content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
`eventstar` <-
function(x, qmax=5)
{
if (is.null(dim(x)))
x <- matrix(x, 1, length(x))
else
x <- as.matrix(x) # faster than data.frame
lossfun <- function(q, x)
tsallis(x, scales=q, norm=TRUE)
qstarfun <- function(x) {
optimize(lossfun, interval=c(0, qmax), x=x)$minimum
}
qs <- apply(x, 1, qstarfun)
Hs <- sapply(1:nrow(x), function(i) tsallis(x[i,],
scales=qs[i], hill=FALSE))
S <- rowSums(x)
Es <- ifelse(qs==1, log(S), Hs/((S^(1-qs)-1)/(1-qs)))
Ds <- (1-(qs-1)*Hs)^(1/(1-qs))
out <- data.frame(qstar=qs, Estar=Es, Hstar=Hs, Dstar=Ds)
rownames(out) <- rownames(x)
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/eventstar.R
|
`extractAIC.cca` <-
function (fit, scale = 0, k = 2, ...)
{
n <- nobs(fit)
edf <- 1
if (!is.null(fit$CCA$rank)) edf <- edf + fit$CCA$qrank
if (!is.null(fit$pCCA$QR)) edf <- edf + fit$pCCA$QR$rank
#edf <- n - fit$CA$rank
RSS <- deviance(fit)
dev <- if(scale > 0)
RSS/scale - n
else n * log(RSS/n)
c(edf, dev + k*edf)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/extractAIC.cca.R
|
`factorfit` <-
function (X, P, permutations = 0, strata = NULL, w, ...)
{
EPS <- sqrt(.Machine$double.eps)
P <- as.data.frame(P)
## Check that all variables are factors, and coerce if necessary
if(any(!sapply(P, is.factor)))
P <- data.frame(lapply(P, function(x)
if (is.factor(x)) x else factor(x)))
P <- droplevels(P, exclude = NA) ## make sure only the used levels are present
if (any(!sapply(P, is.factor)))
stop("all non-numeric variables must be factors")
NR <- nrow(X)
if (missing(w) || is.null(w))
w <- 1
if (length(w) == 1)
w <- rep(w, NR)
r <- NULL
pval <- NULL
totvar <- .Call(do_goffactor, X, rep(1L, NR), 1L, w)
sol <- centroids.cca(X, P, w)
var.id <- rep(names(P), sapply(P, nlevels))
## make permutation matrix for all variables handled in the next loop
permat <- getPermuteMatrix(permutations, NR, strata = strata)
permutations <- nrow(permat)
for (i in seq_along(P)) {
A <- as.integer(P[[i]])
NL <- nlevels(P[[i]])
invar <- .Call(do_goffactor, X, A, NL, w)
r.this <- 1 - invar/totvar
r <- c(r, r.this)
if (permutations) {
A <- as.integer(P[[i]])
NL <- nlevels(P[[i]])
ptest <- function(indx, ...) {
take <- A[indx]
invar <- .Call(do_goffactor, X, take, NL, w)
1 - invar/totvar
}
tmp <- sapply(seq_len(permutations),
function(indx,...) ptest(permat[indx,], ...))
pval.this <- (sum(tmp >= r.this - EPS) + 1)/(permutations + 1)
pval <- c(pval, pval.this)
}
}
if (is.null(colnames(X)))
colnames(sol) <- paste("Dim", 1:ncol(sol), sep = "")
else colnames(sol) <- colnames(X)
names(r) <- names(P)
if (!is.null(pval))
names(pval) <- names(P)
out <- list(centroids = sol, r = r, permutations = permutations,
pvals = pval, var.id = var.id)
out$control <- attr(permat, "control")
class(out) <- "factorfit"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/factorfit.R
|
`fieller.MOStest` <-
function (object, level = 0.95)
{
smodel <- summary(object$mod)
## overdispersion included in cov.scaled
var <- smodel$cov.scaled
k <- coef(object$mod)
b2 <- -2 * k[3]
u <- -k[2]/2/k[3]
alpha <- (1-level)/2
limits <- numeric(2)
names(limits) <- paste(round(100*(c(alpha, 1-alpha)), 1), "%")
wvar <- var[2,2]
uvar <- 4 * var[3,3]
vvar <- -2 * var[2,3]
z <- qnorm(1 - alpha)
g <- z^2 * uvar/b2^2
if (g >= 1) {
limits <- c(NA, NA)
}
else {
x <- u - g * vvar/uvar
f <- z/b2
s <- sqrt(wvar - 2 * u * vvar + u^2 * uvar -
g * (wvar - vvar^2/uvar))
limits[1] <- (x - f * s)/(1 - g)
limits[2] <- (x + f * s)/(1 - g)
}
limits
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fieller.MOStest.R
|
`fisher.alpha` <-
function (x, MARGIN = 1, ...)
{
x <- as.matrix(x)
if(ncol(x) == 1)
x <- t(x)
sol <- apply(x, MARGIN, fisherfit)
out <- unlist(lapply(sol, function(x) x$estimate))
if (FALSE) {
out <- list(alpha = out)
out$se <- unlist(lapply(sol, function(x) sqrt(diag(solve(x$hessian)))[1]))
out$df.residual <- unlist(lapply(sol, df.residual))
out$code <- unlist(lapply(sol, function(x) x$code))
out <- as.data.frame(out)
}
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fisher.alpha.R
|
## Fisher alpha is actually based only on the number of species S and
## number of individuals.
`fisherfit` <-
function(x, ...)
{
nr <- as.fisher(x)
S <- sum(nr)
N <- sum(x)
## Solve 'x' (Fisher alpha).
d1fun <- function(x, S, N) x * log(1 + N/x) - S
## Function will give extremely high values when all species occur
## only once or S==N, starting from fisherfit(1) which is ca. 1e8,
## and it can make sense to have special treatment of S==N. With S
## == 0, we force alpha 0 whereas the function would give
## fisherfit(0) as 1 (which hardly makes sense).
if (S > 0) {
sol <- uniroot(d1fun, c(1,50), extendInt = "upX", S = S, N = N, ...)
if (S == N)
warning("all species singletons: alpha arbitrarily high")
} else {
sol <- list(root = 0, iter = 0, estim.prec = NA)
}
nuisance <- N/(N + sol$root)
## we used nlm() earlier, and the following output is compatible
out <- list(estimate = sol$root, hessian = NA,
iterations = sol$iter, df.residual = NA,
nuisance = nuisance, fisher = nr,
estim.prec = sol$estim.prec,
code = 2*is.na(sol$estim.prec) + 1)
class(out) <- "fisherfit"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fisherfit.R
|
fitspecaccum <-
function(object, model, method = "random", ...)
{
MODELS <- c("arrhenius", "gleason", "gitay", "lomolino",
"asymp", "gompertz", "michaelis-menten", "logis",
"weibull")
model <- match.arg(model, MODELS)
if (!inherits(object, "specaccum"))
object <- specaccum(object, method = method, ...)
if (is.null(object$perm))
SpeciesRichness <- as.matrix(object$richness)
else
SpeciesRichness <- object$perm
if (!is.null(object$individuals))
x <- object$individuals
else
x <- object$sites
hasWeights <- !is.null(object$weights)
## scale weights to correspond to the no. of sites
if (hasWeights) {
w <- as.matrix(object$weights)
n <- nrow(w)
w <- sweep(w, 2, w[n,], "/") * n
}
NLSFUN <- function(y, x, model, ...) {
switch(model,
"arrhenius" = nls(y ~ SSarrhenius(x, k, z), ...),
"gleason" = nls(y ~ SSgleason(x, k, slope), ...),
"gitay" = nls(y ~ SSgitay(x, k, slope), ...),
"lomolino" = nls(y ~ SSlomolino(x, Asym, xmid, slope), ...),
"asymp" = nls(y ~ SSasymp(x, Asym, R0, lrc), ...),
"gompertz" = nls(y ~ SSgompertz(x, Asym, xmid, scal), ...),
"michaelis-menten" = nls(y ~ SSmicmen(x, Vm, K), ...),
"logis" = nls(y ~ SSlogis(x, Asym, xmid, scal), ...),
"weibull" = nls(y ~ SSweibull(x, Asym, Drop, lrc, par), ...))
}
mods <- lapply(seq_len(NCOL(SpeciesRichness)),
function(i, ...)
NLSFUN(SpeciesRichness[,i],
if (hasWeights) w[,i] else x,
model, ...), ...)
object$fitted <- drop(sapply(mods, fitted))
object$residuals <- drop(sapply(mods, residuals))
object$coefficients <- drop(sapply(mods, coef))
object$SSmodel <- model
object$models <- mods
object$call <- match.call()
class(object) <- c("fitspecaccum", class(object))
object
}
### plot function
`plot.fitspecaccum` <-
function(x, col = par("fg"), lty = 1,
xlab = "Sites", ylab = x$method, ...)
{
if (is.null(x$weights))
fv <- fitted(x)
else
fv <- sapply(x$models, predict, newdata = list(x = x$sites))
matplot(x$sites, fv, col = col, lty = lty, pch = NA,
xlab = xlab, ylab = ylab, type = "l", ...)
invisible()
}
`lines.fitspecaccum` <-
function(x, col = par("fg"), lty = 1, ...)
{
if (is.null(x$weights))
fv <- fitted(x)
else
fv <- sapply(x$models, predict, newdata= list(x = x$sites))
matlines(x$sites, fv, col = col, lty = lty, pch = NA, type = "l", ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitspecaccum.R
|
`fitted.capscale` <-
function(object, model = c("CCA", "CA", "pCCA", "Imaginary"),
type = c("response", "working"), ...)
{
model <- match.arg(model)
if (is.null(object[[model]]) && model != "Imaginary")
stop(gettextf("component '%s' does not exist", model))
type <- match.arg(type)
## Return scaled eigenvalues
U <- switch(model,
CCA = ordiYbar(object, "CCA"),
CA = ordiYbar(object, "CA"),
Imaginary = object$CA$imaginary.u.eig,
pCCA = ordiYbar(object, "pCCA"))
if (is.null(U))
stop(gettextf("component '%s' does not exist", model))
## Distances or working scores U
if (type == "response") {
U <- dist(U)
## undo sqrt.dist -- sqrt.dist was applied first in capscale,
## so it must be last here
if (object$sqrt.dist)
U <- U^2
}
U
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitted.capscale.R
|
`fitted.cca` <-
function (object, model = c("CCA","CA","pCCA"),
type = c("response", "working"), ...)
{
type <- match.arg(type)
model <- match.arg(model)
if (is.null(object[[model]]))
stop(gettextf("component '%s' does not exist", model))
Xbar <- ordiYbar(object, model)
if (type == "response") {
gtot <- object$grand.total
rc <- object$rowsum %o% object$colsum
Xbar <- (Xbar * sqrt(rc) + rc) * gtot
}
Xbar
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitted.cca.R
|
### 'working' will be Gower's G = -GowerDblcen(dis^2)/2
`fitted.dbrda` <-
function (object, model = c("CCA", "CA", "pCCA"),
type = c("response", "working"), ...)
{
ZAP <- sqrt(.Machine$double.eps)
type <- match.arg(type)
model <- match.arg(model)
if (is.null(object[[model]]))
stop(gettextf("component '%s' does not exist", model))
D <- ordiYbar(object, model)
if (type == "response") {
## revert Gower double centring
de <- diag(D)
D <- -2 * D + outer(de, de, "+")
## we may have tiny negative zeros: zero them, but let large
## negative values be and give NaN in sqrt (with a warning)
D[abs(D) < ZAP] <- 0
if (!object$sqrt.dist)
D <- sqrt(D)
D <- D * object$adjust
D <- as.dist(D)
## we do not remove Lingoes or Cailliez adjustment: this
## typically gives too many negative distances as unadjusted D
## often has zero-values
}
D
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitted.dbrda.R
|
`fitted.procrustes` <-
function(object, truemean = TRUE, ...)
{
fit <- object$Yrot
if (truemean)
fit <- sweep(fit, 2, object$xmean, "+")
fit
}
## Like above, except when takes 'newata'
`predict.procrustes` <-
function(object, newdata, truemean = TRUE, ...)
{
if (missing(newdata))
return(fitted(object, truemean = truemean))
if (object$symmetric)
stop(gettextf("'predict' not available for symmetric procrustes analysis with 'newdata'"))
Y <- as.matrix(newdata)
## scaling and rotation
Y <- object$scale * Y %*% object$rotation
## translation: always
Y <- sweep(Y, 2, object$translation, "+")
if (!truemean)
Y <- sweep(Y, 2, object$xmean, "-")
Y
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitted.procrustes.R
|
`fitted.radfit` <-
function(object, ...)
{
out <- sapply(object$models, fitted)
if (!length(object$y))
out <- numeric(length(object$models))
if (length(object$y) <= 1)
out <- structure(as.vector(out), dim = c(1, length(object$models)),
dimnames = list(names(object$y), names(object$models)))
out
}
`fitted.radfit.frame` <-
function(object, ...)
{
lapply(object, fitted, ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitted.radfit.R
|
`fitted.rda` <-
function (object, model = c("CCA", "CA", "pCCA"),
type = c("response", "working"), ...)
{
type <- match.arg(type)
model <- match.arg(model)
if (is.null(object[[model]]))
stop(gettextf("component '%s' does not exist", model))
Xbar <- ordiYbar(object, model)
if (type == "response") {
cent <- attr(Xbar, "scaled:center")
scal <- attr(Xbar, "scaled:scale")
if (!is.null(scal)) {
Xbar <- sweep(Xbar, 2, scal, "*")
attr(Xbar, "scaled:scale") <- NULL
}
Xbar <- Xbar * sqrt(nrow(Xbar) - 1)
Xbar <- sweep(Xbar, 2, cent, "+")
attr(Xbar, "scaled:center") <- NULL
}
Xbar
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/fitted.rda.R
|
### Clarke's dispweight is based on the hypothesis that count data
### should follow Poisson distribution, and species overdispersed to
### the Poisson should be downweighted. The basic model assesses the
### expected values of species and their overdispersion wrt to class
### means for a single factor and then estimates the significance of
### the overdispersion using individual-based simulation within these
### same classes. Function gdispweight generalizes this by allowing a
### formula that specifies any fitted model, but estimates the
### significance of the overdispersion analytically from Pearson
### residuals.
`gdispweight` <-
function(formula, data, plimit = 0.05)
{
## We do not handle missing values (yet?)
op <- options(na.action = "na.fail")
on.exit(options(op))
## extract response data
comm <- eval(formula[[2]])
## extract rhs
if (missing(data))
data <- environment(formula)
x <- model.matrix(delete.response(terms(formula, data = data)),
data = data)
## Quasi-Poisson
family <- quasipoisson()
V <- family$variance
## fit models to all species separately and extract results
comm <- as.data.frame(comm)
if (any(!sapply(comm, is.numeric)))
stop("input data must be numeric")
mods <- lapply(comm, function(y) glm.fit(x, y, family = family))
y <- sapply(mods, '[[', "y")
mu <- sapply(mods, fitted)
wts <- sapply(mods, '[[', "prior.weights")
res <- (y-mu) * sqrt(wts) / sqrt(V(mu))
df <- sapply(mods, df.residual)
## the same stats as in Clarke's original, but parametrically
stat <- colSums(res^2)
p <- pchisq(stat, df, lower.tail = FALSE)
dhat <- stat/df
w <- ifelse(p < plimit, 1/dhat, 1)
## do not upweight underdispersed species
w <- ifelse(w > 1, 1, w)
## done
comm <- sweep(comm, 2, w, "*")
class(comm) <- c("dispweight", class(comm))
attr(comm, "D") <- dhat
attr(comm, "df") <- df
attr(comm, "p") <- p
attr(comm, "weights") <- w
attr(comm, "nsimul") <- NA
attr(comm, "nullmodel") <- NA
comm
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/gdispweight.R
|
### Interface to the permute package
### input can be (1) a single number giving the number of
### permutations, (2) a how() structure for control parameter in
### permute::shuffleSet, or (3) a permutation matrix which is returned
### as is. In addition, there can be a 'strata' argument which will
### modify case (1). The number of shuffled items must be given in 'N'.
`getPermuteMatrix` <-
function(perm, N, strata = NULL)
{
## 'perm' is either a single number, a how() structure or a
## permutation matrix
if (length(perm) == 1) {
perm <- how(nperm = perm)
}
## apply 'strata', but only if possible: ignore silently other cases
if (!missing(strata) && !is.null(strata)) {
if (inherits(perm, "how") && is.null(getBlocks(perm)))
setBlocks(perm) <- strata
}
## now 'perm' is either a how() or a matrix
if (inherits(perm, "how"))
perm <- shuffleSet(N, control = perm)
else { # matrix: check that it *strictly* integer
if(!is.integer(perm) && !all(perm == round(perm)))
stop("permutation matrix must be strictly integers: use round()")
}
## now 'perm' is a matrix (or always was). If it is a plain
## matrix, set minimal attributes for printing. This is a dirty
## kluge: should be handled more cleanly.
if (is.null(attr(perm, "control")))
attr(perm, "control") <-
structure(list(within=list(type="supplied matrix"),
nperm = nrow(perm)), class = "how")
perm
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/getPermuteMatrix.R
|
"goodness" <-
function(object, ...) UseMethod("goodness")
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/goodness.R
|
`goodness.cca` <-
function (object, choices, display = c("species", "sites"),
model = c("CCA", "CA"),
summarize = FALSE, addprevious = FALSE, ...)
{
display <- match.arg(display)
model <- match.arg(model)
if (!inherits(object, "cca"))
stop("can be used only with objects inheriting from 'cca'")
## See stressplot.capscale for a model to implement goodness() --
## this can be done, but we don't care to do it for now and we
## just disable this.
if (inherits(object, "capscale"))
stop("not implemented for 'capscale'")
if (inherits(object, c("capscale", "dbrda")) && display == "species")
stop(gettextf("cannot analyse species with '%s'", object$method))
v <- sqrt(weights(object, display="species")) * object[[model]]$v
if (is.null(v))
stop(gettextf("model = '%s' does not exist", model))
if (display == "sites")
u <- sqrt(weights(object, display="sites")) * object[[model]]$u
eig <- object[[model]]$eig
## Handle dbrda objects
if (!inherits(object, "dbrda"))
eig <- eig[eig > 0]
if (inherits(object, "dbrda")) {
u <- cbind(u, object[[model]][["imaginary.u"]])
display <- "dbrda"
}
## get the total variation
All <- ordiYbar(object, "initial")
if (is.null(All))
stop("old style result object: update() your model")
tot <- switch(display,
"species" = colSums(All^2),
"sites" = rowSums(All^2),
"dbrda" = diag(All))
## take only chosen axes within the component
if (!missing(choices)) {
choices <- choices[choices <= length(eig)]
if (display != "dbrda")
v <- v[, choices, drop = FALSE]
if (display %in% c("sites", "dbrda"))
u <- u[, choices, drop = FALSE]
eig <- eig[choices]
}
if (addprevious) {
if (!is.null(object$pCCA))
prev <- ordiYbar(object, "pCCA")
else
prev <- 0
if (model == "CA" && !is.null(object$CCA))
prev <- prev + ordiYbar(object, "CCA")
}
if (display == "species") {
if (length(eig) == 1)
out <- v^2 * eig
else
out <- t(apply(v^2 %*% diag(eig, nrow=length(eig)), 1, cumsum))
if (addprevious)
out <- out + colSums(prev^2)
dimnames(out) <- dimnames(v)
} else if (display == "sites") {
out <- matrix(0, nrow(u), ncol(u))
if (addprevious)
mat <- prev
else
mat <- 0
for (i in seq_len(ncol(u))) {
mat <- tcrossprod(u[,i], v[,i]) * sqrt(eig[i]) + mat
out[,i] <- rowSums(mat^2)
}
dimnames(out) <- dimnames(u)
} else { # dbrda
out <- matrix(0, nrow(u), ncol(u))
mat <- 0
for (i in seq_len(ncol(u))) {
mat <- u[,i]^2 * eig[i] + mat
out[,i] <- mat
}
dimnames(out) <- dimnames(u)
}
if (summarize)
out <- out[, ncol(out)]
out/tot
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/goodness.cca.R
|
`goodness.metaMDS` <-
function(object, dis, ...)
{
if (inherits(object, "monoMDS"))
return(NextMethod("goodness", object, ...))
if (missing(dis))
dis <- metaMDSredist(object)
if(attr(dis, "Size") != nrow(object$points))
stop("dimensions do not match in ordination and dissimilarities")
d <- order(dis)
shep <- Shepard(dis, object$points)
res <- (shep$y - shep$yf)^2/sum(shep$y^2)
stress <- sqrt(sum(res))*100
if ( abs(stress - object$stress) > 0.001)
stop("dissimilarities and ordination do not match")
res <- res[order(d)]
attr(res, "Size") <- attr(dis, "Size")
attr(res, "Labels") <- attr(dis, "Labels")
class(res) <- "dist"
sqrt(colSums(as.matrix(res))/2*10000)
}
`goodness.monoMDS` <-
function(object, ...)
{
## Return vector 'x' for which sum(x^2) == stress
stresscomp <- function(y, yf, form)
{
num <- (y-yf)^2
if (form == 1)
den <- sum(y^2)
else
den <- sum((y-mean(y))^2)
num/den
}
## Global, local
if (object$model %in% c("global", "linear")) {
x <- stresscomp(object$dist, object$dhat, object$isform)
mat <- matrix(0, object$nobj, object$nobj)
for (i in 1:object$ndis)
mat[object$iidx[i], object$jidx[i]] <- x[i]
res <- sqrt(colSums(mat + t(mat))/2)
}
## Local: returns pointwise components of stress
else if (object$model == "local") {
res <- object$grstress/sqrt(object$ngrp)
} else if (object$model == "hybrid" && object$ngrp == 2) {
mat <- matrix(0, object$nobj, object$nobj)
gr <- seq_len(object$ndis) < object$istart[2]
x <- stresscomp(object$dist[gr], object$dhat[gr], object$isform)
x <- c(x, stresscomp(object$dist[!gr], object$dhat[!gr], object$isform))
i <- object$iidx
j <- object$jidx
for (k in 1:object$ndis) {
mat[i[k], j[k]] <- mat[i[k], j[k]] + x[k]
}
res <- sqrt(colSums(mat + t(mat))/4)
} else {
stop("unknown 'monoMDS' model")
}
res
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/goodness.metaMDS.R
|
`head.summary.cca` <-
function(x, n=6, tail = 0, ...) {
print(x, head=n, tail=tail, ...)
}
`tail.summary.cca` <-
function(x, n=6, head = 0, ...) {
print(x, head=head, tail=n, ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/head.summary.cca.R
|
`hierParseFormula` <-
function (formula, data)
{
lhs <- formula[[2]]
if (any(attr(terms(formula, data = data), "order") > 1))
stop("interactions are not allowed")
lhs <- as.matrix(eval(lhs, environment(formula), parent.frame()))
formula[[2]] <- NULL
rhs <- model.frame(formula, data, drop.unused.levels = TRUE)
rhs[] <- lapply(rhs, function(u) {
if (!is.factor(u))
u <- factor(u)
u
})
## take care that the first column is a unique identifier for rows
## and the last column is constant for pooling all rows together
if (length(unique(rhs[,1])) < nrow(rhs))
rhs <- cbind("unit" = factor(seq_len(nrow(rhs))), rhs)
if (length(unique(rhs[, ncol(rhs)])) > 1)
rhs <- cbind(rhs, "all" = factor(rep(1, nrow(rhs))))
attr(rhs, "terms") <- NULL
list(lhs=lhs, rhs=rhs)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/hierParseFormula.R
|
hiersimu <-
function (...)
{
UseMethod("hiersimu")
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/hiersimu.R
|
hiersimu.default <-
function(y, x, FUN, location = c("mean", "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99,
method = "r2dtable", ...)
{
## evaluate formula
lhs <- as.matrix(y)
if (missing(x))
x <- cbind(level_1=seq_len(nrow(lhs)),
leve_2=rep(1, nrow(lhs)))
rhs <- data.frame(x)
rhs[] <- lapply(rhs, as.factor)
rhs[] <- lapply(rhs, droplevels, exclude = NA)
nlevs <- ncol(rhs)
if (is.null(colnames(rhs)))
colnames(rhs) <- paste("level", 1:nlevs, sep="_")
tlab <- colnames(rhs)
## check proper design of the model frame
l1 <- sapply(rhs, function(z) length(unique(z)))
if (!any(sapply(2:nlevs, function(z) l1[z] <= l1[z-1])))
stop("number of levels are inappropriate, check sequence")
rval <- list()
rval[[1]] <- rhs[,nlevs]
nCol <- nlevs - 1
if (nlevs > 1) {
nCol <- nlevs - 1
for (i in 2:nlevs) {
rval[[i]] <- interaction(rhs[,nCol], rval[[(i-1)]], drop=TRUE)
nCol <- nCol - 1
}
}
rval <- as.data.frame(rval[rev(1:length(rval))])
l2 <- sapply(rval, function(z) length(unique(z)))
if (any(l1 != l2))
stop("levels are not perfectly nested")
## aggregate response matrix
fullgamma <-if (nlevels(rhs[,nlevs]) == 1)
TRUE else FALSE
if (fullgamma && drop.highest)
nlevs <- nlevs - 1
if (nlevs == 1 && relative)
stop("'relative=FALSE' makes no sense with one level")
ftmp <- vector("list", nlevs)
for (i in 1:nlevs) {
ftmp[[i]] <- as.formula(paste("~", tlab[i], "- 1"))
}
## is there burnin/thin in ... ?
burnin <- if (is.null(list(...)$burnin))
0 else list(...)$burnin
thin <- if (is.null(list(...)$thin))
1 else list(...)$thin
## evaluate other arguments
if (!is.function(FUN))
stop("'FUN' must be a function")
location <- match.arg(location)
aggrFUN <- switch(location,
"mean" = mean,
"median" = median)
## this is the function passed to oecosimu
evalFUN <- function(x) {
if (fullgamma && !drop.highest) {
tmp <- lapply(1:(nlevs-1), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
} else {
tmp <- lapply(1:nlevs, function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
}
a <- sapply(1:nlevs, function(i) aggrFUN(FUN(tmp[[i]]))) # dots removed from FUN
if (relative)
a <- a / a[length(a)]
a
}
## processing oecosimu results
sim <- oecosimu(lhs, evalFUN, method = method, nsimul=nsimul,
burnin=burnin, thin=thin)
# nam <- paste("level", 1:nlevs, sep=".")
# names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- nam
names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- tlab[1:nlevs]
call <- match.call()
call[[1]] <- as.name("hiersimu")
attr(sim, "call") <- call
attr(sim, "FUN") <- FUN
attr(sim, "location") <- location
attr(sim, "n.levels") <- nlevs
attr(sim, "terms") <- tlab
attr(sim, "model") <- rhs
class(sim) <- c("hiersimu", class(sim))
sim
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/hiersimu.default.R
|
`hiersimu.formula` <-
function(formula, data, FUN, location = c("mean", "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99,
method = "r2dtable", ...)
