url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply congr.coinduction r'
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ congr F i x y
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ βˆ€ (i : I) (x y : IContainer.M (C F) i), r' i x y β†’ ↑(precongr F) r' i x y case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
. clear hβ‚‚ intro i x y hβ‚‚ simp only [precongr, map_quot] have hβ‚‚ := h₁ i _ _ hβ‚‚ simp only [destruct, destruct.f] at hβ‚‚ generalize IContainer.M.destruct x = x at * generalize IContainer.M.destruct y = y at * cases x with | mk nx kx => cases y with | mk ny ky => let f i : Quot (r i) β†’ Quot (r' i) := by apply Quot.lift (Quot.lift (Quot.mk (r' _)) _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply hβ‚€ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h have : βˆ€ i, f i ∘ Quot.mk (r _) ∘ Quot.mk (congr F _) = Quot.mk (r' _) := by intro i; rfl conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this] rw [IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec] rw [inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, hβ‚‚]
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ βˆ€ (i : I) (x y : IContainer.M (C F) i), r' i x y β†’ ↑(precongr F) r' i x y case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
. apply hβ‚‚
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
clear hβ‚‚
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ βˆ€ (i : I) (x y : IContainer.M (C F) i), r' i x y β†’ ↑(precongr F) r' i x y
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ βˆ€ (i : I) (x y : IContainer.M (C F) i), r' i x y β†’ ↑(precongr F) r' i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro i x y hβ‚‚
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ βˆ€ (i : I) (x y : IContainer.M (C F) i), r' i x y β†’ ↑(precongr F) r' i x y
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚ : r' i x y ⊒ ↑(precongr F) r' i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
simp only [precongr, map_quot]
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚ : r' i x y ⊒ ↑(precongr F) r' i x y
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚ : r' i x y ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct x)) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
have hβ‚‚ := h₁ i _ _ hβ‚‚
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚ : r' i x y ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct x)) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (destruct (Quot.mk (congr F i) x)) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct (Quot.mk (congr F i) y)) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct x)) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
simp only [destruct, destruct.f] at hβ‚‚
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (destruct (Quot.mk (congr F i) x)) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct (Quot.mk (congr F i) y)) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct x)) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs (IContainer.M.destruct x))) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs (IContainer.M.destruct y))) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct x)) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
generalize IContainer.M.destruct x = x at *
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs (IContainer.M.destruct x))) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs (IContainer.M.destruct y))) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct x)) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝¹ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x✝ y : IContainer.M (C F) i hβ‚‚βœ : r' i x✝ y x : IContainer.Obj (C F) (IContainer.M (C F)) i hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs x)) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs (IContainer.M.destruct y))) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) x) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
generalize IContainer.M.destruct y = y at *
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝¹ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x✝ y : IContainer.M (C F) i hβ‚‚βœ : r' i x✝ y x : IContainer.Obj (C F) (IContainer.M (C F)) i hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs x)) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs (IContainer.M.destruct y))) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) x) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) (IContainer.M.destruct y))
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝¹ y✝¹ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x✝ y✝ : IContainer.M (C F) i hβ‚‚βœ : r' i x✝ y✝ x y : IContainer.Obj (C F) (IContainer.M (C F)) i hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs x)) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs y)) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) x) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
cases x with | mk nx kx => cases y with | mk ny ky => let f i : Quot (r i) β†’ Quot (r' i) := by apply Quot.lift (Quot.lift (Quot.mk (r' _)) _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply hβ‚€ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h have : βˆ€ i, f i ∘ Quot.mk (r _) ∘ Quot.mk (congr F _) = Quot.mk (r' _) := by intro i; rfl conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this] rw [IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec] rw [inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, hβ‚‚]
