url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply congr.coinduction F r'
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ congr F x y
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ ∀ (x y : Container.M (C F)), r' x y → ↑(precongr F) r' x y case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
. clear h₂ intro x y h₂ simp only [precongr, map_quot] have h₂ := h₁ _ _ h₂ simp only [destruct, destruct.f] at h₂ generalize Container.M.destruct x = x at * generalize Container.M.destruct y = y at * cases x with | mk nx kx => cases y with | mk ny ky => let f : Quot r → Quot r' := by apply Quot.lift (Quot.lift (Quot.mk r') _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply h₀ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h have : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' := rfl conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this] rw [Container.Map_spec, Container.Map_spec, Container.Map_spec, Container.Map_spec] rw [inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, h₂]
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ ∀ (x y : Container.M (C F)), r' x y → ↑(precongr F) r' x y case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
. apply h₂
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
clear h₂
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ ∀ (x y : Container.M (C F)), r' x y → ↑(precongr F) r' x y
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ ∀ (x y : Container.M (C F)), r' x y → ↑(precongr F) r' x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro x y h₂
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ ∀ (x y : Container.M (C F)), r' x y → ↑(precongr F) r' x y
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂ : r' x y ⊢ ↑(precongr F) r' x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
simp only [precongr, map_quot]
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂ : r' x y ⊢ ↑(precongr F) r' x y
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂ : r' x y ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct x)) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
have h₂ := h₁ _ _ h₂
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂ : r' x y ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct x)) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y h₂ : Quot.mk r <$> destruct (Quot.mk (congr F) x) = Quot.mk r <$> destruct (Quot.mk (congr F) y) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct x)) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
simp only [destruct, destruct.f] at h₂
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y h₂ : Quot.mk r <$> destruct (Quot.mk (congr F) x) = Quot.mk r <$> destruct (Quot.mk (congr F) y) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct x)) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs (Container.M.destruct x) = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs (Container.M.destruct y) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct x)) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
generalize Container.M.destruct x = x at *
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs (Container.M.destruct x) = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs (Container.M.destruct y) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct x)) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y x : Container.Obj (C F) (Container.M (C F)) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs x = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs (Container.M.destruct y) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) x) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
generalize Container.M.destruct y = y at *
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y x : Container.Obj (C F) (Container.M (C F)) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs x = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs (Container.M.destruct y) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) x) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) (Container.M.destruct y))
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ x y : Container.Obj (C F) (Container.M (C F)) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs x = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs y ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) x) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
cases x with | mk nx kx => cases y with | mk ny ky => let f : Quot r → Quot r' := by apply Quot.lift (Quot.lift (Quot.mk r') _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply h₀ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h have : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' := rfl conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this] rw [Container.Map_spec, Container.Map_spec, Container.Map_spec, Container.Map_spec] rw [inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, h₂]
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ x y : Container.Obj (C F) (Container.M (C F)) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs x = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs y ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) x) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
cases y with | mk ny ky => let f : Quot r → Quot r' := by apply Quot.lift (Quot.lift (Quot.mk r') _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply h₀ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h have : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' := rfl conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this] rw [Container.Map_spec, Container.Map_spec, Container.Map_spec, Container.Map_spec] rw [inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, h₂]
