url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.index_destruct
[59, 1]
[66, 10]
rw [←pgfp.unfold] at wf
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf : ↑(pgfp (WellFormedF C)) βŠ₯ i m ⊒ i = (Container.M.destruct ↑{ val := m, property := wf }).fst.fst
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (βŠ₯ βŠ” ↑(pgfp (WellFormedF C)) βŠ₯) i m ⊒ i = (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.index_destruct
[59, 1]
[66, 10]
simp only [CompleteLattice.bot_sup] at wf
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (βŠ₯ βŠ” ↑(pgfp (WellFormedF C)) βŠ₯) i m ⊒ i = (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (↑(pgfp (WellFormedF C)) βŠ₯) i m ⊒ i = (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.index_destruct
[59, 1]
[66, 10]
have ⟨x, _⟩ := wf
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (↑(pgfp (WellFormedF C)) βŠ₯) i m ⊒ i = (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (↑(pgfp (WellFormedF C)) βŠ₯) i m x : (Container.M.destruct m).fst.fst = i right✝ : βˆ€ (x : B C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd), ↑(pgfp (WellFormedF C)) βŠ₯ (N C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd x) (PSigma.snd (Container.M.destruct m) x) ⊒ i = (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.index_destruct
[59, 1]
[66, 10]
apply Eq.symm
I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (↑(pgfp (WellFormedF C)) βŠ₯) i m x : (Container.M.destruct m).fst.fst = i right✝ : βˆ€ (x : B C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd), ↑(pgfp (WellFormedF C)) βŠ₯ (N C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd x) (PSigma.snd (Container.M.destruct m) x) ⊒ i = (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst
case h I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (↑(pgfp (WellFormedF C)) βŠ₯) i m x : (Container.M.destruct m).fst.fst = i right✝ : βˆ€ (x : B C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd), ↑(pgfp (WellFormedF C)) βŠ₯ (N C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd x) (PSigma.snd (Container.M.destruct m) x) ⊒ (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst = i
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.index_destruct
[59, 1]
[66, 10]
exact x
case h I : Type uβ‚€ C : IContainer I i : I x✝ : M C i m : Container.M (toContainer C) wf✝ : ↑(pgfp (WellFormedF C)) βŠ₯ i m wf : ↑(WellFormedF C) (↑(pgfp (WellFormedF C)) βŠ₯) i m x : (Container.M.destruct m).fst.fst = i right✝ : βˆ€ (x : B C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd), ↑(pgfp (WellFormedF C)) βŠ₯ (N C (Container.M.destruct m).fst.fst (Container.M.destruct m).fst.snd x) (PSigma.snd (Container.M.destruct m) x) ⊒ (Container.M.destruct ↑{ val := m, property := wf✝ }).fst.fst = i
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
intro ⟨x, wfx⟩ ⟨y, wfy⟩ h₁
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I ⊒ βˆ€ (x y : M C i), R i x y β†’ x = y
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ { val := x, property := wfx } = { val := y, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
suffices h: x = y by induction h rfl
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ { val := x, property := wfx } = { val := y, property := wfy }
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
apply Container.M.bisim (Ξ» x y => βˆƒ i, βˆƒ (wfx: WellFormed i x) (wfy:WellFormed i y), R i ⟨x, wfx⟩ ⟨y, wfy⟩)
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ x = y
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆ€ (x y : Container.M (toContainer C)), (βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }) β†’ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy } case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
. intro x y ⟨i, wfx, wfy, r⟩ have ⟨node, k₁, kβ‚‚, h₁, hβ‚‚, hβ‚ƒβŸ© := hβ‚€ i ⟨x, wfx⟩ ⟨y, wfy⟩ r let ix := (Container.M.destruct x).1.1 let nx := (Container.M.destruct x).1.2 let kx := (Container.M.destruct x).2 let iy := (Container.M.destruct y).1.1 let ny := (Container.M.destruct y).1.2 let ky := (Container.M.destruct y).2 have hix := index_destruct ⟨x, wfx⟩ have hiy := index_destruct ⟨y, wfy⟩ have wfx' : βˆ€ a:B C ix nx, WellFormed (C.N ix nx a) (kx a) := wf_destruct ⟨x, wfx⟩ have wfy' : βˆ€ a:B C iy ny, WellFormed (C.N iy ny a) (ky a) := wf_destruct ⟨y, wfy⟩ simp only at hix hiy wfx wfy exists ⟨_, node⟩ exists Ξ» x => (k₁ x).1 exists Ξ» x => (kβ‚‚ x).1 constructor . cases hix have hnx: nx = node := by apply congrArg Sigma.fst h₁ cases hnx have h₁ := Sigma.snd_equals _ _ _ h₁ rw [← h₁] rfl . constructor . cases hiy have hny: ny = node := by apply congrArg Sigma.fst hβ‚‚ cases hny have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ rw [← hβ‚‚] rfl . intro a exists C.N i node a simp only [toContainer] at a exists (by cases hix have : nx = node := by apply congrArg Sigma.fst h₁ cases this have h₁ := Sigma.snd_equals _ _ _ h₁ have wfx' := wfx' a cases h₁ exact wfx' ) exists (by cases hiy have : ny = node := by apply congrArg Sigma.fst hβ‚‚ cases this have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ have wfy' := wfy' a cases hβ‚‚ exact wfy' ) exact h₃ a
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆ€ (x y : Container.M (toContainer C)), (βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }) β†’ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy } case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }