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝¹ y✝¹ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x✝ y✝ : IContainer.M (C F) i hβ‚‚βœ : r' i x✝ y✝ x y : IContainer.Obj (C F) (IContainer.M (C F)) i hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs x)) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs y)) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) x) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
cases y with | mk ny ky => let f i : Quot (r i) β†’ Quot (r' i) := by apply Quot.lift (Quot.lift (Quot.mk (r' _)) _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply hβ‚€ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h have : βˆ€ i, f i ∘ Quot.mk (r _) ∘ Quot.mk (congr F _) = Quot.mk (r' _) := by intro i; rfl conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this] rw [IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec] rw [inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, hβ‚‚]
case a.a.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝¹ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y✝ : IContainer.M (C F) i hβ‚‚βœ : r' i x y✝ y : IContainer.Obj (C F) (IContainer.M (C F)) i nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs y)) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
let f i : Quot (r i) β†’ Quot (r' i) := by apply Quot.lift (Quot.lift (Quot.mk (r' _)) _) _ . intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply hβ‚€ . intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := ny, snd := ky })
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := ny, snd := ky })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
have : βˆ€ i, f i ∘ Quot.mk (r _) ∘ Quot.mk (congr F _) = Quot.mk (r' _) := by intro i; rfl
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := ny, snd := ky })
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) this : βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := ny, snd := ky })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
conv => congr . rhs lhs intro i rw [←this] rfl . rhs lhs intro i rw [←this]
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) this : βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i) ⊒ abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => Quot.mk fun x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y)) { fst := ny, snd := ky })
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) this : βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i) ⊒ abs (IContainer.Map (fun i => f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i)) { fst := ny, snd := ky })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
rw [IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec, IContainer.Map_spec]
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) this : βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i) ⊒ abs (IContainer.Map (fun i => f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i)) { fst := nx, snd := kx }) = abs (IContainer.Map (fun i => f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i)) { fst := ny, snd := ky })
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) this : βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i) ⊒ abs (IContainer.Map (fun i => f i) (IContainer.Map (fun i => Quot.mk (r i)) (IContainer.Map (fun i => Quot.mk (congr F i)) { fst := nx, snd := kx }))) = abs (IContainer.Map (fun i => f i) (IContainer.Map (fun i => Quot.mk (r i)) (IContainer.Map (fun i => Quot.mk (congr F i)) { fst := ny, snd := ky })))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
rw [inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, inst.abs_imap, hβ‚‚]
case a.a.mk.mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) this : βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i) ⊒ abs (IContainer.Map (fun i => f i) (IContainer.Map (fun i => Quot.mk (r i)) (IContainer.Map (fun i => Quot.mk (congr F i)) { fst := nx, snd := kx }))) = abs (IContainer.Map (fun i => f i) (IContainer.Map (fun i => Quot.mk (r i)) (IContainer.Map (fun i => Quot.mk (congr F i)) { fst := ny, snd := ky })))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.lift (Quot.lift (Quot.mk (r' _)) _) _
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ Quot (r i) β†’ Quot (r' i)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : Quot (congr F i)), r i a b β†’ Quot.lift (Quot.mk (r' i)) ?m.25601 a = Quot.lift (Quot.mk (r' i)) ?m.25601 b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
. intro a b h₃ apply Quot.sound simp only rw [Quot.sound h₃] apply hβ‚€
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : Quot (congr F i)), r i a b β†’ Quot.lift (Quot.mk (r' i)) ?m.25601 a = Quot.lift (Quot.mk (r' i)) ?m.25601 b
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : Quot (congr F i)), r i a b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) a = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
. intro x; apply Quot.inductionOn (motive := _) x; clear x intro x y; apply Quot.inductionOn (motive := _) y; clear y intro y h apply Quot.sound apply h
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : Quot (congr F i)), r i a b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) a = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro a b h₃
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ Quot.mk (r' i) a = Quot.mk (r' i) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.sound
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ Quot.mk (r' i) a = Quot.mk (r' i) b
