url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [sub_eq_add_neg, hb4]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -e.a4 = 0 ⊢ 1 * e.a1 * e.a3 - e.a4 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← add_zero (-1), ← hchar'']
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 = -1
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 = -1 + 3
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 = -1 + 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← add_zero 1, ← hchar'']
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 = 1
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 = 1 + 3
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 = 1 + 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
linear_combination (norm := ring_nf <;> simp [hchar'']) -hb2
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [dweierstrass_dx]
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - (3 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 2 + 2 * e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [hchar'', zero_mul, zero_add]
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - (3 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 2 + 2 * e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a4) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - (2 * e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - (2 * e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a4) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) - (2 * e.a2 * pth_root (-e.a3 ^ 2 - e.a6) + e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show e.a1 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (2 * e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a4) = (e.a1 * e.a1 - 2 * e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) + (e.a1 * e.a3 - e.a4) by ring]
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) - (2 * e.a2 * pth_root (-e.a3 ^ 2 - e.a6) + e.a4) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (4 : K) = -2 by rw [← add_zero (-2), ← zero_mul (2 : K), ← hchar'']; norm_num] at hb2
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + -2 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [neg_mul, one_mul, ← sub_eq_add_neg] at hb4 hb2
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + -2 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb4 : e.a1 * e.a3 - e.a4 = 0 hb2 : e.a1 * e.a1 - 2 * e.a2 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [hb4, hb2, zero_mul, zero_add]
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb4 : e.a1 * e.a3 - e.a4 = 0 hb2 : e.a1 * e.a1 - 2 * e.a2 = 0 ⊢ (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ e.a1 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) - (2 * e.a2 * pth_root (-e.a3 ^ 2 - e.a6) + e.a4) = (e.a1 * e.a1 - 2 * e.a2) * pth_root (-e.a3 ^ 2 - e.a6) + (e.a1 * e.a3 - e.a4)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← add_zero (-2), ← zero_mul (2 : K), ← hchar'']
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 = -2
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 = -2 + 3 * 2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 = -2 + 3 * 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [dweierstrass_dy]
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd + e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd + e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a3 = 0
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) + e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 2 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a1 * pth_root (- (e.a3 ^ 2) - e.a6) + e.a3 = 3 * ((e.a1 * pth_root (-(e.a3 ^ 2) - e.a6)) + e.a3) by ring]
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) + e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3 = 0
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 3 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [hchar'', zero_mul]
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 3 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) + e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3 = 3 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rename_i hn2 hn3
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [is_singular_point]
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have h2 : (2 : K) ≠ 0 := fun hh => hn2 (ringChar_eq_of_Prime hh (by norm_num))
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have h3 : (3 : K) ≠ 0 := fun hh => hn3 (ringChar_eq_of_Prime hh (by norm_num))