case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists i
case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }
case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists wfx
case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }
case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ wfy, R i { val := x, property := wfx } { val := y, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists wfy
case a I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ wfy, R i { val := x, property := wfx } { val := y, property := wfy }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
induction h
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } h : x = y ⊒ { val := x, property := wfx } = { val := y, property := wfy }
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i x h₁ : R i { val := x, property := wfx } { val := x, property := wfy } ⊒ { val := x, property := wfx } = { val := x, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
rfl
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i x h₁ : R i { val := x, property := wfx } { val := x, property := wfy } ⊒ { val := x, property := wfx } = { val := x, property := wfy }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
intro x y ⟨i, wfx, wfy, r⟩
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x : Container.M (toContainer C) wfx : WellFormed i x y : Container.M (toContainer C) wfy : WellFormed i y h₁ : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆ€ (x y : Container.M (toContainer C)), (βˆƒ i wfx wfy, R i { val := x, property := wfx } { val := y, property := wfy }) β†’ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ h₁ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have ⟨node, k₁, kβ‚‚, h₁, hβ‚‚, hβ‚ƒβŸ© := hβ‚€ i ⟨x, wfx⟩ ⟨y, wfy⟩ r
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ h₁ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
let ix := (Container.M.destruct x).1.1
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
let nx := (Container.M.destruct x).1.2
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
let kx := (Container.M.destruct x).2
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
let iy := (Container.M.destruct y).1.1
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
let ny := (Container.M.destruct y).1.2
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
let ky := (Container.M.destruct y).2
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have hix := index_destruct ⟨x, wfx⟩
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have hiy := index_destruct ⟨y, wfy⟩
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst hiy : i = (Container.M.destruct ↑{ val := y, property := wfy }).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have wfx' : βˆ€ a:B C ix nx, WellFormed (C.N ix nx a) (kx a) := wf_destruct ⟨x, wfx⟩
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst hiy : i = (Container.M.destruct ↑{ val := y, property := wfy }).fst.fst ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst hiy : i = (Container.M.destruct ↑{ val := y, property := wfy }).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have wfy' : βˆ€ a:B C iy ny, WellFormed (C.N iy ny a) (ky a) := wf_destruct ⟨y, wfy⟩
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst hiy : i = (Container.M.destruct ↑{ val := y, property := wfy }).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst hiy : i = (Container.M.destruct ↑{ val := y, property := wfy }).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
simp only at hix hiy wfx wfy
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct ↑{ val := x, property := wfx }).fst.fst hiy : i = (Container.M.destruct ↑{ val := y, property := wfy }).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists ⟨_, node⟩
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ node k₁ kβ‚‚, Container.M.destruct x = { fst := node, snd := k₁ } ∧ Container.M.destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) node), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ k₁ kβ‚‚, Container.M.destruct x = { fst := { fst := i, snd := node }, snd := k₁ } ∧ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists Ξ» x => (k₁ x).1
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ k₁ kβ‚‚, Container.M.destruct x = { fst := { fst := i, snd := node }, snd := k₁ } ∧ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := kβ‚‚ } ∧ βˆ€ (i : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_1 wfx wfy, R i_1 { val := k₁ i, property := wfx } { val := kβ‚‚ i, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ kβ‚‚, Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) } ∧ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := kβ‚‚ } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := kβ‚‚ i_1, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists Ξ» x => (kβ‚‚ x).1
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆƒ kβ‚‚, Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) } ∧ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := kβ‚‚ } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := kβ‚‚ i_1, property := wfy }
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) } ∧ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
constructor
case hβ‚€ I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) } ∧ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
case hβ‚€.left I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) } case hβ‚€.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
