url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/Ring/Basic.lean
nzero_mul_left_cancel
[62, 1]
[69, 12]
intro a_ne_z ab_eq_ac
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R ⊢ a ≠ 0 → a * b = a * c → b = c
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * b = a * c ⊢ b = c
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/Ring/Basic.lean
nzero_mul_left_cancel
[62, 1]
[69, 12]
rw [←add_left_inj (-(a * c)), add_neg_self (a * c), neg_mul_eq_mul_neg, ←mul_add] at ab_eq_ac
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * b = a * c ⊢ b = c
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * (b + -c) = 0 ⊢ b = c
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/Ring/Basic.lean
nzero_mul_left_cancel
[62, 1]
[69, 12]
cases (@mul_eq_zero _ _ _ a (b + -c)).1 ab_eq_ac with | inl h => exact False.elim (a_ne_z h) | inr h => rw [←add_left_inj (-c), add_neg_self c] exact h
R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * (b + -c) = 0 ⊢ b = c
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/Ring/Basic.lean
nzero_mul_left_cancel
[62, 1]
[69, 12]
exact False.elim (a_ne_z h)
case inl R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * (b + -c) = 0 h : a = 0 ⊢ b = c
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/Ring/Basic.lean
nzero_mul_left_cancel
[62, 1]
[69, 12]
rw [←add_left_inj (-c), add_neg_self c]
case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * (b + -c) = 0 h : b + -c = 0 ⊢ b = c
case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * (b + -c) = 0 h : b + -c = 0 ⊢ b + -c = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/Ring/Basic.lean
nzero_mul_left_cancel
[62, 1]
[69, 12]
exact h
case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R a b c : R a_ne_z : a ≠ 0 ab_eq_ac : a * (b + -c) = 0 h : b + -c = 0 ⊢ b + -c = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_uniformizer
[11, 1]
[14, 13]
rw [gaussian_val]
p : ℕ gt1 : 1 < p ⊢ gaussian_val p ↑p = 1
p : ℕ gt1 : 1 < p ⊢ min (Int.int_val p (↑p).b1) (Int.int_val p (↑p).b2) = 1
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_uniformizer
[11, 1]
[14, 13]
simp [gt1]
p : ℕ gt1 : 1 < p ⊢ min (Int.int_val p (↑p).b1) (Int.int_val p (↑p).b2) = 1
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_mul_eq_add
[16, 1]
[19, 8]
simp [gaussian_val]
p : ℕ prime : Nat.Prime p a b : QuadRing ℤ 0 (-1) ⊢ gaussian_val p (a * b) = gaussian_val p a + gaussian_val p b
p : ℕ prime : Nat.Prime p a b : QuadRing ℤ 0 (-1) ⊢ min (Int.int_val p (a.b1 * b.b1 + -(a.b2 * b.b2))) (Int.int_val p (a.b2 * b.b1 + a.b1 * b.b2)) = min (Int.int_val p a.b1) (Int.int_val p a.b2) + min (Int.int_val p b.b1) (Int.int_val p b.b2)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_mul_eq_add
[16, 1]
[19, 8]
sorry
p : ℕ prime : Nat.Prime p a b : QuadRing ℤ 0 (-1) ⊢ min (Int.int_val p (a.b1 * b.b1 + -(a.b2 * b.b2))) (Int.int_val p (a.b2 * b.b1 + a.b1 * b.b2)) = min (Int.int_val p a.b1) (Int.int_val p a.b2) + min (Int.int_val p b.b1) (Int.int_val p b.b2)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_add_ge_min
[21, 1]
[24, 8]
simp [gaussian_val]
p : ℕ a b : QuadRing ℤ 0 (-1) ⊢ gaussian_val p (a + b) ≥ min (gaussian_val p a) (gaussian_val p b)
p : ℕ a b : QuadRing ℤ 0 (-1) ⊢ ((Int.int_val p a.b1 ≤ Int.int_val p (a.b1 + b.b1) ∨ Int.int_val p a.b2 ≤ Int.int_val p (a.b1 + b.b1)) ∨ Int.int_val p b.b1 ≤ Int.int_val p (a.b1 + b.b1) ∨ Int.int_val p b.b2 ≤ Int.int_val p (a.b1 + b.b1)) ∧ ((Int.int_val p a.b1 ≤ Int.int_val p (a.b2 + b.b2) ∨ Int.int_val p a.b2 ≤ Int.int_val p (a.b2 + b.b2)) ∨ Int.int_val p b.b1 ≤ Int.int_val p (a.b2 + b.b2) ∨ Int.int_val p b.b2 ≤ Int.int_val p (a.b2 + b.b2))
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_add_ge_min
[21, 1]
[24, 8]
sorry
p : ℕ a b : QuadRing ℤ 0 (-1) ⊢ ((Int.int_val p a.b1 ≤ Int.int_val p (a.b1 + b.b1) ∨ Int.int_val p a.b2 ≤ Int.int_val p (a.b1 + b.b1)) ∨ Int.int_val p b.b1 ≤ Int.int_val p (a.b1 + b.b1) ∨ Int.int_val p b.b2 ≤ Int.int_val p (a.b1 + b.b1)) ∧ ((Int.int_val p a.b1 ≤ Int.int_val p (a.b2 + b.b2) ∨ Int.int_val p a.b2 ≤ Int.int_val p (a.b2 + b.b2)) ∨ Int.int_val p b.b1 ≤ Int.int_val p (a.b2 + b.b2) ∨ Int.int_val p b.b2 ≤ Int.int_val p (a.b2 + b.b2))
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.eq_top_of_min_eq_top
[26, 1]
[28, 8]
sorry
