introvoyz041 commited on
Commit
e0d0d76
·
verified ·
1 Parent(s): 2409c5b

Migrated from GitHub

Browse files
Files changed (45) hide show
  1. .gitattributes +3 -0
  2. data/LICENSE +21 -0
  3. data/Model/GCN/callbacks.py +39 -0
  4. data/Model/GCN/mol2graph.py +291 -0
  5. data/Model/GCN/network.py +44 -0
  6. data/Model/GCN/utils.py +65 -0
  7. data/Model/QSAR/qsar_AKT1_optimized.pkl +3 -0
  8. data/Model/QSAR/qsar_CXCR4_optimized.pkl +3 -0
  9. data/Model/QSAR/qsar_DRD2_optimized.pkl +3 -0
  10. data/Model/Transformer/model.py +201 -0
  11. data/Utils/reward.py +112 -0
  12. data/Utils/utils.py +297 -0
  13. data/ckpts/GCN/GCN.pth +3 -0
  14. data/config/config.py +104 -0
  15. data/data/QSAR/AKT1/akt1_test.csv +0 -0
  16. data/data/QSAR/AKT1/akt1_train.csv +0 -0
  17. data/data/QSAR/CXCR4/cxcr4_test.csv +428 -0
  18. data/data/QSAR/CXCR4/cxcr4_train.csv +0 -0
  19. data/data/QSAR/DRD2/drd2_test.csv +0 -0
  20. data/data/QSAR/DRD2/drd2_train.csv +3 -0
  21. data/data/USPTO/src_test.txt +0 -0
  22. data/data/USPTO/src_train.txt +3 -0
  23. data/data/USPTO/src_valid.txt +0 -0
  24. data/data/USPTO/tgt_test.txt +0 -0
  25. data/data/USPTO/tgt_train.txt +3 -0
  26. data/data/USPTO/tgt_valid.txt +0 -0
  27. data/data/beamsearch_template_list.txt +575 -0
  28. data/data/input/init_smiles_akt1.txt +5 -0
  29. data/data/input/init_smiles_cxcr4.txt +5 -0
  30. data/data/input/init_smiles_drd2.txt +5 -0
  31. data/data/input/test.txt +1 -0
  32. data/data/input/unseen_ZINC_AKT1.txt +1 -0
  33. data/data/input/unseen_ZINC_CXCR4.txt +1 -0
  34. data/data/input/unseen_ZINC_DRD2.txt +1 -0
  35. data/data/label_template.json +0 -0
  36. data/env.yml +24 -0
  37. data/scripts/beam_search.py +300 -0
  38. data/scripts/gcn_train.py +161 -0
  39. data/scripts/mcts.py +395 -0
  40. data/scripts/preprocess.py +148 -0
  41. data/scripts/transformer_train.py +167 -0
  42. data/scripts/translate.py +193 -0
  43. data/set_up.sh +9 -0
  44. data/translation/out_beam10_best10.txt +91 -0
  45. data/translation/viewer.ipynb +0 -0
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ data/data/QSAR/DRD2/drd2_train.csv filter=lfs diff=lfs merge=lfs -text
61
+ data/data/USPTO/src_train.txt filter=lfs diff=lfs merge=lfs -text
62
+ data/data/USPTO/tgt_train.txt filter=lfs diff=lfs merge=lfs -text
data/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Sekijima Laboratory, Tokyo Institute of Technology
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
data/Model/GCN/callbacks.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ class EarlyStopping:
6
+
7
+ def __init__(self, patience=5, verbose=False, path='checkpoint_model.pth'):
8
+
9
+ self.patience = patience # stop cpunter
10
+ self.verbose = verbose
11
+ self.counter = 0 # current counter
12
+ self.best_score = None # best score
13
+ self.early_stop = False # stop flag
14
+ self.val_loss_min = np.Inf # to memorize previous best score
15
+ self.path = path # path to save the best model
16
+
17
+ def __call__(self, val_loss, model):
18
+
19
+ score = -val_loss
20
+
21
+ if self.best_score is None: #1Epoch
22
+ self.best_score = score
23
+ self.checkpoint(val_loss, model) # save model and show score
24
+ elif score < self.best_score: # if it can not update best score
25
+ self.counter += 1 # stop counter +1
26
+ if self.verbose:
27
+ print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
28
+ if self.counter >= self.patience:
29
+ self.early_stop = True
30
+ else: # if it update best score
31
+ self.best_score = score
32
+ self.checkpoint(val_loss, model) # save model and show score
33
+ self.counter = 0 # stop counter is reset
34
+
35
+ def checkpoint(self, val_loss, model):
36
+ if self.verbose:
37
+ print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
38
+ torch.save(model.state_dict(), self.path)
39
+ self.val_loss_min = val_loss
data/Model/GCN/mol2graph.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from rdkit import Chem
3
+ import torch
4
+ from torch_geometric.data import Data
5
+
6
+
7
+ def one_of_k_encoding(x, allowable_set):
8
+ """
9
+ Encodes elements of a provided set as integers.
10
+ Parameters
11
+ ----------
12
+ x: object
13
+ Must be present in `allowable_set`.
14
+ allowable_set: list
15
+ List of allowable quantities.
16
+ Example
17
+ -------
18
+ >>> import deepchem as dc
19
+ >>> dc.feat.graph_features.one_of_k_encoding("a", ["a", "b", "c"])
20
+ [True, False, False]
21
+ Raises
22
+ ------
23
+ `ValueError` if `x` is not in `allowable_set`.
24
+ """
25
+ if x not in allowable_set:
26
+ raise Exception(f"input {x} not in allowable set{allowable_set}:")
27
+ return list(map(lambda s: x == s, allowable_set))
28
+ # map(適用する関数, 適用するリスト)
29
+ # allowable_setの中でxが該当する位置にだけ1が入ったone_hotベクトルをreturn
30
+
31
+
32
+ def one_of_k_encoding_unk(x, allowable_set):
33
+ """
34
+ Maps inputs not in the allowable set to the last element.
35
+ Unlike `one_of_k_encoding`, if `x` is not in `allowable_set`, this method
36
+ pretends that `x` is the last element of `allowable_set`.
37
+ Parameters
38
+ ----------
39
+ x: object
40
+ Must be present in `allowable_set`.
41
+ allowable_set: list
42
+ List of allowable quantities.
43
+ Examples
44
+ --------
45
+ >>> dc.feat.graph_features.one_of_k_encoding_unk("s", ["a", "b", "c"])
46
+ [False, False, True]
47
+ """
48
+ if x not in allowable_set:
49
+ x = allowable_set[-1]
50
+ return list(map(lambda s: x == s, allowable_set))
51
+ # one_of_k_encodingする際、allowable_setの最後にunknownを追加して使う
52
+
53
+
54
+ def get_intervals(l):
55
+ """For list of lists, gets the cumulative products of the lengths"""
56
+ intervals = len(l) * [0] # [0, 0, ... , 0]
57
+ intervals[0] = 1 # Initalize with 1
58
+ for k in range(1, len(l)):
59
+ intervals[k] = (len(l[k]) + 1) * intervals[k - 1]
60
+ return intervals
61
+
62
+
63
+ def safe_index(l, e):
64
+ """Gets the index of e in l, providing an index of len(l) if not found"""
65
+ try:
66
+ return l.index(e)
67
+ except:
68
+ return len(l)
69
+
70
+
71
+ class GraphConvConstants(object):
72
+ """This class defines a collection of constants which are useful for graph convolutions on molecules."""
73
+ possible_atom_list = [
74
+ 'C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu','Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'
75
+ ]
76
+ """Allowed Numbers of Hydrogens"""
77
+ possible_numH_list = [0, 1, 2, 3, 4]
78
+ """Allowed Valences for Atoms"""
79
+ possible_valence_list = [0, 1, 2, 3, 4, 5, 6]
80
+ """Allowed Formal Charges for Atoms"""
81
+ possible_formal_charge_list = [-3, -2, -1, 0, 1, 2, 3]
82
+ """This is a placeholder for documentation. These will be replaced with corresponding values of the rdkit HybridizationType"""
83
+ possible_hybridization_list = ["SP", "SP2", "SP3", "SP3D", "SP3D2"]
84
+ """Allowed number of radical electrons."""
85
+ possible_number_radical_e_list = [0, 1, 2]
86
+ """Allowed types of Chirality"""
87
+ possible_chirality_list = ['R', 'S']
88
+ """The set of all values allowed."""
89
+ reference_lists = [
90
+ possible_atom_list, possible_numH_list, possible_valence_list,
91
+ possible_formal_charge_list, possible_number_radical_e_list,
92
+ possible_hybridization_list, possible_chirality_list
93
+ ]
94
+ """The number of different values that can be taken. See `get_intervals()`"""
95
+ intervals = get_intervals(reference_lists)
96
+ """Possible stereochemistry. We use E-Z notation for stereochemistry
97
+ https://en.wikipedia.org/wiki/E%E2%80%93Z_notation"""
98
+ possible_bond_stereo = ["STEREONONE", "STEREOANY", "STEREOZ", "STEREOE"]
99
+ """Number of different bond types not counting stereochemistry."""
100
+ bond_fdim_base = 6
101
+
102
+
103
+ def get_feature_list(atom):
104
+ possible_atom_list = GraphConvConstants.possible_atom_list
105
+ possible_numH_list = GraphConvConstants.possible_numH_list
106
+ possible_valence_list = GraphConvConstants.possible_valence_list
107
+ possible_formal_charge_list = GraphConvConstants.possible_formal_charge_list
108
+ possible_number_radical_e_list = GraphConvConstants.possible_number_radical_e_list
109
+ possible_hybridization_list = GraphConvConstants.possible_hybridization_list
110
+ # Replace the hybridization
111
+ from rdkit import Chem
112
+ #global possible_hybridization_list
113
+ possible_hybridization_list = [
114
+ Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2,
115
+ Chem.rdchem.HybridizationType.SP3, Chem.rdchem.HybridizationType.SP3D,
116
+ Chem.rdchem.HybridizationType.SP3D2
117
+ ]
118
+
119
+ # atom featuresを6種類定義し、feature vectorを作る操作
120
+ features = 6 * [0]
121
+ features[0] = safe_index(possible_atom_list, atom.GetSymbol())
122
+ features[1] = safe_index(possible_numH_list, atom.GetTotalNumHs())
123
+ features[2] = safe_index(possible_valence_list, atom.GetImplicitValence())
124
+ features[3] = safe_index(possible_formal_charge_list, atom.GetFormalCharge())
125
+ features[4] = safe_index(possible_number_radical_e_list,
126
+ atom.GetNumRadicalElectrons())
127
+ features[5] = safe_index(possible_hybridization_list, atom.GetHybridization())
128
+ return features
129
+
130
+
131
+ def features_to_id(features, intervals):
132
+ """Convert list of features into index using spacings provided in intervals"""
133
+ id = 0
134
+ for k in range(len(intervals-1)):
135
+ id += features[k] * intervals[k]
136
+ # Allow 0 index to correspond to null molecule 1
137
+ id = id + 1
138
+ return id
139
+
140
+
141
+ def id_to_features(id, intervals):
142
+ features = 6 * [0]
143
+ # Correct for null
144
+ id -= 1
145
+ for k in range(0, 6 - 1):
146
+ # print(6-k-1, id)
147
+ features[6 - k - 1] = id // intervals[6 - k - 1]
148
+ id -= features[6 - k - 1] * intervals[6 - k - 1]
149
+ # Correct for last one
150
+ features[0] = id
151
+ return features
152
+
153
+
154
+ def atom_to_id(atom):
155
+ """Return a unique id corresponding to the atom type"""
156
+ features = get_feature_list(atom)
157
+ return features_to_id(features, intervals)
158
+
159
+
160
+ def atom_features(atom, bool_id_feat=False, explicit_H=False,use_chirality=False):
161
+ if bool_id_feat:
162
+ return np.array([atom_to_id(atom)])
163
+ else:
164
+ # concatnate all atom features
165
+ results_ = one_of_k_encoding_unk(
166
+ atom.GetSymbol(),
167
+ [
168
+ 'C',
169
+ 'N',
170
+ 'O',
171
+ 'S',
172
+ 'F',
173
+ 'Si',
174
+ 'P',
175
+ 'Cl',
176
+ 'Br',
177
+ 'Mg',
178
+ 'Na',
179
+ 'Ca',
180
+ 'Fe',
181
+ 'As',
182
+ 'Al',
183
+ 'I',
184
+ 'B',
185
+ 'V',
186
+ 'K',
187
+ 'Tl',
188
+ 'Yb',
189
+ 'Sb',
190
+ 'Sn',
191
+ 'Ag',
192
+ 'Pd',
193
+ 'Co',
194
+ 'Se',
195
+ 'Ti',
196
+ 'Zn',
197
+ 'H',
198
+ 'Li',
199
+ 'Ge',
200
+ 'Cu',
201
+ 'Au',
202
+ 'Ni',
203
+ 'Cd',
204
+ 'In',
205
+ 'Mn',
206
+ 'Zr',
207
+ 'Cr',
208
+ 'Pt',
209
+ 'Hg',
210
+ 'Pb',
211
+ 'Unknown'
212
+ ] # allowable set
213
+ )
214
+ results=results_ + \
215
+ one_of_k_encoding(
216
+ atom.GetDegree(),
217
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
218
+ ) + \
219
+ one_of_k_encoding_unk(
220
+ atom.GetImplicitValence(),
221
+ [0, 1, 2, 3, 4, 5, 6]
222
+ ) + \
223
+ [
224
+ atom.GetFormalCharge(), atom.GetNumRadicalElectrons()
225
+ ] + \
226
+ one_of_k_encoding_unk(
227
+ atom.GetHybridization().name,
228
+ [
229
+ Chem.rdchem.HybridizationType.SP.name,
230
+ Chem.rdchem.HybridizationType.SP2.name,
231
+ Chem.rdchem.HybridizationType.SP3.name,
232
+ Chem.rdchem.HybridizationType.SP3D.name,
233
+ Chem.rdchem.HybridizationType.SP3D2.name
234
+ ]
235
+ ) + \
236
+ [atom.GetIsAromatic()]
237
+ # In case of explicit hydrogen(QM8, QM9), avoid calling `GetTotalNumHs`
238
+ if not explicit_H:
239
+ results = results + one_of_k_encoding_unk(
240
+ atom.GetTotalNumHs(),
241
+ [0, 1, 2, 3, 4]
242
+ )
243
+ if use_chirality:
244
+ try:
245
+ results = results + one_of_k_encoding_unk(
246
+ atom.GetProp('_CIPCode'),
247
+ ['R', 'S']) + [atom.HasProp('_ChiralityPossible')]
248
+ except:
249
+ results = results + [False, False] + [atom.HasProp('_ChiralityPossible')]
250
+
251
+ return results
252
+
253
+
254
+ def bond_features(bond, use_chirality=False):
255
+ from rdkit import Chem
256
+ bt = bond.GetBondType()
257
+ bond_feats = [
258
+ bt == Chem.rdchem.BondType.SINGLE, bt == Chem.rdchem.BondType.DOUBLE,
259
+ bt == Chem.rdchem.BondType.TRIPLE, bt == Chem.rdchem.BondType.AROMATIC,
260
+ bond.GetIsConjugated(),
261
+ bond.IsInRing()
262
+ ] # if C-C single bond in cyclopropane: [1, 0, 0, 0, 0, 1]
263
+ if use_chirality:
264
+ bond_feats = bond_feats + one_of_k_encoding_unk(
265
+ str(bond.GetStereo()),
266
+ ["STEREONONE", "STEREOANY", "STEREOZ", "STEREOE"]
267
+ )
268
+ return bond_feats
269
+
270
+ def get_bond_pair(mol):
271
+ bonds = mol.GetBonds()
272
+ res = [[],[]]
273
+ for bond in bonds:
274
+ res[0] += [bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()]
275
+ res[1] += [bond.GetEndAtomIdx(), bond.GetBeginAtomIdx()]
276
+ return res
277
+
278
+ def mol2vec(mol):
279
+ atoms = mol.GetAtoms()
280
+ bonds = mol.GetBonds()
281
+ node_f= [atom_features(atom) for atom in atoms]
282
+ edge_index = get_bond_pair(mol)
283
+ edge_attr = [bond_features(bond, use_chirality=False) for bond in bonds]
284
+ for bond in bonds:
285
+ edge_attr.append(bond_features(bond))
286
+ data = Data(
287
+ x=torch.tensor(node_f, dtype=torch.float), # shape [num_nodes, num_node_features] を持つ特徴行列
288
+ edge_index=torch.tensor(edge_index, dtype=torch.long), #shape [2, num_edges] と型 torch.long を持つ COO フォーマットによるグラフ連結度
289
+ edge_attr=torch.tensor(edge_attr,dtype=torch.float) # shape [num_edges, num_edge_features] によるエッジ特徴行列
290
+ )
291
+ return data
data/Model/GCN/network.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch_geometric.nn import GCNConv
2
+ from torch_geometric.nn import global_add_pool
3
+ import torch.nn.functional as F
4
+ from torch.nn import ModuleList, Linear, BatchNorm1d
5
+ import torch
6
+
7
+
8
+ class MolecularGCN(torch.nn.Module):
9
+ def __init__(self, dim, n_conv_hidden, n_mlp_hidden, dropout):
10
+ super(MolecularGCN, self).__init__()
11
+ self.n_features = 75 # This is the mol2graph.py-specific value
12
+ self.n_conv_hidden = n_conv_hidden
13
+ self.n_mlp_hidden = n_mlp_hidden
14
+ self.dim = dim
15
+ self.dropout = dropout
16
+ self.graphconv1 = GCNConv(self.n_features, self.dim, cached=False)
17
+ self.bn1 = BatchNorm1d(self.dim)
18
+ self.graphconv_hidden = ModuleList(
19
+ [GCNConv(self.dim, self.dim, cached=False) for _ in range(self.n_conv_hidden)]
20
+ )
21
+ self.bn_conv = ModuleList(
22
+ [BatchNorm1d(self.dim) for _ in range(self.n_conv_hidden)]
23
+ )
24
+ self.mlp_hidden = ModuleList(
25
+ [Linear(self.dim, self.dim) for _ in range(self.n_mlp_hidden)]
26
+ )
27
+ self.bn_mlp = ModuleList(
28
+ [BatchNorm1d(self.dim) for _ in range(self.n_mlp_hidden)]
29
+ )
30
+ self.mlp_out = Linear(self.dim, 1000) # classification of 1000 templates.
31
+
32
+ def forward(self, x, edge_index, batch, edge_weight=None):
33
+ x = F.relu(self.graphconv1(x, edge_index, edge_weight))
34
+ x = self.bn1(x)
35
+ for graphconv, bn_conv in zip(self.graphconv_hidden, self.bn_conv):
36
+ x = graphconv(x, edge_index, edge_weight)
37
+ x = bn_conv(x)
38
+ x = global_add_pool(x, batch)
39
+ for fc_mlp, bn_mlp in zip(self.mlp_hidden, self.bn_mlp):
40
+ x = F.relu(fc_mlp(x))
41
+ x = bn_mlp(x)
42
+ x = F.dropout(x, p=self.dropout, training=self.training)
43
+ x = F.log_softmax(self.mlp_out(x), dim=-1)
44
+ return x
data/Model/GCN/utils.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from rdkit import Chem
2
+ from rdkit.Chem import AllChem
3
+ import numpy as np
4
+ import torch
5
+ from Model.GCN import mol2graph
6
+
7
+ def get_data(data_path):
8
+ mols, labels = [], []
9
+ with open(data_path, 'r') as f:
10
+ smis = f.read().splitlines()
11
+ for smi in smis:
12
+ smi = smi.split(' ')
13
+ labels.append(int(smi[0].strip('[]')))
14
+ smi = smi[1:]
15
+ smi = ''.join(smi)
16
+ mols.append(Chem.MolFromSmiles(smi))
17
+ return np.array(mols), np.array(labels)
18
+
19
+ """
20
+ get_neg_sample: select negative sample according to the frequent distribution of library.
21
+ Correct fragments(y) and fragments couldn't be connected to target(y_mask) are masked. """
22
+ @torch.no_grad()
23
+ def get_neg_sample(freq, y):
24
+ # y: (batch_size, )
25
+ # freq: (1, ), frequency of templates
26
+ batch_size = y.size(0)
27
+ freq = freq.repeat(batch_size, 1)
28
+ freq.scatter_(1, y.unsqueeze(1), 0)
29
+ neg_idxs = torch.multinomial(freq, 1, True).view(-1)
30
+ return neg_idxs
31
+
32
+ def template_prediction(GCN_model, input_smi, num_sampling, GCN_device=None):
33
+ mol = Chem.MolFromSmiles(input_smi)
34
+ data = mol2graph.mol2vec(mol).to(GCN_device)
35
+ with torch.no_grad():
36
+ output = GCN_model.forward(data.x, data.edge_index, data.batch).squeeze() # shape(1, 1000) -> (1000,)
37
+ try:
38
+ _, indices = torch.topk(output, num_sampling)
39
+ except:
40
+ indices = None
41
+ return indices
42
+
43
+ def batch_template_prediction(GCN_model, input_smi, num_sampling=5, GCN_device=None):
44
+ mol = Chem.MolFromSmiles(input_smi)
45
+ data = mol2graph.mol2vec(mol).to(GCN_device)
46
+ output = GCN_model.forward(data.x, data.edge_index, data.batch).squeeze() # shape(1, 1000) -> (1000,)
47
+ _, indices = torch.topk(output, num_sampling)
48
+ return indices
49
+
50
+ def check_templates(indices, input_smi, r_dict):
51
+ matched_indices = []
52
+ molecule = Chem.MolFromSmiles(input_smi)
53
+ for i in indices:
54
+ idx = str(i.item())
55
+ rsmi = r_dict[idx]
56
+ rxn = AllChem.ReactionFromSmarts(rsmi)
57
+ reactants = rxn.GetReactants()
58
+ flag = False
59
+ for reactant in reactants:
60
+ if molecule.HasSubstructMatch(reactant):
61
+ flag = True
62
+ if flag == True:
63
+ matched_indices.append(f'[{i.item()}]')
64
+ return matched_indices # list of string, ex) ['[0]', '[123]', ... '[742]']
65
+
data/Model/QSAR/qsar_AKT1_optimized.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06b15206f5a79076646130dd07bea5bc9111b278a27eb55c978d23f57855c56f
3
+ size 8643648
data/Model/QSAR/qsar_CXCR4_optimized.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e8e71fb9791bcdc99a339357ac8e5b2a3660e5f1743c011b55cea61d202e4a
3
+ size 2125387
data/Model/QSAR/qsar_DRD2_optimized.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2db876d2c1d2831594021419fdf8b037c624e68126b3cc240116f99b3c1609aa
3
+ size 49644044
data/Model/Transformer/model.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import os
3
+ sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
4
+
5
+ import math
6
+ from typing import Optional, Any, Union, Callable
7
+
8
+ import torch
9
+ from torch import Tensor
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from torch.optim.lr_scheduler import _LRScheduler
13
+ from torch.nn.init import xavier_uniform_
14
+ import torchtext.vocab.vocab as Vocab
15
+
16
+
17
+
18
+ class PositionalEncoding(nn.Module):
19
+ # P(pos, 2d) = sin(pos/10000**(2d/D)), where d=index of token, D=d_model
20
+ def __init__(self, d_model: int, pad_idx: int=1, dropout: float = 0.1, max_len: int = 5000):
21
+ super().__init__()
22
+ self.dropout = nn.Dropout(p=dropout)
23
+ self.d_model = d_model
24
+ self.pad_idx = pad_idx
25
+
26
+ position = torch.arange(max_len).unsqueeze(1) # shape: (max_len, 1) の列ベクトル
27
+ div_term = torch.exp(torch.arange(0, self.d_model, 2) * (-math.log(10000.0) / self.d_model))
28
+ # torch.arange(start, stop, step) -> shape: (d_model/2,) 1次元ベクトル
29
+ pe = torch.zeros(max_len, 1, self.d_model) # (seq_length, 1, emb_dim)
30
+ pe[:, 0, 0::2] = torch.sin(position * div_term)
31
+ pe[:, 0, 1::2] = torch.cos(position * div_term)
32
+ self.register_buffer('pe', pe)
33
+
34
+ def forward(self, x:torch.tensor, pad_mask=None) -> torch.tensor:
35
+ """
36
+ Args:
37
+ x: Tensor, shape [seq_len, batch_size, embedding_dim]
38
+ """
39
+ if pad_mask is not None:
40
+ mask = pad_mask.permute(1, 0).unsqueeze(-1).repeat(1, 1, self.d_model) # paddingの位置をTrue
41
+ # make embeddings relatively larger
42
+ x = x * math.sqrt(self.d_model)
43
+ x = x + self.pe[:x.size(0)] # max_lenが5000とかでも入力のseq_lenまでを切り取って足してる
44
+
45
+ if pad_mask is not None:
46
+ x = torch.where(mask == True, 0, x) # mask=Trueの位置を0に置換, それ以外はいじらない
47
+ return self.dropout(x)
48
+
49
+
50
+ # Learning Rate Scheduler
51
+ class TransformerLR(_LRScheduler):
52
+ """TransformerLR class for adjustment of learning rate.