. cases hix have hnx: nx = node := by apply congrArg Sigma.fst h₁ cases hnx have h₁ := Sigma.snd_equals _ _ _ h₁ rw [← h₁] rfl
case hβ‚€.left I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) } case hβ‚€.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
case hβ‚€.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
. constructor . cases hiy have hny: ny = node := by apply congrArg Sigma.fst hβ‚‚ cases hny have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ rw [← hβ‚‚] rfl . intro a exists C.N i node a simp only [toContainer] at a exists (by cases hix have : nx = node := by apply congrArg Sigma.fst h₁ cases this have h₁ := Sigma.snd_equals _ _ _ h₁ have wfx' := wfx' a cases h₁ exact wfx' ) exists (by cases hiy have : ny = node := by apply congrArg Sigma.fst hβ‚‚ cases this have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ have wfy' := wfy' a cases hβ‚‚ exact wfy' ) exact h₃ a
case hβ‚€.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hix
case hβ‚€.left I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct x = { fst := { fst := i, snd := node }, snd := fun x => ↑(k₁ x) }
case hβ‚€.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := node }, snd := fun x_1 => ↑(k₁ x_1) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have hnx: nx = node := by apply congrArg Sigma.fst h₁
case hβ‚€.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := node }, snd := fun x_1 => ↑(k₁ x_1) }
case hβ‚€.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst hnx : nx = node ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := node }, snd := fun x_1 => ↑(k₁ x_1) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hnx
case hβ‚€.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst hnx : nx = node ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := node }, snd := fun x_1 => ↑(k₁ x_1) }
case hβ‚€.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) h₁ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := nx }, snd := fun x_1 => ↑(k₁ x_1) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have h₁ := Sigma.snd_equals _ _ _ h₁
case hβ‚€.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) h₁ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := nx }, snd := fun x_1 => ↑(k₁ x_1) }
case hβ‚€.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) h₁ : (destruct { val := x, property := wfx }).snd = k₁ ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := nx }, snd := fun x_1 => ↑(k₁ x_1) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
rw [← h₁]
case hβ‚€.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) h₁ : (destruct { val := x, property := wfx }).snd = k₁ ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := nx }, snd := fun x_1 => ↑(k₁ x_1) }
case hβ‚€.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) h₁ : (destruct { val := x, property := wfx }).snd = k₁ ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := nx }, snd := fun x_1 => ↑(Sigma.snd (destruct { val := x, property := wfx }) x_1) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
rfl
case hβ‚€.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) h₁ : (destruct { val := x, property := wfx }).snd = k₁ ⊒ Container.M.destruct x = { fst := { fst := (Container.M.destruct x).fst.fst, snd := nx }, snd := fun x_1 => ↑(Sigma.snd (destruct { val := x, property := wfx }) x_1) }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
apply congrArg Sigma.fst h₁
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst ⊒ nx = node
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
constructor
case hβ‚€.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } ∧ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
case hβ‚€.right.left I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
. cases hiy have hny: ny = node := by apply congrArg Sigma.fst hβ‚‚ cases hny have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ rw [← hβ‚‚] rfl
case hβ‚€.right.left I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) } case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
. intro a exists C.N i node a simp only [toContainer] at a exists (by cases hix have : nx = node := by apply congrArg Sigma.fst h₁ cases this have h₁ := Sigma.snd_equals _ _ _ h₁ have wfx' := wfx' a cases h₁ exact wfx' ) exists (by cases hiy have : ny = node := by apply congrArg Sigma.fst hβ‚‚ cases this have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ have wfy' := wfy' a cases hβ‚‚ exact wfy' ) exact h₃ a
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hiy
case hβ‚€.right.left I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ Container.M.destruct y = { fst := { fst := i, snd := node }, snd := fun x => ↑(kβ‚‚ x) }
case hβ‚€.right.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := node }, snd := fun x => ↑(kβ‚‚ x) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have hny: ny = node := by apply congrArg Sigma.fst hβ‚‚
case hβ‚€.right.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := node }, snd := fun x => ↑(kβ‚‚ x) }
case hβ‚€.right.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst hny : ny = node ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := node }, snd := fun x => ↑(kβ‚‚ x) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hny
