url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.c4_zero_iff_b2_zero_of_char_three
[428, 1]
[436, 11]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ 24 = 3 * 8
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
have hchar' : (ringChar K : K) = 2 := by simp [h]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 ⊢ e.a3 = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 ⊢ e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
have hchar'' : (2 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 ⊢ e.a3 = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
rw [discr, b2, b4, b6, b8, ha1, show (8 : K) = 2 * 4 by norm_num, show (4 : K) = 2 * 2 by norm_num, show (27 : K) = 2 * 13 + 1 by norm_num, hchar''] at hdisc
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ e.a3 = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : -(0 * 0 + 0 * 0 * e.a2) * (0 * 0 + 0 * 0 * e.a2) * (0 * 0 * e.a6 - 0 * e.a3 * e.a4 + 0 * 0 * e.a2 * e.a6 + e.a2 * e.a3 * e.a3 - e.a4 * e.a4) - 0 * (0 * 0) * (0 * e.a3 + 0 * e.a4) ^ 3 - (0 * 13 + 1) * (e.a3 * e.a3 + 0 * 0 * e.a6) * (e.a3 * e.a3 + 0 * 0 * e.a6) + 9 * (0 * 0 + 0 * 0 * e.a2) * (0 * e.a3 + 0 * e.a4) * (e.a3 * e.a3 + 0 * 0 * e.a6) = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
simp only [mul_zero, zero_mul, add_zero, neg_zero, sub_self, zero_add, one_mul, zero_sub, neg_eq_zero] at hdisc
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : -(0 * 0 + 0 * 0 * e.a2) * (0 * 0 + 0 * 0 * e.a2) * (0 * 0 * e.a6 - 0 * e.a3 * e.a4 + 0 * 0 * e.a2 * e.a6 + e.a2 * e.a3 * e.a3 - e.a4 * e.a4) - 0 * (0 * 0) * (0 * e.a3 + 0 * e.a4) ^ 3 - (0 * 13 + 1) * (e.a3 * e.a3 + 0 * 0 * e.a6) * (e.a3 * e.a3 + 0 * 0 * e.a6) + 9 * (0 * 0 + 0 * 0 * e.a2) * (0 * e.a3 + 0 * e.a4) * (e.a3 * e.a3 + 0 * 0 * e.a6) = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ e.a3 = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hdisc : e.a3 * e.a3 * (e.a3 * e.a3) = 0 ⊢ e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
rw [← pow_two, ← pow_two, ← pow_mul] at hdisc
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hdisc : e.a3 * e.a3 * (e.a3 * e.a3) = 0 ⊢ e.a3 = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hdisc : e.a3 ^ (2 * 2) = 0 ⊢ e.a3 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
rwa [pow_eq_zero_iff] at hdisc
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hdisc : e.a3 ^ (2 * 2) = 0 ⊢ e.a3 = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hdisc : e.a3 ^ (2 * 2) = 0 ⊢ 0 < 2 * 2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hdisc : e.a3 ^ (2 * 2) = 0 ⊢ 0 < 2 * 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
simp [h]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 ⊢ ↑(ringChar K) = 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
simp [← hchar', ringChar.Nat.cast_ringChar]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : discr e = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 ⊢ 2 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : -(0 * 0 + 4 * e.a2) * (0 * 0 + 4 * e.a2) * (0 * 0 * e.a6 - 0 * e.a3 * e.a4 + 4 * e.a2 * e.a6 + e.a2 * e.a3 * e.a3 - e.a4 * e.a4) - 8 * (0 * e.a3 + 2 * e.a4) ^ 3 - 27 * (e.a3 * e.a3 + 4 * e.a6) * (e.a3 * e.a3 + 4 * e.a6) + 9 * (0 * 0 + 4 * e.a2) * (0 * e.a3 + 2 * e.a4) * (e.a3 * e.a3 + 4 * e.a6) = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ 8 = 2 * 4
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : -(0 * 0 + 4 * e.a2) * (0 * 0 + 4 * e.a2) * (0 * 0 * e.a6 - 0 * e.a3 * e.a4 + 4 * e.a2 * e.a6 + e.a2 * e.a3 * e.a3 - e.a4 * e.a4) - 2 * 4 * (0 * e.a3 + 2 * e.a4) ^ 3 - 27 * (e.a3 * e.a3 + 4 * e.a6) * (e.a3 * e.a3 + 4 * e.a6) + 9 * (0 * 0 + 4 * e.a2) * (0 * e.a3 + 2 * e.a4) * (e.a3 * e.a3 + 4 * e.a6) = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ 4 = 2 * 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.a3_zero_of_a1_zero_of_disc_zero_of_char_two
[439, 1]
[451, 11]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 2 hdisc : -(0 * 0 + 2 * 2 * e.a2) * (0 * 0 + 2 * 2 * e.a2) * (0 * 0 * e.a6 - 0 * e.a3 * e.a4 + 2 * 2 * e.a2 * e.a6 + e.a2 * e.a3 * e.a3 - e.a4 * e.a4) - 2 * (2 * 2) * (0 * e.a3 + 2 * e.a4) ^ 3 - 27 * (e.a3 * e.a3 + 2 * 2 * e.a6) * (e.a3 * e.a3 + 2 * 2 * e.a6) + 9 * (0 * 0 + 2 * 2 * e.a2) * (0 * e.a3 + 2 * e.a4) * (e.a3 * e.a3 + 2 * 2 * e.a6) = 0 ha1 : e.a1 = 0 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ 27 = 2 * 13 + 1
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
have hchar' : (ringChar K : K) = 3 := by simp [h]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 ⊢ b4 e = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 ⊢ b4 e = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
have hchar'' : (3 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 ⊢ b4 e = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ b4 e = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
rw [discr, hb2, show (27 : K) = 3 * 9 by norm_num, show (8 : K) = 3 * 3 - 1 by norm_num, hchar''] at hdisc
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ b4 e = 0