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have h12 : (12 : K) ≠ 0 := by rw [show (12 : K) = 2 * 2 * 3 by norm_num] repeat' apply mul_ne_zero all_goals assumption
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
refine ⟨?_, ?_, ?_⟩
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 ∧ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. apply nzero_mul_left_cancel (12 ^ 3) _ _ (pow_ne_zero _ h12) simp only [weierstrass, div_eq_mul_inv, mul_zero] rw [show 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 3*(-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6) by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] rw [← mul_zero (2 : K), ← hc6] simp only [c6, b2, b4, b6] ring
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. apply nzero_mul_left_cancel (12 ^ 2) _ _ (pow_ne_zero _ h12) simp only [dweierstrass_dx, div_eq_mul_inv, mul_zero] rw [show 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12* e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4) by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] rw [← mul_zero (3 : K), ← hc4] simp only [c4, c6, b2, b4, b6] ring
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0 case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. apply nzero_mul_left_cancel 12 _ _ h12 simp only [dweierstrass_dy, div_eq_mul_inv, mul_zero] rw [show 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3 by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] simp only [c6, b2, b4, b6] ring
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False hh : 2 = 0 ⊢ Nat.Prime 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 hh : 3 = 0 ⊢ Nat.Prime 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (12 : K) = 2 * 2 * 3 by norm_num]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 12 ≠ 0
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 * 2 * 3 ≠ 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
repeat' apply mul_ne_zero
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 * 2 * 3 ≠ 0
case ha.ha K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 ≠ 0 case ha.hb K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 ≠ 0 case hb K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 3 ≠ 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
all_goals assumption
case ha.ha K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 ≠ 0 case ha.hb K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 ≠ 0 case hb K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 3 ≠ 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 12 = 2 * 2 * 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply mul_ne_zero
case ha K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 * 2 ≠ 0
case ha.ha K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 ≠ 0 case ha.hb K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 2 ≠ 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
assumption
case hb K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 ⊢ 3 ≠ 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply nzero_mul_left_cancel (12 ^ 3) _ _ (pow_ne_zero _ h12)
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 3 * weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 12 ^ 3 * 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [weierstrass, div_eq_mul_inv, mul_zero]
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 3 * weierstrass e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 12 ^ 3 * 0
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 3*(-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6) by ring]
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 0
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one]
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6) = 0
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * b2 e + 12 * e.a3)) ^ 2 + e.a1 * -b2 e * (-(-e.a1 * b2 e + 12 * e.a3) * 6) + 12 * e.a3 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - ((-b2 e) ^ 3 + 12 * e.a2 * (-b2 e) ^ 2 + 12 ^ 2 * e.a4 * -b2 e + 12 ^ 3 * e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← mul_zero (2 : K), ← hc6]
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * b2 e + 12 * e.a3)) ^ 2 + e.a1 * -b2 e * (-(-e.a1 * b2 e + 12 * e.a3) * 6) + 12 * e.a3 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - ((-b2 e) ^ 3 + 12 * e.a2 * (-b2 e) ^ 2 + 12 ^ 2 * e.a4 * -b2 e + 12 ^ 3 * e.a6) = 0