case hβ‚€.right.left.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst hny : ny = node ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := node }, snd := fun x => ↑(kβ‚‚ x) }
case hβ‚€.right.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := ny }, snd := fun x => ↑(kβ‚‚ x) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚
case hβ‚€.right.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := ny }, snd := fun x => ↑(kβ‚‚ x) }
case hβ‚€.right.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := ny }, snd := fun x => ↑(kβ‚‚ x) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
rw [← hβ‚‚]
case hβ‚€.right.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := ny }, snd := fun x => ↑(kβ‚‚ x) }
case hβ‚€.right.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := ny }, snd := fun x => ↑(Sigma.snd (destruct { val := y, property := wfy }) x) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
rfl
case hβ‚€.right.left.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ ⊒ Container.M.destruct y = { fst := { fst := (Container.M.destruct y).fst.fst, snd := ny }, snd := fun x => ↑(Sigma.snd (destruct { val := y, property := wfy }) x) }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
apply congrArg Sigma.fst hβ‚‚
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst ⊒ ny = node
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
intro a
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) ⊒ βˆ€ (i_1 : Container.B (toContainer C) { fst := i, snd := node }), βˆƒ i_2 wfx wfy, R i_2 { val := (fun x => ↑(k₁ x)) i_1, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) i_1, property := wfy }
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : Container.B (toContainer C) { fst := i, snd := node } ⊒ βˆƒ i_1 wfx wfy, R i_1 { val := (fun x => ↑(k₁ x)) a, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists C.N i node a
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : Container.B (toContainer C) { fst := i, snd := node } ⊒ βˆƒ i_1 wfx wfy, R i_1 { val := (fun x => ↑(k₁ x)) a, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy }
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : Container.B (toContainer C) { fst := i, snd := node } ⊒ βˆƒ wfx wfy, R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
simp only [toContainer] at a
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : Container.B (toContainer C) { fst := i, snd := node } ⊒ βˆƒ wfx wfy, R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy }
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ βˆƒ wfx wfy, R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists (by cases hix have : nx = node := by apply congrArg Sigma.fst h₁ cases this have h₁ := Sigma.snd_equals _ _ _ h₁ have wfx' := wfx' a cases h₁ exact wfx' )
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ βˆƒ wfx wfy, R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := wfx } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy }
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ βˆƒ wfy_1, R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := (_ : WellFormed (N C i node a) ((fun x => ↑(k₁ x)) a)) } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy_1 }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exists (by cases hiy have : ny = node := by apply congrArg Sigma.fst hβ‚‚ cases this have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚ have wfy' := wfy' a cases hβ‚‚ exact wfy' )
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ βˆƒ wfy_1, R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := (_ : WellFormed (N C i node a) ((fun x => ↑(k₁ x)) a)) } { val := (fun x => ↑(kβ‚‚ x)) a, property := wfy_1 }
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := (_ : WellFormed (N C i node a) ((fun x => ↑(k₁ x)) a)) } { val := (fun x => ↑(kβ‚‚ x)) a, property := (_ : WellFormed (N C i node a) ((fun x => ↑(kβ‚‚ x)) a)) }
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exact h₃ a
case hβ‚€.right.right I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ R (N C i node a) { val := (fun x => ↑(k₁ x)) a, property := (_ : WellFormed (N C i node a) ((fun x => ↑(k₁ x)) a)) } { val := (fun x => ↑(kβ‚‚ x)) a, property := (_ : WellFormed (N C i node a) ((fun x => ↑(kβ‚‚ x)) a)) }
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hix
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ WellFormed (N C i node a) ((fun x => ↑(k₁ x)) a)
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst a : B C (Container.M.destruct x).fst.fst node ⊒ WellFormed (N C (Container.M.destruct x).fst.fst node a) ((fun x_1 => ↑(k₁ x_1)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have : nx = node := by apply congrArg Sigma.fst h₁
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst a : B C (Container.M.destruct x).fst.fst node ⊒ WellFormed (N C (Container.M.destruct x).fst.fst node a) ((fun x_1 => ↑(k₁ x_1)) a)
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst a : B C (Container.M.destruct x).fst.fst node this : nx = node ⊒ WellFormed (N C (Container.M.destruct x).fst.fst node a) ((fun x_1 => ↑(k₁ x_1)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases this
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst a : B C (Container.M.destruct x).fst.fst node this : nx = node ⊒ WellFormed (N C (Container.M.destruct x).fst.fst node a) ((fun x_1 => ↑(k₁ x_1)) a)
