } col <- rep_len(col, ng) # make sure there are enough colors seg.col <- rep_len(seg.col, ng) # ditto for segments plot(g$sites, asp = 1, type = "n", axes = FALSE, ann = FALSE, ...) ## if more than 1 group level if(is.matrix(g$centroids)) { for(i in seq_along(lev)) { curlev <- lev[i] take <- x$group == curlev j <- which(lev == curlev) if (segments) { segments(g$centroids[j, 1L], g$centroids[j, 2L], g$sites[take, 1L], g$sites[take, 2L], col = seg.col[i], lty = seg.lty, lwd = seg.lwd) } if(hull) { ch <- chull(g$sites[take,, drop=FALSE]) ch <- c(ch, ch[1]) lines(x$vectors[take, axes, drop=FALSE][ch, ], col = col[i], lty = lty, lwd = lwd, ...) } if (ellipse) { Ellipse(g$sites[take, , drop = FALSE], centres = g$centroids[j, ], conf = t, col = col[i], lty = lty, lwd = lwd, ...) } points(g$centroids[j, , drop = FALSE], pch = 16, cex = 1, col = col[i], ...) } } else { ## single group if (segments) { segments(g$centroids[, 1L], g$centroids[, 2L], g$sites[, 1L], g$sites[, 2L], col = seg.col, lty = seg.lty, ...) } if(hull) { ch <- chull(g$sites) ch <- c(ch, ch[1]) lines(x$vectors[, axes][ch, ], col = col[1L], lty = lty, lwd = lwd, ...) } if (ellipse) { Ellipse(g$sites, centres = g$centroids, conf = t, col = col[1L], lty = lty, lwd = lwd,...) } points(g$centroids[, 1L], g$centroids[, 2L], pch = 16, cex = 1, col = col[1L], ...) } points(g$sites, pch = pch[x$group], cex = cex, col = col[x$group], ...) if (label) { ordilabel(x, display = "centroids", choices = axes, cex = label.cex, col = col) } localTitle(main = main, xlab = xlab, ylab = ylab, sub = sub, ...) localAxis(1, ...) localAxis(2, ...) localBox(...) class(g) <- "ordiplot" invisible(g) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.betadisper.R
`plot.betadiver` <- function (x, ...) { xy <- scores(x, ...) plot(c(0, 1), c(0, sqrt(0.75)), type = "n", axes = FALSE, xlab = "", ylab = "", asp = 1) for (tic in seq(0.2, 0.8, by = 0.2)) { segments(tic, 0, tic/2, sqrt(0.75) * tic, lty = 3) segments(tic/2, sqrt(0.75) * tic, 1 - tic/2, sqrt(0.75) * tic, lty = 3) segments(tic, 0, tic/2 + 0.5, sqrt(0.75) * (1 - tic), lty = 3) } text(c(0, 1, 0.5), c(0, 0, sqrt(0.75)), c("b'", "c'", "a'"), pos = c(2, 4, 3), cex = par("cex.axis"), xpd=TRUE) lines(c(0, 1, 0.5, 0), c(0, 0, sqrt(0.75), 0), xpd = TRUE) points(xy, ...) class(xy) <- "ordiplot" invisible(xy) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.betadiver.R
`plot.cascadeKM` <- function (x, min.g, max.g, grpmts.plot = TRUE, sortg = FALSE, gridcol = NA, ...) { wrapres <- x number <- (as.numeric(gsub(" groups", "", colnames(wrapres$results)))) if (missing(min.g)) min.g <- min(number) if (missing(max.g)) max.g <- max(number) if (min.g < 2) min.g = 2 c.min <- which(number == min.g) c.max <- which(number == max.g) if (length(c.min) == 0) { stop("min.g value given has not been calculated by 'cascadeKM'\n") } if (length(c.max) == 0) { stop("max.g value given has not been calculated by 'cascadeKM'\n") } x <- wrapres$partition[, c.min:c.max] w <- wrapres$results[2, c.min:c.max] criterion <- wrapres$criterion x <- pregraphKM(x) if (sortg) { x <- orderingKM(x) } main = (paste("K-means partitions comparison")) xlab = ("Number of groups in each partition") ylab = ("Objects") nc = ncol(x) colo <- (rainbow(max.g + 1)) if (grpmts.plot) { def.par <- par(no.readonly = TRUE) nf <- layout(matrix(c(1, 2), 1, 2), widths = c(3, 1), TRUE) par(mar = c(5, 5, 5, 1), bg = "white", col = "black") image(1:nrow(x), 1:nc, x, col = colo, yaxt = "n", frame.plot = TRUE, main = main, xlab = ylab, ylab = xlab, bg = NA) grid(nx = nrow(x), ny = max.g - min.g + 1, col = gridcol) box() axis(2, seq(min.g - min.g + 1, max.g - min.g + 1, by = 1), labels = seq(min.g, max.g, by = 1)) axis(1) par(mar = c(5, 2, 5, 1)) par(bg = "white", fg = "black", col = "black") plot(y = min.g:max.g, x = w[1:nc], type = "b", main = paste(criterion, "\ncriterion", sep = ""), ylab = "", ylim = c(min.g - 0.5, max.g + 0.5), yaxs = "i", yaxt = "n", xlab = "Values") grid(nx = NULL, ny = max.g - min.g + 1, col = gridcol) box() axis(2, seq(min.g, max.g, by = 1), labels = seq(min.g, max.g, by = 1), col.axis = "black") axis(1) maxx = which.max(w[]) minx = which.min(w[]) tops <- which(w[c(2:nc)] - w[c(1:(nc - 1))] > 0) + 1 maxx.o <- NA if (length(tops) != 0) { if (length(which(tops > maxx)) != 0) maxx.o <- tops[which(tops > maxx)] } tops <- which(w[c(2:nc)] - w[c(1:(nc - 1))] < 0) + 1 minx.o <- NA if (length(tops) != 0) { if (length(which(tops > minx)) != 0) minx.o <- tops[which(tops > minx)] } if (tolower(criterion) == "calinski") { if (!is.na(maxx.o[1])) points(y = maxx.o + min.g - 1, x = w[maxx.o], col = "orange", pch = 19) points(y = maxx + min.g - 1, x = w[maxx], col = "red", pch = 19) } else if (tolower(criterion) == "likelihood") { if (!is.na(maxx.o[1])) { points(y = maxx.o + min.g - 1, x = w[maxx.o], col = "orange", pch = 19) } points(y = maxx + min.g - 1, x = w[maxx], col = "red", pch = 19) } else if (tolower(criterion) == "ssi") { if (!is.na(maxx.o[1])) { points(y = maxx.o + min.g - 1, x = w[maxx.o], col = "orange", pch = 19) } points(y = maxx + min.g - 1, x = w[maxx], col = "red", pch = 19) } else { cat("When using the", criterion, "criterion, no red marker is", "used to indicate the best value.\n") } par(def.par) } else { tops <- which(w[c(2:nc)] - w[c(1:(nc - 1))] > 0) + 1 if (length(tops) != 0) { maxx <- which.max(w[c(2:nc)] - w[c(1:nc - 1)]) + 1 } else { maxx <- which.max(w[]) tops = 1 } } out <- list(x = x, best.grps = maxx) if (grpmts.plot) invisible(out) else out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.cascadeKM.R
`plot.cca` <- function (x, choices = c(1, 2), display = c("sp", "wa", "cn"), scaling = "species", type, xlim, ylim, const, correlation = FALSE, hill = FALSE, ...) { TYPES <- c("text", "points", "none") ## take care that bp arrows are also returned if only cn given if (any(display %in% c("c","cn"))) display <- c(display, "bp") g <- scores(x, choices, display, scaling, const, correlation = correlation, hill = hill, tidy = FALSE) if (length(g) == 0 || all(is.na(g))) stop("nothing to plot: requested scores do not exist") if (!is.list(g)) g <- list(default = g) ## Take care that there are names for (i in seq_along(g)) { if (length(dim(g[[i]])) > 1) rownames(g[[i]]) <- rownames(g[[i]], do.NULL = FALSE, prefix = substr(names(g)[i], 1, 3)) } if (!is.null(g$centroids)) { if (is.null(g$biplot)) # should never be null if g$centroids exist g$biplot <- scores(x, choices, "bp", scaling) bipnam <- rownames(g$biplot) cntnam <- rownames(g$centroids) g$biplot <- g$biplot[!(bipnam %in% cntnam), , drop = FALSE] if (nrow(g$biplot) == 0) g$biplot <- NULL } if (missing(type)) { nitlimit <- 80 nit <- max(nrow(g$spe), nrow(g$sit), nrow(g$con), nrow(g$def)) if (nit > nitlimit) type <- "points" else type <- "text" } else type <- match.arg(type, TYPES) ## use linestack (and exit) if only one axis was chosen, and ## display includes row or column scores if (length(choices) == 1) { ## Only one set of scores: plot them if (length(g) == 1) pl <- linestack(g[[1]], ...) ## The order of scores is species, sites, constraints, biplot, ## centroids: plot two first in this order, but species scores ## on the left else { hasSpec <- names(g)[1] == "species" ylim <- range(c(g[[1]], g[[2]]), na.rm = TRUE) pl <- linestack(g[[1]], ylim = ylim, side = ifelse(hasSpec, "left", "right"), ...) linestack(g[[2]], ylim = ylim, side = ifelse(hasSpec, "right","left"), add = TRUE, ...) } return(invisible(pl)) } if (missing(xlim)) { xlim <- range(g$species[, 1], g$sites[, 1], g$constraints[, 1], g$biplot[, 1], if (length(g$centroids) > 0 && all(is.na(g$centroids))) NA else g$centroids[, 1], g$default[, 1], na.rm = TRUE) } if (!any(is.finite(xlim))) stop("no finite scores to plot") if (missing(ylim)) { ylim <- range(g$species[, 2], g$sites[, 2], g$constraints[, 2], g$biplot[, 2], if (length(g$centroids) > 0 && all(is.na(g$centroids))) NA else g$centroids[, 2], g$default[, 2], na.rm = TRUE) } plot(g[[1]], xlim = xlim, ylim = ylim, type = "n", asp = 1, ...) abline(h = 0, lty = 3) abline(v = 0, lty = 3) if (!is.null(g$species)) { if (type == "text") text(g$species, rownames(g$species), col = "red", cex = 0.7) else if (type == "points") points(g$species, pch = "+", col = "red", cex = 0.7) } if (!is.null(g$sites)) { if (type == "text") text(g$sites, rownames(g$sites), cex = 0.7) else if (type == "points") points(g$sites, pch = 1, cex = 0.7) } if (!is.null(g$constraints)) { if (type == "text") text(g$constraints, rownames(g$constraints), cex = 0.7, col = "darkgreen") else if (type == "points") points(g$constraints, pch = 2, cex = 0.7, col = "darkgreen") } if (!is.null(g$biplot) && nrow(g$biplot) > 0 && type != "none") { if (length(display) > 1) { mul <- ordiArrowMul(g$biplot) } else mul <- 1 attr(g$biplot, "arrow.mul") <- mul arrows(0, 0, mul * g$biplot[, 1], mul * g$biplot[, 2], length = 0.05, col = "blue") biplabs <- ordiArrowTextXY(mul * g$biplot, rownames(g$biplot)) text(biplabs, rownames(g$biplot), col = "blue") } if (!is.null(g$regression) && nrow(g$regression > 0) && type != "none") { rcol <- "purple4" if (length(display) > 1) { mul <- ordiArrowMul(g$regression) } else mul <- 1 attr(g$regression, "arrow.mul") <- mul arrows(0, 0, mul * g$regression[, 1], mul * g$regression[, 2], length = 0.05, col = rcol) biplabs <- ordiArrowTextXY(mul * g$regression, rownames(g$regression)) text(biplabs, rownames(g$regression), col = rcol) } if (!is.null(g$centroids) && !anyNA(g$centroids) && type != "none") { if (type == "text") text(g$centroids, rownames(g$centroids), col = "blue") else if (type == "points") points(g$centroids, pch = "x", col = "blue") } if (!is.null(g$default) && type != "none") { if (type == "text") text(g$default, rownames(g$default), cex = 0.7) else if (type == "points") points(g$default, pch = 1, cex = 0.7) } class(g) <- "ordiplot" invisible(g) } ## vegan::plot.rda needed because klaR::plot.rda would be used ## instead if klaR package is loaded `plot.rda`<- function(x, ...) { ## not vegan rda? if (!("CA" %in% names(x))) stop(gettextf("%s is not a vegan rda object", sQuote(deparse(substitute(x))))) NextMethod("plot", x, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.cca.R
plot.clamtest <- function(x, xlab, ylab, main, pch=21:24, col.points=1:4, col.lines=2:4, lty=1:3, position="bottomright", ...) { summ <- summary(x) glabel <- summ$labels if (missing(main)) main <- "Species Classification" if (missing(xlab)) xlab <- paste(glabel[2], "(abundance + 1)") if (missing(ylab)) ylab <- paste(glabel[1], "(abundance + 1)") Y <- x[,2] X <- x[,3] minval <- summ$minv ## plot the dots rr <- range(X+1,Y+1) plot(X+1, Y+1, log = "xy", xaxt = "n", yaxt = "n", col=col.points[as.integer(x$Classes)], pch=pch[as.integer(x$Classes)], xlab=xlab, ylab=ylab, main=main, xlim=rr, ylim=rr, ...) axis(1, c(1,10,100,1000,10000)) axis(2, c(1,10,100,1000,10000)) ## too rare threshold Ymin <- minval[[1]][1,2] Xmin <- minval[[2]][1,1] lines(rep(Xmin, 2)+1, c(0, 1)+1, col=col.lines[1], lty=lty[1]) lines(c(0, 1)+1, rep(Ymin, 2)+1, col=col.lines[1], lty=lty[1]) tmp <- approx(c(Xmin, 1), c(1, Ymin)) lines(tmp$x+1, tmp$y+1, col=col.lines[1], lty=lty[1]) ## Y vs. gen threshold lines(minval[[1]]+1, col=col.lines[2], lty=lty[2]) ## X vs. gen threshold lines(minval[[2]]+1, col=col.lines[3], lty=lty[3]) if (!is.null(position)) legend(position, col=col.points, pch=pch, legend=rownames(summ$summary)) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.clamtest.R