53
+
54
+ The scheduling is based on the method proposed in 'Attention is All You Need'.
55
+ """
56
+
57
+ def __init__(self, optimizer, warmup_epochs=8000, last_epoch=-1, verbose=False):
58
+ """Initialize class."""
59
+ self.warmup_epochs = warmup_epochs
60
+ self.normalize = self.warmup_epochs**0.5
61
+ super().__init__(optimizer, last_epoch, verbose)
62
+
63
+ def get_lr(self):
64
+ """Return adjusted learning rate."""
65
+ step = self.last_epoch + 1
66
+ scale = self.normalize * min(step**-0.5, step * self.warmup_epochs**-1.5)
67
+ return [base_lr * scale for base_lr in self.base_lrs]
68
+
69
+
70
+ # Transformer model
71
+ class Transformer(nn.Module):
72
+ def __init__(self, d_model: int = 256, nhead: int = 8, num_encoder_layers: int = 4, num_decoder_layers: int =4,
73
+ dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
74
+ vocab: Vocab = None, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
75
+ device=None, dtype=None) -> None:
76
+ factory_kwargs = {'device': device, 'dtype': dtype}
77
+ super().__init__()
78
+
79
+ if vocab == None:
80
+ raise RuntimeError("set vocab: torch.vocab.vocab")
81
+
82
+ # INFO
83
+ self.model_type = "Transformer"
84
+ self.vocab = vocab
85
+ num_tokens = vocab.__len__()
86
+
87
+ self.positional_encoder = PositionalEncoding(d_model=d_model,
88
+ pad_idx=self.vocab['<pad>'],
89
+ dropout=dropout,
90
+ max_len=5000
91
+ )
92
+ self.embedding = nn.Embedding(num_tokens, d_model, padding_idx=self.vocab['<pad>'])
93
+
94
+ encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
95
+ activation, layer_norm_eps, batch_first, norm_first,
96
+ **factory_kwargs)
97
+ encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
98
+ self.encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
99
+
100
+ decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
101
+ activation, layer_norm_eps, batch_first, norm_first,
102
+ **factory_kwargs)
103
+ decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
104
+ self.decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
105
+
106
+ self.out = nn.Linear(d_model, num_tokens)
107
+
108
+ self._reset_parameters()
109
+ self.d_model = d_model
110
+ self.nhead = nhead
111
+ self.batch_first = batch_first
112
+
113
+
114
+ # Transformer blocks - Out size = (seq_length, batch_size, num_tokens)
115
+ # input src, tgt must be (seq_length, batch_size)
116
+ def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None,
117
+ tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None,
118
+ src_pad_mask: bool = False, tgt_pad_mask: bool = False,
119
+ memory_pad_mask: bool = False) -> Tensor:
120
+
121
+ if src_pad_mask is True:
122
+ src_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
123
+ else:
124
+ src_pad_mask = None
125
+
126
+ if tgt_pad_mask is True:
127
+ tgt_pad_mask = (tgt == self.vocab['<pad>']).permute(1, 0)
128
+ else:
129
+ tgt_pad_mask = None
130
+
131
+ if memory_pad_mask is True:
132
+ memory_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
133
+ else:
134
+ memory_pad_mask = None
135
+
136
+ # Embedding
137
+ src = self.embedding(src)
138
+ tgt = self.embedding(tgt)
139
+ src = self.positional_encoder(src, src_pad_mask)
140
+ tgt = self.positional_encoder(tgt, tgt_pad_mask)
141
+
142
+ # Transformer layer
143
+ is_batched = src.dim() == 3
144
+ if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
145
+ raise RuntimeError("the batch number of src and tgt must be equal")
146
+ elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
147
+ raise RuntimeError("the batch number of src and tgt must be equal")
148
+ if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
149
+ raise RuntimeError("the feature number of src and tgt must be equal to d_model")
150
+
151
+ memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask)
152
+ transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
153
+ tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask)
154
+ out = self.out(transformer_out)
155
+
156
+ return out
157
+
158
+ def encode(self, src: Tensor, src_mask: Optional[Tensor] = None,
159
+ src_pad_mask: bool = False) -> Tensor:
160
+
161
+ if src_pad_mask is True:
162
+ src_pad_mask = (src == self.vocab['<pad>']).permute(1, 0)
163
+ else:
164
+ src_pad_mask = None
165
+
166
+ # Embedding + PE
167
+ src = self.embedding(src)
168
+ src = self.positional_encoder(src, src_pad_mask)
169
+
170
+ # Transformer Encoder
171
+ memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask)
172
+
173
+ return memory, src_pad_mask
174
+
175
+ def decode(self, memory: Tensor, tgt: Tensor, tgt_mask: Optional[Tensor] = None,
176
+ memory_mask: Optional[Tensor] = None, tgt_pad_mask: bool = False,
177
+ memory_pad_mask: Optional[Tensor] = None) -> Tensor:
178
+
179
+ if tgt_pad_mask is True:
180
+ tgt_pad_mask = (tgt == self.vocab['<pad>']).permute(1, 0)
181
+ else:
182
+ tgt_pad_mask = None
183
+
184
+ tgt = self.embedding(tgt)
185
+ tgt = self.positional_encoder(tgt, tgt_pad_mask)
186
+ transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
187
+ tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask)
188
+ out = self.out(transformer_out)
189
+
190
+ return out
191
+
192
+ def embed(self, src):
193
+ src_embed = self.embedding(src)
194
+ return src_embed
195
+
196
+ def _reset_parameters(self):
197
+ r"""Initiate parameters in the transformer model."""
198
+
199
+ for p in self.parameters():
200
+ if p.dim() > 1:
201
+ xavier_uniform_(p)
data/Utils/reward.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import pickle
4
+ import hydra
5
+
6
+ import warnings
7
+ warnings.filterwarnings('ignore')
8
+
9
+ import rdkit.Chem as Chem
10
+ from rdkit import RDLogger
11
+ RDLogger.DisableLog('rdApp.*')
12
+ from rdkit.Chem import AllChem, QED
13
+
14
+ def getReward(name,
15
+ receptor_path=None,
16
+ pdbqt_path=None,
17
+ VinaGPU_path=None,
18
+ VinaGPU_config=None):
19
+ if name == "QED":
20
+ return QEDReward()
21
+ elif name == 'DRD2':
22
+ with open(hydra.utils.get_original_cwd() + '/Model/QSAR/drd2_qsar_optimized.pkl', mode='rb') as f:
23
+ qsar_model = pickle.load(f)
24
+ return QSAR_Reward(qsar_model)
25
+ elif name == 'AKT1':
26
+ with open(hydra.utils.get_original_cwd() + '/Model/QSAR/akt1_qsar_optimized.pkl', mode='rb') as f:
27
+ qsar_model = pickle.load(f)
28
+ return QSAR_Reward(qsar_model)
29
+
30
+
31
+ class Reward:
32
+ def __init__(self):
33
+ self.vmin = -100
34
+ self.max_r = -10000
35
+ return
36
+
37
+ def reward(self):
38
+ raise NotImplementedError()
39
+
40
+ class QSAR_Reward(Reward):
41
+ def __init__(self, qsar_model, *args, **kwargs):
42
+ super().__init__(*args, **kwargs)
43
+ self.qsar_model = qsar_model
44
+
45
+ def reward(self, score_que:list = None):
46
+ max_smi = None
47
+ scores = []
48
+ mols = [Chem.MolFromSmiles(smi) for smi in score_que]
49
+ ecfps = []
50
+ None_indices = []
51
+ for i, mol in enumerate(mols):
52
+ if mol is not None:
53
+ ecfps.append(AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=2048))
54
+ else:
55
+ None_indices.append(i)
56
+ ecfps.append([0]*2048)
57
+ if len(ecfps) == 0:
58
+ return [], None, None
59
+ ecfp6_array = np.array(ecfps)
60
+ X = pd.DataFrame(ecfp6_array, columns=[f'bit_{i}' for i in range(2048)])
61
+ y_pred = self.qsar_model.predict_proba(X)[:, 1]
62
+ for None_idx in None_indices:
63
+ y_pred[None_idx] = np.nan
64
+ max_score = np.nanmax(y_pred)
65
+ for smi, score in zip(score_que, y_pred):
66
+ if score == np.nan:
67
+ pass
68
+ elif score == max_score:
69
+ max_smi = smi
70
+ scores.append((smi, score))
71
+ return scores, max_smi, max_score
72
+
73
+ def reward_remove_nan(self, score_que:list = None):
74
+ max_smi = None
75
+ scores = []
76
+ # convert smiles to mol if mol is not none.
77
+ valid_smiles = []
78
+ mols = []
79
+ for smi in score_que:
80
+ mol = Chem.MolFromSmiles(smi)
81
+ if mol is not None:
82
+ valid_smiles.append(smi)
83
+ mols.append(mol)
84
+ ecfps = []
85
+ for i, mol in enumerate(mols):
86
+ if mol is not None:
87
+ ecfps.append(AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=2048))
88
+ if len(ecfps) == 0:
89
+ return [], None, None
90
+ ecfp6_array = np.array(ecfps)
91
+ X = pd.DataFrame(ecfp6_array, columns=[f'bit_{i}' for i in range(2048)])
92
+ y_pred = self.qsar_model.predict_proba(X)[:, 1]
93
+ max_score = np.nanmax(y_pred)
94
+ for smi, score in zip(valid_smiles, y_pred):
95
+ if score == max_score:
96
+ max_smi = smi
97
+ scores.append((smi, score))
98
+ return scores, max_smi, max_score
99
+
100
+ class QEDReward(Reward):
101
+ def __init__(self, *args, **kwargs):
102
+ super().__init__(*args, **kwargs)
103
+ self.vmin = 0
104
+
105
+ def reward(self, smi):
106
+ mol = Chem.MolFromSmiles(smi)
107
+ try:
108
+ score = QED.qed(mol)
109
+ except:
110
+ score = None
111
+
112
+ return score
data/Utils/utils.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import math
3
+ from tqdm import tqdm
4
+ from copy import deepcopy
5
+ import random
6
+ import numpy as np
7
+ import warnings
8
+ warnings.filterwarnings('ignore')
9
+
10
+ from rdkit import RDLogger
11
+ RDLogger.DisableLog('rdApp.*')
12
+ from rdkit.Chem import Descriptors
13
+
14
+ import torch
15
+
16
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17
+
18
+ def smi_tokenizer(smi):
19
+ '''
20
+ Tokenize a SMILES molecule or reaction
21
+ '''
22
+ import re
23
+ pattern = '(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])'
24
+ regex = re.compile(pattern)
25
+ tokens = [token for token in regex.findall(smi)]
26
+ assert smi == ''.join(tokens)
27
+ return ' '.join(tokens)
28
+
29
+ class Node:
30
+ def __init__(self):
31
+ self.parent = None
32
+ self.template = None
33
+ self.path = []
34
+ self.depth = -100
35
+ self.visit = 1
36
+ self.children = []
37
+ self.imm_score = 0
38
+ self.cum_score = 0
39
+ self.c = 1
40
+ self.id = -1
41
+ self.rollout_result = ('None', -1000)
42
+
43
+ def add_Node(self, c):
44
+ c.parent = self
45
+ c.depth = self.depth + 1
46
+ self.children.append(c)
47
+
48
+ def calc_UCB(self):
49
+ if self.visit == 0:
50
+ ucb = 1e+6
51
+ else:
52
+ ucb = self.cum_score/self.visit + self.c*math.sqrt(2*math.log(self.parent.visit)/self.visit)
53
+ return ucb
54
+
55
+ def select_children(self):
56
+ children_ucb = []
57
+ for cn in self.children:
58
+ children_ucb.append(cn.calc_UCB())
59
+ max_ind = np.random.choice(np.where(np.array(children_ucb) == max(children_ucb))[0])
60
+ return self.children[max_ind]
61
+
62
+ def select_children_rand(self):
63
+ indices = list(range(0, len(self.children)))
64
+ ind = np.random.choice(indices)
65
+ return self.children[ind]
66
+
67
+
68
+ class RootNode(Node):
69
+ def __init__(self, c=1/np.sqrt(2)):
70
+ super().__init__()
71
+ self.smi = '&&'
72
+ self.depth = 0
73
+
74
+ self.c = c
75
+
76
+ class NormalNode(Node):
77
+ def __init__(self, smi, c=1/np.sqrt(2)):
78
+ super().__init__()
79
+ self.smi = smi
80
+ self.c = c
81
+ self.template = None
82
+
83
+ def remove_Node(self):
84
+ self.parent.children.remove(self)
85
+
86
+ def read_smilesset(path):
87
+ smiles_list = []
88
+ with open(path) as f:
89
+ for smiles in f:
90
+ smiles_list.append(smiles.rstrip())
91
+
92
+ return smiles_list
93
+
94
+ # caluculate the number of parameters
95
+ def tally_parameters(model):
96
+ n_params = sum([p.nelement() for p in model.parameters()])
97
+ enc = 0
98
+ dec = 0
99
+ for name, param in model.named_parameters():
100
+ if 'encoder' in name:
101
+ enc += param.nelement()
102
+ elif 'decoder' or 'generator' in name:
103
+ dec += param.nelement()
104
+ return n_params, enc, dec
105
+
106
+
107
+ class EarlyStopping:
108
+ def __init__(self, patience=10, ckpt_dir=None):
109
+ '''引数: 最小値の非更新数カウンタ、表示設定、モデル格納path'''
110
+
111
+ self.patience = patience #設定ストップカウンタ
112
+ self.counter = 0 #現在のカウンタ値
113
+ self.best_score = None #ベストスコア
114
+ self.early_stop = False #ストップフラグ
115
+ self.val_loss_min = np.Inf #前回のベストスコア記憶用
116
+ self.path = ckpt_dir #ベストモデル格納path
117
+
118
+ def __call__(self, val_loss, step, optimizer, cur_loss, model):
119
+ '''
120
+ 特殊(call)メソッド
121
+ 実際に学習ループ内で最小lossを更新したか否かを計算させる部分
122
+ '''
123
+ score = -val_loss
124
+
125
+ if self.best_score is None: #1Epoch目の処理
126
+ self.best_score = score #1Epoch目はそのままベストスコアとして記録する
127
+ self.checkpoint(val_loss, step, optimizer, cur_loss, model) #記録後にモデルを保存してスコア表示する
128
+ elif score < self.best_score: # ベストスコアを更新できなかった場合
129
+ self.counter += 1 #ストップカウンタを+1
130
+ print(f'Validation loss increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).')
131
+ self.checkpoint(val_loss, step, optimizer, cur_loss, model)
132
+ print(f'EarlyStopping counter: {self.counter} out of {self.patience}') #現在のカウンタを表示する
133
+ if self.counter >= self.patience: #設定カウントを上回ったらストップフラグをTrueに変更
134
+ self.early_stop = True
135
+ else: #ベストスコアを更新した場合
136
+ self.best_score = score #ベストスコアを上書き
137
+ print(f'Validation loss decreased! ({self.val_loss_min:.6f} --> {val_loss:.6f}) Saving model ...')
138
+ self.checkpoint(val_loss, step, optimizer, cur_loss, model) #モデルを保存してスコア表示
139
+ self.counter = 0 #ストップカウンタリセット
140
+
141
+ def checkpoint(self, val_loss, step, optimizer, cur_loss, model):
142
+ torch.save({'step': step,
143
+ 'model_state_dict': model.state_dict(),
144
+ 'optimizer_state_dict': optimizer.state_dict(),
145
+ 'loss': cur_loss,}, f'{self.path}/ckpt_{step+1}.pth')
146
+ self.val_loss_min = val_loss #その時のlossを記録する
147
+
148
+ class AverageMeter(object):
149
+ '''Computes and stores the average and current value'''
150
+ def __init__(self):
151
+ self.reset()
152
+
153
+ def reset(self):
154
+ self.value = 0 # latest value
155
+ self.avg = 0
156
+ self.sum = 0
157
+ self.count = 0
158
+
159
+ def update(self, value, n=1):
160
+ self.value = value
161
+ self.sum += value * n
162
+ self.count += n
163
+ self.avg = self.sum / self.count
164
+
165
+ # def accuracy(output, target, batch_size, v=None):
166
+ # '''
167
+ # Computes the accuracy of top1 prediction
168
+
169
+ # output: (seq_length*batch_size, num_tokens)
170
+ # target: (seq_length*batch_size)
171
+ # '''
172
+
173
+ # pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
174
+ # true_pos = torch.nonzero(pad_mask).squeeze().tolist()
175
+ # out_extracted = output[true_pos]
176
+ # t_extracted = target[true_pos]
177
+ # _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
178
+ # pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
179
+ # correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
180
+ # # Tensor.eq: compute element-wise equality, correct: bool matrix
181
+ # correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
182
+
183
+ # # compute accuracy per whole molecule
184
+ # target = target.reshape(-1, batch_size)
185
+ # output = output.reshape(-1, batch_size, v.__len__())
186
+ # _, pred = output.topk(10, 2, True, True)
187
+ # top1, top5, top10 = pred[:, :, 0], pred[:, :, 0:4], pred[:, :, 0:9]
188
+ # pred_list = [top1, top5, top10]
189
+ # perfect_acc_list = []
190
+ # EOS_token = v['<eos>']
191
+ # for pred in pred_list:
192
+ # correct_cum = 0
193
+ # for i in range(batch_size):
194
+ # t = target[:, i].tolist()