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ r' i a b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
simp only
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ r' i a b
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ r i (Quot.mk (congr F i) a) (Quot.mk (congr F i) b)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
rw [Quot.sound h₃]
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ r i (Quot.mk (congr F i) a) (Quot.mk (congr F i) b)
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ r i (Quot.mk (congr F i) b) (Quot.mk (congr F i) b)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply hβ‚€
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I a b : IContainer.M (C F) i h₃ : congr F i a b ⊒ r i (Quot.mk (congr F i) b) (Quot.mk (congr F i) b)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a b : Quot (congr F i)), r i a b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) a = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : Quot (congr F i) ⊒ βˆ€ (b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.inductionOn (motive := _) x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : Quot (congr F i) ⊒ βˆ€ (b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : Quot (congr F i) ⊒ βˆ€ (a : IContainer.M (C F) i) (b : Quot (congr F i)), r i (Quot.mk (congr F i) a) b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
clear x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : Quot (congr F i) ⊒ βˆ€ (a : IContainer.M (C F) i) (b : Quot (congr F i)), r i (Quot.mk (congr F i) a) b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a : IContainer.M (C F) i) (b : Quot (congr F i)), r i (Quot.mk (congr F i) a) b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro x y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I ⊒ βˆ€ (a : IContainer.M (C F) i) (b : Quot (congr F i)), r i (Quot.mk (congr F i) a) b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : IContainer.M (C F) i y : Quot (congr F i) ⊒ r i (Quot.mk (congr F i) x) y β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.inductionOn (motive := _) y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : IContainer.M (C F) i y : Quot (congr F i) ⊒ r i (Quot.mk (congr F i) x) y β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : IContainer.M (C F) i y : Quot (congr F i) ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
clear y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : IContainer.M (C F) i y : Quot (congr F i) ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : IContainer.M (C F) i ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro y h
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x : IContainer.M (C F) i ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) a)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x y : IContainer.M (C F) i h : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.sound
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x y : IContainer.M (C F) i h : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) x) = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) (Quot.mk (congr F i) y)
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x y : IContainer.M (C F) i h : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply h
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝¹ y✝¹ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x✝ y✝ nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) i : I x y : IContainer.M (C F) i h : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro i
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝ : I x✝ y✝ : IContainer.M (C F) i✝ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i : I x y : IContainer.M (C F) i hβ‚‚βœ : r' i x y nx : IContainer.A (C F) i kx : (y : IContainer.B (C F) i nx) β†’ IContainer.M (C F) (IContainer.N (C F) i nx y) ny : IContainer.A (C F) i ky : (y : IContainer.B (C F) i ny) β†’ IContainer.M (C F) (IContainer.N (C F) i ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) ⊒ βˆ€ (i : I), f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) i : I ⊒ f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
rfl
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i✝¹ : I x✝ y✝ : IContainer.M (C F) i✝¹ r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) i✝ : I x y : IContainer.M (C F) i✝ hβ‚‚βœ : r' i✝ x y nx : IContainer.A (C F) i✝ kx : (y : IContainer.B (C F) i✝ nx) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ nx y) ny : IContainer.A (C F) i✝ ky : (y : IContainer.B (C F) i✝ ny) β†’ IContainer.M (C F) (IContainer.N (C F) i✝ ny y) hβ‚‚ : IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := nx, snd := kx })) = IFunctor.imap (fun i => Quot.mk (r i)) (IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (abs { fst := ny, snd := ky })) f : (i : I) β†’ Quot (r i) β†’ Quot (r' i) := fun i => Quot.lift (Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b)) (_ : βˆ€ (x b : Quot (congr F i)), r i x b β†’ Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) x = Quot.lift (Quot.mk (r' i)) (_ : βˆ€ (a b : IContainer.M (C F) i), congr F i a b β†’ Quot.mk (r' i) a = Quot.mk (r' i) b) b) i : I ⊒ f i ∘ Quot.mk (r i) ∘ Quot.mk (congr F i) = Quot.mk (r' i)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply hβ‚‚
case a.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ r' i x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
intro i x y h₁
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) ⊒ βˆ€ {i : I} (x y : M F i), r i x y β†’ x = y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