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : -0 * 0 * b8 e - (0 * 0 - 1) * b4 e ^ 3 - 0 * 9 * b6 e * b6 e + 9 * 0 * b4 e * b6 e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ b4 e = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
simpa using hdisc
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : -0 * 0 * b8 e - (0 * 0 - 1) * b4 e ^ 3 - 0 * 9 * b6 e * b6 e + 9 * 0 * b4 e * b6 e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ b4 e = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
simp [h]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 ⊢ ↑(ringChar K) = 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
simp [← hchar', ringChar.Nat.cast_ringChar]
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : discr e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 ⊢ 3 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : -0 * 0 * b8 e - 8 * b4 e ^ 3 - 27 * b6 e * b6 e + 9 * 0 * b4 e * b6 e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ 27 = 3 * 9
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.b4_zero_of_b2_zero_of_disc_zero_of_char_three
[454, 1]
[464, 20]
norm_num
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K e : Model K h : ringChar K = 3 hdisc : -0 * 0 * b8 e - 8 * b4 e ^ 3 - 3 * 9 * b6 e * b6 e + 9 * 0 * b4 e * b6 e = 0 hb2 : b2 e = 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ 8 = 3 * 3 - 1
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.ringChar_eq_of_Prime
[488, 1]
[496, 15]
rw [← Nat.cast_eq_ofNat, ringChar.spec] at hn
K : Type u inst✝¹ : Field K n : ℕ inst✝ : Nat.AtLeastTwo n hn : OfNat.ofNat n = 0 hnp : Nat.Prime n ⊢ ringChar K = n
K : Type u inst✝¹ : Field K n : ℕ inst✝ : Nat.AtLeastTwo n hn : ringChar K ∣ n hnp : Nat.Prime n ⊢ ringChar K = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.ringChar_eq_of_Prime
[488, 1]
[496, 15]
cases (Nat.dvd_prime hnp).mp hn with | inl h => simpa [h] using CharP.char_is_prime_or_zero K (ringChar K) | inr h => assumption
K : Type u inst✝¹ : Field K n : ℕ inst✝ : Nat.AtLeastTwo n hn : ringChar K ∣ n hnp : Nat.Prime n ⊢ ringChar K = n
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.ringChar_eq_of_Prime
[488, 1]
[496, 15]
simpa [h] using CharP.char_is_prime_or_zero K (ringChar K)
case inl K : Type u inst✝¹ : Field K n : ℕ inst✝ : Nat.AtLeastTwo n hn : ringChar K ∣ n hnp : Nat.Prime n h : ringChar K = 1 ⊢ ringChar K = n
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.ringChar_eq_of_Prime
[488, 1]
[496, 15]
assumption
case inr K : Type u inst✝¹ : Field K n : ℕ inst✝ : Nat.AtLeastTwo n hn : ringChar K ∣ n hnp : Nat.Prime n h : ringChar K = n ⊢ ringChar K = n
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [singular_point]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 ⊢ is_singular_point e (singular_point e)
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 ⊢ is_singular_point e (if c4 e = 0 then match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) else ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e))
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
split_ifs with hc4
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 ⊢ is_singular_point e (if c4 e = 0 then match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2) else ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e))
case pos K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 ⊢ is_singular_point e (match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)) case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ is_singular_point e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. have hc6 : c6 e = 0 := by simpa [h, hc4, pow_succ, mul_eq_zero] using discr_identity e split . rw [is_singular_point] have hchar : ringChar K = 2 := by assumption have hchar' : (ringChar K : K) = 2 := by simp [hchar] have hchar'' : (2 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar] have hcharne : ringChar K ≠ 0 := by simp [hchar] have ha1 : e.a1 = 0 := by simpa [c4_zero_iff_a1_zero_of_char_two e hchar] using hc4 have ha3 : e.a3 = 0 := a3_zero_of_a1_zero_of_disc_zero_of_char_two e hchar h ha1 refine ⟨?_, ?_, ?_⟩ . rw [weierstrass] simp only [ha1, ha3, mul_zero, zero_add, zero_mul, add_zero] rw [show 3 = 2 + 1 by norm_num] rw [pow_succ _ 2] rw [← hchar, pth_root_pow_char hcharne] rw [pth_root_pow_char hcharne] ring_nf simp [hchar''] . rw [dweierstrass_dx] simp only [ha1, zero_mul, hchar'', add_zero, zero_sub, neg_add_rev] rw [← hchar, pth_root_pow_char hcharne, ← sub_eq_add_neg] simp only [add_sub_add_right_eq_sub, sub_eq_iff_eq_add, zero_add] rw [show (3 : K) = 2 * 2 - 1 by norm_num] rw [hchar''] simp [← neg_mul_eq_neg_mul] . simp [dweierstrass_dy, ha1, ha3, hchar''] . rw [is_singular_point] have hchar : ringChar K = 3 := by assumption have hcharne : ringChar K ≠ 0 := by simp [hchar] have hchar' : (ringChar K : K) = 3 := by simp [hchar] have hchar'' : (3 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar] have hb2 : e.b2 = 0 := by simpa [c4_zero_iff_b2_zero_of_char_three e hchar] using hc4 have hb4 : e.b4 = 0 := b4_zero_of_b2_zero_of_disc_zero_of_char_three e hchar h hb2 rw [b2] at hb2 rw [b4] at hb4 refine ⟨?