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) h₁ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct x).fst.fst nx ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(k₁ x_1)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have h₁ := Sigma.snd_equals _ _ _ h₁
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) h₁ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct x).fst.fst nx ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(k₁ x_1)) a)
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct x).fst.fst nx h₁ : (destruct { val := x, property := wfx }).snd = k₁ ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(k₁ x_1)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have wfx' := wfx' a
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct x).fst.fst nx h₁ : (destruct { val := x, property := wfx }).snd = k₁ ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(k₁ x_1)) a)
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx'✝ : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct x).fst.fst nx h₁ : (destruct { val := x, property := wfx }).snd = k₁ wfx' : WellFormed (N C ix nx a) (kx a) ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(k₁ x_1)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases h₁
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœΒΉ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx'✝ : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚βœ : destruct { val := x, property := wfx } = { fst := nx, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct x).fst.fst nx h₁ : (destruct { val := x, property := wfx }).snd = k₁ wfx' : WellFormed (N C ix nx a) (kx a) ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(k₁ x_1)) a)
case refl.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx'✝ : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } a : B C (Container.M.destruct x).fst.fst nx wfx' : WellFormed (N C ix nx a) (kx a) h₁ : destruct { val := x, property := wfx } = { fst := nx, snd := (destruct { val := x, property := wfx }).snd } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (Sigma.snd (destruct { val := x, property := wfx }) z) (kβ‚‚ z) ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(Sigma.snd (destruct { val := x, property := wfx }) x_1)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exact wfx'
case refl.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx'✝ : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst nx) β†’ M C (N C (Container.M.destruct x).fst.fst nx y) hβ‚‚ : destruct { val := y, property := wfy } = { fst := nx, snd := kβ‚‚ } a : B C (Container.M.destruct x).fst.fst nx wfx' : WellFormed (N C ix nx a) (kx a) h₁ : destruct { val := x, property := wfx } = { fst := nx, snd := (destruct { val := x, property := wfx }).snd } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst nx), R (N C (Container.M.destruct x).fst.fst nx z) (Sigma.snd (destruct { val := x, property := wfx }) z) (kβ‚‚ z) ⊒ WellFormed (N C (Container.M.destruct x).fst.fst nx a) ((fun x_1 => ↑(Sigma.snd (destruct { val := x, property := wfx }) x_1)) a)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
apply congrArg Sigma.fst h₁
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct x).fst.fst x wfy : WellFormed (Container.M.destruct x).fst.fst y r : R (Container.M.destruct x).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y : B C (Container.M.destruct x).fst.fst node) β†’ M C (N C (Container.M.destruct x).fst.fst node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct x).fst.fst node), R (N C (Container.M.destruct x).fst.fst node z) (k₁ z) (kβ‚‚ z) hiy : (Container.M.destruct x).fst.fst = (Container.M.destruct y).fst.fst a : B C (Container.M.destruct x).fst.fst node ⊒ nx = node
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hiy
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i✝ : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i✝ x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i✝ y✝ hβ‚βœ : R i✝ { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) i : I wfx : WellFormed i x wfy : WellFormed i y r : R i { val := x, property := wfx } { val := y, property := wfy } node : A C i k₁ kβ‚‚ : (y : B C i node) β†’ M C (N C i node y) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd hix : i = (Container.M.destruct x).fst.fst hiy : i = (Container.M.destruct y).fst.fst wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) a : B C i node ⊒ WellFormed (N C i node a) ((fun x => ↑(kβ‚‚ x)) a)
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst a : B C (Container.M.destruct y).fst.fst node ⊒ WellFormed (N C (Container.M.destruct y).fst.fst node a) ((fun x => ↑(kβ‚‚ x)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have : ny = node := by apply congrArg Sigma.fst hβ‚‚
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst a : B C (Container.M.destruct y).fst.fst node ⊒ WellFormed (N C (Container.M.destruct y).fst.fst node a) ((fun x => ↑(kβ‚‚ x)) a)
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst a : B C (Container.M.destruct y).fst.fst node this : ny = node ⊒ WellFormed (N C (Container.M.destruct y).fst.fst node a) ((fun x => ↑(kβ‚‚ x)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases this
case refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst a : B C (Container.M.destruct y).fst.fst node this : ny = node ⊒ WellFormed (N C (Container.M.destruct y).fst.fst node a) ((fun x => ↑(kβ‚‚ x)) a)