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * b2 e + 12 * e.a3)) ^ 2 + e.a1 * -b2 e * (-(-e.a1 * b2 e + 12 * e.a3) * 6) + 12 * e.a3 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - ((-b2 e) ^ 3 + 12 * e.a2 * (-b2 e) ^ 2 + 12 ^ 2 * e.a4 * -b2 e + 12 ^ 3 * e.a6) = 2 * c6 e
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [c6, b2, b4, b6]
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * b2 e + 12 * e.a3)) ^ 2 + e.a1 * -b2 e * (-(-e.a1 * b2 e + 12 * e.a3) * 6) + 12 * e.a3 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - ((-b2 e) ^ 3 + 12 * e.a2 * (-b2 e) ^ 2 + 12 ^ 2 * e.a4 * -b2 e + 12 ^ 3 * e.a6) = 2 * c6 e
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3)) ^ 2 + e.a1 * -(e.a1 * e.a1 + 4 * e.a2) * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) * 6) + 12 * e.a3 * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) * 6) - ((-(e.a1 * e.a1 + 4 * e.a2)) ^ 3 + 12 * e.a2 * (-(e.a1 * e.a1 + 4 * e.a2)) ^ 2 + 12 ^ 2 * e.a4 * -(e.a1 * e.a1 + 4 * e.a2) + 12 ^ 3 * e.a6) = 2 * (-(e.a1 * e.a1 + 4 * e.a2) ^ 3 + 36 * (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4) - 216 * (e.a3 * e.a3 + 4 * e.a6))
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
case pos.h_3.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 3 * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3)) ^ 2 + e.a1 * -(e.a1 * e.a1 + 4 * e.a2) * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) * 6) + 12 * e.a3 * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) * 6) - ((-(e.a1 * e.a1 + 4 * e.a2)) ^ 3 + 12 * e.a2 * (-(e.a1 * e.a1 + 4 * e.a2)) ^ 2 + 12 ^ 2 * e.a4 * -(e.a1 * e.a1 + 4 * e.a2) + 12 ^ 3 * e.a6) = 2 * (-(e.a1 * e.a1 + 4 * e.a2) ^ 3 + 36 * (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4) - 216 * (e.a3 * e.a3 + 4 * e.a6))
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply nzero_mul_left_cancel (12 ^ 2) _ _ (pow_ne_zero _ h12)
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 2 * dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 12 ^ 2 * 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [dweierstrass_dx, div_eq_mul_inv, mul_zero]
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 2 * dweierstrass_dx e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 12 ^ 2 * 0
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12* e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4) by ring]
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = 0
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one]
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4) = 0
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - (3 * (-b2 e) ^ 2 + 24 * e.a2 * -b2 e + 144 * e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← mul_zero (3 : K), ← hc4]
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - (3 * (-b2 e) ^ 2 + 24 * e.a2 * -b2 e + 144 * e.a4) = 0
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - (3 * (-b2 e) ^ 2 + 24 * e.a2 * -b2 e + 144 * e.a4) = 3 * c4 e
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [c4, c6, b2, b4, b6]
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * b2 e + 12 * e.a3) * 6) - (3 * (-b2 e) ^ 2 + 24 * e.a2 * -b2 e + 144 * e.a4) = 3 * c4 e
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) * 6) - (3 * (-(e.a1 * e.a1 + 4 * e.a2)) ^ 2 + 24 * e.a2 * -(e.a1 * e.a1 + 4 * e.a2) + 144 * e.a4) = 3 * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4))
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
case pos.h_3.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ e.a1 * (-(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) * 6) - (3 * (-(e.a1 * e.a1 + 4 * e.a2)) ^ 2 + 24 * e.a2 * -(e.a1 * e.a1 + 4 * e.a2) + 144 * e.a4) = 3 * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4))
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply nzero_mul_left_cancel 12 _ _ h12
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 0
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 * dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 12 * 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [dweierstrass_dy, div_eq_mul_inv, mul_zero]
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 * dweierstrass_dy e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) = 12 * 0
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3 by ring]
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = 0
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ -(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one]
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ -(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3 = 0