plot.contribdiv <- function(x, sub, xlab, ylab, ylim, col, ...) { y <- x[,c(1,3)] if (missing(ylab)) ylab <- paste("Diversity components (", attr(x, "index"), ")", sep = "") if (missing(xlab)) xlab <- "Sites" if (missing(sub)) sub <- paste("Differentiation coefficient = ", round(attr(x, "diff.coef"),3), sep = "") if (missing(ylim)) ylim <- c(0, max(y)) if (missing(col)) col <- c("lightgrey", "darkgrey") matplot(y, type = "n", sub=sub, xlab=xlab, ylab=ylab, axes = FALSE, bty = "n", ...) polygon(c(1,1:nrow(y),nrow(y)), c(0,y$gamma,0), col=col[1]) polygon(c(1,1:nrow(y),nrow(y)), c(0,y$alpha,0), col=col[2]) axis(side = 1) axis(side = 2) box() invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.contribdiv.R
"plot.decorana" <- function (x, choices = c(1, 2), origin = TRUE, display = c("both", "sites", "species", "none"), cex = 0.8, cols = c(1, 2), type, xlim, ylim, ...) { display <- match.arg(display) sites <- x$rproj specs <- x$cproj if (missing(type)) { nitlimit <- 120 nit <- 0 if (display == "sites" || display == "both") nit <- nit + nrow(sites) if (display == "species" || display == "both") nit <- nit + nrow(specs) if (nit > nitlimit) type <- "points" else type <- "text" } else type <- match.arg(type, c("text", "points", "none")) if (origin) { sites <- sweep(x$rproj, 2, x$origin, "-") specs <- sweep(x$cproj, 2, x$origin, "-") } sitnam <- rownames(x$rproj) spenam <- rownames(x$cproj) sites <- sites[, choices] specs <- specs[, choices] ## Use linestack if only one dim was specified (and exit) if (NCOL(sites) == 1 && NCOL(specs) == 1) { pl <- linestack(sites, ylim = range(c(sites, specs), na.rm = TRUE), ...) linestack(specs, side = "left", add = TRUE, ...) return(invisible(pl)) } sp.x <- range(specs[, 1]) sp.y <- range(specs[, 2]) st.x <- range(sites[, 1]) st.y <- range(sites[, 2]) switch(display, both = { if (missing(xlim)) xlim <- range(sp.x, st.x) if (missing(ylim)) ylim <- range(sp.y, st.y) }, sites = { if (missing(xlim)) xlim <- st.x if (missing(ylim)) ylim <- st.y }, species = { if (missing(xlim)) xlim <- sp.x if (missing(ylim)) ylim <- sp.y }, none = { if (missing(xlim)) xlim <- range(sp.x, st.x) if (missing(ylim)) ylim <- range(sp.y, st.y) }) plot(sites, type = "n", xlim = xlim, ylim = ylim, asp = 1, ...) if (origin) { abline(h = 0, lty = 3) abline(v = 0, lty = 3) } else { abline(h = x$origin[choices[2]], lty = 3) abline(v = x$origin[choices[1]], lty = 3) } if (type != "none" && (display == "both" || display == "sites")) { if (type == "text" && !is.null(sitnam)) text(sites, sitnam, cex = cex, col = cols[1]) else points(sites, cex = cex, col = cols[1]) } if (type != "none" && (display == "both" || display == "species")) { if (type == "text" && !is.null(spenam)) text(specs, spenam, cex = cex, col = cols[2]) else points(specs, pch = "+", cex = cex, col = cols[2]) } out <- list(sites = sites, species = specs) class(out) <- "ordiplot" invisible(out) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.decorana.R
`plot.envfit` <- function (x, choices = c(1, 2), labels, arrow.mul, at = c(0, 0), axis = FALSE, p.max = NULL, col = "blue", bg, add = TRUE, ...) { ## get labels labs <- list("v" = rownames(x$vectors$arrows), "f" = rownames(x$factors$centroids)) ## Change labels if user so wishes if (!missing(labels)) { ## input list of "vectors" and/or "factors" if (is.list(labels)) { if (!is.null(labs$v) && !is.null(labels$vectors)) labs$v <- labels$vectors if (!is.null(labs$f) && !is.null(labels$factors)) labs$f <- labels$factors } else { ## input vector: either vectors or factors must be NULL, ## and the existing set of labels is replaced if (!is.null(x$vectors) && !is.null(x$factors)) stop("needs a list with both 'vectors' and 'factors' labels") ## need to handle the case where both sets of labels are NULL ## such as when used with the default interface and single x if (!is.null(x$factors)) labs$f <- labels else labs$v <- labels } } vect <- NULL if (!is.null(p.max)) { if (!is.null(x$vectors)) { take <- x$vectors$pvals <= p.max x$vectors$arrows <- x$vectors$arrows[take, , drop = FALSE] labs$v <- labs$v[take] x$vectors$r <- x$vectors$r[take] if (nrow(x$vectors$arrows) == 0) x$vectors <- vect <- NULL } if (!is.null(x$factors)) { tmp <- x$factors$pvals <= p.max nam <- names(tmp)[tmp] take <- x$factors$var.id %in% nam x$factors$centroids <- x$factors$centroids[take, , drop = FALSE] labs$f <- labs$f[take] if (nrow(x$factors$centroids) == 0) x$factors <- NULL } } if (!is.null(x$vectors)) { vect <- sqrt(x$vectors$r) * x$vectors$arrows[, choices, drop = FALSE] if (missing(arrow.mul)) { if(!add) arrow.mul <- 1 else arrow.mul <- ordiArrowMul(vect, at = at) } if (axis) { maxarr <- round(sqrt(max(x$vectors$r)), 1) ax <- -c(-1, 0, 1) * arrow.mul * maxarr } vect <- arrow.mul * vect vect <- sweep(vect, 2, at, "+") if (add) { vtext <- ordiArrowTextXY(vect, labs$v, rescale = FALSE, at = at, ...) } } if (!add) { plot.new() ## needed for string widths and heights We need dimensions to ## fit completely the names of vectors and factors with no ## clipping at axes. If there are (1) factors and vectors, we ## need to adjust arrow lengths, if there are (2) only factors ## or only vectors, we can use their scores directly. After ## finding the scores, we must expand the scores by string ## widths and heights. The expansion can be only estimated ## after setting plot.window with its xlim and ylim, but we ## need to find xlim and ylim to set the plot.window... if(is.null(vect) || is.null(x$factors)) { ## Only factors or vectors: set preliminary plot.window xstack <- rbind(vect, x$factors$centroids) plot.window(xlim = range(xstack[,1], at[1]), ylim = range(xstack[,2], at[2]), asp = 1, ...) } else { ## Both vectors and factors: set preliminary plot.window ## from factors only and and find arrow.mul (which is ## otherwise ## arrow.mul = 1) plot.window(xlim = range(x$factors$centroids[,1], at[1]), ylim = range(x$factors$centroids[,2], at[2]), asp = 1, ...) ## vfill <- 0.75 arrow.mul <- ordiArrowMul(vect, at = at, fill = 1) vect <- arrow.mul * vect } ## Get string dimensions (width/2, height) sw <- strwidth(c(labs$v, labs$f), ...) / 2 sh <- strheight(c(labs$v, labs$f), ...) ## Reset limits xstack <- rbind(x$factors$centroids, vect) xlim <- range(xstack[,1] + sw, xstack[,2] - sw) ylim <- range(xstack[,2] + sh, xstack[,2] - sh) plot.window(xlim = xlim, ylim = ylim, asp = 1, ...) ## Re-evaluate arrow.mul, set its text and re-evaluate limits again if (!is.null(vect)) { arrow.mul <- ordiArrowMul(vect, at = at, fill = 1) vect <- arrow.mul * vect vtext <- ordiArrowTextXY(vect, labs$v, at = at, rescale = FALSE, ...) sw <- strwidth(labs$v, ...) / 2 sh <- strheight(labs$v, ...) xlim <- range(xlim, vtext[,1] + sw, vtext[,1] - sw) ylim <- range(xlim, vtext[,2] + sh, vtext[,2] - sh) plot.window(xlim = xlim, ylim = ylim, asp = 1, ...) } axis(side = 1, ...) axis(side = 2, ...) box(...) alabs <- colnames(vect) title(..., ylab = alabs[2], xlab = alabs[1]) } if (!is.null(vect)) { arrows(at[1], at[2], vect[, 1], vect[, 2], length = 0.05, col = col) if (missing(bg)) text(vtext, labs$v, col = col, ...) else ordilabel(vtext, labels = labs$v, col = col, fill = bg, ...) } if (!is.null(x$factors)) { if (missing(bg)) text(x$factors$centroids[, choices, drop = FALSE], labs$f, col = col, ...) else ordilabel(x$factors$centroids[, choices, drop = FALSE], labels = labs$f, col = col, fill = bg, ...) } if (axis && !is.null(vect)) { axis(3, at = ax + at[1], labels = c(maxarr, 0, maxarr), col = col) axis(4, at = ax + at[2], labels = c(maxarr, 0, maxarr), col = col) } invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.envfit.R
"plot.fisherfit" <- function(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue", line.col= "red", lwd=2, ...) { freq <- as.numeric(names(x$fisher)) plot(freq, x$fisher, ylab=ylab, xlab=xlab, ylim=c(0,max(x$fisher)), xlim=c(0.5, max(freq)+0.5), type="n", ...) rect(freq-0.5,0,freq+0.5,x$fisher, col=bar.col, ...) alpha <- x$estimate k <- x$nuisance curve(alpha*k^x/x, 1, max(freq), col=line.col, lwd=lwd, add=TRUE, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.fisherfit.R
`plot.isomap` <- function (x, net = TRUE, n.col = "gray", type = "points", ...) { type <- match.arg(type, c("points", "text", "none")) if (!net) { pl <- ordiplot(x, display="sites", type = type, ...) } else { pl <- ordiplot(x, display = "sites", type = "none", ...) z <- scores(pl, "sites") k <- x$net ## recycle colour for points n.col <- rep(n.col, length = nrow(z)) n.col <- col2rgb(n.col)/255 ## get average of colours of connected points n.col <- (n.col[,k[,1]] + n.col[,k[,2]])/2 n.col <- rgb(t(n.col)) segments(z[k[,1],1], z[k[,1],2], z[k[,2],1], z[k[,2],2], col=n.col) if (type == "points") points(pl, "sites", ...) else if (type == "text") ordilabel(pl, ...) } invisible(pl) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.isomap.R
`plot.mantel.correlog` <- function(x, alpha=0.05, ...) { lim <- max(x$n.tests) plot(x$mantel.res[1:lim,1],x$mantel.res[1:lim,3], xlab="Distance class index", ylab="Mantel correlation", pch=22) if(x$mult == "none") { signif <- which((x$mantel.res[1:lim,4] <= alpha)) } else { signif <- which((x$mantel.res[1:lim,5] <= alpha)) } lines(x$mantel.res[1:lim,1], x$mantel.res[1:lim,3]) points(x$mantel.res[1:lim,1], x$mantel.res[1:lim,3], pch=22, bg="white") points(x$mantel.res[signif,1], x$mantel.res[signif,3], pch=22, bg="black") abline(a=0, b=0, col="red") invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.mantel.correlog.R
`plot.meandist` <- function(x, kind = c("dendrogram", "histogram"), cluster = "average", ylim, axes = TRUE, ...) { kind <- match.arg(kind) n <- attr(x, "n") if (kind == "dendrogram") { cl <- hclust(as.dist(x), method = cluster, members = n) cl <- as.dendrogram(cl, hang = 0) w <- diag(x)[labels(cl)] tr <- unlist(dendrapply(cl, function(n) attr(n, "height"))) root <- attr(cl, "height") if (missing(ylim)) ylim <- range(c(w, tr, root), na.rm = TRUE) plot(cl, ylim = ylim, leaflab = "none", axes = axes, ...) seqw <- seq_along(w) for (i in seqw) { segments(i, tr[i], i, w[i]) } pos <- ifelse(w < tr, 1, 3) pos[is.na(pos)] <- 1 w[is.na(w)] <- tr[is.na(w)] text(seqw, w, labels = labels(cl), pos = pos, srt = 0, xpd = TRUE, ...) } else { w <- diag(x) seqw <- seq_along(w) tr <- rep(summary(x)$B, length(w)) if (missing(ylim)) ylim <- range(c(w, tr), na.rm = TRUE) plot(seqw, tr, ylim = ylim, axes = FALSE, xlab = "", ylab = "", type = "l", ...) if (axes) axis(2, ...) for (i in seqw) segments(i, tr, i, w[i]) pos <- ifelse(w < tr, 1, 3) pos[is.na(pos)] <- 1 text(seqw, w, labels = names(n), pos = pos, srt = 0, xpd = TRUE, ...) } }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.meandist.R
`plot.metaMDS` <- function (x, display = c("sites","species"), choices = c(1, 2), type = "p", shrink = FALSE, ...) { x <- scores(x, display = display, choices = choices, shrink = shrink) ordiplot(x, display = display, type = type, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.metaMDS.R