apply bisim_lemma (λ i x y => x = y ∨ r i x y)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y
case hβ‚€ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x : M F i), x = x ∨ r i x x case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x y : M F i), x = y ∨ r i x y β†’ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
. intro _ _ left rfl
case hβ‚€ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x : M F i), x = x ∨ r i x x case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x y : M F i), x = y ∨ r i x y β†’ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x y : M F i), x = y ∨ r i x y β†’ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
. intro i x y hβ‚‚ cases hβ‚‚ case inl hβ‚‚ => rw [hβ‚‚] case inr hβ‚‚ => have ⟨z, hβ‚ƒβŸ© := hβ‚€ _ _ _ hβ‚‚ clear hβ‚‚ rw [←h₃.1, ←h₃.2] clear h₃ rw [←imap_spec, ←imap_spec] conv => congr <;> rw [←abs_repr z] rw [←abs_imap] rw [←abs_imap] cases repr z with | mk nz kz => simp only [IContainer.Map, Function.comp] apply congrArg abs rw [Sigma.mk.inj_iff] simp only [true_and, heq_eq_eq] funext a apply Quot.sound right apply (kz a).2
case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x y : M F i), x = y ∨ r i x y β†’ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
. right; assumption
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
intro _ _
case hβ‚€ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x : M F i), x = x ∨ r i x x
case hβ‚€ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y i✝ : I x✝ : M F i✝ ⊒ x✝ = x✝ ∨ r i✝ x✝ x✝
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
left
case hβ‚€ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y i✝ : I x✝ : M F i✝ ⊒ x✝ = x✝ ∨ r i✝ x✝ x✝
case hβ‚€.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y i✝ : I x✝ : M F i✝ ⊒ x✝ = x✝
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rfl
case hβ‚€.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y i✝ : I x✝ : M F i✝ ⊒ x✝ = x✝
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
intro i x y hβ‚‚
case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ βˆ€ (i : I) (x y : M F i), x = y ∨ r i x y β†’ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : x = y ∨ r i x y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
cases hβ‚‚
case h₁ I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : x = y ∨ r i x y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
case h₁.inl I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i h✝ : x = y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y) case h₁.inr I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i h✝ : r i x y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
case inl hβ‚‚ => rw [hβ‚‚]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : x = y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
case inr hβ‚‚ => have ⟨z, hβ‚ƒβŸ© := hβ‚€ _ _ _ hβ‚‚ clear hβ‚‚ rw [←h₃.1, ←h₃.2] clear h₃ rw [←imap_spec, ←imap_spec] conv => congr <;> rw [←abs_repr z] rw [←abs_imap] rw [←abs_imap] cases repr z with | mk nz kz => simp only [IContainer.Map, Function.comp] apply congrArg abs rw [Sigma.mk.inj_iff] simp only [true_and, heq_eq_eq] funext a apply Quot.sound right apply (kz a).2
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : r i x y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rw [hβ‚‚]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : x = y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
have ⟨z, hβ‚ƒβŸ© := hβ‚€ _ _ _ hβ‚‚
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : r i x y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : r i x y z : F (fun i => { p // r i p.fst p.snd }) i h₃ : IFunctor.imap (fun x x_1 => (↑x_1).fst) z = destruct x ∧ IFunctor.imap (fun x x_1 => (↑x_1).snd) z = destruct y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
clear hβ‚‚
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i hβ‚‚ : r i x y z : F (fun i => { p // r i p.fst p.snd }) i h₃ : IFunctor.imap (fun x x_1 => (↑x_1).fst) z = destruct x ∧ IFunctor.imap (fun x x_1 => (↑x_1).snd) z = destruct y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i h₃ : IFunctor.imap (fun x x_1 => (↑x_1).fst) z = destruct x ∧ IFunctor.imap (fun x x_1 => (↑x_1).snd) z = destruct y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rw [←h₃.1, ←h₃.2]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i h₃ : IFunctor.imap (fun x x_1 => (↑x_1).fst) z = destruct x ∧ IFunctor.imap (fun x x_1 => (↑x_1).snd) z = destruct y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct x) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (destruct y)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i h₃ : IFunctor.imap (fun x x_1 => (↑x_1).fst) z = destruct x ∧ IFunctor.imap (fun x x_1 => (↑x_1).snd) z = destruct y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).fst) z) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).snd) z)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
clear h₃
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i h₃ : IFunctor.imap (fun x x_1 => (↑x_1).fst) z = destruct x ∧ IFunctor.imap (fun x x_1 => (↑x_1).snd) z = destruct y ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).fst) z) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).snd) z)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).fst) z) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).snd) z)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rw [←imap_spec, ←imap_spec]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).fst) z) = IFunctor.imap (fun i => Quot.mk fun x y => x = y ∨ r i x y) (IFunctor.imap (fun x x_1 => (↑x_1).snd) z)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) z = IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) z