case a.a.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y✝ : Container.M (C F) h₂✝ : r' x y✝ y : Container.Obj (C F) (Container.M (C F)) nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs y ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := nx, snd := kx }) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
let f : Quot r → Quot r' := by apply Quot.lift (Quot.lift (Quot.mk r') _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply h₀ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := nx, snd := kx }) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := ny, snd := ky })
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := nx, snd := kx }) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := ny, snd := ky })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
have : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' := rfl
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := nx, snd := kx }) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := ny, snd := ky })
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) this : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := nx, snd := kx }) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := ny, snd := ky })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this]
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) this : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' ⊢ abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := nx, snd := kx }) = abs (Container.Map (Quot.mk fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y)) { fst := ny, snd := ky })
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) this : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' ⊢ abs (Container.Map (fun i => (f ∘ Quot.mk r ∘ Quot.mk (congr F)) i) { fst := nx, snd := kx }) = abs (Container.Map (fun i => (f ∘ Quot.mk r ∘ Quot.mk (congr F)) i) { fst := ny, snd := ky })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
rw [Container.Map_spec, Container.Map_spec, Container.Map_spec, Container.Map_spec]
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) this : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' ⊢ abs (Container.Map (fun i => (f ∘ Quot.mk r ∘ Quot.mk (congr F)) i) { fst := nx, snd := kx }) = abs (Container.Map (fun i => (f ∘ Quot.mk r ∘ Quot.mk (congr F)) i) { fst := ny, snd := ky })
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) this : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' ⊢ abs (Container.Map f (Container.Map (Quot.mk r) (Container.Map (Quot.mk (congr F)) { fst := nx, snd := kx }))) = abs (Container.Map f (Container.Map (Quot.mk r) (Container.Map (Quot.mk (congr F)) { fst := ny, snd := ky })))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
rw [inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, inst.abs_map, h₂]
case a.a.mk.mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b)) (_ : ∀ (x b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b) this : f ∘ Quot.mk r ∘ Quot.mk (congr F) = Quot.mk r' ⊢ abs (Container.Map f (Container.Map (Quot.mk r) (Container.Map (Quot.mk (congr F)) { fst := nx, snd := kx }))) = abs (Container.Map f (Container.Map (Quot.mk r) (Container.Map (Quot.mk (congr F)) { fst := ny, snd := ky })))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.lift (Quot.lift (Quot.mk r') _) _
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ Quot r → Quot r'
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Quot (congr F)), r a b → Quot.lift (Quot.mk r') ?m.11689 a = Quot.lift (Quot.mk r') ?m.11689 b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
. intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply h₀
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Quot (congr F)), r a b → Quot.lift (Quot.mk r') ?m.11689 a = Quot.lift (Quot.mk r') ?m.11689 b
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Quot (congr F)), r a b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) a = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
. intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Quot (congr F)), r a b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) a = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro a b h₃
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ Quot.mk r' a = Quot.mk r' b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.sound
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ Quot.mk r' a = Quot.mk r' b
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ r' a b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
simp only
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ r' a b
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ r (Quot.mk (congr F) a) (Quot.mk (congr F) b)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
rw [Quot.sound h₃]
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ r (Quot.mk (congr F) a) (Quot.mk (congr F) b)
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ r (Quot.mk (congr F) b) (Quot.mk (congr F) b)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply h₀
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } a b : Container.M (C F) h₃ : congr F a b ⊢ r (Quot.mk (congr F) b) (Quot.mk (congr F) b)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro x