{
## evaluate formula
if (missing(data))
data <- parent.frame()
tmp <- hierParseFormula(formula, data)
## run simulations
sim <- hiersimu.default(tmp$lhs, tmp$rhs, FUN = FUN, location = location,
relative = relative, drop.highest = drop.highest,
nsimul = nsimul, method = method, ...)
call <- match.call()
call[[1]] <- as.name("hiersimu")
attr(sim, "call") <- call
sim
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/hiersimu.formula.R
|
### Make a compact summary of permutations. This copies Gav Simpson's
### permute:::print.how, but only displays non-default choices in how().
`howHead` <- function(x, ...)
{
## print nothing is this not 'how'
if (is.null(x) || !inherits(x, "how"))
return()
## collect header
head <- NULL
## blocks
if (!is.null(getBlocks(x)))
head <- paste0(head, paste("Blocks: ", x$blocks.name, "\n"))
## plots
plotStr <- getStrata(x, which = "plots")
if (!is.null(plotStr)) {
plots <- getPlots(x)
ptype <- getType(x, which = "plots")
head <- paste0(head, paste0("Plots: ", plots$plots.name, ", "))
head <- paste0(head, paste("plot permutation:", ptype))
if(getMirror(x, which = "plots"))
head <- paste(head, "mirrored")
if (isTRUE(all.equal(ptype, "grid"))) {
nr <- getRow(x, which = "plots")
nc <- getCol(x, which = "plots")
head <- paste0(head, sprintf(ngettext(nr, " %d row", " %d rows"),
nr))
head <- paste0(head, sprintf(ngettext(nc, " %d column",
" %d columns"), nc))
}
head <- paste0(head, "\n")
}
## the fine level (within plots if any)
type <- getType(x, which = "within")
head <- paste0(head, "Permutation: ", type)
if (isTRUE(type %in% c("series", "grid"))) {
if(getMirror(x, which = "within"))
head <- paste(head, "mirrored")
if(getConstant(x))
head <- paste0(head, " constant permutation within each Plot")
}
if (isTRUE(all.equal(type, "grid"))) {
nr <- getRow(x, which = "within")
nc <- getCol(x, which = "within")
head <- paste0(head, sprintf(ngettext(nr, " %d row", " %d rows"),
nr))
head <- paste0(head, sprintf(ngettext(nc, " %d column",
" %d columns"), nc))
}
paste0(head, "\nNumber of permutations: ", getNperm(x), "\n")
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/howHead.R
|
"humpfit" <-
function (mass, spno, family = poisson, start)
{
.Defunct("natto::humpfit() from https://github.com/jarioksa/natto/")
hump <- function(p, mass, spno, ...) {
x <- ifelse(mass < p[1], mass/p[1], p[1] * p[1]/mass/mass)
fv <- p[3] * log(1 + p[2] * x/p[3])
n <- wt <- rep(1, length(x))
dev <- sum(dev.resids(spno, fv, wt))
aicfun(spno, n, fv, wt, dev)/2
}
fam <- family(link = "identity")
aicfun <- fam$aic
dev.resids <- fam$dev.resids
if (missing(start))
p <- c(mean(mass), 100, 10)
else
p <- start
fit <- nlm(hump, p = p, mass = mass, spno = spno, hessian = TRUE)
p <- fit$estimate
names(p) <- c("hump", "scale", "alpha")
x <- ifelse(mass < p[1], mass/p[1], p[1] * p[1]/mass/mass)
fv <- p[3] * log(1 + p[2] * x/p[3])
res <- dev.resids(spno, fv, rep(1, length(x)))
dev <- sum(res)
residuals <- spno - fv
aic <- fit$minimum * 2 + 6
rdf <- length(x) - 3
out <- list(nlm = fit, family = fam, y = spno, x = mass,
coefficients = p, fitted.values = fv, aic = aic, rank = 3,
df.residual = rdf, deviance = dev, residuals = residuals,
prior.weights = rep(1, length(x)))
class(out) <- c("humpfit", "glm")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/humpfit.R
|
`identify.ordiplot` <-
function (x, what, labels, ...)
{
x <- scores(x, what)
if (missing(labels))
labels <- rownames(x)
identify(x, labels = labels, ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/identify.ordiplot.R
|
`indpower` <-
function(x, type=0)
{
x <- as.matrix(x)
if (!(is.numeric(x) || is.logical(x)))
stop("input data must be numeric")
x <- ifelse(x > 0, 1, 0)
if (NCOL(x) < 2)
stop("provide at least two columns for 'x'")
if (!(type %in% 0:2))
stop("'type' must be 0, 1 or 2")
n <- nrow(x)
j <- crossprod(x) ## faster t(x) %*% x
ip1 <- sweep(j, 1, diag(j), "/")
ip2 <- 1 - sweep(-sweep(j, 2, diag(j), "-"), 1, n - diag(j), "/")
out <- switch(as.character(type),
"0" = sqrt(ip1 * ip2),
"1" = ip1,
"2" = ip2)
cn <- if (is.null(colnames(out)))
1:ncol(out) else colnames(out)
rn <- if (is.null(rownames(out)))
1:ncol(out) else rownames(out)
colnames(out) <- paste("t", cn, sep=".")
rownames(out) <- paste("i", rn, sep=".")
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/indpower.R
|
`inertcomp` <-
function (object, display = c("species", "sites"),
unity = FALSE, proportional = FALSE)
{
display <- match.arg(display)
## unity and proportional are conflicting arguments
if (unity && proportional)
stop("arguments 'unity' and 'proportional' cannot be both TRUE")
if (!inherits(object, "cca"))
stop("can be used only with objects inheriting from 'cca'")
if (inherits(object, c("capscale", "dbrda")) && display == "species")
stop(gettextf("cannot analyse species with '%s'", object$method))
if (inherits(object, "dbrda")) {
display <- "dbrda"
}
## function to get the eigenvalues
getComps <- function(x, display) {
if(!is.null(x))
switch(display,
"species" = colSums(x^2),
"sites" = rowSums(x^2),
"dbrda" = diag(x)
)
}
pCCA <- ordiYbar(object, "pCCA")
CCA <- ordiYbar(object, "CCA")
CA <- ordiYbar(object, "CA")
tot <- ordiYbar(object, "initial")
out <- cbind("pCCA" = getComps(pCCA, display),
"CCA" = getComps(CCA, display),
"CA" = getComps(CA, display))
if (unity) ## each column sums to 1
out <- sweep(out, 2, colSums(out), "/")
if (proportional)
out <- out/getComps(tot, display)
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/inertcomp.R
|
### influence statistics for cca objects
## extract QR decomposition
`qr.cca` <-
function(x, ...)
{
if (is.null(r <- x$CCA$QR))
stop("unconstrained model or rank zero: no 'qr' component")
r
}
## residual degrees of freedom
`df.residual.cca` <-
function(object, ...)
{
nobs(object) - object$CCA$qrank - 1
}
## hat values need adjustment, because QR ignores Intercept
`hatvalues.cca` <-
function(model, ...)
{
hat <- rowSums(qr.Q(qr(model))^2) + weights(model)
## it can be be that hat > 1: the trick below is the same as used
## in stats::lm.influence()
hat[hat > 1 - 10 * .Machine$double.eps] <- 1
hat
}
`hatvalues.rda` <-
function(model, ...)
{
hat <- rowSums(qr.Q(qr(model))^2) + 1/nrow(qr(model)$qr)
hat[hat > 1 - 10 * .Machine$double.eps] <- 1
hat
}
## sigma gives the residual standard deviation. The only unambiguous
## sigma is the residual deviation for species, but for CANOCO like
## statistic this would be residual of WA/LC regression with little or
## no meaning.
`sigma.cca` <-
function(object, type = c("response", "canoco"), ...)
{
type <- match.arg(type)
## no response type in distance-based ordination
if (inherits(object, c("dbrda", "capscale")) &&
type == "response")
stop("type = 'response' is not available in distance-based ordination")
## response: a vector of species (column) sigmata
rdf <- df.residual(object)
if (inherits(object, "rda"))
adj <- nobs(object) - 1
else
adj <- 1
if (type == "response") {
sqrt(colSums(ordiYbar(object, "CA")^2 / rdf * adj))
} else { # canoco has WA - LC regression
sqrt((colSums(weights(object) * object$CCA$wa^2) - 1)/rdf)
}
}
## rstandard and rstudent need sigma and have similar restrictions as
## sigma: it should be extractable and meaningful.
`rstandard.cca` <-
function(model, type = c("response", "canoco"), ...)
{
type <- match.arg(type)
sd <- sigma(model, type = type)
hat <- hatvalues(model)
if (inherits(model, "rda"))
adj <- sqrt(nobs(model) - 1)
else
adj <- 1
w <- sqrt(weights(model))
res <- switch(type,
"response" = ordiYbar(model, "CA") * adj,
"canoco" = w * (model$CCA$wa - model$CCA$u))
res <- res / sqrt(1 - hat)
res <- sweep(res, 2, sd, "/")
res[is.infinite(res)] <- NaN
res
}
## MASS book (4th ed), Chapter 6.3, p. 152 (e^star)
`rstudent.cca` <-
function(model, type = c("response", "canoco"), ...)
{
type <- match.arg(type)
np <- df.residual(model)
res <- rstandard(model, type = type)
res <- res / sqrt(pmax(np-res^2, 0)/(np-1))
res[is.infinite(res)] <- NaN
res
}
## Cook's distance depends on meaningful sigma
`cooks.distance.cca` <-
function(model, type = c("response", "canoco"), ...)
{
hat <- hatvalues(model)
p <- model$CCA$qrank
d <- rstandard(model, type = type)^2 * hat / (1 - hat) / (p + 1)
d[is.infinite(d)] <- NaN
d
}
## residual sums of squares and products
`SSD.cca` <-
function(object, type = "canoco", ...)
{
w <- sqrt(weights(object))
SSD <- crossprod(w * (object$CCA$wa - object$CCA$u))
structure(list(SSD = SSD, call = object$call, df = df.residual(object)),
class = "SSD")
}
## variances and covariances of coefficients. The sqrt(diag()) will be
## standard errors of regression coefficients, and for constrained
## ordination model m, the t-values of regression coefficients will be
## coef(m)/sqrt(diag(vcov(m))). The kind of relevant coefficient will
## be determined by the output of SSD.
`vcov.cca` <-
function(object, type = "canoco", ...)
{
QR <- qr(object)
p <- 1L:QR$rank
## we do not give the (Intercept): it is neither in coef()
cov.unscaled <- chol2inv(QR$qr[p, p])
dimnames(cov.unscaled) <- list(colnames(QR$qr)[p], colnames(QR$qr)[p])
ssd <- estVar(SSD(object, type = type))
kronecker(ssd, cov.unscaled, make.dimnames = TRUE)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/influence.cca.R
|
"initMDS" <-
function(x, k=2)
{
nr <- attr(x, "Size")
res <- runif(nr*k)
dim(res) <- c(nr,k)
res
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/initMDS.R
|
`intersetcor` <-
function(object)
{
if (!inherits(object, "cca"))
stop("can be used only with objects inheriting from 'cca'")
if (is.null(object$CCA) || !object$CCA$rank)
stop("no constrained ordination or rank of constraints is zero")
wa <- object$CCA$wa
X <- qr.X(object$CCA$QR)
## remove conditions (partial terms)
if (!is.null(object$pCCA)) {
X <- X[, -seq_along(object$pCCA$envcentre), drop = FALSE]
X <- qr.resid(object$pCCA$QR, X)
}
if (inherits(object, "rda"))
cor(X, wa)
else { # cca: weighted analysis, terms already weighted-centred
wa <- sqrt(object$rowsum) * wa
cov <- crossprod(X, wa)
isd <- outer(1/sqrt(colSums(X^2)), 1/sqrt(colSums(wa^2)))
cov * isd
}
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/intersetcor.R
|
`isomap` <-
function(dist, ndim=10, ...)
{
dist <- isomapdist(dist, ...)
out <- wcmdscale(dist, k=ndim, eig=TRUE)
## some versions of cmdscale may return NaN points corresponding
## to negative eigenvalues.
if ((naxes <- sum(out$eig > 0)) < ndim && naxes) {
out$points <- out$points[, seq(naxes), drop = FALSE]
message(gettextf("isomap returns only %d axes with positive eigenvalues",
naxes))
}
npoints <- nrow(out$points)
net <- matrix(FALSE, nrow=npoints, ncol=npoints)
net[lower.tri(net)][attr(dist, "net")] <- TRUE
net <- which(net, arr.ind=TRUE)
out$method <- attr(dist, "method")
out$criterion <- attr(dist, "criterion")
out$critval <- attr(dist, "critval")
out$take <- attr(dist, "take")
out$net <- net
out$npoints <- npoints
out$call <- match.call()
class(out) <- "isomap"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/isomap.R
|
`isomapdist` <-
function(dist, epsilon, k, path="shortest", fragmentedOK = FALSE, ...)
{
EPS <- 1e-5
op <- options(warn = 2)
on.exit(options(op))
if (!inherits(dist, "dist"))
dist <- as.dist(dist)
options(op)
method <- attr(dist, "method")
if (missing(epsilon) && missing(k))
stop("either epsilon or k must be given")
if (!missing(epsilon) && !missing(k))
message("both epsilon and k given, using epsilon")
if (!missing(epsilon))
dist[dist >= epsilon-EPS] <- NA
else {
dist <- as.matrix(dist)
diag(dist) <- NA
is.na(dist) <- apply(dist, 2, function(x)
x > x[order(x, na.last=TRUE)[k]])
dist <- pmax(as.dist(dist), as.dist(t(dist)), na.rm = TRUE)
}
fragm <- distconnected(dist, toolong=0, trace=FALSE)
take <- NULL
if (length(unique(fragm)) > 1) {
if (fragmentedOK) {
warning("data are fragmented: taking the largest fragment")
take <- fragm == as.numeric(names(which.max(table(fragm))))
dist <- as.dist(as.matrix(dist)[take,take])
} else {
stop("data are fragmented")
}
}
net <- which(!is.na(dist))
attr(dist, "method") <- method
dist <- stepacross(dist, path = path, toolong = 0, trace = FALSE)
if (any(is.na(dist))) {
## never get here: we selected non-fragmented subset
stop("dissimilarities contain NA and cannot be analysed: file a bug report")
}
if (missing(epsilon)) {
attr(dist, "criterion") <-"k"
attr(dist, "critval") <- k
}
else {
attr(dist, "criterion") <- "epsilon"
attr(dist, "critval") <- epsilon
}
attr(dist, "method") <- paste(attr(dist, "method"), "isomap")
attr(dist, "net") <- net
attr(dist, "take") <- take
attr(dist, "call") <- match.call()
dist
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/isomapdist.R
|
`kendall.global` <-
function(Y, group, nperm=999, mult="holm")
{
### Function to test the overall significance of the Kendall coefficient of
### concordance for a single group or several groups of judges (e.g. species)
###
### copyleft - Guillaume Blanchet and Pierre Legendre, October 2008
################################################################################
mult <- match.arg(mult, c("sidak", p.adjust.methods))
##CC# Make sure Y is a matrix and find number of rows and columns of Y
Y <- as.matrix(Y)
n <- nrow(Y)
p <- ncol(Y)
if(p < 2) stop("there is only one variable in the data matrix")
##CC# Transform the species abundances to ranks, by column
R <- apply(Y,2,rank)
if(missing(group)) group <- rep(1,p)
if(length(group) != p){
stop("the number of species in the vector differs from the total number of species")
}
group <- as.factor(group)
gr.lev <- levels(group)
ngr <- nlevels(group)
gr <- as.list(1:ngr)
n.per.gr <- vector(length=ngr)
for(i in 1:ngr){
gr[[i]] <- which(group==gr.lev[i])
n.per.gr[i] <- length(gr[[i]])
## Vector containing the number of species per group
}
## Initialise the vectors of results
W.gr <- vector("numeric",ngr)
F.gr <- vector("numeric",ngr)
prob.F.gr <- vector("numeric",ngr)
Chi2.gr <- vector("numeric",ngr)
prob.perm.gr <- vector("numeric",ngr)
for(i in 1:ngr){
p.i <- n.per.gr[i]
if(p.i < 2) stop(gettextf("there is only one variable in group %d",gr.lev[i]))
##CC# Correction factors for tied ranks (eq. 3.3)
t.ranks <- apply(R[,gr[[i]]], 2,
function(x) summary(as.factor(x), maxsum=n))
T. <- sum(unlist(lapply(t.ranks, function(x) sum((x^3)-x))))
##CC# Compute the Sum of squares of the uncentred ranks (S) (eq. 3.1)
S <- sum(rowSums(R[,gr[[i]]])^2)
##CC# Compute Kendall's W (eq. 3.2)
W.gr[i] <- ((12*S)-(3*(p.i^2)*n*(n+1)^2))/(((p.i^2)*((n^3)-n))-(p.i*T.))
##C# Compute Fisher F statistic and associated probability
F.gr[i] <- (p.i-1)*W.gr[i]/(1-W.gr[i])
nu1 <- n-1-(2/p.i)
nu2 <- nu1*(p.i-1)
prob.F.gr[i] <- pf(F.gr[i], nu1, nu2, lower.tail=FALSE)
##CC# Calculate Friedman's Chi-square (eq. 3.4)
Chi2.gr[i] <- p.i*(n-1)*W.gr[i]
counter <- 1
for(j in 1:nperm) { # Each species is permuted independently
R.perm <- apply(R[,gr[[i]]], 2, sample)
S.perm <- sum(rowSums(R.perm)^2)
W.perm <- ((12*S.perm)-(3*(p.i^2)*n*(n+1)^2))/(((p.i^2)*((n^3)-n))-(p.i*T.))
Chi2.perm <- p.i*(n-1)*W.perm
if(Chi2.perm >= Chi2.gr[i]) counter <- counter+1
}
prob.perm.gr[i] <- counter/(nperm+1)
}
## Correction to P-values for multiple testing
if(ngr > 1) {
if(mult == "sidak") {
perm.corr <- NA
for(i in 1:ngr) perm.corr = c(perm.corr, (1-(1-prob.perm.gr[i])^ngr))
perm.corr <- perm.corr[-1]
#
prob.F.corr <- NA
for(i in 1:ngr) prob.F.corr = c(prob.F.corr, (1-(1-prob.F.gr[i])^ngr))
prob.F.corr <- prob.F.corr[-1]
} else {
perm.corr <- p.adjust(prob.perm.gr, method=mult)
prob.F.corr <- p.adjust(prob.F.gr, method=mult)
}
}
## Create a data frame containing the results
if(ngr == 1) {
table <- rbind(W.gr, F.gr, prob.F.gr, Chi2.gr, prob.perm.gr)
colnames(table) <- colnames(table,do.NULL = FALSE, prefix = "Group.")
rownames(table) <- c("W", "F", "Prob.F", "Chi2", "Prob.perm")
} else {
table <- rbind(W.gr, F.gr, prob.F.gr, prob.F.corr, Chi2.gr, prob.perm.gr, perm.corr)
colnames(table) <- colnames(table,do.NULL = FALSE, prefix = "Group.")
rownames(table) <- c("W", "F", "Prob.F", "Corrected prob.F", "Chi2", "Prob.perm", "Corrected prob.perm")
}
if(ngr == 1) {
out <- list(Concordance_analysis=table)
} else {
out <- list(Concordance_analysis=table, Correction.type=mult)
}
#
class(out) <- "kendall.global"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/kendall.global.R
|
`kendall.post` <-
function(Y, group, nperm=999, mult="holm")
{
### Function to carry out a posteriori tests on individual judges (e.g. species)
### for a single group or several groups of judges.
###
### copyleft - Guillaume Blanchet and Pierre Legendre, October 2008
################################################################################
mult <- match.arg(mult, c("sidak", p.adjust.methods))
##CC# Make sure Y is a matrix and find number of rows and columns of Y
Y <- as.matrix(Y)
p <- ncol(Y)
if(p < 2) stop("there is only one variable in the data matrix")
##CC# Transform the species abundances to ranks, by column
R <- apply(Y,2,rank)
if(missing(group)) group <- rep(1,p)
if(length(group) != p){
stop("the number of species in the vector differs from the total number of species")
}
##CC# Separate tests for the variables in each group
group <- as.factor(group)
gr.lev <- levels(group)
ngr <- nlevels(group)
gr <- as.list(1:ngr)
n.per.gr <- vector(length=ngr)
for(i in 1:ngr){
gr[[i]] <- which(group==gr.lev[i])
n.per.gr[i] <- length(gr[[i]]) # Vector with the number of
# variables per group
}
##===============================
##CC# start permutation procedure
##===============================
##CC# Initialize the counters
counter <- as.list(1:ngr)
for(i in 1:ngr){
counter[[i]] <- vector(length = n.per.gr[i])
}
W.gr <- vector("list",ngr)
if(ngr > 1) spear.gr <- vector("list",ngr)
for(i in 1:ngr){
p.i <- n.per.gr[i]
if(p.i < 2) stop(gettextf("there is only one variable in group %d",
gr.lev[i]))
#CC# Extract variables part of
#group i
R.gr <- R[,gr[[i]]] # Table with species of group 'i' only
#as columns CC# Calculate the
#mean of the Spearman
#correlations for each species
#in a group
spear.mat <- cor(R.gr)
diag(spear.mat) <- NA
spear.mean <- apply(spear.mat, 1, mean, na.rm=TRUE)
#CC# Calculate Kendall's W for each variable
W.var <- ((p.i-1)*spear.mean+1)/p.i
#for(j in 1:n.per.gr[i]){
for(j in 1:p.i){ # Test each species in turn
#CC# Create a new R where the
#permuted variable has been
#removed
R.gr.mod <- R.gr[,-j]
##CC# Set counter
counter[[i]][j] <- 1
##CC# The actual permutation procedure
for(k in 1:nperm){
var.perm <- sample(R.gr[,j])
spear.mat.perm <- cor(cbind(R.gr.mod, var.perm))
diag(spear.mat.perm) <- NA
spear.mean.j.perm <- mean(spear.mat.perm[p.i,], na.rm=TRUE)
W.perm <- ((p.i-1)*spear.mean.j.perm+1)/p.i
if(W.perm >= W.var[j]) counter[[i]][j] <- counter[[i]][j]+1
}
}
W.gr[[i]] <- W.var
if(ngr > 1) spear.gr[[i]] <- spear.mean
}
##CC# Calculate P-values
for(i in 1:ngr) {
counter[[i]] <- counter[[i]]/(nperm+1)
}
## Correction to P-values for multiple testing
## Write all P-values to a long vector 'vec'
vec <- counter[[1]]
if(ngr > 1) {
for(i in 2:ngr) vec = c(vec, counter[[i]])
}
if(length(vec) != p) stop("error in putting together vector 'vec'")
if(mult == "sidak") {
vec.corr = NA
for(i in 1:p) vec.corr = c(vec.corr, (1-(1-vec[i])^p))
vec.corr <- vec.corr[-1]
} else {
vec.corr <- p.adjust(vec, method=mult)
}
if(ngr > 1) {
vec.gr <- vector("list",ngr)
end <- 0
for(i in 1:ngr){
beg <- end+1
end <- end + n.per.gr[i]
vec.gr[[i]] <- vec.corr[beg:end]
}
}
## Create data frames containing the results
if(ngr == 1) {
table <- rbind(spear.mean, W.var, counter[[1]], vec.corr)
rownames(table) <- c("Spearman.mean", "W.per.species", "Prob", "Corrected prob")
} else {
table <- as.list(1:ngr)
for(i in 1:ngr) {
table[[i]] <- rbind(spear.gr[[i]], W.gr[[i]], counter[[i]], vec.gr[[i]])
rownames(table[[i]]) <- c("Spearman.mean", "W.per.species", "Prob", "Corrected prob")
## PL: Next line had been lost
colnames(table[[i]]) <- colnames(table[[i]], do.NULL = FALSE,
prefix = "Spec")
}
}
if(ngr == 1) {
out <- list(A_posteriori_tests=table, Correction.type=mult)
} else {
out <- list(A_posteriori_tests_Group=table, Correction.type=mult)
}
#
class(out) <- "kendall.post"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/kendall.post.R
|
`labels.envfit` <-
function(object, ...)
{
out <- list("vectors" = rownames(object$vectors$arrows),
"factors" = rownames(object$factors$centroids))
if (is.null(out$vectors) || is.null(out$factors))
out <- unlist(out, use.names = FALSE)
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/labels.envfit.R
|
## S3 lines method for permat
`lines.permat` <-
function(x, type = "bray", ...)
{
lines(summary(x)[[match.arg(type, c("bray", "chisq"))]], ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/lines.permat.R
|
"lines.prestonfit" <-
function(x, line.col = "red", lwd = 2, ...)
{
p <- x$coefficients
freq <- x$freq
oct <- as.numeric(names(freq))
curve(p[3] * exp(-(x-p[1])^2/2/p[2]^2), -1, max(oct), add = TRUE,
col = line.col, lwd = lwd, ...)
segments(p["mode"], 0, p["mode"], p["S0"], col = line.col,
...)
segments(p["mode"] - p["width"], p["S0"] * exp(-0.5), p["mode"] +
p["width"], p["S0"] * exp(-0.5), col = line.col, ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/lines.prestonfit.R
|
`lines.procrustes` <-
function(x, type=c("segments", "arrows"), choices=c(1,2),
truemean = FALSE, ...)
{
type <- match.arg(type)
X <- x$X[,choices, drop=FALSE]
Y <- x$Yrot[, choices, drop=FALSE]
if (truemean) {
X <- sweep(X, 2, x$xmean[choices], "+")
Y <- sweep(Y, 2, x$xmean[choices], "+")
}
if (type == "segments")
ordiArgAbsorber(X[,1], X[,2], Y[,1], Y[,2], FUN = segments, ...)
else
ordiArgAbsorber(X[,1], X[,2], Y[,1], Y[,2], FUN = arrows, ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/lines.procrustes.R
|
`lines.radline` <-
function (x, ...)
{
lin <- fitted(x)
rnk <- seq(along = lin)
lines(rnk, lin, ...)
invisible()
}
`lines.radfit` <-
function(x, ...)
{
matlines(fitted(x), ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/lines.radline.R
|
`lines.spantree` <-
function (x, ord, display = "sites", col = 1, ...)
{
ord <- scores(ord, display = display, ...)
tree <- x$kid
## recycle colours and use a mixture of joined points for line segments
col <- rep(col, length = nrow(ord))
col <- col2rgb(col)/255
## average colour for pairs of points
col <- rgb(t(col[,-1] + col[,tree])/2)
if (x$n > 1)
ordiArgAbsorber(ord[-1, 1], ord[-1, 2], ord[tree, 1], ord[tree, 2],
col = col,
FUN = segments, ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/lines.spantree.R
|
`linestack` <-
function (x, labels, cex = 0.8, side = "right", hoff = 2, air = 1.1,
at = 0, add = FALSE, axis = FALSE, ...)
{
if (length(at) > 1 || length(hoff) > 1 || length(air) > 1 || length(cex) > 1)
stop("only one value accepted for arguments 'cex', 'hoff', 'air' and 'at'")
x <- drop(x)
n <- length(x)
misslab <- missing(labels)
if (misslab) {
labels <- names(x)
}
if (!is.expression(labels) && !is.character(labels)) {
labels <- as.character(labels) # coerce to character only if not expressions
}
nlab <- length(labels)
if (!misslab && n != nlab) {
stop(gettextf(
"wrong number of supplied 'labels: expected %d, got %d", n, nlab))
}
side <- match.arg(side, c("right", "left"))
op <- par(xpd = TRUE)
on.exit(par(op))
ord <- order(x)
x <- x[ord]
labels <- labels[ord]
pos <- numeric(n)
if (!add) {
plot(pos, x, type = "n", axes = FALSE, xlab = "", ylab = "", ...)