a b : ℕ∞ ⊢ min a b = ⊤ → a = ⊤
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.min_eq_top_iff
[30, 1]
[34, 8]
sorry
a b : ℕ∞ ⊢ min a b = ⊤ ↔ a = ⊤ ∧ b = ⊤
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Valuations.lean
QuadRing.gaussian_val_eq_top_iff_zero
[36, 1]
[38, 46]
simp [gaussian_val, gt1, QuadRing.ext_iff]
p : ℕ gt1 : 1 < p a : QuadRing ℤ 0 (-1) ⊢ gaussian_val p a = ⊤ ↔ a = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ResidueRing.lean
ENatValRing.key
[350, 1]
[351, 8]
sorry
R✝ : Type u inst✝³ : CommRing R✝ inst✝² : IsDomain R✝ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R evr : ENatValRing p ⊢ ringChar (R ⧸ SurjVal.ideal evr.valtn) = evr.residue_char
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
test/testelin.lean
v_b6_of_v_a3_a
[6, 1]
[7, 12]
elinarith
q : ℕ h : ↑q ≥ 2 ⊢ ↑q ≥ 1
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
rw [succ_div]
m n : ℕ ⊢ succ m / succ n ≤ succ (m / succ n)
m n : ℕ ⊢ (m / succ n + if succ n ∣ m + 1 then 1 else 0) ≤ succ (m / succ n)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
split
m n : ℕ ⊢ (m / succ n + if succ n ∣ m + 1 then 1 else 0) ≤ succ (m / succ n)
case inl m n : ℕ h✝ : succ n ∣ m + 1 ⊢ m / succ n + 1 ≤ succ (m / succ n) case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n + 0 ≤ succ (m / succ n)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
. rw [succ_eq_add_one]
case inl m n : ℕ h✝ : succ n ∣ m + 1 ⊢ m / succ n + 1 ≤ succ (m / succ n) case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n + 0 ≤ succ (m / succ n)
case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n + 0 ≤ succ (m / succ n)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
. rw [add_zero] exact le_succ (m / succ n)
case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n + 0 ≤ succ (m / succ n)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
rw [succ_eq_add_one]
case inl m n : ℕ h✝ : succ n ∣ m + 1 ⊢ m / succ n + 1 ≤ succ (m / succ n)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
rw [add_zero]
case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n + 0 ≤ succ (m / succ n)
case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n ≤ succ (m / succ n)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div_succ_le_succ_div
[15, 1]
[20, 31]
exact le_succ (m / succ n)
case inr m n : ℕ h✝ : ¬succ n ∣ m + 1 ⊢ m / succ n ≤ succ (m / succ n)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div2_succ_succ_eq_succ_div2
[22, 1]
[25, 34]
rw [succ_eq_add_one, succ_eq_add_one, add_assoc, add_div_eq_of_add_mod_lt, Nat.div_self (zero_lt_succ 1)]
n : ℕ ⊢ succ (succ n) / 2 = succ (n / 2)
n : ℕ ⊢ n % 2 + (1 + 1) % 2 < 2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div2_succ_succ_eq_succ_div2
[22, 1]
[25, 34]
rw [mod_self, add_zero]
n : ℕ ⊢ n % 2 + (1 + 1) % 2 < 2
n : ℕ ⊢ n % 2 < 2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
div2_succ_succ_eq_succ_div2
[22, 1]
[25, 34]
exact mod_lt n (zero_lt_succ 1)
n : ℕ ⊢ n % 2 < 2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.div2_succ_le_self
[33, 1]
[37, 98]
cases x with | zero => simp | succ x => exact (div_succ_le_succ_div (Nat.succ x) 1).trans (succ_le_of_lt (div2_lt_self (succ_pos x)))
x : ℕ ⊢ Nat.succ x / 2 ≤ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.div2_succ_le_self
[33, 1]
[37, 98]
simp
case zero ⊢ Nat.succ zero / 2 ≤ zero
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.div2_succ_le_self
[33, 1]
[37, 98]
exact (div_succ_le_succ_div (Nat.succ x) 1).trans (succ_le_of_lt (div2_lt_self (succ_pos x)))
case succ x : ℕ ⊢ Nat.succ (Nat.succ x) / 2 ≤ Nat.succ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
have acc : ∀ y, y ≤ x → (val_bin_nat y).2 ≤ x := by induction x with | zero => intro y h rw [le_zero_eq] at h rw [h] exact Nat.zero_le 0 | succ x ih => intro y y_le_sx cases y_le_sx with | refl => cases mod_two_eq_zero_or_one (Nat.succ x) with | inl even => have h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 := And.intro (zero_lt_succ x) even; show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x rw [if_pos h] have h' := ih (Nat.succ x / 2) (div2_succ_le_self x); exact le_trans h' (le_succ x) | inr odd => show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x have not_even : Nat.succ x % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ x) not_even)] rw [if_pos (zero_lt_succ x)] | step y_le_x => exact le_trans (ih y y_le_x) (le_succ x);