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a b : Quot (congr F)), r a b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) a = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Quot (congr F) ⊢ ∀ (b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.inductionOn (motive := _) x
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Quot (congr F) ⊢ ∀ (b : Quot (congr F)), r x b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) x = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Quot (congr F) ⊢ ∀ (a : Container.M (C F)) (b : Quot (congr F)), r (Quot.mk (congr F) a) b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
clear x
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Quot (congr F) ⊢ ∀ (a : Container.M (C F)) (b : Quot (congr F)), r (Quot.mk (congr F) a) b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a : Container.M (C F)) (b : Quot (congr F)), r (Quot.mk (congr F) a) b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro x y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x y : Container.M (C F) h₂✝ : r' x y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } ⊢ ∀ (a : Container.M (C F)) (b : Quot (congr F)), r (Quot.mk (congr F) a) b → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) b
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Container.M (C F) y : Quot (congr F) ⊢ r (Quot.mk (congr F) x) y → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.inductionOn (motive := _) y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Container.M (C F) y : Quot (congr F) ⊢ r (Quot.mk (congr F) x) y → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Container.M (C F) y : Quot (congr F) ⊢ ∀ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
clear y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Container.M (C F) y : Quot (congr F) ⊢ ∀ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a)
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Container.M (C F) ⊢ ∀ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro y h
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y : Container.M (C F) h₂✝ : r' x✝ y nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x : Container.M (C F) ⊢ ∀ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) → Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) a)
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x y : Container.M (C F) h : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.sound
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x y : Container.M (C F) h : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) x) = Quot.lift (Quot.mk r') (_ : ∀ (a b : Container.M (C F)), congr F a b → Quot.mk r' a = Quot.mk r' b) (Quot.mk (congr F) y)
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x y : Container.M (C F) h : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply h
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x✝¹ y✝¹ : Container.M (C F) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) x✝ y✝ : Container.M (C F) h₂✝ : r' x✝ y✝ nx : (C F).A kx : Container.B (C F) nx → Container.M (C F) ny : (C F).A ky : Container.B (C F) ny → Container.M (C F) h₂ : Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := nx, snd := kx } = Quot.mk r <$> (fun x => Quot.mk (congr F) x) <$> abs { fst := ny, snd := ky } x y : Container.M (C F) h : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply h₂
case a.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x : M F), r x x h₁ : ∀ (x y : M F), r x y → Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) h₂ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) → Container.M (C F) → Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊢ r' x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
intro x y h₁
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) ⊢ ∀ (x y : M F), r x y → x = y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
apply bisim_lemma (λ x y => x = y ∨ r x y)
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y
case h₀ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x : M F), x = x ∨ r x x case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x y : M F), x = y ∨ r x y → (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
. intro _ left rfl
case h₀ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x : M F), x = x ∨ r x x case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x y : M F), x = y ∨ r x y → (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x y : M F), x = y ∨ r x y → (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
. intro x y h₂ cases h₂ case inl h₂ => rw [h₂] case inr h₂ => have ⟨z, h₃⟩ := h₀ _ _ h₂ clear h₂ rw [←h₃.1, ←h₃.2] clear h₃ rw [←map_comp, ←map_comp] conv => congr <;> rw [←abs_repr z] rw [←abs_map] rw [←abs_map] cases repr z with | mk nz kz => simp only [Container.Map, Function.comp] apply congrArg abs rw [Container.Obj.snd_equals_iff] funext a apply Quot.sound right apply (kz a).2
case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x y : M F), x = y ∨ r x y → (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
. right; assumption
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
intro _
case h₀ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x : M F), x = x ∨ r x x
case h₀ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y x✝ : M F ⊢ x✝ = x✝ ∨ r x✝ x✝
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
left
case h₀ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y x✝ : M F ⊢ x✝ = x✝ ∨ r x✝ x✝
case h₀.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y x✝ : M F ⊢ x✝ = x✝
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rfl
case h₀.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y x✝ : M F ⊢ x✝ = x✝