195
+ # eos_idx = t.index(EOS_token)
196
+ # t = t[0:eos_idx]
197
+ # p = pred[:, i].tolist()
198
+ # p = p[0:len(t)]
199
+ # if t == p:
200
+ # correct_cum += 1
201
+ # perfect_acc_list.append(correct_cum / batch_size)
202
+ # return correct_rate.item(), perfect_acc_list
203
+
204
+ def accuracy(output, target, batch_size, v=None):
205
+ '''
206
+ Computes the accuracy of top1 prediction
207
+
208
+ output: (seq_length*batch_size, num_tokens)
209
+ target: (seq_length*batch_size)
210
+ '''
211
+
212
+ pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
213
+ true_pos = torch.nonzero(pad_mask).squeeze().tolist()
214
+ out_extracted = output[true_pos]
215
+ t_extracted = target[true_pos]
216
+ _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
217
+ pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
218
+ correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
219
+ # Tensor.eq: compute element-wise equality, correct: bool matrix
220
+ correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
221
+
222
+ # compute accuracy per whole molecule
223
+ target = target.reshape(-1, batch_size)
224
+ output = output.reshape(-1, batch_size, v.__len__())
225
+ _, pred = output.topk(1, 2, True, True)
226
+ pred = pred.squeeze() # (seq, batch) -> (batch, seq)
227
+ correct_cum = 0
228
+ EOS_token = v['<eos>']
229
+ for i in range(batch_size):
230
+ t = target[:, i].tolist()
231
+ eos_idx = t.index(EOS_token)
232
+ t = t[0:eos_idx]
233
+ p = pred[:, i].tolist()
234
+ p = p[0:len(t)]
235
+ if t == p:
236
+ correct_cum += 1
237
+ perfect_acc = correct_cum / batch_size
238
+ return correct_rate.item(), perfect_acc
239
+
240
+ def calc_topk_perfect_acc(x, target, batch_size, EOS):
241
+ '''
242
+ x: predicted tensor of shape (seq, batch, k)
243
+ target: (seq, batch)
244
+ '''
245
+ correct_cum = 0
246
+ if x.dim() < 3:
247
+ x = x.unsqueeze(-1)
248
+ for i in range(batch_size):
249
+ t = target[:, i].tolist()
250
+ eos_idx = t.index(EOS)
251
+ t = t[0:eos_idx]
252
+ for j in range(x.size(2)):
253
+ p = x[:, i, j].tolist()
254
+ p = p[0:len(t)]
255
+ if t == p:
256
+ correct_cum += 1
257
+ break
258
+ return correct_cum / batch_size
259
+
260
+
261
+ def MW_checker(mol, threshold:int = 500):
262
+ MW = Descriptors.ExactMolWt(mol)
263
+ if MW > threshold:
264
+ return False
265
+ else:
266
+ return True
267
+
268
+ def is_empty(li):
269
+ return all(not sublist for sublist in li)
270
+
271
+ def torch_fix_seed(seed=42):
272
+ # Python random
273
+ random.seed(seed)
274
+ # Numpy
275
+ np.random.seed(seed)
276
+ # Pytorch
277
+ torch.manual_seed(seed)
278
+ torch.cuda.manual_seed(seed)
279
+ torch.backends.cudnn.deterministic = True
280
+ torch.use_deterministic_algorithms = True
281
+
282
+
283
+ # 例えばimport utils とした場合、そのutils.__name__ にはモジュール名(ファイル名)が格納される
284
+ # このファイルをimportで呼び出した場合、print(utils.__name__) の出力結果は'utils'
285
+ # ただし、importではなくコマンドラインで直接実行された場合は__name__ に __main__ が格納される
286
+ # よって、以下はimportされたときには実行されず、コマンドラインで実行されたときにだけ動く
287
+ if __name__ == '__main__':
288
+ smiles_list = read_smilesset('Data/input/250k_rndm_zinc_drugs_clean.smi')
289
+ vocab = []
290
+ for smiles in tqdm(smiles_list):
291
+ p = parse_smiles(smiles)
292
+ vocab.extend(p)
293
+
294
+ vocab = list(set(vocab))
295
+ vocab.sort()
296
+ print(vocab)
297
+
data/ckpts/GCN/GCN.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c6b85821672caa8cf4b35d11c1241e76fe0109ee635a9a5fe1549e3fd10b92a
3
+ size 2188609
data/config/config.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from hydra.core.config_store import ConfigStore
4
+ from dataclasses import dataclass
5
+
6
+ @dataclass
7
+ class PreProcess:
8
+ augm_size: int = 1
9
+ src_train: str = '/data/USPTO/src_train.txt'
10
+ tgt_train: str = '/data/USPTO/tgt_train.txt'
11
+ src_valid: str = '/data/USPTO/src_valid.txt'
12
+ tgt_valid: str = '/data/USPTO/tgt_valid.txt'
13
+ batch_size: int = 256
14
+
15
+ @dataclass
16
+ class ModelConfig:
17
+ dim_model: int = 512
18
+ num_encoder_layers: int = 6
19
+ num_decoder_layers: int = 6
20
+ nhead: int = 8
21
+ dropout: float = 0.1
22
+ dim_ff: int = 2048
23
+ ckpt:str = '/ckpts/Transformer/ckpt_conditional.pth'
24
+
25
+ @dataclass
26
+ class TrainConfig:
27
+ src_train: str = '/data/USPTO/src_train.txt'
28
+ tgt_train: str = '/data/USPTO/tgt_train.txt'
29
+ src_valid: str = '/data/USPTO/src_valid.txt'
30
+ tgt_valid: str = '/data/USPTO/tgt_valid.txt'
31
+ batch_size: int = 128
32
+ label_smoothing: float = 0.0
33
+ lr: float = 0.001
34
+ betas: tuple = (0.9, 0.998)
35
+ step_num: int = 500000 # set training steps
36
+ patience: int = 10
37
+ log_interval : int = 100
38
+ val_interval: int = 1000
39
+ save_interval: int = 10000
40
+
41
+ @dataclass
42
+ class TranslateConfig:
43
+ src_train: str = '/data/USPTO/src_train.txt'
44
+ tgt_train: str = '/data/USPTO/tgt_train.txt'
45
+ src_valid: str = '/data/USPTO/src_valid.txt'
46
+ tgt_valid: str = '/data/USPTO/tgt_valid.txt'
47
+ GCN_ckpt: str = '/ckpts/GCN/GCN.pth'
48
+ out_dir: str = '/translation'
49
+ src_test_path: str = '/data/input/test.txt'
50
+ annotated_templates: str = '/data/beamsearch_template_list.txt'
51
+ filename: str = 'test'
52
+ GCN_num_sampling: int = 10
53
+ inf_max_len: int = 256
54
+ nbest: int = 10
55
+ beam_size: int = 10
56
+
57
+ @dataclass
58
+ class GCN_TrainConfig:
59
+ train: str = '/data/USPTO/src_train.txt'
60
+ valid: str = '/data/USPTO/src_valid.txt'
61
+ test: str = '/data/USPTO/src_test.txt'
62
+ batch_size: int = 256
63
+ dim: int = 256
64
+ n_conv_hidden: int = 1
65
+ n_mlp_hidden: int = 3
66
+ dropout: float = 0.1
67
+ lr: float = 0.0004
68
+ epochs: int = 100
69
+ patience: int = 5
70
+ save_path: str = '/ckpts/GCN'
71
+
72
+
73
+
74
+ @dataclass
75
+ class MCTSConfig:
76
+ src_train: str = '/data/USPTO/src_train.txt'
77
+ tgt_train: str = '/data/USPTO/tgt_train.txt'
78
+ src_valid: str = '/data/USPTO/src_valid.txt'
79
+ tgt_valid: str = '/data/USPTO/tgt_valid.txt'
80
+ n_step: int = 200
81
+ max_depth: int = 10
82
+ in_smiles_file: str = '/data/input/init_smiles_drd2.txt'
83
+ out_dir: str = '/mcts_out'
84
+ ucb_c: float = 1/math.sqrt(2)
85
+ reward_name: str = 'DRD2' # 'DRD2' or 'QED'
86
+ ckpt_Transformer: str = '/ckpts/Transformer/ckpt_conditional.pth'
87
+ ckpt_GCN: str = '/ckpts/GCN/GCN.pth'
88
+ beam_width:int = 10
89
+ nbest:int = 10
90
+ exp_num_sampling:int = 10
91
+ rollout_depth:int = 2
92
+ roll_num_sampling:int = 5
93
+
94
+ @dataclass
95
+ class Config:
96
+ prep: PreProcess = PreProcess()
97
+ model: ModelConfig = ModelConfig()
98
+ train: TrainConfig = TrainConfig()
99
+ translate: TranslateConfig = TranslateConfig()
100
+ GCN_train: GCN_TrainConfig = GCN_TrainConfig()
101
+ mcts: MCTSConfig = MCTSConfig()
102
+
103
+ cs = ConfigStore.instance()
104
+ cs.store(name="config", node=Config)
data/data/QSAR/AKT1/akt1_test.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/data/QSAR/AKT1/akt1_train.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/data/QSAR/CXCR4/cxcr4_test.csv ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ canonical,activity
2
+ CCCCCCNC(=NC1CCCCC1)SCC1=CSC2=NCCN12,1
3
+ c1ccc(CNCc2ccc(CN(Cc3nc4ccccc4[nH]3)C3CCCc4cccnc43)cc2)nc1,1
4
+ C1=C(CSC(=NC2CCCCC2)NC23CC4CC(CC(C4)C2)C3)N2CCN=C2S1,1
5
+ CC1C(=O)NC(CCCN=C(N)N)C(=O)NC(Cc2ccc3ccccc3c2)C(=O)NCC(=O)NC(Cc2ccc(O)cc2)C(=O)N1C,1
6
+ CC(=O)NCCCC1C(=O)NC(CCCNC(N)=O)C(=O)NC(Cc2ccc3ccccc3c2)C(=O)NCC(=O)NC(Cc2ccc(O)cc2)C(=O)N1C,1
7
+ CN1C(=O)C(Cc2ccc3ccccc3c2)NC(=O)CNC(=O)C(Cc2ccc(O)cc2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCNC(=N)N,1
8
+ CC(C)CC(NC(=N)N)C(=O)Nc1ccc2c(c1)cc(C(=O)NCCc1c[nH]c3ccccc13)n2CCCNC(=N)N,1
9
+ COC(=O)C1C(O)CCC2CN(C#N)C(c3[nH]c4ccccc4c3CCn3cc(-c4cccc(Cl)c4)nn3)CC21,1
10
+ N=C(N)NCCCC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CCC(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
11
+ N=C(N)NCCCC1NC(=O)C(NC(=O)CCNC(=N)N)CSSCC(C(N)=O)NC(=O)C(Cc2ccc3ccccc3c2)NC1=O,1
12
+ Cc1cc(NC2CCN(C(=O)CCNCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
13
+ N=C(N)NCCCn1c(C(=O)NCCc2c[nH]c3ccccc23)cc2cc(NC(=O)C(Cc3ccccc3)NC(=N)N)ccc21,1
14
+ Oc1cccc(CN(CCN2CCCCC2)CC2CCCN(C3CCCC3)C2)c1,1
15
+ c1ccc(CNCc2ccc(CN(Cc3nc4ccccc4[nH]3)C3CCCc4cccnc43)cc2)nc1,1
16
+ CN1C(=O)C(CCCNC(=N)N)NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)CNC(=O)C(Cc2ccc(O)cc2)NC(=O)C1CCCNC(=N)N,1
17
+ N=C(N)NCCCn1c(C(=O)NCCc2c[nH]c3ccccc23)cc2cc(NC(=O)CNC(=N)N)ccc21,1
18
+ N=C(N)NCCCC1NC(=O)C(NC(=O)CCNC(=N)N)CC=CCC(C(N)=O)NC(=O)C(Cc2ccc3ccccc3c2)NC1=O,1
19
+ N=C(N)NCCC(=O)NC1CC=CCCC(C(N)=O)NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
20
+ CCCCCCNC(=NC1CCCCC1)SCC1=CSC2=NCCN12,1
21
+ CCCCCCNC(=NC1CCCCC1)SCC1=CSC2=NCCN12,1
22
+ Cc1cc(N(C)C2CCN(C(=O)CCNCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
23
+ CCc1cc(NC2CCN(C(=O)CCNCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
24
+ c1ccc(CNCc2ccc(CN(Cc3nc4ccccc4[nH]3)C3CCCc4cccnc43)cc2)nc1,1
25
+ C1=C(CSC(=NC2CCCCC2)NC23CC4CC(CC(C4)C2)C3)N2CCN=C2S1,1
26
+ Cc1cc(NC2CCN(C(=O)CCNCCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
27
+ Cc1cc(NC2CCN(CCCCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
28
+ N=C(N)NCCC(=O)NC1CCC=CCCC(C(N)=O)NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
29
+ N=C(N)NCCCn1c(C(=O)NCCc2c[nH]c3ccccc23)cc2cc(NC(=O)C(Cc3ccccc3)NC(=N)N)ccc21,1
30
+ N=C(N)NCCc1cc2cc(NC(=O)CCc3ccc(O)cc3)ccc2n1CCc1ccc2ccccc2c1,1
31
+ Cc1cc(NC2CCN(C(=O)CCCNCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
32
+ N=C(N)NCCCn1c(C(=O)Nc2cccc3ccccc23)cc2cc(NC(=O)Cc3ccc(O)cc3)ccc21,1
33
+ CN1C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCNC(=N)N,1
34
+ CC(=O)NCCCC1C(=O)NC(CCCNC(=N)N)C(=O)NC(Cc2ccc3ccccc3c2)C(=O)NCC(=O)NC(Cc2ccc(O)cc2)C(=O)N1C,1
35
+ N=C(N)NCCCC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC1=N,1
36
+ CN1C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCNC(=N)N,1
37
+ N=C(N)NCCCn1c(C(=O)NCCc2c[nH]c3ccccc23)cc2cc(NC(=O)C3CCN(C(=N)N)CC3)ccc21,1
38
+ Cc1cc(NC2CCN(CCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
39
+ Cc1cc(NC2CCN(CCC(N)=O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
40
+ CCCN1CCC(Nc2cc(C)nc(NCc3cn(CCCNCCCNC4CCCCC4)nn3)n2)CC1,1
41
+ N=C(N)NCCCC1NC(=O)C2CC(N=C(N)N)CN2C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC1=O,1
42
+ N=C(N)NCCCC1NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)CCNC(=O)C(Cc2ccc(O)cc2)NC(=O)C(CCCNC(=N)N)NC1=O,1
43
+ N=C(N)NCCCC1NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)CCNC(=O)C(Cc2ccc(O)cc2)NC(=O)C(CCCNC(=N)N)NC1=O,1
44
+ NCCCCC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
45
+ CN1C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCNC(=N)N,1
46
+ CN1C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCNC(=N)N,1
47
+ CC(C)CC(NC(=N)N)C(=O)Nc1ccc2c(c1)cc(C(=O)NCCc1c[nH]c3ccccc13)n2CCCNC(=N)N,1
48
+ O=C(O)CNCCC(=O)N1CCC(Nc2ccnc(NCc3cn(CCCNCCCNC4CCCCC4)nn3)n2)CC1,1
49
+ Cc1cc(NC2CCN(CCC#N)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
50
+ Cc1cc(NC2CCN(C(=O)CCCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
51
+ CCc1cc(NC2CCN(C(=O)CCNCCP(=O)(O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
52
+ N=C(N)NCCCC1NC(=O)C(CCCNC(=N)N)NC(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC1=N,1
53
+ Cc1cc(NC2CCN(C(=O)CCC(N)C(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
54
+ Cc1cc(NC2CCN(CCCCCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
55
+ N=C(N)NCCCC1NC(=O)C2CC(N=C(N)N)CN2C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC1=O,1
56
+ NC(=O)CCC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
57
+ CN1C(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCN,1
58
+ N=C(N)NCCCNC1CSSCC(C(N)=O)NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
59
+ N=C(N)NCCCC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CCNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCNC(=N)N)NC1=O,1
60
+ CN1C(=O)C(Cc2ccc3ccccc3c2)NC(=O)CNC(=O)C(Cc2ccc(O)cc2)NC(=O)C(CCCNC(=N)N)NC(=O)C1CCCNC(=N)N,1
61
+ CC1C(=O)NC(CCCN=C(N)N)C(=O)NC(Cc2ccc3ccccc3c2)C(=O)NCC(=O)NC(Cc2ccc(O)cc2)C(=O)N1C,1
62
+ CN1C(=O)C(CCCNC(=N)N)NC(=O)C(Cc2ccc3ccccc3c2)NC(=O)CNC(=O)C(Cc2ccc(O)cc2)NC(=O)C1CCCNC(=N)N,1
63
+ NCCC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
64
+ NC(=O)CC1NC(=O)C(Cc2ccc(O)cc2)NC(=O)CNC(=O)C(Cc2ccc3ccccc3c2)NC(=O)C(CCCN=C(N)N)NC1=O,1
65
+ Cc1cc(NC2CCN(C(=O)CNCCC(=O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
66
+ C1=C(CSC(=NC2CCCCC2)NC23CC4CC(CC(C4)C2)C3)N2CCN=C2S1,1
67
+ CCCCN(c1nc2ccccc2o1)C(CC)c1ccc(-c2ccccc2-c2nnn[nH]2)cc1,1
68
+ CCCCN(c1nc2ccccc2o1)C(C)c1ccc(-c2ccccc2-c2nnn[nH]2)cc1,1
69
+ Cc1cc(NC2CCN(C(=O)CCNCP(=O)(O)O)CC2)nc(NCc2cn(CCCNCCCNC3CCCCC3)nn2)n1,1
70
+ CCCCN(c1nc2ccccc2o1)C(C)c1ccc(-c2ccccc2-c2nnn[nH]2)cc1,1
71
+ CCCCN(c1nc2ccccc2o1)C(C)c1ccc(-c2ccccc2-c2nnn[nH]2)cc1,1
72
+ CCN(CC)CCCC(C)Nc1cc(C=Cc2ccc([N+](=O)[O-])cc2)nc2cc(OC)ccc12,1
73
+ Oc1cccc(CN(CCN2CCCCC2)CC2CCCN(C3CCCC3)C2)c1,1
74
+ CCC(C)N1C(=O)C2C(Cc3c[nH]c4ccccc34)[NH2+]C3(C(=O)Nc4ccc(C)cc43)C2C1=O,0
75
+ COc1cccc(NC(=O)c2sc3[nH+]c(N4CCCC4)c4c(c3c2N)CC(C)(C)OC4)c1,0
76
+ CC[NH+]1CCN(C(c2cccs2)C(C)NC(=O)C(=O)NCCc2c[nH]c3ccccc23)CC1,0
77
+ CSC1=CC2CC3COP(=O)(c4ccccc4O)N[NH+]3CC2C=C1c1ccccc1O,0
78
+ CC(C)S(=O)(=O)C1=CC2CC3COP(=O)(c4ccccc4O)N[NH+]3CC2C=C1c1ccccc1O,0
79
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)c4ccccc4C)CC34CC[NH2+]CC4)c2c1,0
80
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)c4cc(Cl)cc(Cl)c4)CC34CC[NH2+]CC4)c2c1,0
81
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)c4cccc(Cl)c4F)CC34CC[NH2+]CC4)c2c1,0
82
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)C4CC=CCC4)CC34CC[NH2+]CC4)c2c1,0
83
+ CC(CCCC(C)(C)O)NC(=O)C1CN(C(=O)c2c(F)cccc2F)CC12CC[NH2+]CC2,0
84
+ CC(CCCC(C)(C)O)NC(=O)C1CN(C(=O)c2cc(Cl)cc(Cl)c2)CC12CC[NH2+]CC2,0
85
+ CC(CCCC(C)(C)O)NC(=O)C1CN(C(=O)c2ccc(Br)cc2)CC12CC[NH2+]CC2,0
86
+ COc1c(Cl)cc(C(=O)N2CC(C(=O)NC(C)CCCC(C)(C)O)C3(CC[NH2+]CC3)C2)cc1Cl,0
87
+ CCCCC(C)C(=O)N1CC(C(=O)NCCc2c[nH]c3ccc(Cl)cc23)C2(CC[NH2+]CC2)C1,0
88
+ Cc1cccc2c(CCNC(=O)C3CN(C(=O)C(Oc4ccccc4)C(C)C)CC34CC[NH2+]CC4)c[nH]c12,0
89
+ CCc1cccc2c1=[NH+]CC=2C(=O)CSC1NNC(c2ccc(F)cc2)[NH+]1CCC(=O)[O-],0
90
+ Cc1n[nH]c(C)c1C(C)NC(=O)C1CN(C(=O)c2ccc(C(F)(F)F)cc2)CC12CC[NH2+]CC2,0
91
+ Cc1n[nH]c(C)c1C(C)NC(=O)C1CN(C(=O)c2cc(Cl)ccc2F)CC12CC[NH2+]CC2,0
92
+ Cc1cc(C)c2c(N)c(C(=O)OCC(=O)Nc3sc4c(c3C#N)CCCCC4)sc2[nH+]1,0
93
+ CCC(Sc1nc2n[nH]c(C)c2c(N)[n+]1-c1ccc(C)c(Cl)c1)C(=O)NCc1ccco1,0
94
+ Cc1ccc(C2CC(C(F)(F)F)N3NC=C(C(=O)Nc4cc5c(cc4C(C)O)OCO5)C3=[NH+]2)cc1,0
95
+ CC(O)c1cc2c(cc1NC(=O)C1=CNN3C1=[NH+]C(c1ccco1)CC3C(F)(F)F)OCO2,0
96
+ COc1cc(-c2cc(=[NH+]C(Cc3c[nH]c[nH+]3)C(=O)[O-])c3cc(Cl)c(C)cc3o2)ccc1O,0
97
+ O=C(NCCC1=c2cc(Cl)ccc2=[NH+]C1)C1C=C2NC(=C3CC3)C=C(C(F)(F)F)N2N1,0
98
+ O=C(NCCC1=c2cc(Cl)ccc2=[NH+]C1)C1C=C2NC(=C3CC3)C=C(C(F)(F)F)N2N1,0
99
+ CCOCCC1NNC(NC(=O)C2CC(=O)N(CCC3=c4cc(F)ccc4=[NH+]C3)C2)S1,0
100
+ [H]N=C(Nc1nc(C)cc(C)n1)N(CCC1=c2ccccc2=[NH+]C1)C(=S)Nc1ccc(F)cc1,0
101
+ COc1ccc(NC(=O)CSC2NC(=CC(=O)NCCC3=c4ccccc4=[NH+]C3)CS2)cc1,0
102
+ O=C(C=C1CSC(SCC(=O)Nc2ccc(Cl)cc2)N1)NCCC1=c2ccccc2=[NH+]C1,0
103
+ CNS(=O)(=O)c1ccc(NC(=O)C(CC2=c3ccccc3=[NH+]C2)NC(=O)c2cccs2)cc1,0
