import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import math from typing import Optional, Any, Union, Callable import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import _LRScheduler from torch.nn.init import xavier_uniform_ import torchtext.vocab.vocab as Vocab class PositionalEncoding(nn.Module): # P(pos, 2d) = sin(pos/10000**(2d/D)), where d=index of token, D=d_model def __init__(self, d_model: int, pad_idx: int=1, dropout: float = 0.1, max_len: int = 5000): super().__init__() self.dropout = nn.Dropout(p=dropout) self.d_model = d_model self.pad_idx = pad_idx position = torch.arange(max_len).unsqueeze(1) # shape: (max_len, 1) の列ベクトル div_term = torch.exp(torch.arange(0, self.d_model, 2) * (-math.log(10000.0) / self.d_model)) # torch.arange(start, stop, step) -> shape: (d_model/2,) 1次元ベクトル pe = torch.zeros(max_len, 1, self.d_model) # (seq_length, 1, emb_dim) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x:torch.tensor, pad_mask=None) -> torch.tensor: """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ if pad_mask is not None: mask = pad_mask.permute(1, 0).unsqueeze(-1).repeat(1, 1, self.d_model) # paddingの位置をTrue # make embeddings relatively larger x = x * math.sqrt(self.d_model) x = x + self.pe[:x.size(0)] # max_lenが5000とかでも入力のseq_lenまでを切り取って足してる if pad_mask is not None: x = torch.where(mask == True, 0, x) # mask=Trueの位置を0に置換, それ以外はいじらない return self.dropout(x) # Learning Rate Scheduler class TransformerLR(_LRScheduler): """TransformerLR class for adjustment of learning rate. The scheduling is based on the method proposed in 'Attention is All You Need'. """ def __init__(self, optimizer, warmup_epochs=8000, last_epoch=-1, verbose=False): """Initialize class.""" self.warmup_epochs = warmup_epochs self.normalize = self.warmup_epochs**0.5 super().__init__(optimizer, last_epoch, verbose) def get_lr(self): """Return adjusted learning rate.""" step = self.last_epoch + 1 scale = self.normalize * min(step**-0.5, step * self.warmup_epochs**-1.5) return [base_lr * scale for base_lr in self.base_lrs] # Transformer model class Transformer(nn.Module): def __init__(self, d_model: int = 256, nhead: int = 8, num_encoder_layers: int = 4, num_decoder_layers: int =4, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, vocab: Vocab = None, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if vocab == None: raise RuntimeError("set vocab: torch.vocab.vocab") # INFO self.model_type = "Transformer" self.vocab = vocab num_tokens = vocab.__len__() self.positional_encoder = PositionalEncoding(d_model=d_model, pad_idx=self.vocab[''], dropout=dropout, max_len=5000 ) self.embedding = nn.Embedding(num_tokens, d_model, padding_idx=self.vocab['']) encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, layer_norm_eps, batch_first, norm_first, **factory_kwargs) encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation, layer_norm_eps, batch_first, norm_first, **factory_kwargs) decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) self.out = nn.Linear(d_model, num_tokens) self._reset_parameters() self.d_model = d_model self.nhead = nhead self.batch_first = batch_first # Transformer blocks - Out size = (seq_length, batch_size, num_tokens) # input src, tgt must be (seq_length, batch_size) def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, src_pad_mask: bool = False, tgt_pad_mask: bool = False, memory_pad_mask: bool = False) -> Tensor: if src_pad_mask is True: src_pad_mask = (src == self.vocab['']).permute(1, 0) else: src_pad_mask = None if tgt_pad_mask is True: tgt_pad_mask = (tgt == self.vocab['']).permute(1, 0) else: tgt_pad_mask = None if memory_pad_mask is True: memory_pad_mask = (src == self.vocab['']).permute(1, 0) else: memory_pad_mask = None # Embedding src = self.embedding(src) tgt = self.embedding(tgt) src = self.positional_encoder(src, src_pad_mask) tgt = self.positional_encoder(tgt, tgt_pad_mask) # Transformer layer is_batched = src.dim() == 3 if not self.batch_first and src.size(1) != tgt.size(1) and is_batched: raise RuntimeError("the batch number of src and tgt must be equal") elif self.batch_first and src.size(0) != tgt.size(0) and is_batched: raise RuntimeError("the batch number of src and tgt must be equal") if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model: raise RuntimeError("the feature number of src and tgt must be equal to d_model") memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask) transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask) out = self.out(transformer_out) return out def encode(self, src: Tensor, src_mask: Optional[Tensor] = None, src_pad_mask: bool = False) -> Tensor: if src_pad_mask is True: src_pad_mask = (src == self.vocab['']).permute(1, 0) else: src_pad_mask = None # Embedding + PE src = self.embedding(src) src = self.positional_encoder(src, src_pad_mask) # Transformer Encoder memory = self.encoder(src=src, mask=src_mask, src_key_padding_mask=src_pad_mask) return memory, src_pad_mask def decode(self, memory: Tensor, tgt: Tensor, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_pad_mask: bool = False, memory_pad_mask: Optional[Tensor] = None) -> Tensor: if tgt_pad_mask is True: tgt_pad_mask = (tgt == self.vocab['']).permute(1, 0) else: tgt_pad_mask = None tgt = self.embedding(tgt) tgt = self.positional_encoder(tgt, tgt_pad_mask) transformer_out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_pad_mask, memory_key_padding_mask=memory_pad_mask) out = self.out(transformer_out) return out def embed(self, src): src_embed = self.embedding(src) return src_embed def _reset_parameters(self): r"""Initiate parameters in the transformer model.""" for p in self.parameters(): if p.dim() > 1: xavier_uniform_(p)