### plot() methods for those nested* functions that return sufficient ### data to draw a plot. We display a plot using image() with coloured ### rectangles for occurrences or colours dependent on the ### contribution to the nestedness when appropriate. `plot.nestedtemp` <- function (x, kind = c("temperature", "incidence"), col = rev(heat.colors(100)), names = FALSE, ...) { kind <- match.arg(kind) if (kind == "temperature") z <- x$u else z <- x$comm z <- t(z[nrow(z):1, ]) image(z, axes = FALSE, col = col, ...) box() lines(x$smooth$x, 1 - x$smooth$y) if (length(names) == 1) names <- rep(names, 2) if (names[1]) { axis(2, at = seq(1, 0, len = nrow(x$u)), labels = rownames(x$u), las = 2, ...) } if (names[2]) { axis(3, at = seq(0, 1, len = ncol(x$u)), labels = colnames(x$u), las = 2, ...) } } `plot.nestednodf` <- function(x, col = "red", names = FALSE, ...) { z <- x$comm z <- t(z[nrow(z):1,]) if (length(col) == 1) col <- c(NA, col) image(z, axes = FALSE, col = col, ...) box() if (length(names) == 1) names <- rep(names, 2) if (names[1]) { axis(2, at = seq(1, 0, len = ncol(z)), labels = rev(colnames(z)), las = 2, ...) } if (names[2]) { axis(3, at = seq(0, 1, len = nrow(z)), labels = rownames(z), las = 2, ...) } }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.nestedtemp.R
plot.ordipointlabel <- function (x, ...) { plot(x$points, pch = x$args$pch, cex = x$args$pcex, col = x$args$pcol, bg = x$args$pbg, asp = 1, ...) font <- attr(x$labels, "font") if (is.null(font)) font <- par("font") text(x$labels, rownames(x$labels), cex = x$args$tcex, col = x$args$tcol, font = font, ...) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.ordipointlabel.R
`plot.ordisurf` <- function(x, what = c("contour","persp","gam"), add = FALSE, bubble = FALSE, col = "red", cex = 1, nlevels = 10, levels, labcex = 0.6, lwd.cl = par("lwd"), ...) { what <- match.arg(what) y <- x$model$y x1 <- x$model$x1 x2 <- x$model$x2 X <- x$grid$x Y <- x$grid$y Z <- x$grid$z force(col) force(cex) if(isTRUE(all.equal(what, "contour"))) { if(!add) { if(bubble) { if (is.numeric(bubble)) cex <- bubble cex <- (y - min(y))/diff(range(y)) * (cex-0.4) + 0.4 } plot(x1, x2, asp = 1, cex = cex, ...) } if (missing(levels)) levels <- pretty(range(x$grid$z, finite = TRUE), nlevels) contour(X, Y, Z, col = col, add = TRUE, levels = levels, labcex = labcex, drawlabels = !is.null(labcex) && labcex > 0, lwd = lwd.cl) } else if(isTRUE(all.equal(what, "persp"))) { persp(X, Y, Z, col = col, cex = cex, ...) } else { class(x) <- class(x)[-1] plot(x, ...) ##col = col, cex = cex, ...) class(x) <- c("ordisurf", class(x)) } invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.ordisurf.R
`plot.orditkplot` <- function(x, ...) { op <- par(x$par) on.exit(par(op)) plot(x$points, pch = x$args$pch, cex = x$args$pcex, col = x$args$pcol, bg = x$args$pbg, xlim = x$args$xlim, ylim = x$args$ylim, asp=1) font <- attr(x$labels, "font") if (is.null(font)) font <- par("font") text(x$labels, rownames(x$labels), cex = x$args$tcex, col = x$args$tcol, font = font) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.orditkplot.R
## S3 plot method for permat `plot.permat` <- function(x, type = "bray", ylab, xlab, col, lty, lowess=TRUE, plot=TRUE, text=TRUE, ...) { type <- match.arg(type, c("bray", "chisq")) if (missing(xlab)) xlab <- "Runs" if (missing(col)) col <- c(2,4) if (missing(lty)) lty <- c(1,2) n <- attr(x, "times") toplot <- numeric(n) if (type == "bray") { toplot <- summary(x)$bray if (missing(ylab)) ylab <- "Bray-Curtis dissimilarity" } if (type == "chisq") { toplot <- summary(x)$chisq if (missing(ylab)) ylab <- "Chi-squared" } if (plot) { plot(toplot,type="n",ylab=ylab,xlab=xlab, ...) lines(toplot,col=col[1], lty=lty[1]) if (lowess) lines(lowess(toplot),col=col[2], lty=lty[2]) if (text) title(sub=paste("(mean = ", substitute(z, list(z=round(mean(toplot),3))), ", min = ", substitute(z, list(z=round(min(toplot),3))), ", max = ", substitute(z, list(z=round(max(toplot),3))), ")", sep="")) } invisible(toplot) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.permat.R
`plot.poolaccum` <- function(x, alpha = 0.05, type = c("l","g"), ...) { m <- summary(x, alpha = alpha, ...) n <- nrow(m[[1]]) Size <- as.vector(sapply(m, function(x) c(x[,1], x[,1], rev(x[,1])))) Richness <- as.vector(sapply(m, function(x) c(x[,2], x[,3], rev(x[,4]))) ) indnames <- as.character(sapply(m, function(x) colnames(x[,2, drop=FALSE]))) Index <- factor(rep(indnames, each = 3 * n), levels = indnames) lintype <- rep(c(rep("aver", n), rep("envel", 2*n)), length=length(Size)) xyplot(Richness ~ Size | Index, as.table = TRUE, groups = lintype, type = type, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.poolaccum.R
`plot.prc` <- function (x, species = TRUE, select, scaling = "symmetric", axis = 1, correlation = FALSE, const, type = "l", xlab, ylab, ylim, lty = 1:5, col = 1:6, pch, legpos, cex = 0.8, ...) { ## save level names before getting the summary levs <- x$terminfo$xlev[[2]] x <- summary(x, axis = axis, scaling = scaling, const, correlation = correlation) oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) b <- t(coef(x)) xax <- rownames(b) if (missing(xlab)) xlab <- x$names[1] if (missing(ylab)) ylab <- "Effect" if (!missing(select)) x$sp <- .checkSelect(select, x$sp) if (missing(ylim)) ylim <- if (species) range(b, x$sp, na.rm = TRUE) else range(b, na.rm = TRUE) if (species) { op <- par("mai") mrg <- max(strwidth(names(x$sp), cex = cex, units = "in")) + strwidth("mmm", cex = cex, units = "in") par(mai = c(op[1:3], max(op[4], mrg))) } if (missing(pch)) pch <- as.character(1:nrow(b)) matplot(xax, b, type = type, xlab = xlab, ylab = ylab, ylim = ylim, cex = cex, lty = lty, col = col, pch = pch, ...) abline(h = 0, col = "gray") if (species) { linestack(x$sp, at = par("usr")[2], add = TRUE, hoff = 1, cex = cex, ...) rug(x$sp, side = 4) } if (missing(legpos)) { holes <- abs(par("usr")[3:4] - range(b, na.rm = TRUE)) if (holes[1] > holes[2]) legpos <- "bottomleft" else legpos <- "topleft" } if (!is.na(legpos)) { nl <- length(levs) pp <- type %in% c("b", "p") pl <- type %in% c("b", "l") if (length(lty) == 1) lty <- rep(lty, nl-1) legend(legpos, legend = levs, col = c("gray", col), lty = if (pl) lty[c(1,1:(nl-1))], pch = if (pp) pch, cex = cex, title = x$names[2]) } invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.prc.R
### Similar plotting functions as plot.prestonfit/fisherfit, but only ### for the data without the fitted models. These can be used with the ### result of as.preston(), as.fisher(). ## as plot.prestonfit, but plots only the bars of as.preston() `plot.preston` <- function (x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue", ...) { freq <- x oct <- as.numeric(names(freq)) noct <- max(oct) + 1 plot(oct, freq, type = "n", ylim = c(0, max(freq)), xlim = c(-1, max(oct)), ylab = ylab, xlab = xlab, axes = FALSE, ...) axis(2) axis(1, at = 0:noct, labels = 2^(0:noct)) box() rect(oct - 1, 0, oct, freq, col = bar.col, ...) invisible() } `lines.preston` <- function(x, xadjust = 0.5, ...) { oct <- as.numeric(names(x)) - xadjust lines(oct, x, ...) } ## as plot.fisherfit, but plots only the bars of as.fisherfit `plot.fisher` <- function(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue", kind = c("bar", "hiplot", "points", "lines"), add = FALSE, ...) { kind <- match.arg(kind) freq <- as.numeric(names(x)) if (!add) plot(freq, x, ylab=ylab, xlab=xlab, ylim=c(0,max(x)), xlim=c(0.5, max(freq)+0.5), type="n", ...) switch(kind, "bar" = rect(freq-0.5,0,freq+0.5,x, col=bar.col, ...), "hiplot" = points(freq, x, col =bar.col, type = "h", ...), "points" = points(freq, x, col =bar.col, ...), "lines" = lines(freq, x, col =bar.col, ...) ) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.preston.R
"plot.prestonfit" <- function (x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue", line.col = "red", lwd = 2, ...) { freq <- x$freq oct <- as.numeric(names(freq)) noct <- max(oct) + 1 plot(oct, freq, type = "n", ylim = c(0, max(freq)), xlim = c(-1, max(oct)), ylab = ylab, xlab = xlab, axes = FALSE, ...) axis(2) axis(1, at = 0:noct, labels = 2^(0:noct)) box() rect(oct - 1, 0, oct, freq, col = bar.col, ...) p <- x$coefficients curve(p[3] * exp(-(x - p[1])^2/2/p[2]^2), -1, max(oct), add = TRUE, col = line.col, lwd = lwd, ...) segments(p["mode"], 0, p["mode"], p["S0"], col = line.col, ...) segments(p["mode"] - p["width"], p["S0"] * exp(-0.5), p["mode"] + p["width"], p["S0"] * exp(-0.5), col = line.col, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.prestonfit.R
"plot.procrustes" <- function (x, kind = 1, choices = c(1,2), to.target = TRUE, type = "p", xlab, ylab, main, ar.col = "blue", length = 0.05, cex = 0.7, ...) { type <- match.arg(type, c("points", "text", "none")) if (to.target) { tails <- x$Yrot[, choices] heads <- x$X[, choices] } else { tails <- x$X[, choices] heads <- x$Yrot[, choices] } if (missing(main)) main <- "Procrustes errors" if (kind <= 1) { if (missing(xlab)) xlab <- paste("Dimension", choices[1]) if (missing(ylab)) ylab <- paste("Dimension", choices[2]) xrange <- range(tails[, 1], heads[, 1]) yrange <- range(tails[, 2], heads[, 2]) plot(xrange, yrange, xlab = xlab, ylab = ylab, main = main, type = "n", asp = 1, ...) if (kind > 0) { abline(v = 0, lty = 2) abline(h = 0, lty = 2) if (ncol(x$rotation) == 2) { ## Draw rotated axes only if they visibly differ from ## unrotated axes b <- abs(x$rotation[1,1]) EPS <- 1e-8 if (1 - b > EPS && b > EPS) { rot <- x$rotation abline(0, rot[1,2]/rot[1,1], lty = 1) abline(0, rot[2,2]/rot[2,1], lty = 1) } else { abline(v = 0, h = 0) } } else { Y <- x$Yrot %*% t(x$rotation) for (k in 1:ncol(Y)) { tmp <- matrix(0, nrow=2, ncol = ncol(Y)) tmp[,k] <- range(Y[,k]) tmp <- tmp %*% x$rotation lines(tmp[,choices], lty=1) text(tmp[2,choices[1]], tmp[2,choices[2]], as.character(k)) } } if (type != "none") { ow <- options(warn = -1) arrows(tails[, 1], tails[, 2], heads[, 1], heads[, 2], col = ar.col, length = length, ...) options(ow) if (type == "text" && !is.null(rownames(tails))) ordilabel(tails, cex = cex, ...) else points(tails, cex = cex, ...) } } out <- list(heads = heads, points = tails) class(out) <- "ordiplot" } else if (kind == 2) { if (missing(xlab)) xlab <- "Index" if (missing(ylab)) ylab <- "Procrustes residual" res <- residuals(x) q <- quantile(res) plot(res, type = "h", xlab = xlab, ylab = ylab, main = main, ...) abline(h = q[2:4], lty = c(2, 1, 2)) out <- list(sites = cbind(seq(along = res), res)) class(out) <- "ordiplot" } invisible(out) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.procrustes.R
"plot.rad" <- function(x, xlab="Rank", ylab="Abundance", log = "y", ...) { rnk <- seq(along=x) plot(rnk, x, log=log, xlab=xlab, ylab=ylab, ...) out <- list(species = cbind(rnk, x)) class(out) <- "ordiplot" invisible(out) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.rad.R
`plot.radfit` <- function (x, BIC = FALSE, legend = TRUE, ...) { if (length(x$y) == 0) stop("no species, nothing to plot") ## if 'type = "n"', do not add legend (other types are not ## supported) type <- match.call(expand.dots = FALSE)$...$type if (is.null(type)) type <- "" out <- plot(x$y, ...) if (length(x$y) == 1) return(invisible(out)) fv <- fitted(x) if (BIC) k = log(length(x$y)) else k = 2 emph <- which.min(sapply(x$models, AIC, k = k)) lwd <- rep(1, ncol(fv)) lwd[emph] <- 3 matlines(fv, lty = 1, lwd = lwd, ...) if (legend && type != "n") { nm <- names(x$models) legend("topright", legend = nm, lty = 1, lwd = lwd, col = 1:6) } invisible(out) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.radfit.R