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
intro x y h₂
case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ ∀ (x y : M F), x = y ∨ r x y → (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : x = y ∨ r x y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
cases h₂
case h₁ F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : x = y ∨ r x y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
case h₁.inl F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h✝ : x = y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y case h₁.inr F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h✝ : r x y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
case inl h₂ => rw [h₂]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : x = y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
case inr h₂ => have ⟨z, h₃⟩ := h₀ _ _ h₂ clear h₂ rw [←h₃.1, ←h₃.2] clear h₃ rw [←map_comp, ←map_comp] conv => congr <;> rw [←abs_repr z] rw [←abs_map] rw [←abs_map] cases repr z with | mk nz kz => simp only [Container.Map, Function.comp] apply congrArg abs rw [Container.Obj.snd_equals_iff] funext a apply Quot.sound right apply (kz a).2
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : r x y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rw [h₂]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : x = y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
have ⟨z, h₃⟩ := h₀ _ _ h₂
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : r x y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : r x y z : F { p // r p.fst p.snd } h₃ : (fun x => (↑x).fst) <$> z = destruct x ∧ (fun x => (↑x).snd) <$> z = destruct y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
clear h₂
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F h₂ : r x y z : F { p // r p.fst p.snd } h₃ : (fun x => (↑x).fst) <$> z = destruct x ∧ (fun x => (↑x).snd) <$> z = destruct y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } h₃ : (fun x => (↑x).fst) <$> z = destruct x ∧ (fun x => (↑x).snd) <$> z = destruct y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rw [←h₃.1, ←h₃.2]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } h₃ : (fun x => (↑x).fst) <$> z = destruct x ∧ (fun x => (↑x).snd) <$> z = destruct y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> destruct x = (Quot.mk fun x y => x = y ∨ r x y) <$> destruct y
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } h₃ : (fun x => (↑x).fst) <$> z = destruct x ∧ (fun x => (↑x).snd) <$> z = destruct y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).fst) <$> z = (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).snd) <$> z
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
clear h₃
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } h₃ : (fun x => (↑x).fst) <$> z = destruct x ∧ (fun x => (↑x).snd) <$> z = destruct y ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).fst) <$> z = (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).snd) <$> z
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).fst) <$> z = (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).snd) <$> z
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rw [←map_comp, ←map_comp]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).fst) <$> z = (Quot.mk fun x y => x = y ∨ r x y) <$> (fun x => (↑x).snd) <$> z
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) <$> z = ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) <$> z
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
conv => congr <;> rw [←abs_repr z]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) <$> z = ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) <$> z
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) <$> abs (repr z) = ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) <$> abs (repr z)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rw [←abs_map]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) <$> abs (repr z) = ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) <$> abs (repr z)
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) (repr z)) = ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) <$> abs (repr z)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rw [←abs_map]
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) (repr z)) = ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) <$> abs (repr z)
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) (repr z)) = abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) (repr z))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
cases repr z with | mk nz kz => simp only [Container.Map, Function.comp] apply congrArg abs rw [Container.Obj.snd_equals_iff] funext a apply Quot.sound right apply (kz a).2
F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } ⊢ abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) (repr z)) = abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) (repr z))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
simp only [Container.Map, Function.comp]
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).fst) { fst := nz, snd := kz }) = abs (Container.Map ((Quot.mk fun x y => x = y ∨ r x y) ∘ fun x => (↑x).snd) { fst := nz, snd := kz })
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ abs { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).fst } = abs { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).snd }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
apply congrArg abs