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
conv => congr <;> rw [←abs_repr z]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) z = IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) z
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) (abs (repr z)) = IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) (abs (repr z))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rw [←abs_imap]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) (abs (repr z)) = IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) (abs (repr z))
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) (repr z)) = IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) (abs (repr z))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rw [←abs_imap]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) (repr z)) = IFunctor.imap (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) (abs (repr z))
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) (repr z)) = abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) (repr z))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
cases repr z with | mk nz kz => simp only [IContainer.Map, Function.comp] apply congrArg abs rw [Sigma.mk.inj_iff] simp only [true_and, heq_eq_eq] funext a apply Quot.sound right apply (kz a).2
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i ⊒ abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) (repr z)) = abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) (repr z))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
simp only [IContainer.Map, Function.comp]
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).fst) { fst := nz, snd := kz }) = abs (IContainer.Map (fun i => (Quot.mk fun x y => x = y ∨ r i x y) ∘ fun x => (↑x).snd) { fst := nz, snd := kz })
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ abs { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst } = abs { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
apply congrArg abs
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ abs { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst } = abs { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd }
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst } = { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
rw [Sigma.mk.inj_iff]
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst } = { fst := nz, snd := fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd }
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ nz = nz ∧ HEq (fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst) fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
simp only [true_and, heq_eq_eq]
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ nz = nz ∧ HEq (fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst) fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ (fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst) = fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
funext a
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) ⊒ (fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).fst) = fun y => Quot.mk (fun x y_1 => x = y_1 ∨ r (IContainer.N (C F) i nz y) x y_1) (↑(kz y)).snd
case mk.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) a : IContainer.B (C F) i nz ⊒ Quot.mk (fun x y => x = y ∨ r (IContainer.N (C F) i nz a) x y) (↑(kz a)).fst = Quot.mk (fun x y => x = y ∨ r (IContainer.N (C F) i nz a) x y) (↑(kz a)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
apply Quot.sound
case mk.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) a : IContainer.B (C F) i nz ⊒ Quot.mk (fun x y => x = y ∨ r (IContainer.N (C F) i nz a) x y) (↑(kz a)).fst = Quot.mk (fun x y => x = y ∨ r (IContainer.N (C F) i nz a) x y) (↑(kz a)).snd
case mk.h.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) a : IContainer.B (C F) i nz ⊒ (↑(kz a)).fst = (↑(kz a)).snd ∨ r (IContainer.N (C F) i nz a) (↑(kz a)).fst (↑(kz a)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
right
case mk.h.a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) a : IContainer.B (C F) i nz ⊒ (↑(kz a)).fst = (↑(kz a)).snd ∨ r (IContainer.N (C F) i nz a) (↑(kz a)).fst (↑(kz a)).snd
case mk.h.a.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) a : IContainer.B (C F) i nz ⊒ r (IContainer.N (C F) i nz a) (↑(kz a)).fst (↑(kz a)).snd
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
apply (kz a).2
case mk.h.a.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i✝ : I x✝ y✝ : M F i✝ h₁ : r i✝ x✝ y✝ i : I x y : M F i z : F (fun i => { p // r i p.fst p.snd }) i nz : IContainer.A (C F) i kz : (y : IContainer.B (C F) i nz) β†’ (fun i => { p // r i p.fst p.snd }) (IContainer.N (C F) i nz y) a : IContainer.B (C F) i nz ⊒ r (IContainer.N (C F) i nz a) (↑(kz a)).fst (↑(kz a)).snd
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
right
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ x = y ∨ r i x y
case a.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ r i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim
[185, 1]
[216, 22]
assumption
case a.h I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M F i), r i x y β†’ liftr F r i (destruct x) (destruct y) i : I x y : M F i h₁ : r i x y ⊒ r i x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