104
+ COC12CCC3(CC1C(C)(O)C(C)(C)C)C1C(O)c4ccc(O)c5c4C3(CC[NH+]1CC1CC1)C2O5,0
105
+ [NH3+]C(CO)C(=O)NC(Cc1ccc(O)cc1)C(=O)[NH+]=c1ccc2c(C(F)(F)F)cc(O)oc-2c1,0
106
+ CC1=CC(C(=O)N2CC(C(=O)NCCC3=c4cc(C#N)ccc4=[NH+]C3C)C3(CC[NH2+]CC3)C2)NN1C,0
107
+ CC1=CC(C(=O)N2CC(C(=O)NCCC3=c4cc(C#N)ccc4=[NH+]C3C)C3(CC[NH2+]CC3)C2)NN1C,0
108
+ Cc1n[nH]c2ncc(-c3cc(OCC([NH3+])CC4=c5ccccc5=[NH+]C4)cnc3-c3ccoc3)cc12,0
109
+ Cc1n[nH]c2ccc(-c3cc(OCC([NH3+])CC4=c5ccccc5=[NH+]C4)cnc3-c3ccoc3)nc12,0
110
+ Cc1n[nH]c2ccc(-c3cc(OCC([NH3+])CC4=c5cccnc5=[NH+]C4)cnc3-c3ccoc3)cc12,0
111
+ Cc1occc1-c1nc(N)c(OCC([NH3+])CC2=c3ccccc3=[NH+]C2)cc1-c1cc2c(C)n[nH]c2cn1,0
112
+ CC(C)(CC1=CN=CC1)C1C(=O)Nc2ccc(-c3cncc(OCC([NH3+])CC4=c5ccccc5=[NH+]C4)c3)cc21,0
113
+ Cc1ccc2c(c1)=[NH+]C(SC(C(=O)Nc1ccc(S(N)(=O)=O)cc1)c1ccccc1)[NH+]=2,0
114
+ Cc1ccc2c(c1)=[NH+]C(SC(C(=O)Nc1ccc(S(N)(=O)=O)cc1)c1ccccc1)[NH+]=2,0
115
+ Cc1ccc2c(c1)=[NH+]C(CNC(=O)C1[NH+]=C(Cn3nc(-c4ccc(F)cc4)ccc3=O)NO1)[NH+]=2,0
116
+ Cc1ccc2c(c1)=[NH+]C(CNC(=O)C1[NH+]=C(Cn3nc(-c4ccc(F)cc4)ccc3=O)NO1)[NH+]=2,0
117
+ Cn1c(SCC(=O)NCCC2[NH+]=c3ccccc3=[NH+]2)nnc1C1[NH+]=C(c2ccc(F)cc2)NO1,0
118
+ Cc1ccc(C2=[NH+]C(c3nnc(SCC(=O)NCCC4[NH+]=c5ccccc5=[NH+]4)n3C)ON2)cc1,0
119
+ COc1cc(C2CC(=NNC3[NH+]=c4ccccc4=[NH+]3)c3ccc(C)cc3O2)ccc1O,0
120
+ CCN1NC(C)=C(NC(=O)CSC2[NH+]=c3cc(C)cc(C)c3=[NH+]2)C1C,0
121
+ COc1ccc2c(c1)=CC(C[NH2+]CC1CN(c3cccc(F)c3)NC1c1ccc(C)o1)[NH+]=2,0
122
+ O=C1CCC(CC[NH2+]CCOc2ccc(F)cc2)N1CC1([NH+]2CCOCC2)CCCCC1,0
123
+ COC(=O)C1[NH+]=c2ccc(Cl)cc2=C1NC(=O)C(C)[NH+]1CCN(c2cccc(OC)c2)C(C)C1,0
124
+ COc1ccc(C2=CN=[NH+]C2c2ccc(OCC[NH+]3CCN(c4ccc(F)cc4)CC3)cc2O)cc1,0
125
+ CCOC(=O)c1cccc(NC2[NH+]=c3ccccc3=[NH+]C2=NS(=O)(=O)c2ccc(F)cc2)c1,0
126
+ O=C(Nc1ccc(N2CCC([NH2+]C(CCn3cc[nH+]c3)c3ccccc3)CC2)cc1)c1ccccc1F,0
127
+ COc1ccc2c(c1)=C(CCNC(=O)C1C=C3[NH+]=C(c4ccco4)C=C(C(F)(F)F)N3N1)C[NH+]=2,0
128
+ CCC(C)Nc1c[nH+]c2c(c1)C(NC(C)=O)C(C(=O)OC)N2CCC1=c2ccccc2=[NH+]C1,0
129
+ COc1cccc(Cn2nc(C(=O)NC3CC3)c3c2CCN(CC2[NH+]=c4ccccc4=[NH+]2)C3)c1,0
130
+ COC(=O)C1C(NC(C)=O)c2cc(NC(C)CC(C)C)c[nH+]c2N1CCC1=c2ccccc2=[NH+]C1,0
131
+ COc1cc(CC2CC(C[NH2+]CCCC3=c4ccccc4=[NH+]C3C)=NO2)c(OC)c2c1OCO2,0
132
+ CCc1ccccc1NC(=O)CSC1N=NC(C([NH3+])CC2=c3ccccc3=[NH+]C2)O1,0
133
+ C#CCN(C)C(=O)CC1CC[NH2+]CC1Cc1cc(-c2ccc(F)cc2)on1,0
134
+ CCCNC(=O)C1CCCN(Cc2coc(-c3ccc(C)cc3)[nH+]2)C1,0
135
+ CCCCNC(=O)C1CCC(C)[NH+](Cc2c(C)nn(C)c2Cl)C1,0
136
+ C[NH2+]C(C)C(=O)NC1C=C(C(=O)NC(Cc2ccc(OC)cc2)C(N)=O)CC(O)C1O,0
137
+ COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)CC(O)(C(C)=O)CC3OC(=O)CC[NH3+],0
138
+ COC(=O)C(Cc1c[nH]c2ccc(F)cc12)NC(=O)C([NH3+])Cc1c[nH]c2ccccc12,0
139
+ Cc1ccc(Nc2nc(N)nc(C[NH2+]CC(O)c3ccc([N+](=O)[O-])cc3)n2)cc1,0
140
+ C=C1c2cccc(O)c2C(=O)C2=C(O)C3(O)C(=O)C(C(N)=O)=C(O)C([NH+](C)C)C3C(O)C12,0
141
+ CC(=O)C1(O)Cc2c(O)c3c(c(O)c2C(OC2CC([NH3+])C(O)C(C)O2)C1)C(=O)c1c(O)cccc1C3=O,0
142
+ CN1Cc2c(N3CCOCC3)[nH+]c3sc(C(=O)NN)c(N)c3c2CC1(C)C,0
143
+ CC(=O)C1([NH3+])Cc2c(O)c3c(c(O)c2C(OC2CC(O)C(O)CO2)C1)C(=O)c1ccccc1C3=O,0
144
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
145
+ Cc1cc(O)oc2cc(=[NH+]C(=O)C(CCCNC(N)=[NH2+])NC(=O)c3ccccc3)ccc1-2,0
146
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
147
+ CC(=O)C1([NH3+])Cc2c(O)c3c(c(O)c2C(OC2CC(O)C(O)CO2)C1)C(=O)c1ccccc1C3=O,0
148
+ COc1ccc(-c2nc3n(c(=[NH2+])c2C#N)NC(=[NH2+])C3=NNc2ccc3c(c2)OCO3)cc1,0
149
+ Cc1cc(C)c2c(N)c(C(=O)OCC(=O)Nc3sc4c(c3C(N)=O)CCC4)sc2[nH+]1,0
150
+ O=C1[NH+]=c2ccccc2=[NH+]C1C(=NNc1ccc([N+](=O)[O-])cc1)C(O)C(O)CO,0
151
+ CC1(O)c2c(Cl)ccc(O)c2C(=O)C2C1CC1C([NH3+])C(O)C(C(N)=O)C(=O)C1(O)C2O,0
152
+ CC(O)C1([NH3+])Cc2c(O)c3c(c(O)c2C(OC2CC(O)C(O)CO2)C1)C(=O)c1ccccc1C3=O,0
153
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
154
+ CC(=O)C1([NH3+])Cc2c(O)c3c(c(O)c2C(OC2CC(O)C(O)CO2)C1)C(=O)c1ccccc1C3=O,0
155
+ Cc1cc(O)oc2cc(=[NH+]C(=O)C(CCC[NH+]=C(N)N)NC(=O)C[NH3+])ccc1-2,0
156
+ CC([NH3+])C(=O)NC(CCCNC(N)=[NH2+])C(=O)[NH+]=c1ccc2c(C(F)(F)F)cc(O)oc-2c1,0
157
+ CC(NC(=O)C([NH3+])CCCC[NH3+])C(=O)[NH+]=c1ccc2c(C(F)(F)F)cc(O)oc-2c1,0
158
+ [NH3+]C(COc1cncc(-c2ccc3[nH]nc(Cl)c3c2)c1)CC1=c2ccccc2=[NH+]C1,0
159
+ CCN1NC(C)=C(NC(=O)CSC2[NH+]=c3cc(C)cc(C)c3=[NH+]2)C1C,0
160
+ Cc1cccc(NC(=O)CSC2N=NC(C([NH3+])CC3=c4ccccc4=[NH+]C3)O2)c1C,0
161
+ Cc1cccc(NC(=O)CSC2N=NC(C([NH3+])CC3=c4ccccc4=[NH+]C3)O2)c1C,0
162
+ Cc1ccc2c(c1)=[NH+]C(CNC(=O)c1ccccc1C1NC(c3ccc(F)cc3)=NO1)[NH+]=2,0
163
+ Cc1ccc2c(c1)=[NH+]C(CNC(=O)c1ccccc1C1NC(c3ccc(F)cc3)=NO1)[NH+]=2,0
164
+ CC1[NH+]=c2ccc(C#N)cc2=C1CCNC(=O)CC1C(=O)NCC[NH+]1C(C)C,0
165
+ Cc1ccn2cc(CNC(=O)C3CN(C(=O)C4CC=CCC4)CC34CC[NH2+]CC4)[nH+]c2c1,0
166
+ Cc1ccc2[nH+]c(CNC(=O)C3CN(C(=O)C4CC=CCC4)CC34CC[NH2+]CC4)cn2c1,0
167
+ Cc1ccc(C(=O)N2CC(C(=O)NCCC3=c4cc(C#N)ccc4=[NH+]C3C)C3(CC[NH2+]CC3)C2)cc1,0
168
+ CC1[NH+]=c2ccc(C#N)cc2=C1CCNC(=O)C1CN(C(=O)C2CC=CCC2)CC12CC[NH2+]CC2,0
169
+ Cc1cccc(C2=c3cc(S(N)(=O)=O)ccc3=[NH+]C2C(=O)N[n+]2c(C)cc(C)cc2C)c1,0
170
+ COc1ccc(N2CC(=O)C(C3[NH+]=c4ccc(C)cc4=[NH+]3)=C2N)cc1Cl,0
171
+ COCC(=O)N1CC2C[NH2+]CC2(C(=O)NC(C)(C)C[NH+]2CCCC2)C1,0
172
+ COc1ccc2c(c1)=[NH+]C(C(C#N)=Cc1cc(C)n(C3SC4CCCCC4=C3C#N)c1C)[NH+]=2,0
173
+ COc1ccc(C(=O)C2CC2C[NH+]2CC=C(C3=c4c(Br)cccc4=[NH+]C3)CC2)cc1,0
174
+ Cc1ccc(OC2N=C3C=CC=CN3C(=O)C2C=C(C#N)C2[NH+]=c3ccccc3=[NH+]2)cc1,0
175
+ N#CC(=CC1C(=O)N2C=CC=CC2=NC1Oc1ccc(Cl)cc1)C1[NH+]=c2ccccc2=[NH+]1,0
176
+ Cc1cc(OC2N=C3C=CC=CN3C(=O)C2C=C(C#N)C2[NH+]=c3ccccc3=[NH+]2)ccc1Cl,0
177
+ Cc1cc(C)cc(OC2N=C3C=CC=CN3C(=O)C2C=C(C#N)C2[NH+]=c3ccccc3=[NH+]2)c1,0
178
+ COCCN1C(=O)c2ccccc2C(C(=O)N=C2[NH+]=c3ccccc3=[NH+]2)C12CCCCC2,0
179
+ O=C(C1CCCC1)N(CC[NH+]1CCCCC1)CC1CCC[NH+](C2CCCC2)C1,0
180
+ COc1ccc(-c2nn(-c3ccccc3)cc2C[NH+]2CCC3(CC[NH+](C)C3)C2)c(F)c1,0
181
+ CC1=C(C#N)C(n2c(C)cc(C=C(C#N)C3[NH+]=c4ccccc4=[NH+]3)c2C)OC1C,0
182
+ CC1=C(C#N)C(n2c(C)cc(C=C(C#N)C3[NH+]=c4ccccc4=[NH+]3)c2C)OC1C,0
183
+ CC1C2CCC3C4CC=C5CC([NH+](C)C)CCC5(C)C4CCC32C[NH+]1C,0
184
+ COc1c2c(cc3c1C(C#CC[NH+](C)C)[NH+](C)CC3)OCO2,0
185
+ C[NH+](CC#N)C1CCC2C3CCC4CC(OC(=O)C[N+](C)(C)C)CCC4(C)C3CCC21C,0
186
+ CC1C2CCC3C4CC=C5CC([NH+](C)C)CCC5(C)C4CCC32C[NH+]1C,0
187
+ Fc1ccc(C=[NH+]C2=CC(c3ccc(Br)cc3)[NH+]=N2)cc1Oc1ccccc1,0
188
+ CCCC[NH+]1CCCCC1CNC(=O)NC(C)Cn1cc[nH+]c1,0
189
+ CCCC[NH+]1CCCCC1CNC(=O)NC(C)Cn1cc[nH+]c1,0
190
+ C[NH+]1CCN(C2N=C3C=CC=CN3C(=O)C2C=C(C#N)C2[NH+]=c3ccccc3=[NH+]2)CC1,0
191
+ C[NH+](CC1=CN=[NH+]C1c1ccc2c(c1)OCO2)CC1C=c2cc(F)ccc2=[NH+]1,0
192
+ CC([NH2+]CC1C=c2ccccc2=[NH+]1)C1C=NN(c2cccc(F)c2)C1C,0
193
+ O=C(C1CCCC1)N(CC[NH+]1CCCCC1)CC1CCC[NH+](C2CCCC2)C1,0
194
+ CCCC[NH+](CC(=O)N1CCSC1c1ccc(F)cc1)Cc1ccccc1F,0
195
+ Cc1cccc(C(=O)N2CC(C[NH+]3CCCC3)C(c3cccc(C(F)(F)F)c3)C2)c1,0
196
+ N#Cc1cccc(C[NH+](Cc2cccn2Cc2cccc(C(F)(F)F)c2)C2CC2)c1,0
197
+ O=C(c1ccco1)N1CC(C[NH+]2CCCC2)C(c2cccc(C(F)(F)F)c2)C1,0
198
+ COc1ccc(C2c3cccn3CCC[NH+]2Cc2cccc(Cl)c2)cc1OC,0
199
+ COc1cc(C[NH+]2CCCn3cccc3C2c2cc(C)ccc2C)cc(OC)c1,0
200
+ CN(C(=O)CCC1=c2ccccc2=[NH+]C1c1ccc(F)cc1)c1cccc(C#N)c1,0
201
+ COc1cccc(C(CNC(=O)CCc2[nH+]cc(-c3ccc(F)cc3)o2)[NH+](C)C)c1,0
202
+ CCCCc1[nH]cc(C[NH2+]CCC2C(C)=Nc3ccc(OC)cc32)[nH+]1,0
203
+ O=S(=O)(c1ccccc1)N1CC[NH+](CC[NH+]=c2cc(O)oc3ccccc23)CC1,0
204
+ COC(=O)C1[NH+]=c2ccccc2=C1NC(=O)C(C)[NH+]1CCN(c2ccccc2)CC1,0
205
+ COC(=O)C1[NH+]=c2ccc(Cl)cc2=C1NC(=O)C(C)[NH+]1CCN(c2ccccc2)CC1,0
206
+ CCOC(=O)C1[NH+]=c2ccc(Br)cc2=C1NC(=O)CC[NH+]1CCCC(C)(C)C1,0
207
+ CCOc1ccc2c(c1)=CC(C1N=C3C=CC=CN3C1[NH2+]Cc1ccco1)C(=O)[NH+]=2,0
208
+ CCOc1ccc2c(c1)=CC(C1N=C3C=CC=CN3C1[NH2+]Cc1ccco1)C(=O)[NH+]=2,0
209
+ CCOc1ccc2c(c1)=CC(c1[nH+]c3cc(C)ccn3c1NCCOC)C(=O)[NH+]=2,0
210
+ COc1ccc(C2CC(C(=O)NCCC3=c4ccccc4=[NH+]C3)N=[NH+]2)c(OC)c1,0
211
+ COc1ccc(C2CC(C(=O)NCCC3=c4ccccc4=[NH+]C3)N=[NH+]2)c(OC)c1,0
212
+ CCCSc1ccc2c(c1)=[NH+]C(NC(=O)CSc1nc(C)cc(C)n1)[NH+]=2,0
213
+ O=C(Cc1ccc(Cl)cc1)Nc1nnc(SCC2[NH+]=c3ccccc3=[NH+]C2=O)s1,0
214
+ Cc1cc2c(cc1C)=[NH+]C(CSc1nnc(NC(=O)C(C)(C)C)s1)C(=O)[NH+]=2,0
215
+ CCCC(=O)Nc1nnc(SCC2[NH+]=c3cc(C)c(C)cc3=[NH+]C2=O)s1,0
216
+ CCn1nc(C(=O)N2CCOCC2)c2c1CCC([NH2+]CCC1=c3ccccc3=[NH+]C1)C2,0
217
+ Cc1ccc2c(c1)=[NH+]C(SCc1noc(CCC(=O)Nc3c(F)cccc3F)n1)[NH+]=2,0
218
+ Cc1ccc2c(c1)=[NH+]C(SCc1noc(CCC(=O)Nc3ccc(F)cc3F)n1)[NH+]=2,0
219
+ COc1ccc(C(=O)CC2(O)C(=O)N(C[NH+]3CCCCCC3)c3ccccc32)cc1,0
220
+ Cc1ccsc1C[NH+](C)CC(=O)Nc1c(C#N)c(C)c(C)n1CC1CCCO1,0
221
+ COc1ccc(N2CC[NH+](CCNS(=O)(=O)c3ccc(Cl)s3)CC2)cc1,0
222
+ CCOc1cc2c(cc1C[NH+]1CCC(NC(C)=O)(c3ccccc3F)CC1)OCO2,0
223
+ Cc1ccc(Cn2cnc3sc4c(c3c2=O)CCC([NH2+]CCCn2ccnc2)C4)cc1,0
224
+ CC(C)Cn1nc(C(=O)N2CCOCC2)c2c1CCC([NH2+]CCc1ccccc1F)C2,0
225
+ CCOC(=O)N1CCC([NH2+]Cc2cc3ccc(F)cc3n(CC(C)C)c2=O)CC1,0
226
+ Cc1ccc(NC(=O)COc2coc(C[NH+]3CCc4ccccc4C3)cc2=O)c(C)c1,0
227
+ O=C(Cn1c(=O)oc2ccccc21)NCC(c1ccsc1)[NH+]1CCCCCC1,0
228
+ Cc1ccc(N2CC(C(=O)NCC(c3cccn3C)[NH+]3CCCCCC3)CC2=O)cc1C,0
229
+ COc1ccc(-n2c(C)cc(C=C(C#N)C(=O)NCC[NH+]3CCCCC3)c2C)cc1,0
230
+ COc1ccc2c(c1)OC(=O)C(CCC(=O)NCCC1=c3cc(F)ccc3=[NH+]C1)C2C,0
231
+ CCOc1ccccc1NC(=O)C1CC(=O)N(CCC2=c3cc(F)ccc3=[NH+]C2)C1,0
232
+ CN(CC1C=c2cc(F)ccc2=[NH+]1)C(=O)C1C=C(COc2c(F)cccc2F)ON1,0
233
+ O=C(C1CC1)N(CC[NH+]1CCCCC1)CC1CCC[NH+](C2CCCC2)C1,0
234
+ Cc1cc(C=C(C#N)C2[NH+]=c3ccccc3=[NH+]2)c(C)n1C1SC2CCCCC2=C1C#N,0
235
+ CC12CCC3C(CCC4(O)CC(O)CCC34C=[NH+]Cc3ccncc3)C1(O)CCC2C1=CC(=O)OC1,0
236
+ CCOC(=O)c1ccc(N2C(=O)C3C(CC(N)=O)[NH2+]C4(C(=O)Nc5ccc(Cl)cc54)C3C2=O)cc1,0
237
+ COc1ccc2c3c1OC1C4(OC)C=CC5(c6c(O)cc(SCCO)c(O)c64)C(C2)[NH+](C)CCC315,0
238
+ COC(C[NH+]=CC12CCC(O)CC1(O)CCC1C2CCC2(C)C(C3=CC(=O)OC3)CCC12O)OC,0
239
+ O=C(CSc1nnc(-c2ccc(F)cc2)n1CC[NH+]1CCOCC1)Nc1ccc2[nH]c(=O)[nH]c2c1,0
240
+ O=C(CCC1CNC(=O)C2CC(NC(=O)c3ccc(F)c(Cl)c3)C[NH+]12)NCc1ccc(F)cc1,0
241
+ CCOc1ccc(C=NNC(=O)c2ccc(N)cc2)cc1C[NH+]1CC2CC(C1)c1cccc(=O)n1C2,0
242
+ Cc1nn(C(C)C)c(C)c1C=NNc1nc(SCC(=O)NC2CC(C)(C)[NH2+]C(C)(C)C2)n[nH]1,0
243
+ CC(c1ccc(S(N)(=O)=O)cc1)[NH+](C)CC(=O)Nc1cc(C(F)(F)F)ccc1-n1cncn1,0
244
+ COc1cccc(C=[NH+]CCNC(=O)c2cc3n(n2)C(C(F)(F)C(F)(F)F)CC(C)N3)c1O,0
245
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)c4ccccc4OC(C)=O)CC34CC[NH2+]CC4)c2c1,0
246
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)c4c(Cl)cccc4Cl)CC34CC[NH2+]CC4)c2c1,0
247
+ COc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)C(C)Oc4ccccc4)CC34CC[NH2+]CC4)c2c1,0
248
+ CC(CCCC(C)(C)O)NC(=O)C1CN(C(=O)c2ccccc2C(F)(F)F)CC12CC[NH2+]CC2,0
249
+ Cc1cc(C(=O)N2CC(C(=O)NC(C)CCCC(C)(C)O)C3(CC[NH2+]CC3)C2)ccc1Br,0
250
+ Cc1cc(-c2onc(C)c2C(=O)N2CC(C(=O)NC(C)CCCC(C)(C)O)C3(CC[NH2+]CC3)C2)no1,0
251
+ Cc1nn(C)c2ncc(C(=O)N3CC(C(=O)NC(C)CCCC(C)(C)O)C4(CC[NH2+]CC4)C3)c(Cl)c12,0
252
+ Cc1ccc2[nH]cc(CCNC(=O)C3CN(C(=O)c4ccc(N5CCOCC5)nc4)CC34CC[NH2+]CC4)c2c1,0
253
+ CC1=C(C(=O)N2CC(C(=O)NCCc3c[nH]c4ccc(C)cc34)C3(CC[NH2+]CC3)C2)C(c2ccccc2)NO1,0
254
+ CC1[NH+]=c2ccc(C#N)cc2=C1CCNC(=O)C1CN(C(=O)C2(C)CCCCC2)CC12CC[NH2+]CC2,0
255
+ CC(=O)N1CCC(C(=O)N2CC(C(=O)NCCc3c[nH]c4ccc(Cl)cc34)C3(CC[NH2+]CC3)C2)CC1,0
256
+ Cc1ccc(F)cc1C(=O)N1CC(C(=O)NCCc2c[nH]c3ccc(Cl)cc23)C2(CC[NH2+]CC2)C1,0
257
+ CC1=CC(C(=O)N2CC(C(=O)NCCc3c[nH]c4ccc(Cl)cc34)C3(CC[NH2+]CC3)C2)NN1C,0
258
+ CC(C)(C)OC(=O)NCCNC(=O)C1CN(C(=O)C2CCCN2C(=O)C(F)(F)F)CC12CC[NH2+]CC2,0
259
+ CC(C)(C)OC(=O)NCCNC(=O)C1CN(C(=O)c2cc(Cl)ccc2F)CC12CC[NH2+]CC2,0
260
+ Cc1n[nH]c(C)c1C(C)NC(=O)C1CN(C(=O)c2cc(F)cc(C(F)(F)F)c2)CC12CC[NH2+]CC2,0
261
+ COc1ccc(C(=O)N2CC(C(=O)NC(C)c3c(C)n[nH]c3C)C3(CC[NH2+]CC3)C2)cc1C(F)(F)F,0
262
+ Cc1ccc2nc(C(C)NC(=O)C3CN(C(=O)c4ccc(C)c(F)c4F)CC34CC[NH2+]CC4)[nH]c2c1,0
263
+ COc1ccc(OC)c(C(=O)N2CC(C(=O)NC(C)c3nc4ccc(C)cc4[nH]3)C3(CC[NH2+]CC3)C2)c1,0
264
+ Cc1ccc(N2C(=O)C3C(c4ccccc4O)[NH2+]C(CC4=c5ccccc5=[NH+]C4)(C(=O)[O-])C3C2=O)cc1C,0
265
+ COc1ccc2c(c1)=C(CCN1CC(C(=O)NC3NNC(Cc4ccccc4)S3)CC1=O)C[NH+]=2,0
266
+ CNS(=O)(=O)c1ccc(NC(=O)C(CC2=c3ccccc3=[NH+]C2)NC(=O)c2cccs2)cc1,0
267
+ CCC(Sc1nc2n[nH]c(C)c2c(N)[n+]1-c1ccc(Br)cc1)C(=O)NCc1ccco1,0
268
+ COc1ccc2c(c1)OC1(CC[NH+](CC(O)c3c[nH]c4cc(C)ccc34)CC1)CC2O,0
269
+ Cc1ccc(F)cc1CC([NH3+])COc1cncc(-c2ccc3[nH]nc(C)c3c2)c1,0
270
+ CCC(=O)Nc1ccc(C(C)[NH2+]C(C)C(=O)Nc2cccc(Cl)c2C)cc1,0
271
+ CCC(=O)Nc1ccc(C(C)[NH2+]C(C)C(=O)Nc2cccc(Cl)c2C)cc1,0
272
+ CCC(C)C(=O)N1CC(C(=O)NCCc2c[nH]c3ccc(C)cc23)C2(CC[NH2+]CC2)C1,0
273
+ Cc1n[nH]c2cnc(-c3cncc(OCC([NH3+])Cc4ccc(F)c(F)c4F)c3)cc12,0
274
+ O=C(NC1Nc2ccc(NC(=O)C3C=c4ccccc4=[NH+]3)cc2S1)c1ccccc1,0
275
+ CC[NH+]1CCN(c2c(Cl)cccc2NC(=S)NC(=O)c2ccc(OC)c(Br)c2)CC1,0
276
+ CC(C)c1ccc(NC(=O)C(=O)NCC(c2ccc3c(c2)CCN3C)N2CC[NH+](C)CC2)cc1,0
277
+ FC(F)(F)c1ccc2c(NC3CCC([NH2+]Cc4cccnc4)CC3)ncc(-c3ccsc3)c2n1,0
278
+ COc1ccc(C[NH+](C)Cc2nc3sc(C(=O)Nc4ccc(C)cc4C)c(C)c3c(=O)[nH]2)cc1F,0
279
+ Cc1ccccc1-c1csc2nc(C[NH+](CC(O)COc3ccccc3)C(C)C)[nH]c(=O)c12,0
280
+ CC(C)OCC(O)C[NH+](Cc1ccccc1)Cc1nc2sc3c(c2c(=O)[nH]1)CCCCC3,0
281
+ CCOc1ccc(C2CC(c3ccc(C)cc3C)=NN2C(=O)C[NH+]2CCC(C(N)=O)CC2)cc1,0
282
+ CC(=O)C1CCC2C3CCC4=CC(=NOCC(=O)NCCc5c[nH]c[nH+]5)CCC4(C)C3CCC12C,0
283
+ CC[NH+]1CCN(c2c(Cl)cccc2NC(=S)NC(=O)c2cc(Br)ccc2OC)CC1,0
284
+ Cc1ccc(C(=O)NC(=CC2CN(C)c3ccccc32)C(=O)NCCC2=c3ccccc3=[NH+]C2)cc1,0
285
+ COc1ccc2cc(C(=O)N3CCC(CC(=O)NCCC4=c5cc(C)ccc5=[NH+]C4)CC3)[nH]c2c1,0
286
+ COc1cccc(CNC2=[NH+]CCNC23CCN(S(=O)(=O)c2ccc(C(C)C)cc2)CC3)c1,0
287
+ CCC([NH2+]CCc1c[nH]c2cc(F)ccc12)C(=O)Nc1cc(C)on1,0
288
+ CCC([NH2+]CCc1c[nH]c2cc(F)ccc12)C(=O)Nc1cc(C)on1,0
289
+ COc1cccc(NC(=O)N(Cc2ccsc2)Cc2ccco2)c1,0
290
+ COc1ccc(CC(NC(=O)C2=CC(NC(=O)C([NH3+])C(C)C)C(O)C(O)C2)C(N)=O)cc1,0
291
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
292
+ OCC1OC(CO)(Oc2cc3c(O)cc(O)cc3[o+]c2-c2cc(O)c(O)c(O)c2)C(O)C1O,0
293
+ COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)CC(O)(C(C)=O)CC3SCC[NH3+],0
294
+ COC(=O)C(Cc1c[nH]c2ccc(F)cc12)NC(=O)C([NH3+])Cc1c[nH]c2ccccc12,0
295
+ CC=C(C)C(=O)OC1CCC2(C)C3CCC4C5(O)CC(O)C6(O)C(C[NH+]7CC(C)CCC7C6(C)O)C5(O)CC42OC13O,0
296
+ N#CC(=CNc1ccc(S(=O)(=O)NC(N)=[NH2+])cc1)c1nc(-c2cccc(Br)c2)cs1,0
297
+ C[NH+](C)C1C(O)=C(C(N)=O)C(=O)C2(O)C(O)=C3C(=O)c4c(O)cccc4C(C)(O)C3C(O)C12,0
298
+ C[NH+](C)C1C(O)=C(C(N)=O)C(=O)C2(O)C(O)=C3C(=O)c4c(O)cccc4C(C)(O)C3C(O)C12,0
299
+ Cc1cc(NC(=O)NC(=O)c2ccccc2NC(=O)C(C)[NH3+])ccc1Oc1ncc(Br)cn1,0
300
+ CCOc1cc(C=NNc2nc(SCC(=O)NC3CC(C)(C)[NH2+]C(C)(C)C3)n[nH]2)ccc1O,0
301
+ CC(=O)C1([NH3+])Cc2c(O)c3c(c(O)c2C(OC2CC(O)C(O)CO2)C1)C(=O)c1ccccc1C3=O,0
302
+ CC1(O)c2c(Cl)ccc(O)c2C(=O)C2C1CC1C([NH3+])C(O)C(C(N)=O)C(=O)C1(O)C2O,0
303
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
304
+ CCC1CC[NH2+]C(C(=O)NC(C(C)Cl)C2OC(SC)C(O)C(O)C2O)C1,0
305
+ CC1(O)c2c(Cl)ccc(O)c2C(=O)C2C1CC1C([NH3+])C(O)C(C(N)=O)C(=O)C1(O)C2O,0
306
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
307
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
308
+ O=C1[NH+]=c2ccccc2=[NH+]C1C(=NNc1ccc([N+](=O)[O-])cc1)C(O)C(O)CO,0
309
+ CCCC1CC(C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O)[NH+](C)C1,0
310
+ CCC1CC[NH2+]C(C(=O)NC(C(C)Cl)C2OC(SC)C(O)C(O)C2O)C1,0
311
+ CC(C)(C)OC(=O)NC(CC1=c2ccccc2=[NH+]C1)C(=O)OCC1OC(O)C(O)C(O)C1O,0
312
+ O=C(CSC1NC(c2ccco2)Nc2cc(=O)[nH]n21)NCC1[NH+]=c2ccccc2=[NH+]1,0
313
+ O=C(CSC1NC(c2ccco2)Nc2cc(=O)[nH]n21)NCCC1[NH+]=c2ccccc2=[NH+]1,0
314
+ CC(C)(C)OC(=O)NC(CC1=c2ccccc2=[NH+]C1)C(=O)OCC1OC(O)C(O)C(O)C1O,0
315
+ Cc1ccccc1-[n+]1c(SCC(=O)NCCc2ccc(S(N)(=O)=O)cc2)nc2[nH]nc(C)c2c1N,0
316
+ CCC(=O)Nc1cc(C(O)C[NH+]2CCc3[nH]c4c(C)cccc4c3C2)ccc1OC,0
317
+ NC(=O)CN1CCCC([NH2+]Cc2ccc(-c3cccc(Cl)c3Cl)o2)C1,0
318