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ abs { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).fst } = abs { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).snd }
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).fst } = { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).snd }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
rw [Container.Obj.snd_equals_iff]
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).fst } = { fst := nz, snd := fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).snd }
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ (fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).fst) = fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
funext a
case mk F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } ⊢ (fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).fst) = fun x => Quot.mk (fun x y => x = y ∨ r x y) (↑(kz x)).snd
case mk.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } a : Container.B (C F) nz ⊢ Quot.mk (fun x y => x = y ∨ r x y) (↑(kz a)).fst = Quot.mk (fun x y => x = y ∨ r x y) (↑(kz a)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
apply Quot.sound
case mk.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } a : Container.B (C F) nz ⊢ Quot.mk (fun x y => x = y ∨ r x y) (↑(kz a)).fst = Quot.mk (fun x y => x = y ∨ r x y) (↑(kz a)).snd
case mk.h.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } a : Container.B (C F) nz ⊢ (↑(kz a)).fst = (↑(kz a)).snd ∨ r (↑(kz a)).fst (↑(kz a)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
right
case mk.h.a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } a : Container.B (C F) nz ⊢ (↑(kz a)).fst = (↑(kz a)).snd ∨ r (↑(kz a)).fst (↑(kz a)).snd
case mk.h.a.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } a : Container.B (C F) nz ⊢ r (↑(kz a)).fst (↑(kz a)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
apply (kz a).2
case mk.h.a.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x✝ y✝ : M F h₁ : r x✝ y✝ x y : M F z : F { p // r p.fst p.snd } nz : (C F).A kz : Container.B (C F) nz → { p // r p.fst p.snd } a : Container.B (C F) nz ⊢ r (↑(kz a)).fst (↑(kz a)).snd
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
right
case a F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ x = y ∨ r x y
case a.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ r x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim
[191, 1]
[221, 22]
assumption
case a.h F : Type u₁ → Type u₁ inst : QPF F r : M F → M F → Prop h₀ : ∀ (x y : M F), r x y → liftr F r (destruct x) (destruct y) x y : M F h₁ : r x y ⊢ r x y
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_I_Nat
[51, 1]
[57, 6]
apply Iff.intro
m n : Nat ⊢ m = n ↔ I m = I n
case mp m n : Nat ⊢ m = n → I m = I n case mpr m n : Nat ⊢ I m = I n → m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_I_Nat
[51, 1]
[57, 6]
intro h
case mp m n : Nat ⊢ m = n → I m = I n case mpr m n : Nat ⊢ I m = I n → m = n
case mp m n : Nat h : m = n ⊢ I m = I n case mpr m n : Nat ⊢ I m = I n → m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_I_Nat
[51, 1]
[57, 6]
exact congrArg I h
case mp m n : Nat h : m = n ⊢ I m = I n case mpr m n : Nat ⊢ I m = I n → m = n
case mpr m n : Nat ⊢ I m = I n → m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_I_Nat
[51, 1]
[57, 6]
intro h
case mpr m n : Nat ⊢ I m = I n → m = n
case mpr m n : Nat h : I m = I n ⊢ m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_I_Nat
[51, 1]
[57, 6]
cases h
case mpr m n : Nat h : I m = I n ⊢ m = n
case mpr.refl m : Nat ⊢ m = m
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_I_Nat
[51, 1]
[57, 6]
rfl
case mpr.refl m : Nat ⊢ m = m
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_Is_Nat
[59, 1]
[65, 6]
apply Iff.intro
m n : Nat ⊢ m = n ↔ Is m = Is n
case mp m n : Nat ⊢ m = n → Is m = Is n case mpr m n : Nat ⊢ Is m = Is n → m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_Is_Nat
[59, 1]
[65, 6]
intro h
case mp m n : Nat ⊢ m = n → Is m = Is n case mpr m n : Nat ⊢ Is m = Is n → m = n
case mp m n : Nat h : m = n ⊢ Is m = Is n case mpr m n : Nat ⊢ Is m = Is n → m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_Is_Nat
[59, 1]
[65, 6]
exact congrArg Is h
case mp m n : Nat h : m = n ⊢ Is m = Is n case mpr m n : Nat ⊢ Is m = Is n → m = n
case mpr m n : Nat ⊢ Is m = Is n → m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_Is_Nat
[59, 1]
[65, 6]
intro h
case mpr m n : Nat ⊢ Is m = Is n → m = n
case mpr m n : Nat h : Is m = Is n ⊢ m = n
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_Is_Nat
[59, 1]
[65, 6]
cases h
case mpr m n : Nat h : Is m = Is n ⊢ m = n
case mpr.refl m : Nat ⊢ m = m
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/EllipticCurve/KodairaTypes.lean
eq_Is_Nat
[59, 1]
[65, 6]
rfl
case mpr.refl m : Nat ⊢ m = m
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
mod_mod
[23, 1]
[26, 8]
sorry
K : Type u_1 a b : K inst✝ : EuclideanDomain K ⊢ a % b % b = a % b
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.p_non_zero
[86, 1]
[88, 7]
rw [←nav.v_eq_top_iff_zero, nav.v_uniformizer]
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ ¬p = 0
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ ¬1 = ⊤
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.p_non_zero
[86, 1]
[88, 7]
simp
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ ¬1 = ⊤
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_mul_ge_right
[96, 1]
[98, 32]
rw [mul_comm]
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p a b : R ⊢ v nav b ≤ v nav (a * b)