}
hoff <- hoff * strwidth("m")
ht <- air * strheight(labels, cex = cex)
mid <- (n + 1)%/%2
pos[mid] <- x[mid]
if (n > 1) {
for (i in (mid + 1):n) {
pos[i] <- max(x[i], pos[i - 1] + ht[i])
}
}
if (n > 2) {
for (i in (mid - 1):1) {
pos[i] <- min(x[i], pos[i + 1] - ht[i])
}
}
segments(at, x[1], at, x[n])
if (side == "right") {
text(at + hoff, pos, labels, pos = 4, cex = cex, offset = 0.2,
...)
segments(at, x, at + hoff, pos)
}
else if (side == "left") {
text(at - hoff, pos, labels, pos = 2, cex = cex, offset = 0.2,
...)
segments(at, x, at - hoff, pos)
}
if (axis)
axis(if (side == "right")
2
else 4, pos = at, las = 2)
invisible(pos[order(ord)])
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/linestack.R
|
`make.cepnames` <-
function (names, seconditem = FALSE)
{
## make valid names
names <- make.names(names, unique = FALSE, allow_ = FALSE)
## remove trailing and duplicated dots
names <- gsub("\\.[\\.]+", ".", names)
names <- gsub("\\.$", "", names)
## split by dots and take 4 letters of each element (if several)
names <- lapply(strsplit(names, "\\."), function(x) if (length(x) > 1)
substring(x, 1, 4) else x )
## Take first and last element or 8 characters if only one element
names <- unlist(lapply(names, function(x) if (length(x) > 1)
paste(x[c(1, if(seconditem) 2 else length(x))], collapse = "")
else x))
names <- abbreviate(names, 8)
## Final clean-up
make.names(names, unique = TRUE)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/make.cepnames.R
|
## this lists all known algos in vegan and more
## if method is commsim object, it is returned
## if it is character, switch returns the right one, else stop with error
## so it can be used instead of match.arg(method) in other functions
## NOTE: very very long -- but it can be a central repository of algos
## NOTE 2: storage mode coercions are avoided here
## (with no apparent effect on speed), it should be
## handled by nullmodel and commsim characteristics
make.commsim <-
function(method)
{
algos <- list(
"r00" = commsim(method="r00", binary=TRUE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- matrix(0L, nr * nc, n)
for (k in seq_len(n))
out[sample.int(nr * nc, s), k] <- 1L
dim(out) <- c(nr, nc, n)
out
}),
"c0" = commsim(method="c0", binary=TRUE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- array(0L, c(nr, nc, n))
J <- seq_len(nc)
for (k in seq_len(n))
for (j in J)
out[sample.int(nr, cs[j]), j, k] <- 1L
out
}),
"r0" = commsim(method="r0", binary=TRUE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- array(0L, c(nr, nc, n))
I <- seq_len(nr)
for (k in seq_len(n))
for (i in I)
out[i, sample.int(nc, rs[i]), k] <- 1L
out
}),
"r1" = commsim(method="r1", binary=TRUE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- array(0L, c(nr, nc, n))
I <- seq_len(nr)
storage.mode(cs) <- "double"
for (k in seq_len(n))
for (i in I)
out[i, sample.int(nc, rs[i], prob=cs), k] <- 1L
out
}),
"r2" = commsim(method="r2", binary=TRUE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- array(0L, c(nr, nc, n))
p <- cs * cs
I <- seq_len(nr)
for (k in seq_len(n))
for (i in I)
out[i, sample.int(nc, rs[i], prob=p), k] <- 1L
out
}),
"quasiswap" = commsim(method="quasiswap", binary=TRUE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
out <- array(unlist(r2dtable(n, rs, cs)), c(nr, nc, n))
storage.mode(out) <- "integer"
.Call(do_qswap, out, n, thin, "quasiswap")
}),
"greedyqswap" = commsim(method="greedyqswap", binary=TRUE,
isSeq=FALSE, mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
out <- array(unlist(r2dtable(n, rs, cs)), c(nr, nc, n))
storage.mode(out) <- "integer"
.Call(do_greedyqswap, out, n, thin, fill)
}),
"swap" = commsim(method="swap", binary = TRUE, isSeq=TRUE,
mode = "integer",
fun = function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
.Call(do_swap, as.matrix(x), n, thin, "swap")
}),
"tswap" = commsim(method="tswap", binary = TRUE, isSeq=TRUE,
mode = "integer",
fun = function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
.Call(do_swap, as.matrix(x), n, thin, "trialswap")
}),
"curveball" = commsim(method="curveball", binary = TRUE, isSeq=TRUE,
mode = "integer",
fun = function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
.Call(do_curveball, as.matrix(x), n, thin)
}),
"backtrack" = commsim(method="backtrack", binary = TRUE,
isSeq = FALSE, mode = "integer",
fun = function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
.Call(do_backtrack, n, rs, cs)
}),
"r2dtable" = commsim(method="r2dtable", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
out <- array(unlist(r2dtable(n, rs, cs)), c(nr, nc, n))
storage.mode(out) <- "integer"
out
}),
"swap_count" = commsim(method="swap_count", binary = FALSE,
isSeq=TRUE, mode = "integer",
fun = function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
.Call(do_swap, as.matrix(x), n, thin, "swapcount")
}),
"quasiswap_count" = commsim(method="quasiswap_count", binary=FALSE,
isSeq=FALSE, mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
out <- array(unlist(r2dtable(n, rs, cs)), c(nr, nc, n))
storage.mode(out) <- "integer"
.Call(do_qswap, out, n, fill, "rswapcount")
}),
"swsh_samp" = commsim(method="swsh_samp", binary=FALSE, isSeq=FALSE,
mode="double",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
nz <- x[x > 0]
out <- array(unlist(r2dtable(n, rf, cf)), c(nr, nc, n))
## do_qswap changes 'out' within the function
.Call(do_qswap, out, n, thin, "quasiswap")
storage.mode(out) <- "double"
for (k in seq_len(n)) {
out[,,k][out[,,k] > 0] <- sample(nz) # we assume that length(nz)>1
}
out
}),
"swsh_both" = commsim(method="swsh_both", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
nz <- as.integer(x[x > 0])
out <- array(unlist(r2dtable(n, rf, cf)), c(nr, nc, n))
.Call(do_qswap, out, n, thin, "quasiswap")
storage.mode(out) <- "integer"
for (k in seq_len(n)) {
out[,,k][out[,,k] > 0] <- indshuffle(nz - 1L) + 1L # we assume that length(nz)>1
}
out
}),
"swsh_samp_r" = commsim(method="swsh_samp_r", binary=FALSE, isSeq=FALSE,
mode="double",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
out <- array(unlist(r2dtable(n, rf, cf)), c(nr, nc, n))
.Call(do_qswap, out, n, thin, "quasiswap")
storage.mode(out) <- "double"
I <- seq_len(nr)
for (k in seq_len(n)) {
for (i in I) {
nz <- x[i,][x[i,] > 0]
if (length(nz) == 1)
out[i,,k][out[i,,k] > 0] <- nz
if (length(nz) > 1)
out[i,,k][out[i,,k] > 0] <- sample(nz)
}
}
out
}),
"swsh_samp_c" = commsim(method="swsh_samp_c", binary=FALSE, isSeq=FALSE,
mode="double",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
out <- array(unlist(r2dtable(n, rf, cf)), c(nr, nc, n))
.Call(do_qswap, out, n, thin, "quasiswap")
storage.mode(out) <- "double"
J <- seq_len(nc)
for (k in seq_len(n)) {
for (j in J) {
nz <- x[,j][x[,j] > 0]
if (length(nz) == 1)
out[,j,k][out[,j,k] > 0] <- nz
if (length(nz) > 1)
out[,j,k][out[,j,k] > 0] <- sample(nz)
}
}
out
}),
"swsh_both_r" = commsim(method="swsh_both_r", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
I <- seq_len(nr)
out <- array(unlist(r2dtable(n, rf, cf)), c(nr, nc, n))
.Call(do_qswap, out, n, thin, "quasiswap")
storage.mode(out) <- "integer"
for (k in seq_len(n)) {
for (i in I) {
nz <- as.integer(x[i,][x[i,] > 0])
if (length(nz) == 1)
out[i,,k][out[i,,k] > 0] <- nz
if (length(nz) > 1)
out[i,,k][out[i,,k] > 0] <- indshuffle(nz - 1L) + 1L
}
}
out
}),
"swsh_both_c" = commsim(method="swsh_both_c", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
if (nr < 2L || nc < 2L)
stop("needs at least two items")
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
J <- seq_len(nc)
out <- array(unlist(r2dtable(n, rf, cf)), c(nr, nc, n))
.Call(do_qswap, out, n, thin, "quasiswap")
storage.mode(out) <- "integer"
for (k in seq_len(n)) {
for (j in J) {
nz <- as.integer(x[,j][x[,j] > 0])
if (length(nz) == 1)
out[,j,k][out[,j,k] > 0] <- nz
if (length(nz) > 1)
out[,j,k][out[,j,k] > 0] <- indshuffle(nz - 1L) + 1L
}
}
out
}),
"abuswap_r" = commsim(method="abuswap_r", binary=FALSE, isSeq=TRUE,
mode="double",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
.Call(do_abuswap, as.matrix(x), n, thin, 1L)
}),
"abuswap_c" = commsim(method="abuswap_c", binary=FALSE, isSeq=TRUE,
mode="double",
fun=function(x, n, nr, nc, cs, rs, rf, cf, s, fill, thin) {
.Call(do_abuswap, as.matrix(x), n, thin, 0L)
}),
"r00_samp" = commsim(method="r00_samp", binary=FALSE, isSeq=FALSE,
mode="double",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- matrix(0, nr * nc, n)
for (k in seq_len(n))
out[, k] <- sample(x)
dim(out) <- c(nr, nc, n)
out
}),
"c0_samp" = commsim(method="c0_samp", binary=FALSE, isSeq=FALSE,
mode="double",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- array(0, c(nr, nc, n))
J <- seq_len(nc)
for (k in seq_len(n))
for (j in J)
out[, j, k] <- if (nr < 2)
x[,j] else sample(x[,j])
out
}),
"r0_samp" = commsim(method="r0_samp", binary=FALSE, isSeq=FALSE,
mode="double",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
out <- array(0, c(nr, nc, n))
I <- seq_len(nr)
for (k in seq_len(n))
for (i in I)
out[i, , k] <- if (nc < 2)
x[i,] else sample(x[i,])
out
}),
"r00_ind" = commsim(method="r00_ind", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
out <- matrix(0L, nr * nc, n)
for (k in seq_len(n))
out[, k] <- indshuffle(x)
dim(out) <- c(nr, nc, n)
out
}),
"c0_ind" = commsim(method="c0_ind", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
out <- array(0L, c(nr, nc, n))
J <- seq_len(nc)
for (k in seq_len(n))
for (j in J)
out[, j, k] <- indshuffle(x[,j])
out
}),
"r0_ind" = commsim(method="r0_ind", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
out <- array(0L, c(nr, nc, n))
I <- seq_len(nr)
for (k in seq_len(n))
for (i in I)
out[i, , k] <- indshuffle(x[i,])
out
}),
"r00_both" = commsim(method="r00_both", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
out <- matrix(0L, nr * nc, n)
for (k in seq_len(n)) {
out[,k][x > 0] <- indshuffle(x[x > 0] - 1L) + 1L
out[,k] <- sample(out[,k])
}
dim(out) <- c(nr, nc, n)
out
}),
"c0_both" = commsim(method="c0_both", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
out <- array(0L, c(nr, nc, n))
J <- seq_len(nc)
for (k in seq_len(n))
for (j in J) {
if (sum(x[,j]) > 0) {
out[,j,k][x[,j] > 0] <- indshuffle(x[,j][x[,j] > 0] - 1L) + 1L
out[,j,k] <- if (nr < 2)
out[,j,k] else sample(out[,j,k])
}
}
out
}),
"r0_both" = commsim(method="r0_both", binary=FALSE, isSeq=FALSE,
mode="integer",
fun=function(x, n, nr, nc, rs, cs, rf, cf, s, fill, thin) {
indshuffle <- function(x) {
drop(rmultinom(1, sum(x), rep(1, length(x))))
}
out <- array(0L, c(nr, nc, n))
I <- seq_len(nr)
for (k in seq_len(n))
for (i in I) {
if (sum(x[i,]) > 0) {
out[i,,k][x[i,] > 0] <- indshuffle(x[i,][x[i,] > 0] - 1L) + 1L
out[i,,k] <- if (nc < 2)
out[i,,k] else sample(out[i,,k])
}
}
out
})
)
if (missing(method))
return(names(algos))
if (inherits(method, "commsim"))
return(method)
method <- match.arg(method, sort(names(algos)))
algos[[method]]
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/make.commsim.R
|
`mantel` <-
function (xdis, ydis, method = "pearson", permutations = 999,
strata = NULL, na.rm = FALSE, parallel = getOption("mc.cores"))
{
EPS <- sqrt(.Machine$double.eps)
xdis <- as.dist(xdis)
ydis <- as.vector(as.dist(ydis))
## Handle missing values
if (na.rm)
use <- "complete.obs"
else
use <- "all.obs"
statistic <- cor(as.vector(xdis), ydis, method = method, use = use)
variant <- match.arg(method, eval(formals(cor)$method))
variant <- switch(variant,
pearson = "Pearson's product-moment correlation",
kendall = "Kendall's rank correlation tau",
spearman = "Spearman's rank correlation rho",
variant)
N <- attr(xdis, "Size")
permat <- getPermuteMatrix(permutations, N, strata = strata)
if (ncol(permat) != N)
stop(gettextf("'permutations' have %d columns, but data have %d observations",
ncol(permat), N))
permutations <- nrow(permat)
if (permutations) {
perm <- numeric(permutations)
## asdist as an index selects lower diagonal like as.dist,
## but is faster since it does not set 'dist' attributes
xmat <- as.matrix(xdis)
asdist <- row(xmat) > col(xmat)
ptest <- function(take, ...) {
permvec <- (xmat[take, take])[asdist]
drop(cor(permvec, ydis, method = method, use = use))
}
## Parallel processing
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
if (hasClus || parallel > 1) {
if(.Platform$OS.type == "unix" && !hasClus) {
perm <- do.call(rbind,
mclapply(1:permutations,
function(i, ...) ptest(permat[i,],...),
mc.cores = parallel))
} else {
if (!hasClus) {
parallel <- makeCluster(parallel)
}
perm <- parRapply(parallel, permat, ptest)
if (!hasClus)
stopCluster(parallel)
}
} else {
perm <- sapply(1:permutations, function(i, ...) ptest(permat[i,], ...))
}
signif <- (sum(perm >= statistic - EPS) + 1)/(permutations + 1)
}
else {
signif <- NA
perm <- NULL
}
res <- list(call = match.call(), method = variant, statistic = statistic,
signif = signif, perm = perm, permutations = permutations,
control = attr(permat, "control"))
class(res) <- "mantel"
res
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/mantel.R
|
`mantel.correlog` <-
function(D.eco, D.geo=NULL, XY=NULL, n.class=0, break.pts=NULL,
cutoff=TRUE, r.type="pearson", nperm=999, mult="holm",
progressive=TRUE)
{
r.type <- match.arg(r.type, c("pearson", "spearman", "kendall"))
mult <- match.arg(mult, c("sidak", p.adjust.methods))
epsilon <- .Machine$double.eps
D.eco <- as.matrix(D.eco)
## Geographic distance matrix
if(!is.null(D.geo)) {
if(!is.null(XY))
stop("you provided both a geographic distance matrix and a list of site coordinates:\nwhich one should the function use?")
D.geo <- as.matrix(D.geo)
} else {
if(is.null(XY)) {
stop("you did not provide a geographic distance matrix nor a list of site coordinates")
} else {
D.geo <- as.matrix(dist(XY))
}
}
n <- nrow(D.geo)
if(n != nrow(D.eco))
stop("numbers of objects in D.eco and D.geo are not equal")
n.dist <- n*(n-1)/2
vec.D <- as.vector(as.dist(D.geo))
vec.DD <- as.vector(D.geo)
## Number of classes and breakpoints
if(!is.null(break.pts)) {
## Use the list of break points
if(n.class > 0)
stop("you provided both a number of classes and a list of break points:\nwhich one should the function use?")
n.class = length(break.pts) - 1
} else {
## No breakpoints have been provided: equal-width classes
if(n.class == 0) {
## Use Sturges rule to determine the number of classes
n.class <- ceiling(1 + log(n.dist, base=2))
}
## Compute the breakpoints from n.class
start.pt <- min(vec.D)
end.pt <- max(vec.D)
width <- (end.pt - start.pt)/n.class
break.pts <- vector(length=n.class+1)
break.pts[n.class+1] <- end.pt
for(i in 1:n.class)
break.pts[i] <- start.pt + width*(i-1)
}
half.cl <- n.class %/% 2
## Move the first breakpoint a little bit to the left
break.pts[1] <- break.pts[1] - epsilon
## Find the break points and the class indices
class.ind <- break.pts[1:n.class] +
(0.5*(break.pts[2:(n.class+1)]-break.pts[1:n.class]))
## Create the matrix of distance classes
vec2 <- vector(length=n^2)
for(i in 1:n^2)
vec2[i] <- min( which(break.pts >= vec.DD[i]) ) - 1
## Start assembling the vectors of results
class.index <- NA
n.dist <- NA
mantel.r <- NA
mantel.p <- NA
## check.sums = matrix(NA,n.class,1)
## Create a model-matrix for each distance class, then compute a Mantel test
for(k in 1:n.class) {
class.index <- c(class.index, class.ind[k])
vec3 <- rep(0, n*n)
sel <- which(vec2 == k)
vec3[sel] <- 1
mat.D2 <- matrix(vec3,n,n)
diag(mat.D2) <- 0
n.dis <- sum(mat.D2)
n.dist <- c(n.dist, n.dis)
if(n.dis == 0) {
mantel.r <- c(mantel.r, NA)
mantel.p <- c(mantel.p, NA)
} else {
row.sums <- rowSums(mat.D2)
## check.sums[k,1] = length(which(row.sums == 0))
if((cutoff==FALSE) ||
!(cutoff==TRUE && k > half.cl && any(row.sums == 0))) {
temp <- mantel(mat.D2, D.eco, method=r.type, permutations=nperm)
mantel.r <- c(mantel.r, -temp$statistic)
temp.p <- temp$signif
## The mantel() function produces a one-tailed p-value
## (H1: r>0) Here, compute a one-tailed p-value in
## direction of the sign
if(temp$statistic < 0) {
temp.p <- (sum(temp$perm <= temp$statistic)+1)/(nperm+1)
}
mantel.p <- c(mantel.p, temp.p)
} else {
mantel.r <- c(mantel.r, NA)
mantel.p <- c(mantel.p, NA)
}
}
}
mantel.res <- cbind(class.index, n.dist, mantel.r, mantel.p)
mantel.res <- mantel.res[-1,]
## Note: vector 'mantel.p' starts with a NA value
mantel.p <- mantel.p[-1]
n.tests <- length(which(!is.na(mantel.p)))
if(mult == "none") {
colnames(mantel.res) <-
c("class.index", "n.dist", "Mantel.cor", "Pr(Mantel)")
} else {
## Correct P-values for multiple testing
if(progressive) {
p.corr <- mantel.p[1]
if(mult == "sidak") {
for(j in 2:n.tests)
p.corr <- c(p.corr, 1-(1-mantel.p[j])^j)
} else {
for(j in 2:n.tests) {
temp <- p.adjust(mantel.p[1:j], method=mult)
p.corr <- c(p.corr, temp[j])
}
}
} else {
## Correct all p-values for 'n.tests' simultaneous tests
if(mult == "sidak") {
p.corr <- 1 - (1 - mantel.p[1:n.tests])^n.tests
} else {
p.corr <- p.adjust(mantel.p[1:n.tests], method=mult)
}
}
temp <- c(p.corr, rep(NA,(n.class-n.tests)))
mantel.res <- cbind(mantel.res, temp)
colnames(mantel.res) <-
c("class.index", "n.dist", "Mantel.cor", "Pr(Mantel)", "Pr(corrected)")
}
rownames(mantel.res) <-
rownames(mantel.res,do.NULL = FALSE, prefix = "D.cl.")
## Output the results
res <- list(mantel.res=mantel.res, n.class=n.class, break.pts=break.pts,
mult=mult, n.tests=n.tests, call=match.call() )
class(res) <- "mantel.correlog"
res
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/mantel.correlog.R
|
`mantel.partial` <-
function (xdis, ydis, zdis, method = "pearson", permutations = 999,
strata = NULL, na.rm = FALSE, parallel = getOption("mc.cores"))
{
EPS <- sqrt(.Machine$double.eps)
part.cor <- function(rxy, rxz, ryz) {
(rxy - rxz * ryz)/sqrt(1-rxz*rxz)/sqrt(1-ryz*ryz)
}
xdis <- as.dist(xdis)
ydis <- as.vector(as.dist(ydis))
zdis <- as.vector(as.dist(zdis))
## Handle missing values
if (na.rm)
use <- "complete.obs"
else
use <- "all.obs"
rxy <- cor(as.vector(xdis), ydis, method = method, use = use)
rxz <- cor(as.vector(xdis), zdis, method = method, use = use)
ryz <- cor(ydis, zdis, method = method, use = use)
variant <- match.arg(method, eval(formals(cor)$method))
variant <- switch(variant,
pearson = "Pearson's product-moment correlation",
kendall = "Kendall's rank correlation tau",
spearman = "Spearman's rank correlation rho",
variant)
statistic <- part.cor(rxy, rxz, ryz)
N <- attr(xdis, "Size")
permat <- getPermuteMatrix(permutations, N, strata = strata)
if (ncol(permat) != N)
stop(gettextf("'permutations' have %d columns, but data have %d observations",
ncol(permat), N))
permutations <- nrow(permat)
if (permutations) {
N <- attr(xdis, "Size")
perm <- rep(0, permutations)
xmat <- as.matrix(xdis)
asdist <- row(xmat) > col(xmat)
ptest <- function(take, ...) {
permvec <- (xmat[take, take])[asdist]
rxy <- cor(permvec, ydis, method = method, use = use)
rxz <- cor(permvec, zdis, method = method, use = use)
part.cor(rxy, rxz, ryz)
}
## parallel processing
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
if (hasClus || parallel > 1) {
if(.Platform$OS.type == "unix" && !hasClus) {
perm <- do.call(rbind,
mclapply(1:permutations,
function(i, ...) ptest(permat[i,],...),
mc.cores = parallel))
} else {
if (!hasClus) {
parallel <- makeCluster(parallel)
}
perm <- parRapply(parallel, permat, ptest)
if (!hasClus)
stopCluster(parallel)
}
} else {
perm <- sapply(1:permutations, function(i, ...) ptest(permat[i,], ...))
}
signif <- (sum(perm >= statistic - EPS)+1)/(permutations + 1)
}
else {
signif <- NA
perm <- NULL
}
res <- list(call = match.call(), method = variant, statistic = statistic,
signif = signif, perm = perm, permutations = permutations,
control = attr(permat, "control"))
if (!missing(strata)) {
res$strata <- deparse(substitute(strata))
res$stratum.values <- strata
}
class(res) <- c("mantel.partial", "mantel")
res
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/mantel.partial.R
|
`meandist` <-
function(dist, grouping, ...)
{
if (!inherits(dist, "dist"))
stop("'dist' must be dissimilarity object inheriting from", dQuote(dist))
## check that 'dist' are dissimilarities (non-negative)
if (any(dist < -sqrt(.Machine$double.eps)))
warning("some dissimilarities are negative: is this intentional?")
grouping <- factor(grouping, exclude = NULL)
## grouping for rows and columns
grow <- grouping[as.dist(row(as.matrix(dist)))]
gcol <- grouping[as.dist(col(as.matrix(dist)))]
## The row index must be "smaller" of the factor levels so that
## all means are in the lower triangle, and upper is NA
first <- as.numeric(grow) >= as.numeric(gcol)
cl1 <- ifelse(first, grow, gcol)
cl2 <- ifelse(!first, grow, gcol)
## Cannot have within-group dissimilarity for group size 1
n <- table(grouping)
take <- matrix(TRUE, nlevels(grouping), nlevels(grouping))
diag(take) <- n > 1
take[upper.tri(take)] <- FALSE
out <- matrix(NA, nlevels(grouping), nlevels(grouping))
## Get output matrix
tmp <- tapply(dist, list(cl1, cl2), mean)
out[take] <- tmp[!is.na(tmp)]
out[upper.tri(out)] <- t(out)[upper.tri(out)]
rownames(out) <- colnames(out) <- levels(grouping)
class(out) <- c("meandist", "matrix")
attr(out, "n") <- table(grouping)
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/meandist.R
|
`metaMDS` <-
function (comm, distance = "bray", k = 2, try = 20, trymax = 20,
engine = c("monoMDS", "isoMDS"),
autotransform = TRUE, noshare = (engine == "isoMDS"),
wascores = TRUE, expand = TRUE, trace = 1,
plot = FALSE, previous.best, ...)
{
engine <- match.arg(engine)
## take care that try (minimum) is not larger than trymax (maximum)
if (try > trymax)
try <- trymax
## This could be a character vector of length > 1L
commname <- deparse(substitute(comm), width.cutoff = 500L)
if (length(commname) > 1L) {
paste(commname, collapse = "", sep = "")
## deparse can add more white space, so cull 2 or more spaces to a single space
commname <- gsub("[ ]{2,}", " ", commname)
}
## metaMDS was written for community data which should be all
## positive. Check this here, and set arguments so that they are
## suitable for non-negative data.
if (any(autotransform, noshare > 0, wascores) && any(comm < 0, na.rm=TRUE)) {
message("'comm' has negative data: 'autotransform', 'noshare' and 'wascores' set to FALSE")
wascores <- FALSE
autotransform <- FALSE
noshare <- FALSE
}
if (inherits(comm, "dist")) {
dis <- comm
if (is.null(attr(dis, "method")))
attr(dis, "method") <- "user supplied"
wascores <- FALSE
} else if ((is.matrix(comm) || is.data.frame(comm)) &&
isSymmetric(unname(as.matrix(comm)))) {
dis <- as.dist(comm)
attr(dis, "method") <- "user supplied"
wascores <- FALSE
} else {
if (trace > 2)
cat(">>> Calculation of dissimilarities\n")
dis <- metaMDSdist(comm, distance = distance,
autotransform = autotransform,
noshare = noshare, trace = trace,
commname = commname, ...)
}
if (missing(previous.best))
previous.best <- NULL
if (trace > 2)
cat(">>> NMDS iterations\n")
out <- metaMDSiter(dis, k = k, try = try, trymax = trymax,
trace = trace,
plot = plot, previous.best = previous.best,
engine = engine, ...)