_, ?_, ?_⟩ . rw [weierstrass] rw [← hchar, pth_root_pow_char hcharne] simp only rw [show (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (-(e.a3 ^ 2) - e.a6 + e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + e.a4 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a6) = (2 * e.a1 ^ 2 - e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-(e.a3 ^ 2) - e.a6) + 3 * e.a3 ^ 2 by ring] rw [show 2 * e.a1 ^ 2 - e.a2 = 0 from ?_] rw [show 4 * e.a1 * e.a3 - e.a4 = 0 from ?_] simp only [zero_mul, add_zero, hchar''] . rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = 1 by rw [← add_zero 1, ← hchar'']; norm_num] simp only [neg_mul, one_mul] at hb4 simp [sub_eq_add_neg, hb4] . linear_combination (norm := ring_nf <;> simp [hchar'']) -hb2 . rw [dweierstrass_dx] rw [hchar'', zero_mul, zero_add] simp only rw [show e.a1 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (2 * e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a4) = (e.a1 * e.a1 - 2 * e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) + (e.a1 * e.a3 - e.a4) by ring] rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = -2 by rw [← add_zero (-2), ← zero_mul (2 : K), ← hchar'']; norm_num] at hb2 simp only [neg_mul, one_mul, ← sub_eq_add_neg] at hb4 hb2 rw [hb4, hb2, zero_mul, zero_add] . rw [dweierstrass_dy] simp only rw [show 2 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a1 * pth_root (- (e.a3 ^ 2) - e.a6) + e.a3 = 3 * ((e.a1 * pth_root (-(e.a3 ^ 2) - e.a6)) + e.a3) by ring] rw [hchar'', zero_mul] . rename_i hn2 hn3 rw [is_singular_point] have h2 : (2 : K) ≠ 0 := fun hh => hn2 (ringChar_eq_of_Prime hh (by norm_num)) have h3 : (3 : K) ≠ 0 := fun hh => hn3 (ringChar_eq_of_Prime hh (by norm_num)) have h12 : (12 : K) ≠ 0 := by rw [show (12 : K) = 2 * 2 * 3 by norm_num] repeat' apply mul_ne_zero all_goals assumption refine ⟨?_, ?_, ?_⟩ . apply nzero_mul_left_cancel (12 ^ 3) _ _ (pow_ne_zero _ h12) simp only [weierstrass, div_eq_mul_inv, mul_zero] rw [show 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 3*(-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6) by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] rw [← mul_zero (2 : K), ← hc6] simp only [c6, b2, b4, b6] ring . apply nzero_mul_left_cancel (12 ^ 2) _ _ (pow_ne_zero _ h12) simp only [dweierstrass_dx, div_eq_mul_inv, mul_zero] rw [show 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12* e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4) by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] rw [← mul_zero (3 : K), ← hc4] simp only [c4, c6, b2, b4, b6] ring . apply nzero_mul_left_cancel 12 _ _ h12 simp only [dweierstrass_dy, div_eq_mul_inv, mul_zero] rw [show 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3 by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] simp only [c6, b2, b4, b6] ring
case pos K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 ⊢ is_singular_point e (match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)) case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ is_singular_point e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e)
case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ is_singular_point e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [is_singular_point] refine ⟨?_, ?_, ?_⟩ . rw [weierstrass] apply nzero_mul_left_cancel (e.c4 ^ 3) _ _ (pow_ne_zero _ hc4) rw [mul_zero] simp only [div_eq_mul_inv] rw [show c4 e ^ 3 * (((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) ^ 2 + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a3 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 3 + e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + e.a4 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a6)) = (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * ((b2 e * b5 e + 3 * b7 e)) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a1 * ((18 * b6 e - b2 e * b4 e)) * ((b2 e * b5 e + 3 * b7 e)) + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a3 * ((b2 e * b5 e + 3 * b7 e)) - (c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * ((18 * b6 e - b2 e * b4 e)) ^ 3 + c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * c4 e * e.a2 * ((18 * b6 e - b2 e * b4 e)) ^ 2 + c4 e * (c4 e)⁻¹ * c4 e * c4 e * e.a4 * ((18 * b6 e - b2 e * b4 e)) + c4 e * c4 e * c4 e * e.a6)) by ring] simp only [mul_inv_cancel hc4, one_mul] rw [b5, b7, c4, b2, b4, b6] rw [← mul_zero (e.a1^6 + 12*e.a1^4*e.a2 + 48*e.a1^2*e.a2^2 - 36*e.a1^3*e.a3 + 64*e.a2^3 - 144*e.a1*e.a2*e.a3 - 72*e.a1^2*e.a4 + 216*e.a3^2 - 288*e.a2*e.a4 + 864*e.a6), ← h, discr_eq_neg_singular] ring . rw [dweierstrass_dx] apply nzero_mul_left_cancel (e.c4 ^ 2) _ _ (pow_ne_zero _ hc4) rw [mul_zero, pow_two] simp only [div_eq_mul_inv] rw [show c4 e * c4 e * (e.a1 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) - (3 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) ^ 2 + 2 * e.a2 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a4)) = c4 e * (c4 e)⁻¹ * c4 e * (e.a1 * (b2 e * b5 e + 3 * b7 e) - 2 * e.a2 * ((18 * b6 e - b2 e * b4 e))) - c4 e * (c4 e)⁻¹ * c4 e * (c4 e)⁻¹ * 3 * (18 * b6 e - b2 e * b4 e) ^ 2 - e.a4 * c4 e * c4 e by ring] simp only [mul_inv_cancel hc4, one_mul] rw [b5, b7, c4, b2, b4, b6] rw [← mul_zero (36 : K), ← h, discr_eq_neg_singular] ring . rw [dweierstrass_dy] apply nzero_mul_left_cancel e.c4 _ _ hc4 simp only [div_eq_mul_inv, mul_zero] rw [show c4 e * (2 * ((b2 e * b5 e + 3 * b7 e) * (c4 e)⁻¹) + e.a1 * ((18 * b6 e - b2 e * b4 e) * (c4 e)⁻¹) + e.a3) = c4 e * (c4 e)⁻¹ * (2 * (b2 e * b5 e + 3 * b7 e) + e.a1 * ((18 * b6 e - b2 e * b4 e))) + c4 e * e.a3 by ring] simp only [mul_inv_cancel hc4, one_mul] rw [b5, b7, c4, b2, b4, b6] ring