x : ℕ ⊢ (val_bin_nat x).snd ≤ x
x : ℕ acc : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x ⊢ (val_bin_nat x).snd ≤ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
exact acc x (le_refl x)
x : ℕ acc : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x ⊢ (val_bin_nat x).snd ≤ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
induction x with | zero => intro y h rw [le_zero_eq] at h rw [h] exact Nat.zero_le 0 | succ x ih => intro y y_le_sx cases y_le_sx with | refl => cases mod_two_eq_zero_or_one (Nat.succ x) with | inl even => have h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 := And.intro (zero_lt_succ x) even; show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x rw [if_pos h] have h' := ih (Nat.succ x / 2) (div2_succ_le_self x); exact le_trans h' (le_succ x) | inr odd => show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x have not_even : Nat.succ x % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ x) not_even)] rw [if_pos (zero_lt_succ x)] | step y_le_x => exact le_trans (ih y y_le_x) (le_succ x);
x : ℕ ⊢ ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
intro y h
case zero ⊢ ∀ (y : ℕ), y ≤ zero → (val_bin_nat y).snd ≤ zero
case zero y : ℕ h : y ≤ zero ⊢ (val_bin_nat y).snd ≤ zero
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
rw [le_zero_eq] at h
case zero y : ℕ h : y ≤ zero ⊢ (val_bin_nat y).snd ≤ zero
case zero y : ℕ h : y = 0 ⊢ (val_bin_nat y).snd ≤ zero
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
rw [h]
case zero y : ℕ h : y = 0 ⊢ (val_bin_nat y).snd ≤ zero
case zero y : ℕ h : y = 0 ⊢ (val_bin_nat 0).snd ≤ zero
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
exact Nat.zero_le 0
case zero y : ℕ h : y = 0 ⊢ (val_bin_nat 0).snd ≤ zero
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
intro y y_le_sx
case succ x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x ⊢ ∀ (y : ℕ), y ≤ Nat.succ x → (val_bin_nat y).snd ≤ Nat.succ x
case succ x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x y : ℕ y_le_sx : y ≤ Nat.succ x ⊢ (val_bin_nat y).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
cases y_le_sx with | refl => cases mod_two_eq_zero_or_one (Nat.succ x) with | inl even => have h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 := And.intro (zero_lt_succ x) even; show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x rw [if_pos h] have h' := ih (Nat.succ x / 2) (div2_succ_le_self x); exact le_trans h' (le_succ x) | inr odd => show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x have not_even : Nat.succ x % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ x) not_even)] rw [if_pos (zero_lt_succ x)] | step y_le_x => exact le_trans (ih y y_le_x) (le_succ x);
case succ x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x y : ℕ y_le_sx : y ≤ Nat.succ x ⊢ (val_bin_nat y).snd ≤ Nat.succ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
cases mod_two_eq_zero_or_one (Nat.succ x) with | inl even => have h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 := And.intro (zero_lt_succ x) even; show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x rw [if_pos h] have h' := ih (Nat.succ x / 2) (div2_succ_le_self x); exact le_trans h' (le_succ x) | inr odd => show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x have not_even : Nat.succ x % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ x) not_even)] rw [if_pos (zero_lt_succ x)]
case succ.refl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x ⊢ (val_bin_nat (Nat.succ x)).snd ≤ Nat.succ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
have h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 := And.intro (zero_lt_succ x) even
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 ⊢ (val_bin_nat (Nat.succ x)).snd ≤ Nat.succ x
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 ⊢ (val_bin_nat (Nat.succ x)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 ⊢ (val_bin_nat (Nat.succ x)).snd ≤ Nat.succ x
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 ⊢ (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
rw [if_pos h]