+ CCOC(=O)c1c[nH+]c2c(C)cc(Cl)cc2c1NCCC[NH+]1CCOCC1,0
319
+ COc1ccc(C[NH+]2CCN(Cc3[nH+]ccn3-c3cccc(C)c3)CC2CCO)c(F)c1,0
320
+ C[NH+]1CCC[NH+](CC(=O)N2CC(c3ccc(Cl)cc3)C(c3csnn3)C2)CC1,0
321
+ CCC(C)c1ccccc1NC(=O)C(C)SC1=[NH+]c2ccccc2C(=O)[N+]1=c1cc(C)cc[nH]1,0
322
+ C=C1CCCC2(C)CC3OC(=O)C(C[NH2+]CCC4=c5cc(O)ccc5=[NH+]C4)C3CC12,0
323
+ CCOC(=O)C1[NH+]=c2ccc(Br)cc2=C1NC(=O)CC[NH+]1CCC(C)CC1,0
324
+ Cc1ccc2c(c1C)=[NH+]C(=O)C(CCNC(=O)C(=O)C1=c3ccccc3=[NH+]C1C)C=2,0
325
+ CC1CCCC[NH+]1CCCNC(=O)C1CN(C(=O)C2CCC2)CC12CC[NH2+]CC2,0
326
+ CCC(CC)C(=O)N1CC(C(=O)NCCC[NH+]2CCCCC2C)C2(CC[NH2+]CC2)C1,0
327
+ CSCCC(=O)N1CC(C(=O)NCCC[NH+]2CCCCC2C)C2(CC[NH2+]CC2)C1,0
328
+ C[NH+](C)C(CNC(=O)CCc1[nH+]cc(-c2ccc(F)cc2)o1)c1ccsc1,0
329
+ N#Cc1cccc2c1=[NH+]CC=2C1=CC[NH+](CCC2OCCc3cc(C(N)=O)ccc32)CC1,0
330
+ Cc1ccc2cc(CNCCC[NH+]3CC4C=CC3C4)c(N3CCC(O)CC3)[nH+]c2c1,0
331
+ O=C(NCC1CCC[NH+](Cc2cccc3c2OCO3)C1)C1C=c2ccccc2=[NH+]1,0
332
+ CNc1cc(C(=O)N2CCC3(CCC[NH+](Cc4cc(OC)ccc4F)C3)C2)cc[nH+]1,0
333
+ Cc1ccc2c(c1C)=[NH+]C(=O)C(CCNC(=O)C(=O)C1=c3ccccc3=[NH+]C1C)C=2,0
334
+ CCC[NH+]1CCC(N2CC([NH2+]Cc3ccc(F)cc3F)CC2C(=O)NCC)CC1,0
335
+ C[NH+](C)CCCn1c(=O)[nH]c2sc3c(c2c1=[NH2+])CC(C)(C)OC3,0
336
+ COc1ccc2c(c1)=CC(CNC(=O)C(C)n1cc[nH+]c1C(C)C)[NH+]=2,0
337
+ Cc1ccc(Cn2nc(C)c(C[NH2+]CC(C)Cn3cc[nH+]c3)c2C)cc1,0
338
+ CC1CC(C)C[NH+](CCCNC(=O)C2C=C3C(=O)[NH+]=c4ccccc4=C3N2C)C1,0
339
+ CCc1ccccc1N1C(=O)CC([NH2+]CCC2=c3cc(OC)ccc3=[NH+]C2)C1=O,0
340
+ O=C(NCC1CCC[NH+](Cc2cccc3c2OCO3)C1)C1C=c2ccccc2=[NH+]1,0
341
+ CC1(C2CC[NH+](CC3C=c4ccccc4=[NH+]3)CC2)NC(=O)N(Cc2ccsc2)C1=O,0
342
+ O=C(C[NH+]1CCCC1C(=O)Nc1ccccc1)C1=c2ccccc2=[NH+]C1,0
343
+ Cn1cnnc1CC1CC[NH+](CC2C=c3ccc(F)cc3=[NH+]C2=O)CC1,0
344
+ CC[NH+]1CCN(C(=O)c2ccc(N3CCC([NH+]4CCc5sccc5C4)CC3)cc2)CC1,0
345
+ CC1CCCC[NH+]1CCC[n+]1c(-c2ccccc2)csc1Nc1cc(F)ccc1F,0
346
+ OC1C[NH+](CC=Cc2ccco2)CCC1N1CCN(c2cccc[nH+]2)CC1,0
347
+ Cc1ccc2c(c1)=C1SC(C(=O)NCCC[NH+]3CCC(C)CC3)C=C1C(=O)[NH+]=2,0
348
+ Cc1ccc2c(c1)=C1SC(C(=O)NCCC[NH+]3C(C)CCCC3C)C=C1C(=O)[NH+]=2,0
349
+ O=C(CC1=c2ccccc2=[NH+]C1)N1CCCC(C2[NH+]=C(c3ccc(Cl)cc3)NO2)C1,0
350
+ O=C1CC([NH2+]CCC2=c3ccccc3=[NH+]C2)C(=O)N1c1cccc(C(F)(F)F)c1,0
351
+ Cc1[nH+]ccn1CC1CC[NH+](Cc2c(-c3ccc(F)cc3)nc3sccn23)CC1,0
352
+ Cc1cccc(C(=O)N2CC[NH+](CC[NH+]=c3cc(O)oc4ccccc34)CC2)c1,0
353
+ COCCNc1c(C2C=c3cc(C)ccc3=[NH+]C2=O)[nH+]c2cc(C)ccn12,0
354
+ Cc1cc(=O)oc2c3c(c(Cl)cc12)OC[NH+](CCCn1cc[nH+]c1)C3,0
355
+ Cc1ccc(Cn2nc(C)c(C[NH2+]CC(C)Cn3cc[nH+]c3)c2Cl)cc1,0
356
+ COc1ccc(F)c(C[NH+]2CCCC3(CCN(C(=O)C4C=c5ccccc5=[NH+]4)C3)C2)c1,0
357
+ CCC1C(C(=O)N2CCC3=c4ccccc4=[NH+]C3C2)C(=O)C=C(C)N1CC1CCC[NH+]1CC,0
358
+ CC(=O)Oc1c(C)cc(C[NH2+]CC2C=c3ccc(F)cc3=[NH+]C2=O)cc1C,0
359
+ Cc1ccccc1-n1nc(C)c(C[NH+](C)Cc2cn3ccccc3[nH+]2)c1C,0
360
+ O=c1c(-c2ccccc2C[NH+]2CCOCC2)ccc2n1CC1CC2C[NH+](CC2CCCCC2)C1,0
361
+ Cc1ccc(OCCN(C)C(=O)C2CC23CC[NH+](CC2C=c4ccccc4=[NH+]C2=O)CC3)cc1,0
362
+ CCc1cccc2c1=[NH+]CC=2C(=O)CSC1N=NC(C(C)[NH+](C)C)N1c1ccc(F)cc1,0
363
+ CC1=CN2C(=NC(C3C=c4cc(C)cc(C)c4=[NH+]C3=O)C2[NH2+]Cc2ccco2)C=C1,0
364
+ COc1ccc2c(c1)=[NH+]C(=O)C(C1N=C3C=CC(C)=CN3C1[NH2+]Cc1ccccc1)C=2,0
365
+ Cc1c(Cc2ccccc2)c(=O)oc2c3c(c(Cl)cc12)OC[NH+](CCCn1cc[nH+]c1)C3,0
366
+ CCOc1cc(C[NH2+]CC2C=c3ccc(F)cc3=[NH+]C2=O)cc(Cl)c1OCC,0
367
+ O=C(CC[NH+]1Cc2ccccc2OC(c2ccccc2)C1)NCCC1=c2ccccc2=[NH+]C1,0
368
+ Cc1[nH+]ccn1CCC(=O)N1CCC2=c3ccccc3=[NH+]C2C1C1CCCCC1,0
369
+ CCOC(=O)C1[NH+]=c2ccc(OC)cc2=C1NC(=O)C(C)[NH+]1CCC(C(N)=O)CC1,0
370
+ CCOC(=O)C1[NH+]=c2ccc(OC)cc2=C1NC(=O)C(C)[NH+]1CCC(C(N)=O)CC1,0
371
+ Cc1cccc2c1=[NH+]C(CN(C)C(=O)CN1N[NH2+]NC1C[NH+](C)C(C)C)[NH+]=2,0
372
+ O=c1c(-c2ccccc2C[NH+]2CCOCC2)ccc2n1CC1CC2C[NH+](C2CCOCC2)C1,0
373
+ COc1cc(C[NH+]2CCC3(CCC[NH+](CC4CCC4)C3)C2)cc2c1OCO2,0
374
+ Cc1ccc2c(c1)C[NH+](CC(=O)N1CCC([NH+]3CCOCC3)CC1)CC(c1ccsc1)O2,0
375
+ C[NH+]1CCC2(CCN(C(=O)c3ccc(OC4CC[NH+](CCc5ccccc5)CC4)cc3)C2)C1,0
376
+ CCOC(=O)C1[NH+]=c2ccc(F)cc2=C1NC(=O)C(C)[NH+]1CCCCC1,0
377
+ O=C(CCC1=c2ccccc2=[NH+]C1)NCc1ccc(N2CCOCC2)[nH+]c1,0
378
+ Cc1ccc2c(c1)=C1SC(C(=O)NCCC[NH+](C)Cc3ccccc3)C=C1C(=O)[NH+]=2,0
379
+ COc1ccc2c(c1)=C(CC[NH2+]C1CC(=O)N(c3cccc4ccccc34)C1=O)C[NH+]=2,0
380
+ O=C(NCC1CCC[NH+](C2CSCCSC2)C1)C1C=c2ccccc2=[NH+]1,0
381
+ Cc1ccc2occ(C[NH+]3CCCC(c4ccnc(SCC[NH+]5CCCC5)n4)C3)c(=O)c2c1,0
382
+ COc1ccc(-c2nn(-c3ccccc3C)cc2C[NH2+]CCC2CCC[NH+]2C)cc1F,0
383
+ CCC[NH+]1CCC(N2CCC3(CCC[NH+](Cc4cccc(F)c4F)C3)C2)CC1,0
384
+ O=C(c1ccc(Cl)cc1)N1CC[NH+](CC[NH+]=c2cc(O)oc3ccccc23)CC1,0
385
+ O=c1cc(C[NH+]2CCN(c3ccc(O)cc3)CC2)[nH+]c2scc(-c3ccccc3)n12,0
386
+ O=C(CSC1N[NH+]=C(N2CCCCC2)N1c1ccccc1)C1=c2ccccc2=[NH+]C1,0
387
+ CC([NH2+]CC(C1=c2ccccc2=[NH+]C1)C1CC=CS1)C(=O)N1CCc2ccccc21,0
388
+ O=C(CC1=c2ccccc2=[NH+]C1)NCC[NH+]1Cc2ccccc2OC(c2ccccc2)C1,0
389
+ Cc1[nH+]ccn1CCC(=O)N1CCC2=c3ccccc3=[NH+]C2C1C1CCCCC1,0
390
+ O=C1C2C3=C(CC([NH2+]CCC4=c5ccccc5=[NH+]C4)CC3)SC2N=CN1Cc1cccc(F)c1,0
391
+ COc1ccc2c(c1)=[NH+]C(CN1CCN(C(=O)C3(c4cccs4)CCCC3)CC1)[NH+]=2,0
392
+ CCC1CCCCN1C(=O)C(C)[NH2+]CC(C1=c2ccccc2=[NH+]C1)C1CC=CS1,0
393
+ COc1ccc(-c2nn(-c3ccccc3)cc2C[NH+]2CCN(c3cc[nH+]cc3)CC2)c(F)c1,0
394
+ O=C(NCCCN1CCC([NH+]2CCCCC2)CC1)C1CCCN(c2[nH+]ccc3sccc23)C1,0
395
+ Nc1c2c(-c3ccccc3)c(-c3ccccc3)n(Cc3ccccc3)c2nc[n+]1CCCn1cc[nH+]c1,0
396
+ Cc1ccc2c(c1)=C1SC(C(=O)NCCC[NH+]3CC(C)CC(C)C3)C=C1C(=O)[NH+]=2,0
397
+ CC1(C2CC[NH+](CC3C=c4ccccc4=[NH+]3)CC2)NC(=O)N(Cc2ccsc2)C1=O,0
398
+ O=C(Nc1cccc(C2C=c3ccccc3=[NH+]2)c1)C1CCC[NH+](Cc2ccc(CO)o2)C1,0
399
+ Cc1c(C[NH+]2CCCC(C(=O)Nc3cccc(C4C=c5ccccc5=[NH+]4)c3)C2)cnn1C,0
400
+ COc1ccc(C[NH+]2Cc3cc(C)ccc3OC(c3ccsc3)C2)c(OC)c1OC,0
401
+ COc1ccccc1-c1nn(C[NH+](Cc2c(F)cccc2Cl)C2CC2)c(=S)n1C,0
402
+ CC(C)c1ccccc1-n1c(-c2cccnc2)nn(C[NH+]2CCc3sccc3C2)c1=S,0
403
+ CC1(C)CC(C[NH+]2CCC(Oc3cc(Cl)ccc3C(=O)N3CCCCC3)CC2)CCO1,0
404
+ COc1ccc(C[NH+]2CCCn3cccc3C2c2cccc(Cl)c2)c(OC)c1OC,0
405
+ CC(c1cccs1)[NH+](C)C1CCC(=O)N(Cc2cc3c(cc2Cl)OCO3)CC1,0
406
+ COc1cc2c(cc1OC)C(c1cccs1)N(Cc1[nH+]cc(C)c(OC)c1C)CC2,0
407
+ CCOC(=O)C1CCCN(C(=O)CC2=c3ccccc3=[NH+]C2Sc2ccccc2)C1,0
408
+ C[NH+](C)CCN1C(=O)c2oc3ccc(Cl)cc3c(=O)c2C1c1cccs1,0
409
+ N#Cc1cccc(C[NH+]2CC3CC(C2)c2c(-c4ccco4)ccc(=O)n2C3)c1,0
410
+ C[NH+](C)CCN1C(=O)c2oc3ccc(Cl)cc3c(=O)c2C1c1cccc(F)c1,0
411
+ O=C(C=Cc1ccco1)N1CCCC([NH+]2CCN(c3ccccc3F)CC2)C1,0
412
+ COc1cc(-c2nc(C[NH+]3CCCCC3c3nccs3)c(C)o2)ccc1F,0
413
+ COC(=O)C(c1ccc(Cl)cc1)[NH+]1CCN(C(=O)c2sccc2C)CC1,0
414
+ Cn1c[nH+]cc1CN1CCC2=NN=C(C3(c4ccc(Cl)cc4)CCCC3)C2C1,0
415
+ CCOc1ccc(C2C3N=C4C=CC=CC4C3CC[NH+]2CC2C=CN=N2)cc1,0
416
+ Cn1cc(C[NH+]2CC3(C)CC2CC(C)(C)C3)c(-c2ccc3c(c2)OCCO3)n1,0
417
+ C=C1CCCC2(C)CC3OC(=O)C(C[NH+]4CCC(C(=O)OCC)CC4)C3CC12,0
418
+ Cn1c(-c2ccco2)nn(C[NH+]2CCCC2Cc2cccc(F)c2)c1=S,0
419
+ Cc1ccc(C)c(OC2CC[NH+](C(C)c3nnc(-c4cccs4)o3)CC2)c1,0
420
+ Cc1c(CCC(C)C)c(NCCC[NH+]2CCOCC2)[n+]2c([nH]c3ccccc32)c1C#N,0
421
+ COc1cc(C(=O)NCCC2CCC[NH+]2C)ccc1OC1CC[NH+](C2CCCC2)CC1,0
422
+ CCOC(=O)C1[NH+]=c2ccc(Br)cc2=C1NC(=O)CC[NH+](C)C,0
423
+ CC[NH+](CC)CCCNC(=O)C1C=C2C(=O)[NH+]=c3ccccc3=C2N1C,0
424
+ CN1C2=c3ccccc3=[NH+]C(=O)C2=CC1C(=O)NCCC[NH+]1CCCC1,0
425
+ O=C1CC(C(F)F)=NC(c2ccccc2C[NH+]2CCC(Cn3cc[nH+]c3)CC2)=N1,0
426
+ C[NH+](C)CCN1CC(C(=O)NCC2C=c3cc(F)ccc3=[NH+]2)CCC1=O,0
427
+ O=C(C[NH+]1CCCC1C(=O)Nc1ccccc1)C1=c2ccccc2=[NH+]C1,0
428
+ Cn1cnnc1CC1CC[NH+](CC2C=c3ccc(F)cc3=[NH+]C2=O)CC1,0
data/data/QSAR/CXCR4/cxcr4_train.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/data/QSAR/DRD2/drd2_test.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/data/QSAR/DRD2/drd2_train.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47c9146a2736905da6cb08178d330ac7167f53989459b28ad5581fc1f7cb040b
3
+ size 12970112
data/data/USPTO/src_test.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/data/USPTO/src_train.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3984cf01980610f69e07336dfcc32de8268e075c678c5b46a1fda6c01b66349d
3
+ size 28402794
data/data/USPTO/src_valid.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/data/USPTO/tgt_test.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/data/USPTO/tgt_train.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ebb47dc821e1f27079c97b8aab778ab2de874badee069a248cd7f45be809f14
3
+ size 30955321
data/data/USPTO/tgt_valid.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/data/beamsearch_template_list.txt ADDED
@@ -0,0 +1,575 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 9
2
+ 10
3
+ 11
4
+ 15
5
+ 16
6
+ 17
7
+ 18
8
+ 26
9
+ 31
10
+ 33
11
+ 34
12
+ 35
13
+ 36
14
+ 37
15
+ 38
16
+ 39
17
+ 42
18
+ 43
19
+ 44
20
+ 45
21
+ 49
22
+ 50
23
+ 51
24
+ 52
25
+ 54
26
+ 55
27
+ 57
28
+ 60
29
+ 61
30
+ 62
31
+ 63
32
+ 64
33
+ 67
34
+ 68
35
+ 70
36
+ 73
37
+ 74
38
+ 75
39
+ 76
40
+ 77
41
+ 78
42
+ 79
43
+ 83
44
+ 85
45
+ 94
46
+ 95
47
+ 99
48
+ 101
49
+ 102
50
+ 104
51
+ 105
52
+ 107
53
+ 108
54
+ 110
55
+ 111
56
+ 113
57
+ 115
58
+ 119
59
+ 120
60
+ 123
61
+ 124
62
+ 125
63
+ 126
64
+ 127
65
+ 129
66
+ 130
67
+ 131
68
+ 132
69
+ 133
70
+ 134
71
+ 135
72
+ 137
73
+ 138
74
+ 144
75
+ 145
76
+ 146
77
+ 147
78
+ 148
79
+ 149
80
+ 153
81
+ 154
82
+ 156
83
+ 159
84
+ 160
85
+ 161
86
+ 162
87
+ 165
88
+ 166
89
+ 167
90
+ 169
91
+ 170
92
+ 174
93
+ 176
94
+ 184
95
+ 185
96
+ 187
97
+ 194
98
+ 196
99
+ 197
100
+ 198
101
+ 201
102
+ 206
103
+ 208
104
+ 209
105
+ 210
106
+ 211
107
+ 213
108
+ 214
109
+ 216
110
+ 219
111
+ 220
112
+ 221
113
+ 227
114
+ 230
115
+ 232
116
+ 233
117
+ 235
118
+ 236
119
+ 238
120
+ 240
121
+ 241
122
+ 244
123
+ 248
124
+ 250
125
+ 252
126
+ 256
127
+ 257
128
+ 258
129
+ 261
130
+ 267
131
+ 270
132
+ 271
133
+ 272
134
+ 273
135
+ 275
136
+ 276
137
+ 277
138
+ 279
139
+ 280
140
+ 284
141
+ 285
142
+ 289
143
+ 294
144
+ 295
145
+ 296
146
+ 297
147
+ 298
148
+ 299
149
+ 302
150
+ 304
151
+ 305
152
+ 308
153
+ 309
154
+ 310
155
+ 314
156
+ 315
157
+ 321
158
+ 323
159
+ 326
160
+ 327
161
+ 329
162
+ 330
163
+ 331
164
+ 332
165
+ 333
166
+ 334
167
+ 336
168
+ 338
169
+ 340
170
+ 342
171
+ 346
172
+ 347
173
+ 349
174
+ 351
175
+ 352
176
+ 353
177
+ 354
178
+ 355
179
+ 359
180
+ 364
181
+ 365
182
+ 367
183
+ 368
184
+ 371
185
+ 375
186
+ 379
187
+ 380
188
+ 382
189
+ 385
190
+ 389
191
+ 392
192
+ 393
193
+ 398
194
+ 399
195
+ 405
196
+ 406
197
+ 407
198
+ 411
199
+ 413
200
+ 414
201
+ 416
202
+ 422
203
+ 425
204
+ 426
205
+ 427
206
+ 429
207
+ 433
208
+ 434
209
+ 435
210
+ 437
211
+ 438
212
+ 439
213
+ 440
214
+ 441
215
+ 442
216
+ 443
217
+ 446
218
+ 450
219
+ 454
220
+ 455
221
+ 458
222
+ 459
223
+ 460
224
+ 461
225
+ 462
226
+ 463
227
+ 464
228
+ 467
229
+ 468
230
+ 469
231
+ 470
232
+ 473
233
+ 474
234
+ 478
235
+ 479
236
+ 482
237
+ 483
238
+ 484
239
+ 485
240
+ 487
241
+ 488
242
+ 493
243
+ 494
244
+ 495
245
+ 496
246
+ 498
247
+ 499
248
+ 501
249
+ 502
250
+ 503
251
+ 505
252
+ 508
253
+ 509
254
+ 510
255
+ 511
256
+ 512
257
+ 513
258
+ 514
259
+ 515
260
+ 516
261
+ 517
262
+ 519
263
+ 521
264
+ 523
265
+ 524
266
+ 525
267
+ 526
268
+ 527
269
+ 528
270
+ 530
271
+ 534
272
+ 536
273
+ 539
274
+ 540
275
+ 541
276
+ 542
277
+ 544
278
+ 547
279
+ 548
280
+ 549
281
+ 550
282
+ 551
283
+ 553
284
+ 554
285
+ 556
286
+ 557
287
+ 558
288
+ 559
289
+ 563
290
+ 564
291
+ 565
292
+ 566
293
+ 567
294
+ 572
295
+ 577
296
+ 578
297
+ 579
298
+ 580
299
+ 583
300
+ 584
301
+ 585
302
+ 586
303
+ 587
304
+ 589
305
+ 592
306
+ 593
307
+ 596
308
+ 597
309
+ 598
310
+ 599
311
+ 600
312
+ 601
313
+ 603
314
+ 604
315
+ 605
316
+ 606
317
+ 607
318
+ 608
319
+ 609
320
+ 611
321
+ 612
322
+ 613
323
+ 614
324
+ 616
325
+ 621
326
+ 623
327
+ 627
328
+ 629
329
+ 633
330
+ 635
331
+ 636
332
+ 637
333
+ 640
334
+ 644
335
+ 645
336
+ 646
337
+ 647
338
+ 648
339
+ 649
340
+ 651
341
+ 652
342
+ 653
343
+ 656
344
+ 657
345
+ 658
346
+ 659
347
+ 662
348
+ 663
349
+ 664
350
+ 666
351
+ 667
352
+ 668
353
+ 669
354
+ 673
355
+ 674
356
+ 675
357
+ 676
358
+ 678
359
+ 679
360
+ 681
361
+ 683
362
+ 685
363
+ 688
364
+ 690
365
+ 691
366
+ 692
367
+ 693
368
+ 696
369
+ 697
370
+ 699
371
+ 700
372
+ 701
373
+ 702
374
+ 709
375
+ 710
376
+ 712
377
+ 714
378
+ 715
379
+ 716
380
+ 718
381
+ 719
382
+ 721
383
+ 722
384
+ 723
385
+ 724
386
+ 725
387
+ 727
388
+ 728
389
+ 729
390
+ 733
391
+ 734
392
+ 736
393
+ 737
394
+ 738
395
+ 739
396
+ 741
397
+ 744
398
+ 747
399
+ 749
400
+ 751
401
+ 753
402
+ 756
403
+ 757
404
+ 759
405
+ 760
406
+ 763
407
+ 764
408
+ 765
409
+ 766
410
+ 767
411
+ 769
412
+ 770
413
+ 773
414
+ 774
415
+ 775
416
+ 776
417
+ 777
418
+ 778
419
+ 780
420
+ 785
421
+ 787
422
+ 788
423
+ 790
424
+ 791
425
+ 792
426
+ 794
427
+ 795
428
+ 797
429
+ 798
430
+ 799
431
+ 801
432
+ 802
433
+ 804
434
+ 808
435
+ 809
436
+ 810
437
+ 811
438
+ 814
439
+ 816
440
+ 817
441
+ 818
442
+ 819
443
+ 821
444
+ 822
445
+ 823
446
+ 824
447
+ 828
448
+ 829
449
+ 833
450
+ 835
451
+ 836
452
+ 837
453
+ 842
454
+ 844
455
+ 845
456
+ 846
457
+ 851
458
+ 853
459
+ 855
460
+ 857
461
+ 858
462
+ 859
463
+ 860
464
+ 861
465
+ 862
466
+ 863
467
+ 864
468
+ 865
469
+ 866
470
+ 868
471
+ 869
472
+ 870
473
+ 871
474
+ 872
475
+ 873
476
+ 874
477
+ 875
478
+ 876
479
+ 878
480
+ 879
481
+ 880
482
+ 882
483
+ 883
484
+ 884
485
+ 886
486
+ 888
487
+ 889
488
+ 890
489
+ 891
490
+ 892
491
+ 893
492
+ 894
493
+ 895
494
+ 899
495
+ 900
496
+ 901
497
+ 902
498
+ 903
499
+ 904
500
+ 905
501
+ 906
502
+ 907
503
+ 908
504
+ 909
505
+ 910
506
+ 911
507
+ 912
508
+ 913
509
+ 914
510
+ 916
511
+ 917
512
+ 918
513
+ 919
514
+ 920
515
+ 921
516
+ 922
517
+ 924
518
+ 925
519
+ 926
520
+ 927
521
+ 928
522
+ 929
523
+ 931
524
+ 932
525
+ 933
526
+ 936
527
+ 937
528
+ 938
529
+ 939
530
+ 941
531
+ 944
532
+ 946
533
+ 947
534
+ 948
535
+ 950
536
+ 951
537
+ 952
538
+ 953
539
+ 954
540
+ 955
541
+ 957
542
+ 958
543
+ 960
544
+ 961
545
+ 962
546
+ 963
547
+ 965
548
+ 967
549
+ 968
550
+ 969
551
+ 970
552
+ 971
553
+ 972
554
+ 973
555
+ 974
556
+ 975
557
+ 976
558
+ 977
559
+ 980
560
+ 982
561
+ 984
562
+ 985
563
+ 986
564
+ 987
565
+ 989
566
+ 990
567
+ 991
568
+ 992
569
+ 993
570
+ 994
571
+ 995
572
+ 996
573
+ 997
574
+ 998
575
+ 999
data/data/input/init_smiles_akt1.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ CC1CCCN1C1CCNC1
2
+ N#Cc1ncc(C(F)(F)F)cc1N
3
+ N#Cc1cnc2c(c1)CCC2=O
4
+ Nc1ccc(Oc2cccnc2)cc1
5
+ N#Cc1ccc(-c2cnco2)cc1
data/data/input/init_smiles_cxcr4.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ NCC(O)c1ccccc1
2
+ Cc1cn(C)c(CSCCN)n1
3
+ NCc1ccc2ccccc2c1
4
+ NNc1cccc2ncccc12
5
+ NCCc1ccccn1
data/data/input/init_smiles_drd2.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ OC1CCc2cc(F)ccc21
2
+ c1ccc2c(c1)CC1CNCCN21
3
+ NC1CCN(CCc2ccccc2)C1
4
+ Oc1ccc2c(c1)CNCC2
5
+ N#Cc1cccc(N2CCNCC2)c1
data/data/input/test.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ C c 1 c c c 2 [nH] c3 c ( c 2 c 1 ) C N ( C ) C C 3
data/data/input/unseen_ZINC_AKT1.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Brc1ccccn1
data/data/input/unseen_ZINC_CXCR4.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ O=C1N=C(O)C(Br)N1
data/data/input/unseen_ZINC_DRD2.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Brc1ccccn1
data/data/label_template.json ADDED
The diff for this file is too large to render. See raw diff
 
data/env.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: tracer
2
+ channels:
3
+ - pyg
4
+ - pytorch
5
+ - nvidia
6