case neg K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : ¬c4 e = 0 ⊢ is_singular_point e ((18 * b6 e - b2 e * b4 e) / c4 e, (b2 e * b5 e + 3 * b7 e) / c4 e)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hc6 : c6 e = 0 := by simpa [h, hc4, pow_succ, mul_eq_zero] using discr_identity e
case pos K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 ⊢ is_singular_point e (match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2))
case pos K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 ⊢ is_singular_point e (match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2))
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
split
case pos K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 ⊢ is_singular_point e (match ringChar K with | 2 => (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) | 3 => (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) | x => (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2))
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 ⊢ is_singular_point e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ is_singular_point e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [is_singular_point] have hchar : ringChar K = 2 := by assumption have hchar' : (ringChar K : K) = 2 := by simp [hchar] have hchar'' : (2 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar] have hcharne : ringChar K ≠ 0 := by simp [hchar] have ha1 : e.a1 = 0 := by simpa [c4_zero_iff_a1_zero_of_char_two e hchar] using hc4 have ha3 : e.a3 = 0 := a3_zero_of_a1_zero_of_disc_zero_of_char_two e hchar h ha1 refine ⟨?_, ?_, ?_⟩ . rw [weierstrass] simp only [ha1, ha3, mul_zero, zero_add, zero_mul, add_zero] rw [show 3 = 2 + 1 by norm_num] rw [pow_succ _ 2] rw [← hchar, pth_root_pow_char hcharne] rw [pth_root_pow_char hcharne] ring_nf simp [hchar''] . rw [dweierstrass_dx] simp only [ha1, zero_mul, hchar'', add_zero, zero_sub, neg_add_rev] rw [← hchar, pth_root_pow_char hcharne, ← sub_eq_add_neg] simp only [add_sub_add_right_eq_sub, sub_eq_iff_eq_add, zero_add] rw [show (3 : K) = 2 * 2 - 1 by norm_num] rw [hchar''] simp [← neg_mul_eq_neg_mul] . simp [dweierstrass_dy, ha1, ha3, hchar'']
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 ⊢ is_singular_point e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ is_singular_point e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ is_singular_point e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [is_singular_point] have hchar : ringChar K = 3 := by assumption have hcharne : ringChar K ≠ 0 := by simp [hchar] have hchar' : (ringChar K : K) = 3 := by simp [hchar] have hchar'' : (3 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar] have hb2 : e.b2 = 0 := by simpa [c4_zero_iff_b2_zero_of_char_three e hchar] using hc4 have hb4 : e.b4 = 0 := b4_zero_of_b2_zero_of_disc_zero_of_char_three e hchar h hb2 rw [b2] at hb2 rw [b4] at hb4 refine ⟨?_, ?_, ?_⟩ . rw [weierstrass] rw [← hchar, pth_root_pow_char hcharne] simp only rw [show (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (-(e.a3 ^ 2) - e.a6 + e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + e.a4 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a6) = (2 * e.a1 ^ 2 - e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-(e.a3 ^ 2) - e.a6) + 3 * e.a3 ^ 2 by ring] rw [show 2 * e.a1 ^ 2 - e.a2 = 0 from ?_] rw [show 4 * e.a1 * e.a3 - e.a4 = 0 from ?_] simp only [zero_mul, add_zero, hchar''] . rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = 1 by rw [← add_zero 1, ← hchar'']; norm_num] simp only [neg_mul, one_mul] at hb4 simp [sub_eq_add_neg, hb4] . linear_combination (norm := ring_nf <;> simp [hchar'']) -hb2 . rw [dweierstrass_dx] rw [hchar'', zero_mul, zero_add] simp only rw [show e.a1 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (2 * e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a4) = (e.a1 * e.a1 - 2 * e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) + (e.a1 * e.a3 - e.a4) by ring] rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = -2 by rw [← add_zero (-2), ← zero_mul (2 : K), ← hchar'']; norm_num] at hb2 simp only [neg_mul, one_mul, ← sub_eq_add_neg] at hb4 hb2 rw [hb4, hb2, zero_mul, zero_add] . rw [dweierstrass_dy] simp only rw [show 2 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a1 * pth_root (- (e.a3 ^ 2) - e.a6) + e.a3 = 3 * ((e.a1 * pth_root (-(e.a3 ^ 2) - e.a6)) + e.a3) by ring] rw [hchar'', zero_mul]