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 ⊢ (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 ⊢ (let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
have h' := ih (Nat.succ x / 2) (div2_succ_le_self x)
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 ⊢ (let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd)).snd ≤ Nat.succ x
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 h' : (val_bin_nat (Nat.succ x / 2)).snd ≤ x ⊢ (let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
exact le_trans h' (le_succ x)
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x even : Nat.succ x % 2 = 0 h : 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 h' : (val_bin_nat (Nat.succ x / 2)).snd ≤ x ⊢ (let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd)).snd ≤ Nat.succ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
show (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 ⊢ (val_bin_nat (Nat.succ x)).snd ≤ Nat.succ x
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 ⊢ (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
have not_even : Nat.succ x % 2 ≠ 0 := by rw [odd] simp;
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 ⊢ (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 not_even : Nat.succ x % 2 ≠ 0 ⊢ (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
rw [if_neg (not_and_of_not_right (0 < Nat.succ x) not_even)]
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 not_even : Nat.succ x % 2 ≠ 0 ⊢ (if 0 < Nat.succ x ∧ Nat.succ x % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ x / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 not_even : Nat.succ x % 2 ≠ 0 ⊢ (if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
rw [if_pos (zero_lt_succ x)]
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 not_even : Nat.succ x % 2 ≠ 0 ⊢ (if 0 < Nat.succ x then (0, Nat.succ x) else (0, 0)).snd ≤ Nat.succ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
rw [odd]
x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 ⊢ Nat.succ x % 2 ≠ 0
x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 ⊢ 1 ≠ 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
simp
x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x odd : Nat.succ x % 2 = 1 ⊢ 1 ≠ 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_le_self_nat
[63, 1]
[104, 26]
exact le_trans (ih y y_le_x) (le_succ x)
case succ.step x : ℕ ih : ∀ (y : ℕ), y ≤ x → (val_bin_nat y).snd ≤ x y : ℕ y_le_x : Nat.le y x ⊢ (val_bin_nat y).snd ≤ Nat.succ x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
have acc : ∀ y, (y ≤ x → 0 < (val_bin_nat (Nat.succ y)).2) := by induction x with | zero => intro y y_le_x rw [le_zero_eq] at y_le_x rw [y_le_x] exact Nat.lt_succ_self 0 | succ x ih => intro y y_le_sx cases y_le_sx with | refl => cases mod_two_eq_zero_or_one (Nat.succ (Nat.succ x)) with | inl even => have h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 := And.intro (zero_lt_succ (Nat.succ x)) even; show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd rw [if_pos h, div2_succ_succ_eq_succ_div2] exact ih (x / 2) (Nat.div_le_self x 2) | inr odd => show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd have not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ (Nat.succ x)) not_even)] rw [if_pos (zero_lt_succ (Nat.succ x))] exact zero_lt_succ (Nat.succ x) | step y_le_x => exact ih y y_le_x;
x : ℕ ⊢ 0 < (val_bin_nat (Nat.succ x)).snd
x : ℕ acc : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd ⊢ 0 < (val_bin_nat (Nat.succ x)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
exact acc x (le_refl x)
x : ℕ acc : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd ⊢ 0 < (val_bin_nat (Nat.succ x)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
induction x with | zero => intro y y_le_x rw [le_zero_eq] at y_le_x rw [y_le_x] exact Nat.lt_succ_self 0 | succ x ih => intro y y_le_sx cases y_le_sx with | refl => cases mod_two_eq_zero_or_one (Nat.succ (Nat.succ x)) with | inl even => have h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 := And.intro (zero_lt_succ (Nat.succ x)) even; show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd rw [if_pos h, div2_succ_succ_eq_succ_div2] exact ih (x / 2) (Nat.div_le_self x 2) | inr odd => show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd have not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ (Nat.succ x)) not_even)] rw [if_pos (zero_lt_succ (Nat.succ x))] exact zero_lt_succ (Nat.succ x) | step y_le_x => exact ih y y_le_x;