"plot.radfit.frame" <- function (x, order.by, BIC = FALSE, model, legend = TRUE, as.table = TRUE, ...) { modnam <- names(x[[1]]$models) if (!missing(model)) pick <- pmatch(model, modnam, nomatch = FALSE) else pick <- FALSE pickmod <- function(x, pick, BIC) { if (pick) return(pick) else { k <- if (BIC) log(length(x$y)) else 2 which.min(AIC(x, k)) } } Nhm <- length(x) Abundance <- unlist(lapply(x, function(x) x$y)) Rank <- unlist(lapply(x, function(x) if (length(x$y) > 0) seq_along(x$y) else NULL)) Site <- unlist(lapply(x, function(x) length(x$y))) N <- Site sitenames <- names(Site) Site <- rep(names(Site), Site) if (missing(order.by)) order.by <- 1:Nhm else order.by <- order(order.by) Site <- factor(Site, levels = sitenames[order.by]) fit <- unlist(lapply(x, function(x) as.matrix(fitted(x))[, pickmod(x, pick, BIC)])) take <- sapply(x, function(x) pickmod(x, pick, BIC)) take <- rep(take, N) cols <- trellis.par.get("superpose.line")$col cols <- cols[seq_along(cols)] if (legend) { mykey <- list(text = list(text = modnam), lines = list(lty = 1, col = cols[seq_along(modnam)], lwd = 2), columns = 3) } else { mykey <- NULL } tics <- function(x = max(Abundance), z = min(Abundance)) { ii <- round(c(log10(z), log10(x))) x10 <- 10^(ii[1]:ii[2]) if (length(x10) < 3) x10 <- c(outer(c(1, 2, 5), x10)) else if (length(x10) < 6) x10 <- c(outer(c(1, 3), x10)) x10[x10 <= x & x10 >= z] } out <- xyplot(Abundance ~ Rank | Site, subscripts = TRUE, as.table = as.table, key = mykey, scales = list(y = list(log = 10, at = tics())), panel = function(x, y, subscripts) { panel.xyplot(x, y, ...) panel.xyplot(x, log10(fit[subscripts]), type = "l", col = cols[take[min(subscripts)]], lwd = 2, ...) }, ...) out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.radfit.frame.R
"plot.radline" <- function (x, xlab = "Rank", ylab = "Abundance", type = "b", ...) { rad <- x$y fit <- fitted(x) rnk <- seq(along = rad) plot(rnk, rad, log = "y", xlab = xlab, ylab = ylab, type = "n", ...) out <- NULL if (type == "b" || type == "p") out <- points(x, ...) if (type == "b" || type == "l") lines(x, ...) invisible(out) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.radline.R
`plot.renyi` <- function(x, ...) { if (inherits(x, "data.frame")) { plt <- factor(rep(rownames(x), ncol(x)), levels=rownames(x)) alp <- factor(rep(colnames(x), each=nrow(x)), levels=colnames(x)) div <- as.vector(as.matrix(x)) df <- data.frame(diversity=div, plot=plt, alpha=alp) lo <- tapply(div, alp, min) hi <- tapply(div, alp, max) med <- tapply(div, alp, median) } else { df <- data.frame(diversity = x, alpha = factor(names(x), levels=names(x)), plot = "plot") lo <- hi <- med <- NA } cl <- trellis.par.get("superpose.line")$col bwplot(diversity ~ alpha | plot, data=df, panel = function(x, y, ...) { panel.lines(x, lo, lty=2, col=cl[3]) panel.lines(x, med, lty=2, col=cl[2]) panel.lines(x, hi, lty=2, col=cl[3]) panel.xyplot(x, y, ...) }, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.renyi.R
`plot.renyiaccum` <- function (x, what=c("Collector", "mean", "Qnt 0.025", "Qnt 0.975"), type = "l", ...) { what <- what[what %in% dimnames(x)[[3]]] if (any(what %in% dimnames(x)[[3]])) x <- x[,,what, drop = FALSE] dm <- dim(x) dnam <- dimnames(x) lin <- rep(dnam[[3]], each=dm[1]*dm[2]) Sites <- rep(1:dm[1], len=prod(dm)) alp <- factor(dnam[[2]], levels=dnam[[2]]) alpha <- rep(rep(alp, each=dm[1]), len=prod(dm)) Diversity <- as.vector(x) xyplot(Diversity ~ Sites | alpha, groups=lin, type=type, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.renyiaccum.R
`plot.spantree` <- function (x, ord, cex = 0.7, type = "p", labels, dlim, FUN = sammon, ...) { FUNname <- deparse(substitute(FUN)) FUN <- match.fun(FUN) n <- x$n if (missing(ord)) { d <- cophenetic(x) if (any(d<=0)) d[d<=0] <- min(d>0)/10 if (!missing(dlim)) d[d > dlim ] <- dlim if (n > 2) { ## sammon needs extra care, for other cases we just try FUN(d) if (FUNname == "sammon") { y <- cmdscale(d) dup <- duplicated(y) if (any(dup)) y[dup, ] <- y[dup,] + runif(2*sum(dup), -0.01, 0.01) ord <- FUN(d, y = y) } else ord <- FUN(d) } else ord <- cbind(seq_len(n), rep(0,n)) } ord <- scores(ord, display = "sites", ...) ordiArgAbsorber(ord, asp = 1, type = "n", FUN = "plot", ...) lines(x, ord, ...) if (type == "p" || type == "b") ordiArgAbsorber(ord, cex = cex, FUN = "points", ...) else if (type == "t") { if (missing(labels)) labels <- x$labels x <- scores(ord, display = "sites", ...) ordiArgAbsorber(x, labels = labels, cex = cex, FUN = "ordilabel", ...) } ord <- list(sites = ord) class(ord) <- "ordiplot" invisible(ord) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.spantree.R
`plot.specaccum` <- function(x, add = FALSE, random = FALSE, ci = 2, ci.type = c("bar","line","polygon"), col = par("fg"), lty = 1, ci.col = col, ci.lty = 1, ci.length = 0, xlab, ylab = x$method, ylim, xvar = c("sites", "individuals", "effort"), ...) { if(random && !(x$method %in% c("random", "collector"))) stop("random = TRUE can be used only with method='random'") if(x$method == "collector") random <- TRUE xvar <- match.arg(xvar) ## adjust weights to number of sites if (random && !is.null(x$weights) && xvar == "sites") { n <- length(x$effort) adj <- n/x$effort[n] } else { adj <- 1 } xaxvar <- x[[xvar]] if (missing(xlab)) xlab <- paste(toupper(substring(xvar, 1, 1)), substring(xvar, 2), sep="") if (random) ci <- FALSE ci.type <- match.arg(ci.type) if (!add) { if (missing(ylim)) if (random) ylim <- c(min(1, x$perm), max(x$perm, na.rm = TRUE)) else ylim <- c(min(1, x$richness), max(x$richness, x$richness + ci*x$sd, na.rm = TRUE)) plot(xaxvar, x$richness, xlab=xlab, ylab=ylab, ylim=ylim, type="n", ...) } if (!is.null(x$sd) && ci) switch(ci.type, bar = {k <- x$sd > sqrt(.Machine$double.eps) arrows(xaxvar[k], (x$richness - ci*x$sd)[k], xaxvar[k], (x$richness + ci*x$sd)[k], col=ci.col, lty=ci.lty, length = ci.length, angle = 90, code = 3, ...)}, line = matlines(xaxvar, x$richness + t(rbind(-ci,ci) %*% x$sd), col=ci.col, lty=ci.lty, ...), polygon = polygon(c(xaxvar, rev(xaxvar)), c(x$richness - ci*x$sd, rev(x$richness + ci*x$sd)), col=ci.col, lty=ci.lty, ...) ) if (random) { if (is.null(x$weights)) { for(i in seq_len(NCOL(x$perm))) lines(xaxvar, x$perm[,i], col=col, ...) } else { for(i in seq_len(NCOL(x$perm))) lines(x$weights[,i]*adj, x$perm[,i], col=col, ...) } } else lines(xaxvar, x$richness, col=col, lty = lty, ...) invisible() } `lines.specaccum` <- function(x, ...) { plot(x, add = TRUE, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.specaccum.R
`plot.taxondive` <- function (x, ...) { plot(x$Species, x$Dplus, xlab="Number of Species", ylab=expression(Delta^"+"), ...) i <- order(x$Species) abline(h=x$EDplus, ...) lines(x$Species[i], x$EDplus - 2*x$sd.Dplus[i], ...) lines(x$Species[i], x$EDplus + 2*x$sd.Dplus[i], ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.taxondive.R
"plot.varpart" <- function(x, ...) { plot(x$part, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.varpart.R
"plot.varpart234" <- function(x, cutoff = 0, digits = 1, ...) { vals <- x$indfract[, 3] is.na(vals) <- vals < cutoff if (cutoff >= 0) vals <- round(vals, digits+1) labs <- format(vals, digits=digits, nsmall=digits+1) labs <- gsub("NA", "", labs) showvarparts(x$nsets, labs, ...) if (any(is.na(vals))) mtext(paste("Values <", cutoff," not shown", sep=""), 1) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/plot.varpart234.R
`points.cca` <- function (x, display = "sites", choices = c(1, 2), scaling = "species", arrow.mul, head.arrow = 0.05, select, const, axis.bp = FALSE, correlation = FALSE, hill = FALSE, ...) { if (length(display) > 1) stop("only one 'display' item can be added in one command") pts <- scores(x, choices = choices, display = display, scaling = scaling, const, correlation = correlation, hill = hill, tidy=FALSE) if (!missing(select)) pts <- .checkSelect(select, pts) if (display == "cn") { cnam <- rownames(pts) points(pts, ...) pts <- scores(x, choices = choices, display = "bp", scaling = scaling, const, correlation = correlation, hill = hill) bnam <- rownames(pts) pts <- pts[!(bnam %in% cnam), , drop = FALSE] if (nrow(pts) == 0) return(invisible()) else display <- "bp" } if (display %in% c("bp", "reg", "re", "r")) { if (missing(arrow.mul)) { arrow.mul <- ordiArrowMul(pts) } pts <- pts * arrow.mul arrows(0, 0, pts[, 1], pts[, 2], length = head.arrow, ...) pts <- pts * 1.1 if (axis.bp) { axis(3, at = c(-arrow.mul, 0, arrow.mul), labels = rep("", 3)) axis(4, at = c(-arrow.mul, 0, arrow.mul), labels = c(-1, 0, 1)) } return(invisible()) } points(pts, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.cca.R
"points.decorana" <- function (x, display=c("sites", "species"), choices=1:2, origin = TRUE, select, ...) { display <- match.arg(display) x <- scores(x, display = display, choices = choices, origin = origin, ...) if (!missing(select)) x <- .checkSelect(select, x) ordiArgAbsorber(x, FUN = points, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.decorana.R
"points.metaMDS" <- function (x, display = c("sites", "species"), choices = c(1, 2), shrink = FALSE, select, ...) { display <- match.arg(display) x <- scores(x, display = display, choices = choices, shrink = shrink) if (!missing(select)) x <- .checkSelect(select, x) points(x, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.metaMDS.R
`points.ordiplot` <- function (x, what, select, arrows = FALSE, ...) { sco <- scores(x, what) if (!missing(select)) sco <- .checkSelect(select, sco) ## draw adjusted arrows automatically for biplot scores scoatt <- attr(sco, "score") if (!is.null(scoatt) && scoatt %in% c("biplot", "regression")) { arrows = TRUE sco <- sco * ordiArrowMul(sco) } ## draw arrows when requested, also for "species" etc if (arrows) { arrows(0, 0, sco[,1], sco[,2], ...) } else { points(sco, ...) } invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.ordiplot.R
`points.orditkplot` <- function(x, pch = x$args$pch, cex = x$args$pcex, col = x$args$pcol, bg = x$args$pbg, ...) { points(x$points, pch = pch, cex = cex, col = col, bg = bg, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.orditkplot.R
`points.procrustes` <- function(x, display = c("target","rotated"), choices = c(1,2), truemean = FALSE, ...) { display <- match.arg(display) X <- if (display == "target") x$X else x$Yrot X <- X[, choices, drop = FALSE] if (truemean) X <- sweep(X, 2, x$xmean[choices], "+") ordiArgAbsorber(X, FUN = points, ...) invisible() } `text.procrustes` <- function(x, display = c("target","rotated"), choices = c(1,2), labels, truemean = FALSE, ...) { display <- match.arg(display) X <- if (display == "target") x$X else x$Yrot X <- X[, choices, drop = FALSE] if (truemean) X <- sweep(X, 2, x$xmean[choices], "+") if (missing(labels)) labels <- rownames(X) ordiArgAbsorber(X, labels = labels, FUN = text, ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.procrustes.R
`points.radline` <- function (x, ...) { poi <- x$y rnk <- seq(along = poi) points(rnk, poi, ...) out <- list(species = cbind(rnk, poi)) class(out) <- "ordiplot" invisible(out) } `points.radfit` <- function(x, ...) { points.radline(x, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/points.radline.R