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ is_singular_point e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rename_i hn2 hn3 rw [is_singular_point] have h2 : (2 : K) ≠ 0 := fun hh => hn2 (ringChar_eq_of_Prime hh (by norm_num)) have h3 : (3 : K) ≠ 0 := fun hh => hn3 (ringChar_eq_of_Prime hh (by norm_num)) have h12 : (12 : K) ≠ 0 := by rw [show (12 : K) = 2 * 2 * 3 by norm_num] repeat' apply mul_ne_zero all_goals assumption refine ⟨?_, ?_, ?_⟩ . apply nzero_mul_left_cancel (12 ^ 3) _ _ (pow_ne_zero _ h12) simp only [weierstrass, div_eq_mul_inv, mul_zero] rw [show 12 ^ 3 * ((-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) ^ 2 + e.a1 * (-b2 e * 12⁻¹) * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a3 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - ((-b2 e * 12⁻¹) ^ 3 + e.a2 * (-b2 e * 12⁻¹) ^ 2 + e.a4 * (-b2 e * 12⁻¹) + e.a6)) = 3*(-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) ^ 2 + e.a1 * (-b2 e * (12 * 12⁻¹)) * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) + 12 * e.a3 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (6 * (2 * 2⁻¹))) - ((-b2 e * (12 * 12⁻¹)) ^ 3 + 12 * e.a2 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 12 ^ 2 * e.a4 * (-b2 e * (12 * 12⁻¹)) + 12 ^ 3 * e.a6) by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] rw [← mul_zero (2 : K), ← hc6] simp only [c6, b2, b4, b6] ring . apply nzero_mul_left_cancel (12 ^ 2) _ _ (pow_ne_zero _ h12) simp only [dweierstrass_dx, div_eq_mul_inv, mul_zero] rw [show 12 ^ 2 * (e.a1 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) - (3 * (-b2 e * 12⁻¹) ^ 2 + 2 * e.a2 * (-b2 e * 12⁻¹) + e.a4)) = e.a1 * (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12* e.a3) * 6 * (2 * 2⁻¹)) - (3 * (-b2 e * (12 * 12⁻¹)) ^ 2 + 24 * e.a2 * (-b2 e * (12 * 12⁻¹)) + 144 * e.a4) by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] rw [← mul_zero (3 : K), ← hc4] simp only [c4, c6, b2, b4, b6] ring . apply nzero_mul_left_cancel 12 _ _ h12 simp only [dweierstrass_dy, div_eq_mul_inv, mul_zero] rw [show 12 * (2 * (-(-e.a1 * b2 e * 12⁻¹ + e.a3) * 2⁻¹) + e.a1 * (-b2 e * 12⁻¹) + e.a3) = (-(-e.a1 * b2 e * (12 * 12⁻¹) + 12 * e.a3) * (2 * 2⁻¹)) + e.a1 * (-b2 e * (12 * 12⁻¹)) + 12 * e.a3 by ring] simp only [mul_inv_cancel h2, mul_inv_cancel h12, one_mul, mul_one] simp only [c6, b2, b4, b6] ring
case pos.h_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝² : ℕ x✝¹ : ringChar K = 2 → False x✝ : ringChar K = 3 → False ⊢ is_singular_point e (-b2 e / 12, -(-e.a1 * b2 e / 12 + e.a3) / 2)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simpa [h, hc4, pow_succ, mul_eq_zero] using discr_identity e
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 ⊢ c6 e = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [is_singular_point]
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 ⊢ is_singular_point e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6))
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hchar : ringChar K = 2 := by assumption
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hchar' : (ringChar K : K) = 2 := by simp [hchar]
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hchar'' : (2 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar]
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hcharne : ringChar K ≠ 0 := by simp [hchar]
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have ha1 : e.a1 = 0 := by simpa [c4_zero_iff_a1_zero_of_char_two e hchar] using hc4
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have ha3 : e.a3 = 0 := a3_zero_of_a1_zero_of_disc_zero_of_char_two e hchar h ha1
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
refine ⟨?_, ?_, ?_⟩
case pos.h_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 ∧ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [weierstrass] simp only [ha1, ha3, mul_zero, zero_add, zero_mul, add_zero] rw [show 3 = 2 + 1 by norm_num] rw [pow_succ _ 2] rw [← hchar, pth_root_pow_char hcharne] rw [pth_root_pow_char hcharne] ring_nf simp [hchar'']
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [dweierstrass_dx] simp only [ha1, zero_mul, hchar'', add_zero, zero_sub, neg_add_rev] rw [← hchar, pth_root_pow_char hcharne, ← sub_eq_add_neg] simp only [add_sub_add_right_eq_sub, sub_eq_iff_eq_add, zero_add] rw [show (3 : K) = 2 * 2 - 1 by norm_num] rw [hchar''] simp [← neg_mul_eq_neg_mul]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0 case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. simp [dweierstrass_dy, ha1, ha3, hchar'']
case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
assumption
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 ⊢ ringChar K = 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [hchar]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 ⊢ ↑(ringChar K) = 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [← hchar', ringChar.Nat.cast_ringChar]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 ⊢ 2 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [hchar]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 ⊢ ringChar K ≠ 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simpa [c4_zero_iff_a1_zero_of_char_two e hchar] using hc4