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ -(-e.a1 * b2 e + 12 * e.a3) + e.a1 * -b2 e + 12 * e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [c6, b2, b4, b6]
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ -(-e.a1 * b2 e + 12 * e.a3) + e.a1 * -b2 e + 12 * e.a3 = 0
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ -(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) + e.a1 * -(e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
case pos.h_3.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ -(-e.a1 * (e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3) + e.a1 * -(e.a1 * e.a1 + 4 * e.a2) + 12 * e.a3 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ hn2 : ringChar K = 2 → False hn3 : ringChar K = 3 → False h2 : 2 ≠ 0 h3 : 3 ≠ 0 h12 : 12 ≠ 0 ⊢ 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = -(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [is_singular_point]
case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ is_singular_point e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e)
case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ weierstrass e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 ∧ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 ∧ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
refine ⟨?_, ?_, ?_⟩
case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ weierstrass e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 ∧ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 ∧ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ weierstrass e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [weierstrass] apply nzero_mul_left_cancel (e.c4 ^ 3) _ _ (pow_ne_zero _ hc4) rw [mul_zero] simp only [div_eq_mul_inv] rw [show c4 e ^ 3 * (((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a3 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a6)) = (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * ((b2 e * b5 e + 3 * b7 e)) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a1 * ((18 * b6 e - b2 e * b4 e)) * ((b2 e * b5 e + 3 * b7 e)) + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a3 * ((b2 e * b5 e + 3 * b7 e)) - (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * ((18 * b6 e - b2 e * b4 e)) ^ 3 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a2 * ((18 * b6 e - b2 e * b4 e)) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a4 * ((18 * b6 e - b2 e * b4 e)) + c4 e * c4 e * c4 e * e.a6)) by ring] simp only [mul_inv_cancel hc4, one_mul] rw [b5, b7, c4, b2, b4, b6] rw [← mul_zero (e.a1^6 + 12*e.a1^4*e.a2 + 48*e.a1^2*e.a2^2 - 36*e.a1^3*e.a3 + 64*e.a2^3 - 144*e.a1*e.a2*e.a3 - 72*e.a1^2*e.a4 + 216*e.a3^2 - 288*e.a2*e.a4 + 864*e.a6), ← h, discr_eq_neg_singular] ring
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ weierstrass e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [dweierstrass_dx] apply nzero_mul_left_cancel (e.c4 ^ 2) _ _ (pow_ne_zero _ hc4) rw [mul_zero, pow_two] simp only [div_eq_mul_inv] rw [show c4 e * c4 e * (e.a1 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (3 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a4)) = c4 e * (c4 e)⁻¹ * c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * ((18 * b6 e - b2 e * b4 e))) - c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e by ring] simp only [mul_inv_cancel hc4, one_mul] rw [b5, b7, c4, b2, b4, b6] rw [← mul_zero (36 : K), ← h, discr_eq_neg_singular] ring
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0 case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [dweierstrass_dy] apply nzero_mul_left_cancel e.c4 _ _ hc4 simp only [div_eq_mul_inv, mul_zero] rw [show c4 e * (2 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a3) = c4 e * (c4 e)⁻¹ * (2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * ((18 * b6 e - b2 e * b4 e))) + c4 e * e.a3 by ring] simp only [mul_inv_cancel hc4, one_mul] rw [b5, b7, c4, b2, b4, b6] ring
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [weierstrass]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ weierstrass e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply nzero_mul_left_cancel (e.c4 ^ 3) _ _ (pow_ne_zero _ hc4)