+ - conda-forge
7
+ - defaults
8
+ dependencies:
9
+ - mkl==2024.0
10
+ - numpy=1.23.5
11
+ - pandas=1.5.3
12
+ - pip=23.0.1
13
+ - pyg=2.3.0=py310_torch_2.0.0_cu118
14
+ - python=3.10.10
15
+ - pytorch=2.0.1=py3.10_cuda11.8_cudnn8.7.0_0
16
+ - pytorch-cuda=11.8
17
+ - rdkit=2022.03.2
18
+ - torchtext=0.15.2
19
+ - tqdm=4.65.0
20
+ - pip:
21
+ - hydra-core==1.3.2
22
+ - json5==0.9.14
23
+ - omegaconf==2.3.0
24
+ - scikit-learn==1.2.2
data/scripts/beam_search.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import operator
3
+ import itertools
4
+ import re
5
+ import json
6
+ import hydra
7
+ from tqdm.auto import tqdm
8
+ from config.config import cs
9
+ from omegaconf import DictConfig
10
+
11
+ import rdkit.Chem as Chem
12
+ from rdkit.Chem import AllChem
13
+
14
+ import torch
15
+ import torchtext.vocab.vocab as Vocab
16
+ import torch.nn.functional as F
17
+
18
+ from Model.Transformer.model import Transformer
19
+ from scripts.preprocess import make_counter ,make_transforms
20
+ from Utils.utils import smi_tokenizer
21
+ from Model.GCN import network
22
+ from Model.GCN.utils import template_prediction, check_templates
23
+
24
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
25
+
26
+ with open('./data/label_template.json') as f:
27
+ r_dict = json.load(f)
28
+
29
+ class BeamSearchNode(object):
30
+ def __init__(self, previousNode, decoder_input, logProb, length):
31
+ self.prevNode = previousNode
32
+ self.dec_in = decoder_input
33
+ self.logp = logProb
34
+ self.leng = length
35
+
36
+ def eval(self, alpha=0.6):
37
+ return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha)
38
+
39
+ def check_templates(indices, input_smi):
40
+ matched_indices = []
41
+ input_smi = input_smi.replace(' ','')
42
+ molecule = Chem.MolFromSmiles(input_smi)
43
+ for i in indices:
44
+ idx = str(i.item())
45
+ rsmi = r_dict[idx]
46
+ rxn = AllChem.ReactionFromSmarts(rsmi)
47
+ reactants = rxn.GetReactants()
48
+ flag = False
49
+ for reactant in reactants:
50
+ if molecule.HasSubstructMatch(reactant):
51
+ flag = True
52
+ if flag == True:
53
+ matched_indices.append(f'[{i.item()}]')
54
+ return matched_indices # ['[0]', '[123]', ... '[742]']
55
+
56
+ def beam_decode(v:Vocab, model=None, input_tokens=None, template_idx=None,
57
+ device=None, inf_max_len=None, beam_width=10, nbest=5, Temp=None,
58
+ beam_templates:list=None):
59
+
60
+ SOS_token = v['<bos>']
61
+ EOS_token = v['<eos>']
62
+ if template_idx is not None:
63
+ template_idx = re.sub(r'\D', '', template_idx)
64
+ if template_idx not in beam_templates:
65
+ beam_width = 5
66
+ nbest = 1
67
+
68
+ # A batch of one input for Encoder
69
+ encoder_input = input_tokens
70
+
71
+ # Generate encoded features
72
+ with torch.no_grad():
73
+ encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1
74
+ encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
75
+
76
+ # Start with the start of the sentence token
77
+ decoder_input = torch.tensor([[SOS_token]]) # (1,1)
78
+
79
+ # Starting node
80
+ counter = itertools.count()
81
+
82
+ node = BeamSearchNode(previousNode=None,
83
+ decoder_input=decoder_input,
84
+ logProb=0, length=0)
85
+
86
+ with torch.no_grad():
87
+ tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device)
88
+ logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
89
+ logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1
90
+ decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # (1, vocab)
91
+
92
+ tmp_beam_width = min(beam_width, decoder_output.size(1))
93
+ log_prob, indices = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,)
94
+ nextnodes = []
95
+ for new_k in range(tmp_beam_width):
96
+ decoded_t = indices[0][new_k].view(1, -1)
97
+ log_p = log_prob[0][new_k].item()
98
+ next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq)
99
+ nn = BeamSearchNode(previousNode=node,
100
+ decoder_input=next_decoder_input,
101
+ logProb=node.logp + log_p,
102
+ length=node.leng + 1)
103
+ score = -nn.eval()
104
+ count = next(counter)
105
+ nextnodes.append((score, count, nn))
106
+
107
+ # start beam search
108
+ for i in range(inf_max_len - 1):
109
+ # fetch the best node
110
+ if i == 0:
111
+ current_nodes = sorted(nextnodes)[:tmp_beam_width]
112
+ else:
113
+ current_nodes = sorted(nextnodes)[:beam_width]
114
+
115
+ nextnodes=[]
116
+ # current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,)
117
+ scores, counts, nodes, decoder_inputs = [], [], [], []
118
+
119
+ for score, count, node in current_nodes:
120
+ if node.dec_in[0][-1].item() == EOS_token:
121
+ nextnodes.append((score, count, node))
122
+ else:
123
+ scores.append(score)
124
+ counts.append(count)
125
+ nodes.append(node)
126
+ decoder_inputs.append(node.dec_in)
127
+ if not bool(decoder_inputs):
128
+ break
129
+
130
+ decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq)
131
+
132
+ # adjust batch_size
133
+ enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1)
134
+ mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1)
135
+
136
+ with torch.no_grad():
137
+ tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device)
138
+ logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask)
139
+ logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab)
140
+ decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # extract log_softmax of last token
141
+ # decoder_output.shape = (batch, vocab)
142
+
143
+ for beam, score in enumerate(scores):
144
+ for token in range(EOS_token, decoder_output.size(-1)): # remove unk, pad, bosは最初から捨てる
145
+ decoded_t = torch.tensor([[token]])
146
+ log_p = decoder_output[beam, token].item()
147
+ next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1)
148
+ node = BeamSearchNode(previousNode=nodes[beam],
149
+ decoder_input=next_decoder_input,
150
+ logProb=nodes[beam].logp + log_p,
151
+ length=nodes[beam].leng + 1)
152
+ score = -node.eval()
153
+ count = next(counter)
154
+ nextnodes.append((score, count, node))
155
+
156
+ outputs = []
157
+ for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]:
158
+ # endnodes = [(score, node), (score, node)...]
159
+ output = n.dec_in.squeeze(0).tolist()[1:-1] # remove bos and eos
160
+ output = v.lookup_tokens(output)
161
+ output = ''.join(output)
162
+ outputs.append(output)
163
+ return outputs
164
+
165
+ def greedy_translate(v:Vocab, model=None, input_tokens=None, device=None, inf_max_len=None):
166
+ '''
167
+ in:
168
+ input_tokens: (seq, batch)
169
+
170
+ out:
171
+ outputs: list of SMILES(str).
172
+ '''
173
+
174
+ SOS_token = v['<bos>']
175
+ EOS_token = v['<eos>']
176
+
177
+ # A batch of one input for Encoder
178
+ encoder_input = input_tokens.permute(1, 0) # (batch,seq) -> (seq, batch)
179
+
180
+ # Generate encoded features
181
+ with torch.no_grad():
182
+ enc_out, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
183
+
184
+ # Start with the SOS token
185
+ dec_inp = torch.tensor([[SOS_token]]).expand(1, encoder_input.size(1)).to(device) # (1, batch)
186
+ EOS_dic = {i:False for i in range(encoder_input.size(1))}
187
+
188
+ for i in range(inf_max_len - 1):
189
+ tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(dec_inp.size(0)).to(device)
190
+ logits = model.decode(memory=enc_out, tgt=dec_inp, tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
191
+ dec_out = F.softmax(logits[-1, :, :], dim=1) # extract softmax of last token, (batch, vocab)
192
+ next_items = dec_out.topk(1)[1].permute(1, 0) # (seq, batch) -> (batch, seq)
193
+ EOS_indices = (next_items == EOS_token)
194
+ # update EOS_dic
195
+ for j, EOS in enumerate(EOS_indices[0]):
196
+ if EOS:
197
+ EOS_dic[j] = True
198
+
199
+ dec_inp = torch.cat([dec_inp, next_items], dim=0)
200
+ if sum(list(EOS_dic.values())) == encoder_input.size(1):
201
+ break
202
+ out = dec_inp.permute(1, 0).to('cpu') # (seq, batch) -> (batch, seq)
203
+ outputs = []
204
+ for i in range(out.size(0)):
205
+ out_tokens = v.lookup_tokens(out[i].tolist())
206
+ try:
207
+ eos_idx = out_tokens.index('<eos>')
208
+ out_tokens = out_tokens[1:eos_idx]
209
+ outputs.append(''.join(out_tokens))
210
+ except ValueError:
211
+ continue
212
+
213
+ return outputs
214
+
215
+ def translate(cfg:DictConfig):
216
+ print('Loading...')
217
+ # make transforms and vocabulary
218
+ src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train']
219
+ tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train']
220
+ src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid']
221
+ tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid']
222
+ data_dict = make_counter(src_train_path=src_train_path,
223
+ tgt_train_path=tgt_train_path,
224
+ src_valid_path=src_valid_path,
225
+ tgt_valid_path=tgt_valid_path
226
+ )
227
+ src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
228
+
229
+ # load model
230
+ d_model = cfg['model']['dim_model']
231
+ num_encoder_layers = cfg['model']['num_encoder_layers']
232
+ num_decoder_layers = cfg['model']['num_decoder_layers']
233
+ nhead = cfg['model']['nhead']
234
+ dropout = cfg['model']['dropout']
235
+ dim_ff = cfg['model']['dim_ff']
236
+ model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
237
+ dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
238
+ ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device)
239
+ model.load_state_dict(ckpt['model_state_dict'])
240
+ model.eval()
241
+
242
+ # make dataset
243
+ src = []
244
+ src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path']
245
+ with open(src_test_path,'r') as f:
246
+ for line in f:
247
+ src.append(line.rstrip())
248
+
249
+ dim_GCN = cfg['GCN_train']['dim']
250
+ n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
251
+ n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
252
+ GCN_model = network.MolecularGCN(dim = dim_GCN,
253
+ n_conv_hidden = n_conv_hidden,
254
+ n_mlp_hidden = n_mlp_hidden,
255
+ dropout = dropout).to(device)
256
+ GCN_ckpt = hydra.utils.get_original_cwd() + cfg['translate']['GCN_ckpt']
257
+ GCN_model.load_state_dict(torch.load(GCN_ckpt))
258
+ GCN_model.eval()
259
+
260
+ out_dir = cfg['translate']['out_dir']
261
+ beam_width = cfg['translate']['beam_size']
262
+ nbest = cfg['translate']['nbest']
263
+ inf_max_len = cfg['translate']['inf_max_len']
264
+ GCN_num_sampling = cfg['translate']['GCN_num_sampling']
265
+ with open(hydra.utils.get_original_cwd() + cfg['translate']['annotated_templates'], 'r') as f:
266
+ beam_templates = f.read().splitlines()
267
+ f.close()
268
+ print(f'The number of sampling for GCN: {GCN_num_sampling}')
269
+ print('Start translation...')
270
+ rsmis =[]
271
+ for input_smi in tqdm(src):
272
+ input_smi = input_smi.replace(' ', '')
273
+ indices = template_prediction(GCN_model=GCN_model, input_smi=input_smi,
274
+ num_sampling=GCN_num_sampling, GCN_device=device)
275
+ matched_indices = check_templates(indices, input_smi)
276
+ print(f"{len(matched_indices)} reaction templates are matched for '{input_smi}'.")
277
+ with torch.no_grad():
278
+ for i in matched_indices:
279
+ input_conditional = smi_tokenizer(i + input_smi).split(' ')
280
+ input_tokens = src_transforms(input_conditional).to(device)
281
+ outputs = beam_decode(v=v, model=model, input_tokens=input_tokens, template_idx=i,
282
+ device=device, inf_max_len=inf_max_len, beam_width=beam_width, nbest=nbest,
283
+ Temp=1, beam_templates=beam_templates)
284
+ for output in outputs:
285
+ output = smi_tokenizer(output)
286
+ rsmis.append(i + ' ' + smi_tokenizer(input_smi) + ' >> ' + output)
287
+
288
+ # set output file name
289
+ os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True)
290
+ with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}2.txt','w') as f:
291
+ for rsmi in rsmis:
292
+ f.write(rsmi + '\n')
293
+ f.close()
294
+
295
+ @hydra.main(config_path=None, config_name='config', version_base=None)
296
+ def main(cfg: DictConfig):
297
+ translate(cfg)
298
+
299
+ if __name__ == '__main__':
300
+ main()
data/scripts/gcn_train.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from torch_geometric.data import DataLoader
4
+ import torch.nn.functional as F
5
+
6
+ from Model.GCN import mol2graph
7
+ from Model.GCN.callbacks import EarlyStopping
8
+ from Model.GCN.network import MolecularGCN
9
+ from Model.GCN.utils import get_data
10
+
11
+ import hydra
12
+ import datetime
13
+ from config.config import cs
14
+ from omegaconf import DictConfig, OmegaConf
15
+ from tqdm.auto import tqdm
16
+
17
+
18
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
19
+ date = datetime.datetime.now().strftime('%Y%m%d')
20
+
21
+ def train(model, optimizer, loader):
22
+ model.train()
23
+ loss_all = 0
24
+ for data in loader:
25
+ optimizer.zero_grad()
26
+ data = data.to(device)
27
+ output = model.forward(data.x, data.edge_index, data.batch).squeeze(1)
28
+ loss = F.cross_entropy(output, data.y)
29
+ loss.backward()
30
+ loss_all += loss.item() * data.num_graphs
31
+ optimizer.step()
32
+
33
+ return loss_all / len(loader)
34
+
35
+
36
+ def eval(model, loader, ks=None):
37
+ model.eval()
38
+ score_list = []
39
+ with torch.no_grad():
40
+ loss_all = 0
41
+ for data in loader:
42
+ data = data.to(device)
43
+ output = model.forward(data.x, data.edge_index, data.batch) # output.shape = (batch_size, vocab_size)
44
+ loss = F.cross_entropy(output, data.y)
45
+ loss_all += loss.item() * data.num_graphs
46
+ if ks is not None:
47
+ for k in ks:
48
+ score_list.append(topk_accuracy(data, output, k))
49
+ return loss_all/len(loader), score_list
50
+
51
+ def topk_accuracy(data, output, k: int):
52
+ _, pred = output.topk(k, 1, True, True) # (k, dim=1, largest=True, sorted=True)
53
+ pred = pred.t() # (batch, maxk) -> (maxk, batch)
54
+ correct = pred.eq(data.y.unsqueeze(0).expand_as(pred)) # target:(batch,) -> (1, batch) -> (maxk, batch)
55
+ # Tensor.eq: compute element-wise equality, correct: bool matrix
56
+ score = correct.float().sum() / len(data)
57
+ score = score.detach().item()
58
+ return score
59
+
60
+
61
+ @hydra.main(config_path=None, config_name='config', version_base=None)
62
+ def main(cfg: DictConfig):
63
+ print('Loading data...')
64
+ train_path = cfg['GCN_train']['train']
65
+ valid_path = cfg['GCN_train']['valid']
66
+ test_path = cfg['GCN_train']['test']
67
+ batch_size = cfg['GCN_train']['batch_size']
68
+ dim = cfg['GCN_train']['dim']
69
+ n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
70
+ n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
71
+ dropout = cfg['GCN_train']['dropout']
72
+ lr = cfg['GCN_train']['lr']
73
+ epochs = cfg['GCN_train']['epochs']
74
+ patience = cfg['GCN_train']['patience']
75
+ save_path = cfg['GCN_train']['save_path']
76
+ ks = [1, 3, 5, 10]
77
+
78
+ mols_train, y_train = get_data(hydra.utils.get_original_cwd() + train_path)
79
+ mols_valid, y_valid = get_data(hydra.utils.get_original_cwd() + valid_path)
80
+
81
+ print('-'*100)
82
+ print('Training: ', mols_train.shape)
83
+ print('Validation: ', mols_valid.shape)
84
+ print('-'*100)
85
+
86
+ labels = y_train.tolist() + y_valid.tolist()
87
+
88
+ # Mol to Graph
89
+ print('Converting mol to graph...')