`poolaccum` <- function(x, permutations = 100, minsize = 3) { x <- as.matrix(x) n <- nrow(x) m <- ncol(x) N <- seq_len(n) ## specpool() is slow, but the vectorized versions below are ## pretty fast. We do not set up parallel processing, but use ## permute API. permat <- getPermuteMatrix(permutations, n) nperm <- nrow(permat) S <- chao <- boot <- jack1 <- jack2 <- matrix(0, nrow=n, ncol=nperm) for (i in 1:nperm) { ## It is a bad practice to replicate specpool equations here: ## if we change specpool, this function gets out of sync. You ## should be ashamed, Jari Oksanen! take <- permat[i,] tmp <- apply(x[take,] > 0, 2, cumsum) S[,i] <- rowSums(tmp > 0) ## All-zero species are taken as *known* to be missing in ## subsamples, and in the following we subtract them (as ## 2*S-m) from the bootstrap samples to give a more unbiased ## estimate. boot[,i] <- 2*S[,i] - m + rowSums(exp(sweep(log1p(-sweep(tmp, 1, N, "/")), 1, N, "*") )) a1 <- rowSums(tmp == 1) a2 <- rowSums(tmp == 2) chao[, i] <- S[,i] + ifelse(a2 > 0, (N-1)/N*a1*a1/2/a2, (N-1)/N*a1*(a1-1)/2) jack1[,i] <- S[,i] + a1 * (N-1)/N jack2[,i] <- S[,i] + a1*(2*N-3)/N - a2*(N-2)^2/N/(N-1) } means <- cbind(`N` = N, `S` = rowMeans(S), `Chao` = rowMeans(chao), `Jackknife 1` = rowMeans(jack1), `Jackknife 2` = rowMeans(jack2), `Bootstrap` = rowMeans(boot)) take <- N >= minsize out <- list(S = S[take,], chao = chao[take,], jack1 = jack1[take,], jack2 = jack2[take,], boot = boot[take,], N = N[take], means = means[take,]) attr(out, "control") <- attr(permat, "control") class(out) <- "poolaccum" out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/poolaccum.R
`postMDS` <- function (X, dist, pc = TRUE, center = TRUE, halfchange, threshold = 0.8, nthreshold = 10, plot = FALSE, ...) { Size <- attr(dist, "Size") if (any(names(X) == "points")) x <- X$points else x <- as.matrix(X) if (center) x <- scale(x, scale = FALSE) if (pc) { dn <- dimnames(x) x <- prcomp(x, center = center)$x dimnames(x) <- dn } ## Check halfchange scaling, if not explicitly defined maxdist <- attr(dist, "maxdist") if (missing(halfchange)) { ## play safe: if 'maxdist' is missing or NA, skip halfchange ## scaling. vegdist sets attr maxdist, and for other distfuns, ## metaMDSdist tries to find maxdist. Dissimilarity input may ## not have this attribute and are not halfchange scaled. if (!is.null(maxdist) && !is.na(maxdist) && is.numeric(maxdist)) halfchange <- TRUE else halfchange <- FALSE } if (halfchange) { dist <- as.vector(dist) ordi <- as.vector(vegdist(x, "euclidean")) ## adjust threshold to maxdist if available if (!is.numeric(maxdist)) warning("halfchange requested, but ceiling distance is unknown, using ", threshold) else { threshold <- maxdist * threshold ## something fishy - similarities instead of distances? if (threshold < sqrt(.Machine$double.eps)) warning("dubious maxdist ", maxdist, ": similarities instead of dissimilarities?") } take <- dist < threshold if (sum(take) < nthreshold) { warning("skipping half-change scaling: too few points below threshold") halfchange <- FALSE } else { k <- coef(lm(dist[take] ~ ordi[take])) names(k) <- NULL hc <- (1 - k[1])/2/k[2] x <- x/hc } } if (!halfchange) { hc <- max(dist(x, "euclidean"))/max(dist, na.rm = TRUE) x <- x/hc } if (plot && halfchange) { cross.lim <- 45 if (Size > cross.lim) pch <- "." else pch <- "+" orange <- range(c(ordi, 0, 1)) drange <- range(c(dist, 0, 1)) plot(orange, drange, type = "n", xlab = "Ordination distance", ylab = "Community dissimilarity") ## Colours in default palette: 2 = red, 4 = blue, 8 = gray. points(ordi[take], dist[take], pch = pch, col = 4) points(ordi[!take], dist[!take], pch = pch, col = 8) abline(h = threshold) abline(h = k[1]) hclevel <- (1 - k[1])/2 + k[1] segments(0, hclevel, hc, hclevel, col = 2, lwd = 2) arrows(hc, hclevel, hc, 0, col = 2, lwd = 2) arrows(0, k[1], 0, hclevel, col = 2, code = 3) arrows(0, hclevel, 0, 1, col = 2, code = 3) j <- 0.02 text(0 + j, threshold + j, "Threshold", adj = c(0, 0)) text(0 + j, k[1] + j, "Replicate dissimilarity", adj = c(0, 0)) text(0 + j, hclevel + j, "Half-change", adj = c(0, 0)) abline(k, col = 4, lwd = 2) } attr(x, "centre") <- center attr(x, "pc") <- pc attr(x, "halfchange") <- halfchange attr(x, "internalscaling") <- hc if (any(names(X) == "points")) X$points <- x else X <- x X }
/scratch/gouwar.j/cran-all/cranData/vegan/R/postMDS.R
`prc` <- function (response, treatment, time, ...) { extras <- match.call(expand.dots = FALSE)$... if (is.null(extras$data)) data <- parent.frame() else data <- eval(extras$data) y <- deparse(substitute(response)) x <- deparse(substitute(treatment)) z <- deparse(substitute(time)) oldcon <- options(contrasts = c("contr.treatment", "contr.poly")) on.exit(options(oldcon)) fla <- as.formula(paste("~", x, "+", z)) mf <- model.frame(fla, data, na.action = na.pass) if (!all(sapply(mf, is.factor))) stop(gettextf("%s and %s must be factors", x, z)) if (any(sapply(mf, is.ordered))) stop(gettextf("%s or %s cannot be ordered factors", x, z)) fla.zx <- as.formula(paste("~", z, ":", x)) fla.z <- as.formula(paste("~", z)) # delete first (control) level from the design matrix X = model.matrix(fla.zx, mf)[,-c(seq_len(nlevels(time)+1))] Z = model.matrix(fla.z, mf)[,-1] mod <- rda(response ~ X + Condition(Z), ...) mod$terminfo$xlev = list(levels(time), levels(treatment)) names(mod$terminfo$xlev) = c(paste(z), paste(x)) mod$call <- match.call() class(mod) <- c("prc", class(mod)) mod }
/scratch/gouwar.j/cran-all/cranData/vegan/R/prc.R
`predict.cca` <- function (object, newdata, type = c("response", "wa", "sp", "lc", "working"), rank = "full", model = c("CCA", "CA"), scaling = "none", hill = FALSE, ...) { type <- match.arg(type) model <- match.arg(model) if (model == "CCA" && is.null(object$CCA)) model <- "CA" take <- object[[model]]$rank if (take == 0) stop(gettextf("model '%s' has rank 0", model)) if (rank != "full") take <- min(take, rank) rs <- object$rowsum cs <- object$colsum gtot <- object$grand.tot u <- object[[model]]$u[, 1:take, drop = FALSE] v <- object[[model]]$v[, 1:take, drop = FALSE] w <- object[[model]]$wa[, 1:take, drop = FALSE] if (is.null(w)) w <- u slam <- diag(sqrt(object[[model]]$eig[1:take]), nrow = take) ## process scaling arg, scaling used later so needs to be a numeric scaling <- scalingType(scaling = scaling, hill = hill) if (type %in% c("response", "working")) { Xbar <- 0 if (!missing(newdata)) { if (NROW(u) == NROW(newdata)) u <- predict(object, type = if(model == "CCA") "lc" else "wa", newdata = newdata, rank = take) else warning(gettextf("'newdata' ignored: it must have the same number of rows as the original community data with type = '%s'", type)) } if (take > 0) Xbar <- u %*% slam %*% t(v) rc <- outer(rs, cs) if (type == "response") out <- (Xbar + 1) * rc * gtot else # type == "working" out <- Xbar * sqrt(rc) } else if (type == "lc") { if (model == "CA") stop("'lc' scores not available for unconstrained ordination") if (!missing(newdata)) { if (is.null(object$terminfo)) E <- as.matrix(newdata) else { d <- ordiParseFormula(formula(object), newdata, object$terminfo$xlev) E <- cbind(d$Z, d$Y) } E <- sweep(E, 2, c(object$pCCA$envcentre, object$CCA$envcentre), "-") Q <- object[[model]]$QR p1 <- Q$pivot[1:Q$rank] u <- E[, p1, drop = FALSE] %*% coef(object)[p1, , drop = FALSE] u <- u[, 1:take, drop = FALSE] } out <- u if (scaling) { # implicit conversion "none" == 0 == FALSE scal <- list(diag(slam), 1, sqrt(diag(slam)))[[abs(scaling)]] out <- sweep(out, 2, scal, "*") if (scaling < 0) { scal <- sqrt(1/(1 - diag(slam)^2)) out <- sweep(out, 2, scal, "*") } } } else if (type == "wa") { if (!missing(newdata)) { if (!is.null(object$pCCA)) stop("no 'wa' scores available (yet) in partial CCA") nm <- rownames(v) if (!is.null(nm)) { # Got rownames: keep only species with scores if (!all(nm %in% colnames(newdata))) stop("'newdata' does not have named columns matching one or more the original columns") newdata <- newdata[, nm, drop = FALSE] } else { #Rownames are NULL: still try to remove exclude.spec exclude.spec <- attr(object[[model]]$v, "na.action") if (!is.null(exclude.spec)) Xbar <- Xbar[, -exclude.spec] } Xbar <- as.matrix(newdata) rs <- rowSums(Xbar) Xbar <- (Xbar - outer(rs, cs))/sqrt(outer(rs, cs)) v <- sweep(v, 1, sqrt(cs), "*") w <- sweep(Xbar %*% v, 1, sqrt(rs), "/") w <- sweep(w, 2, diag(slam), "/") } out <- w if (scaling) { # implicit conversion "none" == 0 == FALSE scal <- list(diag(slam), 1, sqrt(diag(slam)))[[abs(scaling)]] out <- sweep(out, 2, scal, "*") if (scaling < 0) { scal <- sqrt(1/(1 - diag(slam)^2)) out <- sweep(out, 2, scal, "*") } } } else if (type == "sp") { if (!missing(newdata)) { nm <- rownames(u) if (!is.null(nm)) { if (!all(nm %in% rownames(newdata))) stop("'newdata' does not have named rows matching one or more of the original rows") newdata <- newdata[nm, , drop = FALSE] } Xbar <- as.matrix(newdata) cs <- colSums(Xbar) Xbar <- (Xbar - outer(rs, cs))/sqrt(outer(rs, cs)) if (!is.null(object$pCCA)) Xbar <- qr.resid(object$pCCA$QR, Xbar) u <- sweep(u, 1, sqrt(rs), "*") v <- sweep(t(Xbar) %*% u, 1, sqrt(cs), "/") v <- sweep(v, 2, diag(slam), "/") } out <- v if (scaling) { # implicit conversion "none" == 0 == FALSE scal <- list(1, diag(slam), sqrt(diag(slam)))[[abs(scaling)]] out <- sweep(out, 2, scal, "*") if (scaling < 0) { scal <- sqrt(1/(1 - diag(slam)^2)) out <- sweep(out, 2, scal, "*") } } } out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.cca.R
### prediction mainly fails with detrended (and rescaled) analysis ### beyond axis 1 or with 'newdata'. It could be possible to work out ### approximate prediction, but that would require orthogonalizing the ### scores and using additive eigenvalues (evals.ortho): see ### decorana() for orthogonalization. `predict.decorana` <- function (object, newdata, type = c("response", "sites", "species"), rank = 4, ...) { type <- match.arg(type) u <- object$rproj[, 1:rank, drop = FALSE] v <- object$cproj[, 1:rank, drop = FALSE] orig <- object$origin[1:rank] u <- sweep(u, 2, orig, "-") v <- sweep(v, 2, orig, "-") rs <- object$aidot cs <- object$adotj tot <- sum(rs) rs <- rs/tot cs <- cs/tot lam <- object$evals[1:rank] if (type == "response") { if (!object$ira && rank > 1) stop("prediction is unavailable in detrended CA beyond first axis") Xbar <- 0 if (rank > 0) { if (!object$ira) { tmp <- sweep(v, 1, sqrt(cs), "*") tmp <- rbind(tmp, sweep(u, 1, sqrt(rs), "*")) rot <- svd(tmp)$v v <- v %*% rot u <- u %*% rot fac <- colSums(sweep(v^2, 1, cs, "*")) lam <- (fac - 1)/fac } Xbar <- u %*% diag(1 - lam, nrow = rank) %*% t(v) } out <- (Xbar + 1) * outer(rs, cs) * tot } else if (type == "sites") { if (!missing(newdata)) { Xbar <- as.matrix(newdata) if (!is.null(object$v)) Xbar <- sweep(Xbar, 2, object$v, "*") rs <- rowSums(Xbar) Xbar <- (Xbar - outer(rs, cs))/sqrt(outer(rs, cs)) v <- sweep(v, 1, sqrt(cs), "*") u <- sweep(Xbar %*% v, 1, sqrt(rs), "/") } out <- u } else if (type == "species") { if (!missing(newdata)) { if (!object$ira && rank > 1) stop("type = 'species' not available in detrended CA with 'newdata'") if (object$iresc) stop("type = 'species' not available in rescaled DCA with 'newdata'") Xbar <- as.matrix(newdata) cs <- colSums(Xbar) Xbar <- (Xbar - outer(rs, cs))/sqrt(outer(rs, cs)) u <- sweep(u, 1, sqrt(rs), "*") v <- sweep(t(Xbar) %*% u, 1, sqrt(cs), "/") v <- sweep(v, 2, lam, "/") } out <- v } out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.decorana.R
### fitspecaccum returns fitted nls() models in item models. Here we ### provide interfaces for some "nls" class support functions, and ### others can be used in the similar way. `predict.fitspecaccum` <- function(object, newdata, ...) { mods <- object$models if (!missing(newdata)) { newdata <- drop(as.matrix(newdata)) if (length(dim(newdata)) > 1) stop("function accepts only one variable as 'newdata'") drop(sapply(mods, predict, newdata = data.frame(x = newdata), ...)) } else { drop(sapply(mods, predict, ...)) } } `AIC.fitspecaccum` <- function(object, ..., k = 2) { sapply(object$models, AIC, k = k, ...) } `deviance.fitspecaccum` <- function(object, ...) { sapply(object$models, deviance, ...) } `logLik.fitspecaccum` <- function(object, ...) { out <- sapply(object$models, logLik, ...) ## sapply() strips attributes: get'em back attr(out, "df") <- 1L + length(coef(object$models[[1L]])) attr(out, "nobs") <- nobs(object$models[[1L]]) class(out) <- "logLik" out } `nobs.fitspecaccum` <- function(object, ...) { sapply(object$models, nobs, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.fitspecaccum.R
"predict.humpfit" <- function(object, newdata = NULL, ...) { if (is.null(newdata)) return(fitted(object)) else { p <- coef(object) x <- unlist(newdata) x <- ifelse(x < p[1], x/p[1], p[1]*p[1]/x/x) fv <- p[3]*log(1 + p[2]*x/p[3]) } fv }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.humpfit.R