x : ℕ ⊢ ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
intro y y_le_x
case zero ⊢ ∀ (y : ℕ), y ≤ zero → 0 < (val_bin_nat (Nat.succ y)).snd
case zero y : ℕ y_le_x : y ≤ zero ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
rw [le_zero_eq] at y_le_x
case zero y : ℕ y_le_x : y ≤ zero ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
case zero y : ℕ y_le_x : y = 0 ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
rw [y_le_x]
case zero y : ℕ y_le_x : y = 0 ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
case zero y : ℕ y_le_x : y = 0 ⊢ 0 < (val_bin_nat (Nat.succ 0)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
exact Nat.lt_succ_self 0
case zero y : ℕ y_le_x : y = 0 ⊢ 0 < (val_bin_nat (Nat.succ 0)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
intro y y_le_sx
case succ x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd ⊢ ∀ (y : ℕ), y ≤ Nat.succ x → 0 < (val_bin_nat (Nat.succ y)).snd
case succ x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd y : ℕ y_le_sx : y ≤ Nat.succ x ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
cases y_le_sx with | refl => cases mod_two_eq_zero_or_one (Nat.succ (Nat.succ x)) with | inl even => have h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 := And.intro (zero_lt_succ (Nat.succ x)) even; show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd rw [if_pos h, div2_succ_succ_eq_succ_div2] exact ih (x / 2) (Nat.div_le_self x 2) | inr odd => show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd have not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ (Nat.succ x)) not_even)] rw [if_pos (zero_lt_succ (Nat.succ x))] exact zero_lt_succ (Nat.succ x) | step y_le_x => exact ih y y_le_x;
case succ x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd y : ℕ y_le_sx : y ≤ Nat.succ x ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
cases mod_two_eq_zero_or_one (Nat.succ (Nat.succ x)) with | inl even => have h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 := And.intro (zero_lt_succ (Nat.succ x)) even; show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd rw [if_pos h, div2_succ_succ_eq_succ_div2] exact ih (x / 2) (Nat.div_le_self x 2) | inr odd => show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd have not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 := by rw [odd] simp; rw [if_neg (not_and_of_not_right (0 < Nat.succ (Nat.succ x)) not_even)] rw [if_pos (zero_lt_succ (Nat.succ x))] exact zero_lt_succ (Nat.succ x)
case succ.refl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd ⊢ 0 < (val_bin_nat (Nat.succ (Nat.succ x))).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
have h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 := And.intro (zero_lt_succ (Nat.succ x)) even
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (val_bin_nat (Nat.succ (Nat.succ x))).snd
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (val_bin_nat (Nat.succ (Nat.succ x))).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (val_bin_nat (Nat.succ (Nat.succ x))).snd
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
rw [if_pos h, div2_succ_succ_eq_succ_div2]
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (let vbn_half := val_bin_nat (Nat.succ (x / 2)); (vbn_half.fst + 1, vbn_half.snd)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
exact ih (x / 2) (Nat.div_le_self x 2)
case succ.refl.inl x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd even : Nat.succ (Nat.succ x) % 2 = 0 h : 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 ⊢ 0 < (let vbn_half := val_bin_nat (Nat.succ (x / 2)); (vbn_half.fst + 1, vbn_half.snd)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
show 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 ⊢ 0 < (val_bin_nat (Nat.succ (Nat.succ x))).snd
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
have not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 := by rw [odd] simp;
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
rw [if_neg (not_and_of_not_right (0 < Nat.succ (Nat.succ x)) not_even)]
