File size: 8,872 Bytes
e0d0d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

import math
from typing import Optional, Any, Union, Callable

import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import _LRScheduler
from torch.nn.init import xavier_uniform_
import torchtext.vocab.vocab as Vocab



class PositionalEncoding(nn.Module):
# P(pos, 2d) = sin(pos/10000**(2d/D)), where d=index of token, D=d_model
    def __init__(self, d_model: int, pad_idx: int=1, dropout: float = 0.1, max_len: int = 5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        self.d_model = d_model
        self.pad_idx = pad_idx

        position = torch.arange(max_len).unsqueeze(1) # shape: (max_len, 1) の列ベクトル
        div_term = torch.exp(torch.arange(0, self.d_model, 2) * (-math.log(10000.0) / self.d_model))
        # torch.arange(start, stop, step) -> shape: (d_model/2,) 1次元ベクトル
        pe = torch.zeros(max_len, 1, self.d_model) # (seq_length, 1, emb_dim)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)

    def forward(self, x:torch.tensor, pad_mask=None) -> torch.tensor:
        """

        Args:

            x: Tensor, shape [seq_len, batch_size, embedding_dim]

        """
        if pad_mask is not None:
            mask = pad_mask.permute(1, 0).unsqueeze(-1).repeat(1, 1, self.d_model) # paddingの位置をTrue
        # make embeddings relatively larger
        x = x * math.sqrt(self.d_model)
        x = x + self.pe[:x.size(0)] # max_lenが5000とかでも入力のseq_lenまでを切り取って足してる
        
        if pad_mask is not None:
            x = torch.where(mask == True, 0, x) # mask=Trueの位置を0に置換, それ以外はいじらない
        return self.dropout(x)


# Learning Rate Scheduler
class TransformerLR(_LRScheduler):
    """TransformerLR class for adjustment of learning rate.



    The scheduling is based on the method proposed in 'Attention is All You Need'.

    """

    def __init__(self, optimizer, warmup_epochs=8000, last_epoch=-1, verbose=False):
        """Initialize class."""
        self.warmup_epochs = warmup_epochs
        self.normalize = self.warmup_epochs**0.5
        super().__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        """Return adjusted learning rate."""
        step = self.last_epoch + 1
        scale = self.normalize * min(step**-0.5, step * self.warmup_epochs**-1.5)
        return [base_lr * scale for base_lr in self.base_lrs]


# Transformer model
class Transformer(nn.Module):
    def __init__(self, d_model: int = 256, nhead: int = 8, num_encoder_layers: int = 4, num_decoder_layers: int =4,

                 dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,

                 vocab: Vocab = None, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,

                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()

        if vocab == None:
            raise RuntimeError("set vocab: torch.vocab.vocab")
        
        # INFO
        self.model_type = "Transformer"
        self.vocab = vocab
        num_tokens = vocab.__len__()
        
        self.positional_encoder = PositionalEncoding(d_model=d_model,
                                                     pad_idx=self.vocab['<pad>'],
                                                     dropout=dropout,
                                                     max_len=5000
                                                     )
        self.embedding = nn.Embedding(num_tokens, d_model, padding_idx=self.vocab['<pad>'])

        encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
                                                activation, layer_norm_eps, batch_first, norm_first,
                                                **factory_kwargs)
        encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        self.encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
                                                activation, layer_norm_eps, batch_first, norm_first,
                                                **factory_kwargs)
        decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        self.decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
        
        self.out = nn.Linear(d_model, num_tokens)
        
        self._reset_parameters()
        self.d_model = d_model
        self.nhead = nhead
        self.batch_first = batch_first
        

    # Transformer blocks - Out size = (seq_length, batch_size, num_tokens)
    # input src, tgt must be (seq_length, batch_size)
    def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None,

                tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None,

                src_pad_mask: bool = False, tgt_pad_mask: bool = False,

                memory_pad_mask: bool = False) -> Tensor:
        
        if src_pad_mask is True:
            src_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
        else:
            src_pad_mask = None
            
        if tgt_pad_mask is True:
            tgt_pad_mask = (tgt == self.vocab['<pad>']).permute(1, 0)
        else:
            tgt_pad_mask = None
        
        if memory_pad_mask is True:
            memory_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
        else:
            memory_pad_mask = None
        
        # Embedding
        src = self.embedding(src)
        tgt = self.embedding(tgt)
        src = self.positional_encoder(src, src_pad_mask)
        tgt = self.positional_encoder(tgt, tgt_pad_mask)
        
        # Transformer layer
        is_batched = src.dim() == 3
        if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
            raise RuntimeError("the batch number of src and tgt must be equal")
        elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
            raise RuntimeError("the batch number of src and tgt must be equal")
        if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
            raise RuntimeError("the feature number of src and tgt must be equal to d_model")
        
        memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask)
        transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask)
        out = self.out(transformer_out)
        
        return out
    
    def encode(self, src: Tensor, src_mask: Optional[Tensor] = None,

               src_pad_mask: bool = False) -> Tensor:
        
        if src_pad_mask is True:
            src_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
        else:
            src_pad_mask = None
        
        # Embedding + PE
        src = self.embedding(src)
        src = self.positional_encoder(src, src_pad_mask)

        # Transformer Encoder
        memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask)
        
        return memory, src_pad_mask
    
    def decode(self, memory: Tensor, tgt: Tensor, tgt_mask: Optional[Tensor] = None,

               memory_mask: Optional[Tensor] = None, tgt_pad_mask: bool = False,

               memory_pad_mask: Optional[Tensor] = None) -> Tensor:
        
        if tgt_pad_mask is True:
            tgt_pad_mask = (tgt == self.vocab['<pad>']).permute(1, 0)
        else:
            tgt_pad_mask = None
            
        tgt = self.embedding(tgt)
        tgt = self.positional_encoder(tgt, tgt_pad_mask)
        transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask)
        out = self.out(transformer_out)
        
        return out
    
    def embed(self, src):
        src_embed = self.embedding(src)
        return src_embed

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)