### predict method for radline, radfit & radfit.frame ### All functions take 'newdata' argument which need not be integer: ### the functions can interpolate, but not necessarily extrapolate, or ### the extrapolations may be NaN. `predict.radline` <- function(object, newdata, total, ...) { ## newdata can be ranks if (missing(newdata)) x <- seq_along(object$y) else x <- drop(as.matrix(newdata)) ## total number of individuals in the community if (missing(total)) total <- sum(object$y) ## adjustment for chagned total in call adj <- total/sum(object$y) nobs <- length(object$y) p <- coef(object) switch(object$model, ## linear interpolation, no extrapolation `Brokenstick` = approx(seq_len(nobs), object$fitted.values, x, ...)$y * adj, `Preemption` = exp(log(total) + log(p) + log(1 - p)*(x-1)), ## NaN when rank outside proportional rank 0...1 `Log-Normal` = { slope <- diff(range(ppoints(nobs)))/(nobs-1) intcpt <- 0.5 - slope * (nobs + 1) / 2 xnorm <- -qnorm(intcpt + slope * x) exp(p[1] + p[2]*xnorm)*adj }, `Zipf` = exp(log(total) + log(p[1]) + p[2]*log(x)), `Zipf-Mandelbrot` = exp(log(total) + log(p[1]) + p[2]*log(x + p[3])) ) } `predict.radfit`<- function(object, ...) { sapply(object$models, predict, ...) } `predict.radfit.frame` <- function(object, ...) { lapply(object, predict, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.radline.R
### predict.rda handles rda plus distance-based capscale and ### dbrda. Distance-based methods have some limitations: ### ### - type = "response" returns dissimilarities (and ignores imaginary dims) ### - Euclidean distances type = "working" give type = "response" ### - there are no meaningful species scores ### - WA scores with newdata cannot be calculated in capscale. ### - only type = "response", "working" and "lc" work with dbrda ### - only type = "lc" can be used with newdata with dbrda `predict.rda` <- function (object, newdata, type = c("response", "wa", "sp", "lc", "working"), rank = "full", model = c("CCA", "CA"), scaling = "none", correlation = FALSE, const, ...) { ## not vegan rda, but intended for klaR:::predict.rda? if (!("CA" %in% names(object))) stop(gettextf("%s is not a vegan rda object", sQuote(deparse(substitute(object))))) type <- match.arg(type) model <- match.arg(model) if (model == "CCA" && is.null(object$CCA)) model <- "CA" if (inherits(object, "dbrda")) take <- object[[model]]$poseig else take <- object[[model]]$rank if (take == 0) stop(gettextf("model '%s' has rank 0", model)) if (rank != "full") take <- min(take, rank) if (!inherits(object, "dbrda")) { ## the ifs are only needed to cope with pre-2.5-0 vegan: now ## we always have Ybar, but earlier we needed to check whether ## we had CA or CCA Xbar if (!is.null(object$Ybar)) { cent <- attr(object$Ybar, "scaled:center") scal <- attr(object$Ybar, "scaled:scale") } else { # needed for vegan-2.4 compatibility if (is.null(object$CCA)) tmp <- object$CA$Xbar else tmp <- object$CCA$Xbar cent <- attr(tmp, "scaled:center") scal <- attr(tmp, "scaled:scale") } scaled.PCA <- !is.null(scal) } nr <- nobs(object) - 1 u <- object[[model]]$u[, 1:take, drop = FALSE] w <- object[[model]]$wa[, 1:take, drop = FALSE] if (is.null(w)) w <- u if (!inherits(object, "dbrda")) { v <- object[[model]]$v[, 1:take, drop = FALSE] } ## process scaling arg, scaling used later so needs to be a numeric scaling <- scalingType(scaling = scaling, correlation = correlation) if (type %in% c("wa","sp","lc")) { slam <- sqrt(object[[model]]$eig[1:take]/object$tot.chi) if (scaling && missing(const)) const <- sqrt(sqrt((nobs(object)-1) * object$tot.chi)) } else { slam <- diag(sqrt(object[[model]]$eig[1:take]), nrow = take) } if (type %in% c("response", "working")) { if (!missing(newdata)) { u <- predict(object, type = if(model == "CCA") "lc" else "wa", newdata = newdata, rank = take) } if (inherits(object, c("capscale", "dbrda"))) { if (take > 0) { out <- u %*% slam if (type == "response") { out <- dist(out) if (!is.null(object$ac)) { if (object$add == "lingoes") out <- sqrt(out^2 - 2 * object$ac) else if (object$add == "cailliez") out <- out - object$ac else stop("unknown euclidifying adjustment") } if (object$sqrt.dist) out <- out^2 } } } else { if (take > 0) out <- u %*% slam %*% t(v) else { out <- matrix(0, nrow = nrow(u), ncol = nrow(v)) rownames(out) <- rownames(u) colnames(out) <- rownames(v) } if (type == "response") { if (!is.null(scal)) out <- sweep(out, 2, scal, "*") out <- out * sqrt(nr) out <- sweep(out, 2, cent, "+") } } } else if (type == "lc") { if (model == "CA") stop("'lc' scores not available for unconstrained ordination") if (!missing(newdata)) { if (is.null(object$terminfo)) E <- as.matrix(newdata) else { d <- ordiParseFormula(formula(object), newdata, object$terminfo$xlev) E <- cbind(d$Z, d$Y) } Q <- object[[model]]$QR p1 <- Q$pivot[1:Q$rank] E <- sweep(E, 2, c(object$pCCA$envcentre, object$CCA$envcentre), "-") u <- E[, p1, drop = FALSE] %*% coef(object)[p1, , drop = FALSE] u <- u[, 1:take, drop = FALSE] } out <- u if (scaling) { # implicit coercion 0 == FALSE, other == TRUE lam <- list(slam, 1, sqrt(slam))[[abs(scaling)]] out <- const * sweep(out, 2, lam, "*") } } else if (type == "wa") { if (!missing(newdata)) { if (inherits(object, c("capscale", "dbrda"))) stop(gettextf("'wa' scores not available in %s with 'newdata'", object$method)) if (!is.null(object$pCCA)) stop("no 'wa' scores available (yet) in partial RDA") nm <- rownames(v) if (!is.null(nm)) { if (!all(nm %in% colnames(newdata))) stop("'newdata' does not have named columns matching one or more the original columns") newdata <- newdata[, nm, drop = FALSE] } Xbar <- as.matrix(newdata) Xbar <- sweep(Xbar, 2, cent, "-") Xbar <- Xbar / sqrt(nr) if (!is.null(scal)) { nz <- scal > 0 Xbar[,nz] <- sweep(Xbar[,nz], 2, scal[nz], "/") } w <- Xbar %*% v w <- sweep(w, 2, slam, "/") / sqrt(object$tot.chi) } out <- w if (scaling) { # implicit coercion 0 == FALSE, other == TRUE lam <- list(slam, 1, sqrt(slam))[[abs(scaling)]] out <- const * sweep(out, 2, lam, "*") } } else if (type == "sp") { if (inherits(object, "capscale")) warning("'sp' scores may be meaningless in 'capscale'") if (inherits(object, "dbrda")) stop("'sp' scores are not available in 'dbrda'") if (!missing(newdata)) { nm <- rownames(u) if (!is.null(nm)) { if (!all(nm %in% rownames(newdata))) stop("'newdata' does not have named rows matching one or more of the original rows") newdata <- newdata[nm, , drop = FALSE] } Xbar <- as.matrix(newdata) Xbar <- scale(Xbar, center = TRUE, scale = scaled.PCA) Xbar <- Xbar/sqrt(nr) if (!is.null(object$pCCA)) Xbar <- qr.resid(object$pCCA$QR, Xbar) v <- t(Xbar) %*% u v <- sweep(v, 2, slam, "/") / sqrt(object$tot.chi) } out <- v if (scaling) { # implicit coercion 0 == FALSE, other == TRUE lam <- list(1, slam, sqrt(slam))[[abs(scaling)]] out <- const * sweep(out, 2, lam, "*") if (scaling < 0) { # correlation=TRUE out <- out / object$colsum out <- out * sqrt(object$tot.chi / (nobs(object)-1)) } } } out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.rda.R
`predict.specaccum` <- function(object, newdata, interpolation = c("linear", "spline"), ...) { if (missing(newdata)) out <- object$richness else { interpolation <- match.arg(interpolation) newdata <- drop(as.matrix(newdata)) if (length(dim(newdata)) > 1) stop("function accepts only one variable as 'newdata'") ## Estimation uses lchoose(), but for predict we need to ## estimates on non-integer sample sizes and therefore we use ## lgamma(). Original "rarefaction" used sample sizes rounded ## to integers, but here we can use non-integer data and hence ## get different results. if (object$method %in% c("exact", "rarefaction")) { lg <- function(n, k) { ifelse(k <= n, lgamma(pmax(n, 0) + 1) - lgamma(k+1) - lgamma(pmax(n-k, 0) + 1), -Inf) } if (object$method == "exact") n <- length(object$sites) else { n <- sum(object$freq) newdata <- newdata / length(object$sites) * n } ldiv <- lg(n, newdata) out <- numeric(length(ldiv)) for(i in seq_along(newdata)) { out[i] <- sum(1 - exp(lg(n-object$freq, newdata[i]) - ldiv[i])) } } else if (object$method == "coleman") { ## "coleman" also works on non-integer newdata n <- length(object$sites) out <- sapply(newdata, function(x) sum(1 - (1 - x/n)^object$freq)) } else { ## Other methods do not accept non-integer newdata, but we ## can interpolate if (interpolation == "linear") out <- approx(x = object$sites, y = object$richness, xout = newdata, rule = 1)$y else out <- spline(x = object$sites, y = object$richness, xout = newdata, ...)$y } } out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/predict.specaccum.R
`pregraphKM` <- function(matrice) { `row.col.number` <- function(mat,number){ nr<-nrow(mat) nc<-ncol(mat) mod<-number %% nr div<-number/nr ##First column if(mod!=0 & div>1){ nr.f<-mod nc.f<-trunc(div)+1 }else{ if(div<=1){ nc.f<-1 nr.f<-number }else{ if(mod==0){ nc.f<-div nr.f<-nr } } } list(nr=nr.f,nc=nc.f) } ## Beginning of the function for(k in 1:(ncol(matrice)-1)){ i=1 j=1 tmp<-0 while(j <= max(matrice[,k])){ if(i==1){ mat<-table(matrice[,k],matrice[,k+1]) number<-which.max(mat) tmp<-row.col.number(mat,number) tmp0<-tmp ## Change les indices if(tmp$nr!=tmp$nc){ find.nc<-which(matrice[,k+1]==tmp$nc) find.nr<-which(matrice[,k+1]==tmp$nr) matrice[find.nc,k+1]<-tmp$nr matrice[find.nr,k+1]<-tmp$nc }else{} i=2 }else{ mat<-table(matrice[,k],matrice[,k+1]) mat[tmp0$nr,]<-0 mat[,tmp0$nr]<-0 number<-which.max(mat) tmp<-row.col.number(mat,number) ## Change les indices if(tmp$nr!=tmp$nc){ find.nc<-which(matrice[,k+1]==tmp$nc) find.nr<-which(matrice[,k+1]==tmp$nr) matrice[find.nc,k+1]<-tmp$nr matrice[find.nr,k+1]<-tmp$nc }else{} tmp0$nr<-c(tmp0$nr,tmp$nr) } j=j+1 } } matrice }
/scratch/gouwar.j/cran-all/cranData/vegan/R/pregraphKM.R
`prepanel.ordi3d` <- function(xlim = xlim, ylim = ylim, zlim = zlim, aspect = c(1,1), ...) { aspect = c(diff(ylim)/diff(xlim), diff(zlim)/diff(xlim)) prepanel.default.cloud(xlim = xlim, ylim = ylim, zlim = zlim, aspect = aspect, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/prepanel.ordi3d.R