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct y).fst.fst ny ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(kβ‚‚ x)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have hβ‚‚ := Sigma.snd_equals _ _ _ hβ‚‚
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct y).fst.fst ny ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(kβ‚‚ x)) a)
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct y).fst.fst ny hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(kβ‚‚ x)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
have wfy' := wfy' a
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct y).fst.fst ny hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(kβ‚‚ x)) a)
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy'✝ : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct y).fst.fst ny hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ wfy' : WellFormed (N C iy ny a) (ky a) ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(kβ‚‚ x)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
cases hβ‚‚
case refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy'✝ : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } hβ‚‚βœ : destruct { val := y, property := wfy } = { fst := ny, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (kβ‚‚ z) a : B C (Container.M.destruct y).fst.fst ny hβ‚‚ : (destruct { val := y, property := wfy }).snd = kβ‚‚ wfy' : WellFormed (N C iy ny a) (ky a) ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(kβ‚‚ x)) a)
case refl.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy'✝ : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } a : B C (Container.M.destruct y).fst.fst ny wfy' : WellFormed (N C iy ny a) (ky a) hβ‚‚ : destruct { val := y, property := wfy } = { fst := ny, snd := (destruct { val := y, property := wfy }).snd } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (Sigma.snd (destruct { val := y, property := wfy }) z) ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(Sigma.snd (destruct { val := y, property := wfy }) x)) a)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
exact wfy'
case refl.refl.refl I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy'✝ : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst k₁ : (y_1 : B C (Container.M.destruct y).fst.fst ny) β†’ M C (N C (Container.M.destruct y).fst.fst ny y_1) h₁ : destruct { val := x, property := wfx } = { fst := ny, snd := k₁ } a : B C (Container.M.destruct y).fst.fst ny wfy' : WellFormed (N C iy ny a) (ky a) hβ‚‚ : destruct { val := y, property := wfy } = { fst := ny, snd := (destruct { val := y, property := wfy }).snd } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst ny), R (N C (Container.M.destruct y).fst.fst ny z) (k₁ z) (Sigma.snd (destruct { val := y, property := wfy }) z) ⊒ WellFormed (N C (Container.M.destruct y).fst.fst ny a) ((fun x => ↑(Sigma.snd (destruct { val := y, property := wfy }) x)) a)
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/MIdx.lean
IContainer.M.bisim
[85, 1]
[162, 13]
apply congrArg Sigma.fst hβ‚‚
I : Type uβ‚€ C : IContainer I R : (i : I) β†’ M C i β†’ M C i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M C i), R i x y β†’ βˆƒ node k₁ kβ‚‚, destruct x = { fst := node, snd := k₁ } ∧ destruct y = { fst := node, snd := kβ‚‚ } ∧ βˆ€ (z : B C i node), R (N C i node z) (k₁ z) (kβ‚‚ z) i : I x✝ : Container.M (toContainer C) wfx✝ : WellFormed i x✝ y✝ : Container.M (toContainer C) wfy✝ : WellFormed i y✝ hβ‚βœ : R i { val := x✝, property := wfx✝ } { val := y✝, property := wfy✝ } x y : Container.M (toContainer C) ix : I := (Container.M.destruct x).fst.fst nx : A C (Container.M.destruct x).fst.fst := (Container.M.destruct x).fst.snd kx : Container.B (toContainer C) (Container.M.destruct x).fst β†’ Container.M (toContainer C) := (Container.M.destruct x).snd iy : I := (Container.M.destruct y).fst.fst ny : A C (Container.M.destruct y).fst.fst := (Container.M.destruct y).fst.snd ky : Container.B (toContainer C) (Container.M.destruct y).fst β†’ Container.M (toContainer C) := (Container.M.destruct y).snd wfx' : βˆ€ (a : B C ix nx), WellFormed (N C ix nx a) (kx a) wfy' : βˆ€ (a : B C iy ny), WellFormed (N C iy ny a) (ky a) wfx : WellFormed (Container.M.destruct y).fst.fst x wfy : WellFormed (Container.M.destruct y).fst.fst y r : R (Container.M.destruct y).fst.fst { val := x, property := wfx } { val := y, property := wfy } node : A C (Container.M.destruct y).fst.fst k₁ kβ‚‚ : (y_1 : B C (Container.M.destruct y).fst.fst node) β†’ M C (N C (Container.M.destruct y).fst.fst node y_1) h₁ : destruct { val := x, property := wfx } = { fst := node, snd := k₁ } hβ‚‚ : destruct { val := y, property := wfy } = { fst := node, snd := kβ‚‚ } h₃ : βˆ€ (z : B C (Container.M.destruct y).fst.fst node), R (N C (Container.M.destruct y).fst.fst node z) (k₁ z) (kβ‚‚ z) hix : (Container.M.destruct y).fst.fst = (Container.M.destruct x).fst.fst a : B C (Container.M.destruct y).fst.fst node ⊒ ny = node
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
intro hβ‚€ i x y h₁
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop ⊒ (βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y) β†’ βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ congr F i x y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y ⊒ congr F i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
simp only [congr, pcongr]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y ⊒ congr F i x y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y ⊒ ↑(pgfp (precongr F)) βŠ₯ i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