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p a b : R ⊢ v nav b ≤ v nav (b * a)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_mul_ge_right
[96, 1]
[98, 32]
exact val_mul_ge_left nav b a
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p a b : R ⊢ v nav b ≤ v nav (b * a)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_mul_ge_of_both_ge
[108, 1]
[111, 25]
rw [nav.v_mul_eq_add_v]
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m n : ℕ∞ p : R nav : SurjVal p a b : R ha : m ≤ v nav a hb : n ≤ v nav b ⊢ m + n ≤ v nav (a * b)
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m n : ℕ∞ p : R nav : SurjVal p a b : R ha : m ≤ v nav a hb : n ≤ v nav b ⊢ m + n ≤ v nav a + v nav b
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_mul_ge_of_both_ge
[108, 1]
[111, 25]
exact add_le_add ha hb
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m n : ℕ∞ p : R nav : SurjVal p a b : R ha : m ≤ v nav a hb : n ≤ v nav b ⊢ m + n ≤ v nav a + v nav b
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_one
[113, 1]
[126, 10]
dsimp
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ (fun x => x + v nav p) (v nav 1) = (fun x => x + v nav p) 0
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ v nav 1 + v nav p = 0 + v nav p
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_one
[113, 1]
[126, 10]
rw [← v_mul_eq_add_v]
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ v nav 1 + v nav p = 0 + v nav p
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ v nav (1 * p) = 0 + v nav p
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_one
[113, 1]
[126, 10]
simp
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ v nav (1 * p) = 0 + v nav p
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_one
[113, 1]
[126, 10]
intro x y h
case inj R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ Function.Injective fun x => x + v nav p
case inj R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p x y : ℕ∞ h : (fun x => x + v nav p) x = (fun x => x + v nav p) y ⊢ x = y
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_one
[113, 1]
[126, 10]
induction x using ENat.recTopCoe <;> induction y using ENat.recTopCoe <;> simp at * <;> sorry
case inj R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p x y : ℕ∞ h : (fun x => x + v nav p) x = (fun x => x + v nav p) y ⊢ x = y
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_ge_of_ge
[128, 1]
[134, 40]
induction k with | zero => simp [zero_nsmul] | succ k ih => simp only [succ_nsmul, pow_succ] apply val_mul_ge_of_both_ge _ ha ih
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R k : ℕ ha : m ≤ v nav a ⊢ k • m ≤ v nav (a ^ k)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_ge_of_ge
[128, 1]
[134, 40]
simp [zero_nsmul]
case zero R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : m ≤ v nav a ⊢ Nat.zero • m ≤ v nav (a ^ Nat.zero)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_ge_of_ge
[128, 1]
[134, 40]
simp only [succ_nsmul, pow_succ]
case succ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : m ≤ v nav a k : ℕ ih : k • m ≤ v nav (a ^ k) ⊢ Nat.succ k • m ≤ v nav (a ^ Nat.succ k)
case succ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : m ≤ v nav a k : ℕ ih : k • m ≤ v nav (a ^ k) ⊢ m + k • m ≤ v nav (a * a ^ k)
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_ge_of_ge
[128, 1]
[134, 40]
apply val_mul_ge_of_both_ge _ ha ih
case succ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : m ≤ v nav a k : ℕ ih : k • m ≤ v nav (a ^ k) ⊢ m + k • m ≤ v nav (a * a ^ k)
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_eq_of_eq
[136, 1]
[142, 36]
induction k with | zero => simp | succ k ih => simp only [pow_succ, Nat.cast_succ, add_mul, one_mul, add_comm] rw [nav.v_mul_eq_add_v, ha, ih]
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R k : ℕ ha : v nav a = m ⊢ v nav (a ^ k) = ↑k * m
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_eq_of_eq
[136, 1]
[142, 36]
simp
case zero R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : v nav a = m ⊢ v nav (a ^ Nat.zero) = ↑Nat.zero * m
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_eq_of_eq
[136, 1]
[142, 36]
simp only [pow_succ, Nat.cast_succ, add_mul, one_mul, add_comm]
case succ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : v nav a = m k : ℕ ih : v nav (a ^ k) = ↑k * m ⊢ v nav (a ^ Nat.succ k) = ↑(Nat.succ k) * m
case succ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : v nav a = m k : ℕ ih : v nav (a ^ k) = ↑k * m ⊢ v nav (a * a ^ k) = m + ↑k * m
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_pow_eq_of_eq
[136, 1]
[142, 36]
rw [nav.v_mul_eq_add_v, ha, ih]
case succ R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R m : ℕ∞ p : R nav : SurjVal p a : R ha : v nav a = m k : ℕ ih : v nav (a ^ k) = ↑k * m ⊢ v nav (a * a ^ k) = m + ↑k * m
no goals
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_minus_one
[164, 1]
[170, 16]
by_contra
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p ⊢ v nav (-1) = 0
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p x✝ : ¬v nav (-1) = 0 ⊢ False
https://github.com/KisaraBlue/ec-tate-lean.git
b9d36a5b70bb0958bf9741ae6216a43b35c87ed4
ECTate/Algebra/ValuedRing.lean
SurjVal.val_of_minus_one
[164, 1]
[170, 16]
have contradiction : nav 1 > 0 := by rw [←neg_neg 1, ←one_mul 1, neg_mul_eq_neg_mul, neg_mul_eq_mul_neg, nav.v_mul_eq_add_v] simpa [pos_iff_ne_zero]
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p x✝ : ¬v nav (-1) = 0 ⊢ False
R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R nav : SurjVal p x✝ : ¬v nav (-1) = 0 contradiction : v nav 1 > 0 ⊢ False