`prestondistr` <- function (x, truncate = -1, ...) { fun <- function(par, x, truncate) { up <- dnorm(x, par[1], par[2], log = TRUE) dn <- pnorm(truncate, par[1], par[2], lower.tail = FALSE) -sum(up - log(dn)) } x <- x[x > 0] logx <- log2(x) p <- c(mean(logx), sd(logx)) sol <- optim(p, fun, x = logx, truncate = truncate) p <- sol$par area <- pnorm(truncate, p[1], p[2], lower.tail = FALSE) scale <- length(x)/sqrt(2 * pi)/p[2]/area p <- c(p, scale) oct <- as.preston(x, ...) x <- as.numeric(names(oct)) fit <- p[3] * exp(-(x - p[1])^2/2/p[2]^2) names(p) <- c("mode", "width", "S0") out <- list(freq = oct, fitted = fit, coefficients = p) out$method <- "maximized likelihood to log2 abundances" class(out) <- "prestonfit" out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/prestondistr.R
`prestonfit` <- function (x, tiesplit = TRUE, ...) { x <- as.preston(x, tiesplit = tiesplit) oct <- as.numeric(names(x)) fit <- glm(x ~ oct + I(oct^2), family = if (tiesplit) quasipoisson else poisson) fv <- fitted(fit) p <- coef(fit) if (!is.na(p[3]) && p[3] < 0) { mu <- -p[2]/2/p[3] sd <- sqrt(-1/2/p[3]) S0 <- exp(p[1] - p[2]^2/4/p[3]) p <- c(mu, sd, S0) } else { p <- rep(NA, 3) } names(p) <- c("mode", "width", "S0") out <- list(freq = unclass(x), fitted = fv, coefficients = p) out$method = "Poisson fit to octaves" if(tiesplit) out$method <- paste("Quasi-", out$method, sep="") class(out) <- c("prestonfit") out }
/scratch/gouwar.j/cran-all/cranData/vegan/R/prestonfit.R
`print.CCorA` <- function(x, ...) { cat("\nCanonical Correlation Analysis\n") cat("\nCall:\n") cat(deparse(x$call), "\n\n") out <- structure(rbind(x$Mat.ranks), dimnames = list("Matrix Ranks", c("Y", "X"))) print(out, ...) cat("\n") cat("Pillai's trace: ", format(x$Pillai, ...), "\n") cat("\n") cat("Significance of Pillai's trace:\n") cat("from F-distribution: ", format.pval(x$p.Pillai), "\n") if (x$nperm > 0) { cat("based on permutations: ") cat(x$p.perm,"\n") cat(howHead(x$control), "\n") } out <- rbind("Eigenvalues" = x$EigenValues, "Canonical Correlations" = x$CanCorr) colnames(out) <- colnames(x$Cy) printCoefmat(out, ...) cat("\n") out <- rbind("RDA R squares" = x$RDA.Rsquares, "adj. RDA R squares" = x$RDA.adj.Rsq) colnames(out) <- c("Y | X", "X | Y") printCoefmat(out, ...) cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.CCorA.R
`print.MOStest` <- function(x, ...) { cat("\nMitchell-Olds and Shaw test\n") cat("Null: hump of a quadratic linear predictor is at min or max\n") print(x$family) print(x$hump) if (!x$isBracketed) cat("***** Caution: hump/pit not bracketed by the data ******\n") cat("\n") printCoefmat(coef(x), has.Pvalue = TRUE, na.print = "") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.MOStest.R
`print.anosim` <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n") cat(deparse(x$call), "\n") cat("Dissimilarity:", x$dissimilarity,"\n\n") cat("ANOSIM statistic R: ") cat(formatC(x$statistic, digits = digits), "\n") nperm <- x$permutations if (nperm) { cat(" Significance:", format.pval(x$signif), "\n\n") cat(howHead(x$control)) } cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.anosim.R
`print.betadisper` <- function(x, digits = max(3, getOption("digits") - 3), neigen = 8, ...) { ## limit number of eignvals to neigen eig <- eigenvals(x) nev <- length(eig) ax.lim <- min(nev, neigen) ## cat("\n") writeLines(strwrap("Homogeneity of multivariate dispersions\n", prefix = "\t")) cat("\n") writeLines(strwrap(pasteCall(x$call))) cat(paste("\nNo. of Positive Eigenvalues:", sum(eig > 0))) cat(paste("\nNo. of Negative Eigenvalues:", sum(eig < 0))) cat("\n\n") type <- ifelse(isTRUE(all.equal(attr(x, "type"), "median")), "median", "centroid") writeLines(strwrap(paste0("Average distance to ", type, ":\n"))) print.default(format(x$group.distances, digits = digits), quote = FALSE) cat("\n") writeLines(strwrap("Eigenvalues for PCoA axes:")) if (nev > neigen) { writeLines(strwrap(paste0("(Showing ", neigen, " of ", nev, " eigenvalues)"))) } print.default(format(eig[seq_len(ax.lim)], digits = digits), quote = FALSE) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.betadisper.R
`print.bioenv` <- function (x, ...) { cat("\nCall:\n") cat(deparse(x$call), "\n") cat("\nSubset of environmental variables with best correlation to community data.\n\n") cat("Correlations: ", x$method, "\n") cat("Dissimilarities:", x$index, "\n") cat("Metric: ", x$metric, "\n\n") i <- which.max(lapply(x$models, function(tmp) tmp$est)) cat("Best model has", i, "parameters (max.", x$upto, "allowed):\n") cat(paste(x$names[x$models[[i]]$best], collapse = " ")) cat("\nwith correlation ", x$models[[i]]$est, "\n\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.bioenv.R
`print.cca` <- function (x, digits = max(3, getOption("digits") - 3), ...) { writeLines(strwrap(pasteCall(x$call))) cat("\n") chi <- c(x$tot.chi, x$pCCA$tot.chi, x$CCA$tot.chi, x$CA$tot.chi) props <- chi/chi[1] rnk <- c(NA, x$pCCA$rank, x$CCA$rank, x$CA$rank) ## report no. of real axes in dbrda if any negative eigenvalues if (inherits(x, "dbrda") && (!is.null(x$CCA) && x$CCA$poseig < x$CCA$qrank || !is.null(x$CA) && x$CA$poseig < x$CA$rank)) poseig <- c(NA, if (!is.null(x$pCCA)) NA, x$CCA$poseig, x$CA$poseig) else poseig <- NULL tbl <- cbind(chi, props, rnk, poseig) if (!is.null(x$CA$imaginary.chi)) tbl <- rbind(tbl, c(x$CA$imaginary.chi, x$CA$imaginary.chi/x$tot.chi, x$CA$imaginary.rank, NULL)) colnames(tbl) <- c("Inertia", "Proportion", "Rank", if (!is.null(poseig)) "RealDims") rn <- c("Total", "Conditional", "Constrained", "Unconstrained", "Imaginary") rownames(tbl) <- rn[c(TRUE,!is.null(x$pCCA), !is.null(x$CCA), !is.null(x$CA), !is.null(x$CA$imaginary.chi))] ## Remove "Proportion" if only one component if (is.null(x$CCA) && is.null(x$pCCA)) tbl <- tbl[,-2] ## 'cs' columns before "Rank" are non-integer cs <- which(colnames(tbl) == "Rank") - 1 printCoefmat(tbl, digits = digits, na.print = "", cs.ind = seq_len(cs)) cat("Inertia is", x$inertia, "\n") ## data used for species scores in db ordination if (!is.null(x$vdata)) cat("Species scores projected from", sQuote(x$vdata), "\n") if (!is.null(x$CCA$alias)) cat("Some constraints or conditions were aliased because they were redundant\n") ## Report removed observations and species if (!is.null(x$na.action)) cat(naprint(x$na.action), "\n") sp.na <- if (is.null(x$CCA)) attr(x$CA$v, "na.action") else attr(x$CCA$v, "na.action") if (!is.null(sp.na)) cat(length(sp.na), "species", ifelse(length(sp.na)==1, "(variable)", "(variables)"), "deleted due to missingness\n") if (!is.null(x$CCA) && x$CCA$rank > 0) { cat("\nEigenvalues for constrained axes:\n") print(zapsmall(x$CCA$eig, digits = digits), ...) } if (!is.null(x$CA) && x$CA$rank > 0) { ax.lim <- 8 ax.trig <- 16 cat("\nEigenvalues for unconstrained axes:\n") if (x$CA$rank > ax.trig) { print(zapsmall(x$CA$eig[1:ax.lim], digits = digits), ...) cat("(Showing", ax.lim, "of", x$CA$rank, "unconstrained eigenvalues)\n") } else print(zapsmall(x$CA$eig, digits = digits), ...) } cat("\n") if (inherits(x, c("capscale", "dbrda"))) { if (!is.null(x$metaMDSdist)) cat("metaMDSdist transformed data:", x$metaMDSdist, "\n\n") if (!is.null(x$ac)) cat("Constant added to distances:", x$ac, "\n\n") } invisible(x) } ### package klaR has another function called rda(), and to avoid using ### klar:::print.rda instead of delegating to vegan:::print.cca we ### define here a (redundant) print.rda `print.rda` <- function(x, ...) { ## not vegan rda? if (!("CA" %in% names(x))) stop(gettextf("%s is not a vegan rda object", sQuote(deparse(substitute(x))))) NextMethod("print", x, ...) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.cca.R
print.commsim <- function(x, ...) { cat("An object of class", dQuote(class(x)[1L]), "\n") isSeq <- ifelse(x$isSeq, "sequential", "non-sequential") if(x$binary) kind <- "binary" else kind <- ifelse(x$mode == "integer", "count", "abundance") cat(sQuote(x$method), " method (", kind, ", ", isSeq, ", ", x$mode, " mode)\n\n", sep="") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.commsim.R
`print.decorana` <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n") cat(deparse(x$call), "\n\n") cat(ifelse(x$ira, "Orthogonal", "Detrended"), "correspondence analysis") cat(ifelse(!x$ira, paste(" with ", x$mk, " segments.\n", sep = ""), ".\n")) if (x$iresc) { cat("Rescaling of axes with", x$iresc, "iterations") if (x$short) cat(", and shortest axis rescaled", x$short) cat(".\n") } if (!is.null(x$v)) cat("Downweighting of rare species from fraction 1/", x$fraction, ".\n", sep="") if (!is.null(x$before)) { cat("Piecewise transformation of above-zero abundances:") print(as.data.frame(rbind(before = x$before, after = x$after), optional=TRUE)) } cat("Total inertia (scaled Chi-square):", round(x$totchi, digits), "\n") axlen <- apply(x$rproj, 2, function(z) diff(range(z))) cat("\n") print(rbind("Eigenvalues" = x$evals, "Additive Eigenvalues" = x$evals.ortho, "Decorana values" = x$evals.decorana, "Axis lengths" = axlen), digits = digits) cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.decorana.R
"print.envfit" <- function(x, ...) { if (!is.null(x$vectors)) { cat("\n***VECTORS\n\n") print(x$vectors) } if (!is.null(x$factors)) { cat("\n***FACTORS:\n\n") print(x$factors) } if (!is.null(x$na.action)) cat("\n", naprint(x$na.action), "\n", sep="") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.envfit.R
`print.factorfit` <- function (x, ...) { cat("Centroids:\n") printCoefmat(x$centroids, tst.ind = 1:ncol(x$centroids), na.print = "", ...) cat("\nGoodness of fit:\n") out <- cbind(r2 = x$r, "Pr(>r)" = x$pvals) if (x$permutations) { printCoefmat(out, has.Pvalue = TRUE, ...) cat(howHead(x$control)) } else printCoefmat(out, na.print = "", ...) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.factorfit.R
`print.fisherfit` <- function (x, ...) { cat("\nFisher log series model\n") cat("No. of species:", sum(x$fisher), "\n") cat("Fisher alpha: ", x$estimate, "\n\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.fisherfit.R
`print.isomap` <- function (x, ...) { cat("\nIsometric Feature Mapping (isomap)\n\n") cat("Call:\n") cat(deparse(x$call), "\n\n") cat("Distance method:", x$method, "\n") cat("Criterion:", x$criterion, "=", x$critval, "\n") if(!is.null(x$take)) cat("Data were fragmented, analysed", sum(x$take), "of", length(x$take), "points\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.isomap.R
`print.mantel` <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\n") if (inherits(x, "mantel.partial")) cat("Partial ") cat("Mantel statistic based on", x$method, "\n") cat("\nCall:\n") cat(deparse(x$call), "\n\n") cat("Mantel statistic r: ") cat(formatC(x$statistic, digits = digits), "\n") nperm <- x$permutations if (nperm) { cat(" Significance:", format.pval(x$signif), "\n\n") out <- quantile(x$perm, c(0.9, 0.95, 0.975, 0.99), na.rm = TRUE) cat("Upper quantiles of permutations (null model):\n") print(out, digits = 3) cat(howHead(x$control)) } cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.mantel.R
'print.mantel.correlog' <- function(x, ...) { cat('\nMantel Correlogram Analysis\n') cat('\nCall:\n','\n') cat(deparse(x$call),'\n') cat('\n') printCoefmat(x$mantel.res, P.values=TRUE, signif.stars=TRUE, Pvalues = TRUE) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.mantel.correlog.R