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) ∧ Nat.succ (Nat.succ x) % 2 = 0 then let vbn_half := val_bin_nat (Nat.succ (Nat.succ x) / 2); (vbn_half.fst + 1, vbn_half.snd) else if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
rw [if_pos (zero_lt_succ (Nat.succ x))]
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 ⊢ 0 < (if 0 < Nat.succ (Nat.succ x) then (0, Nat.succ (Nat.succ x)) else (0, 0)).snd
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 ⊢ 0 < (0, Nat.succ (Nat.succ x)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
exact zero_lt_succ (Nat.succ x)
case succ.refl.inr x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 not_even : Nat.succ (Nat.succ x) % 2 ≠ 0 ⊢ 0 < (0, Nat.succ (Nat.succ x)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
rw [odd]
x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 ⊢ Nat.succ (Nat.succ x) % 2 ≠ 0
x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 ⊢ 1 ≠ 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
simp
x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd odd : Nat.succ (Nat.succ x) % 2 = 1 ⊢ 1 ≠ 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_succ_pos
[106, 1]
[146, 26]
exact ih y y_le_x
case succ.step x : ℕ ih : ∀ (y : ℕ), y ≤ x → 0 < (val_bin_nat (Nat.succ y)).snd y : ℕ y_le_x : Nat.le y x ⊢ 0 < (val_bin_nat (Nat.succ y)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
cases x with | zero => intro absurd apply False.elim apply absurd rfl | succ x => intro _ exact odd_part_succ_pos x
x : ℕ ⊢ x ≠ 0 → 0 < (val_bin_nat x).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
intro absurd
case zero ⊢ zero ≠ 0 → 0 < (val_bin_nat zero).snd
case zero absurd : zero ≠ 0 ⊢ 0 < (val_bin_nat zero).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
apply False.elim
case zero absurd : zero ≠ 0 ⊢ 0 < (val_bin_nat zero).snd
case zero.h absurd : zero ≠ 0 ⊢ False
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
apply absurd
case zero.h absurd : zero ≠ 0 ⊢ False
case zero.h absurd : zero ≠ 0 ⊢ zero = 0
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
rfl
case zero.h absurd : zero ≠ 0 ⊢ zero = 0
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
intro _
case succ x : ℕ ⊢ Nat.succ x ≠ 0 → 0 < (val_bin_nat (Nat.succ x)).snd
case succ x : ℕ a✝ : Nat.succ x ≠ 0 ⊢ 0 < (val_bin_nat (Nat.succ x)).snd
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/Kronecker.lean
Int.odd_part_nat_pos
[148, 1]
[157, 30]
exact odd_part_succ_pos x
case succ x : ℕ a✝ : Nat.succ x ≠ 0 ⊢ 0 < (val_bin_nat (Nat.succ x)).snd
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_inj
[37, 9]
[38, 25]
aesop
F : Type u_1 a b : F inst✝ : Zero F z w : F ⊢ z = w → { b1 := z, b2 := 0 } = { b1 := w, b2 := 0 }
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_add
[77, 1]
[78, 35]
simp
F : Type u_1 a b : F inst✝ : CommRing F r s : F ⊢ { b1 := r + s, b2 := 0 }.b1 = ({ b1 := r, b2 := 0 } + { b1 := s, b2 := 0 }).b1 ∧ { b1 := r + s, b2 := 0 }.b2 = ({ b1 := r, b2 := 0 } + { b1 := s, b2 := 0 }).b2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_neg
[85, 1]
[85, 87]
ext
F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 } = -{ b1 := n, b2 := 0 }
case b1 F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 }.b1 = (-{ b1 := n, b2 := 0 }).b1 case b2 F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 }.b2 = (-{ b1 := n, b2 := 0 }).b2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_neg
[85, 1]
[85, 87]
simp
case b1 F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 }.b1 = (-{ b1 := n, b2 := 0 }).b1 case b2 F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 }.b2 = (-{ b1 := n, b2 := 0 }).b2
case b2 F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 }.b2 = (-{ b1 := n, b2 := 0 }).b2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_neg
[85, 1]
[85, 87]
sorry
case b2 F : Type u_1 a b : F inst✝ : CommRing F n : F ⊢ { b1 := -n, b2 := 0 }.b2 = (-{ b1 := n, b2 := 0 }).b2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_sub
[92, 1]
[92, 95]
ext
F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 } = { b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }
case b1 F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 }.b1 = ({ b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }).b1 case b2 F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 }.b2 = ({ b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }).b2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_sub