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a6) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a6)) = c4 e ^ 3 * 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [mul_zero]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a6)) = c4 e ^ 3 * 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [div_eq_mul_inv]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a6)) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a3 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show c4 e ^ 3 * (((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a3 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a6)) = (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * ((b2 e * b5 e + 3 * b7 e)) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a1 * ((18 * b6 e - b2 e * b4 e)) * ((b2 e * b5 e + 3 * b7 e)) + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a3 * ((b2 e * b5 e + 3 * b7 e)) - (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * ((18 * b6 e - b2 e * b4 e)) ^ 3 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a2 * ((18 * b6 e - b2 e * b4 e)) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a4 * ((18 * b6 e - b2 e * b4 e)) + c4 e * c4 e * c4 e * e.a6)) by ring]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a3 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a6)) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (b2 e * b5 e + 3 * b7 e) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a1 * (18 * b6 e - b2 e * b4 e) * (b2 e * b5 e + 3 * b7 e) + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a3 * (b2 e * b5 e + 3 * b7 e) - (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * (18 * b6 e - b2 e * b4 e) ^ 3 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a2 * (18 * b6 e - b2 e * b4 e) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a4 * (18 * b6 e - b2 e * b4 e) + c4 e * c4 e * c4 e * e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [mul_inv_cancel hc4, one_mul]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (b2 e * b5 e + 3 * b7 e) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a1 * (18 * b6 e - b2 e * b4 e) * (b2 e * b5 e + 3 * b7 e) + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a3 * (b2 e * b5 e + 3 * b7 e) - (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * (18 * b6 e - b2 e * b4 e) ^ 3 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a2 * (18 * b6 e - b2 e * b4 e) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a4 * (18 * b6 e - b2 e * b4 e) + c4 e * c4 e * c4 e * e.a6) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (b2 e * b5 e + 3 * b7 e) ^ 2 + c4 e * e.a1 * (18 * b6 e - b2 e * b4 e) * (b2 e * b5 e + 3 * b7 e) + c4 e * c4 e * e.a3 * (b2 e * b5 e + 3 * b7 e) - ((18 * b6 e - b2 e * b4 e) ^ 3 + c4 e * e.a2 * (18 * b6 e - b2 e * b4 e) ^ 2 + c4 e * c4 e * e.a4 * (18 * b6 e - b2 e * b4 e) + c4 e * c4 e * c4 e * e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [b5, b7, c4, b2, b4, b6]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (b2 e * b5 e + 3 * b7 e) ^ 2 + c4 e * e.a1 * (18 * b6 e - b2 e * b4 e) * (b2 e * b5 e + 3 * b7 e) + c4 e * c4 e * e.a3 * (b2 e * b5 e + 3 * b7 e) - ((18 * b6 e - b2 e * b4 e) ^ 3 + c4 e * e.a2 * (18 * b6 e - b2 e * b4 e) ^ 2 + c4 e * c4 e * e.a4 * (18 * b6 e - b2 e * b4 e) + c4 e * c4 e * c4 e * e.a6) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a1 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a3 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - ((18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 3 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a4 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← mul_zero (e.a1^6 + 12*e.a1^4*e.a2 + 48*e.a1^2*e.a2^2 - 36*e.a1^3*e.a3 + 64*e.a2^3 - 144*e.a1*e.a2*e.a3 - 72*e.a1^2*e.a4 + 216*e.a3^2 - 288*e.a2*e.a4 + 864*e.a6), ← h, discr_eq_neg_singular]
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a1 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a3 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - ((18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 3 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a4 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a6) = 0
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a1 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a3 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - ((18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 3 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a4 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a6) = (e.a1 ^ 6 + 12 * e.a1 ^ 4 * e.a2 + 48 * e.a1 ^ 2 * e.a2 ^ 2 - 36 * e.a1 ^ 3 * e.a3 + 64 * e.a2 ^ 3 - 144 * e.a1 * e.a2 * e.a3 - 72 * e.a1 ^ 2 * e.a4 + 216 * e.a3 ^ 2 - 288 * e.a2 * e.a4 + 864 * e.a6) * -(e.a1 ^ 4 * e.a2 * e.a3 ^ 2 - e.a1 ^ 5 * e.a3 * e.a4 + e.a1 ^ 6 * e.a6 + 8 * e.a1 ^ 2 * e.a2 ^ 2 * e.a3 ^ 2 - e.a1 ^ 3 * e.a3 ^ 3 - 8 * e.a1 ^ 3 * e.a2 * e.a3 * e.a4 - e.a1 ^ 4 * e.a4 ^ 2 + 12 * e.a1 ^ 4 * e.a2 * e.a6 + 16 * e.a2 ^ 3 * e.a3 ^ 2 - 36 * e.a1 * e.a2 * e.a3 ^ 3 - 16 * e.a1 * e.a2 ^ 2 * e.a3 * e.a4 + 30 * e.a1 ^ 2 * e.a3 ^ 2 * e.a4 - 8 * e.a1 ^ 2 * e.a2 * e.a4 ^ 2 + 48 * e.a1 ^ 2 * e.a2 ^ 2 * e.a6 - 36 * e.a1 ^ 3 * e.a3 * e.a6 + 27 * e.a3 ^ 4 - 72 * e.a2 * e.a3 ^ 2 * e.a4 - 16 * e.a2 ^ 2 * e.a4 ^ 2 + 96 * e.a1 * e.a3 * e.a4 ^ 2 + 64 * e.a2 ^ 3 * e.a6 - 144 * e.a1 * e.a2 * e.a3 * e.a6 - 72 * e.a1 ^ 2 * e.a4 * e.a6 + 64 * e.a4 ^ 3 + 216 * e.a3 ^ 2 * e.a6 - 288 * e.a2 * e.a4 * e.a6 + 432 * e.a6 ^ 2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