## Nearly zero stress is usually not a good thing but a symptom of
## a problem: you may have insufficient data for NMDS
if (out$stress < 1e-3) {
warning("stress is (nearly) zero: you may have insufficient data")
}
if (trace > 2)
cat(">>> Post-processing NMDS\n")
points <- postMDS(out$points, dis, plot = max(0, plot - 1), ...)
## rescale monoMDS scaling if postMDS scaled 'points'
if (engine == "monoMDS" &&
!is.null(scl <- attr(points, "internalscaling"))) {
out$dist <- out$dist/scl
out$dhat <- out$dhat/scl
}
if (is.null(rownames(points)))
rownames(points) <- rownames(comm)
wa <- if (wascores) {
## transformed data
##comm <- eval.parent(parse(text=attr(dis, "commname")))
comm <- attr(dis, "comm")
wascores(points, comm, expand = expand)
} else {
NA
}
out$points <- points
out$species <- wa
out$call <- match.call()
if (is.null(out$data))
out$data <- commname
class(out) <- c("metaMDS", class(out))
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/metaMDS.R
|
`metaMDSdist` <-
function (comm, distance = "bray", autotransform = TRUE,
noshare = TRUE, trace = 1, commname,
zerodist = "ignore", distfun = vegdist, ...)
{
## metaMDSdist should get a raw data matrix, but if it gets a
## 'dist' object return that unchanged and quit silently.
if (inherits(comm, "dist") ||
((is.matrix(comm) || is.data.frame(comm)) &&
isSymmetric(unname(as.matrix(comm)))))
return(comm)
distname <- deparse(substitute(distfun))
distfun <- match.fun(distfun)
zerodist <- match.arg(zerodist, c("fail", "add", "ignore"))
formals(distfun) <- c(formals(distfun), alist(... = ))
formals(stepacross) <- c(formals(stepacross), alist(... = ))
if (missing(commname))
commname <- deparse(substitute(comm))
xam <- max(comm)
if (autotransform && xam > 50) {
comm <- sqrt(comm)
commname <- paste("sqrt(", commname, ")", sep = "")
if (trace)
cat("Square root transformation\n")
}
if (autotransform && xam > 9) {
comm <- wisconsin(comm)
commname <- paste("wisconsin(", commname, ")", sep = "")
if (trace)
cat("Wisconsin double standardization\n")
}
dis <- distfun(comm, method = distance, ...)
call <- attr(dis, "call")
call[[1]] <- as.name(distname)
attr(dis, "call") <- call
if (zerodist != "ignore" && any(dis <= 0, na.rm = TRUE)) {
if (zerodist == "fail")
stop("zero-value dissimilarities are not allowed")
else if (zerodist == "add") {
zero <- min(dis[dis > 0], na.rm = TRUE)/2
dis[dis <= 0] <- zero
if (trace)
cat("Zero dissimilarities changed into ", zero,"\n")
}
}
## We actually used maxdiss to decide whether index has a closed
## upper limit, but data maximum does not give that
## info. vegan::vegdist returns the info as an attribute of dis,
## but for other distance functions we guess constant maximum with
## arbitrary data matrix. This test is known to fail in some
## cases, but better so than assuming wrong maxdist: for instance,
## stats::dist(x, method="canberra") has maxdist ncol(x) --
## vegan::vegdist(x, "canberra") has maxdist 1, and we voluntarily
## fail here with stats::dist.
if (is.null(attr(dis, "maxdist"))) {
mat <- matrix(c(1,0,0, 1,0,0, 0,7,0, 0,3,0, 0,0,0.2,0,0,10),
nrow=3)
dmat <- distfun(mat, method = distance, ...)
if (sd(dmat) < sqrt(.Machine$double.eps) &&
max(dis) - max(dmat) < sqrt(.Machine$double.eps))
{
maxdis <- max(dmat)
attr(dis, "maxdist") <- maxdis
message("assuming that theoretical maximum distance is ", maxdis)
} else {
attr(dis, "maxdist") <- NA
}
}
## sanity check of dissimilarities: either similarities or failed
## logic above
maxdis <- attr(dis, "maxdist")
if (!is.null(maxdis) && is.numeric(maxdis)) {
if (max(dis) > maxdis + sqrt(.Machine$double.eps)) {
warning("some dissimilarities exceed expected maximum ", maxdis)
attr(dis, "maxdist") <- NA
}
if(maxdis < sqrt(.Machine$double.eps))
warning("perhaps you have similarities instead of dissimilarities?")
}
if ((isTRUE(noshare) && any(tmp <- no.shared(comm))) ||
(!is.logical(noshare) && noshare >= 0 &&
sum(tmp <- no.shared(comm))/length(dis) > noshare)) {
if (trace)
cat("Using step-across dissimilarities:\n")
rn <- range(dis[tmp], na.rm = TRUE)
if (rn[2]/rn[1] > 1.01)
warning("non-constant distances between points with nothing shared\n",
" stepacross may be meaningless: consider argument 'noshare=0'")
is.na(dis) <- tmp
dis <- stepacross(dis, trace = trace, toolong=0, ...)
if (length(unique(distconnected(tmp, trace = trace))) > 1)
warning("data are disconnected, results may be meaningless")
}
attr(dis, "commname") <- commname
attr(dis, "comm") <- comm
attr(dis, "function") <- distname
dis
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/metaMDSdist.R
|
`metaMDSiter` <-
function (dist, k = 2, try = 20, trymax = 20, trace = 1, plot = FALSE,
previous.best, engine = "monoMDS", maxit = 200,
parallel = getOption("mc.cores"), ...)
{
engine <- match.arg(engine, c("monoMDS", "isoMDS"))
EPS <- 0.05
if (engine == "monoMDS")
EPS <- EPS/100 # monoMDS stress (0,1), isoMDS (0,100)
RESLIM <- 0.01
RMSELIM <- 0.005
converged <- 0
## set tracing for engines
isotrace <- max(0, trace - 1)
monotrace <- engine == "monoMDS" && trace > 1
## explain monoMDS convergence codes (sol$icause)
monomsg <- c("no. of iterations >= maxit",
"stress < smin",
"stress ratio > sratmax",
"scale factor of the gradient < sfgrmin")
## monoMDS trace >= 2
monostop <- function(mod) {
if (mod$maxits == 0)
return(NULL)
lab <- monomsg[mod$icause]
cat(" ", mod$iters, "iterations: ", lab, "\n")
}
## collect monoMDS convergence code for trace
if (trace && engine == "monoMDS")
stopcoz <- numeric(4)
## Previous best or initial configuration
if (!missing(previous.best) && !is.null(previous.best)) {
## check if previous.best is from metaMDS or isoMDS
if (inherits(previous.best, "metaMDS") ||
is.list(previous.best) &&
all(c("points", "stress") %in% names(previous.best))) {
## Previous best may come from another 'engine' or
## 'model': extract its 'points' and use as an initial
## configuration with 'maxit = 0' to evaluate the stress
## in current case, or take a matrix as configuration.
init <- previous.best$points
bestry <- previous.best$bestry
trybase <- previous.best$tries
converged <- previous.best$converged
nc <- NCOL(init)
if (nc > k)
init <- init[, 1:k, drop = FALSE]
else if (nc < k)
for (i in 1:(k-nc))
init <- cbind(init, runif(NROW(init), -0.1, 0.1))
if (trace)
cat(sprintf("Starting from %d-dimensional configuration\n",
nc))
} else {
init <- as.matrix(previous.best)
bestry <- 0
trybase <- 0
}
## evaluate stress
s0 <- switch(engine,
"monoMDS" = monoMDS(dist, y = init, k = k, maxit = 0, ...),
"isoMDS" = isoMDS(dist, y = init, k = k, maxit = 0))
## Check whether model changed
if (is.list(previous.best) && !is.null(previous.best$stress) &&
!isTRUE(all.equal(previous.best$stress, s0$stress))) {
if (trace) cat("Stress differs from 'previous.best': reset tries\n")
if (inherits(previous.best, "metaMDS"))
previous.best$tries <- 0
}
} else {
## no previous.best: start with cmdscale
s0 <- switch(engine,
"monoMDS" = monoMDS(dist, y = cmdscale(dist, k = k), k = k,
maxit = maxit, ...),
"isoMDS" = isoMDS(dist, k = k, trace = isotrace,
maxit = maxit))
bestry <- 0
trybase <- 0
}
if (trace)
cat("Run 0 stress", s0$stress, "\n")
if (monotrace)
monostop(s0)
tries <- 0
## Prepare for parallel processing
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
isParal <- hasClus || parallel > 1
isMulticore <- .Platform$OS.type == "unix" && !hasClus
if (isParal && !isMulticore && !hasClus) {
parallel <- makeCluster(parallel)
clusterEvalQ(parallel, library(vegan))
}
## get the number of clusters
if (inherits(parallel, "cluster"))
nclus <- length(parallel)
else
nclus <- parallel
## proper iterations
while(tries < try || tries < trymax && converged == 0) {
init <- replicate(nclus, initMDS(dist, k = k))
if (nclus > 1) isotrace <- FALSE
if (isParal) {
if (isMulticore) {
stry <-
mclapply(1:nclus, function(i)
switch(engine,
"monoMDS" = monoMDS(dist, init[,,i], k = k,
maxit = maxit, ...),
"isoMDS" = isoMDS(dist, init[,,i], k = k,
maxit = maxit, tol = 1e-07,
trace = isotrace)),
mc.cores = parallel)
} else {
stry <-
parLapply(parallel, 1:nclus, function(i)
switch(engine,
"monoMDS" = monoMDS(dist, init[,,i], k = k,
maxit = maxit, ...),
"isoMDS" = isoMDS(dist, init[,,i], k = k,
maxit = maxit, tol = 1e-07, trace = isotrace)))
}
} else {
stry <- list(switch(engine,
"monoMDS" = monoMDS(dist, init[,,1], k = k,
maxit = maxit, ...),
"isoMDS" = isoMDS(dist, init[,,1], k = k,
maxit = maxit, tol = 1e-07, trace = isotrace)))
}
## analyse results of 'nclus' tries
for (i in 1:nclus) {
tries <- tries + 1
if (trace)
cat("Run", tries, "stress", stry[[i]]$stress, "\n")
if (trace && engine == "monoMDS")
stopcoz[stry[[i]]$icause] <- stopcoz[stry[[i]]$icause] + 1L
if (monotrace)
monostop(stry[[i]])
if ((s0$stress - stry[[i]]$stress) > -EPS) {
pro <- procrustes(s0, stry[[i]], symmetric = TRUE)
if (plot && k > 1)
plot(pro)
if (stry[[i]]$stress < s0$stress) {
s0 <- stry[[i]]
## New best solution has not converged unless
## proved later
converged <- 0
bestry <- tries + trybase
if (trace)
cat("... New best solution\n")
}
summ <- summary(pro)
if (trace)
cat("... Procrustes: rmse", summ$rmse, " max resid",
max(summ$resid), "\n")
if (summ$rmse < RMSELIM && max(summ$resid) < RESLIM) {
if (trace)
cat("... Similar to previous best\n")
converged <- converged + 1
}
}
flush.console()
}
}
if (trace) {
if (converged > 0)
cat("*** Best solution repeated", converged, "times\n")
else if (engine == "monoMDS") {
cat(sprintf(
"*** Best solution was not repeated -- %s stopping criteria:\n",
engine))
for (i in seq_along(stopcoz))
if (stopcoz[i] > 0)
cat(sprintf("%6d: %s\n", stopcoz[i], monomsg[i]))
}
}
## stop socket cluster
if (isParal && !isMulticore && !hasClus)
stopCluster(parallel)
if (!missing(previous.best) && inherits(previous.best, "metaMDS")) {
tries <- tries + previous.best$tries
}
out <- s0
out$ndim = k
out$data <- attr(dist, "commname")
out$distance <- attr(dist, "method")
out$converged <- converged
out$tries <- tries
out$bestry <- bestry
out$engine <- engine
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/metaMDSiter.R
|
"metaMDSredist" <-
function(object, ...)
{
if (!inherits(object, "metaMDS"))
stop("Needs a metaMDS result object")
call <- object$call
call[[1]] <- as.name("metaMDSdist")
eval(call, parent.frame())
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/metaMDSredist.R
|
`model.frame.cca` <-
function (formula, ...)
{
call <- formula$call
m <- match(c("formula", "data", "na.action", "subset"), names(call),
0)
call <- call[c(1, m)]
## did we succeed? Fails if we have no formula, in prc and if
## there was no data= argument
if (is.null(call$data))
stop("no sufficient information to reconstruct model frame")
## subset must be evaluated before ordiParseFormula
if (!is.null(call$subset))
call$subset <- formula$subset
if (is.null(call$na.action))
call$na.action <- na.pass
data <- eval(call$data, environment(call$formula), .GlobalEnv)
out <- ordiParseFormula(call$formula, data, na.action = call$na.action,
subset = call$subset)
mf <- out$modelframe
attr(mf, "terms") <- out$terms.expand
if (!is.null(out$na.action))
attr(mf, "na.action") <- out$na.action
mf
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/model.frame.cca.R
|
`model.matrix.cca` <-
function(object, ...)
{
X <- Z <- NULL
w <- 1/sqrt(object$rowsum)
if (!is.null(object$pCCA))
Z <- w * qr.X(object$pCCA$QR)
if (!is.null(object$CCA)) {
X <- qr.X(object$CCA$QR)
## First columns come from Z
if (!is.null(Z))
X <- X[, -seq_len(ncol(Z)), drop = FALSE]
X <- w * X
}
m <- list()
if (!is.null(Z))
m$Conditions <- Z
if (!is.null(X))
m$Constraints <- X
if (length(m) == 1)
m <- m[[1]]
m
}
`model.matrix.rda` <-
function(object, ...)
{
X <- Z <- NULL
if (!is.null(object$pCCA))
Z <- qr.X(object$pCCA$QR)
if (!is.null(object$CCA)) {
X <- qr.X(object$CCA$QR)
if (!is.null(Z))
X <- X[, -seq_len(ncol(Z)), drop=FALSE]
}
m <- list()
if (!is.null(Z))
m$Conditions <- Z
if (!is.null(X))
m$Constraints <- X
if (length(m) == 1)
m <- m[[1]]
m
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/model.matrix.cca.R
|
`monoMDS` <-
function(dist, y, k = 2,
model = c("global", "local", "linear", "hybrid"),
threshold = 0.8, maxit = 200, weakties = TRUE, stress = 1,
scaling = TRUE, pc = TRUE, smin = 1e-4, sfgrmin = 1e-7,
sratmax=0.999999, ...)
{
## Check that 'dist' are distances or a symmetric square matrix
if (!(inherits(dist, "dist") ||
((is.matrix(dist) || is.data.frame(dist)) &&
isSymmetric(unname(as.matrix(dist))))))
stop("'dist' must be a distance object (class \"dist\") or a symmetric square matrix")
if (any(dist < -sqrt(.Machine$double.eps), na.rm = TRUE))
warning("some dissimilarities are negative -- is this intentional?")
if (!any(dist > 0))
stop("'dist' cannot be all zero (all points are identical)")
## match.arg
model <- match.arg(model)
## save 'dist' attributes to display in print()
distmethod <- attr(dist, "method")
if (is.null(distmethod))
distmethod <- "unknown"
distcall <-attr(dist, "call")
if (!is.null(distcall))
distcall <- deparse(distcall)
## dist to mat
mat <- as.matrix(dist)
nm <- rownames(mat)
if (model %in% c("global", "linear")) {
## global NMDS: lower triangle
dist <- mat[lower.tri(mat)]
iidx <- row(mat)[lower.tri(mat)]
jidx <- col(mat)[lower.tri(mat)]
## Remove missing values
if (any(nas <- is.na(dist))) {
dist <- dist[!nas]
iidx <- iidx[!nas]
jidx <- jidx[!nas]
}
## non-metric/metric: Fortran parameter 'iregn'
if (model == "global")
iregn <- 1
else
iregn <- 2
ngrp <- 1
nobj <- nrow(mat)
istart <- 1
} else if (model == "local") {
## local NMDS: whole matrix without the diagonal, and rows in
## a row (hence transpose)
mat <- t(mat)
## Get missing values
nas <- is.na(mat)
## groups by rows, except missing values
rs <- rowSums(!nas) - 1
istart <- cumsum(rs)
istart <- c(0, istart[-length(istart)]) + 1
## Full matrix expect the diagonal
dist <- mat[col(mat) != row(mat)]
iidx <- col(mat)[col(mat) != row(mat)] # transpose!
jidx <- row(mat)[col(mat) != row(mat)]
## Remove missing values
if (any(nas)) {
nas <- nas[col(mat) != row(mat)]
dist <- dist[!nas]
iidx <- iidx[!nas]
jidx <- jidx[!nas]
}
iregn <- 1
nobj <- nrow(mat)
ngrp <- nobj
} else if (model == "hybrid") {
## Hybrid NMDS: two lower triangles, first a complete one,
## then those with dissimilarities below the threshold
dist <- mat[lower.tri(mat)]
iidx <- row(mat)[lower.tri(mat)]
jidx <- col(mat)[lower.tri(mat)]
## Missing values
if (any(nas <- is.na(dist))) {
dist <- dist[!nas]
iidx <- iidx[!nas]
jidx <- jidx[!nas]
}
## second group: dissimilarities below threshold
ngrp <- 2
istart <- c(1, length(dist) + 1)
take <- dist < threshold
dist <- c(dist, dist[take])
iidx <- c(iidx, iidx[take])
jidx <- c(jidx, jidx[take])
iregn <- 3
nobj <- nrow(mat)
}
## ndis: number of >0 dissimilarities (distinct points)
ndis <- length(dist)
## starting configuration
if (missing(y)) {
y <- matrix(runif(nobj*k, -1, 1), nobj, k)
## centre
y <- sweep(y, 2, colMeans(y), "-")
}
## y to vector
y <- as.vector(as.matrix(y))
## translate R args to Fortran call
if (weakties)
ities <- 1
else
ities <- 2
## Fortran call -- must quoted because monoMDS has mixed case (or
## can be FIXED)
sol <- .Fortran("monoMDS", nobj = as.integer(nobj), nfix=as.integer(0),
ndim = as.integer(k), ndis = as.integer(ndis),
ngrp = as.integer(ngrp), diss = as.double(dist),
iidx = as.integer(iidx), jidx = as.integer(jidx),
xinit = as.double(y), istart = as.integer(istart),
isform = as.integer(stress), ities = as.integer(ities),
iregn = as.integer(iregn), iscal = as.integer(scaling),
maxits = as.integer(maxit),
sratmx = as.double(sratmax), strmin = as.double(smin),
sfgrmn = as.double(sfgrmin), dist = double(ndis),
dhat = double(ndis), points = double(k*nobj),
stress = double(1), grstress = double(ngrp),
iters = integer(1), icause = integer(1))
sol$call <- match.call()
sol$model <- model
sol$points <- matrix(sol$points, nobj, k)
if (pc)
sol$points <- prcomp(sol$points)$x
attr(sol$points, "pc") <- pc
rownames(sol$points) <- nm
colnames(sol$points) <- paste("MDS", 1:k, sep="")
## save info on dissimilarities
sol$distmethod <- distmethod
sol$distcall <- distcall
class(sol) <- "monoMDS"
sol
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/monoMDS.R
|
`mrpp` <-
function (dat, grouping, permutations = 999, distance = "euclidean",
weight.type = 1, strata = NULL,
parallel = getOption("mc.cores"))
{
EPS <- sqrt(.Machine$double.eps)
classmean <- function(ind, dmat, indls) {
sapply(indls, function(x)
mean(c(dmat[ind == x, ind == x]),
na.rm = TRUE))
}
mrpp.perms <- function(ind, dmat, indls, w) {
weighted.mean(classmean(ind, dmat, indls), w = w, na.rm = TRUE)
}
if (inherits(dat, "dist"))
dmat <- dat
else if ((is.matrix(dat) || is.data.frame(dat)) &&
isSymmetric(unname(as.matrix(dat)))) {
dmat <- dat
attr(dmat, "method") <- "user supplied square matrix"
}
else dmat <- vegdist(dat, method = distance)
if (any(dmat < -sqrt(.Machine$double.eps)))
stop("dissimilarities must be non-negative")
distance <- attr(dmat, "method")
dmat <- as.matrix(dmat)
diag(dmat) <- NA
N <- nrow(dmat)
grouping <- factor(grouping)
indls <- levels(grouping)
ncl <- sapply(indls, function(x) sum(grouping == x))
w <- switch(weight.type, ncl, ncl - 1, ncl * (ncl - 1)/2)
classdel <- classmean(grouping, dmat, indls)
names(classdel) <- names(ncl) <- indls
del <- weighted.mean(classdel, w = w, na.rm = TRUE)
E.del <- mean(dmat, na.rm = TRUE)
## 'Classification strength' if weight.type == 1
## Do not calculate classification strength because there is no
## significance test for it. Keep the item in reserve for
## possible later re-inclusion.
CS <- NA
permutations <- getPermuteMatrix(permutations, N, strata = strata)
if (ncol(permutations) != N)
stop(gettextf("'permutations' have %d columns, but data have %d rows",
ncol(permutations), N))
control <- attr(permutations, "control")
if(nrow(permutations)) {
perms <- apply(permutations, 1, function(indx) grouping[indx])
permutations <- ncol(perms)
## Parallel processing
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
if (hasClus || parallel > 1) {
if(.Platform$OS.type == "unix" && !hasClus) {
m.ds <- unlist(mclapply(1:permutations, function(i, ...)
mrpp.perms(perms[,i], dmat, indls, w),
mc.cores = parallel))
} else {
if (!hasClus) {
parallel <- makeCluster(parallel)
}
m.ds <- parCapply(parallel, perms, function(x)
mrpp.perms(x, dmat, indls, w))
if (!hasClus)
stopCluster(parallel)
}
} else {
m.ds <- apply(perms, 2, function(x) mrpp.perms(x, dmat, indls, w))
}
p <- (1 + sum(del + EPS >= m.ds))/(permutations + 1)
r2 <- 1 - del/E.del
} else { # no permutations
m.ds <- p <- r2 <- NA
permutations <- 0
}
out <- list(call = match.call(), delta = del, E.delta = E.del, CS = CS,
n = ncl, classdelta = classdel, Pvalue = p, A = r2,
distance = distance, weight.type = weight.type,
boot.deltas = m.ds, permutations = permutations,
control = control)
class(out) <- "mrpp"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/mrpp.R
|
`mso` <-
function (object.cca, object.xy, grain = 1, round.up = FALSE,
permutations = 0)
{
if (inherits(object.cca, "dbrda"))
stop("'mso' is not yet implemented for 'dbrda'\ncontact developers or submit a pull request with your code in github")
EPS <- sqrt(.Machine$double.eps)
if (inherits(object.cca, "mso")) {
rm <- which(class(object.cca) == "mso")
class(object.cca) <- class(object.cca)[-rm]
}
object <- object.cca
xy <- object.xy
N <- nobs(object)
if (inherits(object, "rda"))
N <- 1
## we expect xy are coordinates and calculate distances, but a
## swift user may have supplied distances, and we use them.
## However, we won't test for distances in square matrices, but
## treat that as a user mistake and let it go.
if (inherits(xy, "dist"))
Dist <- xy
else
Dist <- dist(xy)
object$grain <- grain
if (round.up)
H <- ceiling(Dist/grain) * grain
else H <- round(Dist/grain) * grain
hmax <- round((max(Dist)/2)/grain) *grain
H[H > hmax] <- max(H)
object$H <- H
H <- as.vector(H)
Dist <- sapply(split(Dist, H), mean)
object$vario <- data.frame(H = names(table(H)), Dist = Dist,
n = as.numeric(table(H)))
test <- list()
if (is.numeric(object$CCA$rank)) {
if (is.numeric(object$pCCA$rank)) {
test$pcca <- sapply(split(dist(ordiYbar(object, "pCCA"))^2 *
N/2, H), mean)
test$cca <- sapply(split(dist(ordiYbar(object,"CCA"))^2 *
N/2, H), mean)
test$ca <- sapply(split(dist(ordiYbar(object,"CA"))^2 *
N/2, H), mean)
test$all.cond <- sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), mean)
test$se <- sqrt(sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), var)/object$vario$n)
object$vario <- cbind(object$vario, All = test$all.cond,
Sum = test$ca + test$cca, CA = test$ca,
CCA = test$cca, pCCA = test$pcca,
se = test$se)
} else {
test$all <- sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), mean)
test$cca <- sapply(split(dist(ordiYbar(object, "CCA"))^2 *
N/2, H), mean)
test$ca <- sapply(split(dist(ordiYbar(object,"CA"))^2 *
N/2, H), mean)
test$se <- sqrt(sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), var)/object$vario$n)
object$vario <- cbind(object$vario, All = test$all,
Sum = test$ca + test$cca, CA = test$ca,
CCA = test$cca, se = test$se)
}
} else {
test$ca <- sapply(split(dist(ordiYbar(object, "CA"))^2 * N/2,
H), mean)
object$vario <- cbind(object$vario, All = test$ca, CA = test$ca)
}
permat <- getPermuteMatrix(permutations, nobs(object))
nperm <- nrow(permat)
if (nperm) {
object$H.test <- matrix(0, length(object$H), nrow(object$vario))
for (i in 1:nrow(object$vario)) {
object$H.test[, i] <- as.numeric(object$H == object$vario$H[i])
}
xdis <- as.matrix(dist(ordiYbar(object, "CA"))^2)
## taking lower triangle is faster than as.dist() because it
## does not set attributes
ltri <- lower.tri(xdis)
statistic <- abs(cor(as.vector(xdis[ltri]), object$H.test))
permfunc <- function(k) {
permvec <- as.vector(xdis[k,k][ltri])
abs(cor(permvec, object$H.test))
}
perm <- sapply(1:nperm, function(take) permfunc(permat[take,]))
object$vario$CA.signif <-
(rowSums(sweep(perm, 1, statistic - EPS, ">=")) + 1)/
(nperm + 1)
attr(object$vario, "control") <- attr(permat, "control")
}
object$call <- match.call()
class(object) <- c("mso", class(object))
object
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/mso.R
|
`msoplot` <-
function (x, alpha = 0.05, explained = FALSE, ylim = NULL,
legend = "topleft", ...)
{
if (is.data.frame(x$vario)) {
vario <- x$vario
hasSig <- is.numeric(x$vario$CA.signif)
z <- qnorm(alpha/2)
if (is.numeric(vario$CA.signif)) {
vario <- vario[, -ncol(vario)]
}
ymax <- max(vario[, -1:-3], na.rm = TRUE)
b <- ncol(vario) - 3
label <- c("", "", "", "Total variance", "Explained plus residual",
"Residual variance", "Explained variance", "Conditioned variance")
ci.lab <- "C.I. for total variance"
sign.lab <- if(hasSig) "Sign. autocorrelation" else NULL
if (is.numeric(x$CCA$rank)) {
if (!explained)
b <- b - 1
if (is.numeric(x$vario$se))
b <- b - 1
figmat <- cbind(vario$All + z * vario$se,
vario$All - z * vario$se,
vario$Sum,
vario[, 6:(b + 3)])
matplot(vario$Dist, cbind(0,figmat), type = "n",
xlab = "Distance", ylab = "Variance",
ylim = ylim, ...)
lines(vario$Dist, vario$All + z * vario$se, lty = 1, ...)
lines(vario$Dist, vario$All - z * vario$se, lty = 1, ...)
lines(vario$Dist, vario$Sum, type = "b", lty = 2,
pch = 3, ...)