[92, 1]
[92, 95]
simp
case b1 F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 }.b1 = ({ b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }).b1 case b2 F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 }.b2 = ({ b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }).b2
case b2 F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 }.b2 = ({ b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }).b2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_sub
[92, 1]
[92, 95]
sorry
case b2 F : Type u_1 a b : F inst✝ : CommRing F z w : F ⊢ { b1 := z - w, b2 := 0 }.b2 = ({ b1 := z, b2 := 0 } - { b1 := w, b2 := 0 }).b2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_nat_add
[150, 1]
[151, 86]
ext <;> simp only [coe_nat_b1, coe_nat_b2, add_b1, add_b2, Nat.cast_add, add_zero]
F : Type u_1 a b : F inst✝ : CommRing F r s : ℕ ⊢ ↑(r + s) = ↑r + ↑s
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_int_add
[162, 1]
[163, 86]
ext <;> simp only [coe_int_b1, coe_int_b2, add_b1, add_b2, Int.cast_add, add_zero]
F : Type u_1 a b : F inst✝ : CommRing F r s : ℤ ⊢ ↑(r + s) = ↑r + ↑s
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_mul
[173, 1]
[174, 51]
apply (QuadRing.ext_iff _ _).2
F : Type u_1 a b : F inst✝ : CommRing F r s : F ⊢ { b1 := r * s, b2 := 0 } = { b1 := r, b2 := 0 } * { b1 := s, b2 := 0 }
F : Type u_1 a b : F inst✝ : CommRing F r s : F ⊢ { b1 := r * s, b2 := 0 }.b1 = ({ b1 := r, b2 := 0 } * { b1 := s, b2 := 0 }).b1 ∧ { b1 := r * s, b2 := 0 }.b2 = ({ b1 := r, b2 := 0 } * { b1 := s, b2 := 0 }).b2
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/QuadRing/Basic.lean
QuadRing.coe_mul
[173, 1]
[174, 51]
simp [mul_comm]
F : Type u_1 a b : F inst✝ : CommRing F r s : F ⊢ { b1 := r * s, b2 := 0 }.b1 = ({ b1 := r, b2 := 0 } * { b1 := s, b2 := 0 }).b1 ∧ { b1 := r * s, b2 := 0 }.b2 = ({ b1 := r, b2 := 0 } * { b1 := s, b2 := 0 }).b2
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_char
[29, 1]
[33, 82]
simp only [pth_root, h, dite_false]
R : Type u_1 inst✝¹ : CommSemiring R inst✝ : PerfectRing R h : ringChar R ≠ 0 x : R ⊢ pth_root x ^ ringChar R = x
R : Type u_1 inst✝¹ : CommSemiring R inst✝ : PerfectRing R h : ringChar R ≠ 0 x : R ⊢ Function.surjInv (_ : Function.Surjective fun x => x ^ ringChar R) x ^ ringChar R = x
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_char
[29, 1]
[33, 82]
exact Function.rightInverse_surjInv (pth_power_bijective_of_char_nonzero h).2 x
R : Type u_1 inst✝¹ : CommSemiring R inst✝ : PerfectRing R h : ringChar R ≠ 0 x : R ⊢ Function.surjInv (_ : Function.Surjective fun x => x ^ ringChar R) x ^ ringChar R = x
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_eq
[35, 1]
[43, 55]
by_cases h : ringChar R = 0
R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
case pos R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R) case neg R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ¬ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_eq
[35, 1]
[43, 55]
. simp [h]
case pos R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R) case neg R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ¬ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
case neg R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ¬ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_eq
[35, 1]
[43, 55]
conv => lhs rw [← Nat.mod_add_div n (ringChar R)]
case neg R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ¬ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
case neg R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ¬ringChar R = 0 ⊢ pth_root x ^ (n % ringChar R + ringChar R * (n / ringChar R)) = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_eq
[35, 1]
[43, 55]
rw [pow_add, pow_mul, pth_root_pow_char h, mul_comm]
case neg R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ¬ringChar R = 0 ⊢ pth_root x ^ (n % ringChar R + ringChar R * (n / ringChar R)) = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/FieldTheory/PerfectClosure.lean
ECTate.PerfectRing.pth_root_pow_eq
[35, 1]
[43, 55]
simp [h]
case pos R : Type u_1 inst✝¹ : CommSemiring R n : ℕ inst✝ : PerfectRing R x : R h : ringChar R = 0 ⊢ pth_root x ^ n = x ^ (n / ringChar R) * pth_root x ^ (n % ringChar R)
no goals