case neg.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a1 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a3 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - ((18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 3 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a4 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a6) = (e.a1 ^ 6 + 12 * e.a1 ^ 4 * e.a2 + 48 * e.a1 ^ 2 * e.a2 ^ 2 - 36 * e.a1 ^ 3 * e.a3 + 64 * e.a2 ^ 3 - 144 * e.a1 * e.a2 * e.a3 - 72 * e.a1 ^ 2 * e.a4 + 216 * e.a3 ^ 2 - 288 * e.a2 * e.a4 + 864 * e.a6) * -(e.a1 ^ 4 * e.a2 * e.a3 ^ 2 - e.a1 ^ 5 * e.a3 * e.a4 + e.a1 ^ 6 * e.a6 + 8 * e.a1 ^ 2 * e.a2 ^ 2 * e.a3 ^ 2 - e.a1 ^ 3 * e.a3 ^ 3 - 8 * e.a1 ^ 3 * e.a2 * e.a3 * e.a4 - e.a1 ^ 4 * e.a4 ^ 2 + 12 * e.a1 ^ 4 * e.a2 * e.a6 + 16 * e.a2 ^ 3 * e.a3 ^ 2 - 36 * e.a1 * e.a2 * e.a3 ^ 3 - 16 * e.a1 * e.a2 ^ 2 * e.a3 * e.a4 + 30 * e.a1 ^ 2 * e.a3 ^ 2 * e.a4 - 8 * e.a1 ^ 2 * e.a2 * e.a4 ^ 2 + 48 * e.a1 ^ 2 * e.a2 ^ 2 * e.a6 - 36 * e.a1 ^ 3 * e.a3 * e.a6 + 27 * e.a3 ^ 4 - 72 * e.a2 * e.a3 ^ 2 * e.a4 - 16 * e.a2 ^ 2 * e.a4 ^ 2 + 96 * e.a1 * e.a3 * e.a4 ^ 2 + 64 * e.a2 ^ 3 * e.a6 - 144 * e.a1 * e.a2 * e.a3 * e.a6 - 72 * e.a1 ^ 2 * e.a4 * e.a6 + 64 * e.a4 ^ 3 + 216 * e.a3 ^ 2 * e.a6 - 288 * e.a2 * e.a4 * e.a6 + 432 * e.a6 ^ 2)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 3 * (((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a3 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a6)) = c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (b2 e * b5 e + 3 * b7 e) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a1 * (18 * b6 e - b2 e * b4 e) * (b2 e * b5 e + 3 * b7 e) + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a3 * (b2 e * b5 e + 3 * b7 e) - (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * (18 * b6 e - b2 e * b4 e) ^ 3 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a2 * (18 * b6 e - b2 e * b4 e) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a4 * (18 * b6 e - b2 e * b4 e) + c4 e * c4 e * c4 e * e.a6)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [dweierstrass_dx]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dx e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply nzero_mul_left_cancel (e.c4 ^ 2) _ _ (pow_ne_zero _ hc4)
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a4) = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 2 * (e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a4)) = c4 e ^ 2 * 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [mul_zero, pow_two]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e ^ 2 * (e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a4)) = c4 e ^ 2 * 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * c4 e * (e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a4)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [div_eq_mul_inv]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * c4 e * (e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd - (3 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a4)) = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * c4 e * (e.a1 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (3 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a4)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show c4 e * c4 e * (e.a1 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (3 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a4)) = c4 e * (c4 e)⁻¹ * c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * ((18 * b6 e - b2 e * b4 e))) - c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e by ring]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * c4 e * (e.a1 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (3 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a4)) = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (c4 e)⁻¹ * c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * (18 * b6 