have := (pgfp.coinduction (precongr F) p).2
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y ⊒ ↑(pgfp (precongr F)) βŠ₯ i x y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ ↑(pgfp (precongr F)) βŠ₯ i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
apply this
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ ↑(pgfp (precongr F)) βŠ₯ i x y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
have : p ≀ p βŠ” pgfp (precongr F) p := by simp
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this✝ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this : p ≀ p βŠ” ↑(pgfp (precongr F)) p ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
have := (precongr F).2 this
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this✝ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this : p ≀ p βŠ” ↑(pgfp (precongr F)) p ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
apply le_trans _ this
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) p case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
apply hβ‚€
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this✝¹ : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ this✝ : p ≀ p βŠ” ↑(pgfp (precongr F)) p this : ↑(precongr F) p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) ⊒ p ≀ ↑(precongr F) p case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
assumption
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p i x y
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.congr.coinduction
[55, 1]
[66, 13]
simp
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F p : (i : I) β†’ M (C F) i β†’ M (C F) i β†’ Prop hβ‚€ : βˆ€ (i : I) (x y : M (C F) i), p i x y β†’ ↑(precongr F) p i x y i : I x y : M (C F) i h₁ : p i x y this : p ≀ ↑(precongr F) (p βŠ” ↑(pgfp (precongr F)) p) β†’ p ≀ ↑(pgfp (precongr F)) βŠ₯ ⊒ p ≀ p βŠ” ↑(pgfp (precongr F)) p
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.destruct_corec
[97, 1]
[103, 47]
simp only [IQPF.M.destruct, IQPF.M.corec, destruct.f, IContainer.M.destruct_corec, inst.abs_imap, inst.abs_repr]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F Ξ± : I β†’ Type u₁ f : (i : I) β†’ Ξ± i β†’ F Ξ± i i : I xβ‚€ : Ξ± i ⊒ destruct (corec f xβ‚€) = IFunctor.imap (fun i x => corec f x) (f i xβ‚€)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F Ξ± : I β†’ Type u₁ f : (i : I) β†’ Ξ± i β†’ F Ξ± i i : I xβ‚€ : Ξ± i ⊒ IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (IFunctor.imap (fun i => IContainer.M.corec fun i x => repr (f i x)) (f i xβ‚€)) = IFunctor.imap (fun i x => Quot.mk (congr F i) (IContainer.M.corec (fun i x => repr (f i x)) x)) (f i xβ‚€)
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.destruct_corec
[97, 1]
[103, 47]
rw [←inst.abs_repr (f i xβ‚€)]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F Ξ± : I β†’ Type u₁ f : (i : I) β†’ Ξ± i β†’ F Ξ± i i : I xβ‚€ : Ξ± i ⊒ IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (IFunctor.imap (fun i => IContainer.M.corec fun i x => repr (f i x)) (f i xβ‚€)) = IFunctor.imap (fun i x => Quot.mk (congr F i) (IContainer.M.corec (fun i x => repr (f i x)) x)) (f i xβ‚€)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F Ξ± : I β†’ Type u₁ f : (i : I) β†’ Ξ± i β†’ F Ξ± i i : I xβ‚€ : Ξ± i ⊒ IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (IFunctor.imap (fun i => IContainer.M.corec fun i x => repr (f i x)) (abs (repr (f i xβ‚€)))) = IFunctor.imap (fun i x => Quot.mk (congr F i) (IContainer.M.corec (fun i x => repr (f i x)) x)) (abs (repr (f i xβ‚€)))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.destruct_corec
[97, 1]
[103, 47]
cases repr (f i xβ‚€) with | mk n k => simp only [←inst.abs_imap, IContainer.Map]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F Ξ± : I β†’ Type u₁ f : (i : I) β†’ Ξ± i β†’ F Ξ± i i : I xβ‚€ : Ξ± i ⊒ IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (IFunctor.imap (fun i => IContainer.M.corec fun i x => repr (f i x)) (abs (repr (f i xβ‚€)))) = IFunctor.imap (fun i x => Quot.mk (congr F i) (IContainer.M.corec (fun i x => repr (f i x)) x)) (abs (repr (f i xβ‚€)))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.destruct_corec
[97, 1]
[103, 47]
simp only [←inst.abs_imap, IContainer.Map]
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F Ξ± : I β†’ Type u₁ f : (i : I) β†’ Ξ± i β†’ F Ξ± i i : I xβ‚€ : Ξ± i n : IContainer.A (C F) i k : (y : IContainer.B (C F) i n) β†’ Ξ± (IContainer.N (C F) i n y) ⊒ IFunctor.imap (fun x x_1 => Quot.mk (congr F x) x_1) (IFunctor.imap (fun i => IContainer.M.corec fun i x => repr (f i x)) (abs { fst := n, snd := k })) = IFunctor.imap (fun i x => Quot.mk (congr F i) (IContainer.M.corec (fun i x => repr (f i x)) x)) (abs { fst := n, snd := k })
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.imap_spec
[118, 1]
[124, 40]
conv => congr <;> rw [←inst.abs_repr x]
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i x : F Ξ± i ⊒ IFunctor.imap (fun i => f i ∘ g i) x = IFunctor.imap f (IFunctor.imap g x)
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i x : F Ξ± i ⊒ IFunctor.imap (fun i => f i ∘ g i) (abs (repr x)) = IFunctor.imap f (IFunctor.imap g (abs (repr x)))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.imap_spec
[118, 1]
[124, 40]