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ⊢ e.a1 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [weierstrass]
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ weierstrass e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd ^ 2 + e.a1 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd + e.a3 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd - ((pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst ^ 3 + e.a2 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst ^ 2 + e.a4 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [ha1, ha3, mul_zero, zero_add, zero_mul, add_zero]
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd ^ 2 + e.a1 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd + e.a3 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd - ((pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst ^ 3 + e.a2 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst ^ 2 + e.a4 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst + e.a6) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ pth_root (e.a2 * e.a4 + e.a6) ^ 2 - (pth_root e.a4 ^ 3 + e.a2 * pth_root e.a4 ^ 2 + e.a4 * pth_root e.a4 + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 3 = 2 + 1 by norm_num]
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ pth_root (e.a2 * e.a4 + e.a6) ^ 2 - (pth_root e.a4 ^ 3 + e.a2 * pth_root e.a4 ^ 2 + e.a4 * pth_root e.a4 + e.a6) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ pth_root (e.a2 * e.a4 + e.a6) ^ 2 - (pth_root e.a4 ^ (2 + 1) + e.a2 * pth_root e.a4 ^ 2 + e.a4 * pth_root e.a4 + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [pow_succ _ 2]
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ pth_root (e.a2 * e.a4 + e.a6) ^ 2 - (pth_root e.a4 ^ (2 + 1) + e.a2 * pth_root e.a4 ^ 2 + e.a4 * pth_root e.a4 + e.a6) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ pth_root (e.a2 * e.a4 + e.a6) ^ 2 - (pth_root e.a4 * pth_root e.a4 ^ 2 + e.a2 * pth_root e.a4 ^ 2 + e.a4 * pth_root e.a4 + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← hchar, pth_root_pow_char hcharne]
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ pth_root (e.a2 * e.a4 + e.a6) ^ 2 - (pth_root e.a4 * pth_root e.a4 ^ 2 + e.a2 * pth_root e.a4 ^ 2 + e.a4 * pth_root e.a4 + e.a6) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ e.a2 * e.a4 + e.a6 - (pth_root e.a4 * pth_root e.a4 ^ ringChar K + e.a2 * pth_root e.a4 ^ ringChar K + e.a4 * pth_root e.a4 + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [pth_root_pow_char hcharne]
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ e.a2 * e.a4 + e.a6 - (pth_root e.a4 * pth_root e.a4 ^ ringChar K + e.a2 * pth_root e.a4 ^ ringChar K + e.a4 * pth_root e.a4 + e.a6) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ e.a2 * e.a4 + e.a6 - (pth_root e.a4 * e.a4 + e.a2 * e.a4 + e.a4 * pth_root e.a4 + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring_nf
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ e.a2 * e.a4 + e.a6 - (pth_root e.a4 * e.a4 + e.a2 * e.a4 + e.a4 * pth_root e.a4 + e.a6) = 0
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -(e.a4 * pth_root e.a4 * 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [hchar'']
case pos.h_1.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -(e.a4 * pth_root e.a4 * 2) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ 3 = 2 + 1
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [dweierstrass_dx]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dx e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ e.a1 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd - (3 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst ^ 2 + 2 * e.a2 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst + e.a4) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [ha1, zero_mul, hchar'', add_zero, zero_sub, neg_add_rev]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ e.a1 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).snd - (3 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst ^ 2 + 2 * e.a2 * (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)).fst + e.a4) = 0
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 + -(3 * pth_root e.a4 ^ 2) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← hchar, pth_root_pow_char hcharne, ← sub_eq_add_neg]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 + -(3 * pth_root e.a4 ^ 2) = 0
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 - 3 * e.a4 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [add_sub_add_right_eq_sub, sub_eq_iff_eq_add, zero_add]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 - 3 * e.a4 = 0
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 = 3 * e.a4
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (3 : K) = 2 * 2 - 1 by norm_num]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 = 3 * e.a4
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 = (2 * 2 - 1) * e.a4
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [hchar'']