e - b2 e * b4 e)) - c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [mul_inv_cancel hc4, one_mul]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (c4 e)⁻¹ * c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * (18 * b6 e - b2 e * b4 e)) - c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * (18 * b6 e - b2 e * b4 e)) - 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [b5, b7, c4, b2, b4, b6]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * (18 * b6 e - b2 e * b4 e)) - 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * (e.a1 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - 2 * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4))) - 3 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 - e.a4 * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← mul_zero (36 : K), ← h, discr_eq_neg_singular]
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * (e.a1 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - 2 * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4))) - 3 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 - e.a4 * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) = 0
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * (e.a1 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - 2 * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4))) - 3 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 - e.a4 * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) = 36 * -(e.a1 ^ 4 * e.a2 * e.a3 ^ 2 - e.a1 ^ 5 * e.a3 * e.a4 + e.a1 ^ 6 * e.a6 + 8 * e.a1 ^ 2 * e.a2 ^ 2 * e.a3 ^ 2 - e.a1 ^ 3 * e.a3 ^ 3 - 8 * e.a1 ^ 3 * e.a2 * e.a3 * e.a4 - e.a1 ^ 4 * e.a4 ^ 2 + 12 * e.a1 ^ 4 * e.a2 * e.a6 + 16 * e.a2 ^ 3 * e.a3 ^ 2 - 36 * e.a1 * e.a2 * e.a3 ^ 3 - 16 * e.a1 * e.a2 ^ 2 * e.a3 * e.a4 + 30 * e.a1 ^ 2 * e.a3 ^ 2 * e.a4 - 8 * e.a1 ^ 2 * e.a2 * e.a4 ^ 2 + 48 * e.a1 ^ 2 * e.a2 ^ 2 * e.a6 - 36 * e.a1 ^ 3 * e.a3 * e.a6 + 27 * e.a3 ^ 4 - 72 * e.a2 * e.a3 ^ 2 * e.a4 - 16 * e.a2 ^ 2 * e.a4 ^ 2 + 96 * e.a1 * e.a3 * e.a4 ^ 2 + 64 * e.a2 ^ 3 * e.a6 - 144 * e.a1 * e.a2 * e.a3 * e.a6 - 72 * e.a1 ^ 2 * e.a4 * e.a6 + 64 * e.a4 ^ 3 + 216 * e.a3 ^ 2 * e.a6 - 288 * e.a2 * e.a4 * e.a6 + 432 * e.a6 ^ 2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
case neg.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * (e.a1 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) - 2 * e.a2 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4))) - 3 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) ^ 2 - e.a4 * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) = 36 * -(e.a1 ^ 4 * e.a2 * e.a3 ^ 2 - e.a1 ^ 5 * e.a3 * e.a4 + e.a1 ^ 6 * e.a6 + 8 * e.a1 ^ 2 * e.a2 ^ 2 * e.a3 ^ 2 - e.a1 ^ 3 * e.a3 ^ 3 - 8 * e.a1 ^ 3 * e.a2 * e.a3 * e.a4 - e.a1 ^ 4 * e.a4 ^ 2 + 12 * e.a1 ^ 4 * e.a2 * e.a6 + 16 * e.a2 ^ 3 * e.a3 ^ 2 - 36 * e.a1 * e.a2 * e.a3 ^ 3 - 16 * e.a1 * e.a2 ^ 2 * e.a3 * e.a4 + 30 * e.a1 ^ 2 * e.a3 ^ 2 * e.a4 - 8 * e.a1 ^ 2 * e.a2 * e.a4 ^ 2 + 48 * e.a1 ^ 2 * e.a2 ^ 2 * e.a6 - 36 * e.a1 ^ 3 * e.a3 * e.a6 + 27 * e.a3 ^ 4 - 72 * e.a2 * e.a3 ^ 2 * e.a4 - 16 * e.a2 ^ 2 * e.a4 ^ 2 + 96 * e.a1 * e.a3 * e.a4 ^ 2 + 64 * e.a2 ^ 3 * e.a6 - 144 * e.a1 * e.a2 * e.a3 * e.a6 - 72 * e.a1 ^ 2 * e.a4 * e.a6 + 64 * e.a4 ^ 3 + 216 * e.a3 ^ 2 * e.a6 - 288 * e.a2 * e.a4 * e.a6 + 432 * e.a6 ^ 2)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * c4 e * (e.a1 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (3 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a4)) = c4 e * (c4 e)⁻¹ * c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * (18 * b6 e - b2 e * b4 e)) - c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [dweierstrass_dy]
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ dweierstrass_dy e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e) = 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ 2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
apply nzero_mul_left_cancel e.c4 _ _ hc4
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ 2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a3 = 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a3) = c4 e * 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [div_eq_mul_inv, mul_zero]
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (2 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).snd + e.a1 * ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e).fst + e.a3) = c4 e * 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (2 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show c4 e * (2 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a3) = c4 e * (c4 e)⁻¹ * (2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * ((18 * b6 e - b2 e * b4 e))) + c4 e * e.a3 by ring]