## Legend
legend(legend,
legend=c(label[c(2,3:b)+3], ci.lab, sign.lab),
lty=c(c(1,2,1,1,1)[2:b], 1, if(hasSig) NA),
pch=c(3, (6:(b+3))-6, NA, if(hasSig) 15)
)
matlines(vario$Dist, figmat[,-c(1:3)], type = "b", lty = 1,
pch = 6:(b+3)-6, ...)
text(x = c(vario$Dist), y = par("usr")[3], pos = 3,
label = c(vario$n), cex = 0.8, ...)
abline(v = max(x$H/2), lty = 3, ...)
}
else {
if (is.null(ylim))
ylim <- c(0, ymax)
plot(vario$Dist, vario$All, type = "b", lty = 1,
pch = 0, xlab = "Distance", ylab = "Variance",
ylim = ylim, ...)
abline(h = x$tot.chi, lty = 5, ...)
text(x = c(vario$Dist), y = par("usr")[3], pos = 3,
label = c(vario$n), cex = 0.8)
abline(v = max(x$H)/2, lty = 3, ...)
legend(legend,
legend=c("Total variance","Global variance estimate",
if(hasSig) "Sign. autocorrelation"),
lty=c(1,5, if(hasSig) NA),
pch = if(hasSig) c(NA,NA,15) else NULL)
}
}
if (hasSig) {
a <- c(1:nrow(x$vario))[x$vario$CA.signif <
alpha]
points(vario$Dist[a], x$vario$CA[a], pch = 15, ...)
if (is.numeric(x$CCA$rank)) {
inflation <- 1 - weighted.mean(x$vario$CA, x$vario$n)/
weighted.mean(x$vario$CA[-a],
x$vario$n[-a])
cat("Error variance of regression model underestimated by",
round(inflation * 100, 1), "percent", "\n")
}
}
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/msoplot.R
|
multipart <-
function (...)
{
UseMethod("multipart")
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/multipart.R
|
`multipart.default` <-
function(y, x, index=c("renyi", "tsallis"), scales = 1,
global = FALSE, relative = FALSE, nsimul=99,
method = "r2dtable", ...)
{
if (length(scales) > 1)
stop("length of 'scales' must be one")
## evaluate formula
lhs <- as.matrix(y)
if (missing(x))
x <- cbind(level_1=seq_len(nrow(lhs)),
leve_2=rep(1, nrow(lhs)))
rhs <- data.frame(x)
rhs[] <- lapply(rhs, as.factor)
rhs[] <- lapply(rhs, droplevels, exclude = NA)
nlevs <- ncol(rhs)
if (nlevs < 2)
stop("provide at least two-level hierarchy")
if (any(rowSums(lhs) == 0))
stop("data matrix contains empty rows")
if (any(lhs < 0))
stop("data matrix contains negative entries")
if (is.null(colnames(rhs)))
colnames(rhs) <- paste("level", seq_len(nlevs), sep="_")
tlab <- colnames(rhs)
## check proper design of the model frame
l1 <- sapply(rhs, function(z) length(unique(z)))
if (!any(sapply(2:nlevs, function(z) l1[z] <= l1[z-1])))
stop("number of levels are inappropriate, check sequence")
rval <- list()
rval[[1]] <- rhs[,nlevs]
nCol <- nlevs - 1
for (i in 2:nlevs) {
rval[[i]] <- interaction(rhs[,nCol], rval[[(i-1)]], drop=TRUE)
nCol <- nCol - 1
}
rval <- as.data.frame(rval[rev(seq_along(rval))])
l2 <- sapply(rval, function(z) length(unique(z)))
if (any(l1 != l2))
stop("levels are not perfectly nested")
## aggregate response matrix
fullgamma <-if (nlevels(rhs[,nlevs]) == 1)
TRUE else FALSE
# if (!fullgamma && !global)
# warning("gamma diversity value might be meaningless")
ftmp <- vector("list", nlevs)
for (i in seq_len(nlevs)) {
ftmp[[i]] <- as.formula(paste("~", tlab[i], "- 1"))
}
## is there burnin/thin in ... ?
burnin <- if (is.null(list(...)$burnin))
0 else list(...)$burnin
thin <- if (is.null(list(...)$thin))
1 else list(...)$thin
## evaluate other arguments
index <- match.arg(index)
divfun <- switch(index,
"renyi" = function(x) renyi(x, scales=scales, hill = TRUE),
"tsallis" = function(x) tsallis(x, scales=scales, hill = TRUE))
## cluster membership determination
nrhs <- rhs
nrhs <- sapply(nrhs, as.numeric)
idcl <- function(i) {
h <- nrhs[,i]
l <- nrhs[,(i-1)]
sapply(unique(l), function(i) h[l==i][1])
}
id <- lapply(2:nlevs, idcl)
## this is the function passed to oecosimu
if (global) {
wdivfun <- function(x) {
if (fullgamma) {
tmp <- lapply(seq_len(nlevs - 1),
function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
} else {
tmp <- lapply(seq_len(nlevs),
function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
}
raw <- sapply(seq_len(nlevs), function(i) divfun(tmp[[i]]))
a <- sapply(raw, mean)
G <- a[nlevs]
b <- sapply(seq_len(nlevs - 1), function(i) G / a[i])
if (relative)
b <- b / sapply(raw[seq_len(nlevs - 1)], length)
c(a, b)
}
} else {
wdivfun <- function(x) {
if (fullgamma) {
tmp <- lapply(seq_len(nlevs-1), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
} else {
tmp <- lapply(seq_len(nlevs), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
}
a <- sapply(seq_len(nlevs), function(i) divfun(tmp[[i]]))
am <- lapply(seq_len(nlevs - 1), function(i) {
sapply(seq_along(unique(id[[i]])), function(ii) {
mean(a[[i]][id[[i]]==ii])
})
})
b <- lapply(seq_len(nlevs - 1), function(i) a[[(i+1)]] / am[[i]])
bmax <- lapply(id, function(i) table(i))
if (relative)
b <- lapply(seq_len(nlevs - 1), function(i) b[[i]] / bmax[[i]])
c(sapply(a, mean), sapply(b, mean))
}
}
if (nsimul > 0) {
sim <- oecosimu(lhs, wdivfun, method = method, nsimul=nsimul,
burnin=burnin, thin=thin)
} else {
sim <- wdivfun(lhs)
tmp <- rep(NA, length(sim))
sim <- list(statistic = sim,
oecosimu = list(z = tmp, pval = tmp, method = NA, statistic = sim))
}
nam <- c(paste("alpha", seq_len(nlevs - 1), sep="."), "gamma",
paste("beta", seq_len(nlevs - 1), sep="."))
names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- nam
call <- match.call()
call[[1]] <- as.name("multipart")
attr(sim, "call") <- call
attr(sim$oecosimu$simulated, "index") <- index
attr(sim$oecosimu$simulated, "scales") <- scales
attr(sim$oecosimu$simulated, "global") <- global
attr(sim, "n.levels") <- nlevs
attr(sim, "terms") <- tlab
attr(sim, "model") <- rhs
class(sim) <- c("multipart", class(sim))
sim
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/multipart.default.R
|
`multipart.formula` <-
function(formula, data, index=c("renyi", "tsallis"), scales = 1,
global = FALSE, relative = FALSE, nsimul=99,
method = "r2dtable", ...)
{
## evaluate formula
if (missing(data))
data <- parent.frame()
tmp <- hierParseFormula(formula, data)
## run simulations
sim <- multipart.default(tmp$lhs, tmp$rhs, index = index, scales = scales,
global = global, relative = relative,
nsimul = nsimul, method = method, ...)
call <- match.call()
call[[1]] <- as.name("multipart")
attr(sim, "call") <- call
sim
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/multipart.formula.R
|
### Multiple-site dissimilarity indices (Sorensen & Jaccard) and their
### decomposition into "turnover" and "nestedness" following Baselga
### (Global Ecology & Biogeography 19, 134-143; 2010). Implemented as
### nestedness functions and directly usable in oecosimu().
`nestedbetasor` <-
function(comm)
{
beta <- betadiver(comm, method = NA)
b <- beta$b
c <- beta$c
diffbc <- sum(abs(b-c))
sumbc <- sum(b+c)
bmin <- sum(pmin(b, c))
a <- sum(comm > 0) - sum(colSums(comm) > 0)
simpson <- bmin/(bmin + a)
nest <- a/(bmin + a) * diffbc/(2*a + sumbc)
sorensen <- sumbc/(2*a + sumbc)
c(turnover = simpson, nestedness = nest, sorensen = sorensen)
}
`nestedbetajac` <-
function(comm)
{
beta <- betadiver(comm, method = NA)
b <- beta$b
c <- beta$c
diffbc <- sum(abs(b-c))
sumbc <- sum(b+c)
bmin <- sum(pmin(b, c))
a <- sum(comm > 0) - sum(colSums(comm) > 0)
simpson <- 2*bmin/(2*bmin + a)
nest <- a/(2*bmin + a) * diffbc/(a + sumbc)
jaccard <- sumbc/(a + sumbc)
c(turnover = simpson, nestedness = nest, jaccard = jaccard)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nestedbetasor.R
|
"nestedchecker" <-
function(comm)
{
cb <- sum(designdist(comm, "(A-J)*(B-J)", "binary"))
sppairs <- ncol(comm)*(ncol(comm)-1)/2
out <- list("C.score" = cb/sppairs, statistic = cb)
names(out$statistic) <- "checkerboards"
class(out) <- "nestedchecker"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nestedchecker.R
|
`nesteddisc` <-
function(comm, niter = 200)
{
## The original discrepancy method orders columns by frequencies,
## but does not consider ties. The current function tries to order
## tied values to minimize the discrepancy either by complete
## enumeration or with a larger number of ties using simulated
## annealing. NALL: max no. of tied items for NALL! complete
## enumeration
## starting values and CONSTANTS
NALL <- 7
allperm <- factorial(NALL)
ties <- FALSE
## Code
comm <- ifelse(comm > 0, 1, 0)
cs <- colSums(comm)
k <- rev(order(cs))
## initial order
cs <- cs[k]
comm <- comm[, k]
## run lengths: numbers of tied values
le <- rle(cs)$lengths
cle <- c(0, cumsum(le))
x <- seq(along=cs)
## Range of row sums: only swaps between these have an effect
rs <- range(rowSums(comm))
## Function to evaluate discrepancy
FUN <- function(x) sum(comm[col(comm)[,x] <= rowSums(comm)] == 0)
Ad <- FUN(x)
## Go through all le-items and permute ties. Function shuffleSet
## is in permute package, and its minperm argument triggers
## complete enumeration for no. of ties <= NALL!.
for (i in seq_along(le)) {
if (le[i] > 1) {
take <- x
idx <- seq_len(le[i]) + cle[i]
## Can swaps influence discrepancy?
if (idx[1] > rs[2] || idx[le[i]] < rs[1])
next
perm <- shuffleSet(le[i], niter, control = how(minperm = allperm),
quietly = TRUE)
## maxperm is a double -- needs EPS -0.5
if ((attr(perm, "control")$maxperm - 0.5) > niter)
ties <- TRUE
perm <- matrix(perm, ncol = le[i]) + cle[i]
vals <- sapply(1:nrow(perm), function(j) {
take[idx] <- perm[j,]
FUN(take)
})
jmin <- which.min(vals)
if (vals[jmin] < Ad) {
x[idx] <- perm[jmin,]
Ad <- vals[jmin]
}
}
}
out <- list(statistic=Ad, ties = ties, order = k[x])
names(out$statistic) <- "discrepancy"
class(out) <- "nesteddisc"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nesteddisc.R
|
"nestedn0" <-
function(comm)
{
comm <- ifelse(comm > 0, 1, 0)
R <- rowSums(comm)
spmin <- apply(comm, 2, function(x) min((x*R)[x > 0]))
n0 <- spmin
for (i in 1:ncol(comm))
n0[i] <- sum(comm[,i] == 0 & R > spmin[i])
out <- list(spmin = spmin, n0 = n0, statistic = sum(n0))
names(out$statistic) <- "N0"
class(out) <- "nestedn0"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nestedn0.R
|
`nestednodf` <-
function(comm, order = TRUE, weighted = FALSE, wbinary = FALSE)
{
bin.comm <- ifelse(comm > 0, 1, 0)
rfill <- rowSums(bin.comm)
cfill <- colSums(bin.comm)
if (!weighted)
comm <- bin.comm
if (order) {
if (weighted) {
rgrad <- rowSums(comm)
cgrad <- colSums(comm)
rorder <- order(rfill, rgrad, decreasing = TRUE)
corder <- order(cfill, cgrad, decreasing = TRUE)
} else {
rorder <- order(rfill, decreasing = TRUE)
corder <- order(cfill, decreasing = TRUE)
}
comm <- comm[rorder, corder]
rfill <- rfill[rorder]
cfill <- cfill[corder]
}
nr <- NROW(comm)
nc <- NCOL(comm)
fill <- sum(rfill)/prod(dim(comm))
N.paired.rows <- numeric(nr * (nr - 1)/2)
N.paired.cols <- numeric(nc * (nc - 1)/2)
counter <- 0
for (i in 1:(nr - 1)) {
first <- comm[i, ]
for (j in (i + 1):nr) {
counter <- counter + 1
if (rfill[i] <= rfill[j] || any(rfill[c(i, j)] == 0))
next
if (weighted) {
second <- comm[j, ]
if (!wbinary)
N.paired.rows[counter] <-
sum(first - second > 0 & second > 0)/sum(second > 0)
else
N.paired.rows[counter] <-
sum(first - second >= 0 & second > 0)/sum(second > 0)
}
else {
N.paired.rows[counter] <-
sum(first + comm[j, ] == 2)/rfill[j]
}
}
}
counter <- 0
for (i in 1:(nc - 1)) {
first <- comm[, i]
for (j in (i + 1):nc) {
counter <- counter + 1
if (cfill[i] <= cfill[j] || any(cfill[c(i, j)] == 0))
next
if (weighted) {
second <- comm[, j]
if (!wbinary)
N.paired.cols[counter] <-
sum(first - second > 0 & second > 0)/sum(second > 0)
else
N.paired.cols[counter] <-
sum(first - second >= 0 & second > 0)/sum(second > 0)
}
else {
N.paired.cols[counter] <-
sum(first + comm[, j] == 2)/cfill[j]
}
}
}
N.columns <- mean(N.paired.cols) * 100
N.rows <- mean(N.paired.rows) * 100
NODF <- (sum(c(N.paired.rows, N.paired.cols)) * 100)/
((nc * (nc - 1)/2) + (nr * (nr - 1)/2))
out <- list(comm = comm, fill = fill,
statistic = c(N.columns = N.columns, N.rows = N.rows, NODF = NODF))
class(out) <- "nestednodf"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nestednodf.R
|
`nestedtemp` <-
function(comm, ...)
{
## J Biogeogr 33, 924-935 (2006) says that Atmar & Patterson try
## to pack presences and absence to minimal matrix temperature,
## and the following routines try to reproduce the (partly verbal)
## description. Index s should pack ones, and index t should pack
## zeros, and the final ordering should be "a compromise".
colpack <- function(x, rr)
{
ind <- matrix(rep(rr, ncol(x)), nrow=nrow(x))
s <- -colSums((x*ind)^2)
t <- -colSums((nrow(x) - (1-x)*ind + 1)^2)
st <- rank(s+t, ties.method = "random")
st
}
rowpack <- function(x, cr)
{
ind <- matrix(rep(cr, each=nrow(x)), nrow=nrow(x))
s <- -rowSums((x*ind)^2)
t <- -rowSums((ncol(x) - (1-x)*ind + 1)^2)
st <- rank(s+t, ties.method = "random")
st
}
comm <- ifelse(comm > 0, 1, 0)
## Start with columns, expect if nrow > ncol
if (ncol(comm) >= nrow(comm)) {
i <- rank(-rowSums(comm), ties.method = "average")
} else {
j <- rank(-colSums(comm), ties.method = "average")
i <- rowpack(comm, j)
}
## Improve eight times
for (k in seq_len(8)) {
j <- colpack(comm, i)
i <- rowpack(comm, j)
}
if (ncol(comm) < nrow(comm))
j <- colpack(comm, i)
comm <- comm[order(i), order(j)]
r <- ppoints(nrow(comm), a=0.5)
c <- ppoints(ncol(comm), a=0.5)
dis <- matrix(rep(r, ncol(comm)), nrow=nrow(comm))
totdis <- 1 - abs(outer(r, c, "-"))
fill <- sum(comm)/prod(dim(comm))
## Fill line as defined in J Biogeogr by solving an integral of
## the fill function
fillfun <- function(x, p) 1 - (1-(1-x)^p)^(1/p)
intfun <- function(p, fill)
integrate(fillfun, lower=0, upper=1, p=p)$value - fill
## 'p' will depend on 'fill', and fill = 0.0038 correspond to p =
## 20, and we may need to extend the bracket.
sol <- uniroot(intfun, c(0,20), fill=fill, extendInt = "downX")
p <- sol$root
## row coordinates of the fill line for all matrix entries
out <- matrix(0, nrow=length(r), ncol=length(c))
for (i in seq_along(r))
for (j in seq_along(c)) {
a <- c[j] - r[i]
out[i,j] <- uniroot(function(x, ...) fillfun(x, p) - a -x,
c(0,1), p = p)$root
}
## Filline
x <- seq(0,1,len=51)
xline <- fillfun(x, p)
smo <- list(x = x, y = xline)
u <- (dis - out)/totdis
u[u < 0 & comm == 1] <- 0
u[u > 0 & comm == 0] <- 0
u <- u^2
colnames(u) <- colnames(comm)
rownames(u) <- rownames(comm)
names(r) <- rownames(comm)
names(c) <- colnames(comm)
temp <- 100*sum(u)/prod(dim(comm))/0.04145
out <- list(comm = comm, u = u, r = r, c = c, p = p,
fill=fill, statistic = temp, smooth=smo)
names(out$statistic) <- "temperature"
class(out) <- "nestedtemp"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nestedtemp.R
|
`no.shared` <-
function(x)
{
x <- as.matrix(x)
d <- .Call(do_vegdist, x, as.integer(99))
d <- as.logical(d)
attr(d, "Size") <- NROW(x)
attr(d, "Labels") <- dimnames(x)[[1]]
attr(d, "Diag") <- FALSE
attr(d, "Upper") <- FALSE
attr(d, "method") <- "no.shared"
attr(d, "call") <- match.call()
class(d) <- "dist"
d
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/no.shared.R
|
### R 2.13.0 introduces nobs() method to get the number of
### observations. This file provides methods for vegan classes.
`nobs.anova.cca` <- function(object, ...) NA
`nobs.betadisper` <- function(object, ...) length(object$distances)
`nobs.cca` <- function(object, ...) max(NROW(object$pCCA$u),
NROW(object$CCA$u),
NROW(object$CA$u))
`nobs.CCorA` <- function(object, ...) NROW(object$Cy)
`nobs.decorana` <- function(object, ...) NROW(object$rproj)
`nobs.isomap` <- function(object, ...) NROW(object$points)
`nobs.metaMDS` <- function(object, ...) NROW(object$points)
`nobs.pcnm` <- function(object, ...) NROW(object$vectors)
`nobs.procrustes` <- function(object, ...) NROW(object$X)
`nobs.rad` <- function(object, ...) length(object$y)
`nobs.varpart` <- function(object, ...) object$part$n
`nobs.wcmdscale` <- function(object, ...) NROW(object$points)
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nobs.R
|
## this thing creates an environment
## the whole point is to create all possible inputs for
## commsim functions only once and reuse them as necessary
## also helps keeping track of updating process for sequential algorithms
## method$mode can be evaluated and use storage mode accordingly
`nullmodel` <-
function(x, method)
{
x <- as.matrix(x)
if (is.null(dim(x)) || length(dim(x)) != 2L)
stop("'x' must be a matrix-like object")
if (any(is.na(x)))
stop("'NA' values not allowed")
if (any(x<0))
stop("negative values not allowed")
method <- make.commsim(method)
if (method$binary)
x <- ifelse(x > 0, 1L, 0L)
int <- method$mode == "integer"
if (int && abs(sum(x) - sum(as.integer(x))) > 10^-6)
stop("non-integer values not allowed")
if (int)
x <- round(x, 0) # round up to closest integer
storage.mode(x) <- method$mode
out <- list(
data=x,
nrow=as.integer(dim(x)[1L]),
ncol=as.integer(dim(x)[2L]),
rowSums=rowSums(x),
colSums=colSums(x),
rowFreq=as.integer(rowSums(x > 0)),
colFreq=as.integer(colSums(x > 0)),
totalSum=ifelse(int, as.integer(sum(x)), as.double(sum(x))),
fill=as.integer(sum(x > 0)),
commsim=method,
state=if (method$isSeq) x else NULL,
iter=if (method$isSeq) as.integer(0L) else NULL
)
# storage.mode(out$x) <- method$mode
storage.mode(out$rowSums) <- method$mode
storage.mode(out$colSums) <- method$mode
out <- list2env(out, parent=emptyenv())
class(out) <- c("nullmodel", "environment")
# class(out) <- "nullmodel"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/nullmodel.R
|
`oecosimu` <-
function(comm, nestfun, method, nsimul=99,
burnin=0, thin=1, statistic = "statistic",
alternative = c("two.sided", "less", "greater"),
batchsize = NA,
parallel = getOption("mc.cores"), ...)
{
alternative <- match.arg(alternative)
nestfun <- match.fun(nestfun)
if (length(statistic) > 1)
stop("only one 'statistic' is allowed")
if (!is.na(batchsize))
batchsize <- batchsize * 1024 * 1024
applynestfun <-
function(x, fun = nestfun, statistic = "statistic", ...) {
tmp <- fun(x, ...)
if (is.list(tmp))
tmp[[statistic]]
else
tmp
}
chains <- NULL
if (inherits(comm, "simmat")) {
x <- comm
method <- attr(x, "method")
nsimul <- dim(x)[3]
if (nsimul == 1)
stop(gettextf("only one simulation in '%s'",
deparse(substitute(comm))))
comm <- attr(comm, "data")
#thin <- attr(comm, "thin")
burnin <- attr(x, "start") - attr(x, "thin")
chains <- attr(x, "chains")
simmat_in <- TRUE
} else {
simmat_in <- FALSE
if (inherits(comm, "nullmodel")) {
nm <- comm
comm <- comm$data
} else {
nm <- nullmodel(comm, method)
if (nm$commsim$binary) {
## sometimes people do not realize that null model
## makes their data binary
if (max(abs(comm - nm$data)) > 0.1)
warning("nullmodel transformed 'comm' to binary data")
comm <- nm$data
}
}
method <- nm$commsim$method
}
## Check the number of batches needed to run the requested number
## of simulations without exceeding arg 'batchsize', and find the
## size of each batch.
if (!simmat_in && !is.na(batchsize)) {
commsize <- object.size(comm)
totsize <- commsize * nsimul
if (totsize > batchsize) {
nbatch <- ceiling(unclass(totsize/batchsize))
batches <- diff(round(seq(0, nsimul, by = nsimul/nbatch)))
} else {
nbatch <- 1
}
} else {
nbatch <- 1
}
if (nbatch == 1)
batches <- nsimul
ind <- nestfun(comm, ...)
indstat <-
if (is.list(ind))
ind[[statistic]]
else
ind
## burnin of sequential models
if (!simmat_in && nm$commsim$isSeq) {
## estimate thinning for "tswap" (trial swap)
if (nm$commsim$method == "tswap") {
checkbrd <-sum(designdist(comm, "(J-A)*(J-B)",
"binary"))
M <- nm$ncol
N <- nm$nrow
checkbrd <- M * (M - 1) * N * (N - 1)/4/checkbrd
thin <- round(thin * checkbrd)
burnin <- round(burnin * checkbrd)
}
if (burnin > 0)
nm <- update(nm, burnin)
}
## start with empty simind
simind <- NULL
## Go to parallel processing if 'parallel > 1' or 'parallel' could
## be a pre-defined socket cluster or 'parallel = NULL'.
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
if (hasClus || parallel > 1) {
if(.Platform$OS.type == "unix" && !hasClus) {
for (i in seq_len(nbatch)) {
## simulate if no simmat_in
if(!simmat_in)
x <- simulate(nm, nsim = batches[i], thin = thin)
tmp <- mclapply(seq_len(batches[i]),
function(j)
applynestfun(x[,,j], fun=nestfun,
statistic = statistic, ...),
mc.cores = parallel)
simind <- cbind(simind, do.call(cbind, tmp))
}
} else {
## if hasClus, do not set up and stop a temporary cluster
if (!hasClus) {
parallel <- makeCluster(parallel)
## make vegan functions available: others may be unavailable
clusterEvalQ(parallel, library(vegan))
}
for(i in seq_len(nbatch)) {
if (!simmat_in)
x <- simulate(nm, nsim = batches[i], thin = thin)
simind <- cbind(simind,
parApply(parallel, x, 3, function(z)
applynestfun(z, fun = nestfun,
statistic = statistic, ...)))
}
if (!hasClus)
stopCluster(parallel)
}
} else {
for(i in seq_len(nbatch)) {
## do not simulate if x was already a simulation
if(!simmat_in)
x <- simulate(nm, nsim = batches[i], thin = thin)
simind <- cbind(simind, apply(x, 3, applynestfun, fun = nestfun,
statistic = statistic, ...))