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 = (2 * 2 - 1) * e.a4
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 = (0 * 0 - 1) * e.a4
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [← neg_mul_eq_neg_mul]
case pos.h_1.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ -e.a4 = (0 * 0 - 1) * e.a4
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
norm_num
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ 3 = 2 * 2 - 1
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [dweierstrass_dy, ha1, ha3, hchar'']
case pos.h_1.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 2 hchar : ringChar K = 2 hchar' : ↑(ringChar K) = 2 hchar'' : 2 = 0 hcharne : ringChar K ≠ 0 ha1 : e.a1 = 0 ha3 : e.a3 = 0 ⊢ dweierstrass_dy e (pth_root e.a4, pth_root (e.a2 * e.a4 + e.a6)) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [is_singular_point]
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ is_singular_point e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3)
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hchar : ringChar K = 3 := by assumption
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hcharne : ringChar K ≠ 0 := by simp [hchar]
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hchar' : (ringChar K : K) = 3 := by simp [hchar]
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hchar'' : (3 : K) = 0 := by simp [← hchar', ringChar.Nat.cast_ringChar]
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hb2 : e.b2 = 0 := by simpa [c4_zero_iff_b2_zero_of_char_three e hchar] using hc4
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : b2 e = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
have hb4 : e.b4 = 0 := b4_zero_of_b2_zero_of_disc_zero_of_char_three e hchar h hb2
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : b2 e = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : b2 e = 0 hb4 : b4 e = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [b2] at hb2
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : b2 e = 0 hb4 : b4 e = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : b4 e = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [b4] at hb4
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : b4 e = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
refine ⟨?_, ?_, ?_⟩
case pos.h_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 ∧ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [weierstrass] rw [← hchar, pth_root_pow_char hcharne] simp only rw [show (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (-(e.a3 ^ 2) - e.a6 + e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + e.a4 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a6) = (2 * e.a1 ^ 2 - e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-(e.a3 ^ 2) - e.a6) + 3 * e.a3 ^ 2 by ring] rw [show 2 * e.a1 ^ 2 - e.a2 = 0 from ?_] rw [show 4 * e.a1 * e.a3 - e.a4 = 0 from ?_] simp only [zero_mul, add_zero, hchar''] . rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = 1 by rw [← add_zero 1, ← hchar'']; norm_num] simp only [neg_mul, one_mul] at hb4 simp [sub_eq_add_neg, hb4] . linear_combination (norm := ring_nf <;> simp [hchar'']) -hb2
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [dweierstrass_dx] rw [hchar'', zero_mul, zero_add] simp only rw [show e.a1 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (2 * e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a4) = (e.a1 * e.a1 - 2 * e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) + (e.a1 * e.a3 - e.a4) by ring] rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = -2 by rw [← add_zero (-2), ← zero_mul (2 : K), ← hchar'']; norm_num] at hb2 simp only [neg_mul, one_mul, ← sub_eq_add_neg] at hb4 hb2 rw [hb4, hb2, zero_mul, zero_add]
case pos.h_2.refine_2 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dx e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0 case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [dweierstrass_dy] simp only rw [show 2 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a1 * pth_root (- (e.a3 ^ 2) - e.a6) + e.a3 = 3 * ((e.a1 * pth_root (-(e.a3 ^ 2) - e.a6)) + e.a3) by ring] rw [hchar'', zero_mul]
case pos.h_2.refine_3 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ dweierstrass_dy e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
assumption
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 ⊢ ringChar K = 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [hchar]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 ⊢ ringChar K ≠ 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [hchar]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 ⊢ ↑(ringChar K) = 3
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp [← hchar', ringChar.Nat.cast_ringChar]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 ⊢ 3 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simpa [c4_zero_iff_b2_zero_of_char_three e hchar] using hc4
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 ⊢ b2 e = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [weierstrass]