90
+ X_train = [mol2graph.mol2vec(m) for m in tqdm(mols_train.tolist())]
91
+ for i, data in enumerate(X_train):
92
+ data.y = torch.LongTensor([y_train[i]]).to(device)
93
+ X_valid = [mol2graph.mol2vec(m) for m in tqdm(mols_valid.tolist())]
94
+ for i, data in enumerate(X_valid):
95
+ data.y = torch.LongTensor([y_valid[i]]).to(device)
96
+ train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True, drop_last=True)
97
+ valid_loader = DataLoader(X_valid, batch_size=batch_size, shuffle=True, drop_last=True)
98
+ print('completed.')
99
+ print('-'*100)
100
+
101
+ num = 1
102
+ while True:
103
+ ckpt_dir = hydra.utils.get_original_cwd()+f'{save_path}/checkpoints_{date}_{num}'
104
+ try:
105
+ if any(os.scandir(ckpt_dir)):
106
+ num +=1
107
+ continue
108
+ else:
109
+ break
110
+ except:
111
+ os.makedirs(ckpt_dir, exist_ok=True)
112
+ break
113
+ train_path = cfg['GCN_train']['train']
114
+ valid_path = cfg['GCN_train']['valid']
115
+ test_path = cfg['GCN_train']['test']
116
+ batch_size = cfg['GCN_train']['batch_size']
117
+ dim = cfg['GCN_train']['dim']
118
+ n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
119
+ n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
120
+ dropout = cfg['GCN_train']['dropout']
121
+ lr = cfg['GCN_train']['lr']
122
+ epochs = cfg['GCN_train']['epochs']
123
+ patience = cfg['GCN_train']['patience']
124
+
125
+ # Model instance construction
126
+ print('Model instance construction')
127
+ model = MolecularGCN(
128
+ dim = dim,
129
+ n_conv_hidden = n_conv_hidden,
130
+ n_mlp_hidden = n_mlp_hidden,
131
+ dropout = dropout
132
+ ).to(device)
133
+ print(model)
134
+ print('-'*100)
135
+
136
+ # Training
137
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
138
+ earlystopping = EarlyStopping(patience=patience, path=ckpt_dir + '/ckpt.pth', verbose=True)
139
+ for epoch in range(1, epochs+1):
140
+ # training
141
+ train_loss = train(model, optimizer, train_loader)
142
+
143
+ # performance evaluation
144
+ loss_train, _ = eval(model, train_loader)
145
+ loss_valid, score_list = eval(model, valid_loader, ks=ks)
146
+ top1acc = score_list[0]
147
+ top3acc = score_list[1]
148
+ top5acc = score_list[2]
149
+ top10acc = score_list[3]
150
+
151
+ print(f'Epoch: {epoch}/{epochs}, loss_train: {loss_train:.5}, loss_valid: {loss_valid:.5}')
152
+ print(f'top k accuracy: top1={top1acc:.2}, top3={top3acc:.2}, top5={top5acc:.2}, top10={top10acc:.2}')
153
+ # early stopping detection
154
+ earlystopping(loss_valid, model)
155
+ if earlystopping.early_stop:
156
+ print('Early Stopping!')
157
+ print('-'*100)
158
+ break
159
+
160
+ if __name__ == '__main__':
161
+ main()
data/scripts/mcts.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import pandas as pd
4
+ import json
5
+ import pickle
6
+ import datetime
7
+
8
+ import hydra
9
+ from config.config import cs
10
+ from omegaconf import DictConfig
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+
15
+ import time
16
+
17
+ import warnings
18
+ warnings.filterwarnings('ignore')
19
+
20
+ import rdkit.Chem as Chem
21
+ from rdkit import RDLogger
22
+ from rdkit.Chem import Descriptors
23
+ RDLogger.DisableLog('rdApp.*')
24
+
25
+ from Model.Transformer.model import Transformer
26
+ from scripts.preprocess import make_counter ,make_transforms
27
+ from Model.GCN import network
28
+ from Model.GCN.utils import template_prediction, check_templates
29
+ from scripts.beam_search import beam_decode, greedy_translate
30
+
31
+ from Utils.utils import read_smilesset, RootNode, NormalNode, smi_tokenizer, MW_checker, is_empty
32
+ from Utils.reward import getReward
33
+
34
+ class MCTS():
35
+ def __init__(self, init_smiles, model, GCN_model, vocab, Reward, max_depth=10, c=1, step=0, n_valid=0,
36
+ n_invalid=0, max_r=-1000, r_dict=None, src_transforms=None, beam_width=10, nbest=5,
37
+ inf_max_len=256, beam_templates:list=None, rollout_depth=None, device=None, GCN_device=None,
38
+ exp_num_sampling=None, roll_num_sampling=None):
39
+ self.init_smiles = init_smiles
40
+ self.model = model
41
+ self.GCN_model = GCN_model
42
+ self.vocab = vocab
43
+ self.Reward = Reward
44
+ self.max_depth = max_depth
45
+ self.valid_smiles = {}
46
+ self.terminate_smiles = {}
47
+ self.c = c
48
+ self.count = 0
49
+ self.max_score = max_r
50
+ self.step = step
51
+ self.n_valid = n_valid
52
+ self.n_invalid = n_invalid
53
+ self.total_nodes = 0
54
+ self.expand_max = 0
55
+ self.r_dict = r_dict
56
+ self.transforms = src_transforms
57
+ self.beam_width = beam_width
58
+ self.nbest = nbest
59
+ self.inf_max_len = inf_max_len
60
+ self.beam_templates = beam_templates
61
+ self.rollout_depth = rollout_depth
62
+ self.device = device
63
+ self.GCN_device = GCN_device
64
+ self.gen_templates = []
65
+ self.num_sampling = exp_num_sampling
66
+ self.roll_num_sampling = roll_num_sampling
67
+ self.no_template = False
68
+ self.smi_to_template = {}
69
+ self.accum_time = 0
70
+
71
+ def select(self):
72
+ raise NotImplementedError()
73
+
74
+ def expand(self):
75
+ raise NotImplementedError()
76
+
77
+ def simulate(self):
78
+ raise NotImplementedError()
79
+
80
+ def backprop(self):
81
+ raise NotImplementedError()
82
+
83
+ def search(self, n_step):
84
+ raise NotImplementedError()
85
+
86
+ class ParseSelectMCTS(MCTS):
87
+ def __init__(self, *args, **kwargs):
88
+ super().__init__(*args, **kwargs)
89
+ self.root = RootNode()
90
+ self.current_node = None
91
+ self.next_smiles = {}
92
+ self.rollout_result = {}
93
+ scores, _, _ = self.Reward.reward([self.init_smiles])
94
+ _, self.init_score = scores[0]
95
+
96
+ def select(self):
97
+ '''
98
+ search for the node with no child nodes and maximum UCB score
99
+ '''
100
+ self.current_node = self.root
101
+ while len(self.current_node.children) != 0:
102
+ self.current_node = self.current_node.select_children()
103
+ if self.current_node.depth+1 > self.max_depth:
104
+ tmp = self.current_node
105
+ # update
106
+ while self.current_node is not None:
107
+ self.current_node.cum_score += -1
108
+ self.current_node.visit += 1
109
+ self.current_node = self.current_node.parent
110
+ tmp.remove_Node()
111
+ self.current_node = self.root
112
+
113
+ def expand(self):
114
+ '''
115
+ self.no_template: If the output of template_prediction for selected node is empty, self.no_template = True
116
+ self.next_smiles: key=smiles, value=reward score
117
+
118
+ '''
119
+
120
+ self.next_smiles = {}
121
+ self.smi_to_template = {}
122
+ self.expand_max = 0
123
+
124
+ ''' prediction of reaction templates '''
125
+ matched_indices = []
126
+ input_smi = self.current_node.smi
127
+ self.no_template = False
128
+ indices = template_prediction(GCN_model=self.GCN_model, input_smi=input_smi,
129
+ num_sampling=self.num_sampling, GCN_device=self.GCN_device)
130
+ matched_indices = check_templates(indices, input_smi, self.r_dict)
131
+ if len(matched_indices) != 0:
132
+ self.gen_templates.extend(matched_indices)
133
+ ''' prediction of products '''
134
+ with torch.no_grad():
135
+ for i in matched_indices:
136
+ input_conditional = smi_tokenizer(i + input_smi).split(' ')
137
+ input_tokens = self.transforms(input_conditional).to(self.device)
138
+ outputs = beam_decode(v=self.vocab, model=self.model, input_tokens=input_tokens, template_idx=i,
139
+ device=self.device, inf_max_len=self.inf_max_len, beam_width=self.beam_width,
140
+ nbest=self.nbest, Temp=1, beam_templates=self.beam_templates)
141
+ for output in outputs:
142
+ self.next_smiles[output] = 0
143
+ self.smi_to_template[output] = i
144
+ self.check()
145
+ else:
146
+ self.no_template = True
147
+ while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 10000):
148
+ self.current_node.cum_score = -10000
149
+ self.current_node.visit = 10000
150
+ self.current_node = self.current_node.parent
151
+
152
+ def check(self):
153
+ valid_list = []
154
+ invalid_list = []
155
+ score_que = []
156
+ score = None
157
+ reaction_path = []
158
+ tmp = self.current_node
159
+
160
+ if len(self.next_smiles) == 0:
161
+ self.current_node.cum_score = -100000
162
+ self.current_node.visit = 100000
163
+ self.current_node.remove_Node()
164
+ print('0 molecules are expanded.')
165
+
166
+ else:
167
+ # make reaction path
168
+ while self.current_node.depth > 0:
169
+ reaction_path.insert(0, f'{self.current_node.template}.{self.current_node.smi}')
170
+ self.current_node = self.current_node.parent
171
+ self.current_node = tmp
172
+
173
+ # scoring
174
+ for smi in self.next_smiles.keys():
175
+ mol = Chem.MolFromSmiles(smi)
176
+ if mol is None:
177
+ self.n_invalid += 1
178
+ invalid_list.append(smi)
179
+ elif (mol is not None) and (MW_checker(mol, 600) == True):
180
+ score_que.append(smi)
181
+ self.n_valid += 1
182
+ else:
183
+ invalid_list.append(smi)
184
+
185
+ scores, _, _ = self.Reward.reward(score_que)
186
+ if len(scores) != 0:
187
+ valid_scores = []
188
+ for smi, score in scores:
189
+ template = self.smi_to_template[smi]
190
+ path = reaction_path.copy()
191
+ path.append(f'{template}.{smi}')
192
+ path = '.'.join(path)
193
+ if score is not None:
194
+ self.valid_smiles[self.step, smi, path] = score
195
+ valid_list.append((score, smi))
196
+ valid_scores.append(score)
197
+ self.max_score = max(self.max_score, score)
198
+ self.expand_max = max(self.expand_max, score)
199
+ for smi in invalid_list:
200
+ self.next_smiles.pop(smi)
201
+ print(f'{len(self.next_smiles)} molecules are expanded.')
202
+ else:
203
+ self.no_template = True
204
+ while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 100000):
205
+ self.current_node.cum_score = -100000
206
+ self.current_node.visit = 100000
207
+ self.current_node = self.current_node.parent
208
+
209
+ def simulate(self):
210
+ '''rollout'''
211
+ self.rollout_result = {} # key:next_tokennext_smi, value:(smi, avg_score)
212
+ for orig_smi in self.next_smiles:
213
+ depth = 0
214
+ smi_que = [orig_smi]
215
+ max_smi = None
216
+ max_score = -10000
217
+ while depth < self.rollout_depth:
218
+ input_conditional = []
219
+ for next_smi in smi_que:
220
+ if Chem.MolFromSmiles(next_smi) is not None:
221
+ indices = template_prediction(self.GCN_model, next_smi, num_sampling=self.roll_num_sampling, GCN_device=self.GCN_device)
222
+ matched_indices = check_templates(indices, next_smi, self.r_dict)
223
+ for t in matched_indices:
224
+ input_conditional.append(smi_tokenizer(t + next_smi).split(' '))
225
+ if is_empty(input_conditional) == False:
226
+ with torch.no_grad():
227
+ input_tokens = self.transforms(input_conditional).to(self.device)
228
+ output = greedy_translate(v=self.vocab, model=self.model, input_tokens=input_tokens,
229
+ inf_max_len=self.inf_max_len, device=self.device) # output: list of SMILES
230
+ scores, max_smi_tmp, max_score_tmp = self.Reward.reward_remove_nan(output)
231
+ if max_score_tmp is None:
232
+ max_score_tmp = -10000
233
+ elif max_score < max_score_tmp:
234
+ max_score = max_score_tmp
235
+ max_smi = max_smi_tmp
236
+ else:
237
+ break
238
+ depth += 1
239
+ smi_que = output
240
+ if max_score > 0:
241
+ self.next_smiles[orig_smi] = max_score
242
+ self.rollout_result[orig_smi] = (max_smi, max_score)
243
+ else:
244
+ self.next_smiles[orig_smi] = 0
245
+
246
+ def backprop(self):
247
+ for key, value in self.next_smiles.items():
248
+ child = NormalNode(smi=key, c=self.c)
249
+ child.template = self.smi_to_template[key]
250
+ child.cum_score += value
251
+ child.imm_score = value
252
+ child.id = self.total_nodes
253
+ self.total_nodes += 1
254
+ try:
255
+ child.rollout_result = self.rollout_result[key]
256
+ except KeyError:
257
+ child.rollout_result = ('Termination', -10000)
258
+ self.current_node.add_Node(child)
259
+ max_reward = max(self.next_smiles.values())
260
+ self.max_score = max(self.max_score, max_reward)
261
+ while self.current_node is not None:
262
+ self.current_node.visit += 1
263
+ self.current_node.cum_score += max_reward
264
+ self.current_node.imm_score = max(self.current_node.imm_score, max_reward)
265
+ self.current_node = self.current_node.parent
266
+
267
+ def search(self, n_step):
268
+ n = NormalNode(self.init_smiles)
269
+ self.root.add_Node(n)
270
+ while self.step < n_step:
271
+ self.step += 1
272
+ if self.n_valid+self.n_invalid == 0:
273
+ valid_rate = 0
274
+ else:
275
+ valid_rate = self.n_valid/(self.n_valid+self.n_invalid)
276
+ print(f'step:{self.step}, INIT_SCORE:{self.init_score}, MAX_SCORE:{self.max_score}, VALIDITY:{valid_rate}')
277
+ self.select()
278
+ print(f'selected_score:{self.current_node.imm_score}')
279
+ self.expand()
280
+ expand_max = self.expand_max if self.expand_max != 0 else None
281
+ if self.no_template == True:
282
+ print('no template')
283
+ continue
284
+ if len(self.next_smiles) != 0:
285
+ self.simulate()
286
+ self.backprop()
287
+
288
+ @hydra.main(config_path=None, config_name='config', version_base=None)
289
+ def main(cfg: DictConfig):
290
+ date = datetime.datetime.now().strftime('%Y%m%d')
291
+ num = 1
292
+ while True:
293
+ out_dir = hydra.utils.get_original_cwd()+f"{cfg['mcts']['out_dir']}/{date}_{num}"
294
+ if os.path.isdir(out_dir):
295
+ num += 1
296
+ continue
297
+ else:
298
+ os.makedirs(out_dir, exist_ok=True)
299
+ break
300
+ print(f'{out_dir} was created.')
301
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
302
+
303
+ ''' preprocess '''
304
+ src_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_train']
305
+ tgt_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_train']
306
+ src_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_valid']
307
+ tgt_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_valid']
308
+ data_dict = make_counter(src_train_path=src_train_path,
309
+ tgt_train_path=tgt_train_path,
310
+ src_valid_path=src_valid_path,
311
+ tgt_valid_path=tgt_valid_path
312
+ )
313
+ src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True)
314
+
315
+ '''input smiles set'''
316
+ init_smiles = read_smilesset(hydra.utils.get_original_cwd() + cfg['mcts']['in_smiles_file'])
317
+ n_valid = 0
318
+ n_invalid = 0
319
+ mcts = None
320
+
321
+ ''' load model '''
322
+ d_model = cfg['model']['dim_model']
323
+ num_encoder_layers = cfg['model']['num_encoder_layers']
324
+ num_decoder_layers = cfg['model']['num_decoder_layers']
325
+ nhead = cfg['model']['nhead']
326
+ dropout = cfg['model']['dropout']
327
+ dim_ff = cfg['model']['dim_ff']
328
+ ckpt = cfg['mcts']['ckpt_Transformer']
329
+ model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
330
+ dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
331
+ ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'])
332
+ model.load_state_dict(ckpt['model_state_dict'])
333
+ model.eval()
334
+
335
+ ''' load GCN model'''
336
+ dim_GCN = cfg['GCN_train']['dim']
337
+ n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
338
+ n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
339
+ ckpt_GCN = cfg['mcts']['ckpt_GCN']
340
+ GCN_model = network.MolecularGCN(dim = dim_GCN,
341
+ n_conv_hidden = n_conv_hidden,
342
+ n_mlp_hidden = n_mlp_hidden,
343
+ dropout = dropout).to(device)
344
+ GCN_model.load_state_dict(torch.load(hydra.utils.get_original_cwd() + ckpt_GCN))
345
+ GCN_model.eval()
346
+
347
+ '''MCTS'''
348
+ reward = getReward(name=cfg['mcts']['reward_name'])
349
+ print('REWARD:',cfg['mcts']['reward_name'])
350
+ with open(hydra.utils.get_original_cwd() + '/data/label_template.json') as f:
351
+ r_dict = json.load(f)
352
+ f.close()
353
+ with open(hydra.utils.get_original_cwd()+'/data/beamsearch_template_list.txt', 'r') as f:
354
+ beam_templates = f.read().splitlines()
355
+ f.close()
356
+ for start_smiles in init_smiles:
357
+ input_smiles = start_smiles
358
+ start = time.time()
359
+ mcts = ParseSelectMCTS(input_smiles, model=model, GCN_model=GCN_model, vocab=v, Reward=reward,
360
+ max_depth=cfg['mcts']['max_depth'], step=0, n_valid=n_valid, n_invalid=n_invalid,
361
+ c=cfg['mcts']['ucb_c'], max_r=reward.max_r, r_dict=r_dict, src_transforms=src_transforms,
362
+ beam_width=cfg['mcts']['beam_width'], nbest=cfg['mcts']['nbest'],
363
+ beam_templates=beam_templates, rollout_depth=cfg['mcts']['rollout_depth'],
364
+ roll_num_sampling=cfg['mcts']['roll_num_sampling'], device=device,
365
+ GCN_device=device, exp_num_sampling=cfg['mcts']['exp_num_sampling'])
366
+ mcts.search(n_step=cfg['mcts']['n_step'])
367
+ reward.max_r = mcts.max_score
368
+ n_valid += mcts.n_valid
369
+ n_invalid += mcts.n_invalid
370
+ end = time.time()
371
+ print('Elapsed Time: %f' % (end-start))
372
+
373
+ generated_smiles = pd.DataFrame(columns=['SMILES', 'Reward', 'Imp', 'MW', 'step', 'reaction_path'])
374
+ scores, _, _ = reward.reward([start_smiles])
375
+ start_reward = scores[0][1]
376
+ for kv in mcts.valid_smiles.items():
377
+ step, smi, path = kv[0]
378
+ step = int(step)
379
+ try:
380
+ w = Descriptors.MolWt(Chem.MolFromSmiles(smi))
381
+ except:
382
+ w = 0
383
+ if (kv[1] is None) or (start_reward is None):
384
+ Imp = None
385
+ else:
386
+ Imp = kv[1] - start_reward
387
+ row = {'SMILES': smi, 'Reward': kv[1], 'Imp': Imp,
388
+ 'MW': w, 'step': step, 'reaction_path': path}
389
+ generated_smiles = generated_smiles.append(row, ignore_index=True)
390
+ generated_smiles = generated_smiles.sort_values('Reward', ascending=False)
391
+ generated_smiles.to_csv(out_dir + f'/{start_smiles}.csv', index=False)
392
+
393
+ if __name__ == '__main__':
394
+ main()
395
+
data/scripts/preprocess.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ import hydra
3
+ import os
4
+ from config.config import cs
5
+ from omegaconf import DictConfig
6
+ warnings.filterwarnings('ignore')
7
+ from collections import Counter
8
+
9
+ import torch
10
+ from torch.utils.data import Dataset
11
+ from torch.utils.data import DataLoader
12
+ from torchtext.vocab import vocab
13
+ import torchtext.transforms as T
14
+
15
+ class smi_Dataset(Dataset):
16
+ def __init__(self, src, tgt):
17
+ super().__init__()
18
+ self.src = src
19
+ self.tgt = tgt
20
+
21
+ def __getitem__(self, i):
22
+ src = self.src[i]
23
+ tgt = self.tgt[i]
24
+ return src, tgt
25
+
26
+ def __len__(self):
27
+ return len(self.src)
28
+
29
+ def make_smi_list(path, counter):
30
+ smi_list = []
31
+ max_length = 0
32
+ with open(path,'r') as f:
33
+ for line in f:
34
+ smi_list.append(line.rstrip().split(' '))
35
+ for i in smi_list:
36
+ counter.update(i)
37
+ if len(i) > max_length:
38
+ max_length = len(i)
39
+ return smi_list, max_length
40
+
41
+
42
+ def make_counter(src_train_path, tgt_train_path, src_valid_path, tgt_valid_path) -> dict:
43
+ src_counter = Counter()
44
+ tgt_counter = Counter()
45
+ src_train, max_src_train = make_smi_list(src_train_path, src_counter)
46
+ tgt_train, max_tgt_train = make_smi_list(tgt_train_path, tgt_counter)
47
+ src_valid, max_src_valid = make_smi_list(src_valid_path, src_counter)
48
+ tgt_valid, max_tgt_valid = make_smi_list(tgt_valid_path, tgt_counter)
49
+
50
+ src_max_length = max([max_src_train, max_src_valid])
51
+ tgt_max_length = max([max_tgt_train, max_tgt_valid])
52
+ tgt_max_length = tgt_max_length+2 # bosとeosの分を加算
53
+
54
+ datasets = []
55
+ datasets.append(src_train)
56
+ datasets.append(tgt_train)
57
+ datasets.append(src_valid)
58
+ datasets.append(tgt_valid)
59
+
60
+ return {'src_counter': src_counter, 'tgt_counter': tgt_counter,
61
+ 'src_max_len': src_max_length, 'tgt_max_len': tgt_max_length, 'datasets': datasets}
62
+
63
+ def make_transforms(data_dict, make_vocab: bool = False, vocab_load_path=None):
64
+ if make_vocab == False and vocab_load_path is None:
65
+ raise ValueError('The make_transforms function is not being passed the vocab_load_path.')