}
}
simind <- matrix(simind, ncol = nsimul)
if (attr(x, "isSeq")) {
attr(simind, "thin") <- attr(x, "thin")
attr(simind, "burnin") <- burnin
attr(simind, "chains") <- chains
}
sd <- apply(simind, 1, sd, na.rm = TRUE)
means <- rowMeans(simind, na.rm = TRUE)
z <- (indstat - means)/sd
if (any(sd < sqrt(.Machine$double.eps)))
z[sd < sqrt(.Machine$double.eps)] <- 0
## results can be integers or real: comparisons differ
if (is.integer(indstat) && is.integer(simind)) {
pless <- rowSums(indstat >= simind, na.rm = TRUE)
pmore <- rowSums(indstat <= simind, na.rm = TRUE)
} else {
EPS <- sqrt(.Machine$double.eps)
pless <- rowSums(indstat + EPS >= simind, na.rm = TRUE)
pmore <- rowSums(indstat - EPS <= simind, na.rm = TRUE)
}
if (any(is.na(simind))) {
warning("some simulated values were NA and were removed")
nsimul <- nsimul - rowSums(is.na(simind))
}
p <- switch(alternative,
two.sided = 2*pmin(pless, pmore),
less = pless,
greater = pmore)
p <- pmin(1, (p + 1)/(nsimul + 1))
## ADDITION: if z is NA then it is not correct to calculate p values
## try e.g. oecosimu(dune, sum, "permat")
if (any(is.na(z)))
p[is.na(z)] <- NA
## take care that statistics have name, or some support functions
## can fail
if (is.null(names(indstat))) {
if (length(indstat) == 1)
names(indstat) <- statistic
else if (length(indstat) <= length(letters))
names(indstat) <- letters[seq_along(indstat)]
else
names(indstat) <- paste0("stat", seq_along(indstat))
}
oecosimu <- list(z = z, means = means, pval = p, simulated=simind,
method=method, statistic = indstat,
alternative = alternative, isSeq = attr(x, "isSeq"))
out <- list(statistic = ind, oecosimu = oecosimu)
attr(out, "call") <- match.call()
class(out) <- "oecosimu"
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/oecosimu.R
|
### The constrained ordination methods cca, rda, capscale & dbrda are
### very similar. Their main difference is the init of dependent
### matrix and after that the partializing, constraining and residual
### steps are very similar to each other. This file provides functions
### that can analyse any classic method, the only difference being the
### attributes of the dependet variable.
### In this file we use convention modelfunction(Y, X, Z) where Y is
### the dependent data set (community), X is the model matrix of
### constraints, and Z is the model matrix of conditions to be
### partialled out. The common outline of the function is:
###
### initX(Y)
### pCCA <- ordPartial(Y, Z)
### CCA <- ordConstrain(Y, X, Z)
### CA <- ordResid(Y)
###
### The init step sets up the dependent data Y and sets up its
### attributes that control how it will be handled at later
### stage. Each of the later stages modifies Y and returns results of
### its analysis. The handling of the function is mainly similar, but
### there is some variation depending on the attributes of Y.
### THE USAGE
### Function prototype is ordConstrained(Y, X=NULL, Z=NULL, method),
### where Y is the dependent community data set, X is the model matrix
### of constraints, Z the model matrix of conditions, method is "cca",
### "rda", "capscale" or "dbrda" (the last two may not work, and
### "capscale" may not work in the way you assume). The function
### returns a large subset of correspoding constrained ordination
### method. For instance, with method = "dbrda", the result is mainly
### correct, but it differs so much from the current dbrda that it
### cannot be printed cleanly.
### THE INIT METHODS
### The init methods transform the dependent data specifically to the
### particular method and set up attributes that will control further
### processing of Y. The process critical attributes are set up in
### UPPER CASE to make the if-statements stand out in later analysis.
`initPCA` <-
function(Y, scale = FALSE)
{
Y <- as.matrix(Y)
Y <- scale(Y, scale = scale)
if (scale && any(is.nan(Y)))
Y[is.nan(Y)] <- 0
## we want models based on variance or correlations -- this will
## break methods depending on unscaled Xbar (and which do this
## very same scaling internally) with scale = FALSE.
Y <- Y / sqrt(nrow(Y) - 1)
attr(Y, "METHOD") <- "PCA"
Y
}
`initCAP` <-
function(Y)
{
Y <- as.matrix(Y)
Y <- scale(Y, scale = FALSE)
attr(Y, "METHOD") <- "CAPSCALE"
Y
}
`initCA` <-
function(Y)
{
Y <- as.matrix(Y)
tot <- sum(Y)
Y <- Y/tot
rw <- rowSums(Y)
cw <- colSums(Y)
rc <- outer(rw, cw)
Y <- (Y - rc)/sqrt(rc)
attr(Y, "tot") <- tot
attr(Y, "RW") <- rw
attr(Y, "CW") <- cw
attr(Y, "METHOD") <- "CA"
Y
}
`initDBRDA` <-
function(Y)
{
## check
Y <- as.matrix(Y)
dims <- dim(Y)
if (dims[1] != dims[2] || !isSymmetric(unname(Y)))
stop("input Y must be distances or a symmetric square matrix")
## transform
Y <- -0.5 * GowerDblcen(Y^2)
attr(Y, "METHOD") <- "DISTBASED"
Y
}
### COMMON HEADER INFORMATION FOR ORDINATION MODELS
`ordHead`<- function(Y)
{
method <- attr(Y, "METHOD")
headmethod <- switch(method,
"CA" = "cca",
"PCA" = "rda",
"CAPSCALE" = "capscale",
"DISTBASED" = "dbrda")
if (method == "DISTBASED")
totvar <- sum(diag(Y))
else
totvar <- sum(Y^2)
head <- list("tot.chi" = totvar, "Ybar" = Y, "method" = headmethod)
if (method == "CA")
head <- c(list("grand.total" = attr(Y, "tot"),
"rowsum" = attr(Y, "RW"),
"colsum" = attr(Y, "CW")),
head)
else if (method == "PCA")
head <- c(list("colsum" = sqrt(colSums(Y^2))),
head)
head
}
### THE PARTIAL MODEL
`ordPartial` <-
function(Y, Z)
{
ZERO <- sqrt(.Machine$double.eps)
## attributes
DISTBASED <- attr(Y, "METHOD") == "DISTBASED"
RW <- attr(Y, "RW")
## centre Z
if (!is.null(RW)) {
envcentre <- apply(Z, 2, weighted.mean, w = RW)
Z <- scale(Z, center = envcentre, scale = FALSE)
Z <- sweep(Z, 1, sqrt(RW), "*")
} else {
envcentre <- colMeans(Z)
Z <- scale(Z, center = envcentre, scale = FALSE)
}
## QR decomposition
Q <- qr(Z)
if (Q$rank == 0) # nothing partialled out
return(list(Y = Y, result = NULL))
## partialled out variation as a trace of Yfit
Yfit <- qr.fitted(Q, Y)
if (DISTBASED) {
Yfit <- qr.fitted(Q, t(Yfit))
totvar <- sum(diag(Yfit))
} else {
totvar <- sum(Yfit^2)
}
if (totvar < ZERO)
totvar <- 0
## residuals of Y
Y <- qr.resid(Q, Y)
if (DISTBASED)
Y <- qr.resid(Q, t(Y))
## result object like in current cca, rda
result <- list(
rank = if (totvar > 0) Q$rank else 0,
tot.chi = totvar,
QR = Q,
envcentre = envcentre)
list(Y = Y, result = result)
}
### THE CONSTRAINTS
`ordConstrain` <- function(Y, X, Z)
{
## attributes & constants
DISTBASED <- attr(Y, "METHOD") == "DISTBASED"
RW <- attr(Y, "RW")
CW <- attr(Y, "CW")
ZERO <- sqrt(.Machine$double.eps)
## combine conditions and constraints if necessary
if (!is.null(Z)) {
X <- cbind(Z, X)
zcol <- ncol(Z)
} else {
zcol <- 0
}
## centre
if (!is.null(RW)) {
envcentre <- apply(X, 2, weighted.mean, w = RW)
X <- scale(X, center = envcentre, scale = FALSE)
X <- sweep(X, 1, sqrt(RW), "*")
} else {
envcentre <- colMeans(X)
X <- scale(X, center = envcentre, scale = FALSE)
}
## QR
Q <- qr(X)
## we need to see how much rank grows over rank of conditions
rank <- sum(Q$pivot[seq_len(Q$rank)] > zcol)
## nothing explained (e.g., constant constrain)
if (rank == 0)
return(list(Y = Y, result = NULL))
## check for aliased terms
if (length(Q$pivot) > Q$rank)
alias <- colnames(Q$qr)[-seq_len(Q$rank)]
else
alias <- NULL
## kept constraints and their means
kept <- seq_along(Q$pivot) <= Q$rank & Q$pivot > zcol
if (zcol > 0)
envcentre <- envcentre[-seq_len(zcol)]
## eigen solution
Yfit <- qr.fitted(Q, Y)
if (DISTBASED) {
Yfit <- qr.fitted(Q, t(Yfit))
sol <- eigen(Yfit, symmetric = TRUE)
lambda <- sol$values
u <- sol$vectors
} else {
sol <- svd(Yfit)
lambda <- sol$d^2
u <- sol$u
v <- sol$v
}
## handle zero eigenvalues and negative eigenvalues
zeroev <- abs(lambda) < max(ZERO, ZERO * lambda[1L])
if (any(zeroev)) {
lambda <- lambda[!zeroev]
u <- u[, !zeroev, drop = FALSE]
if (!DISTBASED)
v <- v[, !zeroev, drop = FALSE]
}
posev <- lambda > 0
## wa scores
if (DISTBASED) {
wa <- Y %*% u[, posev, drop = FALSE] %*%
diag(1/lambda[posev], sum(posev))
v <- matrix(NA, 0, sum(posev))
} else {
wa <- Y %*% v %*% diag(1/sqrt(lambda), sum(posev))
}
## biplot scores: basically these are cor(X, u), but cor() would
## re-centre X and u in CCA, and therefore we need the following
## (which also is faster)
xx <- X[, Q$pivot[kept], drop = FALSE]
bp <- (1/sqrt(colSums(xx^2))) * crossprod(xx, u[, posev, drop=FALSE])
## de-weight
if (!is.null(RW)) {
u <- sweep(u, 1, sqrt(RW), "/")
if (!anyNA(wa)) {
wa <- sweep(wa, 1, sqrt(RW), "/")
}
}
if (!is.null(CW) && nrow(v)) {
v <- sweep(v, 1, sqrt(CW), "/")
}
## set names
axnam <- paste0(switch(attr(Y, "METHOD"),
"PCA" = "RDA",
"CA" = "CCA",
"CAPSCALE" = "CAP",
"DISTBASED" = "dbRDA"),
seq_len(sum(posev)))
if (DISTBASED && any(!posev))
negnam <- paste0("idbRDA", seq_len(sum(!posev)))
else
negnam <- NULL
dnam <- dimnames(Y)
if (any(posev))
names(lambda) <- c(axnam, negnam)
if (ncol(u))
dimnames(u) <- list(dnam[[1]], c(axnam, negnam))
if (nrow(v) && ncol(v)) # no rows in DISTBASED
dimnames(v) <- list(dnam[[2]], axnam)
if (ncol(wa)) # only for posev
colnames(wa) <- axnam
if (ncol(bp)) # only for posev
colnames(bp) <- axnam
## out
result <- list(
eig = lambda,
poseig = if (DISTBASED) sum(posev) else NULL,
u = u,
v = v,
wa = wa,
alias = alias,
biplot = bp,
rank = length(lambda),
qrank = rank,
tot.chi = sum(lambda),
QR = Q,
envcentre = envcentre)
## residual of Y
Y <- qr.resid(Q, Y)
if (DISTBASED)
Y <- qr.resid(Q, t(Y))
## out
list(Y = Y, result = result)
}
### THE RESIDUAL METHOD
### Finds the unconstrained ordination after (optionally) removing the
### variation that could be explained by partial and constrained
### models.
`ordResid` <-
function(Y)
{
## get attributes
DISTBASED <- attr(Y, "METHOD") == "DISTBASED"
RW <- attr(Y, "RW")
CW <- attr(Y, "CW")
## Ordination
ZERO <- sqrt(.Machine$double.eps)
if (DISTBASED) {
sol <- eigen(Y, symmetric = TRUE)
lambda <- sol$values
u <- sol$vectors
} else {
sol <- svd(Y)
lambda <- sol$d^2
u <- sol$u
v <- sol$v
}
## handle zero and negative eigenvalues
zeroev <- abs(lambda) < max(ZERO, ZERO * lambda[1L])
if (any(zeroev)) {
lambda <- lambda[!zeroev]
u <- u[, !zeroev, drop = FALSE]
if (!DISTBASED) # no v in DISTBASED
v <- v[, !zeroev, drop = FALSE]
}
posev <- lambda > 0
if (DISTBASED) # no species scores in DISTBASED
v <- matrix(NA, 0, sum(posev))
## de-weight
if (!is.null(RW)) {
u <- sweep(u, 1, sqrt(RW), "/")
}
if (!is.null(CW) && nrow(v)) {
v <- sweep(v, 1, sqrt(CW), "/")
}
## set names
axnam <- paste0(switch(attr(Y, "METHOD"),
"PCA" = "PC",
"CA" = "CA",
"CAPSCALE" = "MDS",
"DISTBASED" = "MDS"),
seq_len(sum(posev)))
if (DISTBASED && any(!posev))
negnam <- paste0("iMDS", seq_len(sum(!posev)))
else
negnam <- NULL
dnam <- dimnames(Y)
if (any(posev))
names(lambda) <- c(axnam, negnam)
if (ncol(u))
dimnames(u) <- list(dnam[[1]], c(axnam, negnam))
if (nrow(v) && ncol(v)) # no rows in DISTBASED
dimnames(v) <- list(dnam[[2]], axnam)
## out
out <- list(
"eig" = lambda,
"poseig" = if (DISTBASED) sum(posev) else NULL,
"u" = u,
"v" = v,
"rank" = length(lambda),
"tot.chi" = sum(lambda))
out
}
## The actual function that calls all previous and returns the fitted
## ordination model
`ordConstrained` <-
function(Y, X = NULL, Z = NULL,
method = c("cca", "rda", "capscale", "dbrda", "pass"),
arg = FALSE)
{
method = match.arg(method)
partial <- constraint <- resid <- NULL
## init; "pass" returns unchanged Y, presumably from previous init
Y <- switch(method,
"cca" = initCA(Y),
"rda" = initPCA(Y, scale = arg),
"capscale" = initCAP(Y),
"dbrda" = initDBRDA(Y),
"pass" = Y)
## sanity checks for the input
if (!is.numeric(Y))
stop("dependent data (community) must be numeric")
if (!is.null(X)) {
if (!is.numeric(X))
stop("constraints must be numeric or factors")
if (nrow(Y) != nrow(X))
stop("dependent data and constraints must have the same number of rows")
}
if (!is.null(Z)) {
if (!is.numeric(Z))
stop("conditions must be numeric or factors")
if (nrow(Y) != nrow(Z))
stop("dependent data and conditions must have the same number of rows")
}
## header info for the model
head <- ordHead(Y)
## Partial
if (!is.null(Z) && ncol(Z)) {
out <- ordPartial(Y, Z)
Y <- out$Y
partial <- out$result
}
## Constraints
if (!is.null(X) && ncol(X)) {
out <- ordConstrain(Y, X, Z)
Y <- out$Y
constraint <- out$result
}
## Residuals
resid <- ordResid(Y)
## return a CCA object
out <- c(head,
call = match.call(),
list("pCCA" = partial, "CCA" = constraint, "CA" = resid))
class(out) <- switch(attr(Y, "METHOD"),
"CA" = "cca",
"PCA" = c("rda", "cca"),
"CAPSCALE" = c("capscale", "rda", "cca"),
"DISTBASED" = c("dbrda", "rda", "cca"))
out
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordConstrained.R
|
`orderingKM` <-
function(mat)
{
### INPUT :
### mat (n x k): n the objects and k the descriptors
### This matrix must be integers and numeric
### And must not be binairy, it is the partition matrix
### output by cascadeKM
### OUTPUT : Ordered matrix
## Uses alternatively the fast USEPOWERALGORITHM provided by Legendre
## et al., or the standard R function cmdscale with matching
## coefficient provided by vegdist.c as method=50.
USEPOWERALGORITHM <- TRUE
##Check up
if(!is.matrix(mat)) stop("'mat' must be a matrix")
if(!is.numeric(mat)) stop("'mat' must be numeric")
if(any(is.na(mat))) stop("'NA' value was found in the matrix")
if(any(is.infinite(mat))) stop("'Inf' value was found in the matrix")
nb.desc=ncol(mat)
nb.obj=nrow(mat)
scores<-rep(0.0,nb.obj)
if (USEPOWERALGORITHM) {
scores <- as.vector(.Fortran(orderdata, as.integer(mat),
as.integer(nb.obj), as.integer(nb.desc),
sc=as.double(scores))$sc)
} else {
d <- .Call(do_vegdist, as.matrix(mat), as.integer(50))
attr(d, "Size") <- nb.obj
attr(d, "Labels") <- dimnames(mat)[[1]]
attr(d, "Diag") <- FALSE
attr(d, "Upper") <- FALSE
attr(d, "method") <- "matching"
class(d) <- "dist"
scores <- cmdscale(d, k = 1)[,1]
}
scores <- order(scores)
mat[scores,]
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/orderingKM.R
|
`ordiArgAbsorber` <- function(..., shrink, origin, scaling, triangular,
display, choices, const, truemean, FUN)
match.fun(FUN)(...)
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiArgAbsorber.R
|
### Scaling of arrows to 'fill' a plot with vectors centred at 'at'.
### Plot dims from 'par("usr")' and arrow heads are in 'x'.
`ordiArrowMul` <- function (x, at = c(0,0), fill = 0.75,
display, choices = c(1,2), ...) {
## handle x, which we try with scores, but also retain past usage of
## a two column matrix
X <- if (is.matrix(x)) {
nc <- NCOL(x)
if (nc != 2L) {
stop("a two-column matrix of coordinates is required")
}
x
} else {
if (inherits(x, "envfit")) {
scores(x, display = "vectors", ...)[, 1:2, drop = FALSE]
} else {
scores(x, display = display, choices = choices, ...)
}
}
u <- par("usr")
u <- u - rep(at, each = 2)
r <- c(range(X[,1], na.rm = TRUE), range(X[,2], na.rm = TRUE))
## 'rev' takes care of reversed axes like xlim(1,-1)
rev <- sign(diff(u))[-2]
if (rev[1] < 0)
u[1:2] <- u[2:1]
if (rev[2] < 0)
u[3:4] <- u[4:3]
u <- u/r
u <- u[is.finite(u) & u > 0]
fill * min(u)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiArrowMul.R
|
### Location of the text at the point of the arrow. 'x' are the
### coordinates of the arrow heads, and 'labels' are the text used to
### label these heads, '...' passes arguments (such as 'cex') to
### strwidth() and strheight().
`ordiArrowTextXY` <- function (x, labels, display, choices = c(1,2),
rescale = TRUE, fill = 0.75, at = c(0,0), ...) {
## handle x, which we try with scores, but also retain past usage of
## a two column matrix
X <- if (is.matrix(x)) {
nc <- NCOL(x)
if (nc != 2L) {
stop("a two-column matrix of coordinates is required")
}
x
} else {
if (inherits(x, "envfit")) {
scores(x, display = "vectors", ...)[, 1:2]
} else {
scores(x, display = display, choices = choices, ...)
}
if (!rescale) {
warning("extracted scores usually need rescaling but you set 'rescale = FALSE' - \nconsider using 'rescale = TRUE', the default")
}
}
## find multiplier to fill if rescaling
if (rescale) {
mul <- ordiArrowMul(X, fill = fill, at = at)
X <- X * mul
}
if (missing(labels)) {
rnames <- rownames(X)
labels <- if (is.null(rnames)) {
paste("V", seq_len(NROW(X)))
} else {
rnames
}
}
w <- strwidth(labels, ...)
h <- strheight(labels, ...)
## slope of arrows
b <- (X[,2] - at[2]) / (X[,1] - at[1])
## offset based on string dimensions
off <- cbind(sign(X[,1] - at[1]) * (w/2 + h/4),
0.75 * h * sign(X[,2] - at[2]))
## move the centre of the string to the continuation of the arrow
for(i in seq_len(nrow(X))) {
move <- off[i,2] / b[i]
## arrow points to the top/bottom of the text box
if (is.finite(move) && abs(move) <= abs(off[i, 1]))
off[i, 1] <- move
else {
## arrow points to a side of the text box
move <- b[i] * off[i,1]
off[i, 2] <- move
}
}
off + X
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiArrowTextXY.R
|
### A pair of functions to handle na.action = na.exclude in cca and
### rda (and capscale in the future?). Function ordiNAexclude finds
### the WA scores for NA constraints if possible, and puts these into
### ordination object. Function ordiNApredict pads the result scores
### with NA or scores if available.
`ordiNAexclude` <-
function(x, excluded)
{
## Check that there is a na.action of class "exclude"
nas <- x$na.action
if (is.null(nas))
return(x)
## add a 'residuals' item, because step, add1.default and
## drop1.default use this to check that number of observations
## does not change in sequential fits.
x$residuals.zombie <- rep(TRUE, max(0, nrow(x$CA$u)))
## rowsums for CA (in RDA/PCA rowsum = NA)
if (!inherits(x, "rda"))
x$rowsum.excluded <- rowSums(excluded)/x$grand.total
## Estimate WA scores for NA cases with newdata of excluded
## observations
if (is.null(x$pCCA) && inherits(nas, "exclude") &&
!inherits(x, c("dbrda", "capscale"))) {
if (!is.null(x$CCA))
x$CCA$wa.excluded <- predict(x, newdata = excluded,
type = "wa", model = "CCA")
if (!is.null(x$CA))
x$CA$u.excluded <- predict(x, newdata = excluded,
type = "wa", model = "CA")
}
x
}
### Put NA or fitted WA among the scores
`ordiNApredict` <-
function(omit, x)
{
## Only do this if omit is of class "exclude"
if (!inherits(omit, "exclude"))
return(x)
if (!inherits(x, "rda")) {
x$rowsum <- napredict(omit, x$rowsum)
if (inherits(omit, "exclude"))
x$rowsum[omit] <- x$rowsum.excluded
}
if (!is.null(x$CCA)) {
x$CCA$u <- napredict(omit, x$CCA$u)
x$CCA$wa <- napredict(omit, x$CCA$wa)
if (!is.null(x$CCA$wa.excluded))
x$CCA$wa[omit,] <- x$CCA$wa.excluded
}
if (!is.null(x$CA)) {
x$CA$u <- napredict(omit, x$CA$u)
if (!is.null(x$CA$u.excluded))
x$CA$u[omit,] <- x$CA$u.excluded
}
x
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiNAexclude.R
|
`ordiParseFormula` <-
function (formula, data, xlev = NULL, na.action = na.fail,
subset = NULL, X)
{
if (missing(data))
data <- environment(formula)
Terms <- terms(formula, "Condition", data = data)
flapart <- fla <- formula <- formula(Terms, width.cutoff = 500)
## distance-based methods (capscale, dbrda) evaluate specdata (LHS
## in formula) within their code, and the handling in
## ordiParseFormula is redundand and can be expensive
if (missing(X)) {
specdata <- formula[[2]]
X <- eval(specdata, environment(formula), enclos=globalenv())
}
X <- as.matrix(X)
indPartial <- attr(Terms, "specials")$Condition
zmf <- ymf <- Y <- Z <- NULL
formula[[2]] <- NULL
if (!is.null(indPartial)) {
partterm <- attr(Terms, "variables")[1 + indPartial]
## paste() needed to combine >500 character deparsed Conditions
Pterm <- sapply(partterm, function(x)
paste(deparse(x[[2]], width.cutoff=500, backtick = TRUE), collapse=" "))
Pterm <- paste(Pterm, collapse = "+")
P.formula <- as.formula(paste("~", Pterm), env = environment(formula))
zlev <- xlev[names(xlev) %in% Pterm]
zmf <- if (inherits(data, "environment"))
eval(substitute(
model.frame(P.formula, na.action = na.pass, xlev = zlev)),
envir = data, enclos = .GlobalEnv)
else
model.frame(P.formula, data, na.action = na.pass, xlev = zlev)
partterm <- sapply(partterm, function(x)
paste(deparse(x, width.cutoff=500, backtick = TRUE), collapse = " "))
formula <- update(formula, paste("~.-", paste(partterm,
collapse = "-")))
flapart <- update(formula, paste(" ~ . +", Pterm))
}
if (formula[[2]] == "1" || formula[[2]] == "0")
Y <- NULL
else {
if (exists("Pterm"))
xlev <- xlev[!(names(xlev) %in% Pterm)]
ymf <- if (inherits(data, "environment"))
eval(substitute(
model.frame(formula, na.action = na.pass, xlev = xlev)),
envir=data, enclos=.GlobalEnv)
else
model.frame(formula, data, na.action = na.pass, xlev = xlev)
}
## Combine condition an constrain data frames
if (!is.null(zmf)) {
ncond <- NCOL(zmf)
if (!is.null(ymf))
mf <- cbind(zmf, ymf)
else
mf <- zmf
} else {
ncond <- 0
mf <- ymf
}
## Select a subset of data and species
if (!is.null(subset)) {
subset <- eval(subset,
if (inherits(data, "data.frame")) cbind(data, X)
else as.data.frame(X),
parent.frame(2))
X <- X[subset, , drop = FALSE]
if (NROW(mf) > 0)
mf <- mf[subset, , drop = FALSE]
}
## Get na.action attribute, remove NA and drop unused levels
if (NROW(mf) > 0) {
## We need to re-construct model.frame and its formula, and
## for this names with functions must be back-quoted
## (`poly(A1, 2)`, e.g.) with the curren scoping to find the
## variable (A1) later. This happened with formula(mf) in R <
## 3.6.0, but now we must be explicit.
mf <- model.frame(as.formula(paste("~",
paste(sapply(names(mf), "as.name"), collapse="+"))),
mf, xlev = xlev,
na.action = na.action, drop.unused.levels = TRUE)
nas <- attr(mf, "na.action")
## Check if there are one-level factors after subset and na.action
for (i in 1:ncol(mf))
if (is.factor(mf[[i]]) && length(levels(mf[[i]])) <= 1)
levels(mf[[i]]) <- c(levels(mf[[i]]), ".ThisVarHasOnly1Level")
} else {
nas <- NULL
}
## Check and remove NA in dependent data
if (!is.null(nas)) {
excluded <- X[nas, , drop = FALSE]
X <- X[-nas,, drop=FALSE]
} else {
excluded <- NULL
}
if (ncond > 0) {
Z <- model.matrix(P.formula, mf)
if (any(colnames(Z) == "(Intercept)"))
Z <- Z[, -which(colnames(Z) == "(Intercept)"), drop = FALSE]
}
if (NROW(mf) > 0) {
Y <- model.matrix(formula, mf)
## save assign attribute
assign <- attr(Y, "assign")
assign <- assign[assign > 0]
if (any(colnames(Y) == "(Intercept)"))
Y <- Y[, -which(colnames(Y) == "(Intercept)"), drop = FALSE]
if (NCOL(Y) == 0)
Y <- NULL
else
attr(Y, "assign") <- assign
}
X <- as.matrix(X)
rownames(X) <- rownames(X, do.NULL = FALSE)
colnames(X) <- colnames(X, do.NULL = FALSE)
if (!is.null(Y)) {
rownames(Y) <- rownames(Y, do.NULL = FALSE)
colnames(Y) <- colnames(Y, do.NULL = FALSE)
}
if (!is.null(Z)) {
rownames(Z) <- rownames(Z, do.NULL = FALSE)
colnames(Z) <- colnames(Z, do.NULL = FALSE)
}
list(X = X, Y = Y, Z = Z, terms = terms(fla, width.cutoff = 500),
terms.expand = terms(flapart, width.cutoff = 500), modelframe = mf,
subset = subset, na.action = nas, excluded = excluded)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiParseFormula.R
|
### Forward selection to maximize R2.adjusted, but stopping once the
### R2.adjusted of the maximum model ('scope') is exceeded, after
### Blanchet, Legendre & Borcard: Ecology 89, 2623--2623; 2008.
`ordiR2step` <-
function(object, scope, Pin = 0.05, R2scope = TRUE,
permutations = how(nperm=499),
trace = TRUE, R2permutations = 1000, ...)