cases repr x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i x : F Ξ± i ⊒ IFunctor.imap (fun i => f i ∘ g i) (abs (repr x)) = IFunctor.imap f (IFunctor.imap g (abs (repr x)))
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i x : F Ξ± i fst✝ : IContainer.A (C F) i snd✝ : (y : IContainer.B (C F) i fst✝) β†’ Ξ± (IContainer.N (C F) i fst✝ y) ⊒ IFunctor.imap (fun i => f i ∘ g i) (abs { fst := fst✝, snd := snd✝ }) = IFunctor.imap f (IFunctor.imap g (abs { fst := fst✝, snd := snd✝ }))
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.imap_spec
[118, 1]
[124, 40]
simp [←inst.abs_imap, IContainer.Map]
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i x : F Ξ± i fst✝ : IContainer.A (C F) i snd✝ : (y : IContainer.B (C F) i fst✝) β†’ Ξ± (IContainer.N (C F) i fst✝ y) ⊒ IFunctor.imap (fun i => f i ∘ g i) (abs { fst := fst✝, snd := snd✝ }) = IFunctor.imap f (IFunctor.imap g (abs { fst := fst✝, snd := snd✝ }))
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IContainer.Map_spec
[126, 1]
[129, 24]
cases x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i x : Obj (IQPF.C F) Ξ± i ⊒ Map (fun i => f i ∘ g i) x = Map f (Map g x)
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i fst✝ : A (IQPF.C F) i snd✝ : (y : B (IQPF.C F) i fst✝) β†’ Ξ± (N (IQPF.C F) i fst✝ y) ⊒ Map (fun i => f i ∘ g i) { fst := fst✝, snd := snd✝ } = Map f (Map g { fst := fst✝, snd := snd✝ })
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IContainer.Map_spec
[126, 1]
[129, 24]
simp [IContainer.Map]
case mk I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F i : I Ξ± Ξ² Ξ³ : I β†’ Type u₁ f : (i : I) β†’ Ξ² i β†’ Ξ³ i g : (i : I) β†’ Ξ± i β†’ Ξ² i fst✝ : A (IQPF.C F) i snd✝ : (y : B (IQPF.C F) i fst✝) β†’ Ξ± (N (IQPF.C F) i fst✝ y) ⊒ Map (fun i => f i ∘ g i) { fst := fst✝, snd := snd✝ } = Map f (Map g { fst := fst✝, snd := snd✝ })
no goals
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro i x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) ⊒ βˆ€ (i : I) (x y : M F i), r i x y β†’ x = y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : M F i ⊒ βˆ€ (y : M F i), r i x y β†’ x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.inductionOn (motive := _) x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : M F i ⊒ βˆ€ (y : M F i), r i x y β†’ x = y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : M F i ⊒ βˆ€ (a : IContainer.M (C F) i) (y : M F i), r i (Quot.mk (congr F i) a) y β†’ Quot.mk (congr F i) a = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
clear x
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : M F i ⊒ βˆ€ (a : IContainer.M (C F) i) (y : M F i), r i (Quot.mk (congr F i) a) y β†’ Quot.mk (congr F i) a = y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I ⊒ βˆ€ (a : IContainer.M (C F) i) (y : M F i), r i (Quot.mk (congr F i) a) y β†’ Quot.mk (congr F i) a = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro x y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I ⊒ βˆ€ (a : IContainer.M (C F) i) (y : M F i), r i (Quot.mk (congr F i) a) y β†’ Quot.mk (congr F i) a = y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : IContainer.M (C F) i y : M F i ⊒ r i (Quot.mk (congr F i) x) y β†’ Quot.mk (congr F i) x = y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.inductionOn (motive := _) y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : IContainer.M (C F) i y : M F i ⊒ r i (Quot.mk (congr F i) x) y β†’ Quot.mk (congr F i) x = y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : IContainer.M (C F) i y : M F i ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.mk (congr F i) x = Quot.mk (congr F i) a
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
clear y
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : IContainer.M (C F) i y : M F i ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.mk (congr F i) x = Quot.mk (congr F i) a
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : IContainer.M (C F) i ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.mk (congr F i) x = Quot.mk (congr F i) a
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
intro y hβ‚‚
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x : IContainer.M (C F) i ⊒ βˆ€ (a : IContainer.M (C F) i), r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) a) β†’ Quot.mk (congr F i) x = Quot.mk (congr F i) a
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ Quot.mk (congr F i) x = Quot.mk (congr F i) y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
apply Quot.sound
I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ Quot.mk (congr F i) x = Quot.mk (congr F i) y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ congr F i x y
https://github.com/RemyCiterin/LeanCoInd.git
69d305ae769624f460f9c1ee6a0351917f4b74cf
CoInd/QPF/MIdx.lean
IQPF.M.bisim_lemma
[131, 1]
[183, 13]
let r' i x y := r i (Quot.mk _ x) (Quot.mk _ y)
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ congr F i x y
case a I : Type u₁ F : (I β†’ Type u₁) β†’ I β†’ Type u₁ inst : IQPF F r : (i : I) β†’ M F i β†’ M F i β†’ Prop hβ‚€ : βˆ€ (i : I) (x : M F i), r i x x h₁ : βˆ€ (i : I) (x y : M F i), r i x y β†’ IFunctor.imap (fun i => Quot.mk (r i)) (destruct x) = IFunctor.imap (fun i => Quot.mk (r i)) (destruct y) i : I x y : IContainer.M (C F) i hβ‚‚ : r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) r' : (i : I) β†’ IContainer.M (C F) i β†’ IContainer.M (C F) i β†’ Prop := fun i x y => r i (Quot.mk (congr F i) x) (Quot.mk (congr F i) y) ⊒ congr F i x y