|
import sys
|
|
import os
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
|
|
import math
|
|
from typing import Optional, Any, Union, Callable
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
from torch.nn.init import xavier_uniform_
|
|
import torchtext.vocab.vocab as Vocab
|
|
|
|
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
|
|
def __init__(self, d_model: int, pad_idx: int=1, dropout: float = 0.1, max_len: int = 5000):
|
|
super().__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
self.d_model = d_model
|
|
self.pad_idx = pad_idx
|
|
|
|
position = torch.arange(max_len).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, self.d_model, 2) * (-math.log(10000.0) / self.d_model))
|
|
|
|
pe = torch.zeros(max_len, 1, self.d_model)
|
|
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
|
self.register_buffer('pe', pe)
|
|
|
|
def forward(self, x:torch.tensor, pad_mask=None) -> torch.tensor:
|
|
"""
|
|
Args:
|
|
x: Tensor, shape [seq_len, batch_size, embedding_dim]
|
|
"""
|
|
if pad_mask is not None:
|
|
mask = pad_mask.permute(1, 0).unsqueeze(-1).repeat(1, 1, self.d_model)
|
|
|
|
x = x * math.sqrt(self.d_model)
|
|
x = x + self.pe[:x.size(0)]
|
|
|
|
if pad_mask is not None:
|
|
x = torch.where(mask == True, 0, x)
|
|
return self.dropout(x)
|
|
|
|
|
|
|
|
class TransformerLR(_LRScheduler):
|
|
"""TransformerLR class for adjustment of learning rate.
|
|
|
|
The scheduling is based on the method proposed in 'Attention is All You Need'.
|
|
"""
|
|
|
|
def __init__(self, optimizer, warmup_epochs=8000, last_epoch=-1, verbose=False):
|
|
"""Initialize class."""
|
|
self.warmup_epochs = warmup_epochs
|
|
self.normalize = self.warmup_epochs**0.5
|
|
super().__init__(optimizer, last_epoch, verbose)
|
|
|
|
def get_lr(self):
|
|
"""Return adjusted learning rate."""
|
|
step = self.last_epoch + 1
|
|
scale = self.normalize * min(step**-0.5, step * self.warmup_epochs**-1.5)
|
|
return [base_lr * scale for base_lr in self.base_lrs]
|
|
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, d_model: int = 256, nhead: int = 8, num_encoder_layers: int = 4, num_decoder_layers: int =4,
|
|
dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
|
vocab: Vocab = None, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
|
|
device=None, dtype=None) -> None:
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
super().__init__()
|
|
|
|
if vocab == None:
|
|
raise RuntimeError("set vocab: torch.vocab.vocab")
|
|
|
|
|
|
self.model_type = "Transformer"
|
|
self.vocab = vocab
|
|
num_tokens = vocab.__len__()
|
|
|
|
self.positional_encoder = PositionalEncoding(d_model=d_model,
|
|
pad_idx=self.vocab['<pad>'],
|
|
dropout=dropout,
|
|
max_len=5000
|
|
)
|
|
self.embedding = nn.Embedding(num_tokens, d_model, padding_idx=self.vocab['<pad>'])
|
|
|
|
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
|
|
activation, layer_norm_eps, batch_first, norm_first,
|
|
**factory_kwargs)
|
|
encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
|
self.encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
|
|
|
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
|
|
activation, layer_norm_eps, batch_first, norm_first,
|
|
**factory_kwargs)
|
|
decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
|
self.decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
|
|
|
|
self.out = nn.Linear(d_model, num_tokens)
|
|
|
|
self._reset_parameters()
|
|
self.d_model = d_model
|
|
self.nhead = nhead
|
|
self.batch_first = batch_first
|
|
|
|
|
|
|
|
|
|
def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None,
|
|
tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None,
|
|
src_pad_mask: bool = False, tgt_pad_mask: bool = False,
|
|
memory_pad_mask: bool = False) -> Tensor:
|
|
|
|
if src_pad_mask is True:
|
|
src_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
|
|
else:
|
|
src_pad_mask = None
|
|
|
|
if tgt_pad_mask is True:
|
|
tgt_pad_mask = (tgt == self.vocab['<pad>']).permute(1, 0)
|
|
else:
|
|
tgt_pad_mask = None
|
|
|
|
if memory_pad_mask is True:
|
|
memory_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
|
|
else:
|
|
memory_pad_mask = None
|
|
|
|
|
|
src = self.embedding(src)
|
|
tgt = self.embedding(tgt)
|
|
src = self.positional_encoder(src, src_pad_mask)
|
|
tgt = self.positional_encoder(tgt, tgt_pad_mask)
|
|
|
|
|
|
is_batched = src.dim() == 3
|
|
if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
|
|
raise RuntimeError("the batch number of src and tgt must be equal")
|
|
elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
|
|
raise RuntimeError("the batch number of src and tgt must be equal")
|
|
if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
|
|
raise RuntimeError("the feature number of src and tgt must be equal to d_model")
|
|
|
|
memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask)
|
|
transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
|
|
tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask)
|
|
out = self.out(transformer_out)
|
|
|
|
return out
|
|
|
|
def encode(self, src: Tensor, src_mask: Optional[Tensor] = None,
|
|
src_pad_mask: bool = False) -> Tensor:
|
|
|
|
if src_pad_mask is True:
|
|
src_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
|
|
else:
|
|
src_pad_mask = None
|
|
|
|
|
|
src = self.embedding(src)
|
|
src = self.positional_encoder(src, src_pad_mask)
|
|
|
|
|
|
memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask)
|
|
|
|
return memory, src_pad_mask
|
|
|
|
def decode(self, memory: Tensor, tgt: Tensor, tgt_mask: Optional[Tensor] = None,
|
|
memory_mask: Optional[Tensor] = None, tgt_pad_mask: bool = False,
|
|
memory_pad_mask: Optional[Tensor] = None) -> Tensor:
|
|
|
|
if tgt_pad_mask is True:
|
|
tgt_pad_mask = (tgt == self.vocab['<pad>']).permute(1, 0)
|
|
else:
|
|
tgt_pad_mask = None
|
|
|
|
tgt = self.embedding(tgt)
|
|
tgt = self.positional_encoder(tgt, tgt_pad_mask)
|
|
transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
|
|
tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask)
|
|
out = self.out(transformer_out)
|
|
|
|
return out
|
|
|
|
def embed(self, src):
|
|
src_embed = self.embedding(src)
|
|
return src_embed
|
|
|
|
def _reset_parameters(self):
|
|
r"""Initiate parameters in the transformer model."""
|
|
|
|
for p in self.parameters():
|
|
if p.dim() > 1:
|
|
xavier_uniform_(p) |