{
if (is.null(object$terms))
stop("ordination model must be fitted using formula")
if (missing(scope))
stop("needs scope")
if (inherits(scope, "cca"))
scope <- delete.response(formula(scope))
if (!inherits(scope, "formula"))
scope <- reformulate(scope)
## Get R2 of the original object
if (is.null(object$CCA))
R2.0 <- 0
else
R2.0 <- RsquareAdj(object,
permutations = R2permutations, ...)$adj.r.squared
## only accepts upper scope
if (is.list(scope) && length(scope) <= 2L)
scope <- scope$upper
if (is.null(scope) || !length(add.scope(object, scope)))
stop("needs upper 'scope': no terms can be added")
## Get R2 of the scope
if (R2scope)
R2.all <- RsquareAdj(update(object, delete.response(formula(scope))),
permutations = R2permutations, ...)
else
R2.all <- list(adj.r.squared = NA)
## Check that the full model can be evaluated
if (is.na(R2.all$adj.r.squared) && R2scope)
stop("the upper scope cannot be fitted (too many terms?)")
R2.all <- R2.all$adj.r.squared
## Collect data to anotab returned as the 'anova' object
anotab <- list()
## Step forward and continue as long as R2.adj improves and R2.adj
## remains below R2.adj < R2.all
R2.previous <- R2.0
repeat {
if (trace) {
cat("Step: R2.adj=", R2.previous, "\n")
cat(pasteCall(formula(object)), "\n")
}
adds <- add.scope(object, scope)
## Nothing to add and we're done: break
if (length(adds) == 0)
break
R2.adds <- numeric(length(adds))
adds <- paste("+", adds)
names(R2.adds) <- adds
## Loop over add scope
for (trm in seq_along(R2.adds)) {
fla <- paste(". ~ .", names(R2.adds[trm]))
R2.tmp <- RsquareAdj(update(object, fla),
permutations = R2permutations, ...)$adj.r.squared
if (!length(R2.tmp))
R2.tmp <- 0
R2.adds[trm] <- R2.tmp
}
best <- which.max(R2.adds)
if (trace) {
out <- sort(c("<All variables>" = R2.all, "<none>" = R2.previous,
R2.adds), decreasing = TRUE)
out <- as.matrix(out)
colnames(out) <- "R2.adjusted"
print(out)
cat("\n")
}
## See if the best should be kept
## First criterion: R2.adj improves and is still lower or
## equal than for the full model of the scope
if (R2.adds[best] > R2.previous &&
(!R2scope || R2scope && R2.adds[best] <= R2.all)) {
## Second criterion: added variable is significant
tst <- add1(object, scope = adds[best], test="permu",
permutations = permutations,
alpha = Pin, trace = FALSE, ...)
if (trace) {
print(tst[-1,])
cat("\n")
}
if (tst[,"Pr(>F)"][2] <= Pin) {
fla <- paste("~ .", names(R2.adds[best]))
object <- update(object, fla)
} else
break
} else {
break
}
R2.previous <- RsquareAdj(object,
permutations = R2permutations,
...)$adj.r.squared
anotab <- rbind(anotab,
cbind("R2.adj" = R2.previous, tst[2,]))
}
if (NROW(anotab)) {
if (R2scope)
anotab <- rbind(anotab, "<All variables>" = c(R2.all, rep(NA, 4)))
class(anotab) <- c("anova", class(anotab))
object$anova <- anotab
}
object
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiR2step.R
|
`ordiTerminfo` <-
function(d, data)
{
Terms <- delete.response(d$terms.expand)
if (length(attr(Terms, "term.labels")) == 0)
mf <- data.frame(NULL)
else
mf <- d$modelframe
xlev <- .getXlevels(Terms, mf)
ordered <- sapply(mf, is.ordered)
assign <- attr(d$Y, "assign")
list(terms = Terms, assign = assign, xlev = xlev, ordered = ordered)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiTerminfo.R
|
#' Extract internal working matrices from constrained ordination object
#'
#' Function extract internal working matrices from the constrained
#' ordination object (class \code{"cca"}) in \pkg{vegan}. The function
#' returns only one model matrix type, but there is no overlap between
#' elements of typical request.
#'
#' @param x ordination object
#' @param model model to be extracted
#'
`ordiYbar` <-
function(x, model = c("CCA", "CA", "pCCA", "partial", "initial"))
{
model <- match.arg(model)
isDB <- inherits(x, "dbrda")
if (!is.null(x$Ybar))
Ybar <- x$Ybar
else
return(vegan24Xbar(x, model))
if (model == "initial")
return(Ybar)
## return NULL for missing elements
if (model != "partial")
if(is.null(x[[model]]))
return(NULL)
## edit Ybar -- not yet dbrda
switch(model,
"pCCA" = {
Ybar <- qr.fitted(x$pCCA$QR, Ybar)
if (isDB)
Ybar <- qr.fitted(x$pCCA$QR, t(Ybar))
},
"partial" = {
if (!is.null(x$pCCA)) {
Ybar <- qr.resid(x$pCCA$QR, Ybar)
if (isDB)
Ybar <- qr.resid(x$pCCA$QR, t(Ybar))
}
},
"CCA" = {
if (!is.null(x$pCCA)) {
Ybar <- qr.resid(x$pCCA$QR, Ybar)
if (isDB)
Ybar <- qr.resid(x$pCCA$QR, t(Ybar))
}
Ybar <- qr.fitted(x$CCA$QR, Ybar)
if (isDB)
Ybar <- qr.fitted(x$CCA$QR, t(Ybar))
},
"CA" = {
if (!is.null(x$CCA)) {
Ybar <- qr.resid(x$CCA$QR, Ybar)
if (isDB)
Ybar <- qr.resid(x$CCA$QR, t(Ybar))
}
else if (!is.null(x$pCCA)) {
Ybar <- qr.resid(x$pCCA$QR, Ybar)
if (isDB)
Ybar <- qr.resid(x$pCCA$QR, t(Ybar))
}
})
Ybar
}
#' Extract internal working matrices of cca objects for vegan 2.4
`vegan24Xbar` <-
function(x, model = c("CCA", "CA", "pCCA", "partial", "initial"))
{
model <- match.arg(model)
## return NULL for missing elements
if (model %in% c("CCA", "CA", "pCCA"))
if(is.null(x[[model]]))
return(NULL)
Ybar <- NULL
## initial working data is not saved and must be reconstructed in
## partial models, but this cannot be done in all cases.
if (model == "initial") {
if (inherits(x, "dbrda")) {
## NULL in partial models
if (is.null(x$pCCA)) {
Ybar <- x$CCA$Xbar
if (is.null(Ybar))
Ybar <- x$CA$Xbar
}
} else {
## this will ignore imaginary components in capscale
if (is.null(x$CCA))
Ybar <- x$CA$Xbar
else
Ybar <- x$CCA$Xbar
if (!is.null(x$pCCA))
Ybar <- Ybar + x$pCCA$Fit
}
## vegan 2.5 compatibility: returns Ybar divided with d.o.f.
if (x$inertia == "variance")
Ybar <- Ybar/sqrt(nobs(x)-1)
return(Ybar)
}
## several components are already stored in the result object and
## we just fetch those (only CCA needs work)
switch(model,
"pCCA" =
Ybar <- x$pCCA$Fit,
"partial" = {
Ybar <- x$CCA$Xbar
if (is.null(Ybar))
Ybar <- x$CA$Xbar
},
"CCA" = {
Ybar <- qr.fitted(x$CCA$QR, x$CCA$Xbar)
if (inherits(x, "dbrda"))
Ybar <- qr.fitted(x$CCA$QR, t(Ybar))
},
"CA" =
Ybar <- x$CA$Xbar
)
## vegan 2.5 divides Ybar with sqrt(n-1) in rda for variance
if (x$inertia == "variance")
Ybar <- Ybar/sqrt(nobs(x)-1)
Ybar
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiYbar.R
|
#' Permutation test for the area of convex hull or ellipse in ordination
#'
#' Finds if the area covered by a convex hull or fitted ellipse is
#' smaller than expected under null hypothesis using permutation test.
#'
#' @param ord 2-d ordination
#' @param factor defining groups
#' @param are of convex hull of or an ellipse
#' @param permutations: number, permutation matrix or a
#' \code{\link[permute]{how}} definition.
#' @param parallel parallel processing
#' @param \dots other parameters passed to area functions
#'
#' @author Jari Oksanen
`ordiareatest` <-
function(ord, groups, area = c("hull", "ellipse"), kind = "sd",
permutations = 999, parallel = getOption("mc.cores"), ...)
{
EPS <- sqrt(.Machine$double.eps)
## Function to find area
area <- match.arg(area)
areafun <- if (area == "hull") ordihull else ordiellipse
areafun <- match.fun(areafun)
## Observed statistics
obs <- summary(areafun(ord, groups, draw = "none", kind = kind))["Area",]
## permutations
pfun <- function(take, ...)
summary(areafun(ord, groups[take], draw = "none", kind = kind))["Area",]
perm <- getPermuteMatrix(permutations, length(groups))
nperm <- nrow(perm)
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
if (hasClus || parallel > 1) {
if(.Platform$OS.type == "unix" && !hasClus) {
areas <- do.call(cbind,
mclapply(1:nperm,
function(i, ...) pfun(perm[i,],...),
mc.cores = parallel))
} else {
if (!hasClus) {
parallel <- makeCluster(parallel)
}
areas <- parApply(parallel, perm, MARGIN=1, pfun)
if (!hasClus)
stopCluster(parallel)
}
} else {
areas <- sapply(1:nperm, function(i, ...) pfun(perm[i,], ...))
}
signif <- (rowSums(areas <= obs + EPS) + 1)/(nperm + 1)
out <- list("areas" = obs, "pvalues" = signif, "permutations" = areas,
nperm = nperm, control = attr(perm, "control"), "kind" = area)
class(out) <- "ordiareatest"
out
}
### print method
`print.ordiareatest` <-
function(x, ...)
{
qu <- apply(x$permutations, 1, quantile, probs=c(0.05, 0.5))
m <- cbind("Area" = x$areas, t(qu), "Pr(<sim)" = x$pvalues)
cat("\n")
cat(sprintf("Permutation test for the size of ordination %s\nalternative hypothesis: observed area is smaller than random %s\n\n", x$kind, x$kind))
cat(howHead(x$control), "\n")
printCoefmat(m, tst.ind=1:3)
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiareatest.R
|
`ordiarrows` <-
function (ord, groups, levels, replicates, order.by,
display = "sites", col = 1, show.groups, startmark,
label = FALSE, length = 0.1, ...)
{
pts <- scores(ord, display = display, ...)
npoints <- nrow(pts)
if (missing(groups))
groups <- gl(levels, replicates, npoints)
if (!missing(order.by)) {
if (length(order.by) != nrow(pts))
stop(gettextf("the length of order.by (%d) does not match the number of points (%d)",
length(order.by), nrow(pts)))
ord <- order(order.by)
pts <- pts[ord,]
groups <- groups[ord]
}
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
}
out <- seq(along = groups)
inds <- names(table(groups))
if (is.factor(col))
col <- as.numeric(col)
col <- rep(col, length=length(inds))
names(col) <- inds
starts <- names <- NULL
for (is in inds) {
gr <- out[groups == is]
if (length(gr) > 1) {
X <- pts[gr, , drop = FALSE]
## zero length arrows will give warning and miss arrowhead
nonzeroarrow <- rowSums(diff(X)^2) > 100*sqrt(.Machine$double.eps)
if (!all(nonzeroarrow))
X <- X[c(TRUE, nonzeroarrow),, drop=FALSE]
if (nrow(X) < 2)
next
X0 <- X[-nrow(X), , drop = FALSE]
X1 <- X[-1, , drop = FALSE]
nseg <- nrow(X0)
if (!missing(startmark))
points(X0[1,1], X0[1,2], pch=startmark, col = col[is], ...)
if (label) {
starts <- rbind(starts, X0[1,])
names <- c(names, is)
}
if (nseg > 1)
ordiArgAbsorber(X0[-nseg,1], X0[-nseg,2], X1[-nseg,1],
X1[-nseg,2], col = col[is],
FUN = segments, ...)
ordiArgAbsorber(X0[nseg, 1], X0[nseg, 2], X1[nseg, 1],
X1[nseg, 2], col = col[is], length = length,
FUN = arrows, ...)
}
}
if (label)
ordiArgAbsorber(starts, labels = names, border = col, col = par("fg"),
FUN = ordilabel, ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiarrows.R
|
### draws crossed error bars for classes in ordination. These are
### oblique to axis because so are th clouds of the points and their
### standard errors and confidence regions. The bars are principal
### axes of corresponding ellipse (as drawn in ordiellipse), and found
### as principal components of the associate covariance matrix. The
### function is modelled after ordiellipse.
`ordibar` <-
function (ord, groups, display = "sites", kind = c("sd", "se"),
conf, w = weights(ord, display), col = 1,
show.groups, label = FALSE, lwd = NULL, length = 0, ...)
{
weights.default <- function(object, ...) NULL
kind <- match.arg(kind)
pts <- scores(ord, display = display, ...)
## ordibar only works with 2D data (2 columns)
pts <- as.matrix(pts)
if (ncol(pts) > 2)
pts <- pts[ , 1:2, drop = FALSE]
if (ncol(pts) < 2)
stop("needs two dimensions")
w <- eval(w)
if (length(w) == 1)
w <- rep(1, nrow(pts))
if (is.null(w))
w <- rep(1, nrow(pts))
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
w <- w[take]
}
out <- seq(along = groups)
inds <- names(table(groups))
if (label) {
cntrs <- matrix(NA, nrow=length(inds), ncol=2)
rownames(cntrs) <- inds
}
col <- rep(col, length = length(inds))
names(col) <- inds
res <- list()
## Remove NA scores
kk <- complete.cases(pts) & !is.na(groups)
for (is in inds) {
gr <- out[groups == is & kk]
if (length(gr)) {
X <- pts[gr, , drop = FALSE]
W <- w[gr]
mat <- cov.wt(X, W)
if (mat$n.obs == 1)
mat$cov[] <- 0
if (kind == "se")
mat$cov <- mat$cov * sum(mat$wt^2)
if (missing(conf))
t <- 1
else t <- sqrt(qchisq(conf, 2))
if (mat$n.obs > 1) {
eig <- eigen(mat$cov, symmetric = TRUE)
v <- sweep(eig$vectors, 2, sqrt(eig$values), "*") * t
cnt <- mat$center
ordiArgAbsorber(v[1,] + cnt[1], v[2,] + cnt[2],
-v[1,] + cnt[1], -v[2,] + cnt[2],
col = col[is], lwd = lwd,
length = length/2, angle = 90, code = 3,
FUN = arrows, ...)
}
if (label) {
cntrs[is,] <- mat$center
}
mat$scale <- t
res[[is]] <- mat
}
}
if (label) {
ordiArgAbsorber(cntrs, col = par("fg"), border = col,
FUN = ordilabel, ...)
}
class(res) <- "ordibar"
invisible(res)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordibar.R
|
`ordicloud` <-
function(x, data = NULL, formula, display = "sites", choices=1:3,
panel = "panel.ordi3d",
prepanel = "prepanel.ordi3d", ...)
{
localCloud <- function(..., shrink, origin, scaling) cloud(...)
x <- as.data.frame(scores(x, display = display, choices = choices, ...))
if (!is.null(data))
x <- cbind(x, data)
if (missing(formula)) {
v <- colnames(x)
formula <- as.formula(paste(v[2], "~", v[1], "*", v[3]))
}
localCloud(formula, data = x, panel = panel, prepanel = prepanel, ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordicloud.R
|
`ordicluster` <-
function (ord, cluster, prune = 0, display = "sites",
w = weights(ord, display), col = 1,
draw = c("segments", "none"), ...)
{
weights.default <- function(object, ...) NULL
w <- eval(w)
mrg <- cluster$merge
ord <- scores(ord, display = display, ...)
if (nrow(mrg) != nrow(ord) - 1)
stop("dimensions do not match in 'ord' and 'cluster'")
if (length(w) == 1) w <- rep(w, nrow(ord))
n <- if (is.null(w)) rep(1, nrow(ord)) else w
noden <- numeric(nrow(mrg) - prune)
go <- matrix(0, nrow(mrg) - prune, 2)
## recycle colours for points and prepare to get node colours
col <- rep(col, length = nrow(ord))
col <- col2rgb(col)/255
nodecol <- matrix(NA, nrow(mrg) - prune, 3)
seg.coords <- matrix(NA, nrow = nrow(mrg) - prune, ncol = 4)
for (i in seq_len(nrow(mrg) - prune)) {
a <- mrg[i,1]
b <- mrg[i,2]
one <- if (a < 0) ord[-a,] else go[a,]
two <- if (b < 0) ord[-b,] else go[b,]
n1 <- if (a < 0) n[-a] else noden[a]
n2 <- if (b < 0) n[-b] else noden[b]
xm <- weighted.mean(c(one[1],two[1]), w = c(n1,n2))
ym <- weighted.mean(c(one[2],two[2]), w = c(n1,n2))
go[i,] <- c(xm,ym)
noden[i] <- n1 + n2
colone <- if (a < 0) col[,-a] else nodecol[a,]
coltwo <- if (b < 0) col[,-b] else nodecol[b,]
nodecol[i,] <- (n1 * colone + n2 * coltwo)/noden[i]
seg.coords[i, ] <- c(one[1], one[2], two[1], two[2])
}
colnames(seg.coords) <- c("x1","y1","x2","y2")
## are we plotting?
draw <- match.arg(draw)
if (isTRUE(all.equal(draw, "segments"))) {
ordiArgAbsorber(seg.coords[,1L], seg.coords[,2L],
seg.coords[,3L], seg.coords[,4L],
col = rgb(nodecol),
FUN = segments, ...)
}
colnames(go) <- c("x","y")
seg.coords <- cbind(as.data.frame(seg.coords), col = rgb(nodecol))
out <- structure(list(scores = cbind(go, "w" = noden),
segments = seg.coords), class = "ordicluster")
invisible(out)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordicluster.R
|
`ordiellipse` <-
function (ord, groups, display = "sites", kind = c("sd", "se", "ehull"),
conf, draw = c("lines", "polygon", "none"),
w = weights(ord, display), col = NULL, alpha = 127,
show.groups, label = FALSE, border = NULL, lty = NULL,
lwd = NULL, ...)
{
weights.default <- function(object, ...) NULL
kind <- match.arg(kind)
draw <- match.arg(draw)
pts <- scores(ord, display = display, ...)
## ordiellipse only works with 2D data (2 columns)
pts <- as.matrix(pts)
if (ncol(pts) > 2)
pts <- pts[ , 1:2, drop = FALSE]
if (ncol(pts) < 2)
stop("needs two dimensions")
w <- eval(w)
if (length(w) == 1)
w <- rep(1, nrow(pts))
if (is.null(w))
w <- rep(1, nrow(pts))
## make semitransparent fill; alpha should be integer in 0..255,
## but users may have given that as real in 0..1
if (alpha < 1)
alpha <- round(alpha * 255)
if (draw == "polygon" && !is.null(col))
col <- rgb(t(col2rgb(col)), alpha = alpha, maxColorValue = 255)
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
w <- w[take]
}
out <- seq(along = groups)
inds <- names(table(groups))
## fill in graphical vectors with default values if unspecified
## and recycles shorter vectors
col.new <- border.new <- lty.new <- lwd.new <- NULL
for(arg in c("col","border","lty","lwd")){
tmp <- mget(arg,ifnotfound=list(NULL))[[1]]
if(is.null(tmp))
tmp <- ifelse(suppressWarnings(is.null(par(arg))),
par("fg"), par(arg))
if(length(inds) != length(tmp)) {tmp <- rep_len(tmp, length(inds))}
assign(paste(arg,".new", sep=""), tmp)
}
## default colour for "polygon" fill is "transparent", for lines
## is par("fg")
if(is.null(col) && draw=="polygon")
col.new <- rep_len("transparent", length(inds))
else if(is.null(col) && draw=="lines")
col.new <- rep_len(par("fg"), length(inds))
res <- list()
if (label) {
cntrs <- matrix(NA, nrow=length(inds), ncol=2)
rownames(cntrs) <- inds
}
## Remove NA scores
kk <- complete.cases(pts) & !is.na(groups)
for (is in inds) {
gr <- out[groups == is & kk]
if (length(gr)) {
X <- pts[gr, , drop = FALSE]
W <- w[gr]
if (kind == "ehull") {
tmp <- ellipsoidhull(X)
mat <- list(cov = tmp$cov,
center = tmp$loc,
n.obs = nrow(X))
} else
mat <- cov.wt(X, W)
if (mat$n.obs == 1)
mat$cov[] <- 0
if (kind == "se")
mat$cov <- mat$cov * sum(mat$wt^2)
if (kind == "ehull")
t <- if (is.nan(tmp$d2)) 0 else sqrt(tmp$d2)
else {
if (missing(conf))
t <- 1
else t <- sqrt(qchisq(conf, 2))
}
if (mat$n.obs > 1)
xy <- veganCovEllipse(mat$cov, mat$center, t)
else
xy <- X
if (draw == "lines")
ordiArgAbsorber(xy, FUN = lines,
col = if (is.null(col))
par("fg")
else
col.new[match(is, inds)],
lty=lty.new[match(is,inds)],
lwd=lwd.new[match(is,inds)], ...)
else if (draw == "polygon")
ordiArgAbsorber(xy[, 1], xy[, 2],
col = col.new[match(is, inds)],
border=border.new[match(is,inds)],
lty = lty.new[match(is,inds)],
lwd = lwd.new[match(is,inds)],
FUN = polygon,
...)
if (label && draw != "none") {
cntrs[is,] <- mat$center
}
mat$scale <- t
res[[is]] <- mat
}
}
if (label && draw != "none") {
if (draw == "lines")
ordiArgAbsorber(cntrs[,1], cntrs[,2],
labels = rownames(cntrs),
col = col.new, FUN = text, ...)
else
ordiArgAbsorber(cntrs, col = NULL,
FUN = ordilabel, ...)
}
class(res) <- "ordiellipse"
invisible(res)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiellipse.R
|
"ordigrid" <-
function (ord, levels, replicates, display = "sites", lty=c(1,1), col=c(1,1),
lwd = c(1,1), ...)
{
pts <- scores(ord, display = display, ...)
npoints <- nrow(pts)
gr <- gl(levels, replicates, npoints)
ordisegments(pts, groups = gr, lty = lty[1], col = col[1],
lwd = lwd[1], ...)
gr <- gl(replicates, 1, npoints)
ordisegments(pts, groups = gr, lty = lty[2], col = col[2],
lwd = lwd[2], ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordigrid.R
|
`ordihull` <-
function (ord, groups, display = "sites",
draw = c("lines", "polygon", "none"),
col = NULL, alpha = 127, show.groups, label = FALSE,
border = NULL, lty = NULL, lwd = NULL, ...)
{
draw <- match.arg(draw)
## Internal function to find the polygon centre
polycentre <- function(x) {
n <- nrow(x)
if (n < 4)
return(colMeans(x[-n, , drop = FALSE]))
xy <- x[-n, 1] * x[-1, 2] - x[-1, 1] * x[-n, 2]
A <- sum(xy)/2
xc <- sum((x[-n, 1] + x[-1, 1]) * xy)/A/6
yc <- sum((x[-n, 2] + x[-1, 2]) * xy)/A/6
c(xc, yc)
}
## Make semitransparent fill colour; alpha should be integer
## 0..255, but we also handle real values < 1
if (alpha < 1)
alpha <- round(alpha * 255)
if (draw == "polygon" && !is.null(col))
col <- rgb(t(col2rgb(col)), alpha = alpha, maxColorValue = 255)
pts <- scores(ord, display = display, ...)
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
}
out <- seq(along = groups)
inds <- names(table(groups))
## fill in graphical vectors with default values if unspecified
## and recycles shorter vectors
col.new <- border.new <- lty.new <- lwd.new <- NULL
for(arg in c("col","border","lty","lwd")){
tmp <- mget(arg,ifnotfound=list(NULL))[[1]]
if(is.null(tmp))
tmp <- ifelse(suppressWarnings(is.null(par(arg))),
par("fg"), par(arg))
if(length(inds) != length(tmp))
tmp <- rep_len(tmp, length(inds))
assign(paste(arg,".new", sep=""), tmp)
}
## default colour for "polygon" fill is "transparent", for lines
## is par("fg")
if(is.null(col) && draw=="polygon")
col.new <- rep_len("transparent", length(inds))
else if(is.null(col) && draw=="lines")
col.new <- rep_len(par("fg"), length(inds))
res <- list()
if (label) {
cntrs <- matrix(NA, nrow=length(inds), ncol=2)
rownames(cntrs) <- inds
}
## Remove NA scores
kk <- complete.cases(pts) & !is.na(groups)
for (is in inds) {
gr <- out[groups == is & kk]
if (length(gr)) {
X <- pts[gr,, drop = FALSE]
hpts <- chull(X)
hpts <- c(hpts, hpts[1])
if (draw == "lines")
ordiArgAbsorber(X[hpts, ], FUN = lines,
col = if (is.null(col))
par("fg")
else
col.new[match(is, inds)],
lty = lty.new[match(is,inds)],
lwd = lwd.new[match(is,inds)], ...)
else if (draw == "polygon")
ordiArgAbsorber(X[hpts, ],
border= border.new[match(is,inds)],
FUN = polygon,
col = col.new[match(is, inds)],
lty = lty.new[match(is,inds)],
lwd=lwd.new[match(is,inds)], ...)
if (label && draw != "none") {
cntrs[is,] <- polycentre(X[hpts,])
}
res[[is]] <- X[hpts,]
}
}
if (label && draw != "none") {
if (draw == "lines")
ordiArgAbsorber(cntrs[, 1], cntrs[, 2],
labels = rownames(cntrs),
col = col.new[match(is, inds)],
FUN = text, ...)
else ordiArgAbsorber(cntrs, labels = rownames(cntrs),
col = NULL,
FUN = ordilabel, ...)
}
class(res) <- "ordihull"
invisible(res)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordihull.R
|
`ordilabel` <-
function(x, display, labels, choices = c(1,2), priority, select,
cex = 0.8, fill = "white", border = NULL, col = NULL,
xpd = TRUE, ...)
{
if (missing(display))
display <- "sites"
x <- scores(x, choices = choices, display = display, ...)
if (missing(labels))
labels <- rownames(x)
if (!missing(select)) {
x <- .checkSelect(select, x)
labels <- .checkSelect(select, labels)
}
if (!missing(priority)) {
if (!missing(select))
priority <- priority[select]
ord <- order(priority)
x <- x[ord, ]
labels <- labels[ord]
} else {
ord <- seq_along(labels)
}
em <- strwidth("m", cex = cex, ...)
ex <- strheight("x", cex = cex, ...)
w <- (strwidth(labels, cex=cex,...) + em/1.5)/2
h <- (strheight(labels, cex = cex, ...) + ex/1.5)/2
if (is.null(col))
if (!is.null(border))
col <- border
else
col <- par("fg")
col <- rep(col, length=nrow(x))[ord]
if(!is.null(border))
border <- rep(border, length=nrow(x))[ord]
fill <- rep(fill, length=nrow(x))[ord]
for (i in 1:nrow(x)) {
ordiArgAbsorber(x[i,1] + c(-1,1,1,-1)*w[i], x[i,2] + c(-1,-1,1,1)*h[i],
col = fill[i], border = border[i], xpd = xpd,
FUN = polygon, ...)
ordiArgAbsorber(x[i,1], x[i,2], labels = labels[i], cex = cex,
col = col[i], xpd = xpd, FUN = text, ...)