66
+ if make_vocab:
67
+ counter = data_dict['src_counter'] + data_dict['tgt_counter']
68
+ v = vocab(counter, min_freq=5, specials=(['<unk>', '<pad>', '<bos>', '<eos>']))
69
+ v.set_default_index(v['<unk>'])
70
+ else:
71
+ v = torch.load(vocab_load_path)
72
+
73
+ src_transforms = T.Sequential(
74
+ T.VocabTransform(v),
75
+ T.ToTensor(padding_value=v['<pad>']),
76
+ T.PadTransform(max_length=data_dict['src_max_len'], pad_value=v['<pad>']) # srcはbosとeosが不要
77
+ )
78
+
79
+ tgt_transforms = T.Sequential(
80
+ T.VocabTransform(v),
81
+ T.AddToken(token=v['<bos>'], begin=True),
82
+ T.AddToken(token=v['<eos>'], begin=False),
83
+ T.ToTensor(padding_value=v['<pad>']),
84
+ T.PadTransform(max_length=data_dict['tgt_max_len'],pad_value=v['<pad>'])
85
+ )
86
+
87
+ return src_transforms, tgt_transforms, v
88
+
89
+
90
+ def make_dataloader(datasets, src_transforms, tgt_transforms, batch_size):
91
+ '''
92
+ datasets: output of make_counter()
93
+ transforms: output of make_vocab()
94
+ '''
95
+
96
+ src_train = datasets[0]
97
+ tgt_train = datasets[1]
98
+ src_valid = datasets[2]
99
+ tgt_valid = datasets[3]
100
+
101
+ src_train, src_valid = src_transforms(src_train), src_transforms(src_valid)
102
+ tgt_train, tgt_valid = tgt_transforms(tgt_train), tgt_transforms(tgt_valid)
103
+
104
+ train_dataset = smi_Dataset(src=src_train, tgt=tgt_train)
105
+ valid_dataset = smi_Dataset(src=src_valid, tgt=tgt_valid)
106
+
107
+ train_dataloader = DataLoader(dataset=train_dataset,
108
+ batch_size=batch_size,
109
+ drop_last=True,
110
+ shuffle=True,
111
+ num_workers=2,
112
+ pin_memory=True
113
+ )
114
+ valid_dataloader = DataLoader(dataset=valid_dataset,
115
+ batch_size=batch_size,
116
+ drop_last=False,
117
+ shuffle=False,
118
+ num_workers=2,
119
+ pin_memory=True
120
+ )
121
+
122
+ return train_dataloader, valid_dataloader
123
+
124
+
125
+ @hydra.main(config_path=None, config_name='config', version_base=None)
126
+ def main(cfg: DictConfig):
127
+ # Loading data
128
+ print('Saving vocabulary...')
129
+ src_train_path = hydra.utils.get_original_cwd()+cfg['prep']['src_train']
130
+ tgt_train_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_train']
131
+ src_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['src_valid']
132
+ tgt_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_valid']
133
+
134
+ data_dict= make_counter(src_train_path=src_valid_path,
135
+ tgt_train_path=tgt_train_path,
136
+ src_valid_path=src_train_path,
137
+ tgt_valid_path=tgt_valid_path)
138
+
139
+ _, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
140
+ torch.save(v, hydra.utils.get_original_cwd()+'/vocab.pth')
141
+ print('done.')
142
+
143
+ if __name__ == '__main__':
144
+ main()
145
+
146
+
147
+
148
+
data/scripts/transformer_train.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import os
3
+ sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
4
+
5
+
6
+ import time
7
+ import math
8
+ import hydra
9
+ from config.config import cs
10
+ from omegaconf import DictConfig, OmegaConf
11
+
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.optim as optim
15
+ import torch.backends.cudnn as cudnn
16
+ import torch.distributed as dist
17
+ import torch.multiprocessing as mp
18
+
19
+ from Model.Transformer.model import TransformerLR, Transformer
20
+ from scripts.preprocess import make_counter, make_transforms, make_dataloader
21
+ from Utils.utils import tally_parameters, EarlyStopping, AverageMeter, accuracy, torch_fix_seed
22
+
23
+ import datetime
24
+ date = datetime.datetime.now().strftime('%Y%m%d')
25
+
26
+ torch_fix_seed()
27
+
28
+ def train(cfg):
29
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
30
+ num = 1
31
+ while True:
32
+ ckpt_dir = hydra.utils.get_original_cwd()+f'/ckpts/checkpoints_{date}_{num}'
33
+ if os.path.isdir(ckpt_dir):
34
+ num += 1
35
+ continue
36
+ else:
37
+ os.makedirs(ckpt_dir, exist_ok=True)
38
+ break
39
+ print(f'{ckpt_dir} was created.')
40
+
41
+ data_dict = make_counter(src_train_path=hydra.utils.get_original_cwd()+cfg['train']['src_train'],
42
+ tgt_train_path=hydra.utils.get_original_cwd()+cfg['train']['tgt_train'],
43
+ src_valid_path=hydra.utils.get_original_cwd()+cfg['train']['src_valid'],
44
+ tgt_valid_path=hydra.utils.get_original_cwd()+cfg['train']['tgt_valid']
45
+ )
46
+ print('making dataloader...')
47
+ src_transforms, tgt_transforms, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
48
+ train_dataloader, valid_dataloader = make_dataloader(datasets=data_dict['datasets'], src_transforms=src_transforms,
49
+ tgt_transforms=tgt_transforms,batch_size=cfg['train']['batch_size'])
50
+ print('max length of src sentence:', data_dict['src_max_len'])
51
+ d_model = cfg['model']['dim_model']
52
+ nhead = cfg['model']['nhead']
53
+ dropout = cfg['model']['dropout']
54
+ dim_ff = cfg['model']['dim_ff']
55
+ num_encoder_layers = cfg['model']['num_encoder_layers']
56
+ num_decoder_layers = cfg['model']['num_decoder_layers']
57
+ model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
58
+ dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
59
+ cudnn.benchmark = True
60
+ if device == 'cuda':
61
+ model = torch.nn.DataParallel(model) # make parallel
62
+ torch.backends.cudnn.benchmark = True
63
+
64
+ # count the number of parameters.
65
+ n_params, enc, dec = tally_parameters(model)
66
+ print('encoder: %d' % enc)
67
+ print('decoder: %d' % dec)
68
+ print('* number of parameters: %d' % n_params)
69
+
70
+ lr = cfg['train']['lr']
71
+ betas = cfg['train']['betas']
72
+ patience = cfg['train']['patience']
73
+ optimizer = optim.Adam(model.parameters(), lr=lr, betas=betas)
74
+ scheduler = TransformerLR(optimizer, warmup_epochs=8000)
75
+ label_smoothing = cfg['train']['label_smoothing']
76
+ criterion = nn.CrossEntropyLoss(label_smoothing=label_smoothing,
77
+ reduction='none',
78
+ ignore_index=v['<pad>']
79
+ )
80
+ earlystopping = EarlyStopping(patience=patience, ckpt_dir=ckpt_dir)
81
+
82
+ step_num = cfg['train']['step_num']
83
+ log_interval_step = cfg['train']['log_interval']
84
+ valid_interval_steps = cfg['train']['val_interval']
85
+ save_interval_steps = cfg['train']['save_interval']
86
+ accum_count = 1
87
+
88
+ valid_len = 0
89
+ for _, d in enumerate(valid_dataloader):
90
+ valid_len += len(d[0])
91
+
92
+ step = 0
93
+ tgt_mask = nn.Transformer.generate_square_subsequent_mask(data_dict['tgt_max_len']-1).to(device)
94
+ scaler = torch.cuda.amp.GradScaler()
95
+ total_loss = 0
96
+ accum_loss = 0
97
+ model.train()
98
+ start_time = time.time()
99
+ print('start training...')
100
+ while step < step_num:
101
+ for i, data in enumerate(train_dataloader):
102
+ src, tgt = data[0].to(device).permute(1, 0), data[1].to(device).permute(1, 0)
103
+ tgt_input = tgt[:-1, :] # (seq, batch)
104
+ tgt_output = tgt[1:, :] # shifted right
105
+ with torch.amp.autocast('cuda'):
106
+ outputs = model(src=src, tgt=tgt_input, tgt_mask=tgt_mask,
107
+ src_pad_mask=True, tgt_pad_mask=True, memory_pad_mask=True) # out: (seq_length, batch_size, vocab_size)
108
+ loss = (criterion(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1)).sum() / len(data[0])) / accum_count
109
+ scaler.scale(loss).backward()
110
+ accum_loss += loss.detach().item()
111
+ if ((i + 1) % accum_count == 0) or ((i + 1) == len(train_dataloader)):
112
+ scaler.unscale_(optimizer)
113
+ torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
114
+ scaler.step(optimizer)
115
+ scaler.update()
116
+ scheduler.step()
117
+ optimizer.zero_grad()
118
+ step += 1
119
+ total_loss += accum_loss
120
+ accum_loss = 0
121
+
122
+ if (step + 1) % log_interval_step == 0:
123
+ lr = scheduler.get_last_lr()[0]
124
+ cur_loss = total_loss / log_interval_step
125
+ ppl = math.exp(cur_loss)
126
+ end_time = time.time()
127
+ print(f'| step {step+1} | lr {lr:03.5f} | loss {cur_loss:5.5f} | ppl {ppl:8.5f} | time per {log_interval_step} step {end_time - start_time:3.1f}|')
128
+ total_loss = 0
129
+ start_time = time.time()
130
+
131
+ # validation step
132
+ if (step + 1) % valid_interval_steps == 0:
133
+ model.eval()
134
+ top1 = AverageMeter()
135
+ perfect_acc_top1 = AverageMeter()
136
+ eval_total_loss = 0.
137
+ with torch.no_grad():
138
+ for val_i, val_data in enumerate(valid_dataloader):
139
+ src, tgt = val_data[0].to(device).permute(1, 0), val_data[1].to(device).permute(1, 0)
140
+ tgt_input = tgt[:-1, :]
141
+ tgt_output = tgt[1:, :]
142
+ outputs = model(src=src, tgt=tgt_input, tgt_mask=tgt_mask,
143
+ src_pad_mask=True, tgt_pad_mask=True, memory_pad_mask=True)
144
+ tmp_eval_loss = criterion(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1)).sum() / len(val_data[0])
145
+ eval_total_loss += tmp_eval_loss.detach().item()
146
+ partial_top1, perfect_acc = accuracy(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1), batch_size=tgt_output.size(1), v=v)
147
+ top1.update(partial_top1, src.size(1))
148
+ perfect_acc_top1.update(perfect_acc, src.size(1))
149
+ eval_loss = eval_total_loss / (val_i + 1)
150
+ print(f'validation step {step+1} | validation loss {eval_loss:5.5f} | partial top1 accuracy {top1.avg:.3f} | perfect top1 accuracy {perfect_acc_top1.avg:.3f}')
151
+ if (step + 1) % save_interval_steps == 0:
152
+ earlystopping(val_loss=eval_loss, step=step, optimizer=optimizer, cur_loss=cur_loss, model=model)
153
+ model.train()
154
+ start_time = time.time()
155
+ if earlystopping.early_stop:
156
+ print('Early Stopping!')
157
+ break
158
+ if earlystopping.early_stop:
159
+ break
160
+
161
+ @hydra.main(config_path=None, config_name='config', version_base=None)
162
+ def main(cfg: DictConfig):
163
+ train(cfg)
164
+
165
+
166
+ if __name__ == '__main__':
167
+ main()
data/scripts/translate.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+ import torch
3
+ import torchtext.vocab.vocab as Vocab
4
+ import rdkit.Chem as Chem
5
+ import hydra
6
+ from config.config import cs
7
+ from omegaconf import DictConfig
8
+
9
+ from Model.Transformer.model import Transformer
10
+ from scripts.preprocess import make_counter ,make_transforms
11
+
12
+ import itertools
13
+ import os
14
+
15
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
16
+
17
+ class BeamSearchNode(object):
18
+ def __init__(self, previousNode, decoder_input, logProb, length):
19
+ self.prevNode = previousNode
20
+ self.dec_in = decoder_input.to('cpu')
21
+ self.logp = logProb
22
+ self.leng = length
23
+
24
+ def eval(self, alpha=0.6):
25
+ return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha)
26
+
27
+
28
+ def beam_decode(cfg: DictConfig, v:Vocab, model=None, input_tokens=None, Temp=1):
29
+ global beam_width, nbest
30
+ SOS_token = v['<bos>']
31
+ EOS_token = v['<eos>']
32
+ beam_width = cfg['translate']['beam_size']
33
+ nbest = cfg['translate']['nbest']
34
+ inf_max_len = cfg['translate']['inf_max_len']
35
+
36
+ # A batch of one input for Encoder
37
+ encoder_input = input_tokens
38
+
39
+ # Generate encoded features
40
+ with torch.no_grad():
41
+ encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1
42
+ encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)
43
+
44
+ # Start with the start of the sentence token
45
+ decoder_input = torch.tensor([[SOS_token]]).to(device) # (1,1)
46
+
47
+ # Starting node
48
+ counter = itertools.count()
49
+
50
+ node = BeamSearchNode(previousNode=None,
51
+ decoder_input=decoder_input,
52
+ logProb=0, length=0)
53
+
54
+ with torch.no_grad():
55
+ tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device)
56
+ logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
57
+ logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1になってる
58
+ decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) # 最後のseqだけ取り出してlog_softmax, (1, vocab)
59
+
60
+
61
+ tmp_beam_width = min(beam_width, decoder_output.size(1))
62
+ log_prob, indexes = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,)
63
+ nextnodes = []
64
+ for new_k in range(tmp_beam_width):
65
+ decoded_t = indexes[0][new_k].view(1, -1).to('cpu') # indexを取得, shape: (1,1)
66
+ log_p = log_prob[0][new_k].item() # logpを取得
67
+ next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq)
68
+ nn = BeamSearchNode(previousNode=node,
69
+ decoder_input=next_decoder_input,
70
+ logProb=node.logp + log_p,
71
+ length=node.leng + 1)
72
+ score = -nn.eval()
73
+ count = next(counter)
74
+ nextnodes.append((score, count, nn))
75
+
76
+ # start beam search
77
+ for i in range(inf_max_len - 1):
78
+ # fetch the best node
79
+ if i == 0:
80
+ current_nodes = sorted(nextnodes)[:tmp_beam_width]
81
+ else:
82
+ current_nodes = sorted(nextnodes)[:beam_width]
83
+
84
+ nextnodes=[]
85
+ # current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,)
86
+ scores, counts, nodes, decoder_inputs = [], [], [], []
87
+ for score, count, node in current_nodes:
88
+ if node.dec_in[0][-1].item() == EOS_token:
89
+ nextnodes.append((score, count, node))
90
+ else:
91
+ scores.append(score)
92
+ counts.append(count)
93
+ nodes.append(node)
94
+ decoder_inputs.append(node.dec_in)
95
+ if not bool(decoder_inputs):
96
+ break
97
+
98
+ decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq)
99
+
100
+ # adjust batch_size
101
+ enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1)
102
+ mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1)
103
+
104
+ with torch.no_grad():
105
+ tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device)
106
+ logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask)
107
+ logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab)
108
+ decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) # extract log_softmax of last token
109
+ # decoder_output.shape = (batch, vocab)
110
+
111
+ for beam, score in enumerate(scores):
112
+ for token in range(EOS_token, decoder_output.size(-1)): # indexを取得, unk, pad, bosは最初から捨てる
113
+ decoded_t = torch.tensor([[token]])
114
+ log_p = decoder_output[beam, token].item()
115
+ next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1)
116
+ node = BeamSearchNode(previousNode=nodes[beam],
117
+ decoder_input=next_decoder_input,
118
+ logProb=nodes[beam].logp + log_p,
119
+ length=nodes[beam].leng + 1)
120
+ score = -node.eval()
121
+ count = next(counter)
122
+ nextnodes.append((score, count, node))
123
+
124
+ outputs = []
125
+ for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]:
126
+ # endnodes = [(score, node), (score, node)...] なのでitemgetter(0)でscoreをkeyに指定している
127
+ output = n.dec_in.squeeze(0).tolist()[1:-1] # bosとeos削除
128
+ output = v.lookup_tokens(output)
129
+ output = ' '.join(output)
130
+ outputs.append(output)
131
+
132
+ return outputs
133
+
134
+
135
+ def translation(cfg:DictConfig):
136
+ # make transforms and vocabulary
137
+ src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train']
138
+ tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train']
139
+ src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid']
140
+ tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid']
141
+ data_dict = make_counter(src_train_path=src_train_path,
142
+ tgt_train_path=tgt_train_path,
143
+ src_valid_path=src_valid_path,
144
+ tgt_valid_path=tgt_valid_path
145
+ )
146
+ src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
147
+
148
+ # load model
149
+ d_model = cfg['model']['dim_model']
150
+ num_encoder_layers = cfg['model']['num_encoder_layers']
151
+ num_decoder_layers = cfg['model']['num_decoder_layers']
152
+ nhead = cfg['model']['nhead']
153
+ dropout = cfg['model']['dropout']
154
+ dim_ff = cfg['model']['dim_ff']
155
+ model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
156
+ dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
157
+ ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device)
158
+ model.load_state_dict(ckpt['model_state_dict'])
159
+
160
+ # make dataset
161
+ src = []
162
+ src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path']
163
+ with open(src_test_path,'r') as f:
164
+ for line in f:
165
+ src.append(line.rstrip().split(' '))
166
+ src = src_transforms(src).to(device)
167
+
168
+ rsmis =[]
169
+ for i, input_tokens in enumerate(src):
170
+ outputs = beam_decode(cfg=cfg, v=v, model=model, input_tokens=input_tokens)
171
+ input_tokens = input_tokens.tolist()
172
+ input_smi = input_tokens[0:input_tokens.index(v['<pad>'])]
173
+ input_smi = v.lookup_tokens(input_smi)
174
+ input_smi = ' '.join(input_smi)
175
+ for output in outputs:
176
+ rsmis.append(input_smi + ' >> ' + output)
177
+
178
+ out_dir = cfg['translate']['out_dir']
179
+ filename = cfg['translate']['filename']
180
+
181
+ # set output file name
182
+ os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True)
183
+ with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}_file_{filename}.txt','w') as f:
184
+ for rsmi in rsmis:
185
+ f.write(rsmi + '\n')
186
+ f.close()
187
+
188
+ @hydra.main(config_path=None, config_name='config', version_base=None)
189
+ def main(cfg: DictConfig):
190
+ translation(cfg)
191
+
192
+ if __name__ == '__main__':
193
+ main()
data/set_up.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ # You should source this script to get the correct additions to Python path
3
+
4
+ # Directory of script
5
+ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
6
+
7
+ # Set up the python paths
8
+ export PYTHONPATH=${PYTHONPATH}:${DIR}/
9
+ export PYTHONPATH=${PYTHONPATH}:${DIR}/Model/
data/translation/out_beam10_best10.txt ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c c n c c 2 ) C C N ( C ) C 1
2
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c c c n c 2 ) C C N ( C ) C 1
3
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c c n c n 2 ) C C N ( C ) C 1
4
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( O ) c 2 c c n c c 2 ) C C N ( C ) C 1
5
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c n c n c 2 ) C C N ( C ) C 1
6
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c n c c n 2 ) C C N ( C ) C 1
7
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C O c 1 c c c ( C ( O ) C n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c n 1
8
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c n n ( C ) c 2 ) C C N ( C ) C 1
9
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c c c ( C ) n c 2 ) C C N ( C ) C 1
10
+ [749] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( O ) c 2 c c c c n 2 ) C C N ( C ) C 1
11
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c ( F ) c ( F ) c 1
12
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c ( F ) c c 1
13
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c ( C ) n c 1
14
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C O c 1 c c c ( C ( C ) = C n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c c 1
15
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c ( Cl ) c ( Cl ) c 1
16
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c c ( F ) c 1
17
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c n c c 1
18
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c ( F ) c c 1 F
19
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c c c 1 F
20
+ [987] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C ( = C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2 ) c 1 c c c ( Cl ) c c 1
21
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c c c ( C ( F ) ( F ) F ) n c 2 ) C C N ( C ) C 1
22
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c c c ( C ) n c 2 ) C C N ( C ) C 1
23
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c n c 3 c c c c c 3 c 2 ) C C N ( C ) C 1
24
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c n c c ( F ) c 2 ) C C N ( C ) C 1
25
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C c 1 c c c ( C C n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c n 1
26
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c c c ( N ( C ) C ) n c 2 ) C C N ( C ) C 1
27
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c n c c c 2 C ( F ) ( F ) F ) C C N ( C ) C 1
28
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c n c ( C ) c c 2 C ( F ) ( F ) F ) C C N ( C ) C 1
29
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c n c c ( Br ) c 2 ) C C N ( C ) C 1
30
+ [986] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c c c ( = O ) [nH] c 2 ) C C N ( C ) C 1
31
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c 3 n c c c c 3 c 2 ) C C N ( C ) C 1
32
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c 3 c c n c c 3 c 2 ) C C N ( C ) C 1
33
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c c c 2 ) C C N ( C ) C 1
34
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c c ( Br ) c 2 ) C C N ( C ) C 1
35
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c ( - n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c c 1
36
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c 3 [nH] c c c 3 c 2 ) C C N ( C ) C 1
37
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c 3 c n c c c 3 c 2 ) C C N ( C ) C 1
38
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c 3 n c n c c 3 c 2 ) C C N ( C ) C 1
39
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 - c 2 c c c 3 c n n c c 3 c 2 ) C C N ( C ) C 1
40
+ [349] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C O c 1 c c c ( - n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c c 1
41
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 ) C C N ( C ) C 1
42
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 Cl ) C C N ( C ) C 1
43
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c ( Cl ) c c 2 ) C C N ( C ) C 1
44
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c n c c 2 ) C C N ( C ) C 1
45
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C O c 1 c c c ( C n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c c 1
46
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c ( F ) c c 2 ) C C N ( C ) C 1
47
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 C ( F ) ( F ) F ) C C N ( C ) C 1
48
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 F ) C C N ( C ) C 1
49
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c ( Cl ) c 2 ) C C N ( C ) C 1
50
+ [556] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c ( F ) c c c c 2 F ) C C N ( C ) C 1
51
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c c c 2 ) C C N ( C ) C 1
52
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c ( Cl ) c c 2 ) C C N ( C ) C 1
53
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c c ( Cl ) c 2 ) C C N ( C ) C 1
54
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c ( F ) c c 2 ) C C N ( C ) C 1
55
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c ( C ) c c 2 ) C C N ( C ) C 1
56
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c c c 2 Cl ) C C N ( C ) C 1
57
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c c 3 c c c c c 2 3 ) C C N ( C ) C 1
58
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c c c 2 F ) C C N ( C ) C 1
59
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C O c 1 c c c ( S ( = O ) ( = O ) n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c c 1
60
+ [648] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 S ( = O ) ( = O ) c 2 c c c 3 c c n c c 3 c 2 ) C C N ( C ) C 1
61
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2
62
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2
63
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) C ) C C N ( C ) C 1
64
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C C C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2
65
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C C ( F ) ( F ) F ) C C N ( C ) C 1
66
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C ( C ) ( C ) C ) C C N ( C ) C 1
67
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C c 2 c c c c c 2 ) C C N ( C ) C 1
68
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C C C ( C ) C ) C C N ( C ) C 1
69
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C C C C C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2
70
+ [302] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C O C C n 1 c 2 c ( c 3 c c ( C ) c c c 3 1 ) C N ( C ) C C 2
71
+ [191] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ) C C N ( C ) C 1
72
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c c c c 2 ) C C N ( C ) C 1
73
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c c ( Cl ) c c 2 ) C C N ( C ) C 1
74
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c c ( F ) c c 2 ) C C N ( C ) C 1
75
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c ( C ( = O ) n 2 c 3 c ( c 4 c c ( C ) c c c 4 2 ) C N ( C ) C C 3 ) c c 1
76
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c ( Cl ) c c c c 2 Cl ) C C N ( C ) C 1
77
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c n c c 2 ) C C N ( C ) C 1
78
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c ( Cl ) c c ( Cl ) c 2 ) C C N ( C ) C 1
79
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c c ( C ) c c 2 ) C C N ( C ) C 1
80
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c c ( Br ) c c 2 ) C C N ( C ) C 1
81
+ [232] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C ( = O ) c 2 c c c c c 2 Cl ) C C N ( C ) C 1
82
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 ) C C N ( C ) C 1
83
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c ( Br ) c 2 ) C C N ( C ) C 1
84
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c ( F ) c c 2 ) C C N ( C ) C 1
85
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 C # N ) C C N ( C ) C 1
86
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 Cl ) C C N ( C ) C 1
87
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 F ) C C N ( C ) C 1
88
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c ( F ) c 2 ) C C N ( C ) C 1
89
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c ( Br ) c c 2 ) C C N ( C ) C 1
90
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c c c 2 Br ) C C N ( C ) C 1
91
+ [528] C c 1 c c c 2 [nH] c 3 c ( c 2 c 1 ) C N ( C ) C C 3 >> C c 1 c c c 2 c ( c 1 ) c 1 c ( n 2 C c 2 c c c ( Cl ) c c 2 ) C C N ( C ) C 1
data/translation/viewer.ipynb ADDED
The diff for this file is too large to render. See raw diff