`print.metaMDS` <- function (x, ...) { cat("\nCall:\n") cat(deparse(x$call), "\n\n") if (x$engine == "monoMDS") cat(x$model, "Multidimensional Scaling using monoMDS\n\n") else if (x$engine == "isoMDS") cat("non-metric Multidimensional Scaling using isoMDS (MASS package)\n\n") cat("Data: ", x$data, "\n") cat("Distance:", x$distance, "\n\n") cat("Dimensions:", x$ndim, "\n") cat("Stress: ", x$stress, "\n") if (inherits(x, "monoMDS")) { cat("Stress type", x$isform) if(x$model != "linear") cat(", ", c("weak", "strong")[x$ities], " ties", sep = "") cat("\n") } if (x$converged) { cat(sprintf(ngettext(x$converged, "Best solution was repeated %d time in %d tries\n", "Best solution was repeated %d times in %d tries\n"), x$converged, x$tries)) } else { cat("Best solution was not repeated after", x$tries, "tries\n") } cat("The best solution was from try", x$bestry) if (x$bestry == 0) cat(" (metric scaling or null solution)\n") else cat(" (random start)\n") z <- x$points scal <- c(if (attr(z, "centre")) "centring", if (attr(z, "pc")) "PC rotation", if (attr(z, "halfchange")) "halfchange scaling") if (!length(scal)) scal <- "as is" cat("Scaling:", paste(scal, collapse = ", "), "\n") if (all(is.na(x$species))) { cat("Species: scores missing\n") } else { spattr <- attr(x$species, "shrinkage") spdata <- attr(x$species, "data") if (is.null(spdata)) spdata <- x$data if (is.null(spattr)) cat("Species: non-expanded scores ") else cat("Species: expanded scores ") cat("based on", sQuote(spdata), "\n") } cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.metaMDS.R
### Method functions for monoMDS objects `print.monoMDS` <- function(x, ...) { cat("\nCall:\n") cat(deparse(x$call), "\n\n") modlab <- switch(x$model, global = "Non-metric", local = "Local non-metric", linear = "Linear", hybrid = "Hybrid") cat(paste(modlab, "Multidimensional Scaling\n\n")) cat(x$nobj, "points") cat(", dissimilarity", sQuote(x$distmethod)) if (!is.null(x$distcall)) cat(", call", sQuote(x$distcall)) cat("\n\n") cat("Dimensions:", x$ndim, "\n") cat("Stress: ", x$stress, "\n") cat("Stress type", x$isform) if (x$model != "linear") cat(", ", c("weak", "strong")[x$ities], " ties", sep = "") cat("\n") cat("Scores ") if (x$iscal == 1) cat("scaled to unit root mean square") else cat("unscaled") if (attr(x$points, "pc")) cat(", rotated to principal components") cat("\n") stoplab <- switch(x$icause, "Maximum number of iterations (maxit) reached", "Stress nearly zero (< smin)", "Stress nearly unchanged (ratio > sratmax)", "Scale factor of gradient nearly zero (< sfgrmin)") cat("Stopped after ", x$iters, " iterations: ", stoplab, "\n", sep="") invisible(x) } `scores.monoMDS` <- function(x, choices = NA, ...) { if (any(is.na(choices))) x$points else { choices <- choices[choices <= x$ndim] x$points[, choices, drop = FALSE] } } `plot.monoMDS` <- function(x, choices = c(1,2), type = "t", ...) { ordiplot(x, display = "sites", choices = choices, type = type, ...) } `points.monoMDS` <- function(x, choices = c(1,2), select, ...) { x <- scores(x, choices = choices) if (!missing(select)) x <- .checkSelect(select, x) points(x, ...) invisible() } `text.monoMDS` <- function(x, labels, choices = c(1,2), select, ...) { x <- scores(x, choices = choices) if (!missing(labels)) rownames(x) <- labels if (!missing(select)) x <- .checkSelect(select, x) text(x, labels = rownames(x), ...) invisible() }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.monoMDS.R
"print.mrpp" <- function (x, digits = max(3, getOption("digits") - 3), ...) { ### A print function for mrpp objects ### x -- An object of class "mrpp." #### cat = print cat("\nCall:\n") cat(deparse(x$call), "\n\n") cat("Dissimilarity index:", x$distance, "\n") cat("Weights for groups: ", switch(x$weight.type, "n", "n-1", "n(n-1)", "n(n-1)/2"), "\n\n") cat("Class means and counts:\n\n") print(noquote(rbind("delta" = formatC(x$classdelta, digits = digits), "n" = formatC(x$n, digits=0)))) cat("\n") if (!is.na(x$CS)) { cat("Classification strength: ") cat(formatC(x$CS, digits = digits), "\n") } cat("Chance corrected within-group agreement A: ") if (!is.na(x$A)) cat(formatC(x$A, digits = digits), "\n") else cat("NA\n") cat("Based on observed delta", formatC(x$delta), "and expected delta", formatC(x$E.delta),"\n\n") nperm <- x$permutations if (nperm) { cat("Significance of delta:", format.pval(x$Pvalue), "\n") } cat(howHead(x$control)) cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.mrpp.R
`print.mso` <- function(x, digits = max(3, getOption("digits") - 3), ...) { NextMethod("print", x, digits = digits, ...) cat("mso variogram:\n\n") print(x$vario, digits = digits, ...) if(!is.null(attr(x$vario, "control"))) cat("\n", howHead(attr(x$vario, "control")), "\n", sep="") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.mso.R
"print.nestedchecker" <- function(x, ...) { cat("Checkerboard Units :", format(x$statistic), "\n") cat("C-score (species mean):", format(x$C.score), "\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.nestedchecker.R
"print.nesteddisc" <- function(x, ...) { cat("nestedness discrepancy:", x$statistic, "\n") if(x$ties) cat("There are tied column frequencies: result can depend on input order\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.nesteddisc.R
"print.nestedn0" <- function(x, ...) { cat("Nestedness index N0:", format(x$statistic), "\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.nestedn0.R
`print.nestednodf` <- function(x, ...) { cat("N columns :", format(x$statistic["N.columns"], ...), "\n") cat("N rows :", format(x$statistic["N.rows"], ...), "\n") cat("NODF :", format(x$statistic["NODF"], ...), "\n") cat("Matrix fill:", format(x$fill, ...), "\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.nestednodf.R
"print.nestedtemp" <- function(x, ...) { cat("nestedness temperature:", format(x$statistic, ...), "\n") cat("with matrix fill", format(x$fill, ...), "\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.nestedtemp.R
print.nullmodel <- function(x, ...) { isSeq <- ifelse(x$commsim$isSeq, "sequential", "non-sequential") if (x$commsim$binary) kind <- "binary" else kind <- ifelse(x$commsim$mode == "integer", "count", "abundance") cat("An object of class", dQuote(class(x)[1L]), "\n") cat(sQuote(x$commsim$method), " method (", kind, ", ", isSeq, ")\n", sep="") cat(x$nrow, "x", x$ncol, "matrix\n") if (x$commsim$isSeq) cat("Iterations =", x$iter, "\n\n") else cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.nullmodel.R
`print.oecosimu` <- function(x, ...) { xx <- x ## return unmodified input object attr(x$oecosimu$method, "permfun") <- NULL cat(as.character(attr(x,"call")[[1]]), "object\n\n") writeLines(strwrap(pasteCall(attr(x, "call")))) cat("\n") cat("nullmodel method", sQuote(x$oecosimu$method), "with", ncol(x$oecosimu$simulated), "simulations\n") if (length(att <- attributes(x$oecosimu$simulated)) > 1) { att$dim <- NULL cat("options: ", paste(names(att), att, collapse=", ")) } alt.char <- switch(x$oecosimu$alternative, two.sided = "less or greater than", less = "less than", greater = "greater than") cat("\nalternative hypothesis: statistic is", alt.char, "simulated values") ## dim attribute is always there, but print all others cat("\n\n") if (!inherits(x, c("adipart", "hiersimu", "multipart")) && !inherits(x$statistic, c("numeric", "list"))) { print(x$statistic) cat("\n") } probs <- switch(x$oecosimu$alternative, two.sided = c(0.025, 0.5, 0.975), greater = c(0.5, 0.95), less = c(0.05, 0.5)) qu <- apply(x$oecosimu$simulated, 1, quantile, probs=probs, na.rm = TRUE) m <- cbind("statistic" = x$oecosimu$statistic, "SES" = x$oecosimu$z, "mean" = x$oecosimu$means, t(qu), "Pr(sim.)"=x$oecosimu$pval) printCoefmat(m, cs.ind = 3:(ncol(m)-1), ...) if (any(is.na(x$oecosimu$simulated))) { nacount <- rowSums(is.na(x$oecosimu$simulated)) cat("\nNumber of NA cases removed from simulations:\n", nacount, "\n") } invisible(xx) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.oecosimu.R
## S3 print method for permat `print.permat` <- function(x, digits=3, ...) { cat("Object of class 'permat' with ", attr(x, "times"), " simulations\n", sep="") cat("\nMatrix type:", attr(x, "mtype"), "\nPermutation type:", attr(x, "ptype")) cat("\nMethod: ", attr(x, "method"), sep = "") if (attr(x, "ptype") == "swap") { if (!is.na(attr(x, "burnin"))) cat(", burnin: ", attr(x, "burnin"), sep = "") if (!is.na(attr(x, "thin"))) cat(", thin: ", attr(x, "thin"), sep = "") } cat("\nRestricted:", attr(x, "is.strat"), "\nFixed margins:", attr(x, "fixedmar")) if (!is.na(attr(x, "shuffle"))) { if (attr(x, "shuffle")=="ind") cat("\nIndividuals") if (attr(x, "shuffle")=="samp") cat("\nSamples") if (attr(x, "shuffle")=="both") cat("\nIndividuals and samples") cat(" are shuffled") } cat("\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.permat.R
`print.permutest.betadisper` <- function(x, digits = max(getOption("digits") - 2, 3), ...) { ## uses code from stats:::print.anova by R Core Development Team cat("\n") writeLines(strwrap("Permutation test for homogeneity of multivariate dispersions\n")) ##cat("\n") cat(howHead(x$control)) nc <- dim(x$tab)[2] cn <- colnames(x$tab) has.P <- substr(cn[nc], 1, 3) == "Pr(" zap.i <- 1:(if (has.P) nc - 1 else nc) i <- which(substr(cn, 2, 7) == " value") i <- c(i, which(!is.na(match(cn, "F")))) if (length(i)) zap.i <- zap.i[!(zap.i %in% i)] tst.i <- i if (length(i <- grep("Df$", cn))) zap.i <- zap.i[!(zap.i %in% i)] if (length(i <- grep("N.Perm$", cn))) zap.i <- zap.i[!(zap.i %in% i)] cat("\nResponse: Distances", sep = "\n") printCoefmat(x$tab, digits = digits, signif.stars = getOption("show.signif.stars"), has.Pvalue = has.P, P.values = has.P, cs.ind = NULL, zap.ind = zap.i, tst.ind = tst.i, na.print = "", ...) if(!is.null(x$pairwise)) { cat("\nPairwise comparisons:", sep = "\n") writeLines(strwrap("(Observed p-value below diagonal,\npermuted p-value above diagonal)\n")) n.grp <- length(x$groups) mat <- matrix(NA, ncol = n.grp, nrow = n.grp) colnames(mat) <- rownames(mat) <- x$groups mat[lower.tri(mat)] <- x$pairwise$observed mat <- t(mat) mat[lower.tri(mat)] <- x$pairwise$permuted printCoefmat(t(mat), na.print = "", digits = digits) } invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.permutest.betadisper.R
`print.permutest.cca` <- function (x, ...) { EPS <- sqrt(.Machine$double.eps) cat("\nPermutation test for", x$method, "under", x$model, "model", "\n\n") cat(howHead(x$control), "\n") writeLines(strwrap(pasteCall(x$testcall, prefix = "Model:"))) Pval <- (colSums(sweep(x$F.perm, 2, x$F.0 - EPS, ">=")) + 1)/(x$nperm + 1) cat("Permutation test for ") if (x$first) cat("first constrained eigenvalue\n") else if (length(x$df) <= 2) cat("all constrained eigenvalues\n") else cat("sequential contrasts\n") anotab <- data.frame(x$df, x$chi, c(x$F.0, NA), c(Pval, NA)) colnames(anotab) <- c("Df", "Inertia", "F", "Pr(>F)") rownames(anotab) <- c(x$termlabels, "Residual") class(anotab) <- c("anova", "data.frame") print(anotab) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.permutest.cca.R
`print.poolaccum` <- function(x, ...) { rownames(x$means) <- rep("", nrow(x$means)) print(x$means, ...) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/vegan/R/print.poolaccum.R