}
invisible(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordilabel.R
|
`ordilattice.getEnvfit` <-
function(formula, object, envfit, choices = 1:3, ...)
{
if (!missing(envfit) && !is.null(envfit))
object <- envfit
bp <- scores(object, display = "bp", choices = choices, ...)
cn <- scores(object, display = "cn", choices = choices, ...)
bp <- bp[!(rownames(bp) %in% rownames(cn)),, drop=FALSE]
left <- as.character(formula[[2]])
right <- formula[[3]]
if (length(right) == 3)
right <- right[[2]]
right <- as.character(right)
if (all(c(left,right) %in% colnames(bp)))
bp <- bp[, c(left,right), drop=FALSE]
else
bp <- NULL
if (!is.null(bp) && nrow(bp) == 0)
bp <- NULL
if (!is.null(ncol(cn)) && all(c(left,right) %in% colnames(cn)))
cn <- cn[, c(left,right), drop=FALSE]
else
cn <- NULL
list(arrows = bp, centres = cn)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordilattice.getEnvfit.R
|
## Ordimedian finds the spatial medians for groups. Spatial medians
## are L1 norms or statistics that minimize sum of distances of points
## from the statistic and 1d they are the medians. The current
## algorithm minimizes the L1 norm with optim and is pretty
## inefficient. Package ICSNP has a better algorithm (and we may steal
## it from them later).
`ordimedian` <-
function(ord, groups, display = "sites", label = FALSE, ...)
{
## Sum of distances from the statistic
medfun <-
function(x, ord) sum(sqrt(rowSums(sweep(ord, 2, x)^2)),
na.rm = TRUE)
## derivative of medfun (if NULL, optim will use numerical
## differentiation)
dmedfun <- function(x, ord) {
up <- -sweep(ord, 2, x)
dn <- sqrt(rowSums(sweep(ord, 2, x)^2))
colSums(sweep(up, 1, dn, "/"))
}
#dmedfun <- NULL
pts <- scores(ord, display = display, ...)
inds <- names(table(groups))
medians <- matrix(NA, nrow = length(inds), ncol = ncol(pts))
rownames(medians) <- inds
colnames(medians) <- colnames(pts)
for (i in inds) {
X <- pts[groups == i, , drop = FALSE]
if (NROW(X) > 0)
medians[i, ] <- optim(apply(X, 2, median, na.rm = TRUE),
fn = medfun, gr = dmedfun,
ord = X, method = "BFGS")$par
if(label)
ordiArgAbsorber(medians[i,1], medians[i,2], label = i,
FUN = text, ...)
}
invisible(medians)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordimedian.R
|
`ordiplot` <-
function (ord, choices = c(1, 2), type = "points", display, xlim,
ylim, cex = 0.7, ...)
{
## local functions to absorb non-par arguments of plot.default
localPoints <- function(..., log, frame.plot, panel.first,
panel.last, axes) points(...)
localText <- function(..., log, frame.plot, panel.first,
panel.last, axes) text(...)
if (inherits(ord, "decorana") || inherits(ord, "cca")) {
if (missing(display))
out <- plot(ord, choices = choices, type = type, xlim = xlim,
ylim = ylim, cex = cex, ...)
else out <- plot(ord, choices = choices, type = type, display = display,
xlim = xlim, ylim = ylim, cex = cex, ...)
}
else {
type <- match.arg(type, c("points", "text", "none"))
## Matching displays could be done better (see
## ordipointlabel), but this may not be yet broken, so...
dplays <- c("sites", "species")
if (missing(display))
display <- dplays
else
display <- match.arg(display, dplays, several.ok = TRUE)
X <- Y <- NULL
if ("sites" %in% display)
X <- scores(ord, choices = choices, display = "sites")
if ("species" %in% display) {
op <- options(show.error.messages = FALSE)
Y <- try(scores(ord, choices = choices, display = "species"))
options(op)
if (inherits(Y, "try-error")) {
message("species scores not available")
Y <- NULL
}
else if (!is.null(X) && NROW(X) == NROW(Y) &&
isTRUE(all.equal.numeric(X, Y,
check.attributes = FALSE))) {
Y <- NULL
message("species scores not available")
}
}
if (is.null(X) && is.null(Y))
stop("no scores found: nothing to plot")
## Use linestack and exit if there is only one dimension
if (NCOL(X) == 1 && NCOL(Y) == 1) {
pl <- linestack(X, ylim = range(c(X,Y), na.rm=TRUE), cex = cex, ...)
if (!is.null(Y))
linestack(Y, side = "left", add = TRUE, cex = cex, ...)
return(invisible(pl))
}
tmp <- apply(rbind(X, Y), 2, range, na.rm=TRUE)
if (missing(xlim))
xlim <- tmp[, 1]
if (missing(ylim))
ylim <- tmp[, 2]
plot(tmp, xlim = xlim, ylim = ylim, asp = 1, type = "n",
...)
if (type == "points") {
if (!is.null(X))
localPoints(X, pch = 1, col = 1, cex = cex, ...)
if (!is.null(Y))
localPoints(Y, pch = "+", col = "red", cex = cex, ...)
}
if (type == "text") {
if (!is.null(X))
localText(X, labels = rownames(X), col = 1, cex = cex, ...)
if (!is.null(Y))
localText(Y, labels = rownames(Y), col = "red", cex = cex, ...)
}
out <- list(sites = X, species = Y)
}
class(out) <- "ordiplot"
invisible(out)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiplot.R
|
### Modelled after maptools:::pointLabel.
`ordipointlabel` <-
function(x, display = c("sites", "species"), choices = c(1,2), col=c(1,2),
pch=c("o","+"), font = c(1,1), cex=c(0.8, 0.8), add = FALSE,
select, ...)
{
xy <- list()
## Some 'scores' accept only one 'display': a workaround
for (nm in display)
xy[[nm]] <- scores(x, display = nm, choices = choices, ...)
##xy <- scores(x, display = display, choices = choices, ...)
## remove `select`ed observations from scores as per text.cca
## only useful if we are displaying only one set of scores
if(!missing(select)) {
if(isTRUE(all.equal(length(display), 1L))) {
xy[[1]] <- .checkSelect(select, xy[[1]])
} else {
warning("'select' does not apply when plotting more than one set of scores--\n'select' was ignored")
}
}
if (length(display) > 1) {
col <- rep(col, sapply(xy, nrow))
pch <- rep(pch, sapply(xy, nrow))
font <- rep(font, sapply(xy, nrow))
cex <- rep(cex, sapply(xy, nrow))
tmp <- xy[[1]]
for (i in 2:length(display))
tmp <- rbind(tmp, xy[[i]])
xy <- tmp
}
else {
xy <- xy[[1]]
if (length(col) < nrow(xy))
col <- col[1]
if (length(pch) < nrow(xy))
pch <- pch[1]
if (length(font) < nrow(xy))
font <- font[1]
}
if (!add)
pl <- ordiplot(x, display = display, choices = choices, type="n", ...)
labels <- rownames(xy)
em <- strwidth("m", cex = min(cex), font = min(font))
ex <- strheight("x", cex = min(cex), font = min(font))
ltr <- em*ex
w <- strwidth(labels, cex = cex, font = font) + em
h <- strheight(labels, cex = cex, font = font) + ex
box <- cbind(w, h)
## offset: 1 up, 2..4 sides, 5..8 corners
makeoff <- function(pos, lab) {
cbind(c(0,1,0,-1,0.9,0.9,-0.9,-0.9)[pos] * lab[,1]/2,
c(1,0,-1,0,0.8,-0.8,-0.8,0.8)[pos] * lab[,2]/2)
}
## amount of overlap
overlap <- function(xy1, off1, xy2, off2) {
pmax(0, pmin(xy1[,1] + off1[,1]/2, xy2[,1] + off2[,1]/2)
-pmax(xy1[,1] - off1[,1]/2, xy2[,1] - off2[,1]/2)) *
pmax(0, pmin(xy1[,2] + off1[,2]/2, xy2[,2] + off2[,2]/2)
-pmax(xy1[,2] - off1[,2]/2, xy2[,2] - off2[,2]/2))
}
## indices of overlaps in lower triangular matrix
n <- nrow(xy)
j <- as.vector(as.dist(row(matrix(0, n, n))))
k <- as.vector(as.dist(col(matrix(0, n, n))))
## Find labels that may overlap...
maylap <- overlap(xy[j,], 2*box[j,], xy[k,], 2*box[k,]) > 0
## ... and work only with those
j <- j[maylap]
k <- k[maylap]
jk <- sort(unique(c(j,k)))
## SANN: no. of iterations & starting positions
nit <- min(48 * length(jk), 10000)
pos <- rep(1, n)
## Criterion: overlap + penalty for positions other than directly
## above and especially for corners
fn <- function(pos) {
off <- makeoff(pos, box)
val <- sum(overlap(xy[j,]+off[j,], box[j,], xy[k,]+off[k,], box[k,]))
val <- val/ltr + sum(pos>1)*0.1 + sum(pos>4)*0.1
}
## Move a label of one point
gr <- function(pos) {
take <- sample(jk, 1)
pos[take] <- sample((1:8)[-pos[take]], 1)
pos
}
## Simulated annealing
sol <- optim(par = pos, fn = fn, gr = gr, method="SANN",
control=list(maxit=nit))
if (!add)
##points(xy, pch = pch, col = col, cex=cex, ...)
ordiArgAbsorber(xy, pch = pch, col = col, cex = cex, FUN = points,
...)
lab <- xy + makeoff(sol$par, box)
##text(lab, labels=labels, col = col, cex = cex, font = font, ...)
ordiArgAbsorber(lab, labels=labels, col = col, cex = cex, font = font,
FUN = text, ...)
pl <- list(points = xy)
pl$labels <- lab
attr(pl$labels, "font") <- font
args <- list(tcex = cex, tcol = col, pch = pch, pcol = col,
pbg = NA, pcex = cex)
pl$args <- args
pl$par <- par(no.readonly = TRUE)
pl$dim <- par("din")
attr(pl, "optim") <- sol
class(pl) <- c("ordipointlabel", "orditkplot", class(pl))
invisible(pl)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordipointlabel.R
|
`ordiresids` <-
function(x, kind = c("residuals", "scale", "qqmath"),
residuals = "working",
type = c("p", "smooth", "g"), formula, ...)
{
kind <- match.arg(kind)
if (!inherits(x, "cca") || is.null(x$CCA) || x$CCA$rank == 0)
stop("function is only available for constrained ordination")
residuals <- match.arg(residuals, c("working", "response",
"standardized", "studentized"))
fit <- switch(residuals,
"working" =,
"response" = fitted(x, type = residuals),
"standardized" =,
"studentized" = sweep(fitted(x, type="working"), 2, sigma(x), "/"))
res <- switch(residuals,
"standardized" = rstandard(x),
"studentized" = rstudent(x),
residuals(x, type = residuals))
colnam <- rep(colnames(fit), each=nrow(fit))
rownam <- rep(rownames(fit), ncol(fit))
df <- data.frame(Fitted = as.vector(fit), Residuals = as.vector(res))
if (!is.null(rownam))
df$Sites <- rownam
if (!is.null(colnam))
df$Species <- colnam
if (kind == "residuals") {
if (missing(formula))
formula <- as.formula(Residuals ~ Fitted)
pl <- xyplot(formula, data = df, type = type, ...)
}
if (kind == "scale") {
if (missing(formula))
formula <- as.formula(sqrt(abs(Residuals)) ~ Fitted)
pl <- xyplot(formula, data = df, type = type, ...)
}
if (kind == "qqmath") {
if (missing(formula))
formula <- as.formula(~ Residuals)
pl <- qqmath(formula, data = df, type = type, ...)
}
pl
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordiresids.R
|
`ordisegments` <-
function (ord, groups, levels, replicates, order.by, display = "sites",
col = 1, show.groups, label = FALSE, ...)
{
pts <- scores(ord, display = display, ...)
npoints <- nrow(pts)
if (missing(groups))
groups <- gl(levels, replicates, npoints)
if (!missing(order.by)) {
if (length(order.by) != nrow(pts))
stop(gettextf("the length of order.by (%d) does not match the number of points (%d)",
length(order.by), nrow(pts)))
ord <- order(order.by)
pts <- pts[ord,]
groups <- groups[ord]
}
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
}
out <- seq(along = groups)
inds <- names(table(groups))
if (is.factor(col))
col <- as.numeric(col)
col <- rep(col, length=length(inds))
names(col) <- inds
ends <- names <- NULL
for (is in inds) {
gr <- out[groups == is]
if (length(gr) > 1) {
X <- pts[gr, , drop = FALSE]
X0 <- X[-nrow(X), , drop = FALSE]
X1 <- X[-1, , drop = FALSE]
ordiArgAbsorber(X0[, 1], X0[, 2], X1[, 1], X1[, 2],
col = col[is], FUN = segments, ...)
if (label) {
ends <- rbind(ends, X[c(1, nrow(X)), ])
names <- c(names, is, is)
}
}
}
if (label)
ordiArgAbsorber(ends, labels = names, border = col, col = par("fg"),
FUN = ordilabel, ...)
invisible()
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordisegments.R
|
`ordispider` <-
function (ord, groups, display = "sites", w = weights(ord, display),
spiders = c("centroid", "median"), show.groups,
label = FALSE, col = NULL, lty = NULL, lwd = NULL, ...)
{
weights.default <- function(object, ...) NULL
spiders <- match.arg(spiders)
if (inherits(ord, "cca") && missing(groups)) {
lc <- scores(ord, display = "lc", ...)
wa <- scores(ord, display = "wa", ...)
if (is.null(col))
col <- par("fg")
ordiArgAbsorber(lc[, 1], lc[, 2], wa[, 1], wa[, 2],
FUN = segments, col = col, lty = lty, lwd = lwd,
...)
class(lc) <- "ordispider"
return(invisible(lc))
}
pts <- scores(ord, display = display, ...)
## spids stores pointwise centroids to be returned invisibly
## (transposed here so that filling is easier, but back-transposed
## when returned).
spids <- t(array(NA, dim=dim(pts), dimnames = dimnames(pts)))
## ordihull: draw lines from centre to the points in the hull
if (inherits(ord, "ordihull"))
groups <- attr(pts, "hulls")
w <- eval(w)
if (length(w) == 1)
w <- rep(1, nrow(pts))
if (is.null(w))
w <- rep(1, nrow(pts))
if (!missing(show.groups)) {
take <- groups %in% show.groups
pts <- pts[take, , drop = FALSE]
groups <- groups[take]
w <- w[take]
}
if (spiders == "median" && sd(w) > sqrt(.Machine$double.eps))
warning("weights are ignored with 'median' spiders")
out <- seq(along = groups)
inds <- names(table(groups))
if (label)
cntrs <- names <- NULL
## fill in graphical vectors with default values if unspecified
## and recycles shorter vectors
for(arg in c("col","lty","lwd")) {
tmp <- mget(arg,ifnotfound=list(NULL))[[1]]
if(is.null(tmp))
tmp <- ifelse(suppressWarnings(is.null(par(arg))),
par("fg"), par(arg))
if(length(inds) != length(tmp))
tmp <- rep_len(tmp, length(inds))
assign(arg, tmp)
}
## 'kk' removes NA scores and NA groups
kk <- complete.cases(pts) & !is.na(groups)
for (is in inds) {
gr <- out[groups == is & kk]
if (length(gr)) {
X <- pts[gr, , drop = FALSE]
W <- w[gr]
if (length(gr) > 1) {
ave <- switch(spiders,
"centroid" = apply(X, 2, weighted.mean, w = W),
"median" = ordimedian(X, rep(1, nrow(X))))
ordiArgAbsorber(ave[1], ave[2], X[, 1], X[, 2],
FUN = segments, col[match(is, inds)],
lty = lty[match(is,inds)],
lwd = lwd[match(is,inds)],...)
} else {
ave <- X
}
spids[,gr] <- ave
if (label) {
cntrs <- rbind(cntrs, ave)
names <- c(names, is)
}
}
}
if (label)
ordiArgAbsorber(cntrs, label = names, FUN = ordilabel, ...)
spids <- t(spids)
class(spids) <- "ordispider"
invisible(spids)
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordispider.R
|
`ordisplom` <-
function(x, data=NULL, formula = NULL, display = "sites", choices = 1:3,
panel = "panel.ordi", type = "p", ...)
{
localSplom <- function(..., shrink, origin, scaling) splom(...)
x <- as.data.frame(scores(x, display = display, choices = choices, ...))
if (is.null(data))
data <- x
else if (is.null(formula))
x <- cbind(x, data)
## type = "biplot" is not (yet?) implemented
env <- list(arrows = NULL, centres = NULL)
if (is.null(formula))
pl <- localSplom(x, panel = panel, type = type, biplot = env, ...)
else {
formula <- as.formula(gsub("\\.", "x", deparse(formula)))
pl <- localSplom(x = formula, data = data, panel = panel, type = type,
biplot = env, ...)
}
pl
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordisplom.R
|
`ordistep` <-
function(object, scope, direction =c("both", "backward", "forward"),
Pin = 0.05, Pout = 0.1, permutations = how(nperm = 199),
steps=50, trace = TRUE, ...)
{
if (!inherits(object, "cca"))
stop("function can be only used with 'cca' and related objects")
if (is.null(object$terms))
stop("ordination model must be fitted using formula")
## handling 'direction' and 'scope' directly copied from
## stats::step()
md <- missing(direction)
direction <- match.arg(direction)
backward <- direction == "both" | direction == "backward"
forward <- direction == "both" | direction == "forward"
ffac <- attr(terms(object), "factors")
if (missing(scope)) {
fdrop <- numeric(0)
fadd <- ffac
if (md)
forward <- FALSE
}
else {
if (is.list(scope) && (!is.null(scope$lower) || !is.null(scope$upper))) {
fdrop <- if (!is.null(fdrop <- scope$lower))
attr(terms(update.formula(object, fdrop)), "factors")
else numeric(0)
fadd <- if (!is.null(fadd <- scope$upper))
attr(terms(update.formula(object, fadd)), "factors")
}
else {
fadd <- if (!is.null(fadd <- scope))
attr(terms(update.formula(object, scope)), "factors")
if (forward)
fdrop <- attr(terms(object), "factor")
else
fdrop <- numeric(0L)
}
}
scope <- factor.scope(ffac, list(add = fadd, drop = fdrop))
## 'anotab' collects the changes into 'anova' object in the output
anotab <- NULL
if (trace) {
cat("\n")
cat(pasteCall(formula(object), prefix = "Start:"))
}
for (i in 1:steps){
change <- NULL
## Consider dropping
if (backward && length(scope$drop)) {
aod <- drop1(object, scope = scope$drop, test="perm",
permutations = permutations,
alpha = Pout, trace = trace, ...)
aod <- aod[-1,]
o <- order(-aod[,4], aod[,2])
aod <- aod[o,]
rownames(aod) <- paste("-", rownames(aod), sep = " ")
if (trace) {
cat("\n")
print(aod)
}
if (is.na(aod[1,4]) || aod[1,4] > Pout) {
anotab <- rbind(anotab, aod[1,])
change <- rownames(aod)[1]
object <- eval.parent(update(object, paste("~ .", change)))
scope <- factor.scope(attr(terms(object), "factors"),
list(add = fadd, drop = fdrop))
if (trace) {
cat("\n")
cat(pasteCall(formula(object), prefix = "Step:"))
}
}
}
## Consider adding
if (forward && length(scope$add)) {
aod <- add1(object, scope = scope$add, test = "perm",
permutations = permutations,
alpha = Pin, trace = trace, ...)
aod <- aod[-1,]
o <- order(aod[,4], aod[,2])
aod <- aod[o,]
rownames(aod) <- paste("+", rownames(aod), sep = " ")
if (trace) {
cat("\n")
print(aod)
}
if (!is.na(aod[1,4]) && aod[1,4] <= Pin) {
anotab <- rbind(anotab, aod[1,])
change <- rownames(aod)[1]
object <- eval.parent(update(object, paste( "~ .",change)))
scope <- factor.scope(attr(terms(object), "factors"),
list(add = fadd, drop = fdrop))
if (trace) {
cat("\n")
cat(pasteCall(formula(object), prefix="Step:"))
}
}
}
## No drop, no add: done
if (is.null(change))
break
}
if (trace)
cat("\n")
object$anova <- anotab
object
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordistep.R
|
`ordisurf` <-
function(...) UseMethod("ordisurf")
`ordisurf.formula` <-
function(formula, data, ...)
{
if (missing(data))
data <- parent.frame()
x <- formula[[2]]
x <- eval.parent(x)
formula[[2]] <- NULL
y <- drop(as.matrix(model.frame(formula, data, na.action = na.pass)))
if (NCOL(y) > 1)
stop(gettextf("only one fitted variable allowed in the formula"))
ordisurf(x, y, ...)
}
`ordisurf.default` <-
function (x, y, choices = c(1, 2), knots = 10, family = "gaussian",
col = "red", isotropic = TRUE, thinplate = TRUE, bs = "tp",
fx = FALSE, add = FALSE, display = "sites",
w = weights(x, display), main, nlevels = 10, levels,
npoints = 31, labcex = 0.6, bubble = FALSE, cex = 1,
select = TRUE, method = "REML", gamma = 1, plot = TRUE,
lwd.cl = par("lwd"), ...)
{
weights.default <- function(object, ...) NULL
if(!missing(thinplate)) {
warning("use of 'thinplate' is deprecated and will soon be removed;\nuse 'isotropic' instead")
isotropic <- thinplate
}
## GRID no user-definable - why 31?
GRID <- npoints
w <- eval(w)
if (!is.null(w) && length(w) == 1)
w <- NULL
X <- scores(x, choices = choices, display = display, ...)
## The original name of 'y' may be lost in handling NA: save for
## plots
yname <- deparse(substitute(y))
kk <- complete.cases(X) & !is.na(y)
if (!all(kk)) {
X <- X[kk, , drop = FALSE]
y <- y[kk]
w <- w[kk]
}
x1 <- X[, 1]
x2 <- X[, 2]
## handle fx - allow vector of length up to two
if(!(missfx <- missing(fx)) && missing(knots))
warning("requested fixed d.f. splines but without specifying 'knots':\nswitching to 'fx = FALSE'")
if (length(fx) > 2L)
warning("length of 'fx' supplied exceeds '2': using the first two")
## expand fx robustly, no matter what length supplied
fx <- rep(fx, length.out = 2)
## can't have `fx = TRUE` and `select = TRUE`
if(!missfx) { ## fx set by user
if((miss.select <- missing(select)) && any(fx)) {
warning("'fx = TRUE' requested; using 'select = FALSE'")
select <- FALSE
} else if(!miss.select && isTRUE(select)){
stop("fixed d.f. splines ('fx = TRUE') incompatible with 'select = TRUE'")
}
}
## handle knots - allow vector of length up to two
if (length(knots) > 2L)
warning("length of 'knots' supplied exceeds '2': using the first two")
## expand knots robustly, no matter what length supplied
knots <- rep(knots, length.out = 2)
## handle the bs - we only allow some of the possible options
if (length(bs) > 2L)
warning("number of basis types supplied exceeds '2': using the first two")
bs <- rep(bs, length.out = 2)
## check allowed types
BS <- c("tp","ts","cr","cs","ds","ps","ad")
want <- match(bs, BS)
user.bs <- bs ## store supplied (well expanded supplied ones)
bs <- BS[want]
if (any(wrong <- is.na(bs))) {
stop(gettextf("supplied basis type of '%s' not supported",
paste(unique(user.bs[wrong]), collapse = ", ")))
}
## can't use "cr", "cs", "ps" in 2-d smoother with s()
if(isTRUE(isotropic) && any(bs %in% c("cr", "cs", "ps"))) {
stop("bases \"cr\", \"cs\", and \"ps\" not allowed in isotropic smooths")
}
## Build formula
if (knots[1] <= 0) {
f <- formula(y ~ x1 + x2)
} else if (knots[1] == 1) { ## why do we treat this differently?
f <- formula(y ~ poly(x1, 1) + poly(x2, 1))
} else if (knots[1] == 2) {
f <- formula(y ~ poly(x1, 2) + poly(x2, 2) + poly(x1, 1):poly(x2, 1))
} else if (isotropic) {
f <- formula(paste0("y ~ s(x1, x2, k = ", knots[1],
", bs = \"", bs[1], "\", fx = ", fx[1],")"))
} else {
if (any(bs %in% c("ad"))) {
## only "ad" for now, but "fs" should also not be allowed
f <- formula(paste0("y ~ s(x1, k = ", knots[1],
", bs = \"", bs[1],
"\", fx = ", fx[1], ") + s(x2, k = ",
knots[2], ", bs = \"", bs[2],
"\", fx = ", fx[2], ")"))
} else {
f <- formula(paste0("y ~ te(x1, x2, k = c(",
paste0(knots, collapse = ", "),
"), bs = c(",
paste0("\"", bs, "\"", collapse = ", "),
"), fx = c(",
paste0(fx, collapse = ", "),
"))"))
}
}
## fit model
mod <- gam(f, family = family, weights = w, select = select,
method = method, gamma = gamma)
xn1 <- seq(min(x1), max(x1), len=GRID)
xn2 <- seq(min(x2), max(x2), len=GRID)
newd <- expand.grid(x1 = xn1, x2 = xn2)
fit <- predict(mod, type = "response", newdata=as.data.frame(newd))
poly <- chull(cbind(x1,x2))
## Move out points of the convex hull to have contour for all data
## points
xhull1 <- x1[poly] + sign(x1[poly] - mean(x1[poly])) *
diff(range(x1))/(GRID - 1)
xhull2 <- x2[poly] + sign(x2[poly] - mean(x2[poly])) *
diff(range(x2))/(GRID - 1)
npol <- length(poly)
np <- nrow(newd)
inpoly <- numeric(np)
inpoly <- .C(pnpoly, as.integer(npol), as.double(xhull1),
as.double(xhull2), as.integer(np), as.double(newd[,1]),
as.double(newd[,2]), inpoly = as.integer(inpoly))$inpoly
is.na(fit) <- inpoly == 0
if(plot) {
if (!add) {
if (bubble) {
if (is.numeric(bubble))
cex <- bubble
cex <- (y - min(y))/diff(range(y)) * (cex-0.4) + 0.4
}
plot(X, asp = 1, cex = cex, ...)
}
if (!missing(main) || (missing(main) && !add)) {
if (missing(main))
main <- yname
title(main = main)
}
if (missing(levels))
levels <- pretty(range(fit, finite = TRUE), nlevels)
## Only plot surface is select is FALSE or (TRUE and EDF is diff from 0)
if(!select ||
(select && !isTRUE(all.equal(as.numeric(summary(mod)$edf), 0))))
contour(xn1, xn2, matrix(fit, nrow=GRID), col = col, add = TRUE,
levels = levels, labcex = labcex,
drawlabels = !is.null(labcex) && labcex > 0,
lwd = lwd.cl)
}
mod$grid <- list(x = xn1, y = xn2, z = matrix(fit, nrow = GRID))
class(mod) <- c("ordisurf", class(mod))
mod
}
|
/scratch/gouwar.j/cran-all/cranData/vegan/R/ordisurf.R
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.