intro hβ‚€ x y h₁
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop ⊒ (βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y) β†’ βˆ€ (x y : M (C F)), p x y β†’ congr F x y
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y ⊒ congr F x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
simp only [congr, pcongr]
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y ⊒ congr F x y
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y ⊒ ↑(pgfp (precongr F)) βŠ₯ x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
have := (pgfp.coinduction (precongr F) p).2
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y ⊒ ↑(pgfp (precongr F)) βŠ₯ x y
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ ↑(pgfp (precongr F)) βŠ₯ x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
apply this
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ ↑(pgfp (precongr F)) βŠ₯ x y
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
have : p ≀ p βŠ” pgfp (precongr F) p := by simp
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this✝ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this : p ≀ p βŠ” ↑(pgfp (precongr F)) p ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
have := (precongr F).2 this
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this✝ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this : p ≀ p βŠ” ↑(pgfp (precongr F)) p ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
apply le_trans _ this
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) p case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
apply hβ‚€
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) p case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
assumption
case a F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.congr.coinduction
[56, 1]
[67, 13]
simp
F✝ : Type u₁ β†’ Type u₁ inst✝ : QPF F✝ F : Type u₁ β†’ Type u₁ inst : QPF F p : M (C F) β†’ M (C F) β†’ Prop hβ‚€ : βˆ€ (x y : M (C F)), p x y β†’ ↑(precongr F) p x y x y : M (C F) h₁ : p x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p ≀ p βŠ” ↑(pgfp (precongr F)) p
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.destruct_corec
[98, 1]
[105, 8]
simp only [destruct, corec, destruct.f, Container.M.destruct_corec, inst.abs_map, inst.abs_repr]
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± ⊒ destruct (corec f xβ‚€) = (fun x => corec f x) <$> f xβ‚€
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± ⊒ (fun x => Quot.mk (congr F) x) <$> (Container.M.corec fun x => repr (f x)) <$> f xβ‚€ = (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) <$> f xβ‚€
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.destruct_corec
[98, 1]
[105, 8]
rw [←inst.abs_repr (f xβ‚€)]
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± ⊒ (fun x => Quot.mk (congr F) x) <$> (Container.M.corec fun x => repr (f x)) <$> f xβ‚€ = (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) <$> f xβ‚€
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± ⊒ (fun x => Quot.mk (congr F) x) <$> (Container.M.corec fun x => repr (f x)) <$> abs (repr (f xβ‚€)) = (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) <$> abs (repr (f xβ‚€))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.destruct_corec
[98, 1]
[105, 8]
cases repr (f xβ‚€) with | mk n k => simp only [←inst.abs_map, Container.Map] rfl
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± ⊒ (fun x => Quot.mk (congr F) x) <$> (Container.M.corec fun x => repr (f x)) <$> abs (repr (f xβ‚€)) = (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) <$> abs (repr (f xβ‚€))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.destruct_corec
[98, 1]
[105, 8]
simp only [←inst.abs_map, Container.Map]
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± n : (C F).A k : Container.B (C F) n β†’ Ξ± ⊒ (fun x => Quot.mk (congr F) x) <$> (Container.M.corec fun x => repr (f x)) <$> abs { fst := n, snd := k } = (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) <$> abs { fst := n, snd := k }
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± n : (C F).A k : Container.B (C F) n β†’ Ξ± ⊒ abs { fst := n, snd := (fun x => Quot.mk (congr F) x) ∘ (Container.M.corec fun x => repr (f x)) ∘ k } = abs { fst := n, snd := (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) ∘ k }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.destruct_corec
[98, 1]
[105, 8]
rfl
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± : Type u₁ f : Ξ± β†’ F Ξ± xβ‚€ : Ξ± n : (C F).A k : Container.B (C F) n β†’ Ξ± ⊒ abs { fst := n, snd := (fun x => Quot.mk (congr F) x) ∘ (Container.M.corec fun x => repr (f x)) ∘ k } = abs { fst := n, snd := (fun x => Quot.mk (congr F) (Container.M.corec (fun x => repr (f x)) x)) ∘ k }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.map_comp
[119, 1]
[126, 6]
conv => congr <;> rw [←inst.abs_repr x]
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± ⊒ (f ∘ g) <$> x = f <$> g <$> x
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± ⊒ (f ∘ g) <$> abs (repr x) = f <$> g <$> abs (repr x)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.map_comp
[119, 1]
[126, 6]
cases repr x
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± ⊒ (f ∘ g) <$> abs (repr x) = f <$> g <$> abs (repr x)
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± fst✝ : (C F).A snd✝ : Container.B (C F) fst✝ β†’ Ξ± ⊒ (f ∘ g) <$> abs { fst := fst✝, snd := snd✝ } = f <$> g <$> abs { fst := fst✝, snd := snd✝ }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.map_comp