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (2 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a3) = 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (c4 e)⁻¹ * (2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * (18 * b6 e - b2 e * b4 e)) + c4 e * e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [mul_inv_cancel hc4, one_mul]
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (c4 e)⁻¹ * (2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * (18 * b6 e - b2 e * b4 e)) + c4 e * e.a3 = 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ 2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * (18 * b6 e - b2 e * b4 e) + c4 e * e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [b5, b7, c4, b2, b4, b6]
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ 2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * (18 * b6 e - b2 e * b4 e) + c4 e * e.a3 = 0
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ 2 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) + e.a1 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
case neg.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ 2 * ((e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a4 - 2 * e.a2 * e.a3) + 3 * (e.a1 * (e.a3 ^ 2 - 12 * e.a6) + 8 * e.a3 * e.a4)) + e.a1 * (18 * (e.a3 * e.a3 + 4 * e.a6) - (e.a1 * e.a1 + 4 * e.a2) * (e.a1 * e.a3 + 2 * e.a4)) + ((e.a1 * e.a1 + 4 * e.a2) ^ 2 - 24 * (e.a1 * e.a3 + 2 * e.a4)) * e.a3 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ c4 e * (2 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a3) = c4 e * (c4 e)⁻¹ * (2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * (18 * b6 e - b2 e * b4 e)) + c4 e * e.a3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.move_singular_point
[709, 1]
[715, 8]
rw [is_singular_point, weierstrass_iso_eq_var_change, dweierstrass_dx_iso_eq_var_change, zero_mul, add_zero, dweierstrass_dy_iso_eq_var_change, var_change_comp]
K : Type u inst✝ : Field K e : Model K r t : K P : K × K h : is_singular_point e P ⊢ is_singular_point (rst_iso r 0 t e) (var_change (-r) 0 (-t) P)
K : Type u inst✝ : Field K e : Model K r t : K P : K × K h : is_singular_point e P ⊢ weierstrass e (var_change (r + -r) (0 + 0) (t + -t + 0 * -r) P) = 0 ∧ dweierstrass_dx e (var_change (r + -r) (0 + 0) (t + -t + 0 * -r) P) = 0 ∧ dweierstrass_dy e (var_change (r + -r) (0 + 0) (t + -t + 0 * -r) P) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.move_singular_point
[709, 1]
[715, 8]
simpa
K : Type u inst✝ : Field K e : Model K r t : K P : K × K h : is_singular_point e P ⊢ weierstrass e (var_change (r + -r) (0 + 0) (t + -t + 0 * -r) P) = 0 ∧ dweierstrass_dx e (var_change (r + -r) (0 + 0) (t + -t + 0 * -r) P) = 0 ∧ dweierstrass_dy e (var_change (r + -r) (0 + 0) (t + -t + 0 * -r) P) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.move_singular_point_to_origin
[717, 1]
[723, 20]
rw [move_singular_point_to_origin_iso, rst_triple, move_singular_point_to_origin_triple]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 ⊢ is_singular_point (move_singular_point_to_origin_iso e) (0, 0)
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 ⊢ is_singular_point (rst_iso ((singular_point e).fst, 0, (singular_point e).snd).fst ((singular_point e).fst, 0, (singular_point e).snd).snd.fst ((singular_point e).fst, 0, (singular_point e).snd).snd.snd e) (0, 0)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.move_singular_point_to_origin
[717, 1]
[723, 20]
convert move_singular_point e (singular_point e).fst (singular_point e).snd (is_singular_point_singular_point e h) using 2 <;> simp [var_change]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 ⊢ is_singular_point (rst_iso ((singular_point e).fst, 0, (singular_point e).snd).fst ((singular_point e).fst, 0, (singular_point e).snd).snd.fst ((singular_point e).fst, 0, (singular_point e).snd).snd.snd e) (0, 0)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.move_singular_point_to_origin'
[725, 1]
[731, 43]
rintro ⟨P, hP⟩
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K ⊢ (∃ P, is_singular_point e P) → is_singular_point (move_singular_point_to_origin_iso e) (0, 0)
case intro K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K P : K × K hP : is_singular_point e P ⊢ is_singular_point (move_singular_point_to_origin_iso e) (0, 0)