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ weierstrass e (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd ^ 2 + e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd + e.a3 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - ((pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 3 + e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 2 + e.a4 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [← hchar, pth_root_pow_char hcharne]
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd ^ 2 + e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd + e.a3 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - ((pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 3 + e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 2 + e.a4 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a6) = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd ^ 2 + e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd + e.a3 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - (-e.a3 ^ 2 - e.a6 + e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 2 + e.a4 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd ^ 2 + e.a1 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd + e.a3 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).snd - (-e.a3 ^ 2 - e.a6 + e.a2 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst ^ 2 + e.a4 * (pth_root (-e.a3 ^ 2 - e.a6), e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3).fst + e.a6) = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-e.a3 ^ 2 - e.a6) * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) - (-e.a3 ^ 2 - e.a6 + e.a2 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + e.a4 * pth_root (-e.a3 ^ 2 - e.a6) + e.a6) = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a3) - (-(e.a3 ^ 2) - e.a6 + e.a2 * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + e.a4 * pth_root (-(e.a3 ^ 2) - e.a6) + e.a6) = (2 * e.a1 ^ 2 - e.a2) * pth_root (-(e.a3 ^ 2) - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-(e.a3 ^ 2) - e.a6) + 3 * e.a3 ^ 2 by ring]
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-e.a3 ^ 2 - e.a6) * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) - (-e.a3 ^ 2 - e.a6 + e.a2 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + e.a4 * pth_root (-e.a3 ^ 2 - e.a6) + e.a6) = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (2 * e.a1 ^ 2 - e.a2) * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 2 * e.a1 ^ 2 - e.a2 = 0 from ?_]
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (2 * e.a1 ^ 2 - e.a2) * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2 = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 0 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show 4 * e.a1 * e.a3 - e.a4 = 0 from ?_]
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 0 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 0 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + 0 * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [zero_mul, add_zero, hchar'']
case pos.h_2.refine_1 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 0 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + 0 * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4 rw [show (4 : K) = 1 by rw [← add_zero 1, ← hchar'']; norm_num] simp only [neg_mul, one_mul] at hb4 simp [sub_eq_add_neg, hb4]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0 K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
. linear_combination (norm := ring_nf <;> simp [hchar'']) -hb2
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 2 * e.a1 ^ 2 - e.a2 = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
ring
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) ^ 2 + e.a1 * pth_root (-e.a3 ^ 2 - e.a6) * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) + e.a3 * (e.a1 * pth_root (-e.a3 ^ 2 - e.a6) + e.a3) - (-e.a3 ^ 2 - e.a6 + e.a2 * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + e.a4 * pth_root (-e.a3 ^ 2 - e.a6) + e.a6) = (2 * e.a1 ^ 2 - e.a2) * pth_root (-e.a3 ^ 2 - e.a6) ^ 2 + (4 * e.a1 * e.a3 - e.a4) * pth_root (-e.a3 ^ 2 - e.a6) + 3 * e.a3 ^ 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (2 : K) = -1 by rw [← add_zero (-1), ← hchar'']; norm_num] at hb4
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + 2 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
rw [show (4 : K) = 1 by rw [← add_zero 1, ← hchar'']; norm_num]
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 4 * e.a1 * e.a3 - e.a4 = 0
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 1 * e.a1 * e.a3 - e.a4 = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Model.lean
Model.Field.is_singular_point_singular_point
[509, 1]
[694, 11]
simp only [neg_mul, one_mul] at hb4
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -1 * e.a4 = 0 ⊢ 1 * e.a1 * e.a3 - e.a4 = 0
K : Type u inst✝¹ : Field K inst✝ : ECTate.PerfectRing K e : Model K h : discr e = 0 hc4 : c4 e = 0 hc6 : c6 e = 0 x✝ : ℕ heq✝ : ringChar K = 3 hchar : ringChar K = 3 hcharne : ringChar K ≠ 0 hchar' : ↑(ringChar K) = 3 hchar'' : 3 = 0 hb2 : e.a1 * e.a1 + 4 * e.a2 = 0 hb4 : e.a1 * e.a3 + -e.a4 = 0 ⊢ 1 * e.a1 * e.a3 - e.a4 = 0