[119, 1]
[126, 6]
simp [←inst.abs_map, Container.Map]
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± fst✝ : (C F).A snd✝ : Container.B (C F) fst✝ β†’ Ξ± ⊒ (f ∘ g) <$> abs { fst := fst✝, snd := snd✝ } = f <$> g <$> abs { fst := fst✝, snd := snd✝ }
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± fst✝ : (C F).A snd✝ : Container.B (C F) fst✝ β†’ Ξ± ⊒ abs { fst := fst✝, snd := (f ∘ g) ∘ snd✝ } = abs { fst := fst✝, snd := f ∘ g ∘ snd✝ }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.map_comp
[119, 1]
[126, 6]
rfl
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : F Ξ± fst✝ : (C F).A snd✝ : Container.B (C F) fst✝ β†’ Ξ± ⊒ abs { fst := fst✝, snd := (f ∘ g) ∘ snd✝ } = abs { fst := fst✝, snd := f ∘ g ∘ snd✝ }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
Container.Map_spec
[129, 1]
[133, 6]
cases x
F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² x : Obj (QPF.C F) Ξ± ⊒ Map (f ∘ g) x = Map f (Map g x)
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² fst✝ : (QPF.C F).A snd✝ : B (QPF.C F) fst✝ β†’ Ξ± ⊒ Map (f ∘ g) { fst := fst✝, snd := snd✝ } = Map f (Map g { fst := fst✝, snd := snd✝ })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
Container.Map_spec
[129, 1]
[133, 6]
simp [Map]
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² fst✝ : (QPF.C F).A snd✝ : B (QPF.C F) fst✝ β†’ Ξ± ⊒ Map (f ∘ g) { fst := fst✝, snd := snd✝ } = Map f (Map g { fst := fst✝, snd := snd✝ })
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² fst✝ : (QPF.C F).A snd✝ : B (QPF.C F) fst✝ β†’ Ξ± ⊒ (f ∘ g) ∘ snd✝ = f ∘ g ∘ snd✝
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
Container.Map_spec
[129, 1]
[133, 6]
rfl
case mk F : Type u₁ β†’ Type u₁ inst : QPF F Ξ± Ξ² Ξ³ : Type u₁ f : Ξ² β†’ Ξ³ g : Ξ± β†’ Ξ² fst✝ : (QPF.C F).A snd✝ : B (QPF.C F) fst✝ β†’ Ξ± ⊒ (f ∘ g) ∘ snd✝ = f ∘ g ∘ snd✝
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro x
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y ⊒ βˆ€ (x y : M F), r x y β†’ x = y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : M F ⊒ βˆ€ (y : M F), r x y β†’ x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.inductionOn (motive := _) x
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : M F ⊒ βˆ€ (y : M F), r x y β†’ x = y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : M F ⊒ βˆ€ (a : Container.M (C F)) (y : M F), r (Quot.mk (congr F) a) y β†’ Quot.mk (congr F) a = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
clear x
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : M F ⊒ βˆ€ (a : Container.M (C F)) (y : M F), r (Quot.mk (congr F) a) y β†’ Quot.mk (congr F) a = y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y ⊒ βˆ€ (a : Container.M (C F)) (y : M F), r (Quot.mk (congr F) a) y β†’ Quot.mk (congr F) a = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro x y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y ⊒ βˆ€ (a : Container.M (C F)) (y : M F), r (Quot.mk (congr F) a) y β†’ Quot.mk (congr F) a = y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : Container.M (C F) y : M F ⊒ r (Quot.mk (congr F) x) y β†’ Quot.mk (congr F) x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.inductionOn (motive := _) y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : Container.M (C F) y : M F ⊒ r (Quot.mk (congr F) x) y β†’ Quot.mk (congr F) x = y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : Container.M (C F) y : M F ⊒ βˆ€ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) β†’ Quot.mk (congr F) x = Quot.mk (congr F) a
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
clear y
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : Container.M (C F) y : M F ⊒ βˆ€ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) β†’ Quot.mk (congr F) x = Quot.mk (congr F) a
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : Container.M (C F) ⊒ βˆ€ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) β†’ Quot.mk (congr F) x = Quot.mk (congr F) a
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
intro y hβ‚‚
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x : Container.M (C F) ⊒ βˆ€ (a : Container.M (C F)), r (Quot.mk (congr F) x) (Quot.mk (congr F) a) β†’ Quot.mk (congr F) x = Quot.mk (congr F) a
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) hβ‚‚ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊒ Quot.mk (congr F) x = Quot.mk (congr F) y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
apply Quot.sound
F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) hβ‚‚ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊒ Quot.mk (congr F) x = Quot.mk (congr F) y
case a F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) hβ‚‚ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊒ congr F x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/M.lean
QPF.M.bisim_lemma
[135, 1]
[187, 13]
let r' x y := r (Quot.mk _ x) (Quot.mk _ y)
case a F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) hβ‚‚ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊒ congr F x y
case a F : Type u₁ β†’ Type u₁ inst : QPF F r : M F β†’ M F β†’ Prop hβ‚€ : βˆ€ (x : M F), r x x h₁ : βˆ€ (x y : M F), r x y β†’ Quot.mk r <$> destruct x = Quot.mk r <$> destruct y x y : Container.M (C F) hβ‚‚ : r (Quot.mk (congr F) x) (Quot.mk (congr F) y) r' : Container.M (C F) β†’ Container.M (C F) β†’ Prop := fun x y => r (Quot.mk (congr F) x) (Quot.mk (congr F) y) ⊒ congr F x y